WorldWideScience

Sample records for trioxide synergistically enhances

  1. Sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide in multiple myeloma cells via stress-mediated pathways

    Science.gov (United States)

    DOUDICAN, NICOLE A.; WEN, SHIH YA; MAZUMDER, AMITABHA; ORLOW, SETH J.

    2012-01-01

    Persistent paraprotein production in plasma cells necessitates a highly developed rough endoplasmic reticulum (ER) that is unusually susceptible to perturbations in protein synthesis. This biology is believed to account for the exquisite sensitivity of multiple myeloma (MM) to the proteasomal inhibitor bortezomib (BTZ). Despite remarkable response rates to BTZ in MM, BTZ carries the potential for serious side-effects and development of resistance. We, therefore, sought to identify therapeutic combinations that effectively disrupt proteostasis in order to provide new potential treatments for MM. We found that sulforaphane, a dietary isothiocyanate found in cruciferous vegetables, inhibits TNFα-induced Iκβ proteasomal degradation in a manner similar to BTZ. Like BTZ, sulforaphane synergistically enhances the cytotoxicity of arsenic trioxide (ATO), an agent with clinical activity in MM. ATO and sulforaphane co-treatment augmented apoptotic induction as demonstrated by cleavage of caspase-3, -4 and PARP. The enhanced apoptotic response was dependent upon production of reactive oxygen species (ROS) as demonstrated by glutathione depletion and partial inhibition of the apoptotic cascade after pretreatment with the radical scavenger N-acetyl-cysteine (NAC). Combination treatment resulted in enhanced ER stress signaling and activation of the unfolded protein response (UPR), indicative of perturbation of proteostasis. Specifically, combination treatment caused elevated expression of the molecular chaperone HSP90 (heat shock protein 90) along with increased PERK (protein kinase RNA-like endoplasmic reticulum kinase) and eIF2α phosphorylation and XBP1 (X-box binding protein 1) splicing, key indicators of UPR activation. Moreover, increased splicing of XBP1 was apparent upon combination treatment compared to treatment with either agent alone. Sulforaphane in combination with ATO effectively disrupts protein homeostasis through ROS generation and induction of ER stress to

  2. The antitumor effect of arsenic trioxide on hepatocellular carcinoma is enhanced by andrographolide

    OpenAIRE

    Duan, Xuhua; Li, Tengfei; Han, Xinwei; Ren, Jianzhuang; Chen, Pengfei; Li, Hao; Gong, Shaojun

    2017-01-01

    High concentrations of arsenic trioxide (As2O3) are used to treat acute promyelocytic leukemia and solid tumors, with negative side effects to normal cells. Andrographolide is a traditional Chinese medicine that exerts anti-cancer, anti-inflammatory, anti-virus, and anti-diabetic effects. Here, we tested the effects of combined andrographolide with As2O3 against hepatocellular carcinoma (HCC). We found that by increasing apoptosis, andrographolide synergistically enhanced the anti-tumor effec...

  3. Resveratrol and arsenic trioxide act synergistically to kill tumor cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhao

    Full Text Available BACKGROUND AND AIMS: Arsenic trioxide (As2O3, which used as an effective agent in the treatment of leukaemia and other solid tumors, is largely limited by its toxicity. QT prolongation, torsades de pointes and sudden heart death have been implicated in the cardiotoxicity of As2O3. The present study was designed to explore whether the combination of As2O3 and resveratrol could generate a more powerful anti-cancer effect both in vitro and in vivo. MATERIALS AND METHODS: MTT assay was performed to assess the proliferation of Hela, MCF-7 and NB4 cells. Isobolographic analysis was used to evaluate combination index values from cell viability data. The apoptosis and the cellular reactive oxygen species (ROS level were assessed by fluorescent microscopy and flow cytometry separately in vitro. The effect of As2O3, alone and in combination with resveratrol on Hela tumor growth in an orthotopic nude mouse model was also investigated. The tumor volume and the immunohistochemical analysis of CD31, CD34 and VEGF were determined. RESULTS: Resveratrol dramatically enhanced the anti-cancer effect induced by As2O3 in vitro. In addition, isobolographic analysis further demonstrated that As2O3 and resveratrol generated a synergistic action. More apoptosis and ROS generation were observed in the combination treatment group. Similar synergistic effects were found in nude mice in vivo. The combination of As2O3 and resveratrol dramatically suppressed both tumor growth and angiogenesis in nude mice. CONCLUSIONS: Combining As2O3 with resveratrol would be a novel strategy to treat cancer in clinical practice.

  4. The antitumor effect of arsenic trioxide on hepatocellular carcinoma is enhanced by andrographolide.

    Science.gov (United States)

    Duan, Xuhua; Li, Tengfei; Han, Xinwei; Ren, Jianzhuang; Chen, Pengfei; Li, Hao; Gong, Shaojun

    2017-10-31

    High concentrations of arsenic trioxide (As 2 O 3 ) are used to treat acute promyelocytic leukemia and solid tumors, with negative side effects to normal cells. Andrographolide is a traditional Chinese medicine that exerts anti-cancer, anti-inflammatory, anti-virus, and anti-diabetic effects. Here, we tested the effects of combined andrographolide with As 2 O 3 against hepatocellular carcinoma (HCC). We found that by increasing apoptosis, andrographolide synergistically enhanced the anti-tumor effects of As2O3 in HepG2 cells in vitro and in vivo . Furthermore, results from our microarray assays and experiments with mouse xenografts showed that EphB4 was downregulated by the combination of As 2 O 3 plus andrographolide. These findings suggest that the combination of andrographolide and As 2 O 3 could yield therapeutic benefits in the treatment of HCC.

  5. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C.

    Science.gov (United States)

    Pelicano, H; Carew, J S; McQueen, T J; Andreeff, M; Plunkett, W; Keating, M J; Huang, P

    2006-04-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a new anticancer agent currently in clinical trials. The ability of 17-AAG to abrogate the function of heat-shock protein Hsp90 and modulate cellular sensitivity to anticancer agents has prompted recent research to use this compound in drug combination therapy. Here we report that 17-AAG has striking opposite effects on the activity of arsenic trioxide (ATO) and ara-C. Combination of 17-AAG with ATO exhibited a synergistic effect in leukemia cells, whereas coincubation of 17-AAG and ara-C showed antagonistic activity. Mechanistic studies revealed that ATO exerted cytotoxic action by reactive oxygen species generation, and activated Akt survival pathway. 17-AAG abrogated Akt activation and enhanced the activity of ATO. In contrast, treatment of leukemia cells with 17-AAG caused a G1 arrest, a decrease in DNA synthesis and reduced ara-C incorporation into DNA, leading to antagonism. The ability of 17-AAG to enhance the antileukemia activity of ATO was further demonstrated in primary leukemia cells isolated from patients with acute myeloid leukemia and chronic lymphocytic leukemia, including cells from refractory patients. Our data suggest that combination of 17-AAG and ATO may be an effective therapeutic regimen. Caution should be exercised in using 17-AAG together with ara-C, as their combination effects are schedule dependent.

  6. The synergistic effects of fibroblast growth factor-2 and mineral trioxide aggregate on an osteogenic accelerator in vitro.

    Science.gov (United States)

    Liu, C-H; Huang, T-H; Hung, C-J; Lai, W-Y; Kao, C-T; Shie, M-Y

    2014-09-01

    To examine the effects of mineral trioxide aggregate (MTA)/fibroblast growth factor-2 (FGF-2) on material properties and in vitro human dental pulp cell (hDPCs) behaviour. The setting time and diametral tensile strength (DTS) of MTA and MTA/FGF-2 were measured. The structure of specimens before and after soaking in DMEM was examined under a scanning electron microscope. Alamar Blue was used for evaluating hDPCs proliferation. An enzyme-linked immunosorbent assay was employed to determine ALP and osteocalcin (OC) expression in hDPCs cultured on cements. The effect of small interfering RNA (siRNA) transfection targeting fibroblast growth factor receptor (FGFR) was also evaluated. One-way analysis of variance was used to evaluate the significance of the differences between the mean values. Setting time and DTS data were not found to be significant (P > 0.05) between MTA with and without FGF-2. Cell proliferation and differentiation increased significantly (P MTA. After siRNA transfection with FGFR, the proliferation and differentiation behaviour of the hDPCs appreciably decreased when cultured on an MTA/FGF-2 composite. In contrast, no significant amounts (P > 0.05) of ALP and OC were secreted by hDPCs seeded on MTA. Mineral trioxide aggregate with FGF-2 content enhanced the higher expression of hDPCs proliferation and osteogenic differentiation as compared to pure MTA cement. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. 2-methoxyestradiol induces mitotic arrest, apoptosis, and synergistic cytotoxicity with arsenic trioxide in human urothelial carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Kuan-Lin Kuo

    Full Text Available 2-Methoxyestradiol (2-ME, an endogenous derivative of 17β-estradiol, has been reported to elicit antiproliferative responses in various tumors. In this study, we investigated the effects of 2-ME on cell viability, proliferation, cell cycle, and apoptosis in human urothelial carcinoma (UC cell lines. We used two high-grade human bladder UC cell lines (NTUB1 and T24. After treatment with 2-ME, the cell viability and apoptosis were measured by MTT assay and flow cytometry (fluorescence-activated cell sorting, with annexin V-FITC staining and propidium iodide (PI labeling. DNA fragmentation was analyzed by agarose gel electrophoresis. Flow cytometry with PI labeling was used for the cell cycle analyses. The protein levels of caspase activations, poly (ADP-ribose polymerase (PARP cleavage, phospho-histone H2A.X, phospho-Bad, and cell cycle regulatory molecules were measured by Western blot. The effects of the drug combinations were analyzed using the computer software, CalcuSyn. We demonstrated that 2-ME effectively induces dose-dependent cytotoxicity and apoptosis in human UC cells after 24 h exposure. DNA fragmentation, PARP cleavage, and caspase-3, 7, 8, 9 activations can be observed with 2-ME-induced apoptosis. The decreased phospho-Bad (Ser136 and Ser155 and mitotic arrest of the cell cycle in the process of apoptosis after 2-ME treatment was remarkable. In response to mitotic arrest, the mitotic forms of cdc25C, phospho-cdc2, cyclin B1, and phospho-histone H3 (Ser10 were activated. In combination with arsenic trioxide (As2O3, 2-ME elicited synergistic cytotoxicity (combination index <1 in UC cells. We concluded that 2-ME significantly induces apoptosis through decreased phospho-Bad and arrests bladder UC cells at the mitotic phase. The synergistic antitumor effect with As2O3 provides a novel implication in clinical treatment of UC.

  8. Potential synergistic effects of a mixture of mineral trioxide aggregate (MTA) cement and Bacillus subtilis in dental caries treatment.

    Science.gov (United States)

    Oka, Shunya

    2018-01-01

    Bacillus subtilis is nonpathogenic in humans and produces a number of useful substances and, therefore, this bacterium is used in probiotic therapy. There have been trials of B. subtilis for patients with periodontitis, but not for patients with caries. Similarly, mineral trioxide aggregate (MTA) cement has been widely used for endodontic treatment, but there are few reports of its use for caries. Therefore, examinations were performed regarding the benefits of addition of B. subtilis to MTA cement for treatment of dental caries. Indirect pulp capping with a mixture of MTA cement and B. subtilis spore powder is effective for avoiding pulpectomy or tooth extraction in such cases (personal communication). This study was planned to examine the scientific basis of this clinical finding, with examination of possible synergistic effects of MTA cement and B. subtilis. From these experiments, the following five results were obtained: (1) B. subtilis did not proliferate in liquid-culture media at pH ≥10. (2) B. subtilis proliferated when mixed with MTA cement. (3) There was no significant difference in proliferation of B. subtilis under aerobic and microaerobic conditions. (4) B. subtilis exhibited antibacterial effects on Staphylococcus aureus and Lactobacillus casei. (5) MTA cement exhibited antibacterial effects on S. aureus and Streptococcus mutans, but not on B. subtilis. These results support the hypothesis that a combination of B subtilis and MTA cement is likely to be clinically useful for treatment of dental caries.

  9. Enhanced electrical capacitance of porous carbon nanofibers derived from polyacrylonitrile and boron trioxide

    International Nuclear Information System (INIS)

    Kim, Bo-Hye; Yang, Kap Seung

    2013-01-01

    Carbon nanofibers (CNFs) containing boron and nitrogen are prepared from polyacrylonitrile and boron trioxide (B 2 O 3 ) by using simple electrospinning. The B 2 O 3 introduction into a PAN solution causes a porous structure with stabilized [O]BN functional groups to develop in the processes of stabilization and carbonization. The pore structure and the functional groups such as B atoms and [O]BN introduce synergistic effects by not only increasing the power density but also the energy density, as shown by the results. The energy storage capabilities of the electrode prepared from 20 wt% B 2 O 3 added to the PAN solution are as follows: a capacitance of 184.0 F g −1 and an energy density of 18.7–25.2 Wh kg −1 in the respective power density range of 400–10,000 W kg −1 in 6 M KOH electrolyte. Hence, these CNFs exhibit a very promising potential as electrode materials for electrical double-layer capacitors due to their unique microstructure and proper proportion of heteroatoms

  10. Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes

    International Nuclear Information System (INIS)

    Arsenic is well known as a carcinogen predisposing humans to some severe diseases and also as an effective medicine for treating acute promyelocytic leukemia, syphilis, and psoriasis. Multiple active mechanisms, including cell cycle arrest and apoptosis, have been proposed in therapy; however, the opposing effects of arsenic remain controversial. Our previous study found that arsenic trioxide (ATO)-induced activation of p21 WAF1/CIP1 (p21) led to A431 cell death through the antagonistic effects of the signaling of ERK1/2 and JNK1. In the current study, the inhibitory effects of JNK1 on ATO-induced p21 expression were explored. Over-expression of JNK1 in A431 cells could inhibit p21 expression, which was associated with HDAC1 and TGIF. Using the GST pull-down assay and fluorescence resonance energy transfer analysis, N-terminal domain (amino acids 1-108) of TGIF, critical to its binding with c-Jun, was found. Using reporter assays, requirement of the C-terminal domain (amino acids 138-272) of TGIF to suppress ATO-induced p21 expression was observed. Thus, the domains of TGIF that carried out its inhibitory effects on p21 were identified. Finally, treatment with JNK inhibitor SP600125 could enhance ATO-induced apoptosis of HaCaT keratinocytes by using flow cytometry.

  11. Synergistic effects of arsenic trioxide combined with ascorbic acid in human osteosarcoma MG-63 cells: a systems biology analysis.

    Science.gov (United States)

    Huang, X C; Maimaiti, X Y M; Huang, C W; Zhang, L; Li, Z B; Chen, Z G; Gao, X; Chen, T Y

    2014-01-01

    To further understand the synergistic mechanism of As2O3 and asscorbic acid (AA) in human osteosarcoma MG-63 cells by systems biology analysis. Human osteosarcoma MG-63 cells were treated by As2O3 (1 µmol/L), AA (62.5 µmol/L) and combined drugs (1 µmol/L As2O3 plus 62.5 µmol/L AA). Dynamic morphological characteristics were recorded by Cell-IQ system, and growth rate was calculated. Illumina beadchip assay was used to analyze the differential expression genes in different groups. Synergic effects on differential expression genes (DEGs) were analyzed by mixture linear model and singular value decomposition model. KEGG pathway annotations and GO enrichment analysis were performed to figure out the pathways involved in the synergic effects. We captured 1987 differential expression genes in combined therapy MG-63 cells. FAT1 gene was significantly upregulated in all three groups, which is a promising drug target as an important tumor suppressor analogue; meanwhile, HIST1H2BD gene was markedly downregulated in the As2O3 monotherapy group and the combined therapy group, which was found to be upregulated in prostatic cancer. These two genes might play critical roles in synergetic effects of AA and As2O3, although the exact mechanism needs further investigation. KEGG pathway analysis showed many DEGs were related with tight junction, and GO analysis also indicated that DEGs in the combined therapy cells gathered in occluding junction, apical junction complex, cell junction, and tight junction. AA potentiates the efficacy of As2O3 in MG-63 cells. Systems biology analysis showed the synergic effect on the DEGs.

  12. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    International Nuclear Information System (INIS)

    Lin, Tseng-Hsi; Kuo, Hsing-Chun; Chou, Fen-Pi; Lu, Fung-Jou

    2008-01-01

    Arsenic trioxide (As 2 O 3 ) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As 2 O 3 -mediated inhibition of cancer cell migration using rat and human glioma cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As 2 O 3 or berberine, and after co-treatment with As 2 O 3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As 2 O 3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As 2 O 3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. The cell viability studies demonstrated that berberine enhances As 2 O 3 -mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As 2 O 3 . The latter effect was even more pronounced in the presence of 10 μM berberine. The As 2 O 3 -mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As 2 O 3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also

  13. Enhanced generation of hydroxyl radicals on well-crystallized molybdenum trioxide/nano-graphite anode with sesame cake-like structure for degradation of bio-refractory antibiotic.

    Science.gov (United States)

    Tang, Bo; Du, Jiannan; Feng, Qingmao; Zhang, Jiaqi; Wu, Dan; Jiang, Xiankai; Dai, Ying; Zou, Jinlong

    2018-05-01

    Anodic electro-catalysis oxidation is a highly effective way to solve the pollution problem of antibiotics in wastewater and receiving water bodies. In this study, for the first time, molybdenum trioxide/Nano-graphite (MoO 3 /Nano-G) composites are synthesized as anodic catalysts by a surfactant-assisted solvothermal method followed by low-temperature calcination. The effects of the proportion of MoO 3 to Nano-G (10, 30 and 50%) on the properties of composites are investigated through structural characterizations and electrochemical measurements. Results indicate that MoO 3 (30)/Nano-G electrode displays the electro-catalysis degradation efficiency of 99.9% towards ceftazidime, which is much higher than those of Nano-G (46.7%) and dimensionally stable anode (69.2%). The degradation mechanism for ceftazidime is studied by investigating the yields and kinds of active species. Results show that all of the OH, O 2- and H 2 O 2 are responsible for the electro-catalytic degradation process, and the produced OH radicals are the major active species for ceftazidime degradation. The synergistic effects between MoO 3 and Nano-G greatly contribute to the activation of H 2 O molecules to produce OH, meanwhile the special sesame cake-like structure facilitates to the exposure of contaminants to OH on active sites to enhance the degradation efficiency. These results suggest that MoO 3 /Nano-G electrodes can be considered as the promising catalysts for treating bio-refractory organic wastewater. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Enhanced selective response to nitric oxide (NO) of Au-modified tungsten trioxide nanoplates

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Li [School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001 (China); Chen, Deliang, E-mail: dlchen@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001 (China); UK–China Centre for Multi-functional Nanomaterials, Zhengzhou University, Zhengzhou 450001 (China); Fan, Bingbing; Lu, Hongxia; Wang, Hailong; Xu, Hongliang; Yang, Daoyuan [School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001 (China); Shao, Guosheng [UK–China Centre for Multi-functional Nanomaterials, Zhengzhou University, Zhengzhou 450001 (China); Institute for Renewable Energy and Environmental Technology, University of Bolton, Bolton BL3 5AB (United Kingdom); Zhang, Rui, E-mail: zhangray@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001 (China); Laboratory of Aeronautical Composites, Zhengzhou Institute of Aeronautical Industry Management, University Centre, Zhengdong New District, Zhengzhou 450046 (China)

    2013-12-16

    Au-modified WO{sub 3} nanoplates (Au@plate-WO{sub 3}) were synthesized by chemically reducing HAuCl{sub 4} on the surfaces of two-dimensional WO{sub 3} nanoplates, which were derived from an intercalation–topochemical process. XRD, SEM, TEM, XPS and UV–vis DR spectra were used to characterize the WO{sub 3} nanoplates and Au@plate-WO{sub 3} nanocomposites. The gas-sensing properties of the WO{sub 3} nanoplates and Au@plate-WO{sub 3} nanocomposites were comparatively investigated using inorganic gases and organic vapors as the target gases, with an emphasis on exploring the response and selectivity of NO gases with low concentrations (0.5–10 ppm) at low operating temperature (130−250 °C). The results indicated that Au nanoparticles (Au NPs) enhance the low-temperature sensitivity and selectivity of the Au@plate-WO{sub 3} sensors for NO detection when compared with the performance of the WO{sub 3} sensors. The Au@plate-WO{sub 3} nanocomposite with 1 wt.% Au NPs has the best NO-sensing performance at the optimum operating temperature of ∼170 °C. In addition, the Au@plate-WO{sub 3} sensors show highly selective to NO gas among various inorganic gases (i.e., H{sub 2}, SO{sub 2} and CO) and organic vapors (i.e., alcohol, acetone, methanal and benzene). The enhancement in sensitivity and selectivity for NO detection is probably due to the synergistic effect of Au NPs and the house-of-card structure of WO{sub 3} nanoplates. - Highlights: • Au@plate-WO{sub 3} nanocomposites were synthesized by a chemical process. • The Au@plate-WO{sub 3} sensors were highly selective to NO gases with low concentrations. • The Au@plate-WO{sub 3} sensors had the highest sensitivity operating at about 170 °C. • The optimum amount of Au nanoparticles was about 1 wt.%. • Au nanoparticles and the loose aggregates enhanced the NO-sensing performance.

  15. Mixing with propylene glycol enhances the bond strength of mineral trioxide aggregate to dentin.

    Science.gov (United States)

    Salem Milani, Amin; Froughreyhani, Mohammad; Charchi Aghdam, Saeed; Pournaghiazar, Fatemeh; Asghari Jafarabadi, Mohammad

    2013-11-01

    Mixing mineral trioxide aggregate (MTA) with different proportions of propylene glycol (PG) improves its handling property. The aim of this study was to evaluate the effect of PG on MTA-dentin push-out bond strength. Seventy-five 2-mm-thick midroot sections were prepared from single-rooted human extracted teeth. The lumen of each slice was enlarged with Gates-Glidden burs. The slices were randomly divided into 3 groups (n = 25). In each group, 0.3 mL of the liquid was mixed with 1 g MTA (Angelus, Londrina, Brazil). The liquid vehicles used in groups 1-3 were 100% distilled water (DW), 20% PG-80% DW, and 100% PG, respectively. After incubation, the push-out strength of the samples was measured using a universal testing machine. The samples were then cut in halves and examined under a stereomicroscope to determine the failure pattern. One-way analysis of variance followed by the Tukey post hoc test was used to compare the push-out strength among groups. There were statistically significant differences between groups (P < .001). The push-out strength in group 1 (DW) was significantly lower than groups 2 and 3 (P < .001 and P = .022, respectively). However, there was no significant difference between groups 2 (DW-PG) and 3 (PG). Mixing MTA with PG increased its push-out bond strength to dentin. In the present study, the most suitable ratio was 80% DW-20% PG. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Vorinostat enhances chemosensitivity to arsenic trioxide in K562 cell line

    Directory of Open Access Journals (Sweden)

    Nainong Li

    2015-05-01

    Full Text Available Objective. This study aimed to investigate the chemosensitive augmentation effect and mechanism of HDAC inhibitor Vorinostat (SAHA in combination with arsenic trioxide (ATO on proliferation and apoptosis of K562 cells.Methods. The CCK-8 assay was used to compare proliferation of the cells. Annexin-V and PI staining by flow cytometry and acridine orange/ethidium bromide stains were used to detect and quantify apoptosis. Western blot was used to detect expression of p21, Akt, pAkt, p210, Acetyl-Histone H3, and Acetyl-Histone H4 proteins.Results. SAHA and ATO inhibited proliferation of K562 cells in an additive and time- and dose-dependent manner. SAHA in combination with ATO showed significant apoptosis of K562 cells in comparison to the single drugs alone (p < 0.01. Both SAHA and ATO alone and in combination showed lower levels of p210 expression. SAHA and SAHA and ATO combined treatment showed increased levels of Acetyl-Histone H3 and Acetyl-Histone H4 protein expression. SAHA alone showed increased expression of p21, while ATO alone and in combination with SAHA showed no significant change. SAHA and ATO combined therapy showed lower levels of Akt and pAkt protein expression than SAHA or ATO alone.Conclusion. SAHA and ATO combined treatment inhibited proliferation, induced apoptosis, and showed a chemosensitive augmentation effect on K562 cells. The mechanism might be associated with increasing histone acetylation levels as well as regulating the Akt signaling pathway.

  17. In situ polymerization synthesis of Z-scheme tungsten trioxide/polyimide photocatalyst with enhanced visible-light photocatalytic activity

    Science.gov (United States)

    Meng, Pengcheng; Heng, Huimin; Sun, Yanhong; Liu, Xia

    2018-01-01

    A novel direct Z-scheme P-containing tungsten trioxide/polyimide (PWO/PI) photocatalyst was synthesized by an in-situ solid-state polymerization strategy to enhance the visible-light photocatalytic oxidation capacity of PI. The effects of polymerization temperature and PWO content on the physicochemical properties of PWO/PI composites and photocatalytic degradation efficiency of imidacloprid were investigated. The photocatalysts were characterized by X-ray powder diffraction, Fourier transformed infrared spectra, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, UV-vis diffused reflection spectra and N2 adsorption-desorption isothermals. The results showed that the photocatalysts with visible-light photocatalytic activity can already be prepared at 300 °C. The PWO/PI composites exhibited a lamellar structure and PWO was wrapped by PI. After PWO was introduced, there was a significant interaction between PWO and PI, and the visible light response of photocatalysts was also improved. The visible-light photocatalytic degradation efficiency of imidacloprid on 3% PWO/PI-300 composite was about 3.2 times of commercial P25, and the corresponding pseudo-first-order rate constant was about 2.9 times of pristine PI. The Z-scheme photocatalytic system of PWO/PI composites was confirmed by the electron spin resonance technology, terephthalic acid photoluminescence probing technique, reactive species trapping experiments, X-ray photoelectron spectroscopy and photoluminescence of PWO/PI composites and pristine photocatalysts.

  18. Nonlinear optical enhancement induced by synergistic effect of graphene nanosheets and CdS nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Baohua, E-mail: bhzhu@henu.edu.cn, E-mail: yzgu@henu.edu.cn; Cao, Yawan; Wang, Chong; Wang, Ji; Gu, Yuzong, E-mail: bhzhu@henu.edu.cn, E-mail: yzgu@henu.edu.cn [Institute of Microsystem, School of Physics and Electronics, Henan University, Kaifeng 475004 (China); Wang, Fangfang [Key Laboratory of Infrared Imaging Materials and Detectors, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China)

    2016-06-20

    CdS nanocrystals are attached on graphene nanosheets and their nonlinear optical properties are investigated by picosecond Z-scan technique at 532 nm. We found that synergistic effect between the graphene and CdS makes a major enhancement on the nonlinear optical absorption of graphene/CdS nanohybrid in comparison with cooperative effect, and the synergistic improvement is restricted by nonradiative defects in hybrid. The synergistic mechanism involving the local field theory and charge transfer evolution is proposed.

  19. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  20. Mineral trioxide aggregate enhances the odonto/osteogenic capacity of stem cells from inflammatory dental pulps via NF-κB pathway.

    Science.gov (United States)

    Wang, Y; Yan, M; Fan, Z; Ma, L; Yu, Y; Yu, J

    2014-10-01

    This study was designed to investigate the effects of mineral trioxide aggregate (MTA) on the osteo/odontogenic differentiation of inflammatory dental pulp stem cells (iDPSCs). inflammatory DPSCs were isolated from the inflammatory pulps of rat incisors and cocultured with MTA-conditioned medium. MTT assay and flow cytometry were performed to evaluate the proliferation of iDPSCs. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time RT-PCR, and Western blot assay were used to investigate the differentiation capacity as well as the involvement of NF-κB pathway in iDPSCs. Mineral trioxide aggregate-treated iDPSCs demonstrated the higher ALP activity and formed more mineralized nodules than the untreated group. The odonto/osteoblastic markers (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN, and Dspp/DSP, respectively) in MTA-treated iDPSCs were significantly upregulated as compared with untreated iDPSCs. Mechanistically, cytoplastic phos-P65 and nuclear P65 in MTA-treated iDPSCs were significantly increased in a time-dependent manner. Moreover, the inhibition of NF-κB pathway suppressed the MTA-induced odonto/osteoblastic differentiation of iDPSCs, as indicated by decreased ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic genes (Osx, Ocn, and Dspp). Mineral trioxide aggregate enhances the odonto/osteogenic capacity of DPSCs from inflammatory sites via activating the NF-κB pathway. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Synergistic Enhancement of Cancer Therapy Using a Combination of Ceramide and Docetaxel

    Directory of Open Access Journals (Sweden)

    Li-Xia Feng

    2014-03-01

    Full Text Available Ceramide (CE-based combination therapy (CE combination as a novel therapeutic strategy has attracted great attention in the field of anti-cancer therapy. The principal purposes of this study were to investigate the synergistic effect of CE in combination with docetaxel (DTX (CE + DTX and to explore the synergy mechanisms of CE + DTX. The 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and combination index (CI assay showed that simultaneous administration of CE and DTX with a molar ratio of 0.5:1 could generate the optimal synergistic effect on murine malignant melanoma cell (B16, CI = 0.31 and human breast carcinoma cell (MCF-7, CI = 0.48. The apoptosis, cell cycle, and cytoskeleton destruction study demonstrated that CE could target and destruct the microfilament actin, subsequently activate Caspase-3 and induce apoptosis. Meanwhile, DTX could target and disrupt the microtubules cytoskeleton, leading to a high proportion of cancer cells in G2/M-phase arrest. Moreover, CE plus DTX could cause a synergistic destruction of cytoskeleton, which resulted in a significantly higher apoptosis and a significantly higher arrest in G2/M arrest comparing with either agent alone (p < 0.01. The in vivo antitumor study evaluated in B16 tumor-bearing mice also validated the synergistic effects. All these results suggested that CE could enhance the antitumor activity of DTX in a synergistic manner, which suggest promising application prospects of CE + DTX combination treatment.

  2. Nanoparticle-enhanced synergistic HIFU ablation and transarterial chemoembolization for efficient cancer therapy

    Science.gov (United States)

    You, Yufeng; Wang, Zhigang; Ran, Haitao; Zheng, Yuanyi; Wang, Dong; Xu, Jinshun; Wang, Zhibiao; Chen, Yu; Li, Pan

    2016-02-01

    High-intensity focused ultrasound (HIFU) is being generally explored as a non-invasive therapeutic modality to treat solid tumors. However, the clinical use of HIFU for large and deep tumor-ablation applications such as hepatocellular carcinoma (HCC) is currently entangled with long treatment duration and high operating energy. This critical issue can be potentially resolved by the introduction of HIFU synergistic agents (SAs). Traditional SAs such as microbubbles and microparticles face the problem of large size, short cycle time, damage to mononuclear phagocytic system and unsatisfactory targeting efficiency. In this work, we have developed a facile and versatile nanoparticle-based HIFU synergistic cancer surgery enhanced by transarterial chemoembolization for high-efficiency HCC treatment based on elaborately designed Fe3O4-PFH/PLGA nanocapsules. Multifunctional Fe3O4-PFH/PLGA nanocapsules were administrated into tumor tissues via transarterial injection combined with Lipiodol to achieve high tumor accumulation because transarterial chemoembolization by Lipiodol could block the blood vessels. The high synergistic HIFU ablation effect was successfully achieved against HCC tumors based on the phase-transformation performance of the perfluorohexane (PFH) inner core in the composite nanocapsules, as systematically demonstrated in VX2 liver tumor xenograft in rabbits. Multifunctional Fe3O4-PFH/PLGA nanocapsules were also demonstrated as efficient contrast agents for ultrasound, magnetic resonance and photoacoustic tri-modality imagings, potentially applicable for imaging-guided HIFU synergistic surgery. Therefore, the elaborate integration of traditional transarterial chemoembolization with recently developed nanoparticle-enhanced HIFU cancer surgery could efficiently enhance the HCC cancer treatment outcome, initiating a new and efficient therapeutic protocol/modality for clinic cancer treatment.

  3. Arsenic Trioxide Injection

    Science.gov (United States)

    Arsenic trioxide comes as a solution (liquid) to be injected into a vein by a doctor or nurse in a medical office or clinic. Arsenic trioxide is ... high blood sugar): extreme thirst frequent urination extreme hunger weakness blurred vision If high blood sugar is ...

  4. Synergistic Enhancement of Cellobiohydrolase Performance on Pretreated Corn Stover by Addition of Xylanase and Esterase Activities

    Energy Technology Data Exchange (ETDEWEB)

    Selig, M. J.; Knoshaug E. P.; Adney, W. S.; Himmel, M. E.; Decker, S. R.

    2007-11-01

    Significant increases in the depolymerization of corn stover cellulose by cellobiohydrolase I (Cel7A) from Trichoderma reesei were observed using small quantities of non-cellulolytic cell wall-degrading enzymes. Purified endoxylanase (XynA), ferulic acid esterase (FaeA), and acetyl xylan esterase (Axe1) all enhanced Cel7A performance on corn stover subjected to hot water pretreatment. In all cases, the addition of these activities improved the effectiveness of the enzymatic hydrolysis in terms of the quantity of cellulose converted per milligram of total protein. Improvement in cellobiose release by the addition of the non-cellulolytic enzymes ranged from a 13-84% increase over Cel7A alone. The most effective combinations included the addition of both XynA and Axe1, which synergistically enhance xylan conversions resulting in additional synergistic improvements in glucan conversion. Additionally, we note a direct relationship between enzymatic xylan removal in the presence of XynA and the enhancement of cellulose hydrolysis by Cel7A.

  5. Synergistic effects of interfacial modifiers enhance current and voltage in hybrid solar cells

    Directory of Open Access Journals (Sweden)

    Jonas Weickert

    2013-10-01

    Full Text Available To unleash the full potential of hybrid solar cells, it is imperative to get significant photocurrent contribution from both the sensitizing dye and the polymeric hole transporter. Here we report on the interfacial modifier 4-mercaptopyridine (4-MP, which induces controlled orientation of poly(3-hexylthiophene (P3HT, the most widely used hole transporting polymer for hybrid solar cells, at the interface. 4-MP optimizes the charge separating interface between P3HT and a squaraine dye-decorated TiO2, inducing enhanced contribution to photocurrent generation by the polymer. In combination with 4-tert-butylpyridine, which enhances the open circuit potential in dye-sensitized and hybrid solar cells but reduces the photocurrent, a synergistic effect is observed and it is possible to enhance both open circuit voltage and photocurrent simultaneously. Similar effects on device performance are also found for two other commonly used dye molecules, a fullerene derivative and a common indoline dye.

  6. Histamine synergistically promotes bFGF-induced angiogenesis by enhancing VEGF production via H1 receptor.

    Science.gov (United States)

    Lu, Qian; Wang, Chong; Pan, Rong; Gao, Xinghua; Wei, Zhifeng; Xia, Yufeng; Dai, Yue

    2013-05-01

    Histamine, a major mediator present in mast cells that is released into the extracellular milieu upon degranulation, is well known to possess a wide range of biological activities in several classic physiological and pathological processes. However, whether and how it participates in angiogenesis remains obscure. In the present study, we observed its direct and synergistic action with basic fibroblast growth factor (bFGF), an important inducer of angiogenesis, on in vitro angiogenesis models of endothelial cells. Data showed that histamine (0.1, 1, 10 µM) itself was absent of direct effects on the processes of angiogenesis, including the proliferation, migration, and tube formation of endothelial cells. Nevertheless, it could concentration-dependently enhance bFGF-induced angiogenesis as well as production of vascular endothelial growth factor (VEGF) from endothelial cells. The synergistic effect of histamine on VEGF production could be reversed by pretreatments with diphenhydramine (H1-receptor antagonist), SB203580 (selective p38 mitogen-activated protein kinase (MAPK) inhibitor) and L-NAME (nitric oxide synthase (NOS) inhibitor), but not with cimetidine (H2-receptor antagonist) and indomethacin (cyclooxygenase (COX) inhibitor). Moreover, histamine could augment bFGF-incuced phosphorylation and degradation of IκBα, a key factor accounting for the activation and translocation of nuclear factor κB (NF-κB) in endothelial cells. These findings indicated that histamine was able to synergistically augment bFGF-induced angiogenesis, and this action was linked to VEGF production through H1-receptor and the activation of endothelial nitric oxide synthase (eNOS), p38 MAPK, and IκBα in endothelial cells. Copyright © 2012 Wiley Periodicals, Inc.

  7. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    Full Text Available Irreversible electroporation (IRE produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs to create a large electroporated area and long low-voltage pulses (LVPs to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  8. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength.

    Science.gov (United States)

    Reyes-Carmona, Jessie F; Felippe, Mara S; Felippe, Wilson T

    2010-02-01

    Recently, it was shown that the interaction of each of mineral trioxide aggregate (MTA) and Portland cement with dentin in phosphate-buffered saline (PBS) promotes a biomineralization process that leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. This study analyzes the influence of the biomineralization process on the push-out strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK), MTA Branco (Angelus Soluções Odontológicas, Londrina, PR, Brazil), MTA BIO (Angelus Soluções Odontológicas), or Portland cement with and without calcium chloride. Dentin discs with standardized cavities were filled with ProRoot MTA, MTA Branco, MTA BIO, white Portland cement + 20% bismuth oxide (PC1), or PC1 + 10% of calcium chloride (PC2). The specimens were randomly divided into two groups: cement in contact with a wet cotton pellet for 72 hours or immersed in PBS for 2 months. The bond strengths were measured with the Instron Testing machine (Model 4444; Instron Corp, Canton, MA), and the fractured surfaces on the root walls were observed by scanning electron microscopy. All samples immersed in PBS displayed a significantly greater resistance to displacement than that observed for the samples in contact with a wet cotton pellet for 72 hours (p Portland cements. It was concluded that the biomineralization process positively influenced the push-out bond strength of the cements, particularly the MTA groups. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells.

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M; Vadgama, Jaydutt V

    2015-02-01

    We investigated whether a combination of two promising chemopreventive agents arctigenin (Arc) and quercetin (Q) increases the anticarcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of Arc and Q alone or in combination for 48 h. The antiproliferative activity of Arc was 10- to 20-fold stronger than Q in both cell lines. Their combination synergistically enhanced the antiproliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arc demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. The combination of Arc and Q that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086

  11. Synergistic enhancement of chemokine generation and lung injury by C5a or the membrane attack complex of complement

    DEFF Research Database (Denmark)

    Czermak, B J; Lentsch, A B; Bless, N M

    1999-01-01

    demonstrated synergistic production of C-X-C (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) and C-C (macrophage inflammatory protein-1alpha and monocyte chemoattractant-1) chemokines. In the absence of the costimulus, C5a or MAC did not induce chemokine generation....... In in vivo studies, C5a and MAC alone caused limited or no intrapulmonary generation of chemokines, but in the presence of a costimulus (IgG immune complexes) C5a and MAC caused synergistic intrapulmonary generation of C-X-C and C-C chemokines but not of tumor necrosis factor alpha. Under these conditions...... increased neutrophil accumulation occurred, as did lung injury. These observations suggest that C5a and MAC function synergistically with a costimulus to enhance chemokine generation and the intensity of the lung inflammatory response....

  12. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Zhan Shu

    2017-02-01

    Full Text Available Abstract Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs and silver (Ag into zinc oxide (ZnO nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs and Ag nanoparticles (Ag NPs with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  13. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  14. The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma

    International Nuclear Information System (INIS)

    Tagde, A; Singh, H; Kang, M H; Reynolds, C P

    2014-01-01

    Melphalan (L-PAM) has been an integral part of multiple myeloma (MM) treatment as a conditioning regimen before stem cell transplant (SCT). After initial response, most treated patients experience relapse with an aggressive phenotype. Increased glutathione (GSH) in MM may mediate resistance to L-PAM. We demonstrated that the GSH synthesis inhibitor buthionine sulfoximine (BSO) synergistically enhanced L-PAM activity (inducing 2–4 logs of cell kill) against nine MM cell lines (also in the presence of marrow stroma or cytokines) and in seven primary MM samples (combination indices <1.0). In MM cell lines, BSO significantly (P<0.05) depleted GSH, increased L-PAM-induced single-strand DNA breaks, mitochondrial depolarization, caspase cleavage and apoptosis. L-PAM depleted GSH, but GSH rapidly recovered in a L-PAM-resistant MM cell line unless also treated with BSO. Treatment with N-acetylcysteine antagonized BSO+L-PAM cytotoxicity without increasing GSH. In human MM xenografted into beige-nude-xid mice, BSO significantly depleted MM intracellular GSH and significantly increased apoptosis compared with L-PAM alone. BSO+L-PAM achieved complete responses (CRs) in three MM xenograft models including maintained CRs >100 days, and significantly increased the median event-free survival relative to L-PAM alone. Combining BSO with L-PAM warrants clinical testing in advanced MM

  15. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides.

    Science.gov (United States)

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V; Yoon, Jongseung

    2017-04-25

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF 4 :Yb 3+ ,Er 3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (∼40.1 mA/cm 2 ) and energy conversion efficiency (∼12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ∼13.6 mA/cm 2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

  16. Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan

    Directory of Open Access Journals (Sweden)

    Prem K. Raghupathi

    2018-01-01

    Full Text Available Biofilm formation has been shown to confer protection against grazing, but little information is available on the effect of grazing on biofilm formation and protection in multispecies consortia. With most biofilms in nature being composed of multiple bacterial species, the interactions and dynamics of a multispecies bacterial biofilm subject to grazing by a pelagic protozoan predator were investigated. To this end, a mono and multispecies biofilms of four bacterial soil isolates, namely Xanthomonas retroflexus, Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus, were constructed and subjected to grazing by the ciliate Tetrahymena pyriformis. In monocultures, grazing strongly reduced planktonic cell numbers in P. amylolyticus and S. rhizophila and also X. retroflexus. At the same time, cell numbers in the underlying biofilms increased in S. rhizophila and X. retroflexus, but not in P. amylolyticus. This may be due to the fact that while grazing enhanced biofilm formation in the former two species, no biofilm was formed by P. amylolyticus in monoculture, either with or without grazing. In four-species biofilms, biofilm formation was higher than in the best monoculture, a strong biodiversity effect that was even more pronounced in the presence of grazing. While cell numbers of X. retroflexus, S. rhizophila, and P. amylolyticus in the planktonic fraction were greatly reduced in the presence of grazers, cell numbers of all three species strongly increased in the biofilm. Our results show that synergistic interactions between the four-species were important to induce biofilm formation, and suggest that bacterial members that produce more biofilm when exposed to the grazer not only protect themselves but also supported other members which are sensitive to grazing, thereby providing a “shared grazing protection” within the four-species biofilm model. Hence, complex interactions shape the dynamics of the biofilm and

  17. Synergistic enhancement of iron oxide nanoparticle and gadolinium for dual-contrast MRI

    International Nuclear Information System (INIS)

    Zhang, Fan; Huang, Xinglu; Qian, Chunqi; Zhu, Lei; Hida, Naoki; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Highlights: ► MR contrast agents exert influence on T 1 or T 2 relaxation time of the surrounding tissue. ► Combined use of iron oxide and Gd-DTPA can improve the sensitivity/specificity of lesion detection. ► Dual contrast MRI enhances the delineation of tumor borders and small lesions. ► The effect of DC-MRI can come from the high paramagnetic susceptibility of Gd 3+ . ► The effect of DC-MRI can also come from the distinct pharmacokinetic distribution of SPIO and Gd-DTPA. -- Abstract: Purpose: The use of MR contrast agents allows accurate diagnosis by exerting an influence on the longitudinal (T 1 ) or transverse (T 2 ) relaxation time of the surrounding tissue. In this study, we combined the use of iron oxide (IO) particles and nonspecific extracellular gadolinium chelate (Gd) in order to further improve the sensitivity and specificity of lesion detection. Procedures: With a 7-Tesla scanner, pre-contrasted, IO-enhanced and dual contrast agent enhanced MRIs were performed in phantom, normal animals, and animal models of lymph node tumor metastases and orthotopic brain tumor. For the dual-contrast (DC) MRI, we focused on the evaluation of T 2 weighted DC MRI with IO administered first, then followed by the injection of a bolus of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA). Results: Based on the C/N ratios and MRI relaxometry, the synergistic effect of coordinated administration of Gd-DTPA and IO was observed and confirmed in phantom, normal liver and tumor models. At 30 min after administration of Feridex, Gd-DTPA further decreased T 2 relaxation in liver immediately after the injection. Additional administration of Gd-DTPA also immediately increased the signal contrast between tumor and brain parenchyma and maximized the C/N ratio to −4.12 ± 0.71. Dual contrast MRI also enhanced the delineation of tumor borders and small lesions. Conclusions: DC-MRI will be helpful to improve diagnostic accuracy and decrease the threshold size for

  18. Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites.

    Science.gov (United States)

    El Miri, Nassima; El Achaby, Mounir; Fihri, Aziz; Larzek, Mohamed; Zahouily, Mohamed; Abdelouahdi, Karima; Barakat, Abdellatif; Solhy, Abderrahim

    2016-02-10

    Novel functional hybrid nanofillers composed of cellulose nanocrystals (CNC) and graphene oxide nanosheets (GON), at different weight ratios (2:1, 1:1 and 1:2), were successfully prepared and characterized, and their synergistic effect in enhancing the properties of poly(vinyl alcohol) (PVA) nanocomposites was investigated. Due to the synergistic reinforcement, it was found that the Young's modulus, tensile strength and toughness of the PVA nanocomposite containing 5 wt% hybrid nanofiller (1:2) were significantly improved by 320%, 124% and 159%, respectively; and the elongation at break basically remained compared to the neat PVA matrix. In addition, the glass and melting temperatures as well as the moisture sorption of nanocomposites were also enhanced. This synergistic effect improved the dispersion homogeneity by avoiding the agglomeration phenomenon of nanofillers within the polymer matrix, resulting in nanocomposites with largely enhanced properties compared to those prepared from single nanofiller (CNC or GON). The preparation of these hybrid nanofillers and their incorporation into a polymer provided a novel method for the development of novel multifunctional nanocomposites based on the combination of existing nanomaterials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing

    Directory of Open Access Journals (Sweden)

    Srinivasan Sivasubramanian

    2017-07-01

    Full Text Available The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented

  20. Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xuezhang; Zhang, Yuyan; Li, Yong; Hao, Xiujing; Liu, Xiaoming, E-mail: erc1080@gmail.com; Wang, Yujiong, E-mail: erc1080@gmail.com [Key Laboratory of the Ministry of Education for the Conservation and Utilization of Special Biological Resources of Western China, Yinchuan 750021, Ningxia (China); College of Life Science, Ningxia University, Yinchuan 750021, Ningxia (China)

    2012-12-04

    In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC{sub 50}) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 μg/mL of VCR, the respective IC{sub 50} values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs.

  1. Addition of DHA synergistically enhances the efficacy of regorafenib for kidney cancer therapy

    Science.gov (United States)

    Kim, Jeffrey; Ulu, Arzu; Wan, Debin; Yang, Jun; Hammock, Bruce D; Weiss, Robert H.

    2016-01-01

    Kidney cancer is the 6th most common cancer in the US and its incidence is increasing. The treatment of this malignancy took a major step forward with the recent introduction of targeted therapeutics such as the kinase inhibitors. Unfortunately, kinase inhibition is associated with the onset of resistance after 1–2 years of treatment. Regorafenib, like many multi-kinase inhibitors, was designed to block the activities of several key kinase pathways involved in oncogenesis (Ras/Raf/MEK/ERK) and tumor angiogenesis (VEGF-receptors), and we have recently shown that it also possesses soluble epoxide hydrolase (sEH) inhibitory activity which may be contributing to its salutary effects in patients. Since sEH inhibition results in increases in the DHA-derived epoxydocosapentaenoic acids (EDPs) which we have previously described to possess anti-cancer properties, we asked whether the addition of DHA to a therapeutic regimen in the presence of regorafenib would enhance its beneficial effects in vivo. We now show that the combination of regorafenib and DHA results in a synergistic effect upon tumor invasiveness as well as p-VEGFR attenuation. In addition, this combination showed a reduction in tumor weights, greater than each agent alone, in a mouse xenograft model of human RCC, yielding the expected oxylipin profiles; this data was supported in several RCC cell lines which showed similar results in vitro. Since DHA is the predominant component of fish oil, our data suggest that this non-toxic dietary supplement could be administered with regorafenib during therapy for advanced RCC and could be the basis of a clinical trial. PMID:26921392

  2. Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells

    International Nuclear Information System (INIS)

    Zhou, Xuezhang; Zhang, Yuyan; Li, Yong; Hao, Xiujing; Liu, Xiaoming; Wang, Yujiong

    2012-01-01

    In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC 50 ) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 μg/mL of VCR, the respective IC 50 values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs

  3. Ablative Focused Ultrasound Synergistically Enhances Thermally Triggered Chemotherapy for Prostate Cancer in Vitro.

    Science.gov (United States)

    Arora, Jaspreet S; Murad, Hakm Y; Ashe, Stephen; Halliburton, Gray; Yu, Heng; He, Jibao; John, Vijay T; Khismatullin, Damir B

    2016-09-06

    High-intensity focused ultrasound (HIFU) can locally ablate biological tissues such as tumors, i.e., induce their rapid heating and coagulative necrosis without causing damage to surrounding healthy structures. It is widely used in clinical practice for minimally invasive treatment of prostate cancer. Nonablative, low-power HIFU was established as a promising tool for triggering the release of chemotherapeutic drugs from temperature-sensitive liposomes (TSLs). In this study, we combine ablative HIFU and thermally triggered chemotherapy to address the lack of safe and effective treatment options for elderly patients with high-risk localized prostate cancer. DU145 prostate cancer cells were exposed to chemotherapy (free and liposomal Sorafenib) and ablative HIFU, alone or in combination. Prior to cell viability assessment by trypan blue exclusion and flow cytometry, the uptake of TSLs by DU145 cells was verified by confocal microscopy and cryogenic scanning electron microscopy (cryo-SEM). The combination of TSLs encapsulating 10 μM Sorafenib and 8.7W HIFU resulted in a viability of less than 10% at 72 h post-treatment, which was significant less than the viability of the cells treated with free Sorafenib (76%), Sorafenib-loaded TSLs (63%), or HIFU alone (44%). This synergy was not observed on cells treated with Sorafenib-loaded nontemperature sensitive liposomes and HIFU. According to cryo-SEM analysis, cells exposed to ablative HIFU exhibited significant mechanical disruption. Water bath immersion experiments also showed an important role of mechanical effects in the synergistic enhancement of TSL-mediated chemotherapy by ablative HIFU. This combination therapy can be an effective strategy for treatment of geriatric prostate cancer patients.

  4. Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect?

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhe; Kibria, Md Golam; AlOtaibi, Bandar; Duchesne, Paul N.; Besteiro, Lucas V.; Gao, Yu; Zhang, Qingzhe; Mi, Zetian; Zhang, Peng; Govorov, Alexander O.; Mai, Liqiang; Chaker, Mohamed; Ma, Dongling

    2018-02-01

    Synergistic effect in alloys and plasmonic effect have both been explored for increasing the efficiency of water splitting. In depth understanding and comparison of their respective contributions in certain promising systems is highly desired for catalyst development, yet rarely investigated so far. We report herein our thorough investigations on a series of highly interesting nanocomposites composed of Pt, Au and C3N4 nanocomponents, which are designed to benefit from both synergistic and plasmonic effects. Detailed analyses led to an important conclusion that the contribution from the synergistic effect was at least 3.5 times that from the plasmonic effect in the best performing sample, Pt50Au50 alloy decorated C3N4. It showed remarkable turnover frequency of >1.6 mmol h-1 g-1 at room temperature. Our work provides physical insights for catalyst development by rationally designing samples to compare long-known synergistic effect with recently emerging, attractive plasmonic effect and represents the first case study in the field.

  5. Synergistic Phase and Disorder Engineering in 1T-MoSe2 Nanosheets for Enhanced Hydrogen-Evolution Reaction.

    Science.gov (United States)

    Yin, Ying; Zhang, Yumin; Gao, Tangling; Yao, Tai; Zhang, Xinghong; Han, Jiecai; Wang, Xianjie; Zhang, Zhihua; Xu, Ping; Zhang, Peng; Cao, Xingzhong; Song, Bo; Jin, Song

    2017-07-01

    MoSe 2 is a promising earth-abundant electrocatalyst for the hydrogen-evolution reaction (HER), even though it has received much less attention among the layered dichalcogenide (MX 2 ) materials than MoS 2 so far. Here, a novel hydrothermal-synthesis strategy is presented to achieve simultaneous and synergistic modulation of crystal phase and disorder in partially crystallized 1T-MoSe 2 nanosheets to dramatically enhance their HER catalytic activity. Careful structural characterization and defect characterization using positron annihilation lifetime spectroscopy correlated with electrochemical measurements show that the formation of the 1T phase under a large excess of the NaBH 4 reductant during synthesis can effectively improve the intrinsic activity and conductivity, and the disordered structure from a lower reaction temperature can provide abundant unsaturated defects as active sites. Such synergistic effects lead to superior HER catalytic activity with an overpotential of 152 mV versus reversible hydrogen electrode (RHE) for the electrocatalytic current density of j = -10 mA cm -2 , and a Tafel slope of 52 mV dec -1 . This work paves a new pathway for improving the catalytic activity of MoSe 2 and generally MX 2 -based electrocatalysts via a synergistic modulation strategy. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Synergistic Effect of Elicitors in Enhancement of Ganoderic Acid Production: Optimization and Gene Expression Studies

    OpenAIRE

    Motaharehsadat Heydarian; Ashrafalsadat Hatamian-Zarmi; Ghassem Amoabediny; Fatemeh Yazdian; Ali Doryab

    2015-01-01

    AbstractGanoderma lucidum is one of the most well-known fungi, and has many applications in medicine. Ganoderic acid is among the valuable secondary metabolites of Ganoderma lucidum, and responsible for the inhibition of the tumor cell growth and cancer treatment. Application of ganoderic acid has been limited because of low yields of its production from Ganoderma lucidum. The present study aims to investigate the synergistic effect of elicitors including methyl jasmonate and aspirin on the p...

  7. Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals.

    Science.gov (United States)

    Hu, Xianglong; Liu, Guhuan; Li, Yang; Wang, Xiaorui; Liu, Shiyong

    2015-01-14

    The rational design of theranostic nanoparticles exhibiting synergistic turn-on of therapeutic potency and enhanced diagnostic imaging in response to tumor milieu is critical for efficient personalized cancer chemotherapy. We herein fabricate self-reporting theranostic drug nanocarriers based on hyperbranched polyprodrug amphiphiles (hPAs) consisting of hyperbranched cores conjugated with reduction-activatable camptothecin prodrugs and magnetic resonance (MR) imaging contrast agent (Gd complex), and hydrophilic coronas functionalized with guanidine residues. Upon cellular internalization, reductive milieu-actuated release of anticancer drug in the active form, activation of therapeutic efficacy (>70-fold enhancement in cytotoxicity), and turn-on of MR imaging (∼9.6-fold increase in T1 relaxivity) were simultaneously achieved in the simulated cytosol milieu. In addition, guanidine-decorated hPAs exhibited extended blood circulation with a half-life up to ∼9.8 h and excellent tumor cell penetration potency. The hyperbranched chain topology thus provides a novel theranostic polyprodrug platform for synergistic imaging/chemotherapy and enhanced tumor uptake.

  8. Mineral trioxide aggregate enhances the osteogenic capacity of periodontal ligament stem cells via NF-κB and MAPK signaling pathways.

    Science.gov (United States)

    Wang, Yanqiu; Zhou, Yixiang; Jin, Lin; Pang, Xiyao; Lu, Yadie; Wang, Zilu; Yu, Yan; Yu, Jinhua

    2018-03-01

    Mineral trioxide aggregate (MTA), as a bioactive material, has a widespread application in clinical practice. To date, the effects of MTA on the proliferation and differentiation of human periodontal ligament stem cells (hPDLSCs) remain unclear. hPDLSCs were isolated from human periodontal ligament tissues and cultured with MTA conditioned media. Cell counting kit-8 (CCK-8) assay was performed to assess the proliferation capacity of MTA-treated hPDLSCs. Immunofluorescence assay, alkaline phosphatase (ALP) activity, alizarin red staining, real-time RT-PCR, and western blot analyses were used to investigate the odonto/osteogenic capacity of hPDLSCs as well as the involvement of NF-κB and MAPK pathways. ALP activity assay revealed that 2 mg/ml was the optimal concentration for the induction of hPDLSCs by MTA. The protein expression of DSP, RUNX2, OCN, OSX, OPN, DMP1, ALP, and COL-I in MTA-treated hPDLSCs was significantly higher than those in control group (p MTA on the differentiation of hPDLSCs were suppressed. Mechanistically, P65 was detected to transfer from cytoplasm to nuclei, as indicated by western blot and immunofluorescence assay. Moreover, MAPK-related proteins and its downstream transcription factors were also upregulated in MTA-treated hPDLSCs. Together, mineral trioxide aggregate can promote the odonto/osteogenic capacity of hPDLSCs via activating the NF-κB and MAPK pathways. © 2017 Wiley Periodicals, Inc.

  9. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  10. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis

    International Nuclear Information System (INIS)

    Li, Li; Wang, Xiong; Zhang, Yange

    2014-01-01

    Highlights: • LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method. • The samples exhibit superior visible-light-responsive photocatalytic activity. • Synergistic effect will enhance the photodegradation of RhB under visible light. - Abstract: LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method with assistance of glycol at different calcination temperatures. The as-synthesized LnFeO 3 was characterized by X-ray diffraction, transmission electron microscopy, differential scanning calorimeter and thermogravimetric analysis, and UV–vis absorption spectroscopy. The photocatalytic behaviors of LnFeO 3 nanoparticles were evaluated by photodegradation of rhodamine B under visible light irradiation. The results indicate that the visible light-responsive photocatalytic activity of LnFeO 3 nanoparticles was enhanced remarkably by the synergistic effect between the semiconductor photocatalysis and Fenton-like reaction. And a possible catalytic mechanism was also proposed based on the experimental results

  11. Synthesis of vanadium trioxide

    International Nuclear Information System (INIS)

    Yankelevich, R.G.; Vinarov, I.V.; Sheka, I.A.; Pushek, N.G.

    1976-01-01

    There have been studied the conditions for production of vanadium trioxide in a single-stage process of V 2 O 5 reduction by gaseous ammonia. To determine the optimum conditions for V 2 O 5 reduction, there have been studied the temperature range of the reaction and the effect offered by the volumetric rate and time of ammonia injection. The following conditions have proved to be the optimum ones: temperature - 450 deg C, volumetric rate of NH 3 injection at a batch of 10 g - 4 l/h, time of recovery - 3 hours. In accordance with the adopted procedure there have been synthetized the samples containing 98 - 99% V 2 O 3 [ru

  12. Newly designed PdRuBi/N-Graphene catalysts with synergistic effects for enhanced ethylene glycol electro-oxidation

    International Nuclear Information System (INIS)

    Li, Tengfei; Huang, Yiyin; Ding, Kui; Wu, Peng; Abbas, Syed Comail; Ghausi, Muhammad Arsalan; Zhang, Teng; Wang, Yaobing

    2016-01-01

    Graphical abstract: We rationally design and synthesize a ternary PdRuBi/NG catalyst with significantly enhanced catalytic activity with synergetic effect of Ru and Bi towards ethylene glycol electro-oxidation. - Abstract: Palladium (Pd)-based catalysts are appealing electro-catalysts for alcohol oxidation reaction in fuel cell, but still not efficient as the complicated oxidation process and sluggish kinetic. Here we rationally design and synthesize a PdRuBi/NG tri-metallic catalyst with space synergetic effect for enhanced ethylene glycol electro-oxidation, in which both Ru and Bi in the catalyst are synergistic effective in promoting catalytic activity of Pd catalytic interlayer by electronic effect and surface modification mechanism respectively. It shows 4.2 times higher peak current density towards ethylene glycol electro-oxidation than commercial Pd/C catalyst, and the catalytic durability is also greatly improved.

  13. An AP-2 element acts synergistically with the cyclic AMP- and Phorbol ester-inducible enhancer of the human proenkephalin gene

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, S.E.; Comb, M.; Pearlberg, J.; Goodman, H.M.

    1989-01-01

    An enhancer with two DNA elements, one containing the sequence CGTCA, is required for cyclic AMP-and phorbol ester-inducible transcription of the human proenkephalin gene. The authors report that an AP-2 element located adjacent to the enhancer acts synergistically with it to confer maximal response to cyclic AMP and phorbol esters.

  14. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions.

    Science.gov (United States)

    Nadeem, Sajid M; Imran, Muhammad; Naveed, Muhammad; Khan, Muhammad Y; Ahmad, Maqshoof; Zahir, Zahir A; Crowley, David E

    2017-12-01

    Limited information is available about the effectiveness of biochar with plant growth-promoting rhizobacteria (PGPR) and compost. A greenhouse study was conducted to evaluate the effect of biochar in combination with compost and PGPR (Pseudomonas fluorescens) for alleviating water deficit stress. Both inoculated and un-inoculated cucumber seeds were sown in soil treated with biochar, compost and biochar + compost. Three water levels - field capacity (D0), 75% field capacity (D1) and 50% field capacity (D2) - were maintained. The results showed that water deficit stress significantly suppressed the growth of cucumber; however, synergistic use of biochar, compost and PGPR mitigated the negative impact of stress. At D2, the synergistic use of biochar, compost and PGPR caused significant increases in shoot length, shoot biomass, root length and root biomass, which were respectively 88, 77, 89 and 74% more than in the un-inoculated control. Significant improvements in chlorophyll and relative water contents as well as reduction in leaf electrolyte leakage demonstrated the effectiveness of this approach. Moreover, the highest population of P. fluorescens was observed where biochar and compost were applied together. These results suggest that application of biochar with PGPR and/or compost could be an effective strategy for enhancing plant growth under stress. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  15. Supramolecular Chitosan Micro-Platelets Synergistically Enhance Anti-Candida albicans Activity of Amphotericin B Using an Immunocompetent Murine Model.

    Science.gov (United States)

    Grisin, Tiphany; Bories, Christian; Bombardi, Martina; Loiseau, Philippe M; Rouffiac, Valérie; Solgadi, Audrey; Mallet, Jean-Maurice; Ponchel, Gilles; Bouchemal, Kawthar

    2017-05-01

    The aim of this work is to design new chitosan conjugates able to self-organize in aqueous solution in the form of micrometer-size platelets. When mixed with amphotericin B deoxycholate (AmB-DOC), micro-platelets act as a drug booster allowing further improvement in AmB-DOC anti-Candida albicans activity. Micro-platelets were obtained by mixing oleoyl chitosan and α-cyclodextrin in water. The formulation is specifically-engineered for mucosal application by dispersing chitosan micro-platelets into thermosensitive pluronic ® F127 20 wt% hydrogel. The formulation completely cured C. albicans vaginal infection in mice and had a superior activity in comparison with AmB-DOC without addition of chitosan micro-platelets. In vitro studies showed that the platelets significantly enhance AmB-DOC antifungal activity since the IC 50 and the MIC 90 decrease 4.5 and 4.8-times. Calculation of fractional inhibitory concentration index (FICI = 0.198) showed that chitosan micro-platelets act in a synergistic way with AmB-DOC against C. albicans. No synergy is found between spherical nanoparticles composed poly(isobutylcyanoacrylate)/chitosan and AmB-DOC. These results demonstrate for the first time the ability of flattened chitosan micro-platelets to have synergistic activity with AmB-DOC against C. albicans candidiasis and highlight the importance of rheological and mucoadhesive behaviors of hydrogels in the efficacy of the treatment.

  16. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Xu N

    2017-01-01

    -positive Staphylococcus aureus (ATCC 25923, and methicillin-resistant Staphylococcus aureus (MRSA; ATCC 33591 and ATCC 43300. Moreover, after a relative short (3 weeks combinational treatment, animal experiments in vivo further proved the synergistic antibacterial effect by X-ray and histological and immunohistochemical analyses. These results demonstrated that the combination of Ag nanoparticles and antibiotics significantly enhanced the antibacterial effect both in vitro and in vivo through the synergistic effect. The strategy is promising for clinical application to reduce the usage of antibiotics and shorten the administration time of implant-associated infection. Keywords: implant-associated infection, silver nanoparticles, TiO2 nanotube, antibiotics, synergistic bactericidal activity

  17. Synergistic effect of iontophoresis and chemical enhancers on transdermal permeation of tolterodine tartrate for the treatment of overactive bladder

    Directory of Open Access Journals (Sweden)

    D. Prasanthi

    2013-01-01

    Full Text Available Purpose The objective of the study was to evaluate the synergistic transdermal permeation effect of chemical enhancers and iontophoresis technique on tolterodine tartrate (TT transdermal gel and to evaluate its pharmacokinetic properties. Materials and Methods Taguchi robust design was used for optimization of formulations. Skin permeation rates were evaluated using the Keshary-chein type diffusion cells in order to optimize the gel formulation. In-vivo studies of the optimized formulation were performed in a rabbit model and histopathology studies of optimized formulation were performed on rats. Results Transdermal gels were formulated successfully using Taguchi robust design method. The type of penetration enhancer, concentration of penetration enhancer, current density and pulse on/off ratio were chosen as independent variables. Type of penetration enhancer was found to be the significant factor for all the responses. Permeation parameters were evaluated when maximum cumulative amount permeated in 24 hours (Q24 was 145.71 ± 2.00µg/cm2 by CIT4 formulation over control (91.89 ± 2.30µg/cm2. Permeation was enhanced by 1.75 fold by CIT4 formulation. Formulation CIT4 containing nerolidol (5% and iontophoretic variables applied (0.5mA/cm2 and pulse on/off ratio 3:1 was optimized. In vivo studies with optimized formulation CIT4 showed increase in AUC and T1/2 when compared to oral suspension in rabbits. The histological studies showed changes in dermis indicating the effect of penetration enhancers and as iontophoresis was continued only for two cycles in periodic fashion so it did not cause any skin damage observed in the slides. Conclusion Results indicated that iontophoresis in combination with chemical enhancers is an effective method for transdermal administration of TT in the treatment of overactive bladder.

  18. Panobinostat synergistically enhances the cytotoxic effects of cisplatin, doxorubicin or etoposide on high-risk neuroblastoma cells.

    Directory of Open Access Journals (Sweden)

    Guan Wang

    Full Text Available High-risk neuroblastoma remains a therapeutic challenge with a long-term survival rate of less than 40%. Therefore, new agents are urgently needed to overcome chemotherapy resistance so as to improve the treatment outcome of this deadly disease. Histone deacetylase (HDAC inhibitors (HDACIs represent a novel class of anticancer drugs. Recent studies demonstrated that HDACIs can down-regulate the CHK1 pathway by which cancer cells can develop resistance to conventional chemotherapy drugs. This prompted our hypothesis that combining HDACIs with DNA damaging chemotherapeutic drugs for treating neuroblastoma would result in enhanced anti-tumor activities of these drugs. Treatment of high-risk neuroblastoma cell lines with a novel pan-HDACI, panobinostat (LBH589, resulted in dose-dependent growth arrest and apoptosis in 4 high-risk neuroblastoma cell lines. Further, the combination of panobinostat with cisplatin, doxorubicin, or etoposide resulted in highly synergistic antitumor interactions in the high-risk neuroblastoma cell lines, independent of the sequence of drug administration. This was accompanied by cooperative induction of apoptosis. Furthermore, panobinostat treatment resulted in substantial down-regulation of CHK1 and its downstream pathway and abrogation of the G2 cell cycle checkpoint. Synergistic antitumor interactions were also observed when the DNA damaging agents were combined with a CHK1-specific inhibitor, LY2603618. Contrary to panobinostat treatment, LY2603618 treatments neither resulted in abrogation of the G2 cell cycle checkpoint nor enhanced cisplatin, doxorubicin, or etoposide-induced apoptosis in the high-risk neuroblastoma cells. Surprisingly, LY2603618 treatments caused substantial down-regulation of total CDK1. Despite this discrepancy between panobinostat and LY2603618, our results indicate that suppression of the CHK1 pathway by panobinostat is at least partially responsible for the synergistic antitumor interactions

  19. Retinoic acid dramatically enhances the arsenic trioxide-induced cell cycle arrest and apoptosis in retinoic acid receptor alpha-positive human T-cell lymphotropic virus type-I-transformed cells.

    Science.gov (United States)

    Darwiche, N; El-Sabban, M; Bazzi, R; Nasr, R; Al-Hashimi, S; Hermine, O; de Thé, H; Bazarbachi, A

    2001-01-01

    Adult T-cell leukemia/lymphoma, caused by the human T-cell lymphotropic virus type I, is an aggressive neoplasm of mature activated T cells that is generally resistant to conventional therapy. While arsenic trioxide (As) inhibits the growth and induces apoptosis in HTLV-I-infected T cells, synergistically, when combined with interferon-alpha, variable effects on growth with all trans retinoic acid treatment have been reported in ATL-derived cell lines and fresh ATL cells. In this study, we investigate the effects of ATRA alone or in combination with As in HTLV-I-transformed cells. Four HTLV-I-transformed cell lines (HuT-102, MT2, C8166 and C91PL) were treated with different doses of ATRA alone or in combination with As for one to three days. Cell growth was assessed by cell count with 3H-thymidine incorporation. Cell cycle distribution was assessed by propidium iodine-labeled DNA content by flow cytometry. Apoptosis was evaluated by Hoechst nuclear staining and annexin-V binding assays. Expression of retinoid receptors, the viral transactivator Tax, and the proteins bcl-2 and IkappaB-alpha proteins, was analysed by Western blot. Only C8166 cells were sensitive to the ATRA-induced growth inhibitory effect while HuT-102, MT2, and C91PL were resistant to ATRA treatment (up to 10(-5) M). The retinoid X receptor alpha and the retinoic acid receptor gamma (RARgamma) proteins were expressed in all four cell lines, while RARalpha protein was only detected in the HuT-102 and C8166 cells. The combination ATRA/As showed a highly synergistic effect on HuT-102 cells, and, to a lesser extent, on C8166 cells and resulted in a dramatic inhibition of cell proliferation and induction of massive apoptosis in HuT-102 cells, associated with caspase activation. While ATRA alone had no effect on Tax and IkappaB-alpha protein levels, ATRA increased the As-induced Tax degradation and the up-regulation of IkappaB-alpha protein. In contrast, the expression of bcl-2 protein was not

  20. Synergistic interactions between leaf beetle herbivory and fire enhance tamarisk (Tamarix spp.) mortality

    Science.gov (United States)

    Drus, Gail M.; Dudley, Tom L.; Antonio, Carla M.; Even, Thomas J.; Brooks, Matt L.; Matchett, J.R.

    2014-01-01

    The combined effects of herbivory and fire on plant mortality were investigated using prescribed burns of tamarisk (Tamarix ramosissima Lebed) exposed to herbivory by the saltcedar leaf beetle (Chrysomelidae: Diorhabda carinulata Desbrocher). Tamarix stands in the Humboldt Sink (NV, USA) were divided into three treatments: summer burn (August 2006), fall burn (October 2006) and control (unburned), and litter depth was manipulated to vary fire intensity within burn seasons. A gradient of existing herbivory impact was described with three plant condition metrics prior to fire: reduced proportions of green canopy, percent root crown starch sampled at the height of the growing season (August 2006), and percent root crown starch measured during dormancy (December 2006). August root crown starch concentration and proportion green canopy were strongly correlated, although the proportion green canopy predicted mortality better than August root crown starch. December root crown starch concentration was more depleted in unburned trees and in trees burned during the summer than in fall burn trees. Mortality in summer burned trees was higher than fall burned trees due to higher fire intensity, but December root crown starch available for resprouting in the spring was also lower in summer burned trees. The greatest mortality was observed in trees with the lowest December root crown starch concentration which were exposed to high fire intensity. Disproportionate changes in the slope and curvature of prediction traces as fire intensity and December starch reach reciprocal maximum and minimum levels indicate that beetle herbivory and fire intensity are synergistic.

  1. Synergistic Interactions of a Synthetic Lubricin-Mimetic with Fibronectin for Enhanced Wear Protection

    Directory of Open Access Journals (Sweden)

    Roberto C. Andresen Eguiluz

    2017-06-01

    Full Text Available Lubricin (LUB, a major mucinous glycoprotein of mammalian synovial fluids, is believed to provide excellent lubrication to cartilage surfaces. Consequently, when joint disease or replacement leads to increased friction and surface damage in the joint, robust synthetic LUB alternatives that could be used therapeutically to improve lubrication and surface protection are needed. Here, we report the characterization of a lubricating multiblock bottlebrush polymer whose architecture was inspired by LUB, and we investigate the role of fibronectin (FN, a glycoprotein found in the superficial zone of cartilage, in mediating the tribological properties of the polymer upon shear between mica surfaces. Our surface forces apparatus (SFA normal force measurements indicate that the lubricin-mimetic (mimLUB could be kept anchored between mica surfaces, even under high contact pressures, when an intermediate layer of FN was present. Additional SFA friction measurements show that FN would also extend the wearless friction regime of the polymer up to pressures of 3.4 MPa while ensuring stable friction coefficients (μ ≈ 0.28. These results demonstrate synergistic interactions between mimLUB and FN in assisting the lubrication and wear protection of ideal (mica substrates upon shear. Collectively, these findings suggest that our proposed mimLUB might be a promising alternative to LUB, as similar mechanisms could potentially facilitate the interaction between the polymer and cartilage surfaces in articular joints and prosthetic implants in vivo.

  2. Synergistic Effect of Elicitors in Enhancement of Ganoderic Acid Production: Optimization and Gene Expression Studies

    Directory of Open Access Journals (Sweden)

    Motaharehsadat Heydarian

    2015-06-01

    Full Text Available AbstractGanoderma lucidum is one of the most well-known fungi, and has many applications in medicine. Ganoderic acid is among the valuable secondary metabolites of Ganoderma lucidum, and responsible for the inhibition of the tumor cell growth and cancer treatment. Application of ganoderic acid has been limited because of low yields of its production from Ganoderma lucidum. The present study aims to investigate the synergistic effect of elicitors including methyl jasmonate and aspirin on the production of ganoderic acid derived from Ganoderma lucidum mushroom in a shaken flasks using response surface methodology. The results showed that the optimal dose of methyl jasmonate and asprin significantly impacts on the amount of ganoderic acid production as a response (p<0.05. The proposed model predicted the maximum ganoderic acid production as 0.085 mg/ml in which the optimal concentrations obtained for methyl jasmonate and asprin were 250mM and 4.4mM, respectively. Also the influence of ganoderic acid production on the expression of 3-hydroxy-3-methyl-glutaryl coenzyme A reductase and squalene synthase (two important metabolic pathway genes in ganoderic acid was investigated, and the results showed that these genes’ expression has increased by 10 and 11 folds, respectively.  

  3. Synergistically enhanced selective intracellular uptake of anticancer drug carrier comprising folic acid-conjugated hydrogels containing magnetite nanoparticles

    Science.gov (United States)

    Kim, Haneul; Jo, Ara; Baek, Seulgi; Lim, Daeun; Park, Soon-Yong; Cho, Soo Kyung; Chung, Jin Woong; Yoon, Jinhwan

    2017-01-01

    Targeted drug delivery has long been extensively researched since drug delivery and release at the diseased site with minimum dosage realizes the effective therapy without adverse side effects. In this work, to achieve enhanced intracellular uptake of anticancer drug carriers for efficient chemo-therapy, we have designed targeted multifunctional anticancer drug carrier hydrogels. Temperature-responsive poly(N-isopropylacrylamide) (PNIPAm) hydrogel core containing superparamagnetic magnetite nanoparticles (MNP) were prepared using precipitation polymerization, and further polymerized with amine-functionalized copolymer shell to facilitate the conjugation of targeting ligand. Then, folic acid, specific targeting ligand for cervical cancer cell line (HeLa), was conjugated on the hydrogel surface, yielding the ligand conjugated hybrid hydrogels. We revealed that enhanced intracellular uptake by HeLa cells in vitro was enabled by both magnetic attraction and receptor-mediated endocytosis, which were contributed by MNP and folic acid, respectively. Furthermore, site-specific uptake of the developed carrier was confirmed by incubating with several other cell lines. Based on synergistically enhanced intracellular uptake, efficient cytotoxicity and apoptotic activity of HeLa cells incubated with anticancer drug loaded hybrid hydrogels were successfully achieved. The developed dual-targeted hybrid hydrogels are expected to provide a platform for the next generation intelligent drug delivery systems.

  4. Surface oxygen vacancies on WO{sub 3} contributed to enhanced photothermo-synergistic effect

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingying; Wang, Changhua; Zheng, Han; Wan, Fangxu; Yu, Fei; Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn; Liu, Yichun

    2017-01-01

    Graphical abstract: WO{sub 3−x} acts as efficient and stable photothermocatalyst for detoxification of gaseous acetaldehyde. - Highlights: • WO{sub 3} was annealed under air and hydrogen atomsphere. • Phase transition from WO{sub 3} to WO{sub 2.72} to WO{sub 2} was observed after hydrogen treatment. • WO{sub 3−x} with optimized degree of oxygen deficiency displayed significant photothermocatalytic activity against degradation of acetaldehyde. • Mechanism operating in photocatalytic and thermal effects is discussed. - Abstract: Photothermooxidation has demonstrated a high efficiency in the removal of volatile organic compounds in air. Among photothermocatalysts, attention is presently focused on composites of noble metal/metal oxide or metal oxide/metal oxide. Instead, in this work, we present a case of single oxide WO{sub 3} subjected to hydrogen treatment as photothermocatalyst. With the increase of hydrogen treatment temperature, the color of WO{sub 3} changes from yellow to blue to dark blue and a phase transition from WO{sub 3} to WO{sub 2.72} to WO{sub 2} is accompanied, suggesting an increase of concentration of oxygen vacancy. Photothermocatalytic test against degradation of gaseous acetaldehyde at 60 °C under UV light shows that WO{sub 3−x} sample with low concentration of oxygen vacancy displays the most significant synergetic effect between photocatalysis and thermocatalysis. Its photothermocatalytic activity in terms of CO{sub 2} evolution rate is 5.2 times higher than that of photocatalytic activity. However, WO{sub 3}–WO{sub 2.72} and WO{sub 2} with high degree of oxygen deficiency show insignificant synergetic effect between photocatalysis and thermocatalysis. The reason for the different synergistic effect over above samples is believed to lie in balance between decreased activation energy of lattice oxygen and recombination of photogenerated electrons and holes induced by oxygen deficiency.

  5. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.

    Science.gov (United States)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip

    2017-10-11

    Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.

  6. Transformative piezoelectric enhancement of P(VDF-TrFE) synergistically driven by nanoscale dimensional reduction and thermal treatment.

    Science.gov (United States)

    Ico, G; Myung, A; Kim, B S; Myung, N V; Nam, J

    2018-02-08

    Despite the significant potential of organic piezoelectric materials in the electro-mechanical or mechano-electrical applications that require light and flexible material properties, the intrinsically low piezoelectric performance as compared to traditional inorganic materials has limited their full utilization. In this study, we demonstrate that dimensional reduction of poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) at the nanoscale by electrospinning, combined with an appropriate thermal treatment, induces a transformative enhancement in piezoelectric performance. Specifically, the piezoelectric coefficient (d 33 ) reached up to -108 pm V -1 , approaching that of inorganic counterparts. Electrospun mats composed of thermo-treated 30 nm nanofibers with a thickness of 15 μm produced a consistent peak-to-peak voltage of 38.5 V and a power output of 74.1 μW at a strain of 0.26% while sustaining energy production over 10k repeated actuations. The exceptional piezoelectric performance was realized by the enhancement of piezoelectric dipole alignment and the materialization of flexoelectricity, both from the synergistic effects of dimensional reduction and thermal treatment. Our findings suggest that dimensionally controlled and thermally treated electrospun P(VDF-TrFE) nanofibers provide an opportunity to exploit their flexibility and durability for mechanically challenging applications while matching the piezoelectric performance of brittle, inorganic piezoelectric materials.

  7. Synergistic permeability enhancing effect of lysophospholipids and fatty acids on lipid membranes

    DEFF Research Database (Denmark)

    Davidsen, Jesper; Mouritsen, O.G.; Jørgensen, K.

    2002-01-01

    The permeability-enhancing effects of the two surfactants, 1-paltnitoyl-2-lyso-sn-gycero-3-pllosplloclloline (lysoPPC) and palmitic acid (PA), on lipid membranes that at physiological temperatures are in the gel, fluid, and liquid-ordered phases were determined using the concentration-dependent s......The permeability-enhancing effects of the two surfactants, 1-paltnitoyl-2-lyso-sn-gycero-3-pllosplloclloline (lysoPPC) and palmitic acid (PA), on lipid membranes that at physiological temperatures are in the gel, fluid, and liquid-ordered phases were determined using the concentration......-dependent self-quenching properties of the hydrophilic marker, calcein. Adding lysoPPC to lipid membranes in the gel-phase induced a time-dependent calcein release curve that can be described by the sum of two exponentials, whereas RA induces a considerably more complex release curve. However, when lyso...

  8. Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys

    Directory of Open Access Journals (Sweden)

    Bita Pourbahari

    2017-04-01

    Full Text Available The effect of Gd/Al ratio on the properties of as-cast Mg-Gd-Al-Zn alloys was investigated by changing the chemical composition from that of AZ61 to GZ61. At the ratio of 1, the Al2Gd phase becomes predominant and Mg17Al12 is hardly seen in the microstructure. As a potent inoculant, the Al2Gd phase resulted in intense grain refinement and enhancement of strength, ductility and toughness. For instance, the tensile strength and elongation to failure of Mg-3Gd-3Al-1Zn alloy were enhanced by ~4% and 180% compared with those of AZ61 alloy, respectively. However, at high Gd/Al ratios, the Al2Gd phase was replaced by (Mg,Al3Gd and Mg5Gd phases and very large grain sizes were achieved, which led to poor tensile properties and the appearance of cleavage facets on the fracture surfaces. Therefore, it can be deduced that the presence of Gd and Al, in appropriate amounts to reach Gd/Al ratio of ~ 1, is required for the achievement of grain refinement, good ductility, high strength, and the appearance of ductile fracture surfaces in the Mg-Gd-Al-Zn system. Conclusively, the Mg-Gd-Al-Zn alloys can be considered as a new class of structural magnesium alloy and it is superior to both AZ (Mg-Al-Zn and GZ (Mg-Gd-Zn series of alloys.

  9. "RaMassays": Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules.

    Science.gov (United States)

    Alessandri, Ivano; Vassalini, Irene; Bertuzzi, Michela; Bontempi, Nicolò; Memo, Maurizio; Gianoncelli, Alessandra

    2016-10-04

    SiO 2 /TiO 2 core/shell (T-rex) beads were exploited as "all-in-one" building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. <400 Da) molecules with a key relevance in biochemistry and pharmaceutical analysis. Caffeine and cocaine were utilized as molecular probes to test the combined SERS/SALDI response of RaMassays, showing excellent sensitivity and reproducibility. The differentiation between amphetamine/ephedrine and theophylline/theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices.

  10. Sensory nerve cross-anastomosis and electrical muscle stimulation synergistically enhance functional recovery of chronically denervated muscle.

    Science.gov (United States)

    Willand, Michael P; Holmes, Michael; Bain, James R; de Bruin, Hubert; Fahnestock, Margaret

    2014-11-01

    Long-term muscle denervation leads to severe and irreversible atrophy coupled with loss of force and motor function. These factors contribute to poor functional recovery following delayed reinnervation. The authors' previous work demonstrated that temporarily suturing a sensory nerve to the distal motor stump (called sensory protection) significantly reduces muscle atrophy and improves function following reinnervation. The authors have also shown that 1 month of electrical stimulation of denervated muscle significantly improves function and reduces atrophy. In this study, the authors tested whether a combination of sensory protection and electrical stimulation would enhance functional recovery more than either treatment alone. Rat gastrocnemius muscles were denervated by cutting the tibial nerve. The peroneal nerve was then sutured to the distal tibial stump following 3 months of treatment (i.e., electrical stimulation, sensory protection, or both). Three months after peroneal repair, functional and histologic measurements were taken. All treatment groups had significantly higher muscle weight (pstimulation or sensory protection alone. The combined treatment also produced motor unit counts significantly greater than sensory protection alone (p<0.05). The combination treatment synergistically reduces atrophy and improves reinnervation and functional measures following delayed nerve repair, suggesting that these approaches work through different mechanisms. The authors' research supports the clinical use of both modalities together following peripheral nerve injury.

  11. Graphitic-C3N4nanosheets: synergistic effects of hydrogenation and n/n junctions for enhanced photocatalytic activities.

    Science.gov (United States)

    Zhou, Minjie; Hou, Zhaohui; Chen, Xiaobo

    2017-08-15

    The increasing concern about environmental pollution and fossil fuel energies have urged researchers to seek renewable energy sources and methods for pollutant decomposition. Photocatalysis seems to be one of the most promising approaches, which uses natural sunlight to produce hydrogen from water and removes organic pollutants from the environment. Among the various photocatalysts, graphitic carbon nitride (g-C 3 N 4 ) has recently attracted much attention as a metal-free photocatalyst; however, it did not give a satisfactory performance. In this report, hydrogenation and n/n junctions are combined to improve the photocatalytic activities of g-C 3 N 4 nanosheets for both photocatalytic hydrogen generation and the degradation of organic pollutants. The hydrogen evolution activity is enhanced 3.72 times, and the photocatalytic activity in pollution removal is improved 12.38 times from the synergistic effects of hydrogenation and n/n junctions in g-C 3 N 4 . Thus, this study may trigger more exciting discoveries in catalyst designs for various photocatalytic renewable energy applications.

  12. Mineral trioxide aggregate induces osteoblastogenesis via Atf6

    OpenAIRE

    Maeda, Toyonobu; Suzuki, Atsuko; Yuzawa, Satoshi; Baba, Yuh; Kimura, Yuichi; Kato, Yasumasa

    2015-01-01

    Mineral trioxide aggregate (MTA) has been recommended for various uses in endodontics. To understand the effects of MTA on alveolar bone, we examined whether MTA induces osteoblastic differentiation using MC3T3-E1 cells. MTA enhanced mineralization concomitant with alkaline phosphatase activity in a dose- and time-dependent manner. MTA increased production of collagens (Type I and Type III) and matrix metalloproteinases (MMP-9 and MMP-13), suggesting that MTA affects bone matrix remodeling. M...

  13. Plant Growth Promoting Rhizobacteria and Silicon Synergistically Enhance Salinity Tolerance of Mung Bean

    KAUST Repository

    Mahmood, Sajid

    2016-06-17

    The present study explored the eco-friendly approach of utilizing plant-growth-promoting rhizobacteria (PGPR) inoculation and foliar application of silicon (Si) to improve the physiology, growth, and yield of mung bean under saline conditions. We isolated 18 promising PGPR from natural saline soil in Saudi Arabia, and screened them for plant-growth-promoting activities. Two effective strains were selected from the screening trial, and were identified as Enterobacter cloacae and Bacillus drentensis using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry and 16S rRNA gene sequencing techniques, respectively. Subsequently, in a 2-year mung bean field trial, using a randomized complete block design with a split-split plot arrangement, we evaluated the two PGPR strains and two Si levels (1 and 2 kg ha−1), in comparison with control treatments, under three different saline irrigation conditions (3.12, 5.46, and 7.81 dS m−1). The results indicated that salt stress substantially reduced stomatal conductance, transpiration rate, relative water content (RWC), total chlorophyll content, chlorophyll a, chlorophyll b, carotenoid content, plant height, leaf area, dry biomass, seed yield, and salt tolerance index. The PGPR strains and Si levels independently improved all the aforementioned parameters. Furthermore, the combined application of the B. drentensis strain with 2 kg Si ha−1 resulted in the greatest enhancement of mung bean physiology, growth, and yield. Overall, the results of this study provide important information for the benefit of the agricultural industry.

  14. Enhanced Antimicrobial Activity Based on a Synergistic Combination of Sublethal Levels of Stresses Induced by UV-A Light and Organic Acids.

    Science.gov (United States)

    de Oliveira, Erick F; Cossu, Andrea; Tikekar, Rohan V; Nitin, Nitin

    2017-06-01

    The reduction of microbial load in food and water systems is critical for their safety and shelf life. Conventionally, physical processes such as heat or light are used for the rapid inactivation of microbes, while natural compounds such as lactic acid may be used as preservatives after the initial physical process. This study demonstrates the enhanced and rapid inactivation of bacteria based on a synergistic combination of sublethal levels of stresses induced by UV-A light and two food-grade organic acids. A reduction of 4.7 ± 0.5 log CFU/ml in Escherichia coli O157:H7 was observed using a synergistic combination of UV-A light, gallic acid (GA), and lactic acid (LA), while the individual treatments and the combination of individual organic acids with UV-A light resulted in a reduction of less than 1 log CFU/ml. Enhanced inactivation of bacteria on the surfaces of lettuce and spinach leaves was also observed based on the synergistic combination. Mechanistic investigations suggested that the treatment with a synergistic combination of GA plus LA plus UV-A (GA+LA+UV-A) resulted in significant increases in membrane permeability and intracellular thiol oxidation and affected the metabolic machinery of E. coli In addition, the antimicrobial activity of the synergistic combination of GA+LA+UV-A was effective only against metabolically active E. coli O157:H7. In summary, this study illustrates the potential of simultaneously using a combination of sublethal concentrations of natural antimicrobials and a low level of physical stress in the form of UV-A light to inactivate bacteria in water and food systems. IMPORTANCE There is a critical unmet need to improve the microbial safety of the food supply, while retaining optimal nutritional and sensory properties of food. Furthermore, there is a need to develop novel technologies that can reduce the impact of food processing operations on energy and water resources. Conventionally, physical processes such as heat and light are

  15. Stem cell factor synergistically enhances thrombopoietin-induced STAT5 signaling in megakaryocyte progenitors through JAK2 and Src kinase

    NARCIS (Netherlands)

    Drayer, AL; Boer, AK; Los, EL; Esselink, MT; Vellenga, E

    Stem cell factor (SCF) has a potent synergistic effect during megalkaryopoiesis when administered in combination with the major megalkaryocytic cytokine, thrombopoietin (TPO). In this study we analyzed the underlying mechanisms with regard to STAT5 activity. TPO stimulation of MO7e cells resulted in

  16. Poly(I:C)-Encapsulating Nanoparticles Enhance Innate Immune Responses to the Tuberculosis Vaccine Bacille Calmette-Guérin (BCG) via Synergistic Activation of Innate Immune Receptors.

    Science.gov (United States)

    Speth, Martin T; Repnik, Urska; Müller, Elisabeth; Spanier, Julia; Kalinke, Ulrich; Corthay, Alexandre; Griffiths, Gareth

    2017-11-06

    The attenuated live vaccine strain bacille Calmette-Guérin (BCG) is currently the only available vaccine against tuberculosis (TB), but is largely ineffective against adult pulmonary TB, the most common disease form. This is in part due to BCG's ability to interfere with the host innate immune response, a feature that might be targeted to enhance the potency of this vaccine. Here, we investigated the ability of chitosan-based nanoparticles (pIC-NPs) containing polyinosinic-polycytidylic acid (poly(I:C)), an inducer of innate immunity via Toll-like receptor 3 (TLR3), to enhance the immunogenicity of BCG in mouse bone marrow derived macrophages (BMDM) in vitro. Incorporation of poly(I:C) into NPs protected it against degradation by ribonucleases and increased its uptake by mouse BMDM. Whereas soluble poly(I:C) was ineffective, pIC-NPs strongly enhanced the proinflammatory immune response of BCG-infected macrophages in a synergistic fashion, as evident by increased production of cytokines and induction of nitric oxide synthesis. Using macrophages from mice deficient in key signaling molecules involved in the pathogen recognition response, we identified combined activation of MyD88- and TRIF-dependent TLR signaling pathways to be essential for the synergistic effect between BCG and NP. Moreover, synergy was strongly dependent on the order of the two stimuli, with TLR activation by BCG functioning as the priming event for the subsequent pIC-NP stimulus, which acted through an auto-/paracrine type I interferon (IFN) feedback loop. Our results provide a foundation for a promising new approach to enhance BCG-vaccine immunogenicity by costimulation with NPs. They also contribute to a molecular understanding of the observed synergistic interaction between the pIC-NPs and BCG vaccine.

  17. Enhanced synergistic anti-Lewis lung carcinoma effect of a DNA vaccine harboring a MUC1-VEGFR2 fusion gene used with GM-CSF as an adjuvant.

    Science.gov (United States)

    Ruan, Junzhong; Duan, Yong; Li, Fugen; Wang, Zitong

    2017-01-01

    In order to achieve a synergistic effect on anti-tumour and anti-angiogenesis activity, we designed and constructed a DNA vaccine that expresses MUC1and VEGFR2 in the same reading frame. The aim of this study was to investigate the anti-tumour activity of this DNA vaccine. Furthermore, we also investigated the enhanced synergistic anti-Lewis lung carcinoma effect of this DNA vaccine by using GM-CSF as an adjuvant. A series of DNA plasmids encoding MUC1, VEGFR2, GM-CSF, and their conjugates were constructed and injected into mice intramuscularly (i.m.) followed by an electric pulse. The humoral and cellular immune responses after immunization were detected by enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunospot (ELISPOT), respectively. To evaluate the anti-tumour efficacy of these plasmids, murine models with MUC1-expressing tumours were generated. After injection into the tumour-bearing mouse model, the plasmid carrying the fusion gene of MUC1 and VEGFR2 showed stronger inhibition of tumour growth than the plasmid expressing MUC1 or VEGFR2 alone, which indicated that MUC1 and VEGFR2 could exert a synergistic anti-tumour effect. Furthermore, mice vaccinated with the combination of the GM-CSF expressing plasmid and the plasmid carrying the fusion gene of MUC1 and VEGFR2 showed an increased inhibition in the growth of MUC1-expressing tumours and prolonged mouse survival. These observations emphasize the potential of the synergistic anti-tumour and anti-angiogenesis strategy used in DNA vaccines, and the potential of the GM-CSF gene as an adjuvant for DNA vaccines, which could represent a promising approach for tumour immunotherapy. © 2016 John Wiley & Sons Australia, Ltd.

  18. Regeneration of Aplysia Bag Cell Neurons is Synergistically Enhanced by Substrate-Bound Hemolymph Proteins and Laminin

    Science.gov (United States)

    Hyland, Callen; Dufrense, Eric R.; Forscher, Paul

    2014-04-01

    We have investigated Aplysia hemolymph as a source of endogenous factors to promote regeneration of bag cell neurons. We describe a novel synergistic effect between substrate-bound hemolymph proteins and laminin. This combination increased outgrowth and branching relative to either laminin or hemolymph alone. Notably, the addition of hemolymph to laminin substrates accelerated growth cone migration rate over ten-fold. Our results indicate that the active factor is either a high molecular weight protein or protein complex and is not the respiratory protein hemocyanin. Substrate-bound factor(s) from central nervous system-conditioned media also had a synergistic effect with laminin, suggesting a possible cooperation between humoral proteins and nervous system extracellular matrix. Further molecular characterization of active factors and their cellular targets is warranted on account of the magnitude of the effects reported here and their potential relevance for nervous system repair.

  19. Enhancement of auranofin-induced apoptosis in MCF-7 human breast cells by selenocystine, a synergistic inhibitor of thioredoxin reductase.

    Directory of Open Access Journals (Sweden)

    Chaoran Liu

    Full Text Available Thioredoxin system plays an important role in regulation of intracellular redox balance and various signaling pathways. Thioredoxin reductase (TrxR is overexpressed in many cancer cells and has been identified as a potential target of anticancer drugs. Auranofin (AF is potent TrxR inhibitor with novel in vitro and in vivo anticancer activities. Selenocystine (SeC is a nutritionally available selenoamino acid with selective anticancer effects through induction of apoptosis. In the present study, we demonstrated the synergistic effects and the underlying molecular mechanisms of SeC in combination with AF on MCF-7 human breast cancer cells. The results showed that SeC and AF synergistically inhibited the cancer cell growth through induction of ROS-dependent apoptosis with the involvement of mitochondrial dysfunction. DNA damage-mediated p53 phosphorylation and down-regulation of phosphorylated AKT and ERK also contributed to cell apoptosis. Moreover, we demonstrated the important role of TrxR activity in the synergistic action of SeC and AF. Taken together, our results suggest the strategy to use SeC and AF in combination could be a highly efficient way to achieve anticancer synergism by targeting TrxR.

  20. Nanocarriers for DNA Vaccines: Co-Delivery of TLR-9 and NLR-2 Ligands Leads to Synergistic Enhancement of Proinflammatory Cytokine Release

    Directory of Open Access Journals (Sweden)

    Johanna Poecheim

    2015-12-01

    Full Text Available Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA. The formulations included (1 trimethyl chitosan (TMC nanoparticles, (2 a squalene-in-water nanoemulsion, and (3 a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9. In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2 was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used.

  1. Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles.

    Science.gov (United States)

    Wang, Guangjie; Jin, Feng; Dai, Nan; Zhong, Zhaoyang; Qing, Yi; Li, Mengxia; Yuan, Ruo; Wang, Dong

    2012-03-01

    A new metal-organic nanocomposite with synergistic catalysis function was prepared and developed to construct an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of tumor biomarker CA125. Silver nanoparticles (AgNPs) and nicotinamide adenine dinucleotide hydride (NADH) that can participate and catalyze the ECL reaction of Ru(bpy)(3)(2+) were employed as the metal component and the organic component to synthesize the metal-organic nanocomposite of NADH-AgNPs (NA). The novel ECL immunosensor was assembled via Ru(bpy)(3)(2+)-doped silica nanoparticles (Ru-SiO(2)) modified electrode with the NA as immune labels. First, the chitosan-suspended Ru-SiO(2) nanoparticles were cast on the gold electrode surface to immobilize the ECL probes of Ru(bpy)(3)(2+) and link gold nanoparticles. Then, the primary antibodies were loaded onto the modified electrode via the gold sulfhydryl covalent binding. After immunobinding the analytes of antigen, NA-attached secondary antibodies could be captured as a sandwich type on the electrode. Finally, based on the circularly synergistic catalysis by the silver and NADH for the solid-phase ECL of Ru(bpy)(3)(2+), the proposed immunosensor sensed the concentration of antigen. The synergistic ECL catalysis of metal-organic nanocomposite amplified response signal and pushed the detection limit down to 0.03 U ml(-1), which initiated a new ECL labeling field and has great significance for ECL immunoassays. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Synergistic effects of local temperature enhancements on cellular responses in the context of high-intensity, ultrashort electric pulses.

    Science.gov (United States)

    Song, J; Joshi, R P; Schoenbach, K H

    2011-06-01

    Results of self-consistent analyses of cells show the possibility of temperature increases at membranes in response to a single nanosecond, high-voltage pulse, at least over small sections of the membrane. Molecular Dynamics simulations indicate that such a temperature increase could facilitate poration, which is one example of a bio-process at the plasma membrane. Our study thus suggests that the use of repetitive high-intensity voltage pulses could open up possibilities for a host of synergistic bio-responses involving both thermal and electrically driven phenomena.

  3. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.

    2006-01-01

    from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact......-species biofilms resisted invasion to a greater extent than did the biofilms formed by the single species. Replacement of each strain by its cell-free culture supernatant suggested that synergy was dependent both on species-specific physical interactions between cells and on extracellular secreted factors or less...

  4. Synergistically enhanced activity of graphene quantum dot/multi-walled carbon nanotube composites as metal-free catalysts for oxygen reduction reaction.

    Science.gov (United States)

    Zhou, Xuemei; Tian, Zhimin; Li, Jing; Ruan, Hong; Ma, Yuanyuan; Yang, Zhi; Qu, Yongquan

    2014-03-07

    Graphene quantum dots (GQDs), as metal-free carbon nanomaterials, have potential applications in electrochemical fields due to their strong chemical inertness, oxygen-rich functional groups and remarkable quantum confinement and edge effects. Herein, we demonstrate that a novel metal-free electrode composed of GQDs and multi-walled carbon nanotubes (MWCNTs) exhibits a significant synergistic effect on enhanced catalytic activity for oxygen reduction reaction (ORR). Compared to commercially available Pt/C catalysts, enhanced electrocatalytic activity, improved long-term stability and excellent resistance to crossover effect were observed for the novel composite electrode. Interestingly, the amount of GQDs introduced is found to have an apparent effect on the positions of the reduction peaks of the electrodes.

  5. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy

    Science.gov (United States)

    You, Chaoqun; Wu, Hongshuai; Wang, Mingxin; Gao, Zhiguo; Zhang, Xiangyang; Sun, Baiwang

    2018-01-01

    Polymeric biomaterials that can be smartly disassembled through the cleavage of the covalent bonds in a controllable way upon an environmental stimulus such as pH change, redox, special enzymes, temperature, or ultrasound, as well as light irradiation, but are otherwise stable under normal physiological conditions have attracted great attention in recent decades. The 2-(4-aminophenyl) benzothiazole molecule (CJM-126), as one of the benzothiazole derivatives, has exhibited a synergistic effect with cisplatin (CDDP) and restrains the bioactivities of a series of human breast cancer cell lines. In our study, novel NIR-responsive targeted binary-drug-loaded nanoparticles encapsulating indocyanine green (ICG) dye were prepared as a new co-delivery and combined therapeutic vehicle. The prepared drug-loaded polymeric nanoparticles (TNPs/CDDP-ICG) are stable under normal physiological conditions, while burst drugs release upon NIR laser irradiation in a mild acidic environment. The results further confirmed that the designed co-delivery platform showed higher cytotoxicity than the single free CDDP due to the synergistic treatment of CJM-126 and CDDP in vitro. Taken together, the work might provide a promising approach for effective site-specific antitumor therapy.

  6. Mechanical properties and osteogenic activity of poly(l-lactide) fibrous membrane synergistically enhanced by chitosan nanofibers and polydopamine layer.

    Science.gov (United States)

    Liu, Hua; Li, Wenling; Wen, Wei; Luo, Binghong; Liu, Mingxian; Ding, Shan; Zhou, Changren

    2017-12-01

    To synergistically improve the mechanical properties and osteogenic activity of electrospinning poly(l-lactide) (PLLA) membrane, chitosan (CS) nanofibers were firstly introduced to prepare sub-micro and nanofibers interpenetrated PLLA/CS membrane, which was further surface modified with a polydopamine (PDA) layer to obtain PLLA/CS-PDA. Surface morphology, porosity, surface area and hydrophilicity of the obtained fibrous membranes were studied in detail. As compared to pure PLLA, the significant increase in the mechanical properties of the PLLA/CS, and especially of the PLLA/CS-PDA, was confirmed by tensile testing both in dry and wet states. Cells culture results indicated that both the PLLA/CS and PLLA/CS-PDA membranes, especially the latter, were more beneficial to adhesion, spreading and proliferation, as well as up-regulating alkaline phosphate activity and calcium deposition of MC3T3-E1 cells than PLLA membrane. Results suggested there was a synergistic effect of the CS nanofibers and PDA layer on the mechanical properties and osteogenic activity of PLLA membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Synergistic Effect between Metal-Nitrogen-Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Water-Oxidation Performance.

    Science.gov (United States)

    Wang, Jun; Li, Kai; Zhong, Hai-xia; Xu, Dan; Wang, Zhong-li; Jiang, Zheng; Wu, Zhi-jian; Zhang, Xin-bo

    2015-09-01

    Identifying effective means to improve the electrochemical performance of oxygen-evolution catalysts represents a significant challenge in several emerging renewable energy technologies. Herein, we consider metal-nitrogen-carbon sheets which are commonly used for catalyzing the oxygen-reduction reaction (ORR), as the support to load NiO nanoparticles for the oxygen-evolution reaction (OER). FeNC sheets, as the advanced supports, synergistically promote the NiO nanocatalysts to exhibit superior performance in alkaline media, which is confirmed by experimental observations and density functional theory (DFT) calculations. Our findings show the advantages in considering the support effect for designing highly active, durable, and cost-effective OER electrocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance

    Science.gov (United States)

    Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won

    2017-01-01

    Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.

  9. Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Sarah Fernandes Teixeira

    2013-12-01

    Full Text Available OBJECTIVE: To test the effectiveness of combining conventional antineoplastic drugs (cisplatin and etoposide with metformin in the treatment of non-small cell lung cancer in the NCI-H460 cell line, in order to develop new therapeutic options with high efficacy and low toxicity.METHODS: We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and calculated the combination index for the drugs studied.RESULTS: We found that the use of metformin as monotherapy reduced the metabolic viability of the cell line studied. Combining metformin with cisplatin or etoposide produced a synergistic effect and was more effective than was the use of cisplatin or etoposide as monotherapy.CONCLUSIONS: Metformin, due to its independent effects on liver kinase B1, had antiproliferative effects on the NCI-H460 cell line. When metformin was combined with cisplatin or etoposide, the cell death rate was even higher.

  10. Synergistic effect of hybrid carbon nanotube-graphene oxide as nanoadditive enhancing the frictional properties of ionic liquids in high vacuum.

    Science.gov (United States)

    Zhang, Lili; Pu, Jibin; Wang, Liping; Xue, Qunji

    2015-04-29

    A remarkable synergetic effect between the graphene oxide (GO) layers and multiwalled carbon nanotubes (MWCNTs) in improving friction and wear on sliding diamond-like carbon (DLC) surfaces under high vacuum condition (10(-5) Pa) and low or high applied load is demonstrated. In tests with sliding DLC surfaces, ionic liquid solution that contains small amounts of GO and MWCNTs exhibited the lowest specific friction coefficient and wear rate under all of the sliding conditions. Optical microscope images of the wear scar of a steel ball showed that GO/MWCNT composites exhibited higher antiwear capability than individual MWCNTs and GO did. Transmission electron microscopy images of nanoadditives after friction testing showed that MWCNTs support the GO layers like pillars and prevent assembly between the GO layers. Their synergistic effect considerably enhances IL-GO/MWCNT composites.

  11. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone

    Science.gov (United States)

    Rajagopal, S.P.; Hutchinson, J.L.; Dorward, D.A.; Rossi, A.G.; Norman, J.E.

    2015-01-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell–cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. PMID:26002969

  12. High Power Factor and Enhanced Thermoelectric Performance of SnTe-AgInTe2: Synergistic Effect of Resonance Level and Valence Band Convergence.

    Science.gov (United States)

    Banik, Ananya; Shenoy, U Sandhya; Saha, Sujoy; Waghmare, Umesh V; Biswas, Kanishka

    2016-10-05

    Understanding the basis of electronic transport and developing ideas to improve thermoelectric power factor are essential for production of efficient thermoelectric materials. Here, we report a significantly large thermoelectric power factor of ∼31.4 μW/cm·K 2 at 856 K in Ag and In co-doped SnTe (i.e., SnAg x In x Te 1+2x ). This is the highest power factor so far reported for SnTe-based material, which arises from the synergistic effects of Ag and In on the electronic structure and the improved electrical transport properties of SnTe. In and Ag play different but complementary roles in modifying the valence band structure of SnTe. In-doping introduces resonance levels inside the valence bands, leading to a significant improvement in the Seebeck coefficient at room temperature. On the other hand, Ag-doping reduces the energy separation between light- and heavy-hole valence bands by widening the principal band gap, which also results in an improved Seebeck coefficient. Additionally, Ag-doping in SnTe enhances the p-type carrier mobility. Co-doping of In and Ag in SnTe yields synergistically enhanced Seebeck coefficient and power factor over a broad temperature range because of the synergy of the introduction of resonance states and convergence of valence bands, which have been confirmed by first-principles density functional theory-based electronic structure calculations. As a consequence, we have achieved an improved thermoelectric figure of merit, zT ≈ 1, in SnAg 0.025 In 0.025 Te 1.05 at 856 K.

  13. Insight into synergistically enhanced adsorption and visible light photocatalytic performance of Z-scheme heterojunction of SrTiO3(La,Cr)-decorated WO3 nanosheets

    Science.gov (United States)

    Liu, Xin; Jiang, Junzhe; Jia, Yushuai; Qiu, Jinmin; Xia, Tonglin; Zhang, Yuhong; Li, Yuqin; Chen, Xiangshu

    2017-08-01

    The efficient treatment of dye wastewater has been a hot topic of environment field. The integration of adsorption and photocatalytic degradation via fabrication of bi-component heterojunction photocatalyst is considered as a facile and effective strategy to enhance the dye elimination efficiency. In this report, a Z-scheme heterojunction material, SrTiO3(La,Cr)/WO3 with bifunction of adsorption and photocatalysis was successfully synthesized for efficient removal of methylene blue (MB) under visible light irradiation. The morphology and microstructure characterization demonstrates that the SrTiO3(La,Cr) nanoparticles are uniformly decorated on the WO3 nanosheets, forming an intimate heterojunction interface. MB degradation results indicate that the removal efficiency by the synergistic adsorption-photocatalysis process is greatly improved compared to pure WO3 and SrTiO3(La,Cr) with the adsorption and photocatalytic activity closely related to the composition of the material. The possible mechanism for the enhanced photocatalytic activity could be ascribed to the formation of a Z-scheme heterojunction system based on active species trapping experiments. Furthermore, the investigations of adsorption kinetics and isotherm show that the adsorption process follows pseudo-second-order kinetic model and Langmuir isotherm, respectively. Due to the synergistic advantages of negative zeta potential, large surface area and accelerated separation of photogenerated carriers driven by Z-scheme heterojunction, SrTiO3(La,Cr)/WO3 exhibits excellent adsorption-photocatalytic performance and stability on MB removal, which could be potentially used for practical wastewater treatment.

  14. Enhancing enzymolysis and fermentation efficiency of sugarcane bagasse by synergistic pretreatment of Fenton reaction and sodium hydroxide extraction.

    Science.gov (United States)

    Zhang, Teng; Zhu, Ming-Jun

    2016-08-01

    A study on the synergistic pretreatment of sugarcane bagasse (SCB) using Fenton reaction and NaOH extraction was conducted. The optimized process conditions for Fenton pretreatment were 10% (w/w) of H2O2, 20mM of Fe(2+), pH 2.5, pretreatment time 6h, and pretreatment temperature 55°C. Sequential pretreatments were performed in combination with NaOH extraction (NaOH 1% (w/w), 80°C, 5% of solid loading, 1h). Among all the pretreatments, Fenton pretreatment followed by NaOH extraction had the highest efficiency of 64.7% and 108.3% for enzymolysis and simultaneous saccharification fermentation (SSF) with an ethanol concentration of 17.44g/L. The analyses by the scanning electron microscopy, X-ray diffraction and confocal laser scanning microscopy revealed that Fenton pretreatment disrupts the structure of SCB to facilitate the degradation of lignin by NaOH. The overall data suggest that this combinatorial strategy is a promising process for SCB pretreatment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Amorphous stabilization and dissolution enhancement of amorphous ternary solid dispersions: combination of polymers showing drug-polymer interaction for synergistic effects.

    Science.gov (United States)

    Prasad, Dev; Chauhan, Harsh; Atef, Eman

    2014-11-01

    The purpose of this study was to understand the combined effect of two polymers showing drug-polymer interactions on amorphous stabilization and dissolution enhancement of indomethacin (IND) in amorphous ternary solid dispersions. The mechanism responsible for the enhanced stability and dissolution of IND in amorphous ternary systems was studied by exploring the miscibility and intermolecular interactions between IND and polymers through thermal and spectroscopic analysis. Eudragit E100 and PVP K90 at low concentrations (2.5%-40%, w/w) were used to prepare amorphous binary and ternary solid dispersions by solvent evaporation. Stability results showed that amorphous ternary solid dispersions have better stability compared with amorphous binary solid dispersions. The dissolution of IND from the ternary dispersion was substantially higher than the binary dispersions as well as amorphous drug. Melting point depression of physical mixtures reveals that the drug was miscible in both the polymers; however, greater miscibility was observed in ternary physical mixtures. The IR analysis confirmed intermolecular interactions between IND and individual polymers. These interactions were found to be intact in ternary systems. These results suggest that the combination of two polymers showing drug-polymer interaction offers synergistic enhancement in amorphous stability and dissolution in ternary solid dispersions. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Synergistic effect of Nitrogen-doped hierarchical porous carbon/graphene with enhanced catalytic performance for oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Dewang; Yuan, Wenjing; Li, Cun; Song, Jiming; Xie, Anjian, E-mail: anjx@163.com; Shen, Yuhua, E-mail: s_yuhua@163.com

    2017-01-30

    Graphical abstract: This work demonstrates an example for turning rubbish into valuable products and addresses the disposal issue of waste biomass simultaneously for environment clean. And the typical sample exhibits excellent catalytic performance toward ORR, which is similar to that of commercial Pt/C. - Highlights: • This work demonstrates an example for turning rubbish into valuable products and addresses the disposal issue of waste biomass. • The HPC/RGO composite not only prevents the aggregation of RGO, but also takes advantage of the synergy between them. • This method was accessible, without using any activator, which is an effective strategy for the large scale application of FCs. - Abstract: Developing efficient and economical catalysts for the oxygen reduction reaction (ORR) is important to promote the commercialization of fuel cells. Here, we report a simple and environmentally friendly method to prepare nitrogen (N) –doped hierarchical porous carbon (HPC)/reduced graphene oxide (RGO) composites by reusing waste biomass (pomelo peel) coupled with graphene oxide (GO). This method is green, low-cost and without using any acid or alkali activator. The typical sample (N-HPC/RGO-1) contains 5.96 at.% nitrogen and larger BET surface area (1194 m{sup 2}/g). Electrochemical measurements show that N-HPC/RGO-1 exhibits not only a relatively positive onset potential and high current density, but also considerable methanol tolerance and long-term durability in alkaline media as well as in acidic media. The electron transfer number is close to 4, which means that it is mostly via a four-electron pathway toward ORR. The excellent catalytic performance of N-HPC/RGO-1 is due to the synergistic effect of the inherent interwoven network structure of HPC, the good electrical conductivity of RGO, and the heteroatom doping for the composite. More importantly, this work demonstrates a good example for turning discarded rubbish into valuable functional products and

  17. Synergistic Effects of a Mixture of Glycosaminoglycans to Inhibit Adipogenesis and Enhance Chondrocyte Features in Multipotent Cells

    Directory of Open Access Journals (Sweden)

    Petar D. Petrov

    2015-11-01

    Full Text Available Background/Aims: Multipotent mesenchymal stem cells affect homeostasis of adipose and joint tissues. Factors influencing their differentiation fate are of interest for both obesity and joint problems. We studied the impact of a mixture of glycosaminoglycans (GAGs (hyaluronic acid: dermatan sulfate 1:0.25, w/w used in an oral supplement for joint discomfort (Oralvisc™ on the differentiation fate of multipotent cells. Methods: Primary mouse embryo fibroblasts (MEFs were used as a model system. Post-confluent monolayer MEF cultures non-stimulated or hormonally stimulated to adipogenesis were chronically exposed to the GAGs mixture, its individual components or vehicle. The appearance of lipid laden cells, lipid accumulation and expression of selected genes at the mRNA and protein level was assessed. Results: Exposure to the GAGs mixture synergistically suppressed spontaneous adipogenesis and induced the expression of cartilage extracellular matrix proteins, aggrecan core protein, decorin and cartilage oligomeric matrix protein. Hormonally-induced adipogenesis in the presence of the GAGs mixture resulted in decreased adipogenic differentiation, down-regulation of adipogenic/lipogenic factors and genes for insulin resistance-related adipokines (resistin and retinol binding protein 4, and up-regulation of oxidative metabolism-related genes. Adipogenesis in the presence of dermatan sulfate, the minor component of the mixture, was not impaired but resulted in smaller lipid droplets and the induction of a more complete brown adipocyte-related transcriptional program in the cells in the adipose state. Conclusions: The Oralvisc™ GAGs mixture can tip the adipogenic/chondrogenic fate balance of multipotent cells away from adipogenesis while favoring chondrocyte related gene expression. The mixture and its dermatan sulfate component also have modulatory effects of interest on hormonally-induced adipogenesis and on metabolic and secretory capabilities of

  18. PMA synergistically enhances apicularen A-induced cytotoxicity by disrupting microtubule networks in HeLa cells

    International Nuclear Information System (INIS)

    Seo, Kang-Sik; Hwang, Byung-Doo; Kim, Jong-Seok; Park, Ji-Hoon; Song, Kyoung-Sub; Yun, Eun-Jin; Park, Jong-Il; Kweon, Gi Ryang; Yoon, Wan-Hee; Lim, Kyu

    2014-01-01

    Combination therapy is key to improving cancer treatment efficacy. Phorbol 12-myristate 13-acetate (PMA), a well-known PKC activator, increases the cytotoxicity of several anticancer drugs. Apicularen A induces cytotoxicity in tumor cells through disrupting microtubule networks by tubulin down-regulation. In this study, we examined whether PMA increases apicularen A-induced cytotoxicity in HeLa cells. Cell viability was examined by thiazolyl blue tetrazolium (MTT) assays. To investigate apoptotic potential of apicularen A, DNA fragmentation assays were performed followed by extracting genomic DNA, and caspase-3 activity assays were performed by fluorescence assays using fluorogenic substrate. The cell cycle distribution induced by combination with PMA and apicularen A was examined by flow cytometry after staining with propidium iodide (PI). The expression levels of target proteins were measured by Western blotting analysis using specific antibodies, and α-tubulin mRNA levels were assessed by reverse transcription polymerase chain reaction (RT-PCR). To examine the effect of combination of PMA and apicularen A on the microtubule architecture, α-tubulin protein and nuclei were visualized by immunofluorescence staining using an anti-α-tubulin antibody and PI, respectively. We found that apicularen A induced caspase-dependent apoptosis in HeLa cells. PMA synergistically increased cytotoxicity and apoptotic sub-G 1 population induced by apicularen A. These effects were completely blocked by the PKC inhibitors Ro31-8220 and Go6983, while caspase inhibition by Z-VAD-fmk did not prevent cytotoxicity. RNA interference using siRNA against PKCα, but not PKCβ and PKCγ, inhibited cytotoxicity induced by combination PMA and apicularen A. PMA increased the apicularen A-induced disruption of microtubule networks by further decreasing α- and β-tubulin protein levels in a PKC-dependent manner. These results suggest that the synergy between PMA and apicularen A is involved by

  19. Novel Synergistic Therapy for Metastatic Breast Cancer: Magnetic Nanoparticle Hyperthermia of the Neovasculature Enhanced by a Vascular Disruption Agent

    Science.gov (United States)

    2013-04-01

    SPION delivery. Initial injections of SPIONs in tumor bearing mice resulted in the apparently rapid clearance of particles (particles observed in liver ...Imaging of Vascular Endothelial Growth Factor Receptor 2 Expression Using Targeted Contrast-Enhanced High-Frequency Ultrasonography . J Ultrasound Med

  20. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan-hong [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Liu, Fu-qiang, E-mail: jogia@163.com [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Zhu, Chang-qing; Zhang, Xiao-peng; Wei, Meng-meng [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Wang, Feng-he [School of Environment, Nanjing Normal University, Nanjing, 210023 (China); Ling, Chen; Li, Ai-min [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China)

    2017-05-05

    Highlights: • A (N,Fe)-dual-functional bio-sorbent was newly synthesized. • Removal of Ni(II) and H{sub 2}PO{sub 4}{sup −} could be remarkably enhanced over 3 times. • A multiple mechanism resulted in the synergic adsorption. • N/Fe-DB is efficient and repeatable in treating electroplating wastewater. - Abstract: A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H{sub 2}PO{sub 4}{sup −} from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H{sub 2}PO{sub 4}{sup −} were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H{sub 2}PO{sub 4}{sup −} accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H{sub 2}PO{sub 4}{sup −}. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.

  1. On the effect of interaction of molybdenum trioxide and magnesium oxide in water

    International Nuclear Information System (INIS)

    Bunin, V.M.; Karelin, A.I.; Solov'eva, L.N.

    1992-01-01

    Interaction of molybdenum trioxide and magnesium oxide in water was studied. It is shown that molybdenum trioxide forms consecutively magnesium molybdate, dimolybdate and magnesium polymolybdates with magnesium oxide

  2. ETME, a novel β-elemene derivative, synergizes with arsenic trioxide in inducing apoptosis and cell cycle arrest in hepatocarcinoma cells via a p53-dependent pathway

    Directory of Open Access Journals (Sweden)

    Zhiying Yu

    2014-12-01

    Full Text Available Arsenic trioxide (ATO has been identified as an effective treatment for acute promyelocytic leukemia (APL but is much less effective against solid tumors such as hepatocellular carcinoma (HCC. In the search for ways to enhance its therapeutic efficacy against solid tumors, we have examined its use in combination with a novel derivative of β-elemene, N-(β-elemene-13-yltryptophan methyl ester (ETME. Here we report the effects of the combination on cell viability, apoptosis, the cell cycle and mitochondria membrane potential (MMP in HCC SMMC-7721 cells. We found that the two compounds acted synergistically to enhance antiproliferative activity and apoptosis. The combination also decreased the MMP, down-regulated Bcl-2 and pro-proteins of the caspase family, and up-regulated Bax and BID, all of which were reversed by the p53 inhibitor, pifithrin-α. In addition, the combination induced cell cycle arrest at the G2/M phase and reduced tumor volume and weight in an xenograft model of nude mice. Overall, the results suggest that ETME in combination with ATO may be useful in the treatment of HCC patients particularly those unresponsive to ATO alone.

  3. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    DEFF Research Database (Denmark)

    Jensen, Pia; Gramsbergen, Jan-Bert; Zimmer, Jens

    2011-01-01

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation...... of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than......, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH...

  4. Enhanced proliferation and dopaminergic differentiation of ventral mesencephalic precursor cells by synergistic effect of FGF2 and reduced oxygen tension

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Pia [Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Winslowparken 21, DK-5000 Odense C (Denmark); Department of Neurosurgery, University of Bern, CH-3010 Bern (Switzerland); Gramsbergen, Jan-Bert; Zimmer, Jens [Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Winslowparken 21, DK-5000 Odense C (Denmark); Widmer, Hans R. [Department of Neurosurgery, University of Bern, CH-3010 Bern (Switzerland); Meyer, Morten, E-mail: MMeyer@health.sdu.dk [Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, Winslowparken 21, DK-5000 Odense C (Denmark)

    2011-07-15

    Effective numerical expansion of dopaminergic precursors might overcome the limited availability of transplantable cells in replacement strategies for Parkinson's disease. Here we investigated the effect of fibroblast growth factor-2 (FGF2) and FGF8 on expansion and dopaminergic differentiation of rat embryonic ventral mesencephalic neuroblasts cultured at high (20%) and low (3%) oxygen tension. More cells incorporated bromodeoxyuridine in cultures expanded at low as compared to high oxygen tension, and after 6 days of differentiation there were significantly more neuronal cells in low than in high oxygen cultures. Low oxygen during FGF2-mediated expansion resulted also in a significant increase in tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons as compared to high oxygen tension, but no corresponding effect was observed for dopamine release into the culture medium. However, switching FGF2-expanded cultures from low to high oxygen tension during the last two days of differentiation significantly enhanced dopamine release and intracellular dopamine levels as compared to all other treatment groups. In addition, the short-term exposure to high oxygen enhanced in situ assessed TH enzyme activity, which may explain the elevated dopamine levels. Our findings demonstrate that modulation of oxygen tension is a recognizable factor for in vitro expansion and dopaminergic differentiation of rat embryonic midbrain precursor cells.

  5. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    Science.gov (United States)

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyapatite (CDHA). These mineral precipitate were reported to form the MTA-dentin interfacial layer which enhances the sealing ability of MTA. Clinically, the use of zinc oxide euginol (ZOE) based materials may retard the setting of MTA. Also, the use of acids or contact with excessive blood should be avoided before complete set of MTA, because these conditions could adversely affect the hydration reaction of MTA. Further studies on the chemical nature of MTA hydration reaction are needed. PMID:23429542

  6. Enhanced photoluminescence property and broad color emission of ZnGa2O4 phosphor due to the synergistic role of Eu3+ and carbon dots

    Science.gov (United States)

    Huo, Qiuyue; Tu, Weixia; Guo, Lin

    2017-10-01

    ZnGa2O4 phosphors co-composited with nanoscale carbon dots (CDs) and Eu3+ were presented for the tunable color emission. Novel single phase CDs or/and Eu3+ composited ZnGa2O4 phosphors were synthesized by microwave hydrothermal method and their optical properties were investigated. The ZnGa2O4 phosphors composited with CDs exhibited an intense broad blue light emission at 421 nm and a more enhanced photoluminescence intensity than those without CDs. The Eu3+ composited ZnGa2O4 phosphors gave an ideal red color emission. The CDs/Eu3+ co-composited ZnGa2O4 phosphors exhibited a wide emission band peak at 450 nm and narrow emission peak at 618 nm. Furthermore, the tunable color emissions of CDs/Eu3+ co-composited ZnGa2O4 phosphors from blue to the white light region, and then to red were obtained with the increasing Eu3+ concentration, which can be a promising single phased phosphor candidate in light emitting diodes. Broadly tunable emission single phased phosphor is tuned firstly through the synergistic role of the non-metal element and the rare earth metal ions.

  7. “RaMassays”: Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules

    Science.gov (United States)

    Alessandri, Ivano; Vassalini, Irene; Bertuzzi, Michela; Bontempi, Nicolò; Memo, Maurizio; Gianoncelli, Alessandra

    2016-10-01

    SiO2/TiO2 core/shell (T-rex) beads were exploited as “all-in-one” building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices.

  8. Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light

    Science.gov (United States)

    Wang, Fang; Su, Yanhong; Min, Shixiong; Li, Yanan; Lei, Yonggang; Hou, Jianhua

    2018-04-01

    Here, we report that the co-loading of graphene quantum dots (GQDs) and PdS dual cocatalysts on ZnCdS surface achieves a high efficiency photocatalytic H2 evolution under visible light (≥420 nm). The GQDs/ZnCdS/PdS photocatalyst was prepared by a facile two steps: hydrothermal coupling of GQDs on ZnCdS surface followed by an in-situ chemical deposition of PdS. The resulted GQDs/ZnCdS/PdS exhibits a H2 evolution rate of 517 μmol h-1, which is 15, 7, and 1.7 times higher than that of pure ZnCdS, GQDs/ZnCdS, and ZnCdS/PdS, respectively, demonstrating the synergistic effects of GQDs and PdS dual cocatalysts. A high apparent quantum efficiency (AQE) up to 22.4% can be achieved over GQDs/ZnCdS/PdS at 420 nm. GQDs/ZnCdS/PdS also has a relatively good stability. Such a considerable enhancement of photocatalytic activity was attributable to the co-loading of the GQDs and PdS as respective reduction and oxidation cocatalysts, leading to an efficient charge separation and surface reactions.

  9. Sodium Mercaptoethane Sulfonate Reduces Collagenolytic Degradation and Synergistically Enhances Antimicrobial Durability in an Antibiotic-Loaded Biopolymer Film for Prevention of Surgical-Site Infections

    Directory of Open Access Journals (Sweden)

    Joel Rosenblatt

    2017-01-01

    Full Text Available Implant-associated surgical-site infections can have significant clinical consequences. Previously we reported a method for prophylactically disinfecting implant surfaces in surgical pockets, where an antibiotic solution containing minocycline (M and rifampin (R was applied as a solid film in a crosslinked biopolymer matrix that partially liquefied in situ to provide extended prophylaxis. Here we studied the effect of adding sodium 2-mercaptoethane sulfonate (MeSNA on durability of prophylaxis in an in vitro model of implant-associated surgical-site infection. Adding MeSNA to the M/R biopolymer, antimicrobial film extended the duration for which biofilm formation by multidrug-resistant Pseudomonas aeruginosa (MDR-PA was prevented on silicone surfaces in the model. M/R films with and without MeSNA were effective in preventing colonization by methicillin-resistant Staphylococcus aureus. Independent experiments revealed that MeSNA directly inhibited proteolytic digestion of the biopolymer film and synergistically enhanced antimicrobial potency of M/R against MDR-PA. Incubation of the MeSNA containing films with L929 fibroblasts revealed no impairment of cellular metabolic activity or viability.

  10. Pd-Pt alloys nanowires as support-less electrocatalyst with high synergistic enhancement in efficiency for methanol oxidation in acidic medium.

    Science.gov (United States)

    Rana, Moumita; Patil, Pramod K; Chhetri, Manjeet; Dileep, K; Datta, Ranjan; Gautam, Ujjal K

    2016-02-01

    In a facile approach, Pd73Pt27 alloy nanowires (NWs) with large aspect ratios were synthesized in high yield by using sacrificial templates. Unlike majority of processes, our synthesis was carried out in aqueous solution with no intermittent separating stages for the products, while maintaining the NW morphology up to ∼30% of Pt. Upon evaporation of their dispersion, the NWs transform into a stable porous membrane due to self-entanglement and can be directly lifted and employed for electrocatalytic applications without external catalyst supports. We show that the NW membranes exhibit efficient electrocatalytic performance for methanol oxidation reaction (MOR) with 10 times higher mass activity and 4.4 times higher specific activity in acidic media as compared to commercial Pt catalysts. The membrane electrocatalysts is robust and exhibited very good stability with retention of ∼70% mass-activity after 4000 potential cycles. Since Pd was found to be inert towards MOR in acidic medium, our investigation provides a direct estimate of synergistic enhancement of efficiency. Over 10 times increment of mass activity appears to be significantly higher than previous investigations in various other reaction media. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Training Enhances Immune Cells Mitochondrial Biosynthesis, Fission, Fusion, and Their Antioxidant Capabilities Synergistically with Dietary Docosahexaenoic Supplementation

    Directory of Open Access Journals (Sweden)

    Carla Busquets-Cortés

    2016-01-01

    Full Text Available Exercise training induces adaptations in mitochondrial metabolism, dynamics, and oxidative protection. Omega-3 fatty acids change membrane lipid composition and modulate mitochondrial function. The aim was to investigate the effect of 8-week training and docosahexaenoic acid (DHA supplementation (1.14 g/day on the mitochondria dynamics and antioxidant status in peripheral blood mononuclear cells (PBMCs from sportsmen. Subjects were assigned to an intervention (N=9 or placebo groups (N=7 in a randomized double-blind trial. Nutritional intervention significantly increased the DHA content in erythrocyte membranes from the experimental group. No significant differences were reported in terms of circulating PBMCs, Mn-superoxide dismutase protein levels, and their capability to produce reactive oxygen species. The proteins related to mitochondrial dynamics were, in general, increased after an 8-week training and this increase was enhanced by DHA supplementation. The content in mitofusins Mtf-1 and Mtf-2, optic atrophy protein-1 (Opa-1, and mitochondrial transcription factor A (Tfam were significantly higher in the DHA-supplemented group after intervention. Cytochrome c oxidase (COX-IV activity and uncoupling proteins UCP-2 and UCP-3 protein levels were increased after training, with higher UCP-3 levels in the supplemented group. In conclusion, training induced mitochondrial adaptations which may contribute to improved mitochondrial function. This mitochondrial response was modulated by DHA supplementation.

  12. Application of non-invasive low strength pulsed electric field to EGCG treatment synergistically enhanced the inhibition effect on PANC-1 cells.

    Science.gov (United States)

    Hsieh, Chih-Hsiung; Lu, Chueh-Hsuan; Chen, Wei-Ting; Ma, Bo-Lun; Chao, Chih-Yu

    2017-01-01

    Traditional therapies for pancreatic cancer are usually expensive and likely to cause side effects, and most patients have the risk of recurrence and suffering pain. Here, we investigated combination treatment of epigallocatechin-3-gallate (EGCG) and non-invasive low strength pulsed electric field (PEF) on the human pancreatic cell line PANC-1. Cells were cultured in various concentrations of EGCG and exposed to trains of PEF. The results showed that the low strength PEF alone or single treatment with low concentration of EGCG did not obviously affect the cell proliferation and migration in PANC-1. However, the EGCG-induced inhibitions of cell viability and migration ability in PANC-1 were dramatically enhanced by the further exposure of low strength PEF (60 V/cm). In particular, the same combination treatment caused less inhibition of cell viability in non-malignant HEK293 cells. We also found the combination treatment significantly decreased the ratio of Bcl-2/Bax protein and increased caspase activity in PANC-1 cells, resulting in the promotion of apoptotic responses, evidenced by chromatin condensation. The findings of the present study reveal the synergistic reactions in the combination treatment may severely disturb mitochondria, enhance the intrinsic pathway transduction, and effectively induce apoptosis; moreover, the migration and invasion of PANC-1 cancer cells were also significantly suppressed. Since normal cells are less sensitive to this combination treatment, and the non-invasive PEF could be modified to focus on a specific location, this treatment may serve as a promising method for anti-cancer therapy.

  13. Synthesis of Graphene Oxide-Based Sulfonated Oligoanilines Coatings for Synergistically Enhanced Corrosion Protection in 3.5% NaCl Solution.

    Science.gov (United States)

    Lu, Hao; Zhang, Shengtao; Li, Weihua; Cui, Yanan; Yang, Tao

    2017-02-01

    As a vital derivative of graphene, graphene oxide (GO) is widely applied in various fields, such as transparent electrodes, solar cells, energy storage, and corrosion protection due to the large specific surface area and abundant active sites. However, compared with graphene, the application of GO has been less reported in metal corrosion protection field. Therefore, in our study, 3-aminobenzenesulfonic acid was selected to combine with oligoanilines to fabricate the GO-based sulfonated oligoanilines coatings for marine corrosion protection application. The obtained composite coatings were covered on the surface of Q235 steel, which is one of the most important structural marine materials. Fourier transform infrared spectra were utilized to prove the existence of different bonds and functional groups of aniline trimer and sulfonated aniline trimer (SAT). Scanning electron microscopy was applied to verify the combination of GO and SAT. What's more, transmission electron microscopy was applied to observe the surface appearance of the obtained GO-SAT composite material. Besides, the results of electrochemical measurements performed in 3.5 wt % NaCl solution showed excellent corrosion-protective properties of GO/SAT-coated epoxy resin with a dosage of 10 mg of GO compared with the pure epoxy resin. Moreover, the enhancement of surface hydrophobic property, to some extent, is in favor of preventing the absorption of corrosive medium and water molecules revealed by contact angle test. The addition of GO can make the diffusion pathway of the corrosive medium longer and more circuitous, while SAT has displayed excellent solvent solubility while maintaining corrosion-protective properties similar to those of polyanilines so that the corrosion-protective properties of the modified coatings improve significantly due to the synergistically enhanced corrosion protection of GO and SAT.

  14. Co-overexpression of two Heat Shock Factors results in enhanced seed longevity and in synergistic effects on seedling tolerance to severe dehydration and oxidative stress.

    Science.gov (United States)

    Personat, José-María; Tejedor-Cano, Javier; Prieto-Dapena, Pilar; Almoguera, Concepción; Jordano, Juan

    2014-03-04

    We have previously reported that the seed-specific overexpression of sunflower (Helianthus annuus L.) Heat Shock Factor A9 (HaHSFA9) enhanced seed longevity in transgenic tobacco (Nicotiana tabacum L.). In addition, the overexpression of HaHSFA9 in vegetative organs conferred tolerance to drastic levels of dehydration and oxidative stress. Here we found that the combined overexpression of sunflower Heat Shock Factor A4a (HaHSFA4a) and HaHSFA9 enhanced all the previously reported phenotypes described for the overexpression of HaHSFA9 alone. The improved phenotypes occurred in coincidence with only subtle changes in the accumulation of small Heat Shock Proteins (sHSP) that are encoded by genes activated by HaHSFA9. The single overexpression of HaHSFA4a in vegetative organs (which lack endogenous HSFA9 proteins) did not induce sHSP accumulation under control growth conditions; neither it conferred thermotolerance. The overexpression of HaHSFA4a alone also failed to induce tolerance to severe abiotic stress. Thus, a synergistic functional effect of both factors was evident in seedlings. Our study revealed that HaHSFA4a requires HaHSFA9 for in planta function. Our results strongly support the involvement of HaHSFA4a and HaHSFA9 in transcriptional co-activation of a genetic program of longevity and desiccation tolerance in sunflower seeds. These results would also have potential application for improving seed longevity and tolerance to severe stress in vegetative organs.

  15. Synergistic effect of co-digestion to enhance anaerobic degradation of catering waste and orange peel for biogas production.

    Science.gov (United States)

    Anjum, Muzammil; Khalid, Azeem; Qadeer, Samia; Miandad, Rashid

    2017-09-01

    Catering waste and orange peel were co-digested using an anaerobic digestion process. Orange peel is difficult to degrade anaerobically due to the presence of antimicrobial agents such as limonene. The present study aimed to examine the feasibility of anaerobic co-digestion of catering waste with orange peel to provide the optimum nutrient balance with reduced inhibitory effects of orange peel. Batch experiments were conducted using catering waste as a potential substrate mixed in varying ratios (20-50%) with orange peel. Similar ratios were followed using green vegetable waste as co-substrate. The results showed that the highest organic matter degradation (49%) was achieved with co-digestion of catering waste and orange peel at a 50% mixing ratio (CF4). Similarly, the soluble chemical oxygen demand (sCOD) was increased by 51% and reached its maximum value (9040 mg l -1 ) due to conversion of organic matter from insoluble to soluble form. Biogas production was increased by 1.5 times in CF4 where accumulative biogas was 89.61 m 3 t -1 substrate compared with 57.35 m 3 t -1 substrate in the control after 80 days. The main reason behind the improved biogas production and degradation is the dilution of inhibitory factors (limonene), with subsequent provision of balanced nutrients in the co-digestion system. The tCOD of the final digestate was decreased by 79.9% in CF4, which was quite high as compared with 68.3% for the control. Overall, this study revealed that orange peel waste is a highly feasible co-substrate for anaerobic digestion with catering waste for enhanced biogas production.

  16. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO{sub 2} under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lina [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); Wang, Changhua; Wan, Fangxu; Zheng, Han [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China)

    2017-02-28

    Highlights: • Anatase TiO{sub 2} was modified with Fe-ethoxide through wet impregnation method. • XPS and EPR investigation supported the formation of Vo and Fe species. • Vo improved the optical absorption properties to a larger extent. • Fe species inhibited the charge carrier recombination process. • Synergism between Vo and Fe species enhanced the photocatalytic activity. - Abstract: Surface grafting of transition-metal complexes or oxides is an appealing way to enhance the photocatalytic activity of TiO{sub 2} under visible-light excitation. However, the performance of these co-catalysts assistant TiO{sub 2} photocatalysts is still not sufficient enough due to their relatively weak visible-light absorption. Herein, we report a simple impregnation treatment with ferric ethoxide/ethanol solvent, followed with mild heating which can significantly enhance the visible-light absorption and photocatalytic activity of TiO{sub 2}. XPS and EPR analyses manifest that the oxygen vacancies (V{sub O}s) and Fe-species are simultaneously introduced to the surface of TiO{sub 2}. The chemical state and photocatalytic activity of the Fe-species-grafted TiO{sub 2−x} is dependent on the heating temperature after impregnation. The sample heat-treated at 250 °C exhibits the optimal photocatalytic performance for β-naphthol degradation with rate constant 6.0, 2.7, and 3.9 times higher than that of TiO{sub 2}, TiO{sub 2−x}, and Fe-TiO{sub 2}, respectively. The activity enhancement is discussed on the basis of the synergistic effect and energy-level matching of surface V{sub O}s and Fe-species co-catalyst, i.e. the V{sub O}s defects states increase the visible-light absorption and the Fe-species in the form of FeOOH promote the consumption of photo-generated electrons through multi-electron reduction of adsorbed molecule oxygen.

  17. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  18. The Synergistic Priming Effect of Exogenous Salicylic Acid and H2O2 on Chilling Tolerance Enhancement during Maize (Zea mays L.) Seed Germination.

    Science.gov (United States)

    Li, Zhan; Xu, Jungui; Gao, Yue; Wang, Chun; Guo, Genyuan; Luo, Ying; Huang, Yutao; Hu, Weimin; Sheteiwy, Mohamed S; Guan, Yajing; Hu, Jin

    2017-01-01

    Chilling stress is an important constraint for maize seedling establishment in the field. To examine the role of salicylic acid (SA) and hydrogen peroxide (H 2 O 2 ) in response to chilling stress, we investigated the effects of seed priming with SA, H 2 O 2 , and SA+H 2 O 2 combination on maize resistance under chilling stress (13°C). Priming with SA, H 2 O 2 , and especially SA+H 2 O 2 shortened seed germination time and enhanced seed vigor and seedling growth as compared with hydropriming and non-priming treatments under low temperature. Meanwhile, SA+H 2 O 2 priming notably increased the endogenous H 2 O 2 and SA content, antioxidant enzymes activities and their corresponding genes ZmPAL, ZmSOD4, ZmAPX2, ZmCAT2 , and ZmGR expression levels. The α-amylase activity was enhanced to mobilize starch to supply metabolites such as soluble sugar and energy for seed germination under chilling stress. In addition, the SA+H 2 O 2 combination positively up-regulated expressions of gibberellic acid (GA) biosynthesis genes ZmGA20ox1 and ZmGA3ox2 , and down-regulated GA catabolism gene ZmGA2ox1 expression; while it promoted GA signaling transduction genes expressions of ZmGID1 and ZmGID2 and decreased the level of seed germination inhibitor gene ZmRGL2 . The abscisic acid (ABA) catabolism gene ZmCYP707A2 and the expressions of ZmCPK11 and ZmSnRK2.1 encoding response receptors in ABA signaling pathway were all up-regulated. These results strongly suggested that priming with SA and H 2 O 2 synergistically promoted hormones metabolism and signal transduction, and enhanced energy supply and antioxidant enzymes activities under chilling stress, which were closely relevant with chilling injury alleviation and chilling-tolerance improvement in maize seed. Highlights: Seed germination and seedling growth were significantly improved under chilling stress by priming with SA+H 2 O 2 combination, which was closely relevant with the change of reactive oxygen species, metabolites and

  19. The Synergistic Priming Effect of Exogenous Salicylic Acid and H2O2 on Chilling Tolerance Enhancement during Maize (Zea mays L.) Seed Germination

    Science.gov (United States)

    Li, Zhan; Xu, Jungui; Gao, Yue; Wang, Chun; Guo, Genyuan; Luo, Ying; Huang, Yutao; Hu, Weimin; Sheteiwy, Mohamed S.; Guan, Yajing; Hu, Jin

    2017-01-01

    Chilling stress is an important constraint for maize seedling establishment in the field. To examine the role of salicylic acid (SA) and hydrogen peroxide (H2O2) in response to chilling stress, we investigated the effects of seed priming with SA, H2O2, and SA+H2O2 combination on maize resistance under chilling stress (13°C). Priming with SA, H2O2, and especially SA+H2O2 shortened seed germination time and enhanced seed vigor and seedling growth as compared with hydropriming and non-priming treatments under low temperature. Meanwhile, SA+H2O2 priming notably increased the endogenous H2O2 and SA content, antioxidant enzymes activities and their corresponding genes ZmPAL, ZmSOD4, ZmAPX2, ZmCAT2, and ZmGR expression levels. The α-amylase activity was enhanced to mobilize starch to supply metabolites such as soluble sugar and energy for seed germination under chilling stress. In addition, the SA+H2O2 combination positively up-regulated expressions of gibberellic acid (GA) biosynthesis genes ZmGA20ox1 and ZmGA3ox2, and down-regulated GA catabolism gene ZmGA2ox1 expression; while it promoted GA signaling transduction genes expressions of ZmGID1 and ZmGID2 and decreased the level of seed germination inhibitor gene ZmRGL2. The abscisic acid (ABA) catabolism gene ZmCYP707A2 and the expressions of ZmCPK11 and ZmSnRK2.1 encoding response receptors in ABA signaling pathway were all up-regulated. These results strongly suggested that priming with SA and H2O2 synergistically promoted hormones metabolism and signal transduction, and enhanced energy supply and antioxidant enzymes activities under chilling stress, which were closely relevant with chilling injury alleviation and chilling-tolerance improvement in maize seed. Highlights:Seed germination and seedling growth were significantly improved under chilling stress by priming with SA+H2O2 combination, which was closely relevant with the change of reactive oxygen species, metabolites and energy supply, hormones metabolism and

  20. Flavonoids from almond skins are bioavailable and act synergistically with vitamins C and E to enhance hamster and human LDL resistance to oxidation.

    Science.gov (United States)

    Chen, Chung-Yen; Milbury, Paul E; Lapsley, Karen; Blumberg, Jeffrey B

    2005-06-01

    Consumption of tree nuts such as almonds has been associated with a reduced risk of coronary heart disease. Flavonoids, found predominantly in the skin of almonds, may contribute to their putative health benefit, but their bioactivity and bioavailability have not previously been studied. Almond skin flavonoids (ASF) were extracted with HCl:H2O:methanol (1:19:80) and their content of catechins and flavonols identified by HPLC with electrochemical detection. ASF bioactivity was assessed in vitro by their capacity to increase the resistance of human LDL to oxidation induced by 10 micromol/L Cu2+. ASF from 0.18 to 1.44 mumol gallic acid equivalent (GAE)/L increased the lag time to LDL oxidation in a dose-dependent manner (P 200% of the expected additive value (P bioavailability and in vivo antioxidant activity of 40 micromol ASF were examined in BioF1B hamsters. Peak plasma concentrations of catechin, epicatechin, and flavonols (quercetin, kaempferol, and isorhamnetin) occurred at 60, 120, and 180 min, respectively. The concentration of isorhamnetin was significantly elevated in liver at 180 min. Absorbed ASF enhanced the ex vivo resistance of hamster LDL collected at 60 min to oxidation by 18.0% (P = 0.028), and the in vitro addition of 5.5 micromol/L vitamin E synergistically extended the lag time of the 60-min sample by 52.5% (P bioavailable and act in synergy with vitamins C and E to protect LDL against oxidation in hamsters.

  1. Synergistic effect of CoPi-hole and Cu(ii)-electron cocatalysts for enhanced photocatalytic activity and photoinduced stability of Ag3PO4.

    Science.gov (United States)

    Wang, Ping; Xu, Shunqiu; Xia, Yang; Wang, Xuefei; Yu, Huogen; Yu, Jiaguo

    2017-04-19

    Recently, Ag 3 PO 4 has been demonstrated to be a new kind of material with high visible-light photocatalytic performance for the decomposition of various organic species. To further improve the photocatalytic activity of Ag 3 PO 4 , hole cocatalyst modification is a promising approach via the rapid transfer of photogenerated holes for effective oxidation reaction. In this work, Co-Pi as a hole cocatalyst was successfully modified on the Ag 3 PO 4 surface by an in situ photodeposition method (referred to as CoPi/Ag 3 PO 4 ). The results showed that the photocatalytic activity of CoPi/Ag 3 PO 4 was greatly improved compared with that of Ag 3 PO 4 . Especially, CoPi/Ag 3 PO 4 (0.3 wt%) reached the highest photocatalytic rate constant (k = 9.2 × 10 -2 min -1 ), a value larger than that of Ag 3 PO 4 (k = 1.4 × 10 -2 min -1 ) by a factor of 6.6. However, it was further found that more accumulated electrons resulted in an obvious deactivation of Ag 3 PO 4 due to the rapid transfer of holes by the Co-Pi cocatalyst, resulting in an obviously decreased photocatalytic performance during repeated tests. To enhance the performance stability of CoPi/Ag 3 PO 4 , the Cu(ii) electron-cocatalyst was further loaded onto its surface to prepare the CoPi-Cu(ii)/Ag 3 PO 4 photocatalyst. The resultant CoPi-Cu(ii)/Ag 3 PO 4 not only indicated a much higher photocatalytic activity than CoPi/Ag 3 PO 4 , but also maintained the excellent stability, which was ascribed to the synergistic effect of Co-Pi as a hole cocatalyst and Cu(ii) as an electron cocatalyst. This work may provide new insight for the development of highly stable and efficient photocatalysts for the degradation of organic pollutants.

  2. Tetramethylpyrazine potentiates arsenic trioxide activity against HL-60 cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuni; Xu, Youhua; Shen, Yali; Wang, Cuicui; Guo, Gaili; Hu, Tiantian [Key Laboratory of Developmental Diseases in Childhood, Chongqing (China); Key Laboratory of Pediatrics in Chongqing, Chongqing (China); Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing (China)

    2012-02-17

    The objective of this study was to evaluate the effects of tetramethylpyrazine (TMP) in combination with arsenic trioxide (As{sub 2}O{sub 3}) on the proliferation and differentiation of HL-60 cells. The HL-60 cells were treated with 300 µg/mL TMP, 0.5 µM As{sub 2}O{sub 3}, and 300 µg/mL TMP combined with 0.5 µM As{sub 2}O{sub 3}, respectively. The proliferative inhibition rates were determined with MTT. Differentiation was detected by the nitroblue tetrazolium (NBT) reduction test, Wright's staining and the distribution of CD11b and CD14. Flow cytometry was used to analyze cell cycle distribution. RT-PCR and Western blot assays were employed to detect the expressions of c-myc, p27, CDK2, and cyclin E1. Combination treatment had synergistic effects on the proliferative inhibition rates. The rates were increased gradually after the combination treatment, much higher than those treated with the corresponding concentration of As{sub 2}O{sub 3} alone. The cells exhibited characteristics of mature granulocytes and a higher NBT-reducing ability, being a 2.6-fold increase in the rate of NBT-positive ratio of HL-60 cells within the As{sub 2}O{sub 3} treatment versus almost a 13-fold increase in the TMP + As{sub 2}O{sub 3} group. Cells treated with both TMP and As{sub 2}O{sub 3} expressed far more CD11b antigens, almost 2-fold compared with the control group. Small doses of TMP potentiate As{sub 2}O{sub 3}-induced differentiation of HL-60 cells, possibly by regulating the expression and activity of G0/G1 phase-arresting molecules. Combination treatment of TMP with As{sub 2}O{sub 3} has significant synergistic effects on the proliferative inhibition of HL-60 cells.

  3. Nanotechnology for Multimodal Synergistic Cancer Therapy.

    Science.gov (United States)

    Fan, Wenpei; Yung, Bryant; Huang, Peng; Chen, Xiaoyuan

    2017-11-22

    The complexity, diversity, and heterogeneity of tumors seriously undermine the therapeutic potential of treatment. Therefore, the current trend in clinical research has gradually shifted from a focus on monotherapy to combination therapy for enhanced treatment efficacy. More importantly, the cooperative enhancement interactions between several types of monotherapy contribute to the naissance of multimodal synergistic therapy, which results in remarkable superadditive (namely "1 + 1 > 2") effects, stronger than any single therapy or their theoretical combination. In this review, state-of-the-art studies concerning recent advances in nanotechnology-mediated multimodal synergistic therapy will be systematically discussed, with an emphasis on the construction of multifunctional nanomaterials for realizing bimodal and trimodal synergistic therapy as well as the intensive exploration of the underlying synergistic mechanisms for explaining the significant improvements in synergistic therapeutic outcome. Furthermore, the featured applications of multimodal synergistic therapy in overcoming tumor multidrug resistance, hypoxia, and metastasis will also be discussed in detail, which may provide new ways for the efficient regression and even elimination of drug resistant, hypoxic solid, or distant metastatic tumors. Finally, some design tips for multifunctional nanomaterials and an outlook on the future development of multimodal synergistic therapy will be provided, highlighting key scientific issues and technical challenges and requiring remediation to accelerate clinical translation.

  4. Hydrazine-based synergistic Ti(III)/N doping of surfactant-templated TiO{sub 2} thin films for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Syed Z.; Rankin, Stephen E., E-mail: srankin@engr.uky.edu

    2016-10-01

    This study reports the preparation of titanium (Ti{sup 3+}) and nitrogen co-doped cubic ordered mesoporous TiO{sub 2} thin films using N{sub 2}H{sub 4} treatment. The resulting co-doped TiO{sub 2} (Ti{sup 3+}-N-TiO{sub 2}) thin films show significant enhancements in visible light absorption and photocatalytic activity. Cubic ordered mesoporous TiO{sub 2} thin films were prepared via a sol-gel method with Pluronic F127 as the pore template. After brief calcination, the TiO{sub 2} films were dipped into hydrazine hydrate which acts both as a nitrogen source and as a reducing agent, followed by heating at low temperature (90 °C). The hydrazine treatment period was varied from 5 to 20 h to obtain different degrees of reduction and nitrogen doping. X-ray photoelectron spectroscopy (XPS) analyses and UV–vis absorbance spectra of Ti{sup 3+}-N-TiO{sub 2} films indicate that the incorporated N atoms and Ti{sup 3+} reduce the band gap of TiO{sub 2} and thus enhance the absorption of visible light. The corresponding visible light photocatalytic activity of Ti{sup 3+}-N-TiO{sub 2} films was determined from the photocatalytic degradation of methylene blue under visible light illumination (at 455 nm). The Ti{sup 3+}-N-TiO{sub 2} films prepared with 10 h of treatment show the optimum photocatalytic activity, with a pseudo-first order rate coefficient of 0.12 h{sup −1}, which is 3 times greater than that of undoped TiO{sub 2} films. Calcination temperature and time were varied prior to hydrazine treatment to confirm that a brief calcination at low temperature (10 min at 350 °C) gave the best photochemical activity. In photoelectrochemical water oxidation using a 455 nm LED, the Ti{sup 3+}-N-TiO{sub 2} films prepared with 10 h of N{sub 2}H{sub 4} treatment show about 4 times the photocurrent compared to undoped TiO{sub 2} films. The present study suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti{sup 3+} into the

  5. Lactobionic acid enhances the synergistic effect of nisin and thymol against Listeria monocytogenes Scott A in tryptic soy broth and milk.

    Science.gov (United States)

    Chen, Huaiqiong; Zhong, Qixin

    2017-11-02

    Listeria monocytogenes is a Gram-positive opportunistic human pathogen and it remains a significant cause of foodborne illnesses. A variety of natural and synthetic compounds have been studied to inhibit the growth of L. monocytogenes in foods. Antimicrobial combinations with synergistic antilisterial properties can reduce the dose of each antimicrobial, which can be further enhanced by chelating compounds. Therefore, the objective of this study was to determine antilisterial properties of binary or ternary combinations of lactobionic acid (LBA), nisin, and thymol in tryptic soy broth (TSB), 2% reduced-fat milk, and whole milk. The results showed that the minimum inhibitory concentration (MIC) of nisin, thymol and LBA was 125IU/mL, 0.25mg/mL, and 10mg/mL, respectively. The ternary combination was the most effective in reducing MICs of antimicrobials, with the MIC of nisin, thymol, and LBA being 31.25IU/mL, 0.0625mg/mL, and 1.25mg/mL, respectively. In TSB with 0.6% yeast extract, L. monocytogenes grew in individual or binary antimicrobial treatments of 31.25IU/mL nisin, 0.0625mg/mL thymol, and 1.25mg/mL LBA within 24h at 32°C, while it was completely inhibited by the ternary combination. In 2% reduced-fat milk at 21°C, the ternary combination of nisin, thymol, and LBA at respective concentrations of 250IU/mL, 2mg/mL, and 10mg/mL completely inhibited the bacterium to below the detection limit in 72h while >2log (CFU/mL) bacteria was still detected in all the binary combinations after 120h. In whole milk, the combination of 500IU/mL nisin, 2mg/mL thymol, and 10mg/mL LBA reduced bacteria to around 2log (CFU/mL) in 4h at 21°C, and no bacterial recovery was observed after 5 d. This study suggested the potential of the ternary combination of nisin, thymol and LBA for food preservation. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mineral trioxide aggregate induces osteoblastogenesis via Atf6

    Directory of Open Access Journals (Sweden)

    Toyonobu Maeda

    2015-06-01

    Full Text Available Mineral trioxide aggregate (MTA has been recommended for various uses in endodontics. To understand the effects of MTA on alveolar bone, we examined whether MTA induces osteoblastic differentiation using MC3T3-E1 cells. MTA enhanced mineralization concomitant with alkaline phosphatase activity in a dose- and time-dependent manner. MTA increased production of collagens (Type I and Type III and matrix metalloproteinases (MMP-9 and MMP-13, suggesting that MTA affects bone matrix remodeling. MTA also induced Bglap (osteocalcin but not Bmp2 (bone morphogenetic protein-2 mRNA expression. We observed induction of Atf6 (activating transcription factor 6, an endoplasmic reticulum (ER stress response transcription factor mRNA expression and activation of Atf6 by MTA treatment. Forced expression of p50Atf6 (active form of Atf6 markedly enhanced Bglap mRNA expression. Chromatin immunoprecipitation assay was performed to investigate the increase in p50Atf6 binding to the Bglap promoter region by MTA treatment. Furthermore, knockdown of Atf6 gene expression by introduction of Tet-on Atf6 shRNA expression vector abrogated MTA-induced mineralization. These results suggest that MTA induces in vitro osteoblastogenesis through the Atf6–osteocalcin axis as ER stress signaling. Therefore, MTA in endodontic treatment may affect alveolar bone healing in the resorbed region caused by pulpal infection.

  7. Evaluation and Comparison of Mineral Trioxide Aggregate and ...

    African Journals Online (AJOL)

    2018-01-30

    Binimelis J, About I, Mercade M. Short‑term treatment outcome of pulpotomies in primary molars using mineral trioxide aggregate and Biodentine: A randomized clinical trial. Clin Oral. Investig 2015, Nov 18. Epub ahead of print. 25.

  8. Type I collagen synergistically enhances PDGF-induced smooth muscle cell proliferation through pp60src-dependent crosstalk between the α2β1 integrin and PDGFβ receptor

    International Nuclear Information System (INIS)

    Hollenbeck, Scott T.; Itoh, Hiroyuki; Louie, Otway; Faries, Peter L.; Liu Bo; Kent, K. Craig

    2004-01-01

    Smooth muscle cells (SMCs) are exposed to both platelet-derived growth factor (PDGF) and type I collagen (CNI) at the time of arterial injury. In these studies we explore the individual and combined effects of these agonists on human saphenous vein SMC proliferation. PDGF-BB produced a 5.5-fold increase in SMC DNA synthesis whereas CNI stimulated DNA synthesis to a much lesser extent (1.6-fold increase). Alternatively, we observed an 8.3-fold increase in DNA synthesis when SMCs were co-incubated with CNI and PDGF-BB. Furthermore, stimulation of SMCs with PDGF-BB produced a significant increase in ERK-2 activity whereas CNI alone had no effect. Co-incubation of SMCs with PDGF-BB and CNI resulted in ERK-2 activity that was markedly greater than that produced by PDGF-BB alone. In a similar fashion, PDGF-BB induced phosphorylation of the PDGF receptor β (PDGFRβ) and CNI did not, whereas concurrent agonist stimulation produced a synergistic increase in receptor activity. Blocking antibodies to the α2 and β1 subunits eliminated this synergistic interaction, implicating the α2β1 integrin as the mediator of this effect. Immunoprecipitation of the α2β1 integrin in unstimulated SMCs followed by immunoblotting for the PDGFRβ as well as Src family members, pp60 src , Fyn, Lyn, and Yes demonstrated coassociation of α2β1 and the PDGFRβ as well as pp60 src . Incubation of cells with CNI and/or PDGF-BB did not change the degree of association. Finally, inhibition of Src activity with SU6656 eliminated the synergistic effect of CNI on PDGF-induced PDGFRβ phosphorylation suggesting an important role for pp60 src in the observed receptor crosstalk. Together, these data demonstrate that CNI synergistically enhances PDGF-induced SMC proliferation through Src-dependent crosstalk between the α2β1 integrin and the PDGFRβ

  9. The chemical composition of mineral trioxide aggregate

    Science.gov (United States)

    Camilleri, Josette

    2008-01-01

    Mineral trioxide aggregate (MTA) is composed of Portland cement, with 4:1 addition of bismuth oxide added so that the material can be detected on a radiograph. The cement is made up of calcium, silicon and aluminium. The main constituent phases are tricalcium and dicalcium silicate and tricalcium aluminate. There are two commercial forms of MTA, namely the grey and the white. The difference between the grey and the white materials is the presence of iron in the grey material, which makes up the phase tetracalcium alumino-ferrite. This phase is absent in white MTA. Hydration of MTA occurs in two stages. The initial reaction between tricalcium aluminate and water in the presence of calcium sulphate results in the production of ettringite. Tricalcium and dicalcium silicate react with water to produce calcium silicate hydrate and calcium hydroxide, which is leached out of the cement with time. PMID:20351970

  10. Can MTA be: Miracle trioxide aggregate?

    Science.gov (United States)

    Naik, Reshma M; Pudakalkatti, Pushpa S; Hattarki, Sanjeevini A

    2014-01-01

    Mineral trioxide aggregate (MTA) has been used for more than 10 years in the dental community and has often been thought of as a material of choice for the endodontist. The dental pulp is closely related to periodontal tissues through apical foramina, accessory canals, and dentinal tubules. Due to this interrelationship, pulpal diseases may influence periodontal health and periodontal infections may affect pulpal integrity. It is estimated that pulpal and periodontal problems are responsible for more than 50% of tooth mortality. Thus, these associations recommend an interdisciplinary approach. MTA appears to exhibit significant results even in periodontal procedures as it is the first restorative material that consistently allows for over-growth of cementum and may facilitate periodontal tissue regeneration. Thus, in the present review, an attempt is made to discuss the clinical applications of MTA as an interdisciplinary approach. PMID:24744536

  11. Large-Batch Reduction of Molybdenum Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kiggans, Jr, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menchhofer, Paul A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Unconverted, isotopically-enriched molybdenum metal must be recovered from the spent radiopharmaceutical solution used in NorthStar’s Technetium-99m generator and reused. The recycle process begins by recovering the metal from the aqueous potassium molybdate (K2MoO4) solutions as molybdenum trioxide (MoO3) employing a process developed at Argonne National Laboratory. The MoO3 powder is subsequently reduced to molybdenum metal powder which can be blended with new powder and further processed into a flowable form to be used to produce target disks for irradiation. The molybdenum oxide reduction process has been examined and scaled to produce kilogram quantities of metal powder suitable for processing into a useable form employing spray drying or similar technique and ultimately used for target fabrication.

  12. Combination of Mineral Trioxide Aggregate and Platelet-rich Fibrin Promotes the Odontoblastic Differentiation and Mineralization of Human Dental Pulp Cells via BMP/Smad Signaling Pathway.

    Science.gov (United States)

    Woo, Su-Mi; Kim, Won-Jae; Lim, Hae-Soon; Choi, Nam-Ki; Kim, Sun-Hun; Kim, Seon-Mi; Jung, Ji-Yeon

    2016-01-01

    Recent reports have shown that the combined use of platelet-rich fibrin (PRF), an autologous fibrin matrix, and mineral trioxide aggregate (MTA) as root filling material is beneficial for the endodontic management of an open apex. However, the potential of the combination of MTA and PRF as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro has not yet been studied. The purpose of this study was to evaluate the effect of the combination of MTA and PRF on odontoblastic maturation in HDPCs. HDPCs extracted from third molars were directly cultured with MTA and PRF extract (PRFe). Odontoblastic differentiation of HDPCs was evaluated by measuring the alkaline phosphatase (ALP) activity, and the expression of odontogenesis-related genes was detected using reverse-transcription polymerase chain reaction or Western blot. Mineralization formation was assessed by alizarin red staining. HDPCs treated with MTA and PRFe significantly up-regulated the expression of dentin sialoprotein and dentin matrix protein-1 and enhanced ALP activity and mineralization compared with those with MTA or PRFe treatment alone. In addition, the combination of MTA and PRFe induced the activation of bone morphogenic proteins (BMP)/Smad, whereas LDN193189, the bone morphogenic protein inhibitor, attenuated dentin sialophosphoprotein and dentin matrix protein-1 expression, ALP activity, and mineralization enhanced by MTA and PRFe treatment. This study shows that the combination of MTA and PRF has a synergistic effect on the stimulation of odontoblastic differentiation of HDPCs via the modulation of the BMP/Smad signaling pathway. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Pulp-Capping with Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Peycheva Kalina

    2015-11-01

    Full Text Available There are two considerations for direct pulp capping - accidental mechanical pulp exposure and exposure caused by caries. Mineral trioxide aggregate (MTA was used as pulp-capping material to preserve the vitality of the pulpal tissues. Follow-up examinations revealed that treatment was successful in preserving pulpal vitality and continued development of the tooth. On the basis of available information, it appears that MTA is the material of choice for some clinical applications. Material and methods: Cases 18 - 8 teeth with grey MTA, 10 teeth with white MTA; diagnose: Pulpitis chronica ulcerosa, Electro pulpal test (EOD - 30-35 μA, pre-clinical X-ray - without changes in the structures, follow ups for 4 years. Successful treatments: without clinical symptoms and changes in the X-rays: 5 teeth with grey MTA, 8 teeth with white MTA for period of 4 years. Unsuccessful treatments: Clinical symptoms and sometimes changes in the X-ray: 3 with grey MTA, 2 with white MTA. MTA is an appropriate material for pulp-capping and follow-up examinations revealed that the treatment was successful in preserving pulpal vitality.

  14. Mineral trioxide aggregate in paediatric dentistry.

    Science.gov (United States)

    Srinivasan, Vidya; Waterhouse, Paula; Whitworth, John

    2009-01-01

    The aim of this study was to present a review of the reported literature on: (i) the physical and chemical properties; and (ii) clinical applications of mineral trioxide aggregate (MTA) in the practice of paediatric dentistry. Electronic literature search of scientific papers from January 1993 to June 2008 was carried out on the MEDLINE, Embase, Entrez Pubmed, and Scopus databases using specific key words. The search yielded 448 papers, out of which 100 were identified as conforming to the applied criteria. These papers formed the basis of the review and the clinical scenarios presented which demonstrate the application of MTA in the practice of paediatric dentistry. Paediatric dentists have successfully employed MTA in a variety of endodontic/restorative applications since the late 1990s. Clinical impressions have generally been favourable and support the findings of laboratory and animal-based investigations. Very few clinical studies have been reported so far in humans, and although these have been positive, the body of research is currently insufficient to enable a meaningful systematic review and meta-analysis.

  15. Globins Scavenge Sulfur Trioxide Anion Radical*

    Science.gov (United States)

    Gardner, Paul R.; Gardner, Daniel P.; Gardner, Alexander P.

    2015-01-01

    Ferrous myoglobin was oxidized by sulfur trioxide anion radical (STAR) during the free radical chain oxidation of sulfite. Oxidation was inhibited by the STAR scavenger GSH and by the heme ligand CO. Bimolecular rate constants for the reaction of STAR with several ferrous globins and biomolecules were determined by kinetic competition. Reaction rate constants for myoglobin, hemoglobin, neuroglobin, and flavohemoglobin are large at 38, 120, 2,600, and ≥ 7,500 × 106 m−1 s−1, respectively, and correlate with redox potentials. Measured rate constants for O2, GSH, ascorbate, and NAD(P)H are also large at ∼100, 10, 130, and 30 × 106 m−1 s−1, respectively, but nevertheless allow for favorable competition by globins and a capacity for STAR scavenging in vivo. Saccharomyces cerevisiae lacking sulfite oxidase and deleted of flavohemoglobin showed an O2-dependent growth impairment with nonfermentable substrates that was exacerbated by sulfide, a precursor to mitochondrial sulfite formation. Higher O2 exposures inactivated the superoxide-sensitive mitochondrial aconitase in cells, and hypoxia elicited both aconitase and NADP+-isocitrate dehydrogenase activity losses. Roles for STAR-derived peroxysulfate radical, superoxide radical, and sulfo-NAD(P) in the mechanism of STAR toxicity and flavohemoglobin protection in yeast are suggested. PMID:26381408

  16. Mussel byssus-inspired engineering of synergistic nanointerfacial interactions as sacrificial bonds into carbon nanotube-reinforced soy protein/nanofibrillated cellulose nanocomposites: Versatile mechanical enhancement

    Science.gov (United States)

    Wang, Zhong; Zhao, Shujun; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang

    2018-03-01

    Achieving flexible and stretchable biobased nanocomposites combining high strength and toughness is still a very challenging endeavor. Herein, we described a novel and versatile biomimetic design for tough and high-performance TEMPO-oxidized nanofibrillated cellulose (TONFC)/soy protein isolate (SPI) nanocomposites, which are triggered by catechol-mimetic carbon nanotubes (PCT) and iron ions (Fe(III)) to yield a strong yet sacrificial metal-ligand motifs into a chemically cross-linked architecture network. Taking advantage of self-polymerization of catechol-inspired natural tannic acid, PCT nanohybrid was prepared through adhering reactive poly-(tannic acid) (PTA) layer onto surfaces of carbon nanotubes via a simple dip-coating process. The high-functionality PCT induced the formation of the metal-ligand bonds through the ionic coordinates between the catechol groups in PCT and -COOH groups of TONFC skeleton with Fe(III) mediation that mimicked mussel byssus. Upon stretching, this tailored TONFC-Fe(III)-catechol coordination bonds served as sacrificial bonds that preferentially detach prior to the covalent network, which gave rise to efficient energy dissipation that the nanocomposites integrity was survived. As a result of these kind of synergistic interfacial interactions (sacrificial and covalent bonding), the optimal nanocomposite films processed high tensile strength (ca. 11.5 MPa), large elongation (ca. 79.3%), remarkable toughness (ca. 6.9 MJ m-3), and favorable water resistance as well as electrical conductivity. The proposed bioinspired strategy for designing plant protein-based materials enables control over their mechanical performance through the synergistic engineering of sacrificial bonds into the composite interface.

  17. Insight into synergistically enhanced adsorption and visible light photocatalytic performance of Z-scheme heterojunction of SrTiO{sub 3}(La,Cr)-decorated WO{sub 3} nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin; Jiang, Junzhe; Jia, Yushuai, E-mail: ysjia@jxnu.edu.cn; Qiu, Jinmin; Xia, Tonglin; Zhang, Yuhong; Li, Yuqin; Chen, Xiangshu, E-mail: cxs66cn@jxnu.edu.cn

    2017-08-01

    Highlights: • Fabrication of SrTiO{sub 3}(La,Cr)/WO{sub 3} heterojunction with well-defined morphology. • Synergistic effect of adsorption and photocatalytic elimination for methylene blue. • Adsorption kinetics and isotherm were investigated in detail. • Negative zeta potential and large surface area result in high adsorption capacity. • A novel Z-scheme mechanism for the enhanced photocatalytic activity is proposed. - Abstract: The efficient treatment of dye wastewater has been a hot topic of environment field. The integration of adsorption and photocatalytic degradation via fabrication of bi-component heterojunction photocatalyst is considered as a facile and effective strategy to enhance the dye elimination efficiency. In this report, a Z-scheme heterojunction material, SrTiO{sub 3}(La,Cr)/WO{sub 3} with bifunction of adsorption and photocatalysis was successfully synthesized for efficient removal of methylene blue (MB) under visible light irradiation. The morphology and microstructure characterization demonstrates that the SrTiO{sub 3}(La,Cr) nanoparticles are uniformly decorated on the WO{sub 3} nanosheets, forming an intimate heterojunction interface. MB degradation results indicate that the removal efficiency by the synergistic adsorption-photocatalysis process is greatly improved compared to pure WO{sub 3} and SrTiO{sub 3}(La,Cr) with the adsorption and photocatalytic activity closely related to the composition of the material. The possible mechanism for the enhanced photocatalytic activity could be ascribed to the formation of a Z-scheme heterojunction system based on active species trapping experiments. Furthermore, the investigations of adsorption kinetics and isotherm show that the adsorption process follows pseudo-second-order kinetic model and Langmuir isotherm, respectively. Due to the synergistic advantages of negative zeta potential, large surface area and accelerated separation of photogenerated carriers driven by Z

  18. Ag/Bi2MoO6-x with enhanced visible-light-responsive photocatalytic activities via the synergistic effect of surface oxygen vacancies and surface plasmon

    Science.gov (United States)

    Wang, Danjun; Shen, Huidong; Guo, Li; Wang, Chan; Fu, Feng; Liang, Yucang

    2018-04-01

    In this study, a heterostructured Ag/Bi2MoO6-x photocatalyst was rationally designed and successfully fabricated via the deposition of plasmonic silver nanoparticles onto the surface of Bi2MoO6 with surface oxygen vacancy (denoted as Bi2MoO6-x). Bi2MoO6-x (Abbr. BMO6-x was first synthesized via a solvothermal synthesis and calcination process. The plasmonic silver nanoparticles were then loaded onto the surface of BMO6-x using a simple photoreduction process to form Ag/BMO6-x composite. Surface oxygen vacancies (SOVs) in BMO6-x were confirmed by electron paramagnetic resonance (EPR) spectrum. The structures of BMO6-xand Ag/BiMoO6-x) were characterized using high-resolution transmission electron microscopy, powder X-ray diffraction, and X-ray photoelectron spectroscopy. Under visible light irradiation, sample Ag/BMO6-x exhibits a highest visible-light-responsive photocatalytic performance compared to those of pure-Bi2MoO6 (BMO), BMO6-x and Ag/BMO for the degradation of rhodamine B (RhB), which is attributed predominantly to the synergistic effect of SOVs and Ag surface plasmonic resonance (SPR) on the surface of Bi2MoO6-x leading to the efficient separation and migration of photogenerated electrons/holes and hence broadening light responsive region. The significant improvement of the migration and separation of photogenerated electrons/holes in the Ag/BMO6-x was evidenced by photoluminescence spectra, time-resolved fluorescence decay, photocurrent, and electrochemical impedance spectrum. The ESR with spin-trap technique and reactive species trapping experiments confirm that the mainly active species O2- and h+ are playing key roles in the RhB photodegradation process over Ag/BMO6-x. This study not only provides an understandable synergistic effect of SOVs and SPR Ag but also pioneers a new approach for fabricating a series of highly catalytically active metal-semiconductor photocatalysts with surface atom defects.

  19. Hydration mechanisms of mineral trioxide aggregate.

    Science.gov (United States)

    Camilleri, J

    2007-06-01

    To report the hydration mechanism of white mineral trioxide aggregate (White MTA, Dentsply, Tulsa Dental Products, Tulsa, OK, USA). The chemical constitution of white MTA was studied by viewing the powder in polished sections under the scanning electron microscope (SEM). The hydration of both white MTA and white Portland cement (PC) was studied by characterizing cement hydrates viewed under the SEM, plotting atomic ratios, performing quantitative energy dispersive analyses with X-ray (EDAX) and by calculation of the amount of anhydrous clinker minerals using the Bogue calculation. Un-hydrated MTA was composed of impure tri-calcium and di-calcium silicate and bismuth oxide. The aluminate phase was scarce. On hydration the white PC produced a dense structure made up of calcium silicate hydrate, calcium hydroxide, monosulphate and ettringite as the main hydration products. The un-reacted cement grain was coated with a layer of hydrated cement. In contrast MTA produced a porous structure on hydration. Levels of ettringite and monosulphate were low. Bismuth oxide was present as un-reacted powder but also incorporated with the calcium silicate hydrate. White MTA was deficient in alumina suggesting that the material was not prepared in a rotary kiln. On hydration this affected the production of ettringite and monosulphate usually formed on hydration of PC. The bismuth affected the hydration mechanism of MTA; it formed part of the structure of C-S-H and also affected the precipitation of calcium hydroxide in the hydrated paste. The microstructure of hydrated MTA would likely be weaker when compared with that of PC.

  20. Synergistically Enhanced Polysulfide Chemisorption Using a Flexible Hybrid Separator with N and S Dual-Doped Mesoporous Carbon Coating for Advanced Lithium-Sulfur Batteries.

    Science.gov (United States)

    Balach, Juan; Singh, Harish K; Gomoll, Selina; Jaumann, Tony; Klose, Markus; Oswald, Steffen; Richter, Manuel; Eckert, Jürgen; Giebeler, Lars

    2016-06-15

    Because of the outstanding high theoretical specific energy density of 2600 Wh kg(-1), the lithium-sulfur (Li-S) battery is regarded as a promising candidate for post lithium-ion battery systems eligible to meet the forthcoming market requirements. However, its commercialization on large scale is thwarted by fast capacity fading caused by the Achilles' heel of Li-S systems: the polysulfide shuttle. Here, we merge the physical features of carbon-coated separators and the unique chemical properties of N and S codoped mesoporous carbon to create a functional hybrid separator with superior polysulfide affinity and electrochemical benefits. DFT calculations revealed that carbon materials with N and S codoping possess a strong binding energy to high-order polysulfide species, which is essential to keep the active material in the cathode side. As a result of the synergistic effect of N, S dual-doping, an advanced Li-S cell with high specific capacity and ultralow capacity degradation of 0.041% per cycle is achieved. Pushing our simple-designed and scalable cathode to a highly increased sulfur loading of 5.4 mg cm(-2), the Li-S cell with the functional hybrid separator can deliver a remarkable areal capacity of 5.9 mAh cm(-2), which is highly favorable for practical applications.

  1. Synergistic Effect of Polypyrrole-Intercalated Graphene for Enhanced Corrosion Protection of Aqueous Coating in 3.5% NaCl Solution.

    Science.gov (United States)

    Qiu, Shihui; Li, Wei; Zheng, Wenru; Zhao, Haichao; Wang, Liping

    2017-10-04

    Dispersion of graphene in water and its incorporation into waterborne resin have been rarely researched and hardly achieved owing to its hydrophobicity. Furthermore, it has largely been reported that graphene with impermeability contributed to the improved anticorrosion property. Here, we show that highly concentrated graphene aqueous solution up to 5 mg/mL can be obtained by synthesizing hydrophilic polypyrrole (PPy) nanocolloids as intercalators and ultrasonic vibration. On the basis of π-π interaction between PPy and graphene, stacked graphene sheets are exfoliated to the thickness of three to five layers without increasing defects. The corrosion performance of coatings without and with PPy and graphene is obtained by potential and impedance measurements, Tafel curves, and fitted pore resistance by immersing in a 3.5 wt % NaCl solution. It turns out that composite coating with 0.5 wt % graphene additive exhibits superior anticorrosive ability. The mechanism of intercalated graphene-based coating is interpreted as the synergistic protection of impermeable graphene sheets and self-healing PPy and proved by the identification of corrosion products and the scanning vibrating electrode technique.

  2. Enhanced photocatalytic efficiency of C3N4/BiFeO3heterojunctions: the synergistic effects of band alignment and ferroelectricity.

    Science.gov (United States)

    Deng, Xian-Zhu; Song, Chuang; Tong, Yin-Lin; Yuan, Guoliang; Gao, Feng; Liu, Dan-Qing; Zhang, Shan-Tao

    2018-01-31

    As one of the most promising photocatalysts, graphitic carbon nitride (g-C 3 N 4 ) shows a visible light response and great chemical stability. However, its relatively low photocatalytic efficiency is a major obstacle to actual applications. Here an effective and feasible method to dramatically increase the visible light photocatalytic efficiency by forming C 3 N 4 /BiFeO 3 ferroelectric heterojunctions is reported, wherein the band alignment and piezo-/ferroelectricity have synergistic positive effects in accelerating the separation of the photogenerated carriers. At the optimum composition of 10 wt% BiFeO 3 , the heterojunction shows 1.4 times improved photocatalytic efficiency than that of the pure C 3 N 4 . Most importantly, mechanical pressing and electrical poling can also improve the photocatalytic efficiencies by 1.3 times and 1.8 times, respectively. The optimized photocatalytic efficiency is even comparable with that of some noble metal based compounds. These results not only prove the improved photocatalytic activity of the C 3 N 4 -ferroelectric heterojunctions, but also provide a new approach for designing high-performance photocatalysts by taking advantage of ferroelectricity.

  3. UVA, UVB and UVC Light Enhances the Biosynthesis of Phenolic Antioxidants in Fresh-Cut Carrot through a Synergistic Effect with Wounding

    Directory of Open Access Journals (Sweden)

    Bernadeth B. Surjadinata

    2017-04-01

    Full Text Available Previously, we found that phenolic content and antioxidant capacity (AOX in carrots increased with wounding intensity. It was also reported that UV radiation may trigger the phenylpropanoid metabolism in plant tissues. Here, we determined the combined effect of wounding intensity and UV radiation on phenolic compounds, AOX, and the phenylalanine ammonia-lyase (PAL activity of carrots. Accordingly, phenolic content, AOX, and PAL activity increased in cut carrots with the duration of UVC radiation, whereas whole carrots showed no increase. Carrot pies showed a higher increase compared to slices and shreds. Phenolics, AOX, and PAL activity also increased in cut carrots exposed to UVA or UVB. The major phenolics were chlorogenic acid and its isomers, ferulic acid, and isocoumarin. The type of UV radiation affected phenolic profiles. Chlorogenic acid was induced by all UV radiations but mostly by UVB and UVC, ferulic acid was induced by all UV lights to comparable levels, while isocoumarin and 4,5-diCQA was induced mainly by UVB and UVC compared to UVA. In general, total phenolics correlated linearly with AOX for all treatments. A reactive oxygen species (ROS mediated hypothetical mechanism explaining the synergistic effect of wounding and different UV radiation stresses on phenolics accumulation in plants is herein proposed.

  4. Antimony trioxide-induced apoptosis is dependent on SEK1/JNK signaling.

    Science.gov (United States)

    Mann, Koren K; Davison, Kelly; Colombo, Myrian; Colosimo, April L; Diaz, Zuanel; Padovani, Alessandra M S; Guo, Qi; Scrivens, P James; Gao, Wenli; Mader, Sylvie; Miller, Wilson H

    2006-01-05

    Very little is known concerning the toxicity of antimony, despite its commercial use as a flame retardant and medical use as a treatment for parasitic infections. Our previous studies show that antimony trioxide (Sb(2)O(3)) induces growth inhibition in patient-derived acute promyelocytic leukemia (APL) cell lines, a disease in which a related metal, arsenic trioxide (As(2)O(3)), is used clinically. However, signaling pathways initiated by Sb(2)O(3) treatment remain undefined. Here, we show that Sb(2)O(3) treatment of APL cells is associated with increased apoptosis as well as differentiation markers. Sb(2)O(3)-induced reactive oxygen species (ROS) correlated with increased apoptosis. In addition, when we decreased the buffering capacity of the cell by depleting glutathione, ROS production and apoptosis was enhanced. Arsenic-resistant APL cells with increased glutathione levels exhibited increased cross-resistance to Sb(2)O(3). Based on studies implicating c-jun kinase (JNK) in the mediation of the response to As(2)O(3), we investigated the role for JNK in Sb(2)O(3)-induced apoptosis. Sb(2)O(3) activates JNK and its downstream target, AP-1. In fibroblasts with a genetic deletion in SEK1, an upstream regulator of JNK, Sb(2)O(3)-induced growth inhibition as well as JNK activation was decreased. These data suggest roles for ROS and the SEK1/JNK pathway in the cytotoxicity associated with Sb(2)O(3) exposure.

  5. Effect of mineral trioxide aggregate and formocresol pulpotomy on ...

    African Journals Online (AJOL)

    Objective: The objective was to evaluate and compare the clinical and radiographic response of FC and white mineral trioxide aggregate (MTA) as pulpotomy materials on primary molars. Materials and Methods: Fifty primary molars, with deep carious lesion that exposed a vital but asymptomatic pulp, in 37 children aged ...

  6. Assessment of the Biocompatibility of Mineral Trioxide Aggregate ...

    African Journals Online (AJOL)

    Objective: The objective of this study was to evaluate the tissue inflammation caused by three endodontic repair materials. Materials and Methods: The materials included micro mega‑mineral trioxide aggregate (MM‑MTA), bioaggregate (BA), and biodentine (BD), which were implanted into the subcutaneous tissue of rats.

  7. Comparison of apical sealing ability of resected mineral trioxide ...

    African Journals Online (AJOL)

    In the case of limited access in endodontic surgery, an alternative approach includes obturation of the canal with mineral trioxide aggregate (MTA) prior to surgery. Following the setting of MTA, endodontic surgery is carried out by resecting the root-end and exposing the set MTA without cavity preparation. This may also be ...

  8. Evaluation and Comparison of Mineral Trioxide Aggregate and ...

    African Journals Online (AJOL)

    Objectives: Pulpotomy is the common therapy for cariously exposed pulps in symptom-ree primary molar teeth. For many years, researchers have searched for an ideal material that allows regeneration of the residual pulp. The purpose of this study was to evaluate the efficacy of mineral trioxide aggregate (MTA), Biodentine ...

  9. Synergistic effect of water content and composite conditioner of Fenton's reagent combined with red mud on the enhanced hydrogen production from sludge pyrolysis.

    Science.gov (United States)

    Yang, Jiakuan; Song, Jian; Liang, Sha; Guan, Ruonan; Shi, Yafei; Yu, Wenbo; Zhu, Suiyi; Fan, Wei; Hou, Huijie; Hu, Jingping; Deng, Huali; Xiao, Bo

    2017-10-15

    This study investigated the synergistic effect of water content and a composite conditioner of Fenton's reagent combined with red mud (Fenton-RM) on the pyrolytic products (fuel gas, tar, and solid char) of deep-dewatered sludge. The catalytic effect of metal oxides in Fenton-RM could be promoted by the presence of water during sludge pyrolysis, showing higher gas yield with increased water content. Maximum gas outputs of the deep-dewatered sludge conditioned with Fenton-RM (S-Fenton-RM) and the conventional dewatered sludge conditioned with polyacrylamide (S-PAM), both appeared at 900 °C with a water content of 65 wt%, and were 0.257 and 0.189 L/g dry solid (DS), respectively. At the same temperature and with the same water content, the hydrogen (H 2 ) yields of the S-Fenton-RM samples were always higher than those of the S-PAM samples. At 900 °C, the maximum H 2 yield of the S-Fenton-RM samples was 0.102 L/g DS, which was 85.5% higher than that of the S-PAM samples. The results indicated that water in the wet sludge provided the steam atmosphere for pyrolysis, and the water vapor then involved in secondary cracking reformation of tar and char gasification reactions, which would be catalyzed by the presence of metal oxides in the Fenton-RM conditioner, thus increasing the yield of fuel gas, especially hydrogen. The H 2 production cost from the S-Fenton-RM system is less than that from the S-PAM system. The results suggest that pyrolysis of the wet deep-dewatered sludge conditioned with Fenton-RM is an economical and promising alternative for sewage sludge dewatering and disposal/reuse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enhancement of nitrogen and phosphorus removal in landscape water using polymeric ferric sulfate as well as the synergistic effect of four kinds of natural rocks as promoter.

    Science.gov (United States)

    Huang, Xuejiao; Feng, Mi; Ni, Chengsheng; Xie, Deti; Li, Zhenlun

    2018-02-23

    Eutrophication in lakes and rivers caused by the nitrogen (N) and phosphorus (P) is urgent since the accumulation of N and P can possibly cause the algal blooms and devastation to the water ecological system. The removal of N and P in the landscape water would be an efficient way to reduce the enrichment of nutrition before they reach the large water system. The N and P removal efficiency of PFS as well as the synergistic effect of natural rocks (four types of purple parent rock (J 3 p, J 2 s, T 1 f, and J 3 s)) as promoter was examined under laboratory conditions. The results indicated that TN and TP removal efficiency of the composite coagulant was significantly better than that of PFS or purple parent rock alone and J 3 p + PFS (combination of PFS and J 3 p purple parent rock) showed the best TN and TP removal efficiency. TN and TP removal efficiency of 53.53 and 86.48%, respectively, were achieved with coagulant dosage of 6 g L -1 J 3 p and 30 mg L -1 PFS, water temperature of 30 °C, and wastewater initial pH of 9. In addition, Fourier transformed infrared (FTIR) spectrophotometer, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive analysis (EDX), and the water quality index analysis revealed that the treatment of TN and TP by using J 3 p + PFS was taking advantage of the flocculation function of PFS and the adsorption function of PFS and J 3 p. In which, the flocculation mechanism was mainly charge neutralization; adsorption mechanism was mainly physical and chemical adsorption.

  11. Enhanced 3-sulfanylhexan-1-ol production in sequential mixed fermentation with Torulaspora delbrueckii/Saccharomyces cerevisiae reveals a situation of synergistic interaction between two industrial strains

    Directory of Open Access Journals (Sweden)

    Philippe eRenault

    2016-03-01

    Full Text Available The aim of this work was to study the volatile thiol productions of 2 industrial strains of Torulaspora delbrueckii and Saccharomyces cerevisiae during alcoholic fermentation (AF of Sauvignon Blanc must. In order to evaluate the influence of the inoculation procedure, sequential and simultaneous mixed cultures were carried out and compared to pure cultures of T. delbrueckii and S. cerevisiae. The results confirmed the inability of T. delbrueckii to release 4-methyl-4-sulfanylpentan-2-one (4MSP and its low capacity to produce 3-sulfanylhexyl acetate (3SHA, as already reported in previous studies. A synergistic interaction was observed between the two species, resulting in higher levels of 3SH (3-sulfanylhexan-1-ol and its acetate when S. cerevisiae was inoculated 24 hours after T. delbrueckii, compared to the pure cultures. To elucidate the nature of the interactions between these 2 species, the yeast population kinetics were examined and monitored, as well as the production of 3SH, its acetate and their related non-odorous precursors: Glut-3SH (glutathionylated conjugate precursor and Cys-3SH (cysteinylated conjugate precursor. For the first time, it was suggested that, unlike, S. cerevisiae, which is able to metabolize the two precursor forms, T. delbrueckii was only able to metabolize the glutathionylated precursor. Consequently, the presence of T. delbrueckii during mixed fermentation led to an increase in Glut-3SH degradation and Cys-3SH production. This overproduction was dependent on the T. delbrueckii biomass. In sequential culture, thus favouring T. delbrueckii development, the higher availability of Cys-3SH throughout AF (alcoholic fermentation resulted in more abundant 3SH and 3SHA production by S. cerevisiae

  12. Programming voltage reduction in phase change memory cells with tungsten trioxide bottom heating layer/electrode

    International Nuclear Information System (INIS)

    Rao Feng; Song Zhitang; Gong Yuefeng; Wu Liangcai; Feng Songlin; Chen, Bomy

    2008-01-01

    A phase change memory cell with tungsten trioxide bottom heating layer/electrode is investigated. The crystalline tungsten trioxide heating layer promotes the temperature rise in the Ge 2 Sb 2 Te 5 layer which causes the reduction in the reset voltage compared to a conventional phase change memory cell. Theoretical thermal simulation and calculation for the reset process are applied to understand the thermal effect of the tungsten trioxide heating layer/electrode. The improvement in thermal efficiency of the PCM cell mainly originates from the low thermal conductivity of the crystalline tungsten trioxide material.

  13. Advances in the management of acute promyelocytic leukemia and other hematologic malignancies with arsenic trioxide.

    Science.gov (United States)

    Slack, James L; Waxman, Samuel; Tricot, Guido; Tallman, Martin S; Bloomfield, Clara D

    2002-01-01

    Acute promyelocytic leukemia (APL), once considered the most devastating subtype of acute myeloid leukemia, is now the most treatable of all subtypes as a result of intensive research into its molecular pathogenesis. This research has led to a rational approach to treatment in which the use of the differentiating agent all-trans-retinoic acid (ATRA) has proven to be effective first-line treatment for inducing complete remission. Arsenic trioxide (ATO) is currently used to treat relapsed disease, further enhancing survival rates in a patient population for which limited salvage options exist. This review discusses the molecular mechanisms responsible for development of APL and the evolution of treatment options over the last three decades, including the major advances using ATRA and ATO in the last 12 years. The mechanism of action of ATO is also described in view of this agent's potential for broader therapeutic application in a variety of hematologic malignancies.

  14. Chemical characteristics of mineral trioxide aggregate and its hydration reaction

    OpenAIRE

    Chang, Seok-Woo

    2012-01-01

    Mineral trioxide aggregate (MTA) was developed in early 1990s and has been successfully used for root perforation repair, root end filling, and one-visit apexification. MTA is composed mainly of tricalcium silicate and dicalcium silicate. When MTA is hydrated, calcium silicate hydrate (CSH) and calcium hydroxide is formed. Formed calcium hydroxide interacts with the phosphate ion in body fluid and form amorphous calcium phosphate (ACP) which finally transforms into calcium deficient hydroxyap...

  15. Mineral trioxide aggregate (MTA): its history, composition, and clinical applications.

    Science.gov (United States)

    Tawil, Peter Z; Duggan, Derek J; Galicia, Johnah C

    2015-04-01

    Mineral trioxide aggregate (MTA) has been a revolutionary material in endodontics. Since its introduction in the 1990s several studies have demonstrated its use in various clinical applications. MTA has been extensively studied and is currently used for perforation repairs, apexifications, regenerative procedures, apexogenesis, pulpotomies, and pulp capping. This article will review the history, composition, research findings, and clinical applications of this versatile endodontic material.

  16. The synergistic effect of nitrogen-doped titanium dioxide/mercaptobenzoic acid/silver nanocomplexes for surface-enhanced Raman scattering

    Science.gov (United States)

    Feng, Jun; Bao, Wenyuan; Li, Lijun; Cheng, Hao; Huang, Wenyi; Kong, Hongxing; Li, Yanqing

    2018-03-01

    We synthesized titanium dioxide (TiO2) and nitrogen-doped TiO2 nanoparticles (N-TiO2 NPs) via a sol-hydrothermal method using ammonium chloride (NH4Cl) as the nitrogen (N) source. Furthermore, an N-TiO2/4-mercaptobenzoic acid (4-MBA)/silver (Ag) nanocomplex served as an active substrate for surface-enhanced Raman scattering (SERS) and was prepared by self-assembly. During SERS, the Raman signals of 4-MBA of the N-TiO2/MBA/Ag nanocomplexes exhibited higher intensity and sensitivity than pure TiO2/MBA/Ag, with 1% N doping in N-TiO2, producing the strongest Raman signals. We characterized the N-TiO2 hybrid materials by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and ultraviolet-visible diffuse reflectance spectra. N doping did not influence the phase of the TiO2 crystal. The doped N entered into the crystal lattice of the TiO2, replacing some oxygen (O) to form Ti-O-N or Ti-N-O linkage. The results indicated that an appropriate amount of N doping could enhance the SERS performance of the TiO2 SERS substrate via N substitution doping. These doping forms were beneficial to the molecular charge transfer (CT), and this resulted in improved SERS performance for N-doped TiO2 NPs. We attributed this improvement to the formation of N-doping energy levels that were beneficial to the process of TiO2 to MBA molecule CT. This work not only enriched the nonmetal-doped CT mechanism in SERS but also provided several reference values for practical applications. [Figure not available: see fulltext.

  17. Human Lysozyme Synergistically Enhances Bactericidal Dynamics and Lowers the Resistant Mutant Prevention Concentration for Metronidazole to Helicobacter pylori by Increasing Cell Permeability

    Directory of Open Access Journals (Sweden)

    Xiaolin Zhang

    2016-10-01

    Full Text Available Metronidazole (MNZ is an effective agent that has been employed to eradicate Helicobacter pylori (H. pylori. The emergence of broad MNZ resistance in H. pylori has affected the efficacy of this therapeutic agent. The concentration of MNZ, especially the mutant prevention concentration (MPC, plays an important role in selecting or enriching resistant mutants and regulating therapeutic effects. A strategy to reduce the MPC that can not only effectively treat H. pylori but also prevent resistance mutations is needed. H. pylori is highly resistant to lysozyme. Lysozyme possesses a hydrolytic bacterial cell wall peptidoglycan and a cationic dependent mode. These effects can increase the permeability of bacterial cells and promote antibiotic absorption into bacterial cells. In this study, human lysozyme (hLYS was used to probe its effects on the integrity of the H. pylori outer and inner membranes using as fluorescent probe hydrophobic 1-N-phenyl-naphthylamine (NPN and the release of aspartate aminotransferase. Further studies using a propidium iodide staining method assessed whether hLYS could increase cell permeability and promote cell absorption. Finally, we determined the effects of hLYS on the bactericidal dynamics and MPC of MNZ in H. pylori. Our findings indicate that hLYS could dramatically increase cell permeability, reduce the MPC of MNZ for H. pylori, and enhance its bactericidal dynamic activity, demonstrating that hLYS could reduce the probability of MNZ inducing resistance mutations.

  18. Synergistic Effect of MoS2 Nanosheets and VS2 for the Hydrogen Evolution Reaction with Enhanced Humidity-Sensing Performance.

    Science.gov (United States)

    Chen, Xiaofan; Yu, Ke; Shen, Yuhao; Feng, Yu; Zhu, Ziqiang

    2017-12-06

    As a typical transition-metal dichalcogenides, MoS 2 has been a hotspot of research in many fields. In this work, the MoS 2 nanosheets were compounded on 1T-VS 2 nanoflowers (VS 2 @MoS 2 ) successfully by a two-step hydrothermal method for the first time, and their hydrogen evolution properties were studied mainly. The higher charge-transfer efficiency benefiting from the metallicity of VS 2 and the greater activity due to more exposed active edge sites of MoS 2 improve the hydrogen evolution reaction performance of the nanocomposite electrocatalyst. Adsorption and transport of an intermediate hydrogen atom by VS 2 also enhances the hydrogen evolution efficiency. The catalyst shows a low onset potential of 97 mV, a Tafel slope as low as 54.9 mV dec -1 , and good stability. Combining the electric conductivity of VS 2 with the physicochemical stability of MoS 2 , VS 2 @MoS 2 also exhibits excellent humidity properties.

  19. Synergistically Enhanced Electrochemical Performance of Ni3S4-PtX (X = Fe, Ni) Heteronanorods as Heterogeneous Catalysts in Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Huang, Shoushuang; Ma, Dui; Hu, ZhangJun; He, Qingquan; Zai, Jiantao; Chen, Dayong; Sun, Huai; Chen, Zhiwen; Qiao, Qiquan; Wu, Minghong; Qian, Xuefeng

    2017-08-23

    Platinum (Pt)-based alloys are considerably promising electrocatalysts for the reduction of I - /I 3 - and Co 2+ /Co 3+ redox couples in dye-sensitized solar cells (DSSCs). However, it is still challenging to minimize the dosage of Pt to achieve comparable or even higher catalytic efficiency. Here, by taking full advantages of the Mott-Schottky (M-S) effect at the metal-semiconductor interface, we successfully strategize a low-Pt-based M-S catalyst with enhanced electrocatalytic performance and stability for the large-scale application of DSSCs. The optimized M-S electrocatalyst of Ni 3 S 4 -Pt 2 X 1 (X = Fe, Ni) heteronanorods is constructed by rationally controlling the ratio of Pt to transition metal in the hybrids. It was found that the electrons transferred from Ni 3 S 4 to Pt 2 X 1 at their interface under the Mott-Schottky effect result in the concentration of electrons onto Pt 2 X 1 domains, which subsequently accelerates the regeneration of both I - /I 3 - and Co 2+ /Co 3+ redox shuttles in DSSCs. As a result, the DSSC with Ni 3 S 4 -Pt 2 Fe 1 manifests an impressive power conversion efficiency (PCE) of 8.79% and 5.56% for iodine and cobalt-based electrolyte under AM1.5G illumination, respectively. These PCEs are obviously superior over those with Ni 3 S 4 -Pt, PtFe, Ni 3 S 4 , and pristine Pt electrodes. The strategy reported here is able to be further expanded to fabricate other low-Pt-alloyed M-S catalysts for wider applications in the fields of photocatalysis, water splitting, and heterojunction solar cells.

  20. Synergistic Integration of Layer-by-Layer Assembly of Photosensitizer and Gold Nanorings for Enhanced Photodynamic Therapy in the Near Infrared.

    Science.gov (United States)

    Hu, Yue; Yang, Yamin; Wang, Hongjun; Du, Henry

    2015-09-22

    A layer-by-layer (LbL) assembly strategy was used to incorporate high concentrations of Al(III) phthalocyanine chloride tetrasulfonic acid (AlPcS4) photosensitizer (PS) onto plasmonic Au nanorings (Au NRs) for increasing the cellular uptake of AlPcS4 and subsequently enhancing the efficacy of photodynamic therapy (PDT) of human breast cancer cells (MDA-MB-231) in the near-infrared (NIR) range. Au NRs with two layers of AlPcS4 (Au NR/(AlPcS4)2) markedly increased the cellular internalization of AlPcS4 and elevated the generation of reactive oxygen species (ROS). Quenching the photosensitivity of AlPcS4 on the Au NR surface during the uptake and then significant ROS formation only upon PS release inside the cellular compartment made it possible to achieve a high PDT specificity and efficacy. PDT of breast cancer cells following 4 h of incubation with various formula revealed the following cell destruction rate: ∼10% with free AlPcS4, ∼23% with singly layered Au NR/(AlPcS4)1 complex, and ∼50% with doubly layered Au NR/(AlPcS4)2. Incubation with Au NR/(AlPcS4)2 for an additional 2 h resulted in ∼85% cell killing, more than 8-fold increase compared to AlPcS4 alone. Together, integration of LbL of PS with Au NRs holds a significant promise for PDT therapeutic treatment of a variety of cancers.

  1. Synergistic effect of p-n heterojunction, supporting and zeolite nanoparticles in enhanced photocatalytic activity of NiO and SnO2.

    Science.gov (United States)

    Derikvandi, Hadis; Nezamzadeh-Ejhieh, Alireza

    2017-03-15

    Increased photocatalytic activity of NiO and SnO 2 was achieved by coupling and supporting of them onto clinoptilolite nanoparticles (NC) via calcination of Ni(II)-Sn(IV) - exchanged NC in photocatalytic degradation of metronidazole (MZ) aqueous solution. XRD, XRF, FTIR, SEM, X-ray mapping, DRS, TEM, BET Cyclic voltammetry and electrochemical impedance spectroscopy techniques (EIS) were used for characterization of samples. Red shift occurred in bang gap energies of the coupled semiconductors with respect to monocomponent one. This p-n hetero-junction forms a depletion layer in the semiconductors interface with negative and positive charges, causing considerable enhancement in the photocatalytic activity. The calcined catalyst at 600°C for 4h showed the best photocatalytic activity and charge transfer efficiency (in EIS results). The mole ratio of SnO 2 /NiO affects the degradation activity of the catalysts and the best activity were was obtained for the NiO 1.1 -SnO 2(6.7) /NC (NS 5 -NC) catalyst at pH 3, 1.2gL - 1 of the catalyst and 2mgL - 1 of MZ. SnO 2 played electron sink role and the photogenerated electrons migrate from more negative C b -NiO (E=-3.0V) to C b -SnO 2 (E=-0.3V vs SHE). Initial pH of MZ solution was changed from 6.20 to 4.73 during 180min that confirms formation of Oxalic acid and Maleic acid. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Autophagy inhibition synergistically enhances anti-cancer efficacy of RAMBA, VN/12-1 in SKBR-3 cells and tumor xenografts

    Science.gov (United States)

    Godbole, Abhijit M.; Purushottamachar, Puranik; Martin, Marlena S.; Daskalakis, Constantine; Njar, Vincent C. O.

    2012-01-01

    VN/12-1 is a novel retinoic acid metabolism blocking agent (RAMBA) discovered in our laboratory. The purpose of the study was to elucidate the molecular mechanism of VN/12-1’s anticancer activity in breast cancer cell lines and in tumor xenografts. We investigated the effects of VN/12-1 on induction of autophagy andapoptosis in SKBR-3 cells. Further, we also examined the impact of pharmacological and genomic inhibition of autophagy on VN/12-1’s anti-cancer activity. Finally, the anti-tumor activity of VN/12-1 was evaluated as a single agent and in combination with autophagy inhibitor chloroquine (CHL) in an SKBR-3 mouse xenograft model. Short exposure of low dose (< 10 µM) of VN/12-1 induced endoplasmic reticulum stress (ERS), autophagy and inhibits G1-S phase transition and caused a protective response. However, higher dose of VN/12-1 initiates apoptosis in vitro. Inhibition of autophagy using either pharmacological inhibitors or RNA interference of Beclin-1 enhanced anti-cancer activity induced by VN/12-1 in SKBR-3 cells by triggering apoptosis. Importantly, VN/12-1 (5 mg/kg twice weekly) and the combination of VN/12-1 (5 mg/kg twice weekly) + chloroquine (50 mg/kg twice weekly) significantly suppressed established SKBR-3 tumor growth by 81.4% (p < 0.001 vs. control) and 96.2% (p < 0.001 vs. control), respectively. Our novel findings suggest that VN/12-1 may be useful as a single agent or in combination with autophagy inhibitors for treating human breast cancers. Our data provides a strong rationale for clinical evaluation of VN/12-1 as single agent or in combination with autophagy inhibitors. PMID:22334589

  3. Compositional characteristics and hydration behavior of mineral trioxide aggregates

    Directory of Open Access Journals (Sweden)

    Wen-Hsi Wang

    2010-06-01

    Full Text Available Mineral trioxide aggregate (MTA was one of most popular biomaterials for endodontic treatment in the past decade. Its superb biocompatibility, sealing ability and surface for tissue adhesion all make MTA a potential candidate for many dental applications, such as apexification, perforation repair, repair of root resorption, and as a root-end filling material. There are many review articles regarding the physical, chemical and biological properties of MTA. However, there are few reviews discussing the relationship between the composition and hydration behavior of MTA. The aim of this article was to provide a systematic review regarding the compositional characteristics and hydration behavior of MTA.

  4. Synergistic effects in threshold models on networks

    Science.gov (United States)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  5. Synergistic Moel of Organizational Structure.

    Science.gov (United States)

    Wolfe, Richard O.

    1985-01-01

    Defines the concept of the synergistic model of organizational structure. The primary components of the model are cooperative action and job integration, which have as a direct result the increased energy in staff members using the model. (MD)

  6. THE SYNERGISTIC EFFECT OF HYBRID FLAME RETARDANTS ON PYROLYSIS BEHAVIOUR OF HYBRID COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    M. T. ALBDIRY

    2012-06-01

    Full Text Available The aim of this investigation is to comprehensively understand the polymeric composite behavior under direct fire sources. The synergistic effects of hybrid flame retardant material on inhabiting the pyrolysis of hybrid reinforced fibers, woven roving (0°- 45° carbon and kevlar (50/50 wt/wt, and an araldite resin composites were studied. The composites were synthesised and coated primarily by zinc borate (2ZnO.3B2O3.3.5H2O and modified by antimony trioxide (Sb2O3 with different amounts (10-30 wt% of flame retardant materials. In the experiments, the composite samples were exposed to a direct flame source generated by oxyacetylene flame (~3000ºC at variable exposure distances of 10-20 mm. The synergic flame retardants role of antimony trioxide and zinc borate on the composite surface noticeably improves the flame resistance of the composite which is attributed to forming a protective mass and heat barrier on the composite surface and increasing the melt viscosity.

  7. Band gap engineering and optical properties of tungsten trioxide

    Science.gov (United States)

    Ping, Yuan; Li, Yan; Rocca, Dario; Gygi, Francois; Galli, Giulia

    2012-02-01

    Tungsten trioxide (WO3) is a good photoanode material for water oxidation but it is not an efficient absorber of sunlight because of its large band gap (2.6 eV). Recently, stable clathrates of WO3 with interstitial N2 molecules were synthesized [1], which are isostructural to monoclinic WO3 but have a substantially smaller bang gap, 1.8 eV. We have studied the structural, electronic, an vibrational properties of N2-WO3 clathrates using ab-initio calculations and analyzed the physical origin of their gap reduction. We also studied the effect of atomic dopants, in particular rare gases. Substantial band gap reduction has been observed, especially in the case of doping with Xe, due to both electronic and structural effects. Absorption spectra have been computed by solving the Bethe-Salpeter Equation [2] to gain a thourough insight into the optical properties of pure and doped tungsten trioxide. [1] Q. Mi, Y. Ping, Y. Li., B.S. Brunschwig, G. Galli, H B. Gray, N S. Lewis (preprint) [2]D. Rocca, D. Lu and G. Galli, J. Chem. Phys. 133, 164109 (2010)

  8. Mineral Trioxide Aggregate—A Review of Properties and Testing Methodologies

    OpenAIRE

    Ha, William N.; Nicholson, Timothy; Kahler, Bill; Walsh, Laurence J.

    2017-01-01

    Mineral trioxide aggregate (MTA) restoratives and MTA sealers are commonly used in endodontics. Commonly referenced standards for testing of MTA are ISO 6876, 9917-1 and 10993. A PubMed search was performed relating to the relevant tests within each ISO and “mineral trioxide aggregate”. MTA restoratives are typically tested with a mixture of tests from multiple standards. As the setting of MTA is dependent upon hydration, the results of various MTA restoratives and sealers are dependent upon ...

  9. Mineral trioxide aggregate and portland cement for direct pulp capping in dog: a histopathological evaluation.

    Science.gov (United States)

    Bidar, Maryam; Naghavi, Neda; Mohtasham, Nooshin; Sheik-Nezami, Mahshid; Fallahrastegar, Amir; Afkhami, Farzaneh; Attaran Mashhadi, Negin; Nargesi, Iman

    2014-01-01

    Background and aims. Mineral trioxide aggregate and calcium hydroxide are considered the gold standard pulp-capping materials. Recently, Portland cement has been introduced with properties similar to those of mineral trioxide aggregate. Histopathological effects of direct pulp capping using mineral trioxide aggregate and Portland cements on dog dental pulp tissue were evaluated in the present study. Materials and methods. This histopatological study was carried out on 64 dog premolars. First, the pulp was exposed with a sterile bur. Then, the exposed pulp was capped with white or gray mineral trioxide aggregates and white or gray Portland cements in each quadrant and sealed with glass-ionomer. The specimens were evaluated under a light microscope after 6 months. Statistical analysis was carried out using Kruskal-Wallis test. Statistical significance was defined at α=5%. Results. There was no acute inflammation in any of the specimens. Chronic inflammation in white and gray mineral trioxide aggregates and white and gray Portland cements was reported to be 45.5%, 27.3%, 57.1% and 34.1%, respectively. Although the differences were not statistically significant, severe inflammation was observed mostly adjacent to white mineral trioxide aggregate. The largest extent of increased vascularization (45%) and the least increase in fibrous tissue were observed adjacent to white mineral trioxide aggregate, with no significant differences. In addition, the least calcified tissue formed adjacent to white mineral trioxide aggregate, although the difference was not significant. Conclusion. The materials used in this study were equally effective as pulp protection materials following direct pulp capping in dog teeth.

  10. Mineral Trioxide Aggregate and Portland Cement for Direct Pulp Capping in Dog: A Histopathological Evaluation

    Directory of Open Access Journals (Sweden)

    Maryam Bidar

    2014-09-01

    Full Text Available Background and aims. Mineral trioxide aggregate and calcium hydroxide are considered the gold standard pulp-capping materials. Recently, Portland cement has been introduced with properties similar to those of mineral trioxide aggregate. His-topathological effects of direct pulp capping using mineral trioxide aggregate and Portland cements on dog dental pulp tis-sue were evaluated in the present study. Materials and methods. This histopatological study was carried out on 64 dog premolars. First, the pulp was exposedwith a sterile bur. Then, the exposed pulp was capped with white or gray mineral trioxide aggregates and white or gray Port-land cements in each quadrant and sealed with glass-ionomer. The specimens were evaluated under a light microscope after 6 months. Statistical analysis was carried out using Kruskal-Wallis test. Statistical significance was defined at α=5%. Results. There was no acute inflammation in any of the specimens. Chronic inflammation in white and gray mineral triox-ide aggregates and white and gray Portland cements was reported to be 45.5%, 27.3%, 57.1% and 34.1%, respectively. Al-though the differences were not statistically significant, severe inflammation was observed mostly adjacent to white mineral trioxide aggregate. The largest extent of increased vascularization (45% and the least increase in fibrous tissue were ob-served adjacent to white mineral trioxide aggregate, with no significant differences. In addition, the least calcified tissue formed adjacent to white mineral trioxide aggregate, although the difference was not significant. Conclusion. The materials used in this study were equally effective as pulp protection materials following direct pulp cap-ping in dog teeth.

  11. Synergistic extraction of thorium in presence of neutral donors

    International Nuclear Information System (INIS)

    Biswas, S.; Basu, S.

    1999-01-01

    The effects of neutral organophosphorous compounds on the extraction of thorium by β-hydroxy naphthaldoxime in xylene are reported. Enhancement of extraction is explained in terms of formation of a complex adduct in organic phase. Synergistic coefficients and apparent formation constants of complex adducts are calculated. (author)

  12. Mineral trioxide aggregate: part 2 - a review of the material aspects.

    Science.gov (United States)

    Malhotra, Neeraj; Agarwal, Antara; Mala, Kundabala

    2013-03-01

    The purpose of this two-part series is to review the composition, properties, and products of mineral trioxide aggregate (MTA) materials. PubMed and MedLine electronic databases were used to identify scientific papers from January 1991 to May 2010. Based on the selected inclusion criteria, citations were referenced from the scientific peer-reviewed dental literature. Mineral trioxide aggregate is a refined form of the parent compound, Portland cement (PC), and demonstrates a strong biocompatibility due to the high pH level and the material's ability to form hydroxyapatite. Mineral trioxide aggregate materials provide better microleakage protection than traditional endodontic materials as observed in findings from dye-leakage, fluid-filtration, protein-leakage, and bacterial penetration-leakage studies and has been recognized as a bioactive material. Various MTA commercial products are available, including gray mineral trioxide aggregate (GMTA), white mineral trioxide aggregate (WMTA), and mineral trioxide aggregate-Angelus (AMTA). Although these materials are indicated for various dental uses and applications, long-term in-vivo clinical studies are needed. Part 1 of this article highlighted and discussed the composition and characteristics of the material. Part 2 provides an overview of commercially available MTA materials.

  13. Mineral trioxide aggregate pulpotomy: patient selection and perspectives

    Science.gov (United States)

    Musale, Prasad K; Kothare, Sneha S; Soni, Abhishek S

    2018-01-01

    This narrative aims at reviewing the available literature for mineral trioxide aggregate (MTA) pulpotomy to understand the procedure better and eventually improve the clinical and radiographic outcomes. An electronic search was conducted in PubMed, Cochrane, ScienceDirect and ClinicalKey databases with the following keywords: MTA pulpotomy, clinical outcomes, radiographic outcomes, primary teeth. No specific inclusion or exclusion criteria were applied as to what articles would be included in this review. The time period for the search began from 2001 with respect to MTA pulpotomy. However, this was not restrictive during the search. MTA pulpotomy has been a successful treatment modality in primary molars with proven success over the years. There is limited literature to support its success in primary incisors. PMID:29535557

  14. Clinical Applications of Mineral Trioxide Aggregate: Report of Four Cases

    Science.gov (United States)

    Battepati, Prashant M

    2010-01-01

    The greatest threats to developing teeth are dental caries and traumatic injuries. The primary goal of all restorative treatment is to maintain pulp vitality so that normal root development or apexogenesis can occur. If pulpal exposure occurs, then a pulpotomy procedure aims to preserve pulp vitality to allow for normal root development. Historically, calcium hydroxide has been the material of choice for pulpotomy procedures. Recently, an alternative material called mineral trioxide aggregate (MTA) has demonstrated the ability to induce hard-tissue formation in pulpal tissue. This article describes the clinical and radiographic outcome of a series of cases involving the use of MTA in pulpotomy, apexogenesis and apexification procedures and root perforations repair. PMID:27625556

  15. Mineral trioxide aggregate (MTA)-like materials: an update review.

    Science.gov (United States)

    Mohammadi, Zahed; Shalavi, Sousan; Soltani, Mohammad Karim

    2014-09-01

    Mineral trioxide aggregate (MTA) is a multi-application material used in endodontics. It is a mixture of a refined Portland cement and bismuth oxide and trace amounts of SiO₂, CaO, MgO, K₂SO₄, and Na₂SO₄. MTA powder is mixed with supplied sterile water in a 3:1 powder/liquid. Hydrated MTA has an initial pH of 10.2, which rises to 12.5 three hours after mixing. There are several materials derived from MTA such as Endo-CPM Sealer, Ortho MTA, MTA-Fillapex, DiaRoot BioAggregate, MTA Bio, light-cured MTA, tricalcium silicate, and iRoot SP. The purpose of this article is to review MTA-like materials.

  16. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Espenson, H. [Iowa State Univ., Ames, IA (United States)

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  17. Colour centres in amorphous tungsten trioxide thin films

    International Nuclear Information System (INIS)

    Kleperis, J.J.; Cikmach, P.D.; Lusis, A.R.

    1984-01-01

    Magnetic, optical, and electrical properties of thin tungsten trioxide (a-WO 3 ) films obtained on substrates with different temperatures and annealed in air and vacuum are investigated. On the basis of these results and recent structural investigations a structure model of the a-WO 3 film is given: a spatial network of tightly bounded clusters which are built from hydrated WO 6 octahedra. These octahedra contain terminal oxygens and being axially distorted they are the sites for localization of injected electrons. The colour centres formed are paramagnetic (ESR signal from W 5+ ) and their optical absorption is satisfactorily described by the intervalence charge transfer between the localized states of W 5+ and W 6+ ions. (author)

  18. Aromatic sulfonation with sulfur trioxide: mechanism and kinetic model.

    Science.gov (United States)

    Moors, Samuel L C; Deraet, Xavier; Van Assche, Guy; Geerlings, Paul; De Proft, Frank

    2017-01-01

    Electrophilic aromatic sulfonation of benzene with sulfur trioxide is studied with ab initio molecular dynamics simulations in gas phase, and in explicit noncomplexing (CCl 3 F) and complexing (CH 3 NO 2 ) solvent models. We investigate different possible reaction pathways, the number of SO 3 molecules participating in the reaction, and the influence of the solvent. Our simulations confirm the existence of a low-energy concerted pathway with formation of a cyclic transition state with two SO 3 molecules. Based on the simulation results, we propose a sequence of elementary reaction steps and a kinetic model compatible with experimental data. Furthermore, a new alternative reaction pathway is proposed in complexing solvent, involving two SO 3 and one CH 3 NO 2 .

  19. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-yan; Zhang, Yu [Nanchang University, College of Chemistry (China); Chen, Xiang-yu [Xiangya No.2 Hospital of Central South University, Department of Radiology (China); Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2017-04-15

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsO{sub x}) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  20. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    Science.gov (United States)

    Chen, Fei-yan; Zhang, Yu; Chen, Xiang-yu; Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun

    2017-04-01

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsOx) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  1. Efficient degradation of methylene blue dye over tungsten trioxide/multi-walled carbon nanotube system as a novel photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Dinari, Mohammad; Momeni, Mohamad Mohsen; Ahangarpour, Marzieh [Isfahan University of Technology, Department of Chemistry, Isfahan (Iran, Islamic Republic of)

    2016-10-15

    Combination of acid-functionalized multi-walled carbon nanotube/tungsten trioxide (MWCNT/WO{sub 3}) with different MWCNT's weight percentages as visible light-induced photocatalysts for photodegradation of methylene blue (MB) dye was synthesized. These photocatalysts were characterized by Fourier transform infrared, X-ray diffraction, UV-Vis diffuse reflectance spectroscopy, field emission scanning electron microscopy and transmission electron microscopy techniques. Their photocatalytic activities were tested by using MB as a model compound. The results show that the MWCNT/WO{sub 3} hybrid nanostructures exhibit higher photocatalytic activity than pure WO{sub 3} or MWCNTs due to their higher absorption enhancement in visible light region and effective separation of electrons and holes. The stability of the hybrid was characterized through cyclic photocatalytic test. (orig.)

  2. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    International Nuclear Information System (INIS)

    Rangwala, Fatima; Williams, Kevin P; Smith, Ginger R; Thomas, Zainab; Allensworth, Jennifer L; Lyerly, H Kim; Diehl, Anna Mae; Morse, Michael A; Devi, Gayathri R

    2012-01-01

    Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO) in combination with sorafenib or fluorouracil (5-FU), in both hepatic tumor cells and stromal cells. Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC 50 : 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC 50 : 11.8 μM in LX2; 9.9 μM in HepG2). In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr) drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC)

  3. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    Directory of Open Access Journals (Sweden)

    Rangwala Fatima

    2012-09-01

    Full Text Available Abstract Background Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO in combination with sorafenib or fluorouracil (5-FU, in both hepatic tumor cells and stromal cells. Methods Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Results Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC50: 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC50: 11.8 μM in LX2; 9.9 μM in HepG2. In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. Conclusions ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC.

  4. Dynamic intratubular biomineralization following root canal obturation with pozzolan‐based mineral trioxide aggregate sealer cement

    Science.gov (United States)

    Yoo, Yeon‐Jee; Baek, Seung‐Ho; Kum, Kee‐Yeon; Shon, Won‐Jun; Woo, Kyung‐Mi

    2015-01-01

    Summary The application of mineral trioxide aggregates (MTA) cement during the root canal obturation is gaining concern due to its bioactive characteristic to form an apatite in dentinal tubules. In this regard, this study was to assess the biomineralization of dentinal tubules following root canal obturation by using pozzolan‐based (Pz‐) MTA sealer cement (EndoSeal MTA, Maruchi). Sixty curved roots (mesiobuccal, distobuccal) from human maxillary molars were instrumented and prepared for root canal obturation. The canals were obturated with gutta‐percha (GP) and Pz‐MTA sealer by using continuous wave of condensation technique. Canals obturated solely with ProRoot MTA (Dentsply Tulsa Dental) or Pz‐MTA sealer were used for comparison. In order to evaluate the biomineralization ability under different conditions, the PBS pretreatment before the root canal obturation was performed in each additional samples. At dentin‐material interfaces, the extension of intratubular biomineralization was analyzed using scanning electron microscopy (SEM) and energy dispersive spectroscopy. When the root canal was obturated with GP and Pz‐MTA sealer, enhanced biomineralization of the dentinal tubules beyond the penetrated sealer tag was confirmed under the SEM observation (p Mineralized apatite structures (calcium/phosphorous ratio, 1.45–1.89) connecting its way through the dentinal tubules were detected at 350–400 μm from the tubule orifice, and the pre‐crystallization seeds were also observed along the intra‐ and/or inter‐tubular collagen fiber. Intratubular biomineralization depth was significantly enhanced in all PBS pretreated canals (p MTA cement can be used as a promising bioactive root canal sealer to enhance biomineralization of dentinal tubules under controlled environment. SCANNING 38:50–56, 2016. © 2015 The Authors. Scanning Published by Wiley Periodicals, Inc. PMID:26179659

  5. Evaluation of a Porcine Model for Exploration of Endodontic Regeneration Strategies Using Mineral Trioxide Aggregate and Biodentine

    Science.gov (United States)

    2016-06-14

    a Porcine Model for Exploration of Endodontic Regeneration Strategies Using Mineral Trioxide Aggregate and Biodentine . ~ is appropriately... Biodentine . 1. Your request for Publication Clearance has been reviewed in accordance with established regulations and approved effective July 06, 2016...Other 6. Title: Evaluation of a Porcine Model for Exploration of Endodonlic Regeneration Strategies Using Mineral Trioxide Aggregate and Biodentine

  6. Silica ecosystem for synergistic biotransformation

    OpenAIRE

    Mutlu, Baris R.; Sakkos, Jonathan K.; Yeom, Sujin; Wackett, Lawrence P.; Aksan, Alptekin

    2016-01-01

    Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues...

  7. M2 macrophages participate in the biological tissue healing reaction to mineral trioxide aggregate.

    Science.gov (United States)

    Ito, Takafumi; Kaneko, Tomoatsu; Yamanaka, Yusuke; Shigetani, Yoshimi; Yoshiba, Kunihiko; Okiji, Takashi

    2014-03-01

    This study examined the protein and messenger RNA (mRNA) expression of molecules associated with M2 (wound healing) macrophages in mineral trioxide aggregate (MTA)-implanted rat subcutaneous tissue to elucidate the involvement of M2 macrophages in the connective tissue response to MTA. Silicone tubes containing freshly mixed MTA or a calcium hydroxide cement (Life; Kerr, Romulus, MI) were subcutaneously implanted into the backs of Wistar rats. Solid silicone rods implanted in different animals served as controls. The specimens were then double immunostained for ED1 (CD68, a general macrophage marker) and ED2 (CD163, an M2 macrophage marker). Immunostaining for CD34 (a marker for vascularization and wound healing) was also performed. Expression levels of CD34, CD163, and mannose receptor c type 1 (an M2 macrophage marker) mRNAs were determined with real-time polymerase chain reaction. MTA-implanted subcutaneous tissues showed significant increases in the density of ED1+ED2+ macrophages beneath the implantation site and expression levels of CD163 and MMR mRNAs compared with Life-implanted and control tissues. MTA-implanted subcutaneous tissues also showed a significant increase of CD34-immunostained areas and up-regulation of CD34 mRNAs compared with Life-implanted and control tissues. MTA implantation induced the accumulation of M2 macrophage marker (ED2)-expressing macrophages and enhanced the expression of M2 macrophage marker genes. MTA implantation also enhanced the expression of CD34, suggesting acceleration of the healing/tissue repair process. Taken together, biological connective tissue response to MTA may involve wound healing/tissue repair processes involving M2 macrophages. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Osteoblastic cytokine response to gray and white mineral trioxide aggregate.

    Science.gov (United States)

    Bidar, Maryam; Zarrabi, Mohammad Hasan; Tavakol Afshari, Jalil; Aghasizadeh, Navid; Naghavi, Neda; Forghanirad, Maryam; Attaran, Niloufar

    2011-01-01

    The materials used for root-end filling and perforation repair are in direct contact with live tissues e.g. bone and connective tissue; their effects however, are uncertain. The aim of this ex vivostudy was to evaluate the osteoblastic secretory activity adjacent to gray and white mineral trioxide aggregate (MTA) and Intermediate Restorative Material (IRM). The studied materials were prepared and placed in 24-wells plate. Human MG-63 osteoblasts were introduced to materials after their initial set. The supernatant fluid was collected after 1, 3, and 7 days and the level of interleukin-1β was measured by ELISA test. A microscopic exam was also performed to assess proliferation and viability of the cells. Kruskal-Wallis and Tukey tests were used for analysis. T here were significant higher levels of interleukin-1β in the gray and white MTA groups compared to IRM group (P0.05).Morphologic appearance of osteoblasts adjacent to gray and white MTA was similar to normal osteoblasts in all observation periods, however cells adjacent to IRM were round, signifying cytotoxicity of the adjacent material. Human osteoblasts' has a favorable biologic response to white and gray MTA compared to IRM.

  9. Photoelectrocatalytic degradation of benzoic acid using immobilized tungsten trioxide photocatalyst

    Energy Technology Data Exchange (ETDEWEB)

    Mohite, S.V.; Ganbavle, V.V.; Patil, V.V.; Rajpure, K.Y., E-mail: rajpure@yahoo.com

    2016-11-01

    The thin films of WO{sub 3} were deposited with different solution quantities using chemical spray pyrolysis technique. The WO{sub 3} film thickness effect on the photoelectrochemical, structural, morphological and optical properties is studied. Polycrystalline, monoclinic WO{sub 3} films possess photoelectrochemical performance having onset potentials around +0.3 V/SCE in 0.01 M HClO{sub 4}. The maximum photocurrent density (I{sub ph} = 635 μA/cm{sup 2}) is observed for the film deposited with 75 ml solution quantity. The FE-SEM image shows compact structure with petals like morphology. The estimated indirect band gap of WO{sub 3} films lies in the range of 2.60–2.65 eV. The photoelectrocatalytic degradation of benzoic acid is studied using WO{sub 3} photoelectrode under UV light illumination and 57 ± 3% removal of benzoic acid is achieved. The mineralization of benzoic acid in aqueous solution has been studied by measuring COD values. - Highlights: • The photoactivity of sprayed tungsten trioxide (WO{sub 3}) thin film. • Structural analysis of WO{sub 3} thin films. • Photoelectrocatalytic and photocatalytic degradation of benzoic acid. • Reaction kinetics and mineralization of pollutants by COD.

  10. The solubility of uranium trioxide simulated lung fluid

    International Nuclear Information System (INIS)

    Kravchiks, T.; Kol, R.; Prager, A.; German, U.; Oved, S.; Laichter, Y.

    1997-01-01

    Uranium trioxide is an important intermediate compound in the uranium production process. Inhalation of UO 3 aerosols can occur during this process. To assess the radiation dose from the intake of this compound it is necessary to know its transportability class, based on its dissolution rate in lung fluid. The International Commission on Radiological Protection (ICRP) has assigned UO 3 to Inhalation Class W (lung retention half-time of 10 to 100 days). A solubility study of UO 3 in a simulated lung fluid has been carried out using a batch/filter replacement method. Two tests were conducted over a 100-days period, during which 17 samples were collected and analyzed for their dissolved uranium content. The results show that about 40% of the total uranium was dissolved during the first days and nearly all was dissolved during 100 days. Expressed as the fraction of the total uranium remaining undissolved as a function of time, using a non-linear least squares regression fit, it was found that the solubility of UO 3 in simulated lung fluid could be expressed as a combination of two Inactions: about 25% of the UO 3 could be classified as type D (with lung retention half-time of several hours) and about 75% as type W (with half-time of 10-20 days). This classification is in agreement with recent investigations and indicates that UO 3 is more soluble than considered by ICRP. (authors)

  11. Treatment outcome of mineral trioxide aggregate: repair of root perforations.

    Science.gov (United States)

    Mente, Johannes; Hage, Nathalie; Pfefferle, Thorsten; Koch, Martin Jean; Geletneky, Beate; Dreyhaupt, Jens; Martin, Nicolas; Staehle, Hans Joerg

    2010-02-01

    The use of biocompatible materials like mineral trioxide aggregate (MTA) may improve the prognosis of teeth with root perforations. The treatment outcome of root perforations repaired between 2000 and 2006 with MTA was investigated. Twenty-six patients received treatment with MTA in 26 teeth with root perforations. Treatment was performed by supervised undergraduate students (29%), general dentists (52%), or dentists who had focused on endodontics (19%). Perforation repair by all treatment providers was performed using a dental operating microscope. Calibrated examiners assessed clinical and radiographic outcome 12 to 65 months after treatment (median 33 months, 81% recall rate). Pre-, intra-, and postoperative information relating to potential prognostic factors was evaluated. Of 21 teeth examined, 18 teeth (86%) were classified as healed. None of the analyzed potential prognostic factors had a significant effect on the outcome. MTA appears to provide a biocompatible and long-term effective seal for root perforations in all parts of the root. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Effect of Ultrasonication on Physical Properties of Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Peter Parashos

    2014-01-01

    Full Text Available Aim. To evaluate the effect on physical properties of Mineral Trioxide Aggregate (MTA of using direct hand compaction during placement and when using hand compaction with indirect ultrasonic activation with different application times. Methods. One hundred acrylic canals were obturated in 3 increments with MTA in sample sizes of 10. One group was obturated by hand with an endodontic plugger and the remainder obturated with indirect ultrasonic application, with times ranging from 2 seconds to 18 seconds per increment. Microhardness values, dye penetration depths, and radiographs of the samples were evaluated. Results. As ultrasonic application time per increment increased, microhardness values fell significantly (P<0.001 while dye penetration values increased (P<0.001. Microhardness of MTA ultrasonicated for 2 seconds was significantly higher than hand compaction (P=0.03. Most radiographic voids were visible in the hand-compacted group (P<0.001, which also had higher dye penetration depths than the 2-second ultrasonicated samples. Ultrasonication of MTA for 10–18 seconds resulted in significantly more voids than 2–8 seconds of ultrasonication (P=0.02. Conclusion. The use of ultrasonics with MTA improved the compaction and flow of MTA, but excessive ultrasonication adversely affected MTA properties. A time of 2 seconds of ultrasonication per increment presented the best compromise between microhardness values, dye penetration depths, and lack of radiographic voids.

  13. [Mineral trioxide aggregate (MTA) a success story in apical surgery].

    Science.gov (United States)

    von Arx, Thomas

    2016-01-01

    The objective of apical surgery is to retain teeth with persistent apical pathosis following orthograde root canal treatment if endodontic non-surgical revision is difficult or associated with risks, or is even declined by the patient. Since the most frequent cause of recurrent apical disease is bacterial reinfection from the (remaining) root canal system, the bacteria-tight root-end filling is the most important step in apical surgery. In the early 1990s, mineral trioxide aggregate (MTA) was developed at the Loma Linda University in California/USA. Preclinical studies clearly showed that MTA has a high sealing capability, a good material stability and an excellent biocompatbility. Multiple experimental studies in animals highlighted the mild tissue reactions observed adjacent to this material. Furthermore, histological analysis of the periapical regions demonstrated a frequent deposition of new cementum not only onto the resection plane (cut dentinal surface), but also directly onto MTA. For these reasons, MTA is considered a bioactive material. In 1997 MTA was cleared for clinical use in patients. Multiple prospective clinical and randomized studies have documented high and constant success rates of MTA-treated teeth in apical surgery. A recently published longitudinal study showed that MTA-treated teeth remained stable over five years; hence the high healed rates documented after one year are maintained during long-term observation.

  14. Superfast Set, Strong and Less Degradable Mineral Trioxide Aggregate Cement

    Directory of Open Access Journals (Sweden)

    Abdullah Alqedairi

    2017-01-01

    Full Text Available Purpose. Despite the good sealing ability and biocompatibility of mineral trioxide aggregate (MTA, its slow setting, high degradation, and weakness limit its use in surgical endodontics and high stress-bearing areas. This study aimed to develop two new liquids to control these drawbacks. They were prepared from calcium chloride, fumed silica, and hydroxyapatite or calcium phosphate and coded “H” and “P,” respectively. Methods. Portland cement, Grey ProRoot® MTA, and white ProRoot MTA were mixed with distilled water (control or liquid “H” or “P.” The pH, setting time, degradation rate, leachant/precipitate’ composition, compressive strength, and morphology were assessed. Results. Both liquids maintained MTA’s high alkalinity and reduced the setting time by 1-2 orders of magnitude. Both liquids, H in particular, significantly reduced the degradation rate of Grey ProRoot and White ProRoot MTA®. Calcite has been identified as the main phase of the leachant or precipitate formed during the cement’s degradation. Calcium hydroxide or hydroxyapatite was also identified with Grey ProRoot MTA mixed with H liquid. These liquids also significantly increased the compressive strength with no statistical differences between them; this was associated with the production of dense, consolidated structures. Conclusions. The modified MTA could be used in surgical endodontics and high stress-bearing areas.

  15. Compressive Strength of Mineral Trioxide Aggregate with Propylene Glycol.

    Science.gov (United States)

    Ghasemi, Negin; Rahimi, Saeed; Shahi, Shahriar; Salem Milani, Amin; Rezaei, Yashar; Nobakht, Mahnaz

    2016-01-01

    The aim of this study was to evaluate the effect of adding propylene glycol (PG) to mineral trioxide aggregate (MTA) liquid with volume ratio of 20% on the compressive strength (CS) of MTA in two time periods (4 and 21 days) after mixing. Four groups of steel cylinders ( n =15) with an internal diameter of 3 and a height of 6 mm were prepared and MTA (groups 1 and 2) and MTA+PG (80% MTA liquid+20% PG) (groups 3 and 4) were placed in to the cylinders. In groups 1 and 3 the CS was evaluated after 4 days and in groups 2 and 4 after 21 days. Data were calculated using the two-ways ANOVA. The level of significance was set at 0.05. The highest (52.22±18.92 MPa) and lowest (4.5±0.67 MPa) of CS was obtained in 21-day MTA samples and 4-day MTA+PG specimen, respectively. The effect of time and PG were significant on the CS ( P MTA with PG significantly reduced the CS; but passing the time from 4 to 21 days significantly increased the CS. Considering the limitations of this study, PG had a negative effect on CS of MTA.

  16. Mineral Trioxide Aggregate in Aggressive Dental Resorption: A Case Report

    Directory of Open Access Journals (Sweden)

    AKM Bashar

    2009-11-01

    Full Text Available The study was carried out to evaluate the clinical efficacy of Mineral trioxide aggregate (MTA in arresting dental resorption and as a regenerative material especially for growth of bone and periodontal ligament. Tooth no 25 having Aggressive Dental Resorption (simultaneous presentation of apical and lateral perforating resorption with discharging sinus and co-existing oral communication through periodontal pocket was treated with MTA. After thorough debridement and disinfection of the root canal, complete obturation of the root canal system was done with MTA and evaluated thereafter. Follow up examinations up to a period of 1 year could not reveal resolution of any of the preoperative signs and symptoms i.e. discharging sinus, periodontal pocket healing and mobility; also did not show radiographic evidence of arrest of resorption and bone or periodontal tissue formation. Clinical efficacy of MTA in arresting dental resorption with subsequent repair found questionable. However, Shorter period of disinfection, co-existence of oral communication with the resorptive defects through periodontium and non surgical treatment approach all or any one of these may be the concern for the failure. Keywords: Resorption, Perforation, MTA.DOI: 10.3329/bsmmuj.v2i1.3711 BSMMU J 2009; 2(1: 42-46

  17. Mineral Trioxide Aggregate for Intruded Teeth with Incomplete Apex Formation.

    Science.gov (United States)

    T S Oliveira, Caroline; M A de Carvalho, Fredson; C O Gonçalves, Leonardo; M N de Souza, Jessyca; F R Garcia, Lucas; A F Marques, André; N de Souza, Samir

    2018-01-01

    The axial displacement of a tooth within the alveolar bone is called traumatic intrusive luxation. The treatment of immature permanent teeth with incomplete root formation is a challenging procedure, as the prognosis is uncertain. The objective of the present article is to report the successful treatment of traumatic intrusive luxation in teeth with incomplete root formation, where mineral trioxide aggregate (MTA) was used as an apical plug to induce apexification. A 10-year-old boy was referred to our department for emergency treatment of dentoalveolar trauma to the maxillary central incisors. After clinical and radiographic examination, the teeth were surgically repositioned and rigidly fixed. Three months later, a pulp vitality test of both teeth elicited a negative response. Endodontic therapy with an MTA plug was used to induce apexification as root formation was incomplete. The root canals were then filled. Clinical and radiographic examination was then performed again at 2 and 4 months later. The MTA apical plug was effective in inducing apexification and maintaining both teeth.

  18. Root perforations treatment using mineral trioxide aggregate and Portland cements.

    Science.gov (United States)

    Silva Neto, José Dias da; Brito, Rafael Horácio de; Schnaider, Taylor Brandão; Gragnani, Alfredo; Engelman, Mírian; Ferreira, Lydia Masako

    2010-12-01

    Clinical, radiological and histological evaluation of root perforations treated with mineral trioxide aggregate (MTA) or Portland cements, and calcium sulfate barrier. One molar and 11 premolar teeth of a male mongrel dog received endodontic treatment and furcations were perforated with a high-speed round bur and treated with a calcium sulfate barrier. MTA, Portland cement type II (PCII) and type V (PCV), and white Portland cement (WPC) were used as obturation materials. The teeth were restored with composite resin and periapical radiographs were taken. The animal was euthanized 120 days post-surgery for treatment evaluation. Right lower first premolar (MTA), right lower third premolar (PCV), left lower second premolar (MTA), and right lower second premolar (WPC): clinically normal, slightly radio-transparent area on the furcation, little inflammatory infiltrate, and new-bone formation. Left lower third premolar (PCII), right upper first premolar (WPC), right upper third premolar (PCII), and left upper first molar (PCV): clinically normal, radiopaque area on the furcation, and new-bone formation. Right upper second premolar (MTA), left upper second premolar (WPC), left upper third premolar (PCII): presence of furcation lesion, large radiolucent area, and intense inflammatory infiltrate. All obturation materials used in this study induced new-bone formation.

  19. Gasochromic property of dehydrogenation-catalyst loaded tungsten trioxide

    Science.gov (United States)

    Hakoda, Teruyuki; Igarashi, Hidetoshi; Isozumi, Yukihiro; Yamamoto, Shunya; Aritani, Hirofumi; Yoshikawa, Masahito

    2013-02-01

    The gasochromic property of dehydrogenation-catalyst loaded tungsten trioxide (M/WO3) powders was examined in exposure to gaseous cyclohexane under different kinds and contents of catalysts, catalyst temperatures, and cyclohexane concentrations. The change in the intensity of visible lights reflected from the M/WO3 powders was in situ obtained using a portable visible-light spectrometer associating with the analysis of dehydrogenation products when M/WO3 powders were exposed to cyclohexane gas. The catalyst of Pt was a catalyst initiating dehydrogenation and change of reflected light intensity at lower temperatures in comparison with the catalysts of Pd and Rh. Among 0.1, 0.5, and 1 wt% Pt/WO3 powders, 0.5 wt% Pt/WO3 powders demonstrated large change of reflected 640-nm lights, 5.4%, to visually detect their coloration at lower temperatures. The heating of 0.5 wt% Pt/WO3 powders at temperatures higher than 130 °C was required to visually detect cyclohexane at a concentration of 1 vol%, lower than the combustion lower limit (1.3 vol%). The quantitative analysis of hydrogen species such as hydrogen atoms and ions absorbed in 0.1-1 wt% Pt/WO3 powders demonstrated that Pt/WO3 powders would absorb the same amount of hydrogen species independent of loaded-Pt contents.

  20. MİNERAL TRiOXiDE AGGREGATE: LİTERATÜR DERLEMESİ

    OpenAIRE

    TUNÇ, Yrd. Doç. Dr. Emine ŞEN; ÇETİNER, Prof. Dr. Serap

    2014-01-01

    Mineral trioxide aggregate (MTA) di hekimli4ine yeni tan t lan materyallerden biridir. Mineral trioxide aggregate ba lang çta periapikal cerrahi uygulamalar nda kök kanal sistemi ile çevre dokular aras ndaki ili kiyi engellemede kullan lmak üzere, kök ucu dolgu maddesi olarak geli tirilmi tir. Materyal günümüzde kök ucu dolgusu, direkt pulpa kuafaj ,perforasyonlar n n tamiri ve apeksifikasyon gibi farklklinik uygulamalarda da kullan lmaktad r. Bu literatür derlemesinde, MTA’n n kimyasal, fizi...

  1. Synergistic effect of oxygen vacancy and nitrogen doping on enhancing the photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3} nanosheets with exposed {0 0 1} facets for the degradation of organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yafei [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Zhu, Gangqiang, E-mail: zgq2006@snnu.edu.cn [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Hojamberdiev, Mirabbos [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Department of Natural and Mathematic Sciences, Turin Polytechnic University in Tashkent, Kichik Halqa Yo’li 17, Tashkent 100095 (Uzbekistan); Gao, Jianzhi [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China); Hao, Jing [Xi' an Rejee Industry Development Co., Ltd., Xi’an 710016 (China); Zhou, Jianping; Liu, Peng [School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062 (China)

    2016-05-15

    Highlights: • Nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} flower-like microstructures were synthesized by hydrothermal method. • Surface oxygen vacancy were obtained by irradiating the nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} with UV light. • Photocatalytic activity was studied by degrading Rhodamine B. • A synergistic effect between oxygen vacancy and nitrogen doping in Bi{sub 2}O{sub 2}CO{sub 3}. - Abstract: Single-crystalline bare Bi{sub 2}O{sub 2}CO{sub 3} (BOC) nanosheets with exposed {0 0 1} facets and nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} (NBOC) flower-like microstructures were synthesized by a simple hydrothermal method. The nitrogen-doped Bi{sub 2}O{sub 2}CO{sub 3} flower-like microstructures with oxygen vacancy (UV-NBOC) were obtained by irradiating the NBOC microstructures with UV light for 2 h in ethanol. The UV–vis diffuse reflectance spectra showed that the NBOC and UV-NBOC nanosheets exhibit an obvious red shift in light absorption band compared with the pure BOC nanosheets. Rhodamine B (RhB) was chosen as a model organic pollutant to verify the influence of oxygen vacancy and nitrogen doping on the photocatalytic activity of Bi{sub 2}O{sub 2}CO{sub 3} under simulated solar light irradiation. Judging from the kinetics of RhB photodegradation over the synthesized samples, a synergistic effect between oxygen vacancy and nitrogen doping was found with a remarkable increase (more than 10 and 2 times) in the photocatalytic activity of UV-NBOC compared with BOC and NBOC, respectively. Moreover, the UV-NBOC also exhibited an excellent cyclability and superior photocatalytic activity toward degradation of other organic pollutants (methylene blue, Congo red, Bisphenol A) under simulated solar light irradiation.

  2. Mechanisms of synergistic skin penetration by sonophoresis and iontophoresis.

    Science.gov (United States)

    Hikima, Tomohiro; Ohsumi, Shinya; Shirouzu, Kenta; Tojo, Kakuji

    2009-05-01

    The mechanism of skin penetration enhancement by ultrasound under sonophoresis (US) or by an electrical field under iontophoresis (IP) was investigated using hairless mouse skin in vitro. The seven model chemicals with different molecular weights (122-1485) were dissolved in a hydrophilic gel. Donor gel with the chemicals was loaded on the skin surface and then the skin was treated with US (300 kHz, 5.2 W/cm(2), 5.4% duty-cycle) and IP (0.32+/-0.03 mA/cm(2)) individually or with US and IP in combination (US+IP). The penetration profiles of the chemicals with a molecular weight of less than 500 were influenced by the presence of an electric charge, the profiles of ionized chemicals for US+IP were the same as profiles for IP, while the penetration flux of a non-ionized chemical synergistically increased with US+IP compared with the individual flux of US and IP. The chemicals with molecular weight of more than 1000 showed synergistic effects with US+IP. The mathematical simulation assuming a bilayer skin model revealed that the synergistic effects were mainly influenced by electroosmosis in the stratum corneum (SC). Therefore the synergistic effects of US+IP was mainly caused by the SC diffusivity of chemicals increased by US and the electroosmotic water flow by IP application.

  3. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  4. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  5. Particle size changes in unsealed mineral trioxide aggregate powder.

    Science.gov (United States)

    Ha, William N; Kahler, Bill; Walsh, Laurence James

    2014-03-01

    Mineral trioxide aggregate (MTA) is commonly supplied in 1-g packages of powder that are used by some clinicians across several treatments against the manufacturer's instructions. ProRoot MTA cannot be resealed after opening, whereas MTA Angelus has a resealable lid. This study assessed changes in particle size distribution once the packaging had been opened. Fresh ProRoot MTA and MTA Angelus powder were analyzed by using laser diffraction and scanning electron microscopy and compared with powder from packages that had been opened once and kept in storage for 2 years. The ProRoot packet was folded over, whereas the MTA Angelus jar had the lid twisted back to its original position. After 2 years, ProRoot MTA powder showed a 6-fold increase in particle size (lower 10% from 1.13 to 4.37 μm, median particle size from 1.99 to 12.87 μm, and upper 10% from 4.30 to 34.67 μm), with an accompanying 50-fold change in particle surface area. MTA Angelus showed only a 2-fold increase in particle size (4.15 to 8.32 μm, 12.72 to 23.79 μm, and 42.66 to 47.91 μm, respectively) and a 2-fold change in particle size surface area. MTA reacts with atmospheric moisture, causing an increase in particle size that may adversely affect the properties and shelf life of the material. Smaller particles have a greater predisposition to absorb moisture. Single-use systems are advised. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Mineral trioxide aggregate and Portland cement promote biomineralization in vivo.

    Science.gov (United States)

    Dreger, Luonothar Antunes Schmitt; Felippe, Wilson Tadeu; Reyes-Carmona, Jessie Fabiola; Felippe, Gabriela Santos; Bortoluzzi, Eduardo Antunes; Felippe, Mara Cristina Santos

    2012-03-01

    Mineral trioxide aggregate (MTA) and Portland cement have been shown to be bioactive because of their ability to produce biologically compatible carbonated apatite. This study analyzed the interaction of MTA and white Portland cement with dentin in vivo. Seventy-two human dentin tubes were filled with MTA Branco, MTA BIO, and white Portland cement + 20% bismuth oxide (PC1) or PC1 + 10% of calcium chloride (PC2) and implanted subcutaneously in 18 rats at 4 sites from the dorsal area. Empty dentin tubes, implanted in rats of a pilot study, were used as control. After 30, 60, and 90 days, the animals were killed, and the dentin tubes were retrieved for scanning electron microscope analysis. In the periods of 30 and 60 days, the mineral deposition in the material-dentin interface (interfacial layer) and in the interior of dentinal tubules was detected in more tubes filled with MTA Branco and MTA BIO than in tubes filled with PC1 and PC2. After 90 days, the interfacial layer and intratubular mineralization were detected in all tubes except for 3 and 1 of the tubes filled with PC2, respectively. It was concluded that all the cements tested were bioactive. The cements released some of their components in the tissue capable of stimulating mineral deposition in the cement-dentin interface and in the interior of the dentinal tubules. MTA BIO and MTA Branco were more effective in promoting the biomineralization process than Portland cements, mainly after 30 and 60 days. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.

    Science.gov (United States)

    Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui

    2018-04-25

    A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.

  8. Synergistic chemopreventive effects of nobiletin and atorvastatin on colon carcinogenesis.

    Science.gov (United States)

    Wu, Xian; Song, Mingyue; Qiu, Peiju; Rakariyatham, Kanyasiri; Li, Fang; Gao, Zili; Cai, Xiaokun; Wang, Minqi; Xu, Fei; Zheng, Jinkai; Xiao, Hang

    2017-04-01

    Different cancer chemopreventive agents may act synergistically and their combination may produce enhanced protective effects against carcinogenesis than each individual agent alone. Herein, we investigated the chemopreventive effects of nobiletin (NBT, a citrus polymethoxyflavone) and atorvastatin (ATST, a lipid-lowering drug) in colon cancer cells/macrophages and an azoxymethane (AOM)-induced colon carcinogenesis rat model. The results demonstrated that co-treatments of NBT/ATST produced enhanced growth inhibitory and anti-inflammatory effects on the colon cancer cells and macrophages, respectively. Isobologram analysis confirmed that these interactions between NBT and ATST were synergistic. NBT/ATST co-treatment also synergistically induced extensive cell cycle arrest and apoptosis in colon cancer cells. Oral administration of NBT (0.1%, w/w in diet) or ATST (0.04%, w/w in diet) significantly decreased colonic tumor incidence and multiplicity in AOM-treated rats. Most importantly, co-treatment of NBT/ATST at their half doses (0.05% NBT + 0.02% ATST, w/w in diet) resulted in even stronger inhibitory effects on colonic tumor incidence and multiplicity than did NBT or ATST alone at higher doses. Statistical analysis confirmed that the enhanced chemopreventive activities against colon carcinogenesis in rats by the NBT/ATST combination were highly synergistic. Our results further demonstrated that NBT/ATST co-treatment profoundly modulated key cellular signaling regulators associated with inflammation, cell proliferation, cell cycle progression, apoptosis, angiogenesis and metastasis in the colon of AOM-treated rats. In conclusion, for the first time, our results demonstrated a strong synergy in inhibiting colon carcinogenesis produced by the co-treatment of NBT and ATST, which provided a scientific basis for using NBT in combination with ATST for colon cancer chemoprevention in humans. © The Author 2017. Published by Oxford University Press. All rights reserved

  9. Ab initio study on the paths of oxygen abstraction of hydrogen trioxide

    Indian Academy of Sciences (India)

    Keywords. Ab initio calculations; atmospheric chemistry; hydrogen trioxide; acid rain. 1. Introduction. Processes such as volcanic eruptions, biogenic activi- ty, and the combustion of fossil fuels are resources for the emission of sulphur gases into the atmosphere. Sul- phur has been recognized as an important constituent of.

  10. Studying arsenic trioxide-induced apoptosis of Colo-16 cells with ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... induced apoptosis at the single cell level. Key words: Two-photon laser scanning microscopy, confocal laser scanning microscopy, human skin squamous carcinoma cells (Colo-16 cells), arsenic trioxide, apoptosis. INTRODUCTION. Although arsenic is poisonous and chronic arsenic exposure from ...

  11. The potential DNA toxic changes among workers exposed to antimony trioxide.

    Science.gov (United States)

    El Shanawany, Safaa; Foda, Nermine; Hashad, Doaa I; Salama, Naglaa; Sobh, Zahraa

    2017-05-01

    Occupational exposure to antimony has gained much interest when specific toxic effects were noticed among workers processing antimony. Thus, the aim of the present work was to investigate the potential DNA oxidative damage occurring among Egyptian workers occupationally exposed to antimony trioxide. The study was conducted on 25 subjects exposed to antimony trioxide while working in the polymerization process of polyester in Misrayon and Polyester Fiber Company, KafrEldawwar, Beheira, Egypt. Urinary antimony levels were assessed using inductive coupled plasma-optical emission spectrometry (ICP-OES) and considered as a biological exposure index. DNA damage and total oxidant capacity (TOC) were assessed using ELISA. DNA damage was detected in the form of increased apurinic/apyrimidinic (AP) sites among antimony trioxide-exposed workers compared to control subjects, but it could not be explained by oxidative mechanisms due to lack of significant correlation between DNA damage and measured TOC. Antimony trioxide might have a genotoxic impact on occupationally exposed workers which could not be attributed to oxidative stress in the studied cases.

  12. Outcome of direct pulp capping with mineral trioxide aggregate: a prospective study

    NARCIS (Netherlands)

    Marques, M.S.; Wesselink, P.R.; Shemesh, H.

    2015-01-01

    Introduction The aim of this experimental study was to assess the outcome of direct pulp capping with mineral trioxide aggregate (MTA) after complete excavation of caries in permanent dentition with a 2-visit treatment protocol. Methods Sixty-four teeth with deep carious lesions were consecutively

  13. Use of a matrix for apexification procedure with mineral trioxide aggregate

    Science.gov (United States)

    Khatavkar, Roheet A; Hegde, Vivek S

    2010-01-01

    This articles describes a technique for placement of a matrix barrier prior to use of mineral trioxide aggregate (MTA) as an artificial root-end barrier. The technique also demonstrates the use of a delivery system utilizing large-bore needles for the predictable and precise placement of the barrier materials at the apex of the tooth. PMID:20582221

  14. Studying arsenic trioxide-induced apoptosis of Colo-16 cells with ...

    African Journals Online (AJOL)

    nj tonukari

    2011-10-10

    Oct 10, 2011 ... serious toxicity, arsenic has been used therapeutically for more than 2,400 years (Klaassen, 1996); in traditional. Chinese medicine, arsenic trioxide (As2O3) is used to treat syphilis, rheumatosis, and psoriasis (Shen et al.,. 1997). Recent researches demonstrate that As2O3 induces partial cytodifferentiation ...

  15. Electrical and optical properties of mixed phase tungsten trioxide films grown by laser pyrolysis

    CSIR Research Space (South Africa)

    Govender, M

    2014-02-01

    Full Text Available Laser pyrolysis was chosen to synthesize tungsten trioxide starting with tungsten ethoxide precursor. The film was found to have a thickness that varied from 205 nm to 1 µm. X-ray diffraction and Raman spectroscopy confirmed the presence of a...

  16. Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Ren, Dawei

    that the plasmid host range can be greatly affected by the surrounding bacterial community. This needs to be taken into account as many antibiotic resistance and virulence determinants are plasmid-encoded, which can spread further and raise antibiotic-resistant bacteria in soil....... bacterial species, the study to elucidate the impact of interaction networks on the multispecies biofilms in natural ecosystems, especially in soil, is still at an early stage. The diverse patterns of interactions within the mixed communities as well as the predatorprey relationship between protozoa...... interactions in this four-species biofilm model community. Manuscript 2 presents the further application of this developed approach on evaluating the synergistic/antagonistic interactions in multispecies biofilms composed of seven soil isolates. 63% of the four-species biofilms were found to interact...

  17. Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Ren, Dawei

    structured aggregation consisting of multiple species of bacteria whose function relies on a complex web of cooperative and/or competitive interactions between community members, indicating that research in “whole-entity” should not be based on the assembled results from “mono pieces”. As one of the best...... bacterial species, the study to elucidate the impact of interaction networks on the multispecies biofilms in natural ecosystems, especially in soil, is still at an early stage. The diverse patterns of interactions within the mixed communities as well as the predatorprey relationship between protozoa...... interactions in this four-species biofilm model community. Manuscript 2 presents the further application of this developed approach on evaluating the synergistic/antagonistic interactions in multispecies biofilms composed of seven soil isolates. 63% of the four-species biofilms were found to interact...

  18. Treatment outcome of mineral trioxide aggregate in open apex teeth.

    Science.gov (United States)

    Mente, Johannes; Leo, Meltem; Panagidis, Dimos; Ohle, Marc; Schneider, Sven; Lorenzo Bermejo, Justo; Pfefferle, Thorsten

    2013-01-01

    This cohort study is the second phase of a previously reported trial. The primary aim was to assess the outcome of the treatment of teeth with open apices managed by the orthograde placement of mineral trioxide aggregate (MTA) apical plugs. The secondary goal was to identify potential outcome factors for this kind of treatment with a larger sample size and longer follow-up periods than in the first phase of the project. Two hundred twenty-one patients who had been treated between 2000 and 2010 were contacted for follow-up examination 12-128 months after treatment (median, 21 months). At the time of treatment, these patients presented a total of 252 teeth with open apices caused by apical root resorption or excessive apical enlargement or with immature apices. Treatment was performed by supervised undergraduate students (12% of teeth), general dentists (49%), and dentists whose practice was limited to endodontics (39%). The investigated outcome relied on clinical and radiographic criteria and was dichotomized as healed or diseased. Of 252 examined teeth (88% recall rate), 90% were healed. Teeth with and without preoperative periapical radiolucencies demonstrated healed rates of 85% and 96%, respectively. Forty-five percent of the teeth (113/252) were followed up at least 2 years later and 21% (53/252) at least 4 years later. Univariate survival analyses identified 4 prognostic factors: preoperative apical periodontitis, the experience of the treatment providers, the number of treatment sessions, and the apical extrusion of MTA. Multiple regression analyses confirmed an increased risk of disease for teeth with preoperative apical periodontitis (hazard ratio = 4.59; 95% confidence interval, 1.57-13.4; P = .005). In addition, the experience of the treatment provider was found to influence the outcome (hazard ratio = 0.25; 95% confidence interval, 0.09-0.75; P = .03). Orthograde placement of MTA apical plugs appears to be a promising treatment option for teeth with open

  19. Synergistic Smart Fuel For Microstructure Mediated Measurements

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-07-01

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using “radiation hardened” sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  20. Synergistic neurotrophic effects of piracetam and thiotriazoline

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2016-01-01

    Full Text Available The paper considers the synergy between the nootropic drug piracetam and the metabolic agent thiotriazoline that maintains energy metabolism and survival of neurons and other types of cells. Piracetam, a nootropic drug, a chemical pyrrolidone derivative, is used in neurological, psychiatric, and narcological practice. There is evidence on the positive effect of piracetam in elderly and senile patients with coronary heart disease. This drug is supposed to stimulate redox processes, to enhance glucose utilization, and to improve regional blood flow in the ischemic brain regions. Due to its action, the drug activates glycolytic processes and elevates ATP concentrations in brain tissue. Thiotriazoline is a compound that has antioxidant, anti-ischemic properties. The co-administration of piracetam and thiothriazoline is an innovation area in the treatment of stroke and other brain damages, especially in insulin resistance and high blood glucose levels. The paper considers the neurobiological properties of thiotriazoline and piracetam, which synergistically exert neuroprotective and neurotrophic effects.

  1. Synthesis and Characterization of WO3/Graphene Nanocomposites for Enhanced Photocatalytic Activities by One-Step In-Situ Hydrothermal Reaction

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Hu

    2018-01-01

    Full Text Available Tungsten trioxide (WO3 nanorods are synthesized on the surface of graphene (GR sheets by using a one-step in-situ hydrothermal method employing sodium tungstate (Na2WO4·2H2O and graphene oxide (GO as precursors. The resulting WO3/GR nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirm that the interface between WO3 nanorod and graphene contains chemical bonds. The enhanced optical absorption properties are measured by UV-vis diffuse reflectance spectra. The photocatalytic activity of the WO3/GR nanocomposites under visible light is evaluated by the photodegradation of methylene blue, where the degradation rate of WO3/GR nanocomposites is shown to be double that of pure WO3. This is attributed to the synergistic effect of graphene and the WO3 nanorod, which greatly enhances the photocatalytic performance of the prepared sample, reduces the recombination of the photogenerated electron-hole pairs and increases the visible light absorption efficiency. Finally, the photocatalytic mechanism of the WO3/GR nanocomposites is presented. The synthesis of the prepared sample is convenient, direct and environmentally friendly. The study reports a highly efficient composite photocatalyst for the degradation of contaminants that can be applied to cleaning up the environment.

  2. Silica ecosystem for synergistic biotransformation

    Science.gov (United States)

    Mutlu, Baris R.; Sakkos, Jonathan K.; Yeom, Sujin; Wackett, Lawrence P.; Aksan, Alptekin

    2016-06-01

    Synergistical bacterial species can perform more varied and complex transformations of chemical substances than either species alone, but this is rarely used commercially because of technical difficulties in maintaining mixed cultures. Typical problems with mixed cultures on scale are unrestrained growth of one bacterium, which leads to suboptimal population ratios, and lack of control over bacterial spatial distribution, which leads to inefficient substrate transport. To address these issues, we designed and produced a synthetic ecosystem by co-encapsulation in a silica gel matrix, which enabled precise control of the microbial populations and their microenvironment. As a case study, two greatly different microorganisms: Pseudomonas sp. NCIB 9816 and Synechococcus elongatus PCC 7942 were encapsulated. NCIB 9816 can aerobically biotransform over 100 aromatic hydrocarbons, a feat useful for synthesis of higher value commodity chemicals or environmental remediation. In our system, NCIB 9816 was used for biotransformation of naphthalene (a model substrate) into CO2 and the cyanobacterium PCC 7942 was used to provide the necessary oxygen for the biotransformation reactions via photosynthesis. A mathematical model was constructed to determine the critical cell density parameter to maximize oxygen production, and was then used to maximize the biotransformation rate of the system.

  3. Synergistic combination dry powders for inhaled antimicrobial therapy

    Science.gov (United States)

    Heng, Desmond; Lee, Sie Huey; Teo, Jeanette; Ng, Wai Kiong; Chan, Hak-Kim; Tan, Reginald B. H.

    2013-06-01

    Combination products play an important role in medicine as they offer improved clinical effectiveness, enhanced patient adherence, and reduced administrative costs. In combination antimicrobial therapy, the desired outcome is to extend the antimicrobial spectrum and to achieve a possible synergistic effect. However, adverse antagonistic species may sometimes emerge from such combinations, leading to treatment failure. Therefore, it is crucial to screen the drug candidates for compatibility and possible antagonistic interactions. This work aims to develop a novel synergistic dry powder inhaler (DPI) formulation for antimicrobial combination therapy via the pulmonary route. Binary and ternary combinations were prepared via spray drying on a BUCHI® Nano Spray Dryer B-90. All powders were within the respirable size range, and were consisted of spherical particles that were slightly corrugated. The powers yielded fine particle fractions (of the loaded dose) of over 40% when dispersed using an Aerolizer® DPI at 60 L/min. Time-kill studies carried out against common respiratory tract pathogenic bacteria Pseudomonas aeruginosa, Staphylococcus aureus, Klebsiella pneumonia and Acinetobacter baumannii at 1x the minimum inhibitory concentration (MIC) over 24 hours revealed no antagonistic behavior for both combinations. While the interactions were generally found to be indifferent, a favorable synergistic effect was detected in the binary combination when it was tested against Pseudomonas aeruginosa bacteria.

  4. Arsenic trioxide decreases the amount and inhibits the function of regulatory T cells, which may contribute to its efficacy in the treatment of acute promyelocytic leukemia.

    Science.gov (United States)

    Xu, Wen; Li, Xiaoxia; Quan, Lina; Yao, Jiying; Mu, Guannan; Guo, Jingjie; Wang, Yitong

    2018-03-01

    Arsenic trioxide (ATO) exhibits substantial clinical efficacy in the treatment of acute promyelocytic leukemia (APL). Here, we investigated whether ATO exerts its efficacy by affecting regulatory T (Treg) cells. We determined whether ATO treatment influenced the amount and function of purified Treg cells. We also examined the effect of ATO treatment on Treg cells from APL patients. ATO treatment induced apoptosis in purified Treg cells and dampened the inhibition of effector T (Teff) cells proliferation and the secretion of cytokine by Treg cells. Treg cell levels in the peripheral blood and serum IL-10 levels were dramatically decreased in APL patients after single ATO treatment. In summary, our results show that ATO decreases the amount and inhibits the function of Treg cells, thereby enhancing Teff cell function and overall anti-tumor immunity.

  5. The Characteristics of Mineral Trioxide Aggregate/Polycaprolactone 3-dimensional Scaffold with Osteogenesis Properties for Tissue Regeneration.

    Science.gov (United States)

    Chiu, Yung-Cheng; Fang, Hsin-Yuan; Hsu, Tuan-Ti; Lin, Cheng-Yao; Shie, Ming-You

    2017-06-01

    The aim of this study was to investigate whether the mineral trioxide aggregate/polycaprolactone (MTA/PCL) hybrid 3-dimensional (3D) scaffold supplies a suitable microenvironment for the osteogenic differentiation of human dental pulp cells (hDPCs) and to further consider the effect of the MTA/PCL composite on the biological performance of hybrid scaffolds. MTA was suspended in absolute alcohol and dropped slowly into PCL that was generated with the printable MTA-matrix. Then, the MTA/PCL composite was prepared into highly uniform scaffolds with controlled macropore sizes and structure using a 3D printing technique. Mechanical properties and the apatite precipitation of the scaffolds were evaluated as well as the cell response to the scaffolds by culturing hDPCs. The results showed that the MTA/PCL 3D scaffold had uniform, 450-μm, high-porosity (70%) macropores and a compressive strength of 4.5 MPa. In addition, the MTA/PCL scaffold could effectively promote the adhesion, proliferation, and differentiation of hDPCs. The 3D-printed MTA/PCL scaffolds not only exhibited excellent physical and chemical properties but also enhanced osteogenesis differentiation. All of the results support the premise that this MTA/PCL porous scaffold would be a useful biomaterial for application in bone tissue engineering. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  7. Statistical metamodeling for revealing synergistic antimicrobial interactions.

    Directory of Open Access Journals (Sweden)

    Hsiang Chia Chen

    2010-11-01

    Full Text Available Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.

  8. SYNERGISTIC WOOD PRESERVATIVES FOR REPLACEMENT OF CCA

    Science.gov (United States)

    The objective of this project was to evaluate the potential synergistic combinations of environmentally-safe biocides as wood preservatives. These wood preservatives could be potential replacements for the heavy-metal based CCA.Didecyldimethylammonium chloride [DDAC] was...

  9. Tungsten Trioxide/Zinc Tungstate Bilayers: Electrochromic Behaviors, Energy Storage and Electron Transfer

    International Nuclear Information System (INIS)

    Wei, Huige; Ding, Daowei; Yan, Xingru; Guo, Jiang; Shao, Lu; Chen, Haoran; Sun, Luyi; Colorado, Henry A.; Wei, Suying; Guo, Zhanhu

    2014-01-01

    Highlights: • Tungsten oxide and zinc tungstate bilayers have been prepared via a facile sol-gel method for integrated applications of electrochromic behaviors and energy storage;. • Electron transfer behaviors between the semiconductor bilayer films have been found dependent on the bilayer assembly sequence;. • Methylene blue (MB) has been employed for the first time as an indicator to study the electron transfer phenomenon in the bilayer films. - Abstract: Pair-sequentially spin-coated tungsten trioxide (WO 3 ) and zinc tungstate (ZnWO 4 ) bilayer films onto indium tin oxide (ITO) coated glass slides have been prepared via sol-gel methods followed by annealing. The bilayers (ZnWO 4 /WO 3 denoting the bilayer film with the inner layer of ZnWO 4 and the outer layer of WO 3 on the ITO while WO 3 /ZnWO 4 standing for the bilayer film with the inner layer of WO 3 and the outer layer of ZnWO 4 on the ITO) exhibit integrated functions of electrochromic and energy storage behaviors as indicated by the in situ spectroelectrochemistry and cyclic voltammetry (CV) results. Accordingly, blue color was observed for the bilayer films at -1 V in 0.5 M H 2 SO 4 solution. An areal capacitance of 140 and 230 μF/cm 2 was obtained for the ZnWO 4 /WO 3 , and WO 3 /ZnWO 4 film, respectively, at a scan rate of 0.05 V/s in the CV measurements. The CV results also unveiled the electron transfer behavior between the semiconductor films in the oxidation process, suggesting a sequence-dependent electrochemical response in the bilayer films. Meanwhile, methylene blue (MB) was used as an indicator to study the electron transfer phenomenon during the reduction process at negative potentials of -0.4 and -0.8 V, in 0.5 M Na 2 SO 4 . The results indicated that the electrons transfer across the bilayers was enhanced at more negative potentials

  10. Intrinsic synergistic-topological mechanism versus synergistic-topological matrix in microtubule self-organization

    Directory of Open Access Journals (Sweden)

    Buljan Vlado A

    2014-12-01

    Overall our data indicate that under crowded conditions in vitro, the self-organization of a microtubule fiber is governed by an intrinsic synergistic-topological mechanism, which in conjunction with the topological changes, GTP-tubulin depletion, and cooperative motion of fiber constituting microtubules, may generate and maintain a ‘synergistic-topological matrix’. Failure of the mechanism to form biologically feasible microtubule synergistic-topological matrix may, per se, precondition tumorigenesis.

  11. [Periapical regeneration. About one case of necrotic immature tooth treated with mineral trioxide aggregate (MTA)].

    Science.gov (United States)

    Dhaimy, S; Lahlou, K; Karami, M; Elmerini, H; Elouazzani, A

    2013-09-01

    Therapeutic of apexification with calcium hydroxide has been extensively used in clinical practice, but this technique has some drawbacks (long duration of treatment, weakening of the radicular walls). Different studies have proposed to close the apex opened with MTA (Mineral trioxide Aggregate) which is biocompatible, bacteriostatic, this material induces regeneration of the periapical region through the formation of cementum, bone and periodontal ligament (1, 2). This case report describes the technique of setting up in a single step of the Mineral trioxide Aggregate as an apical barrier for immature permanent roots. This method has allowed us an immediate apical sealing and a root canal filling and a coronary restore permanently as soon as possible. The radiological control confirmed that this type of apexification could be successful with periapical regeneration ad-integrum.

  12. Success Rate of Formocresol Pulpotomy versus Mineral Trioxide Aggregate in Human Primary Molar Tooth

    Directory of Open Access Journals (Sweden)

    S E Jabbarifar

    2004-12-01

    Full Text Available Background: In spite of long time and broad use of formaldehyde derivates (Fixation agent in primary tooth pulp treatment, There is some concerns about these derivates such as variability, inconsistency success rate, mutagenicity, cytotoxicity, alergenicity, and some other potential health hazards of them. Therefore other alternative pulpotomy procedures like Bioactive glass (BAG, Glutaraldehyde (2%, Hydroxyappetite (HA, Bone dried freezed (BDF, ferric sulfate (15%, laser, Electrosurgery (ES, Bone Morphogenic proteins (BMP, recombinant protein-1 (RP1, and Mineral Trioxide Aggregate (MTA have been compared. The purpose of this clinical trial is to assess radiographic and clinical success rate of Formocresol (FC pulpotomy in compare with MTA in human primary molar teeth. Methods: 64 molars were pulpotomized equally and randomly with mineral trioxide Aggregate and Formocresol. Prior to trial, we defined a case as failure, when one or more of the events such as external root resorption, internal root resorption, periapical and furca lucency, pain, swelling, mobility, dental abscess, or early extraction appeared. Every treated tooth was defined as successful, if any noted evident was not shown. Results: Totally, 60 teeth treatment (92.2 percent were successful and 7.8 percent were failed. Failure and success rates for MTA group were 6.3 and 93.7 percent, respectively. Failure and success rates in FC group were 8.4 and 90.2 percent respectively. The difference between MTA and FC treatment methods was not significant (Fisher Exact test. Conclusion: Findings of this study show that mineral trioxide aggregate can be an alternative procedure for FC pulpotomy of primary tooth. Keywords: Mineral trioxide aggregate, formocresol, pulpotomy, success and failure rate.

  13. Treatment of the pulp of the immature tooth apexification with Mineral Trioxide Aggregate

    OpenAIRE

    Velásquez Reyes, Víctor; Departamento Académico de Estomatología Pediatrica.; Álvarez Páucar, María; Departamento Académico de Estomatología Pediatrica.

    2014-01-01

    This article reviews main publications about Mineral Trioxide Aggregate (MTA) for its use and application in dental pulp treatments for young permanent teeth (immature apices) such as apexification. First, MTA cement was used to resolve a complication of root perforations, as well as retrograde fillings. Besides, it has features that differentiate it from Portland cement. For choosing treatment for pulpa1 injury in non-vital and vital teeth, we review root formation process from embryological...

  14. Clinical use of mineral trioxide aggregate (MTA) in periapical lesions and the treatment of root perforations

    OpenAIRE

    Pineda Mejía, Martha Elena; Departamento Académico Estomatología Rehabilitadora, Facultad Odontología, UNMSM.; Silva Infantes, Manuel; Departamento Académico Medico Quirúrgico, Facultad Odontología, UNMSM.; Salcedo Moncada, Doris; Departamento Académico Estomatología Rehabilitadora, Facultad Odontología, UNMSM.; Castro Rodríguez, Antonia; Departamento Académico de Estomatologia Biosocial, Facultad Odontología, UNMSM.; Terán Casafranca, Liliana; Departamento Académico Estomatología Rehabilitadora, Facultad Odontología, UNMSM.; Ortiz Cárdenas, Eduardo; Departamento Académico Estomatología Rehabilitadora, Facultad Odontología, UNMSM.; Ochoa Tataje, Julio; Departamento Académico Estomatología Rehabilitadora, Facultad Odontología, UNMSM.; Gaitán Velásquez, Jorge; Departamento Académico Estomatología Rehabilitadora, Facultad Odontología, UNMSM.; Watanabe Velásquez, Romel; Departamento Académico Estomatología Rehabilitadora, Facultad Odontología, UNMSM.

    2014-01-01

    The use of MTA cement (mineral trioxide aggregate) to solve endodontics treatment complications, like pulpar floor camera perforations during root canal treatment, as well as a retrograde obturation material of apicectomy treatment, was the purpose of this investigation. White MTA Angelus, (Industria de productos odontologicos Ltda. Londrina-PR-Brazil) was used wich has 10 – 15 minutes as initial and final hardening time. The radiopacity showed by the material was somewhat superior to that of...

  15. Surgical management of iatrogenic perforation in maxillary central incisor using mineral trioxide aggregate

    Science.gov (United States)

    Nagpal, Rajni; Manuja, Naveen; Pandit, I K; Rallan, Mandeep

    2013-01-01

    Root perforations are undesired complications of endodontic treatment. The repair of root perforation can be accomplished using different materials and techniques. Mineral trioxide aggregate (MTA) is widely used to seal perforations because of its biocompatibility and sealability. This article describes a case report where an iatrogenic root perforation was repaired successfully with MTA in maxillary right central incisor of a 13-year-old boy. PMID:23845686

  16. Expression of mineralization markers during pulp response to biodentine and mineral trioxide aggregate.

    OpenAIRE

    Dalto é, Mariana O.; Paula-Silva, Francisco Wanderley G.; Faccioli, Lucia H.; Gatón Hernández, Patrícia; Rossi, Andiara de; Silva, Léa Assed Bezerra da

    2016-01-01

    INTRODUCTION: The purpose of this study was to compare the cell viability of dental pulp cells treated with Biodentine (Septodont, Saint-Maur, France) and mineral trioxide aggregate (MTA) and the in vitro and in vivo expression of mineralization markers induced by the 2 materials. METHODS: Human dental pulp cells isolated from 6 permanent teeth were stimulated with Biodentine and MTA extracts. Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromid...

  17. [Detection of gene expression alteration of myeloma cells treated with arsenic trioxide].

    Science.gov (United States)

    Li, Cui-Lian; Chen, Shi-Lun; Chen, Wen-Ming; Liu, Jing-Zhong; Xiao, Bai; Zhang, Hai-Bo

    2005-04-01

    To investigate the effect of arsenic trioxide on multiple myeloma (MM) cell gene expression and explore the molecular mechanism of arsenic trioxide therapy for MM. U266 cells were divided into two groups, group A as control group and group B as test group. Cells were cultured for 48 hours, and total RNA and mRNA were extracted. Suppression subtractive hybridization (SSHs) was performed to distinguish the differentially expressed genes. The products were cloned into pGEM-T Easy Vector, and transfected into the competent host JM109 to construct two subtractive libraries. Positive colonies were selected by blue-white screening, and the plasmids were extracted. Homologous comparison was conducted in GenBank. Five downregulated clones were isolated in the first SSH: (1) Aminopeptidase N, (2) Homosapiens tumor translationally-controlled protein 1, (3) Human ATP synthetase A chain, (4) Signal recognition particle A10, (5) Mitochondrial ATP synthetase/ATPase subunit 6. Four upregulated clones were isolated in the second SSH: (1) Calcium-binding protein A10, (2) Keratin 6A, (3) 45 kD MIP repetitive element containing splicing factor and (4) poly(A)-binding protein. Arsenic trioxide exerts proliferation inhibition and apoptosis induction on MM cells by regulating genes expression.

  18. Effects of various mixing techniques on physical properties of white mineral trioxide aggregate.

    Science.gov (United States)

    Saghiri, Mohammad Ali; Garcia-Godoy, Franklin; Gutmann, James L; Lotfi, Mehrdad; Asatourian, Armen

    2014-06-01

    The aim of this study was to evaluate the effects of three different mixing techniques on surface microhardness, initial setting time, and phase formation of white mineral trioxide aggregate. Twenty-one cylindrical glass tubes were selected and divided into three groups of seven in each (n = 7). White mineral trioxide aggregate (WMTA) in groups A, B, and C were mixed by conventional, trituration, and ultrasonic techniques, respectively. Cements were mixed and packed into the glass tubes and incubated at 37°C for 3 days. After incubation, samples were subjected to microhardness evaluation, and four specimens from each group were prepared and observed under a scanning electron microscopy and X-ray diffraction. For setting time assessment, WMTA was mixed in three parts again, and Gilmore needle test was performed until the initial setting time of cement. Data were analyzed by one-way anova and post hoc Tukey's test. Samples mixed by trituration technique significantly showed the highest microhardness (P mineral trioxide aggregate in comparison with ultrasonic technique. Trituration resulted in better hydration and crystallization, which prevents clustering of powder and reduces voids and setting time of mixed cement. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Thiocyanate potentiates antimicrobial photodynamic therapy: In situ generation of the sulfur trioxide radical anion by singlet oxygen

    Science.gov (United States)

    St Denis, Tyler G.; Vecchio, Daniela; Zadlo, Andrzej; Rineh, Ardeshir; Sadasivam, Magesh; Avci, Pinar; Huang, Liyi; Kozinska, Anna; Chandran, Rakkiyappan; Sarna, Tadeusz; Hamblin, Michael R.

    2013-01-01

    Antimicrobial photodynamic therapy (PDT) is used for the eradication of pathogenic microbial cells and involves the light excitation of dyes in the presence of O2, yielding reactive oxygen species including the hydroxyl radical (•OH) and singlet oxygen (1O2). In order to chemically enhance PDT by the formation of longer-lived radical species, we asked whether thiocyanate (SCN−) could potentiate the methylene blue (MB) and light-mediated killing of the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli. SCN− enhanced PDT (10 μM MB, 5J/cm2 660 nm hv) killing in a concentration-dependent manner of S. aureus by 2.5 log10 to a maximum of 4.2 log10 at 10 mM (P < 0.001) and increased killing of E. coli by 3.6 log10 to a maximum of 5.0 log10 at 10 mM (P < 0.01). We determined that SCN− rapidly depleted O2 from an irradiated MB system, reacting exclusively with 1O2, without quenching the MB excited triplet state. SCN− reacted with 1O2, producing a sulfur trioxide radical anion (a sulfur-centered radical demonstrated by EPR spin trapping). We found that MB-PDT of SCN− in solution produced both sulfite and cyanide anions, and that addition of each of these salts separately enhanced MB-PDT killing of bacteria. We were unable to detect EPR signals of •OH, which, together with kinetic data, strongly suggests that MB, known to produce •OH and 1O2, may, under the conditions used, preferentially form 1O2. PMID:23969112

  20. Relapsed acute promyelocytic leukemia in a hemodialysis-dependent patient treated with arsenic trioxide: a case report

    Directory of Open Access Journals (Sweden)

    Emmons Gregory S

    2012-10-01

    Full Text Available Abstract Introduction In the relapsed setting, arsenic trioxide remains the backbone of treatment. Scant literature exists regarding treatment of relapsed acute promyelocytic leukemia in patients with renal failure. To the best of our knowledge we are the first to report a safe and effective means of treatment for relapsed acute promyelocytic leukemia in the setting of advanced renal failure, employing titration of arsenic trioxide based on clinical parameters rather than arsenic trioxide levels. Case presentation A 33-year-old Caucasian man with a history of acute promyelocytic leukemia in remission for 3 years, as well as dialysis-dependent chronic renal failure secondary to a solitary kidney and focal segmental glomerulosclerosis and human immunodeficiency virus infection, receiving highly active antiretroviral therapy presented to our hospital with bone marrow biopsy-confirmed relapsed acute promyelocytic leukemia. Arsenic trioxide was begun at a low dose with dose escalation based only on side effect profile monitoring and not laboratory testing for induction as well as maintenance without undue toxicity. Our patient achieved and remains in complete hematologic and molecular remission as of this writing. Conclusion Arsenic trioxide can be used safely and effectively to treat acute promyelocytic leukemia in patients with advanced renal failure using careful monitoring of side effects rather than blood levels of arsenic to guide therapeutic dosing.

  1. All-Ambient Processed Binary CsPbBr3-CsPb2Br5 Perovskites with Synergistic Enhancement for High-Efficiency Cs-Pb-Br-Based Solar Cells.

    Science.gov (United States)

    Zhang, Xisheng; Jin, Zhiwen; Zhang, Jingru; Bai, Dongliang; Bian, Hui; Wang, Kang; Sun, Jie; Wang, Qian; Liu, Shengzhong Frank

    2018-02-28

    All-inorganic CsPbBr 3 perovskite solar cells display outstanding stability toward moisture, light soaking, and thermal stressing, demonstrating great potential in tandem solar cells and toward commercialization. Unfortunately, it is still challenging to prepare high-performance CsPbBr 3 films at moderate temperatures. Herein, a uniform, compact CsPbBr 3 film was fabricated using its quantum dot (QD)-based ink precursor. The film was then treated using thiocyanate ethyl acetate (EA) solution in all-ambient conditions to produce a superior CsPbBr 3 -CsPb 2 Br 5 composite film with a larger grain size and minimal defects. The achievement was attributed to the surface dissolution and recrystallization of the existing SCN - and EA. More specifically, the SCN - ions were first absorbed on the Pb atoms, leading to the dissolution and stripping of Cs + and Br - ions from the CsPbBr 3 QDs. On the other hand, the EA solution enhances the diffusion dynamics of surface atoms and the surfactant species. It is found that a small amount of CsPb 2 Br 5 in the composite film gives the best surface passivation, while the Br-rich surface decreases Br vacancies (V Br ) for a prolonged carrier lifetime. As a result, the fabricated device gives a higher solar cell efficiency of 6.81% with an outstanding long-term stability.

  2. RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma.

    Science.gov (United States)

    Fei, Weidong; Zhang, Yan; Han, Shunping; Tao, Jiaoyang; Zheng, Hongyue; Wei, Yinghui; Zhu, Jiazhen; Li, Fanzhu; Wang, Xuanshen

    2017-03-15

    The aim of our study was to construct an Arg-Gly-Asp (RGD)-conjugated liposome-hollow silica hybrid nanovehicle for targeted delivery and controlled release of arsenic trioxide (ATO), whose anti-solid tumor effect was hampered by poor pharmacokinetics and dose-limited toxicity. Hydrophobic interactions were used to attach intact lipid membrane to the surface of chlorodimethyloctadecylsilane-modified hollow mesoporous silica nanoparticles. The prepared nanovehicles (RGD-LP-CHMSN) were characterized for uniform structure (silica core of ∼140nm in diameter and liposomal shell of ∼6nm), comparable drug loading efficiency (6.76%), desirable stability and strengthened controlled release. In vitro, RGD-LP-CHMSN showed good biocompatibility and low toxicity on HepG2, MCF-7 and LO2 cells. The targeted delivery of ATO by nanocarriers (RGD-LP-CHMSN-ATO) was demonstrated by an enhanced cellular uptake and a reduced half maximal inhibitory concentration (IC 50 ) value. In pharmacokinetic studies, the RGD-LP-CHMSN-ATO group, compared to the free ATO group, prolonged the half time (t 1/2β ) by 1.7 times and increased the area under curve (AUC) by 2.4 times. In addition, in a H22 tumor-xenograft mouse model, nanovehicles improved the targeting efficiency and anticancer potential of ATO. In conclusion, the strategy of constructing a nanocarrier with targeted delivery and controlled release characteristics is prospective to enhance the antitumor effect of ATO. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Influence of iRoot SP and mineral trioxide aggregate on the activation and polarization of macrophages induced by lipopolysaccharide.

    Science.gov (United States)

    Yuan, Zhenglin; Zhu, Xiaodan; Li, Yuhong; Yan, Ping; Jiang, Han

    2018-04-02

    Biomaterials could affect the inflammation reaction and wound healing via the activation and polarization of macrophages. However, the influence of iRoot SP and mineral trioxide aggregate (MTA) on macrophage polarization under inflammatory conditions was not reported although these two root filling materials have been applied extensively in patients undergoing endodontic treatment. Therefore, the present study aimed to explore the mechanism how iRoot SP and MTA affect the cell behavior of RAW 264.7 macrophages when stimulated by lipopolysaccharide (LPS) in vitro. The gene expression of three main related pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) was examined by quantitative real-time polymerase chain reaction (qRT-PCR) in RAW 264.7 macrophages when stimulated by iRoot SP and MTA in the presence of LPS. The protein expression of the M1 and M2 phenotype specific markers, CD11c and CD206, was assessed by immunofluorescence and flow cytometry in RAW 264.7 macrophages. LPS promoted the expression of IL-1β, TNF-α, and IL-6 in RAW 264.7 macrophages as compared to the control group. Both iRoot SP and MTA were significantly able to enhance the expression of IL-1β, TNF-α, and IL-6 in RAW 264.7 macrophages as compared to LPS group. LPS could increase the expression of CD11c as compared to the control group while iRoot SP and MTA were able to enhance the expression of both CD11c and CD206 as compared to LPS group. iRoot SP and MTA could potentially promote the release of pro-inflammatory cytokines in RAW 264.7 macrophages and induce into M1/M2 phenotype when cultured with LPS.

  4. Synergistic growth inhibition of cancer cells harboring the RET/PTC1 ...

    Indian Academy of Sciences (India)

    Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. ANTÓNIO PEDRO GONÇALVES, ARNALDO VIDEIRA, VALDEMAR MÁXIMO and PAULA SOARES. J. Biosci. 36(4), September 2011, 639-648, © Indian Academy of Sciences.

  5. Synergistic extraction of thorium by β-hydroxy naphthaldoxime in presence of neutral donors

    International Nuclear Information System (INIS)

    Banerjee, S.; Biswas, S.; Basu, S.

    2001-01-01

    The effects of neutral organophosphorous compounds on the extraction of thorium by β-hydroxy naphthaldoxime in xylene are reported. Enhancement of the extraction is explained by a complex adduct formation in the organic phase. Synergistic coefficients and apparent formation constant of complex adducts are calculated. (author)

  6. Comparative Study on the Synergistic Action of Differentially Synthesized Silver Nanoparticles with β-Cephem Antibiotics and Chloramphenicol

    International Nuclear Information System (INIS)

    Hari, N.; Thomas, T.K.; Nair, A.J.

    2014-01-01

    Synergistic activity of cephem antibiotics with silver nanoparticles (Ag NPs) was investigated. Silver nanoparticles were synthesized through biological and chemical method. The combined action of β-lactam cephem antibiotics with both green and chemically synthesized silver nanoparticles enhances the antibacterial activity against wide range of antibiotic resistant pathogens and making them applicable to medical devices and microbial control systems. Synergistic activity of chloramphenicol with silver nanoparticles was also studied.

  7. Synergistic effects in plasma surface interactions

    International Nuclear Information System (INIS)

    Roberto, J.B.; Behrisch, R.

    1984-01-01

    The possible synergistic effects which can contribute to plasma surface interaction phenomena in fusion devices are reviewed. These effects include the influence of reactive ions, surface modification, temperature, radiation damage, and external forces and fields on erosion yields, hydrogen retention and release, and other surface processes. The important synergistic effects are described in terms of surface and edge conditions encountered in present fusion devices and expected in future reactors. Priority data needs include the chemical erosion of graphite at high particle fluxes, melt-layer stability under disruption-induced eddy current forces, the influence of bulk neutron damage on hydrogen retention, and an in-situ evaluation of synergistic effects in operating fusion devices

  8. Spectrophotometric analysis of tooth discolouration induced by mineral trioxide aggregate after final irrigation with sodium hypochlorite: An in vitro study.

    Science.gov (United States)

    Voveraityte, Valdone; Gleizniene, Simona; Lodiene, Greta; Grabliauskiene, Zivile; Machiulskiene, Vita

    2017-04-01

    The aim of this study was to evaluate specific chromatic alterations induced by white mineral trioxide aggregate after final irrigation with sodium hypochlorite. Sixty specimens were prepared mechanically and filled with mineral trioxide aggregate after different final irrigation protocols: Group 1 - distilled water, Group 2 - sodium hypochlorite followed by distilled water, Group 3 - sodium hypochlorite, only. Colour changes were recorded with a spectrophotometer at baseline, and then after 1, 2 and 4 months. The Commision Internationale de l'éclairage colour system was used and the total colour changes ΔE were calculated. In groups where sodium hypochlorite was used, parameter L* decreased significantly after the first month (Group 2 (P mineral trioxide aggregate can lead to tooth discolouration by contact with sodium hypochlorite residues in dentinal tubules. © 2016 Australian Society of Endodontology Inc.

  9. Monoblock Obturation Technique for Non-Vital Immature Permanent Maxillary Incisors Using Mineral Trioxide Aggregate: Results from Case Series

    International Nuclear Information System (INIS)

    Iqbal, Z.; Qureshi, A. H.

    2014-01-01

    Ten patients presented with non-vital immature teeth for root canal treatment. In all these cases the pre-operative clinical examination revealed apical periodontitis with a buccal sinus tract of endodontic origin. These cases were treated by a mineral trioxide aggregate (MTA) monoblock obturation technique. Follow-up evaluations were performed at 1 - 2 years after treatment. Eight out of 10 cases were associated with periradicular healing at follow-up evaluation. Mineral trioxide aggregate Monoblock obturation technique appears to be a valid material to obtain periradicular healing in teeth with open apices and necrotic pulps. (author)

  10. Human harvest, climate change and their synergistic effects drove the Chinese Crested Tern to the brink of extinction

    Directory of Open Access Journals (Sweden)

    Shuihua Chen

    2015-07-01

    Full Text Available Synergistic effect refers to simultaneous actions of separate factors which have a greater total effect than the sum of the individual factor effects. However, there has been a limited knowledge on how synergistic effects occur and individual roles of different drivers are not often considered. Therefore, it becomes quite challenging to manage multiple threatening processes simultaneously in order to mitigate biodiversity loss. In this regard, our hypothesis is, if the traits actually play different roles in the synergistic interaction, conservation efforts could be made more effectively. To understand the synergistic effect and test our hypothesis, we examined the processes associated with the endangerment of critically endangered Chinese Crested Tern (Thalasseus bernsteini, whose total population number was estimated no more than 50. Through monitoring of breeding colonies and investigations into causative factors, combined with other data on human activities, we found that widespread human harvest of seabird eggs and increasing frequency of typhoons are the major factors that threatened the Chinese Crested Tern. Furthermore, 28 percent of breeding failures were due to the synergistic effects in which egg harvest-induced renestings suffered the higher frequent typhoons. In such combined interactions, the egg harvest has clearly served as a proximal factor for the population decline, and the superimposition of enhanced typhoon activity further accelerated the species toward imminent extinction. Our findings suggest that species endangerment, on one hand, should be treated as a synergistic process, while conservation efforts, on the other hand, should focus principally on combatting the threat that triggers synergistic effects.

  11. Synergistic effects of iron powder on intumescent flame retardant polypropylene system

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available The effects of iron powder as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (IFR-PP were studied. The thermogravimetric analysis (TGA and cone calorimeter (CONE were used to evaluate the synergistic effects of iron powder (Fe. The TGA data showed that Fe could enhance the thermal stability of the IFR-PP systems at high temperature and effectively increase the char residue formation. The CONE results revealed that Fe and IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR, mass loss (ML, Mass loss rate (MLR, total heat release (THR, carbon monoxide and so on. Thus, a suitable amount of Fe plays a synergistic effect in the flame retardancy of IFR composites.

  12. SYNERGISTIC ANTIBACTERIAL EFFECT OF STEM BARK ...

    African Journals Online (AJOL)

    userpc

    ABSTRACT. The study was aimed at screening the stem bark extracts of Faidherbia albida and Psidium guajava for synergistic antibacterial effect against methicillin resistant Staphylococcus aureus (MRSA). The powdered plant materials were extracted with methanol using cold maceration technique and the extracts were ...

  13. Modelling synergistic effects of appetite regulating hormones

    DEFF Research Database (Denmark)

    Schmidt, Julie Berg; Ritz, Christian

    2016-01-01

    We briefly reviewed one definition of dose addition, which is applicable within the framework of generalized linear models. We established how this definition of dose addition corresponds to effect addition in case only two doses per compound are considered for evaluating synergistic effects...

  14. Synergistic Antimicrobial Activities Of Phytoestrogens In Crude ...

    African Journals Online (AJOL)

    Ethanolic, methanolic and aqueous extracts of both leaves were studied for their in-vitro synergistic antimicrobial activity against both Gram positive and Gram negative micro-organisms, and Yeast using Agar diffusion method. The GC-MS phytochemical screening of methanolic extract showed that the major compounds in ...

  15. Mineral trioxide aggregate (MTA) apexification: a novel approach for traumatised young immature permanent teeth

    Science.gov (United States)

    Vijayran, Manisha; Chaudhary, Seema; Manuja, Naveen; Kulkarni, Adwait Uday

    2013-01-01

    Here, we report a case of 9-year-old boy who came with a chief complaint of pain and fractured upper front teeth. Significant history of trauma was revealed 6 months before reporting, during playing at his school time. Proper diagnosis was made with the help of radiological investigations. The available treatment options were discussed with the patient's parents and root canal therapy, using mineral trioxide aggregate, as an apical barrier was carried out in his upper right front teeth. However, later on, the boy was aesthetically rehabilitated in relation to his fractured upper front teeth with the help of post and core and acrylic crown. PMID:23314456

  16. Synergistic antioxidant activity of green tea with some herbs

    Directory of Open Access Journals (Sweden)

    Dheeraj P Jain

    2011-01-01

    Full Text Available Cardiovascular diseases, cancer, arthritis, etc. are caused by free radicals that are byproducts of metabolic pathways. Selected plants namely Vitis vinifera, Phyllanthus emblica L., Punica granatum, Cinnamomum cassia, Ginkgo biloba L., and Camellia sinensis Linn. are reported to produce antioxidant property. This study is undertaken to support the hypothesis that formulation of a polyherbal combination of these plants shows a synergistic effect with green tea. The extracts of each drug were characterized by phytochemical studies and tests for phenolics and flavonoids. In vitro antioxidant activity for individual drug and its combination was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH, superoxide, and nitric oxide free radical scavenging methods. Our results suggest that a combination of all these herbs with green tea can synergistically enhance antioxidant activity and thus lower doses of each herb with green tea may be used. Antioxidant potential of polyherbal combination was also comparable to that of standard ascorbic acid. Studies showed that selected individual plants contained abundant quantity of phenolics and flavonoids and their polyherbal combination with green tea was found to produce best antioxidant activity among all individual extracts. This will help in avoiding undesirable side effects due to higher doses of single herb.

  17. Green light synergistically enhances male sweetpotato weevil sex pheromone response

    Science.gov (United States)

    Sweetpotato, Ipomoea batatas (L.) Lamarck, commercially grown in over 100 countries, is the 7th most important staple crop in the world. Sweetpotato weevil is a major pest of sweetpotato in most areas of cultivation, the feeding of which induces production in the sweetpotato root of extremely bitter...

  18. Enhanced wet air oxidation : synergistic rate acceleration upon effluent recirculation

    Science.gov (United States)

    Matthew J. Birchmeier; Charles G. Hill; Carl J. Houtman; Rajai H. Atalla; Ira A. Weinstock

    2000-01-01

    Wet air oxidation (WAO) reactions of cellobiose, phenol, and syringic acid were carried out under mild conditions (155°C; 0.93MPa 02; soluble catalyst, Na5[PV2Mo10O40]). Initial oxidation rates were rapid but decreased to small values as less reactive oxidation products accumulated. Recalcitrant oxidation products were consumed more rapidly, however, if additional...

  19. Mineral Trioxide Aggregate—A Review of Properties and Testing Methodologies

    Directory of Open Access Journals (Sweden)

    William N. Ha

    2017-11-01

    Full Text Available Mineral trioxide aggregate (MTA restoratives and MTA sealers are commonly used in endodontics. Commonly referenced standards for testing of MTA are ISO 6876, 9917-1 and 10993. A PubMed search was performed relating to the relevant tests within each ISO and “mineral trioxide aggregate”. MTA restoratives are typically tested with a mixture of tests from multiple standards. As the setting of MTA is dependent upon hydration, the results of various MTA restoratives and sealers are dependent upon the curing methodology. This includes physical properties after mixing, physical properties after setting and biocompatibility. The tests of flow, film thickness, working time and setting time can be superseded by rheology as it details how MTA hydrates. Physical property tests should replicate physiological conditions, i.e. 37 °C and submerged in physiological solution. Biocompatibility tests should involve immediate placement of samples immediately after mixing rather than being cured prior to placement as this does not replicate clinical usage. Biocompatibility tests should seek to replicate physiological conditions with MTA tested immediately after mixing.

  20. Mineral Trioxide Aggregate-A Review of Properties and Testing Methodologies.

    Science.gov (United States)

    Ha, William N; Nicholson, Timothy; Kahler, Bill; Walsh, Laurence J

    2017-11-02

    Mineral trioxide aggregate (MTA) restoratives and MTA sealers are commonly used in endodontics. Commonly referenced standards for testing of MTA are ISO 6876, 9917-1 and 10993. A PubMed search was performed relating to the relevant tests within each ISO and "mineral trioxide aggregate". MTA restoratives are typically tested with a mixture of tests from multiple standards. As the setting of MTA is dependent upon hydration, the results of various MTA restoratives and sealers are dependent upon the curing methodology. This includes physical properties after mixing, physical properties after setting and biocompatibility. The tests of flow, film thickness, working time and setting time can be superseded by rheology as it details how MTA hydrates. Physical property tests should replicate physiological conditions, i.e. 37 °C and submerged in physiological solution. Biocompatibility tests should involve immediate placement of samples immediately after mixing rather than being cured prior to placement as this does not replicate clinical usage. Biocompatibility tests should seek to replicate physiological conditions with MTA tested immediately after mixing.

  1. Mineral trioxide aggregate and formocresol pulpotomy of primary teeth: a 2-year follow-up.

    Science.gov (United States)

    Ansari, G; Ranjpour, M

    2010-05-01

    To compare the clinical and radiographic response of primary teeth to vital pulpotomy using mineral trioxide aggregate (MTA) or formocresol (FC). A group of 17 children aged 4-9 were selected from those referred to the Paedodontic Department at Shahid Beheshti University, Dental School. Cases with at least two matching teeth were selected (40 teeth), showing signs of pulp involvement. A pulpotomy procedure was carried out in all cases with FC in control teeth whilst MTA was placed in experimental teeth. Clinical and radiographic evaluations were performed at 1-, 6-, 12- and 24-month recall. Statistical analysis using a Fischer exact test was performed on the data to determine significant differences between the groups. Overall, 22 second and 18 first primary molars were included. The gender ratio was one male to three female. No significant difference was found between the clinical and radiographic outcomes of the two groups at 6-, 12- and 24-month follow-up (P > 0.05). Internal resorption was seen significantly more often in FC cases after 12 months than MTA cases. Overall radiographic appearance of normal structures at 24th month was seen in more than 95% of the cases in MTA and 90% in the FC-treated group (P > 0.05). Mineral trioxide aggregate for pulp treatment of primary teeth can be considered a replacement for FC.

  2. 5-year results comparing mineral trioxide aggregate and adhesive resin composite for root-end sealing in apical surgery

    DEFF Research Database (Denmark)

    von Arx, Thomas; Hänni, Stefan; Jensen, Simon Storgård

    2014-01-01

    observers). Two different methods of root-end preparation and filling (primary study parameters) were to be compared (mineral trioxide aggregate [MTA] vs adhesive resin composite [COMP]) without randomization. RESULTS: A total of 271 patients and teeth from a 1-year follow-up sample of 339 could be re...

  3. Clinical and radiographic comparison of biodentine, mineral trioxide aggregate and formocresol as pulpotomy agents in primary molars.

    Science.gov (United States)

    Juneja, P; Kulkarni, S

    2017-08-01

    To compare the clinical and radiographic success rates of three different pulpotomy agents in primary molars after 18 months. The study was carried out with 51 primary molars of children aged 5-9 years old. The teeth were randomly assigned to the experimental or control groups. After coronal pulp removal and haemostasis, the remaining pulp tissue was covered with Biodentine ® or mineral trioxide aggregate in the experimental groups. In the control group, formocresol was placed with a cotton pellet over the pulp tissue for 5 min and after removal the pulp tissue was covered with zinc oxide-eugenol (ZOE) paste. All teeth were immediately restored with reinforced ZOE base and resin modified glass-ionomer cement, and later with pre-formed metal crowns. Follow-up assessments were carried out after 3, 6, 12 and 18 months. Forty-five teeth were available for follow up at the end of 18 months. All of the available teeth for mineral trioxide aggregate and Biodentine ® were clinically successful, as were 73.3% of the FC group. Radiographic success rate for the formocresol group at 18 months follow up was 73.3, 100% for mineral trioxide aggregate and 86.6% for Biodentine ® group. Mineral Trioxide aggregate and Biodentine ® showed more favourable results than formocresol.

  4. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...... the strongest effects was most often linked to conjugative transmission of natural plasmids carried by the E. coli isolates (70%). Thus, the capacity of an isolate to promote the biofilm through cocultivation was (i) transferable to the K-12 strain, (ii) was linked with the acquisition of conjugation genes...

  5. Determining lower threshold concentrations for synergistic effects

    DEFF Research Database (Denmark)

    Bjergager, Maj-Britt Andersen; Dalhoff, Kristoffer; Kretschmann, Andreas

    2017-01-01

    which proven synergists cease to act as synergists towards the aquatic crustacean Daphnia magna. To do this, we compared several approaches and test-setups to evaluate which approach gives the most conservative estimate for the lower threshold for synergy for three known azole synergists. We focus.......619±8.555μgL(-1)) and 0.122±0.0417μM (40.236±13.75μgL(-1)), respectively, in the 14-days tests. Testing synergy in relation to concentration addition provided the most conservative values. The threshold values for the vertical assessments in tests where the two could be compared were in general 1.2 to 4.......7 fold higher than the horizontal assessments. Using passive dosing rather than dilution series or spiking did not lower the threshold significantly. Below the threshold for synergy, slight antagony could often be observed. This is most likely due to induction of enzymes active in metabolization of alpha...

  6. Synergistic Synthetic Biology: Units in Concert

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  7. Synergistic Synthetic Biology: Units in Concert

    International Nuclear Information System (INIS)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  8. Co-pyrolysis of waste newspaper with high-density polyethylene: Synergistic effect and oil characterization

    International Nuclear Information System (INIS)

    Chen, Weimin; Shi, Shukai; Zhang, Jun; Chen, Minzhi; Zhou, Xiaoyan

    2016-01-01

    Highlights: • Synergistic effect during co-pyrolysis occurred at 400–500 °C. • Oil yield from co-pyrolysis was increased by 31.59% compared to theoretical data. • Viscosity and T.A.N. of co-pyrolysis oil were decreased by 75.96% and 216.04%. • Synergistic effect was determined by altering the compounds content in derived oil. - Abstract: Biomass from waste newspaper (WP) was first co-pyrolyzed with high-density polyethylene (HDPE) in order to enhance the oil yield and its fuel properties. The synergistic effects during co-pyrolysis were investigated in terms of entire pyrolysis process, products yield and properties of liquid products (aqueous phase and oil phase) using thermogravimetric analysis coupled with infrared spectroscopy (TG-FTIR), physical properties analysis, elemental analysis, Fourier transform infrared spectroscopy (FT-IR), and gas chromatography/mass spectrometry (GC/MS). The results showed that synergistic effect occurred at 400–500 °C resulting in an obviously increase in oil phase by 31.59% as compared to theoretical data. Positive synergistic effects on fuel properties of co-pyrolysis oil were observed, especially demonstrating dramatically decrease in viscosity and total acid number by 75.96% and 216.04% in comparison to theoretical data. WP pyrolyzed alone gives mainly oxygenated compounds in its derived oil, while HDPE give hydrocarbons. No cross reaction products appeared in co-pyrolysis oil, implying that the synergistic effects were determined by altering its compounds content rather than generating cross reaction products. Unfortunately, aqueous phase and oil phase exhibit similar composition.

  9. A New Method for Low-Temperature Decomposition of Chromites and Dichromium Trioxide using Bromic Acid Evaluated by Chromium Isotope Measurements

    Czech Academy of Sciences Publication Activity Database

    Chrastný, V.; Rohovec, Jan; Čadková, E.; Pašava, J.; Farkaš, J.; Novák, M.

    2014-01-01

    Roč. 38, č. 1 (2014), s. 103-110 ISSN 1639-4488 Institutional support: RVO:67985831 Keywords : chromites * dichromium trioxide * decomposition * chromium isotopes * bromic acid Subject RIV: DD - Geochemistry Impact factor: 3.792, year: 2013

  10. Determining lower threshold concentrations for synergistic effects.

    Science.gov (United States)

    Bjergager, Maj-Britt Andersen; Dalhoff, Kristoffer; Kretschmann, Andreas; Nørgaard, Katrine Banke; Mayer, Philipp; Cedergreen, Nina

    2017-01-01

    Though only occurring rarely, synergistic interactions between chemicals in mixtures have long been a point of focus. Most studies analyzing synergistic interactions used unrealistically high chemical concentrations. The aim of the present study is to determine the threshold concentration below which proven synergists cease to act as synergists towards the aquatic crustacean Daphnia magna. To do this, we compared several approaches and test-setups to evaluate which approach gives the most conservative estimate for the lower threshold for synergy for three known azole synergists. We focus on synergistic interactions between the pyrethroid insecticide, alpha-cypermethrin, and one of the three azole fungicides prochloraz, propiconazole or epoxiconazole measured on Daphnia magna immobilization. Three different experimental setups were applied: A standard 48h acute toxicity test, an adapted 48h test using passive dosing for constant chemical exposure concentrations, and a 14-day test. Synergy was defined as occuring in mixtures where either EC 50 values decreased more than two-fold below what was predicted by concentration addition (horizontal assessment) or as mixtures where the fraction of immobile organisms increased more than two-fold above what was predicted by independent action (vertical assessment). All three tests confirmed the hypothesis of the existence of a lower azole threshold concentration below which no synergistic interaction was observed. The lower threshold concentration, however, decreased with increasing test duration from 0.026±0.013μM (9.794±4.897μgL -1 ), 0.425±0.089μM (145.435±30.46μgL -1 ) and 0.757±0.253μM (249.659±83.44μgL -1 ) for prochloraz, propiconazole and epoxiconazole in standard 48h toxicity tests to 0.015±0.004μM (5.651±1.507μgL -1 ), 0.145±0.025μM (49.619±8.555μgL -1 ) and 0.122±0.0417μM (40.236±13.75μgL -1 ), respectively, in the 14-days tests. Testing synergy in relation to concentration addition provided

  11. Analysis of six heavy metals in Ortho mineral trioxide aggregate and ProRoot mineral trioxide aggregate by inductively coupled plasma-optical emission spectrometry.

    Science.gov (United States)

    Kum, Kee-Yeon; Zhu, Qiang; Safavi, Kamran; Gu, Yu; Bae, Kwang-Shik; Chang, Seok Woo

    2013-12-01

    Ortho mineral trioxide aggregate (MTA) is a mineral aggregate newly developed for perforation repair, root end filling and pulp capping. The aim of this study was to investigate the levels of cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni) and zinc (Zn) in Ortho MTA and ProRoot MTA. A total of 0.2 g of each MTA was digested using a mixture of hydrochloric and nitric acids and filtered. Six heavy metals in the resulting filtrates were analyzed by inductively coupled plasma-optical emission spectrometry (n = 5). The results were statistically analyzed using the Mann-Whitney U-test. The concentrations of Cd, Cu, Fe, Mn, Ni and Zn in Ortho MTA were 0.10, 7.73, 49.51, 2.58, 0.82 and 10.09 p.p.m., respectively. The concentrations of Cd, Cu, Fe, Mn, Ni and Zn in ProRoot MTA were 0.16, 9.38, 1438.11, 74.51, 18.98 and 4.05 p.p.m., respectively. In conclusion, Ortho MTA had lower levels of Cd, Cu, Fe, Mn and Ni than ProRoot MTA. © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.

  12. In Vitro Cytotoxicity and Setting Time Assessment of Calcium-Enriched Mixture Cement, Retro Mineral Trioxide Aggregate and Mineral Trioxide Aggregate.

    Science.gov (United States)

    Pornamazeh, Tahereh; Yadegari, Zahra; Ghasemi, Amir; Sheykh-Al-Eslamian, Seyedeh Mahsa; Shojaeian, Shiva

    2017-01-01

    The present study sought to evaluate and compare biocompatibility and setting time of Retro mineral trioxide aggregate (MTA), calcium-enriched mixture (CEM) and Angelus MTA. CEM cement, Angelus MTA and Retro MTA were assessed in set and fresh states. Extracts transformed to each cavity of three 24-well plates in which 1×10 4 cell were seeded into each well 24 h earlier. All specimens were incubated in a humidified incubator with 5% CO2 at 37 ° C. Mosmann's tetrazolium toxicity (MTT) assay was used to determine in vitro cytotoxicity on L929 mouse fibroblast cell line. Cell viability was determined at 1, 24, and 72 h after exposure. The initial setting time was measured by 113.4 g Gilmore needle testing. Then, final setting times were assessed by the 456.5 g Gilmore needle. Data comparisons were performed using the analysis of variance (ANOVA) and Tukey's post hoc test ( α =0.05). All groups in both forms indicated higher cell vitality compared to positive control group ( P MTA showed better biocompatibility compared to set CEM and set Angelus MTA ( P MTA showed significantly lower initial and final setting time compared to CEM and Angelus MTA ( P MTA and relatively short period of setting time. It seems a promising alternative material in clinical situations where accelerated setting is required. However, more clinical and in vivo investigations are needed for a clear decision making.

  13. Mechanism of Synergistic Inhibition of Listeria monocytogenes Growth by Lactic Acid, Monolaurin, and Nisin▿

    OpenAIRE

    Tokarskyy, Oleksandr; Marshall, Douglas L.

    2008-01-01

    The combined lactic acid, monolaurin, and nisin effects on time-to-detection (optical density at 600 nm) extension were greater (P < 0.05) than any single or paired combination effect, which demonstrates a synergistic interaction among the antimicrobials. Monolaurin exposure caused C12:0 cell membrane incorporation. Lactic acid caused increased monolaurin C12:0 membrane incorporation, while nisin had no influence. We postulate that lactic acid-enhanced monolaurin C12:0 incorporation into the ...

  14. [Mathematical modeling of synergistic interaction of sequential thermoradiation action on mammalian cells].

    Science.gov (United States)

    Belkina, S V; Semkina, M A; Kritskiĭ, R O; Petin, V G

    2010-01-01

    Data obtained by other authors for mammalian cells treated by sequential action of ionizing radiation and hyperthermia were used to estimate the dependence of synergistic enhancement ratio on the ratio of damages induced by these agents. Experimental results were described and interpreted by means of the mathematical model of synergism in accordance with which the synergism is expected to result from the additional lethal damage arising from the interaction of sublesions induced by both agents.

  15. Treatment of inflammatory root resorption using mineral trioxide aggregate: A case report

    Directory of Open Access Journals (Sweden)

    Roohollah Sharifi

    2014-01-01

    Full Text Available Introduction: This report presents a case to show inflammatory root resorption can be successfully treated by using mineral trioxide aggregate (MTA. Case Report: A central maxillary incisor of an eight-year-old boy was avulsed associated with crown fracture secondary to a fall. The tooth was stored in ice. Early attempts at pulpal revascularization of the replanted tooth proved unsuccessful. To stop inflammatory root resorption, long-term calcium hydroxide therapy was employed. Despite the use of calcium hydroxide, resorption continued. Subsequent to the failure of that treatment, MTA was used as a root canal filling material. At 20-month follow-up, the tooth was asymptomatic and had clinical signs of ankylosis but external inflammatory root resorption had stopped. Discussion: MTA may be considered as an alternative option for the treatment of continuous external inflammatory root resorption.

  16. Determination of phosphorus and silicon in tungsten trioxide as reduced molybdotungsten complexes without matrix separation

    International Nuclear Information System (INIS)

    Chkanikova, O.K.; Dorokhova, E.N.

    1979-01-01

    Studied are conditions of formation and reduction of molybdotungsten phosphorus (MTPC) and molybdotungsten silicon (MTSC) complexes at high excess of the ligand. It is established that MTPC are formed in a wide pH range, limited by aggregate stability of the solution (pH 4.5). Using the method of isomolar series it is shown that at pH 1.2 a complex with one Mo atom in coordination sphere is formed, at pH 3.2 - with two Mo atoms. Spectrophotometric method of phosphorus and silicon determination of tungsten trioxide without the base separation is developed. The method is based on silicon determination after MTPC decomposition in the presence of citric acid and determination of silicon and phosphorus sum under conditions of MTPC formation in the presence of oxalic acid. Phosphorus amount is determined according to the difference

  17. Nonsurgical Endodontic Retreatment of Advanced Inflammatory External Root Resorption Using Mineral Trioxide Aggregate Obturation

    Directory of Open Access Journals (Sweden)

    Shivani Utneja

    2012-01-01

    Full Text Available Inflammatory external root resorption is one of the major complications after traumatic dental injury. In this case report, we describe treatment of a maxillary central incisor affected by severe, perforating external root resorption. An 18-year-old patient presented with a previously traumatized, root-filled maxillary central incisor associated with pain and sinus tract. Radiographic examination revealed periradicular lesion involving pathologic resorption of the apical region of the root and lateral root surface both mesially and distally. After removal of the root canal filling, the tooth was disinfected with intracanal triple antibiotic paste for 2 weeks. The antibiotic dressing was then removed, and the entire root canal was filled with mineral trioxide aggregate. The endodontic access cavity was restored with composite resin. After 18 months, significant osseous healing of the periradicular region and lateral periodontium had occurred with arrest of external root resorption, and no clinical symptoms were apparent.

  18. Infrared Spectroscopy in the region X-Ray Diffraction and the mineral trioxide aggregate

    International Nuclear Information System (INIS)

    Barros, C.M.B.; Oliveira, S.V.; Silva, M.C.; Cartaxo, J.M.; Fook, M.V.L.

    2011-01-01

    In the nineties was introduced into the search field of biomaterials to mineral trioxide aggregate (MTA). It is a derivative of Portland cement with similar chemical properties and was initially developed as a root filling material in dentistry. This material is presented characteristics of mechanical, physical and biological meaningful when applied to biological environment. It was used to search a commercial MTA manipulated with distilled water and propylene glycol in order to verify chemical composition, infrared absorption bands and stages in the samples. The MTA has been characterized by XRF, XRD and FTIR. In X-ray fluorescence was found that the MTA has a characteristic composition of hydraulic cement. Through FTIR MTA mixed with water presents an enlargement in the absorption bands in the region 1467 and 873 cm-1. By means of XRD showed that there is no presence of toxic materials in the majority and secondary phases. (author)

  19. Mineral trioxide aggregate-induced apical closure in nonvital immature permanent maxillary incisor

    Directory of Open Access Journals (Sweden)

    Meenu Bhola

    2017-01-01

    Full Text Available Treatment of nonvital immature permanent teeth with calcium hydroxide is associated with few difficulties such as weakened tooth root, root canal reinfection, and long treatment time. Mineral trioxide aggregate (MTA apical plug method is an alternative treatment method for open apices and has gained popularity in the recent times. This case report describes the management of a late-referral case of periapically involved, traumatized immature permanent incisor by endodontic treatment and the use of MTA apical plug. After preparing the access cavity, the working length was determined. The root canals were irrigated with 3% sodium hypochlorite and disinfected with metapex for 2 weeks. MTA was then placed in the apical 3 mm of the root canal. The remaining part of the root canal was filled with thermoplastic gutta-percha, and the coronal restoration was finished with composite resin. After 1-year follow-up, radiograph showed successful healing of periradicular radiolucency.

  20. Photodecomposition Profile of Curcumin in the Existence of Tungsten Trioxide Particles

    Science.gov (United States)

    Nandiyanto, A. B. D.; Zaen, R.; Oktiani, R.; Abdullah, A. G.

    2018-02-01

    The purpose of this study was to investigate the stability of curcumin solution in the existence of tungsten trioxide (WO3) particles under light illumination. In the experimental method, curcumin extracted from Indonesian local turmeric was added with WO3 microparticles and put into the photoreactor system. The photostability performance of curcumin was conducted for 22 hours using 100 W of Neon Lamp. The results showed that the curcumin solution was relatively stable. When curcumin without existence of WO3 was irradiated, no change in the curcumin concentration was found. However, when curcumin solution was mixed with WO3 particles, decreases in the concentration of curcumin was found. The concentration of curcumin with WO3 after light irradiation was about 73.58%. Based on the results, we concluded that the curcumin is relatively stable against light. However, its lightirradiation stability decreases with additional inorganic material.

  1. Management of immature teeth with apical infections using mineral trioxide aggregate

    Directory of Open Access Journals (Sweden)

    Sivakumar Nuvvula

    2010-01-01

    Full Text Available Traumatic injuries to the young permanent teeth lead to devitalization of the pulp with concomitant arrest in further development of the immature root of the involved tooth. Hermetic seal of the root canal system during obturation is not possible in such cases, due to the lack of an apical constriction. The traditional management technique in such cases has been apexification involving induction of a calcific barrier at the apex using calcium hydroxide, which in turn facilitates obturation of the root canal. However this becomes complicated when there is persistent infection leading to periapical changes. This case report describes the use of mineral trioxide aggregate (MTA for management of a periapically compromised immature tooth.

  2. Evaluation of Properties of Mineral Trioxide Aggregate with Methyl Cellulose as Liquid.

    Science.gov (United States)

    Dianat, Omid; Naseri, Mandana; Tabatabaei, Seyedeh Farnaz

    2017-01-01

    Mineral trioxide aggregate (MTA) is extensively used in endodontics. However, MTA is difficult to handle because of its granular consistency, low mechanical properties and initial looseness. The objective of this study was to assess the compressive strength (CS), diametral tensile strength (DTS), and pH of set MTA using methyl cellulose as liquid. White ProRoot MTA was used as the control group; modified MTA cement was prepared by mixing Portland cement, bismuth oxide and calcium sulfate (75%, 20% and 5%, respectively) as the experiment group. Methyl cellulose was used as hydrating liquid and compared with distilled water. The data were analyzed by two-way ANOVA. The pH values of modified MTA cement set using deionized water and methyl cellulose were slightly, but not significantly, different (P>0.05). The DTS and CS tests for modified MTA cement hydrated with methyl cellulose showed a significant difference at one day and one week (PMTA.

  3. The effect of using propylene glycol as a vehicle on the microhardness of mineral trioxide aggregate.

    Science.gov (United States)

    Salem Milani, Amin; Banifatemeh, Alireza; Rahimi, Saeed; Jafarabadi, Mohammad Asghari

    2015-01-01

    While it has been proven that the handling properties of mineral trioxide aggregate (MTA) are improved upon mixing it with propylene glycol (PG), this study sought to evaluate how PG affects the microhardness of MTA in terms of setting quality. MTA was mixed with different proportions of distilled water (DW) and PG to prepare 5 groups (n = 30). The DW/PG percent proportions used in Groups 1-5 were 100/0, 80/20, 50/50, 20/80, and 0/100, respectively. The mixed MTA was condensed into acrylic molds. Half of the samples of each group were evaluated on Day 4, the other half on Day 28. The results indicated that PG reduces the microhardness of MTA, thus adversely affecting its setting process. Group 2 (80% DW/20% PG) best improved the handling of MTA without a significant reduction in setting quality.

  4. Evaluation of the rat tissue reaction to experimental new resin cement and mineral trioxide aggregate cement

    Science.gov (United States)

    Yang, Won-Kyung; Ko, Hyun-Jung

    2012-01-01

    Objectives New resin cement (NRC) has been developed as a root repairing material and the material is composed of organic resin matrix and inorganic powders. The aim of this study was to compare the rat subcutaneous tissue response to NRC and mineral trioxide aggregate (MTA) cement and to investigate the tissue toxicity of both materials. Materials and Methods Sixty rats received two polyethylene tube-implants in dorsal subcutaneous regions, MTA and NRC specimens. Twenty rats were sacrificed respectively at 1, 4 and 8 wk after implantation and sectioned to 5 µm thickness and stained with Hematoxylin-Eosin (H-E) or von-Kossa staining. The condition of tissue adjacent to the implanted materials and the extent of inflammation to each implant were evaluated by two examiners who were unaware of the type of implanted materials in the tissues. Data were statistically analyzed with paired t-test (p mineralization of the tissues. PMID:23429672

  5. Chemical and morphological characteristics of mineral trioxide aggregate and Portland cements.

    Science.gov (United States)

    Khan, Shahbaz; Kaleem, Muhammad; Fareed, Muhammad Amber; Habib, Amir; Iqbal, Kefi; Aslam, Ayesha; Ud Din, Shahab

    2016-01-01

    The purpose of this study was to investigate the chemical composition and particle morphology of white mineral trioxide aggregate (WMTA) and two white Portland cements (CEM 1 and CEM 2). Compositional analysis was performed by energy dispersive X-ray spectroscopy, X-ray fluorescence spectrometry and X-ray diffraction whereas, morphological characteristics were analyzed by scanning electron microscope and Laser scattering particle size distribution analyzer. The elemental composition of WMTA, CEM 1 and CEM 2 were similar except for the presence of higher amounts of bismuth in WMTA. Calcium oxide and silicon oxide constitute the major portion of the three materials whereas, tricalcium silicate was detected as the major mineral phase. The particle size distribution and morphology of WMTA was finer compared to CEM 1 and CEM 2. The three tested materials had relatively similar chemical composition and irregular particle morphologies.

  6. Management of External Invasive Cervical Resorption Tooth with Mineral Trioxide Aggregate: A Case Report

    Directory of Open Access Journals (Sweden)

    Anuja Ikhar

    2013-01-01

    Full Text Available Invasive cervical resorption is entirely uncommon entities and the etiology is poorly understood. A 19 year old patient presented with fractured upper left central incisor and sinus tract opening on the distobuccal aspect in cervical region. Radiographic examination shows irregular radiolucency over the coronal one-third and it extended externally towards the external invasive resorption. After sectional obturation, the defect was accessed surgically. The resorption area was chemomechanically debrided using irrigant solution. Fibre post placement using flowable composite resin and Mineral Trioxide Aggregate (MTA was used to fill the resorptive defect, and the coronal access was temporarily sealed. Composite restoration was subsequently replaced with ceramic crown after 4 years. Radiographs at 1 and 4 years showed adequate repair of the resorption and endodontic success. Clinically and radiographically the tooth was asymptomatic, and no periodontal pocket was found after a 4-year followup.

  7. Study and characterization of ammonium diuranate and uranium trioxide by thermogravimetry and differential scanning calorimetry

    International Nuclear Information System (INIS)

    Dantas, J.M.

    1983-01-01

    Thermogravimetry (TG), Differential Thermogravimetry (DTG) and Differential Scanning Calorimetry (DSC) were used to characterize the thermal behavior of ammonium diuranate (ADU) and uranium trioxide (UO 3 ) produced at IPEN'S Chemical Enginnering Department. Compounds characterization was done using the molar ratios among the compounds and the oxides resulting from thermal decomposition. The TG and DTG curves registered for each sample were used for the determination of the following temperatures: - temperature of water evolution (free and crystallized water); - ammonia evolution and oxidation temperature; - ocluded ammonium nitrate decomposition temperature and - oxygen release temperature. The intermediate phases and their thermal stabilities were also identified by TG and DTG and confirmed by DSC curves, DSC curves showed also the exothermic and endothermic behavior of the processes involved. Finally, the great amount of data collected in this study can be handed as a guide by the professionals responsible for the operation of ADU,UO 3 and UF 4 pilot plants. (Author) [pt

  8. Comparing gray mineral trioxide aggregate and diluted formocresol in pulpotomized human primary molars.

    Science.gov (United States)

    Zealand, Cameron M; Briskie, Daniel M; Botero, Tatiana M; Boynton, James R; Hu, Jan C C

    2010-01-01

    The purpose of this multisite, multioperator, prospective, randomized, controlled clinical trial was to evaluate the 6-month outcomes of diluted formocresol (DFC) compared to gray mineral trioxide aggregate (GMTA) as pulpotomy medicament. Determined by a power analysis, 252 molars of 152 children were recruited. The teeth were randomly assigned to receive GMTA or DFC. At the 6-month follow-up, 118 children with 203 treated teeth were evaluated. Four blinded and calibrated evaluators scored each radiograph for pathologies. Clinical success was similar for DFC (97%) and GMTA (100%), (P<.09). Radiographic success differed significantly (P<.04) for DFC (86%) and GMTA (95%). Pulp canal obliteration was radiographically observed in 25% of the DFC group and in 37% of the GMTA group (P=.07). Dentin bridging was observed in 22% of the GMTA group but was not found in the DFC group (P<.01). Teeth treated with GMTA showed more favorable radiographic outcomes than DFC at 6 months post-treatment.

  9. Dissolution of a mineral trioxide aggregate sealer in endodontic solvents compared to conventional sealers

    Directory of Open Access Journals (Sweden)

    Hanan ALZRAIKAT

    2016-01-01

    Full Text Available Abstract The aim of this study is to evaluate the solubility of a Mineral Trioxide Aggregate sealer (MTA-Fillapex compared with five other sealers, calcium hydroxide (Sealapex, resin (Realseal, zinc oxide-eugenol (Tubli-Seal, and two epoxy resins (AH-26 and AH-Plus, in chloroform and eucalyptoil in static and ultrasonic environments. Samples of each sealer were prepared (n = 180 and then divided into 12 groups that were immersed in solvents for 5 and 10 min in static and ultrasonic environments. The mean weight loss was determined, and the values were compared using Student’s t-test, One-way ANOVA, and Tukey’s HSD post-hoc test (p 0.05. In conclusion, MTA-Fillapex was not sufficiently dissolved in either solvent. Ultrasonic activation had limited effectiveness on MTA-Fillapex dissolution, whereas it significantly increased the efficiency of solvents in dissolving a number of endodontic sealers.

  10. Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07

    International Nuclear Information System (INIS)

    Yan, Liu; Wei, Chen; Shanchao, Yang; Xiaoming, Jin; Chaohui, He

    2016-01-01

    This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.

  11. Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Liu, E-mail: liuyan@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wei, Chen; Shanchao, Yang; Xiaoming, Jin [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); Chaohui, He [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-09-21

    This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.

  12. Revisiting the functional anatomy of the palmaris longus as a thenar synergist.

    Science.gov (United States)

    Moore, Colin W; Fanous, Jacob; Rice, Charles L

    2017-11-27

    Surgical studies describe the palmaris longus (PL) as a synergist in thumb abduction, which may facilitate its use in restoring thumb function using opponensplasty. However, beyond morphological descriptions and isometric thenar abduction strength measures, the evidence supporting the PL as a thenar synergist in-vivo is limited. The purpose here was to determine whether the PL provides synergistic contributions to thenar musculature by: (1) recording PL muscle activity using indwelling electromyography (EMG) during thumb movements; and (2) quantifying changes in PL muscle architecture using ultrasonography. In 10 healthy males, PL muscle activity was recorded during maximal thenar muscle contractions (abduction, flexion, opposition, adduction, and extension) with the wrist secured in a neutral position. The PL EMG was normalized to its maximal EMG recorded during isometric wrist flexion. Dynamic changes in PL muscle thickness (M T ) were determined during abduction and adduction using ultrasound imaging. The results indicate that the PL is activated during thenar movements with greatest relative PL EMG recorded during thenar abduction (46%), flexion (35%) and opposition (37%). Compared to rest, PL M T significantly increased (21%) during maximal thenar abduction. With direct measures in vivo, this study supports morphological and surgical observations indicating the PL acts as an extrinsic hand muscle in enhancing thenar muscle actions. Knowledge of the synergistic relationship between the PL and thenar musculature may allow for further development of surgical opponensplasty approaches using the abductor pollicis brevis and PL as a functional digastric unit. Clin. Anat, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  13. Outcome of orthograde retreatment after failed apicoectomy: use of a mineral trioxide aggregate apical plug.

    Science.gov (United States)

    Mente, Johannes; Leo, Meltem; Michel, Annemarie; Gehrig, Holger; Saure, Daniel; Pfefferle, Thorsten

    2015-05-01

    This controlled, single-center historic cohort study project evaluates treatment outcomes of a nonsurgical treatment approach after failed apicoectomy. The treatment outcomes of nonsurgical retreatment after a failed apicoectomy were evaluated clinically and radiographically. The study cohort consisted of teeth that had received primary root canal treatment and subsequent apicoectomy elsewhere before the patients presented with post-treatment disease. Orthograde retreatment and obturation using an apical mineral trioxide aggregate plug was performed by postgraduate students and endodontic specialists in 25 cases between 2004 and 2012. Pre-, intra-, and postoperative information and the potential effect on the retreatment outcome were evaluated and statistically analyzed using the chi-square test. Twenty-two patients with 23 teeth attended the follow-up examinations (recall rate = 92%). The follow-up periods ranged from 12 to 102 months (median = 35 months). Twenty teeth (87%) were classified as "success," and 3 teeth were considered (17%) "failure." The chi-square test confirmed that the preoperative factor "number of roots" had a statistically significant effect on treatment outcome (odds ratio = 0.08; 95% confidence interval, 0-1.76; P = .03). The factor "tooth location" was of borderline significance (odds ratio = 0.1; 95% confidence interval, 0-2.14; P = .05). The results of the present study suggest that orthograde retreatment combined with orthograde placement of an apical mineral trioxide aggregate plug is a promising long-term treatment option for teeth with postsurgical pathosis. The success rates were higher for single-rooted teeth. The use of cone-beam computed tomographic imaging in cases of inconclusive periapical radiographs is recommended to minimize the risk of misinterpretation when assessing treatment outcome. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Mineral trioxide aggregate or calcium hydroxide direct pulp capping: an analysis of the clinical treatment outcome.

    Science.gov (United States)

    Mente, Johannes; Geletneky, Beate; Ohle, Marc; Koch, Martin Jean; Friedrich Ding, Paul Georg; Wolff, Diana; Dreyhaupt, Jens; Martin, Nicolas; Staehle, Hans Joerg; Pfefferle, Thorsten

    2010-05-01

    The use of mineral trioxide aggregate (MTA) might improve the prognosis of teeth after pulp exposure. The treatment outcome of teeth after direct pulp capping, either with mineral trioxide aggregate (MTA) or calcium hydroxide (controls), was investigated, taking into account possible confounding factors. One hundred forty-nine patients treated between 2001 and 2006 who received direct pulp capping treatment in 167 teeth met the inclusion criteria. Treatment was performed by supervised undergraduate students (72%) and dentists (28%). Assessment of clinical and radiographic outcomes was performed by calibrated examiners 12-80 months after treatment (median, 27 months). One hundred eight patients (122 treated teeth) were available for follow-up (72.5% recall rate). A successful outcome was recorded for 78% of teeth (54 of 69) in the MTA group and for 60% of teeth (32 of 53) in the the calcium hydroxide group. The univariate analysis (generalized estimation equations model [GEE model] showed a significant difference in the success rate (odds ratio [OR], 2.36; 95% confidence interval [CI], 1.05-5.32; P = .04). In the multiple analysis (GEE model), the OR is marginally inside the nonsignificant range (OR, 0.43; 95% CI, 0.19-1.02; P = .05) when conspicuous confounding factors are stabilized (univariate analysis). Multiple analysis showed that teeth that were permanently restored >or=2 days after capping had a significantly worse prognosis in both groups (OR, 0.24; 95% CI, 0.09-0.66; P = .01). MTA appears to be more effective than calcium hydroxide for maintaining long-term pulp vitality after direct pulp capping. The immediate and definitive restoration of teeth after direct pulp capping should always be aimed for. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  15. Evaluation of the bioactivity of fluoride-enriched mineral trioxide aggregate on osteoblasts.

    Science.gov (United States)

    Proksch, S; Brossart, J; Vach, K; Hellwig, E; Altenburger, M J; Karygianni, L

    2018-02-03

    To investigate whether a combination of mineral trioxide aggregate (MTA) and fluoride compounds affects bone cells. Mineral trioxide aggregate (MTA) discs (ProRoot ® , Dentsply Sirona, Ballaigues, Switzerland) with and without the addition of 0.1%, 0.25% and 0.5% sodium fluoride were characterized for their surface roughness by laser scanning microscopy and for the adhesion of human alveolar osteoblasts by scanning electron microscopy. Using eluates from fluoride-enriched MTA discs, the cell proliferation was measured by monitoring the DNA incorporation of 5-bromo-2'-deoxyuridine. Further, gene expression was evaluated by qPCR arrays, extracellular matrix mineralization was quantified by absorption measurement of Alizarin red stains, and effects were calculated with repeated measures analysis and post hoc P-value adjustment. Irrespective of fluoride addition, cell adhesion was similar on MTA discs, of which the surface roughness was comparable. Control osteoblasts had a curvilinear proliferation pattern peaking at d5, which was levelled out by incubation with MTA. The addition of fluoride partly restored the MTA-related reduction in the cellular proliferation rate in a dose-dependent manner. At the mRNA level, both fluoride and MTA modulated a number of genes involved in osteogenesis, bone mineral metabolism and extracellular matrix formation. Although MTA significantly impaired extracellular matrix mineralization, the addition of fluoride supported the formation of mineralized nodules in a dose-dependent manner. The addition of fluoride modulated the biocompatibility of MTA in terms of supporting bone cell proliferation and hard tissue formation. Hence, fluoride enrichment is a trend-setting advancement for MTA-based endodontic therapies. © 2018 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  16. Radiopacity of Mineral Trioxide Aggregate with and without Inclusion of Silver Nanoparticles.

    Science.gov (United States)

    Mendes, Mariana Ss; Resende, Leonardo D; Pinto, Cláudia A; Raldi, Denise P; Cardoso, Flavia Gr; Habitante, Sandra M

    2017-06-01

    The aim of this study was to investigate the inclusion of silver nanoparticles (Ag NPs) in the mineral trioxide aggregate (MTA) composition to know which changes will result in the radiopacity of the material. The experiment was performed according to the American National Standard Institute/American Dental Association specification no. 57/2000 and ISO 6876/2001. Five plates with five holes measuring 1 mm in depth and 5 mm in internal diameter were filled according to the different experimental groups as follows: white mineral trioxide aggregate (WMTA) + NP50 - W MTA with liquid Ag NP 50 ppm, WMTA + NP30 - W MTA with liquid Ag NP 30 ppm, WMTA + NP22 - W MTA with liquid Ag NP 22 ppm, WMTA + NPP - white MTA with liquid Ag NP and powder 1%, WMTA (control). After filling the plates, they were kept in an incubator at 37°C in relative humidity for setting. Each sample was positioned along an aluminum step-wedge placed above the Opteo digital sensor system. The image was divided into four quadrants, and three readings were made for each quadrant to render the average of each quadrant. The resulting data were submitted to Kruskal-Wallis and Dunn's tests. The results showed statistically significant differences between WMTA + NP30, WMTA + NP22, and WMTA + NPP interactions compared with WMTA (control) (p MTA + NP50, and WMTA. Silver NPs changed the radiopacity of WMTA, being more evident in WMTA + NP powder at 1% weight. The low radiopacity of MTA makes it difficult for any radiographic observation. The Ag NPs appear as an alternative, being an excellent radiopacifier as they have excellent antimicrobial property and relatively low toxicity.

  17. Effect of temperature on the setting time of Mineral Trioxide Aggregate (MTA).

    Science.gov (United States)

    Sharifi, R; Araghid, A; Ghanem, S; Fatahi, A

    2015-01-01

    Introduction: Mineral trioxide aggregate (MTA) has numerous applications in dentistry due to various advantages. However, its long setting time has still remained a problem. The current study was conducted to investigate the effect of temperature (ambient and distilled water temperature) on the setting time of mineral trioxide aggregate (MTA). Materials and methods: This experimental study comprised of two parts. In the first part, MTA and distilled water samples were kept at ambient temperature for 24 hours (before mixing: effect of distilled water temperature on the setting time of MTA and after mixing: effect of distilled water and ambient temperature on the setting time of MTA), and analyzed and divided into three groups: group 1 (4°C), group 2 (37°C) and group 3 (90°C). The mixed samples were placed in the glass cylinders with an internal diameter of 8 mm and a height of 10 mm, and kept at 37°C temperature and 100% humidity. In the second part, the samples were prepared the same as those of the first part and divided into three groups according to the terms of maintenance: group 1 (4°C), group 2 (37°C) and group 3 (75°C). The mixed samples were then put in glass cylinders with an internal diameter of 8 mm and a height of 10 mm and the samples of groups 1, 2 and 3 were kept at 4, 37 and 75 °C, respectively. At the end of each part, the primary and final setting times were measured by Gilmore needle. Data were analyzed by SPSS using Kruskal-Wallis test (pMTA for the samples of both parts of the study with an increase in ambient temperature (pMTA.

  18. Bond strength of mineral trioxide aggregate to root dentin after exposure to different irrigation solutions.

    Science.gov (United States)

    Nagas, Emre; Cehreli, Zafer C; Uyanik, Mehmet Ozgur; Durmaz, Veli; Vallittu, Pekka K; Lassila, Lippo V J

    2014-06-01

    The aim of the study was to evaluate the regional push-out bond strength of mineral trioxide aggregate (MTA) after exposure to sodium hypochlorite (NaOCl), ethylenediaminetetraacetic (EDTA), and peracetic acid (PAA) irrigation solutions. 1-mm-thick longitudinal slabs of root dentin were obtained from freshly extracted human canine teeth (n = 80). Simulated root perforation defects, 1 mm in diameter, were prepared in the coronal, middle, and apical thirds of radicular dentin. Mineral trioxide aggregate was placed into the cavities, and the specimens were stored for 1 week at 37°C. Thereafter, the specimens were randomly divided into four groups (n = 20) according to the irrigation solution applied over the repair sites: Group 1-10 ml of 5.25% NaOCl for 10 min; Group 2-10 ml of 5.25% NaOCl for 10 min, followed by 5 ml 17% EDTA for 5 min; Group 3-10 ml of 5.25% NaOCl for 10 min, followed by application of 5 ml 1% PAA for 5 min; and Group 4-no irrigation. Push-out test was performed at a crosshead speed of 1 mm/min. Debonding values were compared statistically using two-way analysis of variance and Tukey tests (P < 0.05). The push-out bond strength of MTA was not affected by the type of irrigation solution or location of the perforation defects (both P < 0.05). Stereomicroscopic inspection of the samples showed that the bond failure was predominantly adhesive. Exposure of repaired root perforations to 5.25% NaOCl, 17% EDTA, or 1% PAA does not alter the dislocation resistance of MTA at different locations of root dentin. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Comparison of two histopathologic methods for evaluating subcutaneous reaction to mineral trioxide aggregate

    Science.gov (United States)

    Lotfi, Mehrdad; Moradzadeh, Monir; Aghbali, Amirala; Rahimi, Saeed; Saghiri, Mohammadali; Zand, Vahid; Mehdipour, Masoumeh; Ranjkesh, Bahram; Doosti, Sirvan

    2012-01-01

    Objectives: One of the most important factors for suitable materials for pulp therapy is biocompatibility. Two histopathologic methods of Cox and Federation Dentaire International (FDI) were used to evaluate inflammation. In Cox method, density of inflammatory cells, tissue reactions like fibrosis, vascular responses like congestion and fibrin extravasation have been used to evaluate inflammatory reactions. The aim of this study was to compare the accuracy of pathologists’ interpretations using two different methods. Study design: Three pathologists observed the degree of inflammation in 225 histopathologic sections. These sections showed inflammation in subcutaneous connective tissue of rats adjacent to polyethylene tubes, filled with white or gray mineral trioxide aggregate. Empty tubes served as controls. Samples were harvested after 7-, 15-, 30-, 60-, and 90-days. All pathologists examined the sections under a light microscope (Carl Zeiss, Oberkochen, Germany) at ×400 magnifications. Chi-Square test was used to evaluate the difference between inflammation grades when one pathologist used two methods. Cohen’s Kappa value was used to measure agreement of three pathologists to recognize the degrees of inflammations when using one of the methods. Results: There were no significant differences between the two methods when one of the pathologist used these methods to report the degree of inflammation (p=0.054). However, two other pathologists reported significant differences between two methods (p=0.005, p=0.001). In the FDI method, there was an acceptable agreement between first and second, and first and third pathologist in terms of the degree of inflammation, and intermediate agreement existed between the second and third pathologist. With the Cox method, no agreement among the pathologists could be found. Conclusion: The results of three pathologists in terms of rating inflammation with the FDI method showed better agreement than with the Cox method

  20. The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth.

    Science.gov (United States)

    Moretti, A B S; Sakai, V T; Oliveira, T M; Fornetti, A P C; Santos, C F; Machado, M A A M; Abdo, R C C

    2008-07-01

    To compare the effectiveness of mineral trioxide aggregate (MTA), calcium hydroxide (CH) and formocresol (FC) as pulp dressing agents in carious primary teeth. Forty-five primary mandibular molars with dental caries in 23 children [AUTHOR QUERY: How many children?] between 5 and 9 years old were treated by a conventional pulpotomy technique. The teeth were randomly assigned to the experimental (CH or MTA) or control (FC) groups. After coronal pulp removal and haemostasis, remaining pulp tissue was covered with MTA paste or CH powder in the experimental groups. In the control group, diluted FC was placed with a cotton pellet over the pulp tissue for 5 min and removed; the pulp tissue was then covered with zinc oxide-eugenol (ZOE) paste. All teeth were restored with reinforced ZOE base and resin modified glass-ionomer cement. Clinical and radiographic successes and failures were recorded at 3, 6, 12, 18 and 24 month follow-up. Forty-three teeth were available for follow-up. In the FC and MTA groups, 100% of the available teeth were clinically and radiographically successful at all follow-up appointments; dentine bridge formation could be detected in 29% of the teeth treated with MTA. In the CH group, 64% of the teeth presented clinical and radiographic failures detected throughout the follow-up period, and internal resorption was a frequent radiographic finding. Mineral trioxide aggregate was superior to CH and equally as effective as FC as a pulpotomy dressing in primary mandibular molars. Internal resorption was the most common radiographic finding up to 24 month after pulpotomies performed with CH.

  1. White piedra: further evidence of a synergistic infection.

    Science.gov (United States)

    Youker, Summer R; Andreozzi, Robert J; Appelbaum, Peter C; Credito, Kim; Miller, Jeffrey J

    2003-10-01

    White piedra is a fungal infection of the hair shaft caused by Trichosporon beigelii. A synergistic coryneform bacterial infection is often present with T beigelii. White piedra, although not commonly reported to infect scalp hair in North America, is an important consideration in the differential diagnosis of scalp hair concretions. We report a case of white piedra of scalp hair with synergistic coryneform bacterial infection in two sisters, both US natives. Culture and light and electronmicroscopic evidence of the synergistic infection are presented.

  2. Culture and neuroscience: additive or synergistic?

    Science.gov (United States)

    Dapretto, Mirella; Iacoboni, Marco

    2010-01-01

    The investigation of cultural phenomena using neuroscientific methods—cultural neuroscience (CN)—is receiving increasing attention. Yet it is unclear whether the integration of cultural study and neuroscience is merely additive, providing additional evidence of neural plasticity in the human brain, or truly synergistic, yielding discoveries that neither discipline could have achieved alone. We discuss how the parent fields to CN: cross-cultural psychology, psychological anthropology and cognitive neuroscience inform the investigation of the role of cultural experience in shaping the brain. Drawing on well-established methodologies from cross-cultural psychology and cognitive neuroscience, we outline a set of guidelines for CN, evaluate 17 CN studies in terms of these guidelines, and provide a summary table of our results. We conclude that the combination of culture and neuroscience is both additive and synergistic; while some CN methodologies and findings will represent the direct union of information from parent fields, CN studies employing the methodological rigor required by this logistically challenging new field have the potential to transform existing methodologies and produce unique findings. PMID:20083533

  3. Synergistic drug combinations improve therapeutic selectivity

    Science.gov (United States)

    Lehàr, Joseph; Krueger, Andrew S.; Avery, William; Heilbut, Adrian M.; Johansen, Lisa M.; Price, E. Roydon; Rickles, Richard J.; Short, Glenn F.; Staunton, Jane E.; Jin, Xiaowei; Lee, Margaret S.; Zimmermann, Grant R.; Borisy, Alexis A.

    2009-01-01

    Prevailing drug discovery approaches focus on compounds with molecular selectivity, inhibiting disease-relevant targets over others in vitro. However in vivo, many such agents are not therapeutically selective, either because of undesirable activity at effective doses or because the biological system responds to compensate. In theory, drug combinations should permit increased control of such complex biology, but there is a common concern that therapeutic synergy will generally be mirrored by synergistic side-effects. Here we provide evidence, from 94,110 multi-dose combination experiments representing diverse disease areas and large scale flux balance simulations of inhibited bacterial metabolism, that multi-target synergies are more specific than single agent activities to particular cellular contexts. Using an anti-inflammatory combination, we show how multi-target synergy can achieve therapeutic selectivity in animals through differential target expression. Synergistic combinations can increase the number of selective therapies using the current pharmacopeia, and offer opportunities for more precise control of biological systems. PMID:19581876

  4. Arsenic trioxide: impact on the growth and differentiation of cancer cells and possible use in cancer therapy

    Directory of Open Access Journals (Sweden)

    Ewelina Hoffman

    2013-08-01

    Full Text Available Arsenic trioxide (As2O3 has recently been identified as an effective drug in different types of cancer therapy. It is a useful pharmacological agent in acute promyelocytic leukemia (APL treatment, especially the form that is resistant to conventional chemotherapy with all-trans retinoic acid (ATRA. What is more, laboratory data suggest that As2O3 is also active when it comes to several solid tumor cell lines. However, the mechanism of action is not fully understood. As2O3 in high doses triggers apoptosis, while in lower concentrations it induces partial differentiation. The As2O3 mechanism of action involves effects on mitochondrial transmembrane potential which lead to apoptosis. It also acts on the activity of JNK kinase, glutathione, caspases, NF-ĸB nuclear factor or pro- and antiapoptotic proteins. This publication presents the current knowledge about the influence of arsenic trioxide in cancer cells.

  5. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors

    KAUST Repository

    Shakir, Imran

    2014-01-01

    In situ hydrogenation of orthorhombic molybdenum trioxide (α-MoO 3) nanowires has been achieved on a large scale by introducing alcohol during the hydrothermal synthesis for electrochemical energy storage supercapacitor devices. The hydrogenated molybdenum trioxide (H xMoO3) nanowires yield a specific capacitance of 168 F g-1 at 0.5 A g-1 and maintain 108 F g-1 at 10 A g-1, which is 36-fold higher than the capacitance obtained from pristine MoO3 nanowires at the same conditions. The electrochemical devices made with HxMoO3 nanowires exhibit excellent cycling stability by retaining 97% of their capacitance after 3000 cycles due to an enhanced electronic conductivity and increased density of hydroxyl groups on the surface of the MoO3 nanowires. This journal is © The Royal Society of Chemistry.

  6. Comparative investigation of clinical/radiographical signs of mineral trioxide aggregate and formocresol on pulpotomized primary molars

    OpenAIRE

    Hugar, Shivayogi M.; Deshpande, Shobha D.

    2010-01-01

    The objectives of this study were (1) to evaluate clinically and radiographically the effects of mineral trioxide aggregate (MTA) as a pulp dressing after coronal pulp amputation (pulpotomy) in primary molars, (2) to compare the effects of MTA and formocresol in pulpotomized primary teeth. Sixty primary mandibular molars of thirty healthy children aged between 5-8 years were treated by conventional pulpotomy technique. The teeth on the right side are assigned to MTA (Group A) and the left sid...

  7. Effect of Biomineralization Ability on Push-out Strength of Proroot Mineral Trioxide Aggregate, Mineral Trioxide Aggregate Branco, and Calcium Phosphate Cement on Dentin: An In vitro Evaluation.

    Science.gov (United States)

    Revankar, Vanita D; Prathap, M S; Shetty, K Harish Kumar; Shahul, Azmin; Sahana, K

    2017-11-01

    Biomineralization is a process which leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. It is due to interaction of mineral trioxide aggregate (MTA) and Portland cement with dentin in phosphate-buffered solution (PBS). This study is aimed to evaluate the effect of influence of biomineralization process on push-out bond strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK, USA), MTA Branco (Angelus Soluc¸o˜es Odontolo´gicas, Londrina, PR, Brazil) and calcium phosphate cement (BioGraft CPC). The aim of this study was to evaluate the effect of biomineralization process on the push-out strength of ProRoot MTA, MTA Branco, and CPC after mixing with 0.2% chlorhexidine gluconate solution (0.2% CHX) and 2% lidocaine solution (2% LA) on the bond strength of MTA-dentin. Dentin discs with uniform cavities were restored with ProRoot MTA, MTA Branco, and calcium phosphate cement after mixing with 0.2% CHX solution and 2% lidocaine solution. The samples were uniformly distributed into two groups. Experimental group being immersed in PBS solution and control group being immersed in saline for 2 months. Instron testing machine (Model 4444; Instron Corp., Canton, MA, USA) was used to determine the bond strength. A two-way analysis of variance and post hoc analysis by Bonferroni test. All samples immersed in experimental group displayed a significantly greater resistance to displacement than that observed for the samples in control group ( P MTA groups, was positively influenced by the biomineralization process.

  8. An ex-vivo comparative study of root-end marginal adaptation using grey mineral trioxide aggregate, white mineral trioxide aggregate, and Portland cement under scanning electron microscopy.

    Science.gov (United States)

    Baranwal, Akash Kumar; Paul, Mohan L; Mazumdar, Dibyendu; Adhikari, Haridas Das; Vyavahare, Nishant K; Jhajharia, Kapil

    2015-01-01

    Where nonsurgical endodontic intervention is not possible, or it will not solve the problem, surgical endodontic treatment must be considered. A major cause of surgical endodontic failures is an inadequate apical seal, so the use of the suitable substance as root-end filling material that prevents egress of potential contaminants into periapical tissue is very critical. The aim of the present ex-vivo study was to compare and evaluate the three root-end filling materials of mineral trioxide aggregate (MTA) family (white MTA [WMTA], grey MTA [GMTA] and Portland cement [PC]) for their marginal adaptation at the root-end dentinal wall using scanning electron microscopy (SEM). Sixty human single-rooted teeth were decoronated, instrumented, and obturated with Gutta-percha. After the root-end resection and apical cavity preparation, the teeth were randomly divided into three-experimental groups (each containing 20 teeth) and each group was filled with their respective experimental materials. After longitudinal sectioning of root, SEM examination was done to determine the overall gap between retrograde materials and cavity walls in terms of length and width of the gap (maximum) at the interface. Descriptive statistical analysis was performed to calculate the means with corresponding standard errors, median and ranges along with an analysis of variance and Tukey's test. The least overall gap was observed in GMTA followed by PC and WMTA. While after statistically analyzing the various data obtained from different groups, there was no significant difference among these three groups in terms of marginal adaptation. GMTA showed the best overall adaptation to root dentinal wall compared to PC and WMTA. Being biocompatible and cheaper, the PC may be an alternative but not a substitute for MTA.

  9. Effect of biomineralization ability on push-out strength of proroot mineral trioxide aggregate, mineral trioxide aggregate branco, and calcium phosphate cement on dentin: An In vitro evaluation

    Directory of Open Access Journals (Sweden)

    Vanita D Revankar

    2017-01-01

    Full Text Available Context: Biomineralization is a process which leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. It is due to interaction of mineral trioxide aggregate (MTA and Portland cement with dentin in phosphate-buffered solution (PBS. This study is aimed to evaluate the effect of influence of biomineralization process on push-out bond strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK, USA, MTA Branco (Angelus Soluc¸o˜es Odontolo´gicas, Londrina, PR, Brazil and calcium phosphate cement (BioGraft CPC. Aim: The aim of this study was to evaluate the effect of biomineralization process on the push-out strength of ProRoot MTA, MTA Branco, and CPC after mixing with 0.2% chlorhexidine gluconate solution (0.2% CHX and 2% lidocaine solution (2% LA on the bond strength of MTA-dentin. Materials and Methods: Dentin discs with uniform cavities were restored with ProRoot MTA, MTA Branco, and calcium phosphate cement after mixing with 0.2% CHX solution and 2% lidocaine solution. The samples were uniformly distributed into two groups. Experimental group being immersed in PBS solution and control group being immersed in saline for 2 months. Instron testing machine (Model 4444; Instron Corp., Canton, MA, USA was used to determine the bond strength. Statistical Analysis Used: A two-way analysis of variance and post hoc analysis by Bonferroni test. Results: All samples immersed in experimental group displayed a significantly greater resistance to displacement than that observed for the samples in control group (P < 0.05. MTAs displayed a significantly greater resistance to displacement than calcium phosphate cements. Conclusion: The main conclusion of this study was that the push-out bond strength of the cements, mainly the MTA groups, was positively influenced by the biomineralization process.

  10. Synergistic electrocatalytic effect of nanostructured mixed films formed by functionalised gold nanoparticles and bisphthalocyanines

    Energy Technology Data Exchange (ETDEWEB)

    Medina-Plaza, C. [Universidad de Valladolid, Department of Inorganic Chemistry, Engineers School (Spain); Furini, L.N. [Universidad de Valladolid, Department of Inorganic Chemistry, Engineers School (Spain); Faculdade de Ciências e Tecnologia, UNESP Univ Estadual Paulista, 19060-900 Presidente Prudente, SP (Brazil); Constantino, C.J.L. [Faculdade de Ciências e Tecnologia, UNESP Univ Estadual Paulista, 19060-900 Presidente Prudente, SP (Brazil); Saja, J.A. de [Universidad de Valladolid, Department of Condensed Matter Physics, Faculty of Sciences (Spain); Rodriguez-Mendez, M.L., E-mail: mluz@eii.uva.es [Universidad de Valladolid, Department of Inorganic Chemistry, Engineers School (Spain)

    2014-12-03

    Graphical abstract: Sensors based on gold nanoparticles and lutetium bisphthalocyanine, co-deposited using Langmuir–Blodgett technique, have demonstrated improved sensing properties towards hydroquinone due to synergistic effects. - Highlights: • Gold nanoparticles and lutetium bisphthalocyanine have been co-deposited using the LB technique. • Films used as voltammetric sensors provide enhanced responses towards hydroquinone. • The efficient electrocatalytic properties are due to synergistic effects. - Abstract: A synergistic electrocatalytic effect was observed in sensors where two electrocatalytic materials (functionalized gold nanoparticles and lutetium bisphthalocyanine) were co-deposited using the Langmuir–Blodgett technique. Films were prepared using a novel method where water soluble functionalised gold nanoparticles [(11-mercaptoundecyl)tetra(ethylene glycol)] (SAuNPs) were inserted in floating films of lutetium bisphthalocyanine (LuPc{sub 2}) and dimethyldioctadecylammonium bromide (DODAB) as the amphiphilic matrix. The formation of stable and homogeneous mixed films was confirmed by π-A isotherms, BAM, UV–vis and Raman spectroscopy, as well as by SEM and TEM microscopy. The synergistic effect towards hydroquinone of the electrodes modified with LuPc{sub 2}:DODAB/SAuNP was characterised by an increase in the intensity of the redox peaks and a reduction of the overpotential. This synergistic electrocatalytic effect arose from the interaction between the SAuNPs and the phthalocyanines that occur in the Langmuir–Blodgett films and from the high surface area provided by the nanostructured films. The sensitivity increased with the amount of LuPc{sub 2} and SAuNPs inserted in the films and limits of detection in the range of 10{sup −7} mol L{sup −1} were attained.

  11. [Construction of subtractive cDNA library of apoptosis-related genes in NB4 cells treated by arsenic trioxide].

    Science.gov (United States)

    Di, Chunhong; Gu, Shaohua; Tan, Xiaohua; Xian, Lingling; Wu, Qihan; Yang, Lei

    2009-02-01

    Construct the gene library of apoptosis related genes in acute promyelocytic leukemia (APL) cell line NB4 cells treated by arsenic trioxide to clarify the apoptotic mechanism of NB4 cells. APL cell line NB4 cells treated with or without arsenic trioxide for 24 hours. Total RNA was extracted and suppress subtractive hybridization (SSH) was conducted according to the manual. With the cDNA of the apoptosis cells as the tester and that of control cells as the driver, forward and reverse hybridization was performed. Differentially expressed genes were linked with pGEM-Teasy cloning vector and transformed into E. coli DH5alpha. The positive clones were screened by blue and white spot. PCR were used to amplify these genes. The subtractive cDNA libraries related with apoptosis of NB4 cells were successfully constructed. The constructed subtractive libraries are suitable for further study on the functional genes associated with apoptosis ofNB4 cells induced by arsenic trioxide.

  12. Effect of Synthetic Tissue Fluid on Microleakage of Grey and White Mineral Trioxide Aggregate as Root-End Filling Materials

    Science.gov (United States)

    Lotfi, Mehrdad; Vosoughhosseini, Sepideh; Saghiri, Mohammad Ali; Rahimi, Saeed; Zand, Vahid; Reyhani, Mohammad Forough; Samiei, Mohammad; Ghasemi, Negin; Mehrvarzfar, Payman; Azimi, Shahram; Shokohinejad, Noushin

    2012-01-01

    Objectives: The success of endodontic surgery has been shown to depend partly on the apical seal. Grey mineral trioxide aggregate (GMTA) produces hydroxyapatite twice as often as white mineral trioxide aggregate (WMTA) when suspended in a phosphate buffered saline (PBS) solution. The aim of this in vitro study was to compare the microleakage phenomenon of gray and white mineral trioxide aggregates as root-end filling materials after immersion in synthetic tissue fluid (STF). Methods: 55 single-rooted extracted maxillary anterior human teeth were divided into two experimental groups of 20 teeth each, plus 3 groups of 5 teeth each as two negative and one positive control groups. The root canals were cleaned, shaped, and laterally compacted with gutta-percha. The root ends were resected and 3 mm deep cavities were prepared. The root-end preparations were filled with GMTA or WMTA in the experimental groups. Leakage was determined using a dye penetration method. Data were analysed using analysis of variance (ANOVA) at the 0.05 level of significance. Results: The mean dye leakage was 0.40 ± 0.1 mm for GMTA and 0.50±0.1 mm for WMTA groups, respectively. There was no significant difference between the two experimental groups (P = 0.14). Conclusion: Despite the different properties and behaviours of GMTA and WMTA in STF, there were no significant differences in microleakage when using GMTA or WMTA. PMID:22912925

  13. A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles

    Science.gov (United States)

    Xue, Jingzhe; Luo, Zhihui; Li, Ping; Ding, Yaping; Cui, Yi; Wu, Qingsheng

    2014-07-01

    Here we reported a residue-free green nanotechnology which synergistically enhance the pesticides efficiency and successively eliminate its residue. We built up a composite antifungal system by a simple pre-treating and assembling procedure for investigating synergy. Investigations showed 0.25 g/L ZnO nanoparticles (NPs) with 0.01 g/L thiram could inhibit the fungal growth in a synergistic mode. More importantly, the 0.25 g/L ZnO NPs completely degraded 0.01 g/L thiram under simulated sunlight irradiation within 6 hours. It was demonstrated that the formation of ZnO-thiram antifungal system, electrostatic adsorption of ZnO NPs to fungi cells and the cellular internalization of ZnO-thiram composites played important roles in synergy. Oxidative stress test indicated ZnO-induced oxidative damage was enhanced by thiram that finally result in synergistic antifungal effect. By reducing the pesticides usage, this nanotechnology could control the plant disease economically, more significantly, the following photocatalytic degradation of pesticide greatly benefit the human social by avoiding negative influence of pesticide residue on public health and environment.

  14. Obesity and bipolar disorder: synergistic neurotoxic effects?

    Science.gov (United States)

    Liu, Celina S; Carvalho, André F; Mansur, Rodrigo B; McIntyre, Roger S

    2013-11-01

    Bipolar disorder (BD) is a disabling and chronic neuropsychiatric disorder that is typified by a complex illness presentation, episode recurrence and by its frequent association with psychiatric and medical comorbidities. Over the past decade, obesity has emerged as one of many comorbidities generating substantial concern in the BD population due to important prognostic implications. This comprehensive review details the bidirectional relationship between obesity and BD as evidenced by alterations in the structure and function of the central nervous system, in addition to greater depressive recurrence, cognitive dysfunction and risk of suicidality. Drawing on current research results, this article presents several putative mechanisms underlying the synergistic toxic effects and provides a framework for future treatment options for the obesity-BD comorbidity. There is a need for more large-scale prospective studies to investigate the bidirectional relationships between obesity and BD.

  15. In vitro synergistic antibacterial activity of Melissa officinalis L. and some preservatives

    Energy Technology Data Exchange (ETDEWEB)

    Stanojeic, D.; Comic, L.; Stefanovic, O.; Solujic Sukdolak, S.

    2010-07-01

    The aim of this study was to investigate the antibacterial activity of aqueous, ethanol and ethyl acetate extracts of the species Melissa officinalis L. and their in vitro synergistic action with preservatives, namely: sodium nitrite, sodium benzoate and potassium sorbate against selected food spoiling bacteria, for a potential use in food industry. Synergistic action was noticed in almost every combination between plant extracts and preservatives. This work showed that the active compounds from ethanol, ethyl acetate and aqueous extracts of Melissa officinalis L. significantly enhanced the effectiveness of tested preservatives. Synergism was established at plant extract and preservative concentrations corresponding to 1/4 and 1/8 minimal inhibitory concentration values, which indicated the possibility of avoiding the use of higher concentrations of tested preservatives. (Author) 25 refs.

  16. Synergistic extraction of trivalent lanthanoids with 3-phenyl-4-benzoyl-5-isoxazolone and various sulphoxides

    International Nuclear Information System (INIS)

    Sahu, S.K.; Chakravortty, V.; Reddy, M.L.P.; Ramamohan, T.R.

    1999-01-01

    Synergistic extraction of trivalent lanthanoids Nd, Tb and Tm with mixtures of 3-phenyl-4-benzoyl-5-isoxazolone (HPBI) and dioctyl sulphoxide (DOSO), bis-2-ethylhexyl sulphoxide (B2EHSO) or diphenyl sulphoxide (DPhSO) in xylene from perchlorate solution was investigated. Lanthanoids were found to be extracted as Ln(PBI) 3 with HPBI alone. In the presence of sulphoxides, Nd(III) was found to be extracted as Nd(PBI) 3 . S and Nd(PBI) 3 . 2 S (where S = sulphoxide). On the other hand, Tb(III) and Tm(III) were extracted as Tb(PBI) 3 . S and Tm(PBI) 3 . S respectively. The equilibrium constants of the synergistic species were found to increase monotonically with decreasing ionic radii of these metal ions. The addition of a sulphoxide to the metal chelate system not only enhances the extraction efficiency but also improves the selectivities among these trivalent lanthanoids. (orig.)

  17. Biomolecular Network-Based Synergistic Drug Combination Discovery

    Directory of Open Access Journals (Sweden)

    Xiangyi Li

    2016-01-01

    Full Text Available Drug combination is a powerful and promising approach for complex disease therapy such as cancer and cardiovascular disease. However, the number of synergistic drug combinations approved by the Food and Drug Administration is very small. To bridge the gap between urgent need and low yield, researchers have constructed various models to identify synergistic drug combinations. Among these models, biomolecular network-based model is outstanding because of its ability to reflect and illustrate the relationships among drugs, disease-related genes, therapeutic targets, and disease-specific signaling pathways as a system. In this review, we analyzed and classified models for synergistic drug combination prediction in recent decade according to their respective algorithms. Besides, we collected useful resources including databases and analysis tools for synergistic drug combination prediction. It should provide a quick resource for computational biologists who work with network medicine or synergistic drug combination designing.

  18. HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available Combinations of proteasome inhibitors and histone deacetylases (HDAC inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like activity assay. Here we report that (i the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii the combination also synergistically inhibits tumor growth in vivo; (iii two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.

  19. Synergistic effects of resistance training and protein intake: practical aspects.

    Science.gov (United States)

    Guimarães-Ferreira, Lucas; Cholewa, Jason Michael; Naimo, Marshall Alan; Zhi, X I A; Magagnin, Daiane; de Sá, Rafaele Bis Dal Ponte; Streck, Emilio Luiz; Teixeira, Tamiris da Silva; Zanchi, Nelo Eidy

    2014-10-01

    Resistance training is a potent stimulus to increase skeletal muscle mass. The muscle protein accretion process depends on a robust synergistic action between protein intake and overload. The intake of protein after resistance training increases plasma amino acids, which results in the activation of signaling molecules leading to increased muscle protein synthesis (MPS) and muscle hypertrophy. Although both essential and non-essential amino acids are necessary for hypertrophy, the intake of free L-leucine or high-leucine whole proteins has been specifically shown to increase the initiation of translation that is essential for elevated MPS. The literature supports the use of protein intake following resistance-training sessions to enhance MPS; however, less understood are the effects of different protein sources and timing protocols on MPS. The sum of the adaptions from each individual training session is essential to muscle hypertrophy, and thus highlights the importance of an optimal supplementation protocol. The aim of this review is to present recent findings reported in the literature and to discuss the practical application of these results. In that light, new speculations and questions will arise that may direct future investigations. The information and recommendations generated in this review should be of benefit to clinical dietitians as well as those engaged in sports. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Healing of Horizontal Intra-alveolar Root Fractures after Endodontic Treatment with Mineral Trioxide Aggregate.

    Science.gov (United States)

    Kim, Dohyun; Yue, Wonyoung; Yoon, Tai-Cheol; Park, Sung-Ho; Kim, Euiseong

    2016-02-01

    The purpose of this retrospective study was to evaluate the healing type and assess the outcome of horizontal intra-alveolar root fractures after endodontic treatment with mineral trioxide aggregate (MTA) as filling material. The clinical database of the Department of Conservative Dentistry at Yonsei University Dental Hospital, Seoul, Korea, was searched for patients with histories of intra-alveolar root fractures and endodontic treatments with MTA between October 2005 and September 2014. Radiographic healing at the fracture line was evaluated independently by 2 examiners and was classified into 4 types according to Andreasen and Hjørting-Hansen. Of the 22 root-fractured teeth that received endodontic treatment with MTA, 19 cases participated in the follow-up after a period of at least 3 months. Seventeen of the 19 teeth (89.5%) exhibited healing of the root fractures. For each healing type, 7 teeth (36.8%) showed healing with calcified tissue, 8 teeth (42.1%) showed interposition of connective tissue, 2 teeth (10.5%) showed interposition of connective tissue and bone, and 2 teeth (10.5%) showed interposition of granulation tissue without healing. Within the limitations of this study, intra-alveolar root fractures showed satisfactory healing outcomes after endodontic treatment with MTA. MTA could be considered to be suitable filling material for the endodontic treatment of horizontal intra-alveolar root fractures. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  1. Robust, heat-resistant and multifunctional superhydrophobic coating of carbon microflowers with molybdenum trioxide nanoparticles.

    Science.gov (United States)

    Wu, Yang; Zhao, Meiyun; Guo, Zhiguang

    2017-11-15

    Superhydrophobic materials have triggered large interest due to their widespread applications, such as self-cleaning, corrosion resistance, anti-icing, and oil/water separation. However, suffering from weak mechanical strength, plenty of superhydrophobic materials are limited in practical application. Herein, we prepared hierarchical carbon microflowers (CMF) dispersed with molybdenum trioxide (MoO 3 ) nanoparticles (MoO 3 /CMF) via a two-step preparation method. Taking advantage of high-adhesion epoxy resin and the modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES), the modified MoO 3 /CMF (PDES-MoO 3 /CMF) coating on various substrates shows great waterproof ability, excellent chemical stability, good mechanical durability, and self-cleaning property. More significantly, the prepared PDES-MoO 3 /CMF powder with high thermal stability (250°C) can be used for oil/water separation due to its special flower-like structure and superhydrophobicity/superoleophilicity. All of these advantages endow the superhydrophobic powders with huge potential in the practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Pulp Revascularization in Immature Permanent Tooth with Apical Periodontitis Using Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Katsura Saeki

    2014-01-01

    Full Text Available Mineral trioxide aggregate (MTA is a material that has been used worldwide in several clinical applications, such as apical barriers in teeth with immature apices, repair of root perforations, root-end filling, pulp capping, and pulpotomy. The purpose of this case report was to describe successful revascularization treatment of an immature mandibular right second premolar with apical periodontitis in a 9-year-old female patient. After preparing an access cavity without anesthesia, the tooth was isolated using a rubber dam and accessed. The canal was gently debrided using 5% sodium hypochlorite (NaOCl and 3% hydrogen peroxide irrigant. And then MTA was packed into the canal. X-ray photographic examination showed the dentin bridge 5 months after the revascularization procedure. Thickening of the canal wall and complete apical closure were confirmed 10 months after the treatment. In this case, MTA showed clinical and radiographic success at revascularization treatment in immature permanent tooth. The successful outcome of this case suggests that MTA is reliable and effective for endodontic treatment in the pediatric dentistry.

  3. Spectrophotometric analysis of coronal discoloration induced by white mineral trioxide aggregate and Biodentine: Anin vitrostudy.

    Science.gov (United States)

    Bhavya, B; Sadique, Mohammed; Simon, Elsy P; Ravi, S V; Lal, Sandeep

    2017-01-01

    The aim of this study was to evaluate the specific chromatic alterations in tooth crowns induced by two different endodontic restorative materials. This in vitro study was conducted at the Department of Conservative Dentistry, KMCT Dental College, Kozhikode, Kerala. Forty-five freshly extracted, fully developed, single-rooted teeth were prepared and randomly assigned to two experimental groups ( n = 15 each) and one negative control group ( n = 15). Group 1 consists of white mineral trioxide aggregate (WMTA), Biodentine formed Group 2, and controls formed Group 3. Double-beam ultraviolet spectrophotometer equipment was used to assess the coronal discoloration as determined by CIE L *, a *, and b * and their corresponding total values. At baseline, no significant difference was detected for CIE values between the groups. Group 1 showed a significant decrease in L *, a *, and b * values over time. The color change with WMTA led to clinically perceptible crown discoloration after 6 weeks which exceeded the perceptible threshold for the human eye, i.e., Δ E > 3.3. No changes were observed with Biodentine. Materials used in endodontics may stain teeth. WMTA induced clinically perceptible crown discoloration, whereas Biodentine demonstrated color stability.

  4. Comparing Gray Mineral Trioxide Aggregate and Diluted Formocresol in Pulpotomized Human Primary Molars

    Science.gov (United States)

    Zealand, Cameron M.; Briskie, Daniel M.; Botero, Tatiana M.; Boynton, James R.; Hu, Jan C.C.

    2016-01-01

    Purpose The purpose of this multisite, multioperator, prospective, randomized, controlled clinical trial was to evaluate the 6-month outcomes of diluted formocresol (DFC) compared to gray mineral trioxide aggregate (GMTA) as pulpotomy medicament. Methods Determined by a power analysis, 252 molars of 152 children were recruited. The teeth were randomly assigned to receive GMTA or DFC. At the 6-month follow-up, 118 children with 203 treated teeth were evaluated. Results Four blinded and calibrated evaluators scored each radiograph for pathologies. Clinical success was similar for DFC (97%) and GMTA (100%), (P<.09). Radiographic success differed significantly (P<.04) for DFC (86%) and GMTA (95%). Pulp canal obliteration was radiographically observed in 25% of the DFC group and in 37% of the GMTA group (P=.07). Dentin bridging was observed in 22% of the GMTA group but was not found in the DFC group (P<.01). Conclusion Teeth treated with GMTA showed more favorable radiographic outcomes than DFC at 6 months post-treatment. PMID:21070705

  5. Morphology-tailored synthesis of tungsten trioxide (hydrate) thin films and their photocatalytic properties.

    Science.gov (United States)

    Jiao, Zhihui; Wang, Jinmin; Ke, Lin; Sun, Xiao Wei; Demir, Hilmi Volkan

    2011-02-01

    Tungsten trioxide hydrate (3WO(3)·H(2)O) films with different morphologies were directly grown on fluorine doped tin oxide (FTO) substrate via a facile crystal-seed-assisted hydrothermal method. Scanning electron microscopy (SEM) analysis showed that 3WO(3)·H(2)O thin films composed of platelike, wedgelike, and sheetlike nanostructures could be selectively synthesized by adding Na(2)SO(4), (NH(4))(2)SO(4), and CH(3)COONH(4) as capping agents, respectively. X-ray diffraction (XRD) studies indicated that these films were of orthorhombic structure. The as-prepared thin films after dehydration showed obvious photocatalytic activities. The best film grown using CH(3)COONH(4) as a capping agent generated anodic photocurrents of 1.16 mA/cm(2) for oxidization of methanol and 0.5 mA/cm(2) for water splitting with the highest photoconversion efficiency of about 0.3% under simulated solar illumination.

  6. Dose-adjusted arsenic trioxide for acute promyelocytic leukaemia in chronic renal failure.

    Science.gov (United States)

    Firkin, Frank; Roncolato, Fernando; Ho, Wai Khoon

    2015-10-01

    To determine the potential for arsenic trioxide (ATO) to be safely and effectively incorporated into induction therapy of newly diagnosed acute promyelocytic leukaemia (APL) in patients with severe chronic renal failure (CRF) by reduction of the ATO dosage to compensate for reduced renal elimination of arsenic in CRF. Two of the four CRF patients with APL in the study were dialysis-dependent, and two had eGFRs of 18 and 19 mL/min/1.73 m(2) . ATO dosage schedules were adjusted to obtain comparable whole-blood arsenic levels to those in APL patients with normal renal function who achieved molecular remission (MR) while receiving 10 mg ATO daily for 28 d. Average ATO administered per day in CRF patients ranged from 36 to 50% of the ATO administered to APL patients with normal renal function. No clinically significant cardiac, hepatic or other toxicities were detected. RT-PCR-negative MR was achieved after one treatment course in two patients and after two courses in the others. Relapse-free survival is 155, 60, 43 and 5 months. The observations in this pilot study have demonstrated whole-blood arsenic levels can provide a guide to adjustments of ATO dosage schedules that permit safe and effective therapeutic outcomes in APL patients with severely compromised renal function. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Mineral trioxide aggregate as a pulpotomy agent in primary molars: An in vivo study

    Directory of Open Access Journals (Sweden)

    Naik S

    2005-03-01

    Full Text Available The retention of pulpally involved deciduous tooth in a healthy state until the time of normal exfoliation remains to be one of the challenges for Pedodontists. A scientific noise has been generated about several materials some of which have been popular pulpotomy medicaments. Concerns have been raised about the toxicity and potential carcinogenicity of these materials, and alternatives have been proposed to maintain the partial pulp vitality, however to date no material has been accepted as an ideal pulpotomy agent. Mineral trioxide aggregate (MTA is a biocompatible material which provides a biological seal. MTA has been proposed as a potential medicament for various pulpal procedures like pulp capping with reversible pulpitis, apexification, repair of root perforations, etc. Hence the present study was done to evaluate the efficacy of MTA as a pulpotomy medicament. A clinical and radiographic evaluation was done on children where MTA was used as pulpotomy medicament in primary molars for a period of 6 months and it was found to be a successful material.

  8. Retreatment and surgical repair of the apical third perforation and osseous defect using mineral trioxide aggregate

    Directory of Open Access Journals (Sweden)

    A Savitha

    2013-01-01

    Full Text Available One of the causes of non-healing periapical pathosis in endodontically treated tooth is root perforation. This can occur pathologically by resorption and caries, iatrogenically during endodontic therapy (zip, strip, furcal perforations. Root perforation results in bacterial contamination, periradicular tissue injury, inflammation, and bone resorption. The purpose of this case report is to describe endodontic retreatment and surgical management of a longstanding periapical lesion on maxillary lateral incisor, associated with perforation and osseous defects using mineral trioxide aggregate (MTA. Although the majority of bone support and root dentin was damaged, an attempt was made to repair the defect and restore the tooth. After the surgical intervention and root canal treatment, the perforation was subsequently sealed with MTA. Later, the root was reinforced with composites and the tooth was restored with direct veneer. Conclusion: Four-and-a-half year (54 months recall examination showed no evidence of periodontal breakdown, no symptoms of further deterioration, and complete healing of periradicular lesions when examined by radiography. This case report presents a treatment strategy that could improve the healing process and beneficial outcomes for patients with perforation and osseous defect.

  9. Aloe vera as vehicle to mineral trioxide aggregate: study in bone repair

    Directory of Open Access Journals (Sweden)

    Jessyca Leal Moura FÉ

    Full Text Available AIM: Mineral trioxide aggregate (MTA was associated to Aloe vera to verify the coadjutant action of that medicinal plant in the bone neoformation process in tibia of rats.MATERIAL AND METHOD: 36 male rats (Rattus norvegicus were used, divided into two groups of 18 rats each. Two circumferential bone defects with approximately 5 mm in diameter were made on the right tibia of each animal: the upper defect was filled with blood coagulates in both groups to serve as experimental control and the lower defect was filled with MTA and Aloe vera in experimental (group E1 and MTA and distilled water in experimental (group E2. Seven, 15 and 30 days after surgery, six animals from each group were euthanized and the right tibia of each animal was removed for histological analysis.RESULT: Histologically, experimental group E1 presented better results for the two variables, inflammation [at seven days (p=0.045] and bone formation [at seven days (p=0.018 and 30 days (p=0.034], compared to the E2 group.CONCLUSION: The association of MTA and Aloe vera showed potential to reduce the effects of the inflammatory cascade and promote bone neoformation making it to a promising proposal for future use in endodontic therapy.

  10. Electrodeposition-Based Fabrication and Characteristics of Tungsten Trioxide Thin Film

    Directory of Open Access Journals (Sweden)

    Li Lin

    2016-01-01

    Full Text Available In this study, tungsten trioxide (WO3 thin films were electrodeposited on indium tin oxide (ITO glass to form WO3-coated glass. The electrodeposition (ED time (tED and ED current (IED were varied to control the film thickness and morphology. Furthermore, the crystallization of the thin films was controlled by annealing them at 250°C, 500°C, and 700°C. The results showed that the thickness of the WO3 thin films increased with tED and IED. The as-deposited thin films and those annealed at 250°C were amorphous, whereas the WO3 thin films annealed at 500 and 700°C were in the anorthic phase. Moreover, the amorphous WO3-coated glass exhibited high transmittance in visible light and low transmittance in near-infrared light, whereas the anorthic WO3-coated glass had high transmittance in near-infrared light. An empirical formula for determining the thickness of WO3 thin films was derived through multiple regressions of the ED process parameters.

  11. Color stability of white mineral trioxide aggregate in contact with hypochlorite solution.

    Science.gov (United States)

    Camilleri, Josette

    2014-03-01

    One of the uses of white mineral trioxide aggregate (MTA) is as an apical barrier in immature teeth. Although this treatment has been reported to have high success rates, a number of cases of discoloration have been noted. The aim of this research was to investigate the color stability of white MTA in contact with various solutions used in endodontics. The change in color of white MTA after immersion in water, sodium hypochlorite, or hydrogen peroxide was assessed by viewing the color change on digital photographs and also by using a spectrophotometer. White MTA, white Portland cement, and bismuth oxide were assessed. The changes in the material after immersion in the different solutions were assessed by x-ray diffraction analysis and Fourier transform infrared spectroscopy. Immersion of white MTA and bismuth oxide in sodium hypochlorite resulted in the formation of a dark brown discoloration. This change was not observed in Portland cement. X-ray diffraction analysis and Fourier transform infrared analysis displayed the reduction of sodium hypochlorite in contact with bismuth oxide and MTA to sodium chloride. Contact of white MTA and other bismuth-containing materials with sodium hypochlorite solution should be avoided. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. The status of mineral trioxide aggregate in endodontics education in dental schools in Turkey.

    Science.gov (United States)

    Tanalp, Jale; Karapinar-Kazandag, Meriç; Ersev, Handan; Bayirli, Gündüz

    2012-06-01

    The aim of this study was to assess the current status of mineral trioxide aggregate (MTA) as an educational material in dental schools in Turkey. A survey was sent to senior members of the endodontic departments of seventeen dental schools; fourteen responded. All respondents reported that they used MTA in their clinical practice, with apexification, perforations, retrograde fillings, and root resorptions being the most frequently occurring treatment procedures. All reported that information was given to students regarding MTA mainly as part of the curriculum. The third and fourth years were the periods when MTA was introduced to students in most of the schools. Twelve schools reported that students had the opportunity to observe procedures in which MTA was used, but students had the chance to use the material in a very minor proportion of the schools, mainly under the supervision of clinical instructors. Ten schools agreed that MTA should be included in the regular endodontic curriculum. Financial constraints seemed to be the predominant reason for those who answered this question negatively, followed by difficult handling properties and low radiopacity of the material. Within the limitations of this study, it can be concluded that ways should be sought to prevent financial difficulties from depriving dental students of the opportunity to receive information about contemporary methodologies such as MTA utilization.

  13. Effect of containing silica fume on cytotoxicity of white mineral trioxide aggregate.

    Science.gov (United States)

    Pirzadeh-Ashraf, Ahmad; Lotfi, Mehrdad; Zarandi, Ali; Yazdani, Ebrahim; Mozafari, Aysan; Pornasrollah, Alireza

    2018-01-01

    Mineral trioxide aggregate (MTA) has a high biocompatibility and its physical properties could be improved by adding the containing silica fume an amorphous silicon dioxide (condensed silica fume [CSF]). The aim of this study was to evaluate the cytotoxicity of MTA mixed with CSF on the viability of L929 mouse fibroblast cell using 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide reduction assay (MTT assay). In this in vitro study white MTA was mixed with distilled water according to the manufacturer's instructions. Mixtures of White MTA with 10%, 15%, and 20% CSF by weight were prepared and mixed with distilled water. Cytotoxicity of mixtures was compared with MTT assay on L929 mouse fibroblast cell line after 24, 48, and 72 h. Differences in cytotoxicity were assessed by one-way analysis of variance (ANOVA). Mean ± SD of vital cell counts cultured in MTA, MTA + 10% CSF, MTA + 15% CSF, and MTA + 20% CSF were 98% ± 6%, 97% ± 6%, 94% ± 4%, and 98% ± 4%, respectively. One-way ANOVA did not reveal any statistically significant difference between the groups ( P > 0.05). It may be concluded that addition of CSF to MTA may not influence its cytotoxicity.

  14. Retrospective evaluation of healing of periapical lesions after unintentional extrusion of mineral trioxide aggregate.

    Science.gov (United States)

    Demiriz, Levent; Hazar Bodrumlu, Ebru

    2017-11-10

    During the apexification procedure for teeth with open apices, mineral trioxide aggregate (MTA) may be unintentionally extruded. The aim of the present study was the retrospective evaluation of the healing of periapical lesions in permanent incisor teeth with open apices after the unintentional extrusion of MTA. The clinical and radiographic records of 55 maxillary permanent central teeth treated by MTA apexification were evaluated. Filled teeth with unintentionally extruded MTA were selected as group 1 (n = 21), whereas the teeth with no MTA extrusion were selected as group 2 (n = 34). For each tooth, the clinical and radiographic records from a 3-year follow-up were investigated. Complete healing (CH) was observed in 19 teeth (90.4%) in group 1, whereas the same type of healing was observed in all 34 teeth (100%) in group 2 (p>0.05). At the 6-month follow-up appointment, 25 teeth (73.5%) showed CH in group 2, whereas 15 teeth (71.4%) showed CH at the 1-year follow-up in group 1 (pMTA extrusion was reduced in 17 teeth (85%) (pMTA does not prevent the healing of periapical lesions, but may be a delaying factor for periapical healing.

  15. Effect of Dentin Bonding Agent on the Prevention of Tooth Discoloration Produced by Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Majid Akbari

    2012-01-01

    Full Text Available Objective. Determination of the effect of dentin bonding agent (DBA on the prevention of tooth discoloration produced by mineral trioxide aggregate (MTA. Methods. 50 teeth were endodontically treated and after removal of 3 mm of obturating materials were divided into five groups. In white MTA (WMTA and grey MTA (GMTA groups, these materials were placed in root canal below the orifice. In DBA + WMTA and DBA + GMTA groups, DBAs were applied in the access cavity. Then, 3 mm of WMTA and GMTA was placed. The last 10 teeth served as control. All of teeth were restored and color measurement was recorded for each specimen at this time and 6 months later. Results. The mean tooth discoloration in WMTA and GMTA groups was significantly more than DBA + WMTA and DBA + GMTA groups, respectively. There was no significant difference between DBA + WMTA and DBA + GMTA groups and control group. Conclusion. Application of DBA before MTA may prevent tooth discoloration.

  16. Physical and Chemical Properties and Subcutaneous Implantation of Mineral Trioxide Aggregate Mixed with Propylene Glycol.

    Science.gov (United States)

    Marciano, Marina Angélica; Guimarães, Bruno Martini; Amoroso-Silva, Pablo; Camilleri, Josette; Hungaro Duarte, Marco Antonio

    2016-03-01

    The aim of this study was to evaluate the physical, chemical, and biological properties of mineral trioxide aggregate (MTA) mixed with 80% distilled water and 20% propylene glycol (PG) compared with MTA mixed with distilled water only. Flowability, film thickness, and solubility were analyzed according to American National Standards Institute/American Dental Association specification 57/2000. Initial and final setting times were assessed according to American Society for Testing and Materials specification C266/08. Porosity was assessed by using mercury intrusion porosimetry after 1 and 28 days of hydration, and the pH and calcium ion release were assessed after 3, 24, 72, and 168 hours. For the tissue reaction, the cements were implanted in 24 albino rats (2 groups, n = 12). An analysis of the inflammatory infiltrate was performed after 15, 30, and 60 days. MTA + PG exhibited lower film thickness and higher final setting time. No differences were verified for flowability (P > .05). MTA + PG showed high porosity at 1 day of hydration (P MTA and is biologically acceptable. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Compressive Strength of Mineral Trioxide Aggregate and Calcium-enriched Mixture Cement Mixed with Propylene Glycol.

    Science.gov (United States)

    Sobhnamayan, Fereshte; Adl, Alireza; Shojaee, Nooshin Sadat; Sedigh-Shams, Mahdi; Zarghami, Elnaz

    2017-01-01

    The aim of the present study was to evaluate and compare the compressive strength (CS) of mineral trioxide aggregate (MTA) and calcium-enriched mixture (CEM) cement when mixed with propylene glycol (PG). Twenty four custom-made split molds with 5 holes in each were prepared. Molds were allocated into eight groups ( n =15 holes) as follows: Groups 1,5: CEM and MTA mixed with PG (100%), Groups 2,6: CEM and MTA mixed with PG (20% )+CEM or MTA liquid (80%) respectively, Groups 3,7: CEM and MTA mixed with PG (50% )+CEM or MTA liquid (50% ) respectively, Groups 4,8: CEM and MTA mixed with CEM or MTA liquid respectively as control groups. All specimens were kept in 37 ° C in an incubator and the compressive strength was evaluated after 7 days. Data were analyzed using the Kruskal Wallis and Dunne tests. The level of significance was set at 0.05. In all concentration of PG, MTA samples showed better results than CEM cement. In CEM samples, adding 20% PG could significantly increase the compressive strength in comparison with control group and 100% PG ( P =0.047 and P =0.011, respectively). In MTA samples, adding 100% and 50% PG significantly increased the compressive strength of the cement in comparison with control group ( P =0.037 and, P =0.005, respectively). Considering the limitations of the present study, appropriate concentration of PG could improve the CS of MTA and CEM cement.

  18. Cytotoxicity of two available mineral trioxide aggregate cements and a new formulation on human gingival fibroblasts.

    Science.gov (United States)

    Torshabi, Maryam; Amid, Reza; Kadkhodazadeh, Mahdi; Shahrbabaki, Sara Eslami; Tabatabaei, Fahimeh S

    2016-01-01

    The purpose of this study was to investigate the cytotoxicity of nanohybrid mineral trioxide aggregate (MTA) in comparison with calcium-enriched mixture (CEM) cement and MTA-Angelus, using human gingival fibroblasts (HGFs). Nine disc-shaped specimens of each material (in 2 set stat: A, set for 24 h; B, set for 30 min; and C, fresh stat) were prepared. HGFs were exposed to tested materials' extracts or control media. Cytotoxicity testing was performed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay in two time intervals. Results were evaluated by one-way ANOVA and t -test. Statistical significance was set at P MTA = 24 h set CEM) at both time intervals. Interestingly, 24 h after incubation, CEM in Groups B and C demonstrated higher cell viability values than MTA ( P MTA showed equal cell viability. All samples of nanohybrid MTA had slight cytotoxic effects after 24 h of incubation, and moderate cytotoxic effects after 72 h of incubation. Set CEM and set MTA-Angelus exerted similar, favorable effects on cell viability. However, within the limitations of this in vitro study, the results suggest that nanohybrid MTA could not be recommended as a material of choice for cervical root resorption.

  19. Anti-osteoclastogenesis of Mineral Trioxide Aggregate through Inhibition of the Autophagic Pathway.

    Science.gov (United States)

    Cheng, Xue; Zhu, Lingxin; Zhang, Jie; Yu, Jingjing; Liu, Shan; Lv, Fengyuan; Lin, Ying; Liu, Guojing; Peng, Bin

    2017-05-01

    Mineral trioxide aggregate (MTA) regulates bone remodeling, particularly osteoclast differentiation. However, intracellular mechanisms underlying the anti-osteoclastogenesis of MTA remain unclear. This study aimed to evaluate the potential alterations of autophagic pathway during anti-osteoclastogenic effects by MTA in vitro and investigate their underlying mechanisms. Osteoclast precursors were treated with MTA extracts containing the receptor activator of nuclear factor-kappa B ligand (RANKL). Rapamycin was used to activate autophagy. RANKL-induced osteoclast differentiation was stained with tartrate-resistant acid phosphatase. Several specific autophagy features in osteoclast precursors were measured by using immunofluorescence, monodansylcadaverine, and transmission electron microscope. Autophagy-related proteins were investigated via Western blot analysis. The mRNA expression involved in autophagic and osteoclastic activities was detected with quantitative real-time polymerase chain reaction. MTA extracts inhibited osteoclast differentiation via preventing the fusion of osteoclast precursors without cytotoxicity. MTA extracts interrupted RANKL-induced acidic vesicular organelle formation and autophagic vacuole appearance in osteoclast precursors. Moreover, autophagic genes and proteins stimulated with RANKL diminished with MTA extracts. Notably, autophagy activation through rapamycin promoted multinucleated osteoclasts formation and increased osteoclastic genes expression, which almost reversed MTA-mediated anti-osteoclastogenic effects. MTA inhibited osteoclastogenesis for bone repair through attenuating the autophagic pathway. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Sealing ability of mineral trioxide aggregate (MTA) combined with distilled water, chlorhexidine, and doxycycline.

    Science.gov (United States)

    Arruda, Roberta A A; Cunha, Rodrigo S; Miguita, Kenner B; Silveira, Cláudia F M; De Martin, Alexandre S; Pinheiro, Sérgio L; Rocha, Daniel G P; Bueno, Carlos E S

    2012-09-01

    The aim of this study was to evaluate the sealing ability of mineral trioxide aggregate (MTA Bio) combined with different mixing agents (distilled water, chlorhexidine, doxycycline), used as an apical root-end filling material. Forty-two extracted human teeth were divided into three groups (n = 12); six teeth were used as controls. Root-ends were resected at 90 degrees, 3 mm from the apex. Root-end cavities were prepared using ultrasonic tips and filled with MTA Bio plus distilled water, 2% chlorhexidine solution, or 10% doxycycline solution. Apical sealing was assessed by microleakage of 50% silver nitrate solution. Roots were longitudinally sectioned in a buccolingual plane and analyzed using an operating microscope (20× magnification). Depth of dye leakage into the dentinal walls was measured in millimeters. Results were analyzed using ANOVA and Tukey's test (P = 0.05). MTA Bio plus distilled water showed significantly higher mean leakage results (1.06 mm) when compared with MTA Bio plus doxycycline (0.61 mm), and higher, although not significant, results when compared with MTA Bio plus chlorhexidine (0.79 mm). In conclusion, replacing distilled water with two biologically active mixing agents (doxycycline and chlorhexidine) did not alter the sealing properties of MTABio. The antimicrobial properties of these combinations should be further investigated.

  1. Effects of mineral trioxide aggregate mixed with hydration accelerators on osteoblastic differentiation.

    Science.gov (United States)

    Lee, Bin-Na; Kim, Hye-Joung; Chang, Hoon-Sang; Hwang, In-Nam; Oh, Won-Mann; Kim, Jung-Woo; Koh, Jeong-Tae; Min, Kyung-San; Choi, Choong-Ho; Hwang, Yun-Chan

    2014-12-01

    Despite good physical and biological properties, mineral trioxide aggregate (MTA) has a long setting time. A hydration accelerator could decrease the setting time of MTA. This study assessed the biocompatibility of MTA mixed with hydration accelerators (calcium chloride and low-dose citric acid) and investigated the effect of these materials on osteoblast differentiation. Cell viability was evaluated by the EZ-Cytox assay kit (Daeil Lab Service, Seoul, Korea). The gene expressions of osteocalcin and bone sialoprotein were detected by reverse-transcription polymerase chain reaction and real-time polymerase chain reaction. The mineralization behavior was evaluated with alizarin red staining. There was no statistically significant difference in cell viability between experimental groups. The messenger RNA level of osteogenic genes significantly increased in MTA mixed with hydration accelerators compared with the control and MTA mixed with water. MTA mixed with the hydration accelerators resulted in similar mineralization compared with MTA mixed with water. Hydration accelerators increase the osteogenic effect and show a similar effect on the mineralization of MTA, which may have clinical applications. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Clinical and radiological evaluation of furcal perforation repaired by mineral trioxide aggregate and intermediate restorative material

    Directory of Open Access Journals (Sweden)

    Kamrun Naher Shomi

    2017-05-01

    Full Text Available The purpose of the present study was to assess the clinical and radiological outcome following repair of furcal perforation by mineral trioxide aggregate (MTA and intermediate restorative material (IRM in mandibular molar teeth. Forty teeth having furcal perforation were enrolled in this study, out of which 20 teeth were treated with MTA and the remaining 20 teeth were subjected to IRM treatment. Following perforation repair, all teeth were subjected to root canal treatment followed by final restoration. Clinical and radiological outcome was evaluated at 3, 6 and 12 months interval. The results showed that in both MTA and IRM groups, pain, tenderness on percussion as well as swelling and sinus was gradually decreased with the increase of the observation period. Furthermore, the widening of the periodontal ligament space and communi-cation with the oral cavity were gradually decreased. Although there was no significant differences between MTA and IRM at 3 and 6 months observation period but at 12 months, the clinical outcome between MTA and IRM was statistically significant (p<0.05. It can be concluded that repair of furcal perforation by MTA showed more effective than that of IRM.

  3. Remineralization of artificial dentinal caries lesions by biomimetically modified Mineral Trioxide Aggregate

    Science.gov (United States)

    Qi, Yi-pin; Li, Nan; Niu, Li-na; Primus, Carolyn M.; Ling, Jun-Qi; Pashley, David H.; Tay, Franklin R.

    2011-01-01

    Fluoride-releasing restorative materials are available for remineralization of enamel and root caries. However, dentin remineralization is more difficult than enamel remineralization due to the paucity of apatite seed crystallites along the lesion surface for heterogeneous crystal growth. Extracellular matrix proteins play critical roles in controlling apatite nucleation/growth in collagenous tissues. This study examined the remineralization efficacy of mineral trioxide aggregate (MTA) in phosphate-containing simulated body fluid (SBF) by incorporating polyacrylic acid and sodium tripolyphosphate as biomimetic analogs of matrix proteins for remineralizing caries-like dentin. Artificial caries-like dentin lesions incubated in SBF were remineralized over a 6-week period using MTA or MTA containing biomimetic analogs in the absence or presence of dentin adhesive application. Lesion depths and integrated mineral loss were monitored with micro-computed tomography. Ultrastructure of baseline and remineralized lesions were examined by transmission electron microscopy. Dentin remineralization was best achieved using MTA containing biomimetic analogs regardless of whether an adhesive was applied; dentinal tubules within the remineralized dentin were occluded by apatite. It is concluded that the MTA version employed in the study may be doped with biomimetic analogs for remineralization of unbonded and bonded artificial caries-like lesions in the presence of SBF. PMID:22085925

  4. Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation: a scanning electron microscopy study

    Science.gov (United States)

    Yoo, Jun Sang; Chang, Seok-Woo; Oh, So Ram; Perinpanayagam, Hiran; Lim, Sang-Min; Yoo, Yeon-Jee; Oh, Yeo-Rok; Woo, Sang-Bin; Han, Seung-Hyun; Zhu, Qiang; Kum, Kee-Yeon

    2014-01-01

    The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate (MTA) was studied by scanning electron microscopy (SEM). Single-rooted human premolars (n=60) were instrumented to an apical size #50/0.06 using ProFile and treated as follows: Group 1 (n=10) was filled with phosphate buffered saline (PBS); Group 2 (n=10) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS; Group 3 (n=20) was obturated orthograde with a paste of OrthoMTA (BioMTA, Seoul, Korea) and PBS; and Group 4 (n=20) was incubated with E. faecalis for 3 weeks and then obturated with OrthoMTA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material (IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoMTA-filled roots (Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots (Group 4). Therefore, the orthograde obturation of root canals with OrthoMTA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization. PMID:25012869

  5. Placement in an acidic environment increase the solubility of white mineral trioxide aggregate

    Science.gov (United States)

    Yavari, Hamid Reza; Borna, Zahra; Rahimi, Saeed; Shahi, Shahriar; Valizadeh, Hadi; Ghojazadeh, Morteza

    2013-01-01

    Aims: The aim of the present study was to evaluate solubility of white mineral trioxide aggregate (WMTA) in an acidic environment. Materials and Methods: Twenty-four metal rings were prepared, filled with WMTA and randomly divided into two groups. The samples in groups 1 and 2 were set in synthetic tissue fluid with pH values of 7.4 and 4.4, respectively and then were transferred to beakers containing synthetic tissue fluid with pH values of 7.7 and 4.4. Solubility of WMTA samples were calculated at the 9 experimental intervals. Data was analyzed with two-factor ANOVA and Bonferroni test (P < 0.03). Results: The total solubility of WMTA in groups 1 and 2 were −9.1796 ± 1.9158% and −1.1192 ± 2.6236%, (P = 0.028) with weight changes of 9.1574 ± 2.1432% and 7.3276 ± 1.5823%, respectively (P = 0.002). Statistical analysis revealed significant differences between the two groups. Conclusions: It was concluded that solubility of WMTA increases in acidic environments and additional therapeutic precautions should be taken to decrease inflammation in endodontic treatment. PMID:23833462

  6. Histologic Assessment of Quick-Set and Mineral Trioxide Aggregate Pulpotomies in a Canine Model.

    Science.gov (United States)

    Woodmansey, Karl F; Kohout, George D; Primus, Carolyn M; Schneiderman, Emet; Opperman, Lynne A

    2015-10-01

    Quick-Set (Primus Consulting, Bradenton, FL) is a calcium aluminosilicate cement that is a potential alternative to mineral trioxide aggregate (MTA) with greater acid resistance and faster setting. The purpose of this study was to compare the effects of Quick-Set and MTA on pulpal tissues in response to pulpotomy procedures. The pulp chambers of 42 maxillary teeth in 7 beagle dogs were accessed, and the coronal pulpal tissue was removed. Pulpotomy procedures were performed, placing the experimental materials directly over the radicular pulp tissues. The dogs were sacrificed at 70 days, and the teeth and surrounding tissues were removed and prepared for histologic analysis. The sections of the pulpotomy areas were scored for inflammation, pulp tissue organization, reactionary dentin formation, and quality of dentinogenesis. The Quick-Set group exhibited significantly more pulpal inflammation (P = .002) and significantly less pulp tissue organization (P = .004). No significant difference was noted for reactionary dentin formation (P = .526) and quality of dentinogenesis (P = .436). Compared with ProRoot White MTA (Dentsply Tulsa Dental Specialties, Tulsa, OK), Quick-Set exhibited more pulpal inflammation and decreased pulp tissue organization. No significant differences were noted for reactionary dentin formation and quality of dentinogenesis. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Delayed Root Development by Displaced Mineral Trioxide Aggregate after Regenerative Endodontics: A Case Report.

    Science.gov (United States)

    Timmerman, Aovana; Parashos, Peter

    2017-02-01

    This case report presents the treatment of a 16-year-old boy with a maxillary lateral incisor (tooth #10) presenting with Oehlers type II dens invaginatus and diagnosed with previously initiated therapy and asymptomatic apical periodontitis. A regenerative endodontic procedure (REP) was performed for the tooth but complicated by apically displaced mineral trioxide aggregate (MTA). Clinical and radiographic examination was undertaken yearly, and a cone-beam computed tomography scan was taken to investigate further the formation of hard tissues within the root canal. Subsequently, tooth #10 was re-accessed and then root-filled with MTA. There was complete periapical healing, thickening of the dentinal root walls, and completed apex formation 3 years after REP. Hard tissue formation was noted within the root canal, on the root canal wall, and the root apex through clinical and radiographic examination. Less hard tissue formation was noted on the labial root canal wall where the displaced MTA was located, which was identified on the cone-beam computed tomography scan. This report demonstrates that REP can potentially provide excellent treatment outcomes for structurally compromised teeth. REP should be considered as a first-line treatment before proceeding with a root filling when root development is incomplete, but attention to technical detail is essential. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Clinical evaluation of mineral trioxide aggregate and biodentine as direct pulp capping agents in carious teeth

    Science.gov (United States)

    Hegde, Swaroop; Sowmya, B.; Mathew, Sylvia; Bhandi, Shilpa H.; Nagaraja, Shruthi; Dinesh, K.

    2017-01-01

    Background: Root canal treatment has been a routine treatment option for carious exposure of the dental pulp. In the context of minimally invasive dentistry, direct pulp capping (DPC) procedure with a reliable biomaterial may be considered as an alternative provided the pulp status is favorable. Mineral trioxide aggregate (MTA), a bioactive cement with excellent sealing ability and biocompatibility is capable of regenerating relatively damaged pulp and formation of dentin bridge when used as DPC agent. Biodentine is comparatively a new biomaterial claimed to possess properties similar to MTA and is currently explored for vital pulp therapy procedures. Aim: The aim of the present study was to evaluate the clinical response of pulp-dentin complex after DPC with MTA and biodentine in carious teeth. Subjects and Methods: Twenty-four permanent molars with carious exposure having no signs and symptoms of irreversible pulpitis were selected and assigned to one of the two groups, Group I - MTA and Group II - biodentine. Patients were recalled at 3 weeks, 3 months, and 6 months for clinical and radiographic evaluation. Fisher's exact test was used along with Chi-square test for statistical analysis. Results: Over a period of 6 months, MTA and biodentine showed 91.7% and 83.3% success rate, respectively, based on the subjective symptoms, pulp sensibility tests, and radiographic appearance. Conclusion: MTA and biodentine may be used as DPC agents when the pulpal diagnosis is not more than reversible pulpitis. PMID:28855754

  9. Carbon nanotubes-bridged molybdenum trioxide nanosheets as high performance anode for lithium ion batteries

    Science.gov (United States)

    Sun, Haiyan; Hanlon, Damien; Dinh, Duc Anh; Boland, John B.; Esau Del Rio Castillo, Antonio; Di Giovanni, Carlo; Ansaldo, Alberto; Pellegrini, Vittorio; Coleman, Jonathan N.; Bonaccorso, Francesco

    2018-01-01

    The search for novel nanomaterials driving the development of high-performance electrodes in lithium ion batteries (LIBs) is at the cutting edge of research in the field of energy storage. Here, we report on the synthesis of single wall carbon nanotube (SWNT)-bridged molybdenum trioxide (MoO3) nanosheets as anode material for LIBs. We exploit liquid phase exfoliation of layered MoO3 crystallites to produce multilayer MoO3 nanosheets dispersed in isopropanol, which are then mixed with solution processed SWNTs in the same solvent. The addition of SWNTs to the MoO3 nanosheets provides the conductive framework for electron transport, as well as a bridge structure, which buffers the volume expansion upon lithiation/de-lithiation. We demonstrate that the hybrid SWNT-bridged MoO3 structure is beneficial for both the mechanical stability and the electrochemical characteristics of the anodes leading to a specific capacity of 865 mAh g‑1 at 100 mA g‑1 after 100 cycles, with a columbic efficiency approaching 100% and a capacity fading of 0.02% per cycle. The low-cost, non-toxic, binder-free hybrid MoO3/SWNT here developed represents a step forward for the applicability of exfoliated MoO3 in LIB anodes, delivering high energy and power densities as well as long lifetime.

  10. Comparison of mineral trioxide aggregate's composition with Portland cements and a new endodontic cement.

    Science.gov (United States)

    Asgary, Saeed; Eghbal, Mohammad Jafar; Parirokh, Masoud; Ghoddusi, Jamileh; Kheirieh, Sanam; Brink, Frank

    2009-02-01

    The aim of this study was to compare the compositions of mineral trioxide aggregates (MTAs), Portland cements (PCs), and a new endodontic cement (NEC). Our study also investigated the surface characteristics of MTA and NEC root-end fillings when immersed in normal saline. For part I, we prepared samples of 9 brands of MTAs, PCs, and NEC. The materials were imaged and analyzed by scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA). In part II, 3-mm-deep root-end preparations were filled with MTA or NEC and stored in normal saline for 1 week. Samples were imaged and analyzed by SEM and electron probe microanalysis (EPMA). EDXA investigations revealed differences in the dominant compounds of NEC, PCs, and MTAs. The major components of MTA and PC are the same except for bismuth. The most significant difference was the presence of higher concentrations of Fe (minor element) in gray MTA and PC when compared with white ones. EPMA results revealed remarkably different elements in MTA compared with surrounding dentin, whereas in the NEC group the distribution patterns of calcium, phosphorous, and oxygen were comparable. NEC differs chemically from MTAs and PCs and demonstrates comparable surface composition with adjacent dentin as a root-end filling material.

  11. Understanding mineral trioxide aggregate/Portland-cement: a review of literature and background factors.

    Science.gov (United States)

    Steffen, R; van Waes, H

    2009-06-01

    This was to carry out a review of the literature concerning mineral trioxide aggregate (MTA) and Portland cement with regards to clinical, biological and mechanical findings and a possible substitution of MTA through Portland cement for endodontic use. Electronic literature search of scientific papers from January 1993 to January 2009 was carried out on the MEDLINE and Scopus databases using specific key words. In total, 57 papers were identified that dealt with MTA and Portland cement in a relevant way. The review of 50 papers conforming to the applied criteria showed that MTA and Portland cements have the same clinical, biological and mechanical properties. In animal experiments and technical characterisations both materials seemed to have very similar properties. The only difference is bismuth oxide in MTA added for better radio opacity. It seems likely that MTA materials are based on industrial Portland cements mixed with bismuth oxide. More studies, especially some long-term studies comparing MTA and Portland cement, are necessary. The existing literature gives a solid base for clinical studies with Portland cement in order to replace MTA as an endodontic material. Portland cement could be a substitute for most endodontic materials used in primary teeth.

  12. Effect of mineral trioxide aggregates and Portland cements on inflammatory cells.

    Science.gov (United States)

    Shahi, Shahriar; Rahimi, Saeed; Yavari, Hamid Reza; Mokhtari, Hadi; Roshangar, Leila; Abasi, Mehran Mesgary; Sattari, Sahar; Abdolrahimi, Majid

    2010-05-01

    Recently, some studies have compared mineral trioxide aggregate (MTA) with Portland cements, concluding that the principal ingredients of Portland cements are similar to those of MTA. The purpose of the present study was to evaluate the effect of gray MTA, white MTA, and gray and white Portland cements on inflammatory cells in rats. Fresh mixtures mixed with distilled water were placed in polyethylene tubes, which were implanted in the dorsal subcutaneous connective tissue of 60 Sprague-Dawley rats along with empty tubes as controls. Tissue specimens were collected after the rats were sacrificed after 7, 15, 30, 60, and 90 days. The specimens were fixed, stained, processed, and histologically evaluated under a light microscope. Inflammatory reactions were classified as grade 0: without inflammatory cells, grade I: sporadic infiltration of inflammatory cells, grade II: moderate infiltration (125 cells). Data were analyzed with the nonparametric (two factor) analysis of variance and Kruskal-Wallis H-test. All the groups showed grade III inflammation after 7 and 15 days; there was a decrease in the inflammatory process after 30, 60, and 90 days. After 90 days, gray MTA, white MTA, and control groups had grade 0 inflammatory process, but gray Portland cement and white Portland cement groups showed grade 0 to grade I inflammatory processes. MTAs were more biocompatible; however, more studies are required. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Bodanezi, Augusto; Carvalho, Nara; Silva, Daniela; Bernardineli, Norberti; Bramante, Clovis Monteiro; Garcia, Roberto Brandão; de Moraes, Ivaldo Gomes

    2008-01-01

    This study investigated the solubility of mineral trioxide aggregate (MTA) and Portland cement since its mixture until 672 hours, by means of two complimentary methods. Metal ring molds filled with the cements were covered with distilled water and, at each experimental time (3, 24, 72, 168, 336 and 672 hours), were weighed as soon as the plates in which the samples have been placed. Empty rings served as the control group (n=8). Mean weight gain and loss was determined and analyzed statistically by two-way ANOVA and Tukey's test for all pairwise comparisons. Only Portland cement showed less than 3% weight loss through 24 hours. Detached MTA residues were heavier than those of Portland cement over the 3 to 168 hours. The weight of MTA rings increased more than that of Portland rings within 672 hours (p=0.05). The findings of the present study indicate that, in an aqueous environment MTA is more soluble than Portland cement and exceeds the maximum weight loss considered acceptable by ISO 6876 standard (2001).

  14. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement

    Directory of Open Access Journals (Sweden)

    Augusto Bodanezi

    2008-04-01

    Full Text Available This study investigated the solubility of mineral trioxide aggregate (MTA and Portland cement since its mixture until 672 hours, by means of two complimentary methods. Metal ring molds filled with the cements were covered with distilled water and, at each experimental time (3, 24, 72, 168, 336 and 672 hours, were weighed as soon as the plates in which the samples have been placed. Empty rings served as the control group (n=8. Mean weight gain and loss was determined and analyzed statistically by two-way ANOVA and Tukey's test for all pairwise comparisons. Only Portland cement showed less than 3% weight loss through 24 hours. Detached MTA residues were heavier than those of Portland cement over the 3 to 168 hours. The weight of MTA rings increased more than that of Portland rings within 672 hours (p=0.05. The findings of the present study indicate that, in an aqueous environment MTA is more soluble than Portland cement and exceeds the maximum weight loss considered acceptable by ISO 6876 standard (2001.

  15. Clinical evaluation of mineral trioxide aggregate and biodentine as direct pulp capping agents in carious teeth.

    Science.gov (United States)

    Hegde, Swaroop; Sowmya, B; Mathew, Sylvia; Bhandi, Shilpa H; Nagaraja, Shruthi; Dinesh, K

    2017-01-01

    Root canal treatment has been a routine treatment option for carious exposure of the dental pulp. In the context of minimally invasive dentistry, direct pulp capping (DPC) procedure with a reliable biomaterial may be considered as an alternative provided the pulp status is favorable. Mineral trioxide aggregate (MTA), a bioactive cement with excellent sealing ability and biocompatibility is capable of regenerating relatively damaged pulp and formation of dentin bridge when used as DPC agent. Biodentine is comparatively a new biomaterial claimed to possess properties similar to MTA and is currently explored for vital pulp therapy procedures. The aim of the present study was to evaluate the clinical response of pulp-dentin complex after DPC with MTA and biodentine in carious teeth. Twenty-four permanent molars with carious exposure having no signs and symptoms of irreversible pulpitis were selected and assigned to one of the two groups, Group I - MTA and Group II - biodentine. Patients were recalled at 3 weeks, 3 months, and 6 months for clinical and radiographic evaluation. Fisher's exact test was used along with Chi-square test for statistical analysis. Over a period of 6 months, MTA and biodentine showed 91.7% and 83.3% success rate, respectively, based on the subjective symptoms, pulp sensibility tests, and radiographic appearance. MTA and biodentine may be used as DPC agents when the pulpal diagnosis is not more than reversible pulpitis.

  16. Response of human dental pulp capped with biodentine and mineral trioxide aggregate.

    Science.gov (United States)

    Nowicka, Alicja; Lipski, Mariusz; Parafiniuk, Mirosław; Sporniak-Tutak, Katarzyna; Lichota, Damian; Kosierkiewicz, Anita; Kaczmarek, Wojciech; Buczkowska-Radlińska, Jadwiga

    2013-06-01

    Biodentine is a new bioactive cement that is similar to the widely used mineral trioxide aggregate (MTA). It has dentin-like mechanical properties, which may be considered a suitable material for clinical indications of dentin-pulp complex regeneration such as direct pulp capping. The purpose of the present study was to compare the response of the pulp-dentin complex in human teeth after direct capping with this new tricalcium silicate-based cement with that of MTA. Pulps in 28 caries-free maxillary and mandibular permanent intact human molars scheduled for extraction for orthodontic reasons were mechanically exposed and assigned to 1 of 2 experimental groups, Biodentine or MTA, and 1 control group. Assay of periapical response and clinical examination were performed. After 6 weeks, the teeth were extracted, stained with hematoxylin-eosin, and categorized by using a histologic scoring system. The majority of specimens showed complete dentinal bridge formation and an absence of inflammatory pulp response. Layers of well-arranged odontoblast and odontoblast-like cells were found to form tubular dentin under the osteodentin. Statistical analysis showed no significant differences between the Biodentine and MTA experimental groups during the observation period. Within the limitations of this study, Biodentine had a similar efficacy in the clinical setting and may be considered an interesting alternative to MTA in pulp-capping treatment during vital pulp therapy. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  17. Comparison of physical and mechanical properties of mineral trioxide aggregate and Biodentine.

    Science.gov (United States)

    Butt, Naziya; Talwar, Sangeeta; Chaudhry, Sarika; Nawal, Ruchika Roongta; Yadav, Seema; Bali, Anuradha

    2014-01-01

    Mineral trioxide aggregate (MTA) fulfills many of the ideal properties of the root-end filling material. However, its low cohesive property often makes it difficult to handle. Biodentine, new calcium-silicate-based cement has been developed to improve some MTA drawbacks such as its difficult handling property and long-setting time. The objective of this study was to compare at different times the microleakage of roots filled with Biodentine and white MTA (WMTA)-Angelus and to investigate their setting time, handling properties and compressive strength. Root canals of single-rooted teeth were instrumented, filled with either Biodentine or WMTA-Angelus (n=15 each) with two positive and two negative control roots and stored at 37°C. Sealing was assessed at 4, 24 h, 1, 2, 4, 8, and 12 weeks by a fluid filtration method. The initial setting time, handling properties, and compressive strength of the test groups were investigated by a vicat needle, questionnaire of operational hand feel, and universal instron machine, respectively. Significant differences in microleakage were found between two groups at 4-h and 24 h (PBiodentine, though latter was found to have better handling consistency. Compressive strength of Biodentine was significantly higher than MTA-Angelus. The results suggest that the new calcium-silicate-based endodontic cement provides improvement in sealing ability as well as clinical manageability of dental filling materials.

  18. Absorbable Suture as an Apical Matrix in Single Visit Apexification with Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Ayush Goyal

    2016-01-01

    Full Text Available Several procedures have been recommended to induce the root end barrier formation in teeth with open apices. Conventional treatment for such cases will require many appointments with an average duration of 12.9 months. During this period, the root canal is susceptible to reinfection from around the provisional restoration, which may promote apical periodontitis and arrest of apical repair. Mineral trioxide aggregate (MTA has been successfully used for one visit apexification wherein the root canal can be obturated within 24 hours after placement of MTA. Using a matrix prior to the placement of MTA avoids its extrusion, reduces leakage in the sealing material, and allows favorable response of the periapical tissues. This report presents a case of apexification where an absorbable suture was used as an apical matrix. Use of an absorbable suture circumvents all the problems associated with other conventional materials. Conclusion. Placement of the matrix made from the suture material is predictable and is easily positioned at the apex and the length can be adjusted as required. 10-month follow-up of the case shows resorbed matrix and bone healing in the periapical region. The patient was asymptomatic during the whole follow-up period and tooth exhibited mobility within physiologic limits and was functioning normally.

  19. A randomized trial of mineral trioxide aggregate cements in primary tooth pulpotomies.

    Science.gov (United States)

    Celik, Berna; Ataç, Atila S; Cehreli, Zafer C; Uysal, Serdar

    2013-01-01

    The purpose of this study was to compare the outcome of primary tooth pulpotomies using two different white mineral trioxide aggregate (MTA) cements and calcium hydroxide (CH). Primary molars (N=139) from three- to nine-year-old children were randomly assigned to be treated using either ProRoot MTA (N=46), MTA Angelus (N=45), or CH paste (N=48) as pulpotomy medicaments. All pulpotomized teeth received a Class I amalgam as a final restoration. Recall examinations were carried out at one, three, six, 12, 18, and 24 months. The 24-month cumulative clinical success rates for ProRoot MTA, MTA Angelus, and CH were approximately 98 percent, 96 percent, and 77 percent, respectively. The cumulative radiographic success rates for ProRoot MTA, MTA Angelus, and CH were approximately 98 percent, 91 percent, and 45 percent, respectively. For all parameters evaluated, the MTA cements showed similar clinical and radiographic outcomes (P>.05), which were significantly better than those of CH (P.05). ProRoot MTA and MTA Angelus showed similar and favorable success rates as pulpotomy materials in primary molars.

  20. Bortezomib and Arsenic Trioxide Activity on a Myelodysplastic Cell Line (P39: A Gene Expression Study

    Directory of Open Access Journals (Sweden)

    Hakan Savlı

    2015-09-01

    Full Text Available Objective: We aimed to understand the molecular pathways affected by bortezomib and arsenic trioxide treatment on myelomonocytoid cell line P39. Materials and Methods: Oligonucleotide microarray platforms were used for gene expression and pathway analysis. Confirmation studies were performed using quantitative real time PCR. Results: Bortezomib treatment has shown upregulated DIABLO and NF-κBIB (a NF-κB inhibitor and downregulated NF-κB1, NF-κB2, and BIRC1 gene expressions. Combination treatment of the two compounds showed gene expression deregulations in concordance by the results of single bortezomib treatment. Especially, P53 was a pathway more significantly modified and a gene network centralized around the beta estradiol gene. Beta estradiol, BRCA2, and FOXA1 genes were remarkable deregulations in our findings. Conclusion: Results support the suggestions about possible use of proteasome inhibitors in the treatment of high-risk myelodysplastic syndrome (MDS. NF-κB was observed as an important modulator in leukemic transformation of MDS.

  1. Fracture resistance of immature teeth filled with mineral trioxide aggregate, bioaggregate, and biodentine

    Science.gov (United States)

    Bayram, Emre; Bayram, Huda Melike

    2016-01-01

    Objective: The purpose of this study was to evaluate fracture resistance of teeth with immature apices treated with coronal placement of mineral trioxide aggregate (MTA), bioaggregate (BA), and Biodentine. Materials and Methods: Forty-one freshly extracted, single-rooted human premolar teeth were used for the study. At first, the root length was standardized to 9 mm. The crown-down technique was used for the preparation of the root canals using the rotary ProTaper system (Dentsply Maillefer, Ballaigues, Switzerland) of F3 (30). Peeso reamer no. 6 was stepped out from the apex to simulate an incompletely formed root. The prepared roots were randomly assigned to one control (n = 5) and three experimental (n = 12) groups, as described below. Group 1: White MTA (Angelus, Londrina, Brazil) was prepared as per the manufacturer's instructions and compacted into the root canal using MAP system (Dentsply Maillefer, Ballaigues, Switzerland) and condensed by pluggers (Angelus, Londrina, Brazil). Group 2: The canals were filled with DiaRoot-BA (DiaDent Group International, Canada). Group 3: Biodentine (Septodont, Saint Maur des Fosses, France) solution was mixed with the capsule powder and condensed using pluggers. Instron was used to determine the maximum horizontal load to fracture the tooth, placing the tip 3 mm incisal to the cementoenamel junction. Mean values of the fracture strength were compared by ANOVA followed by a post hoc test. P biodentine experimental groups. Conclusion: All the three materials tested, may be used as effective strengthening agents for immature teeth. PMID:27095900

  2. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  3. Evaluation of the formocresol versus mineral trioxide aggregate primary molar pulpotomy: a meta-analysis.

    Science.gov (United States)

    Peng, Li; Ye, Ling; Tan, Hong; Zhou, Xuedong

    2006-12-01

    To apply meta-analysis to compare the clinical and radiographic effects of mineral trioxide aggregate (MTA) with formocresol (FC) when used as wound dressing for pulpotomy of primary molars. The study list was obtained by searching MEDLINE, The Cochrane Library, EMBASE, and SCI. Only those papers that met the inclusion criteria were analyzed. Six studies met the inclusion criteria. There was significant difference between the success rates of FC- and MTA-treated pulpotomized primary molars (P < .05). Clinical assessments and radiographic findings of the MTA versus FC pulpotomy suggested that MTA was superior to FC in pulpotomy resulting in a lower failure rate, with the RR (Relative Risk) being 0.32 (95% confidence interval [CI] 0.11 to 0.90) and 0.31 (95% CI 0.13 to 0.74), respectively. Internal root resorption happened less in the MTA group with RR 0.29, 95% CI 0.11 to 0.77. MTA induces less undesirable responses and might be FC's suitable replacement.

  4. Comparison of mineral trioxide aggregate and formocresol as pulp medicaments for pulpotomies in primary molars.

    Science.gov (United States)

    Noorollahian, H

    2008-06-14

    The aim of this study was to compare the effect of white mineral trioxide aggregate (MTA) to that of formocresol (FC) as pulp dressing agents in pulpotomised primary molars. In this clinical trial study, 60 lower second primary molars of 46 children were treated by a conventional pulpotomy technique. The teeth were randomly assigned to the MTA (experimental) and FC (control) groups by random numbered table. Following removal of the coronal pulp and haemostasis, the pulp stumps were covered with an MTA paste in the experimental group. In the control group, FC was placed with a cotton pellet over the pulp stumps. The teeth of both groups were restored with stainless steel crowns. Children arrived for clinical and radiographic follow-up evaluation after 6, 12 and 24 months. The treated teeth in FC group (n = 18) were clinically and radiographically successful after 24 months. The radiographic follow-up evaluation revealed one failure (furcation involvement) in 18 molars treated with MTA after 24 months. The treated teeth in MTA group were clinically successful 24 months postoperatively. Pulp canal obliteration was observed in one of the teeth treated with MTA and four of the teeth treated with FC. MTA could be used as a safe medicament for pulpotomy in cariously exposed primary molars and could be a substitute for FC.

  5. Long-term evaluation of pulpotomy in primary molars using mineral trioxide aggregate or formocresol.

    Science.gov (United States)

    Holan, Gideon; Eidelman, Eliezer; Fuks, Anna B

    2005-01-01

    The objective of this study was to assess the effect of mineral trioxide aggregate (MTA) as pulp dressing material following pulpotomy in primary molars with carious pulp exposure and compare them to those of formocresol (FC). Of 33 children, primary molars treated via a conventional pulpotomy technique were randomly assigned to the MTA group (33 teeth) or FC group (29 teeth). Clinical and radiographic follow-up ranged between 4 and 74 months. The mean follow-up time was 38 months, with no difference between the groups. Twenty-nine teeth were followed until uneventful shedding (mean=33 months). Failures were detected after a mean period of 16 months (range=4 to 30). The success rate of pulpotomy was 97% for MTA (1 failure) and 83% for FC (5 failures). Eight teeth presented internal resorption. In 4 of them (2 of each group), progress of the resorption process stopped and the pulp tissue was replaced by a radioopaque calcified tissue. Pulp canal obliteration was observed in 58% of the MTA group and in 52% of the FC group (total=55%). MTA showed a higher (though not statistically significant) long-term clinical and radiographic success rate than formocresol, and can be recommended as its replacement as, unlike FC, MTA does not induce undesirable responses.

  6. Comparative evaluation of formocresol and mineral trioxide aggregate in pulpotomized primary molars--2 year follow up.

    Science.gov (United States)

    Airen, Priyanka; Shigli, Anand; Airen, Bhuvnesh

    2012-01-01

    The aim of the present study was to clinically and radiographically evaluate Mineral Trioxide Aggregate (MTA) as an agent for pulpotomy in primary teeth and to compare it with that of Formocresol (FC) pulpotomy. Seventy first and second primary mandibular molars of children were chosen on patients who required minimum two pulpotomies in either arch or same arch. After the standardized technique of Pulpotomy with MTA and Formocresol, all molars were treated with a thick mix of Zinc oxide Eugenol cement into the coronal pulp chamber followed by preformed stainless steel crown. The children were followed up for clinical and radio graphical examination after 6, 12 and 24 month for Pain, Swelling, Sinus/fistula, Periapical changes, Furcation radiolucency and internal resorption. MTA represents 97% clinical success rate in comparison to Formocresol with 85% success. Radiographically also MTA showed more promising results with 88.6% success in comparison to Formocresol with 54.3%. Thus, MTA pulpotomy has emerged as an easier line of treatment to save the premature loss of primary teeth due to caries or trauma.

  7. Success rates of mineral trioxide aggregate, ferric sulfate, and formocresol pulpotomies: a 24-month study.

    Science.gov (United States)

    Erdem, Arzu Pinar; Guven, Yeliz; Balli, Beyza; Ilhan, Banu; Sepet, Elif; Ulukapi, Isin; Aktoren, Oya

    2011-01-01

    The purpose of this study was to evaluate the total success rates of mineral trioxide aggregate (MTA), ferric sulfate (FS), and formocresol (FC) as pulpotomy agents in primary molars. A randomized, split-mouth study design was used in 32 healthy 5- to 7-year-old children with 128 carious primary molars without clinical or radiographic evidence of pulp degeneration. The pulpotomy agents were assigned as follows: Group 1=MTA; Group 2=FS; Group 3=1:5 diluted Buckley's FC; and Group 4=zinc oxide eugenol (ZOE) base. Clinical and radiographic follow-up at 6, 12, and 24 months used the following criteria: pain; swelling; sinus tract; mobility; internal root resorption; and furcation and/or periapical bone destruction. The data were analyzed using chi-square. No significant differences in success rates were found among the groups at 6 and 12 months. Success rates in groups 1 to 4 at 24 months were 96%, 88%, 88%, and 68% respectively. There was a significant difference (P<.001) between the MTA and ZOE groups at 24 months. ZOE, as the only pulpotomy medicament, had a significantly lower success rate than MTA. No significant differences were observed, among the 3 experimental materials (MTA, FC, and FS) at 2 years follow-up.

  8. Comparative evaluation of formocresol and mineral trioxide aggregate as pulpotomy agents in deciduous teeth.

    Science.gov (United States)

    Srinivasan, Daya; Jayanthi, M

    2011-01-01

    To evaluate and compare mineral trioxide aggregate (MTA) and formocresol as pulpotomy medicaments by clinical and radiographic assessments and to assess the histological features of both pulpotomy medicaments in deciduous teeth. This study was performed on 100 mandibular deciduous molar teeth requiring pulpotomy treatment. Children between age four and six years were randomly selected and divided into formocresol or MTA group. The patients were recalled after 3, 6, 9, 12 months respectively and evaluated clinically and radiographically. Histological assessment was done on lower deciduous canine teeth, which were undergoing serial extraction for interceptive orthodontic purpose. Pulpotomy was done on four teeth with formocresol and another four teeth with MTA. The teeth were extracted after six months following pulpotomy procedure and histologically evaluated. Two freshly extracted carious teeth were taken as controls. Clinical and radiographic criteria were laid and Chi analysis revealed significant difference in mobility ( P≤0.05), periodontal ligament widening ( P≤0.01 level) and inter - radicular radiolucency ( P≤0.02 level) between two groups at the end of 12 months. Histologically, in MTA group, a layer of new dentine formation with less dentinal tubules at the pulpotomized site was found. In formocresol group, increased inflammatory cells, a zone of atrophy, were noted in radicular portion of pulp. MTA is superior to formocresol clinically, radiographically. Histological analysis showed better reparative ability with hard tissue barrier formation with MTA compared to formocresol.

  9. Synergistic Catalysis: A Powerful Synthetic Strategy for New Reaction Development

    Science.gov (United States)

    Allen, Anna E.; MacMillan, David W. C.

    2012-01-01

    Synergistic catalysis is a synthetic strategy wherein both the nucleophile and the electrophile are simultaneously activated by two separate and distinct catalysts to afford a single chemical transformation. This powerful catalysis strategy leads to several benefits, specifically synergistic catalysis can (i) introduce new, previously unattainable chemical transformations, (ii) improve the efficiency of existing transformations, and (iii) create or improve catalytic enantioselectivity where stereocontrol was previously absent or challenging. This perspective aims to highlight these benefits using many of the successful examples of synergistic catalysis found in the literature. PMID:22518271

  10. Synergistic effect of lidocaine with pingyangmycin for treatment of venous malformation using a mouse spleen model

    Science.gov (United States)

    Bai, Nan; Chen, Yuan-Zheng; Mao, Kai-Ping; Fu, Yanjie; Lin, Qiang; Xue, Yan

    2014-01-01

    Aims: To explore whether lidocaine has the synergistic effect with pingyangmycin (PYM) in the venous malformations (VMs) treatment. Methods: The mouse spleen was chosen as a VM model and injected with different concentration of lidocaine or PYM or jointly treated with lidocaine and PYM. After 2, 5, 8 or 14 days, the mouse spleen tissues were acquired for hematoxylin-eosin (HE) staining, transmission electron microscopy (TEM) analysis, TUNEL assay and quantitative RT-PCR analysis to examine the toxicological effects of lidocaine and PYM on splenic vascular endothelial cells. Results: 0.4% of lidocaine mildly promoted the apoptosis of endothelial cells, while 2 mg/ml PYM significantly elevated the apoptotic ratios. However, the combination of 0.2% lidocaine and 0.5 mg/ml PYM notably elevated the apoptotic ratios of splenic cells and severely destroyed the configuration of spleen, compared to those of treatment with 0.5 mg/ml PYM alone. Conclusion: Lidocaine exerts synergistic effects with PYM in promoting the apoptosis of mouse splenic endothelial cells, indicating that lidocaine possibly promotes the therapeutic effects of PYM in VMs treatment via synergistically enhancing the apoptosis of endothelial cells of malformed venous lesions. PMID:24966943

  11. Synergistic modulation by chloride and organic phosphates of hemoglobin from bear (Ursus arctos).

    Science.gov (United States)

    Coletta, M; Condo, S G; Scatena, R; Clementi, M E; Baroni, S; Sletten, S N; Brix, O; Giardina, B

    1994-03-11

    The oxygen binding properties of hemoglobin (Hb) from brown bear (Ursus arctos) have been studied focussing on the effect of heterotropic ligands, and the behaviour has been compared with that of human HbA, taken as a prototype of mammalian Hbs. It has been observed that in bear Hb chloride ions and 2,3-diphosphoglyceric acid (Gri(2,3)P2) can modulate the oxygen affinity in a synergistic way such that their individual effect is enhanced whenever they are both present in saturating amounts. The thermodynamic analysis of such a feature indicates that in bear Hb there are two classes of chloride binding sites, one acting synergistically with Gri(2,3)P2 and another one, which likely overlaps with the organic phosphate interaction cleft, and is therefore fully operative only in the absence of Gri(2,3)P2. The behaviour of the last site is similar to that observed in human HbA, where the effect of Cl- and Gri(2,3)P2 is mutually exclusive. The interaction energy between chloride and Gri(2,3)P2 synergistic binding sites appears to be O2-linked so that the interplay may have a relevant physiological role in modulating the oxygen transport in brown bear. This behaviour is associated with a marked pH-dependence of the oxygenation enthalpy in bear Hb, such that under acidotic and hypercloruremic conditions, oxygen supply to peripheral tissues could be maintained essentially unaltered even under low temperature conditions.

  12. Management of perforating internal root resorption with periodontal surgery and mineral trioxide aggregate: a case report with 5-year follow-up.

    Science.gov (United States)

    Sierra-Lorenzo, Alberto; Herrera-García, Alejandro; Alonso-Ezpeleta, Luis Oscar; Segura-Egea, Juan José

    2013-01-01

    Internal root resorption (IRR) is characterized by progressive loss of tooth substance initiating at the root canal wall as a result of clastic activity. The use of periodontal surgery and mineral trioxide aggregate is a good approach to repair lesions with periodontal communication (perforating IRR). This case describes the treatment and follow-up of a maxillary central incisor with perforating IRR in a 56-year-old male patient where root canal treatment, periodontal surgery, and white mineral trioxide aggregate were employed to achieve complete repair and to restore function. Clinical findings and periapical radiographs indicated success after a 5-year follow-up.

  13. Synergistic effect of eugenol with Colistin against clinical isolated Colistin-resistant Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Yi-ming Wang

    2018-01-01

    Full Text Available Abstract Background Bacterial infections have become more challenging to treat due to the emergence of multidrug-resistant pathogenic bacteria. Combined antibiotics prove to be a relatively effective method to control such resistant strains. This study aim to investigate synergistic activity of eugenol combined with colistin against a collection of clinical isolated Escherichia coli (E.coli strains, and to evaluate potential interaction. Methods Antimicrobial susceptibility, minimum inhibitory concentration (MIC and fractional inhibitory concentration index (FICI of the bacteria were determined by disk diffusion assay, broth microdilution method and checkerboard assay, respectively. The mcr-1 mRNA expression was measured by Real-time PCR. To predict possible interactions between eugenol and MCR-1, molecular docking assay was taken. Results For total fourteen strains including eight colistin-resistant strains, eugenol was determined with MIC values of 4 to 8 μg/mL. Checkerboard dilution test suggested that eugenol exhibited synergistic activity when combined with colistin (FICI ranging from 0.375 to 0.625. Comparison analysis of Real-time PCR showed that synergy could significantly down-regulate expression of mcr-1 gene. A metal ion coordination bond with catalytic zinc atom and a hydrogen bond with crucial amino acid residue Ser284 of MCR-1 were observed after molecular docking, indicating antibacterial activity and direct molecular interactions of eugenol with MCR-1 protein. Conclusions Our results demonstrated that eugenol exhibited synergistic effect with colistin and enhanced its antimicrobial activity. This might further contribute to the antibacterial actions against colistin-resistant E.coli strains. Graphical abstract Synergistic effect of eugenol with colistin against colistin-resistant Escherichia coli isolates.

  14. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2013-09-01

    A reaction mechanism having molecular growth up to benzene for hydrocarbon fuels with up to four carbon-atoms was extended to include the formation and growth of polycyclic aromatic hydrocarbons (PAHs) up to coronene (C24H12). The new mechanism was tested for ethylene premixed flames at low (20torr) and atmospheric pressures by comparing experimentally observed species concentrations with those of the computed ones for small chemical species and PAHs. As compared to several existing mechanisms in the literature, the newly developed mechanism showed an appreciable improvement in the predicted profiles of PAHs. The new mechanism was also used to simulate PAH formation in counterflow diffusion flames of ethylene to study the effects of mixing propane and benzene in the fuel stream. In the ethylene-propane flames, existing experimental results showed a synergistic effect in PAH concentrations, i.e. PAH concentrations first increased and then decreased with increasing propane mixing. This PAH behavior was successfully captured by the new mechanism. The synergistic effect was predicted to be more pronounced for larger PAH molecules as compared to the smaller ones, which is in agreement with experimental observations. In the experimental study in which the fuel stream of ethylene-propane flames was doped with benzene, a synergistic effect was mitigated for benzene, but was observed for large PAHs. This effect was also predicted in the computed PAH profiles for these flames. To explain these responses of PAHs in the flames of mixture fuels, a pathway analysis has been conducted, which show that several resonantly stabilized species as well as C4H4 and H atom contribute to the enhanced synergistic behaviors of larger PAHs as compared to the small ones in the flames of mixture fuels. © 2013 The Combustion Institute.

  15. SEALING ABILITY OF MINERAL TRIOXIDE AGGREGATE, CALCIUM PHOSPHATE CEMENT, AND GLASS IONOMER CEMENT IN THE REPAIR OF FURCATION PERFORATIONS

    Directory of Open Access Journals (Sweden)

    Prabath Singh

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the in vitro sealing ability of three repair materials. Mineral trioxide aggregate (MTA; Group A, calcium phosphate cement (CPC; Group B, and light cured glass ionomer cement (GIC; Group C when used to repair the perforation created in the pulpal floor of fifty extracted human permanent molars. Materials and methods: Preparation of access openings and furcation perforations were done, and the teeth divided into five experimental groups (A, B, C including two controls (D, E with ten samples in each group randomly. Following the repair procedure, the pulp chambers and access openings were filled with composite resin and immersed in 2% methylene blue solution for 48 hours. The teeth were sectioned longitudinally and the linear dye penetration measured under a stereo­microscope. Results: The comparison of the linear length of micro-leakage (mm among the experimental groups revealed no significant difference (p = 0.332. On calculating the percentage of depth of leakage to the total length of the perforation, it was observed that the mean leakage was 35.5% in Group A, 53.6% in Group B and the highest, 87.5% in Group C. The mean of leakage percentage was statistically significant by Kruskal-Wallis test (p = 0.003. The results indicated that the dye penetration used as furcation perforation repair material was least with mineral trioxide aggregate. Comparing the depth of penetration of dye, 50% of the Group A samples showed less than 25% of depth penetration. While 40% of Group B cases had more than 50% dye penetration. In our study, all Group C teeth had ≥ 50% dye penetration. Conclusions: The present study indicated that GIC had the greatest dye penetration followed by CPC and MTA. Mineral trioxide aggregate and calcium phosphate cement had comparatively better sealing ability than glass ionomer cement.

  16. Combined treatment of xenon and hypothermia in newborn rats--additive or synergistic effect?

    Directory of Open Access Journals (Sweden)

    Hemmen Sabir

    Full Text Available Breathing the inert gas Xenon (Xe enhances hypothermic (HT neuroprotection after hypoxia-ischemia (HI in small and large newborn animal models. The underlying mechanism of the enhancement is not yet fully understood, but the combined effect of Xe and HT could either be synergistic (larger than the two effects added or simply additive. A previously published study, using unilateral carotid ligation followed by hypoxia in seven day old (P7 rats, showed that the combination of mild HT (35°C and low Xe concentration (20%, both not being neuroprotective alone, had a synergistic effect and was neuroprotective when both were started with a 4 h delay after a moderate HI insult. To examine whether another laboratory could confirm this finding, we repeated key aspects of the study.After the HI-insult 120 pups were exposed to different post-insult treatments: three temperatures (normothermia (NT NT37°C, HT35°C, HT32°C or Xe concentrations (0%, 20% or 50% starting either immediately or with a 4 h delay. To assess the synergistic potency of Xe-HT, a second set (n = 101 of P7 pups were exposed to either HT35°C+Xe0%, NT+Xe20% or a combination of HT35°C+Xe20% starting with a 4 h delay after the insult. Brain damage was analyzed using relative hemispheric (ligated side/unligated side brain tissue area loss after seven day survival.Immediate HT32°C (p = 0.042, but not HT35°C significantly reduced brain injury compared to NT37°C. As previously shown, adding immediate Xe50% to HT32°C increased protection. Neither 4 h-delayed Xe20%, nor Xe50% at 37°C significantly reduced brain injury (p>0.050. In addition, neither 4 h-delayed HT35°C alone, nor HT35°C+Xe20% reduced brain injury. We found no synergistic effect of the combined treatments in this experimental model.Combining two treatments that individually were ineffective (delayed HT35°C and delayed Xe20% did not exert neuroprotection when combined, and therefore did not show a synergistic

  17. Synergistic effect of photocatalysis and adsorption of nano-TiO2self-assembled onto sulfanyl/activated carbon composite.

    Science.gov (United States)

    Sun, Zhenya; He, Xiaojun; Du, Jianhua; Gong, Wenqi

    2016-11-01

    We report a significant synergistic effect of photocatalysis and adsorption by depositing 3-6 nm TiO 2 particles onto sulfanyl (HS)/activated carbon composite using molecular self-assemble method in low-temperature aqueous system. The synergistic effect was studied by comparing pure TiO 2 and TiO 2 /sulfanyl/activated carbon composite to photocatalytic degrade methylene blue (MB) in a quartz glass reactor. The results showed that the photocatalytic activity of the TiO 2 /HS/AC composite compared to pure TiO 2 has been greatly enhanced calculated from a simulated first-order kinetics model. The synergistic enhancement at low MB concentration was significantly stronger than that at high concentration, and the synergistic effect calculated from the model at initial concentration of 1 mg/L was approximately 64 times than at initial concentration of 15 mg/L. This is because when the adsorption rate was much faster than the photocatalytic degradation rate, strong adsorption of MB molecules may inhibit subsequent photocatalytic degradation reaction. The enhancement was found mainly due to the strong synergistic effect of the adsorption of MB of sulfanyl/activated carbon substrate and the photocatalysis of TiO 2 nanoparticles.

  18. The evaluation, design and implementation of an automated storage and retrieval system for uranium trioxide powder (UO3) at Sellafield

    International Nuclear Information System (INIS)

    Fitt, C.R.; Mather, K.

    1993-01-01

    The paper initially sets out the methods used to evaluate the requirements for an automated system to store and retrieve drums of radioactive Uranium Trioxide (UO3) power arising from the Thermal Oxide Reprocessing Plant (THORP) at Sellafield Cumbria. This is followed by a description of the configuration of storage vaults used and of the development of a Self Guided Vehicle (SGV) to operate remotely within these vaults. The system evolved is based on a combination of well proven mechanical equipment and control techniques and the implementation of the design together with testing and control procedures are described. (author)

  19. Treatment of maxillary central incisor with external root resorption using mineral trioxide aggregate: 18 months follow-up

    Science.gov (United States)

    Gandi, Padma; Disha, Saraswathi

    2013-01-01

    External cervical resorption is the loss of dental hard tissue as a result of odontoclastic action; it usually begins on the cervical region of the root surface of the teeth. This case report demonstrates an external cervical resorption in a maxillary central incisor of a 24-year-old male patient. After surgical intervention and root canal treatment, the resorption was subsequently sealed with mineral trioxide aggregate. The 18 months follow-up demonstrates no pathological changes on clinical and radiographic examination. This case report presents a treatment strategy that might improve the healing outcomes for patients with external cervical resorption. PMID:23843419

  20. Arsenic trioxide preferentially induces nonapoptotic cell deaths as well as actin cytoskeleton rearrangement in the CHO AA8 cell line

    Directory of Open Access Journals (Sweden)

    Magdalena Izdebska

    2014-12-01

    Full Text Available Introduction: The therapeutic effect of arsenic trioxide (ATO, As2O3 has been investigated for many years. However, the precise molecular mechanisms underlying the antitumor activity of ATO are still not fully understood, but seem to depend on cell types, dosage, and duration of exposure. The purpose of this study was to assess the actin cytoskeleton rearrangement during the cell death process induced by arsenic trioxide in the CHO AA8 cells. A better understanding the mechanisms of ATO-action is likely to lead to more rational use of this drug either as monotherapies or in combination with other anticancer agents.Material and methods: The effect of ATO on actin cytoskeleton was studied in Chinese Hamster Ovary AA8 cell line. Actin was visualized by fluorescence microscopy and phalloidin conjugated to Alexa Fluor® 488. Morphological and ultrastructural alterations in the CHO AA8 cells were evaluated by using light and electron microscope, respectively. For quantitative measurement of cell death, Annexin V-Alexa Fluor® 488 and Propidium Iodide assay was performed. The vital staining of CHO AA8 cells with acridine orange was applied to detect the development of acidic vesicular organelles (AVOs.Results: The performed experiments revealed a dose-dependent decrease in the cell survival. The morphological and ultrastructural features acquired by the cells after ATO-treatment were considered as typical for autophagy and mitotic cell death. As was shown by acridine orange staining, arsenic trioxide treatment increased red fluorescence signals in dose-dependent manner, indicating the development of AVOs, a hallmark of autophagy. Low level of apoptosis was induced in the ATO-treated CHO AA8 cells. Furthermore, the rearrangement of actin filaments associated with cell death process was also detected.Conclusions: The obtained results suggest that arsenic trioxide preferentially induces nonapoptotic cell deaths, autophagy and mitotic cell death, in p53

  1. Bias dependence of synergistic radiation effects induced by electrons and protons on silicon bipolar junction transistors

    Science.gov (United States)

    Liu, Chaoming; Li, Xingji; Yang, Jianqun; Ma, Guoliang; Xiao, Liyi

    2015-06-01

    Bias dependence on synergistic radiation effects caused by 110 keV electrons and 170 keV protons on the current gain of 3DG130 NPN bipolar junction transistors (BJTs) is studied in this paper. Experimental results indicate that the influence induced by 170 keV protons is always enhancement effect during the sequential irradiation. However, the influence induced by 110 keV electrons on the BJT under various bias cases is different during the sequential irradiation. The transition fluence of 110 keV electrons is dependent on the bias case on the emitter-base junction of BJT.

  2. The apical leakage of mineral trioxide aggregate as the retrograde filling material with various mixing agents

    Directory of Open Access Journals (Sweden)

    Ema Mulyawati

    2010-06-01

    Full Text Available Background: Mineral trioxide aggregate (MTA is relatively considered as a new material in endodontic. It even has been used as retrograde filling material due to its biocompatibility, antibacterial effect, sealing ability and anti-moist effect. Some materials have been used as mixing agent to achieve an appropiate setting of MTA. Purpose: The aim of this study is to investigate the effect of the mixing agents of MTA towards the apical leakage when they are used together as retrograde filling materials. Method: The samples of this research consist of 30 human extracted upper central incisors. First, the crown of each tooth is sectioned. The root canals are prepared by using the conventional technique and then are obturated with gutta percha. After cutting the root apex, 2 mm from apical, class 1 cavities are prepared by using fissure bur with the depth of 3 mm. The samples then are divided into 3 groups with 10 teeth for each. Group I uses aquabidest as mixing agent of MTA (MTA-aquabidest, group II uses saline (MTA-saline, while group III uses 0.12% chlorhexidine (MTA-chlorhexidine. The apex of each group then is filled with the mixing MTA determined already. Afterwards, clearing method is used to evaluate the apical leakage. The apical leakage actually is determined by measuring the depth of methylene blue penetration with stereomicroscope. The statictical analyses of the linear dye penetration then are performed with analysis of varians ANOVA. Result: The dye penetration for both MTA-aquadest and MTA-saline groups indicates the lowest penetration, and there is even a significant difference compared with MTA-0.12% chlorhexidine group (p<0.005. Conclusion: It can be concluded that aquabidest and saline as mixing agents of MTA produce less apical leakage compared with 0.12% chlorhexidine.Latar belakang: Mineral trioxide aggregate (MTA merupakan bahan yang relatif baru dalam bidang endodontik. Bahan tersebut diindikasikan sebagai bahan pengisi

  3. Treatment outcome of mineral trioxide aggregate: repair of root perforations-long-term results.

    Science.gov (United States)

    Mente, Johannes; Leo, Meltem; Panagidis, Dimos; Saure, Daniel; Pfefferle, Thorsten

    2014-06-01

    This historical cohort study follows on a previously reported trial, with the aim of assessing the outcome for teeth with root perforations managed by the orthograde placement of mineral trioxide aggregate (MTA) and identifying potential outcome factors for such treatment with a larger sample size and longer follow-up periods than in the first phase of the project. The treatment outcomes of 64 root perforations repaired between 2000 and 2012 with MTA were investigated. The root perforations were located in different areas of the root. Calibrated examiners assessed clinical and radiographic outcomes by using standardized follow-up protocols 12-107 months after treatment (median, 27.5 months). Preoperative, intraoperative, and postoperative information was evaluated. The outcomes were dichotomized as healed or diseased. Of the 64 teeth examined (85% recall rate), 86% were healed. The univariate analyses (χ(2) tests) identified 2 potential prognostic factors, experience of the treatment providers (odds ratio, 2.14; 95% confidence interval, 0.39-11.74; P < .01) and placement of a post after treatment (odds ratio, 0.06; 95% confidence interval, 0.01-0.27; P < .01). In the multivariate stepwise logistic Cox regression, none of the potential prognostic factors displayed a significant effect on the outcome at the 5% level. MTA appears to have good long-term sealing ability for root perforations regardless of the location. The results of this historical cohort study confirm the results of the first phase of this project. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Treatment outcome of mineral trioxide aggregate or calcium hydroxide direct pulp capping: long-term results.

    Science.gov (United States)

    Mente, Johannes; Hufnagel, Sarah; Leo, Meltem; Michel, Annemarie; Gehrig, Holger; Panagidis, Dimos; Saure, Daniel; Pfefferle, Thorsten

    2014-11-01

    This controlled, historic cohort study project continues a previously reported trial aiming to assess treatment outcome of direct pulp capping with mineral trioxide aggregate (MTA) versus calcium hydroxide (CH). Potential prognostic factors were re-evaluated on the basis of a larger sample size and longer follow-up periods. Clinical and radiographic outcomes of 229 teeth treated with direct pulp capping between 2001 and 2011 were investigated 24 up to 123 months post-treatment (median = 42 months). Pre-, intra-, and postoperative information was evaluated and statistically analyzed using a logistic regression model as well as generalized estimating equation logit models. Two hundred five patients (229 teeth) were available for follow-up (74% recall rate). The overall success rates were 80.5% (95% confidence interval [CI], 74.5-86.5) of teeth in the MTA group (137/170) and 59% (95% CI, 46.5-71.5) of teeth in the CH group (35/59). Multivariate analyses (generalized estimating equation logit model) indicated a significantly increased risk of failure for teeth that were directly pulp capped with CH compared with MTA (odds ratio = 2.67; 95% CI, 1.36-5.25; P = .001). Teeth that were permanently restored ≥ 2 days after direct pulp capping had a significantly worse prognosis irrespective of the pulp capping material chosen (odds ratio = 3.18; 95% CI, 1.61-6.3; P = .004). The results of this study indicate that MTA provides better long-term results after direct pulp capping compared with CH. Placing a permanent restoration immediately after direct pulp capping is recommended. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    International Nuclear Information System (INIS)

    Wang, Hongtao; Gao, Peng; Zheng, Jie

    2014-01-01

    Highlights: • As 2 O 3 inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As 2 O 3 than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As 2 O 3 than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As 2 O 3 is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As 2 O 3 ) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As 2 O 3 induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As 2 O 3 on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As 2 O 3 than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As 2 O 3 than HPV 16-positive CaSki and SiHa cells. After As 2 O 3 treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As 2 O 3 is a potential anticancer drug for cervical cancer

  6. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate.

    Science.gov (United States)

    Tomson, Phillip L; Grover, Liam M; Lumley, Philip J; Sloan, Alastair J; Smith, Anthony J; Cooper, Paul R

    2007-08-01

    To analyze the soluble components of setting and set mineral trioxide aggregate (MTA), assess the abilities of two varieties of MTA and Ca(OH)(2) solutions to solubilise dentine matrix proteins (DMPs) and determine if these extracts contain signalling molecules important to pulpal repair and regeneration. The metallic ion composition of solutions of white and grey MTA (pH 11.7), 0.02M Ca(OH)(2) (pH 11.9) and 10% EDTA (pH 7.2) was determined using atomic absorption spectroscopy. Extracellular dentine matrix components from powdered human dentine were extracted using all solutions over 14 days. Extracts were analysed for concentrations of non-collagenous proteins (NCPs) and glycosaminoglycans (GAGs), and protein profiles were examined using 1D-polyacrylamide gel electrophoresis (1D-PAGE). ELISAs for TGF-beta1 and adrenomedullin (ADM) were also performed. Aluminium, calcium, potassium, and sodium ions were detected in both white and grey MTA solutions. MTA and Ca(OH)(2) solutions liberated similar amounts of GAGs and NCPs although yields were considerably lower than those obtained using the EDTA solution. 1D-PAGE analysis demonstrated differences in protein profiles solubilised from dentine for all solutions. All extracts contained TGF-beta1 and ADM, EDTA solution liberated significantly greater amounts of TGF-beta1, and Ca(OH)(2) and grey MTA solutions released more ADM. These data imply that when placed clinically soluble components of set and setting MTA may release dentine matrix components that potentially influence cellular events for dentine repair and regeneration.

  7. Evaluation of bone tissue response to a sealer containing mineral trioxide aggregate.

    Science.gov (United States)

    Assmann, Eloísa; Böttcher, Daiana Elisabeth; Hoppe, Carolina Bender; Grecca, Fabiana Soares; Kopper, Patrícia Maria Poli

    2015-01-01

    This study analyzed bone tissue reactions to MTA Fillapex (Ângelus Industria de Produtos Odontológicos Ltda, Londrina, Brazil) compared with an epoxy resin-based material in the femur of Wistar rats. Bone tissue reactions were evaluated in 15 animals after 7, 30, and 90 days (n = 5 per period). Three surgical cavities were prepared on the femur and filled with 0.2 mL MTA Fillapex, AH Plus (Dentsply DeTrey GmbH, Konstanz, Germany), or no sealer (negative control). By the end of each experimental period, 5 animals were randomly euthanized. The samples were histologically processed and analyzed using a light microscope. The presence of inflammatory cells, fibers, and hard tissue barrier formation was evaluated. Differences among the groups and between the 3 experimental periods were evaluated by using 2-way analysis of variance followed by the Bonferroni post hoc test (P ≤ .05). MTA Fillapex scored significantly higher for neutrophils at 7 days than at 90. At 7 days, the same occurred when comparing MTA Fillapex with AH Plus. The presence of lymphocytes/plasmocytes significantly decreased over time in all groups. Macrophages, giant cells, eosinophils, and fiber condensation presented no differences among groups and periods. Within 90 days, all groups presented complete hard tissue barrier formation. The presence of mineral trioxide aggregate in MTA Fillapex composition did not improve the bone tissue repair. The presence of sealers provided the re-establishment of the original bone tissue structure and the inflammatory response decreased over time, so they can be considered biocompatible. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  8. Antibacterial and Odontogenesis Efficacy of Mineral Trioxide Aggregate Combined with CO2 Laser Treatment.

    Science.gov (United States)

    Hsu, Tuan-Ti; Yeh, Chia-Hung; Kao, Chia-Tze; Chen, Yi-Wen; Huang, Tsui-Hsien; Yang, Jaw-Ji; Shie, Ming-You

    2015-07-01

    Mineral trioxide aggregate (MTA) has been successfully used in clinical applications in endodontics. Studies show that the antibacterial effects of CO2 laser irradiation are highly efficient when bacteria are embedded in biofilm because of a photothermal mechanism. The aim of this study was to confirm the effects of CO2 laser irradiation on MTA with regard to both material characterization and cell viability. MTA was irradiated with a dental CO2 laser using directly mounted fiber optics in the wound healing mode with a spot area of 0.25 cm(2) and then stored in an incubator at 100% relative humidity and 37°C for 1 day to set. The human dental pulp cells cultured on MTA were analyzed along with their proliferation and odontogenic differentiation behaviors. The results indicate that the setting time of MTA after irradiation by the CO2 laser was significantly reduced to 118 minutes rather than the usual 143 minutes. The maximum diametral tensile strength and x-ray diffraction patterns were similar to those obtained without CO2 laser irradiation. However, the CO2 laser irradiation increased the amount of Ca and Si ions released from the MTA and regulated cell behavior. CO2 laser-irradiated MTA promoted odontogenic differentiation of hDPCs, with the increased formation of mineralized nodules on the substrate's surface. It also up-regulated the protein expression of multiple markers of odontogenic and the expression of dentin sialophosphoprotein protein. The current study provides new and important data about the effects of CO2 laser irradiation on MTA with regard to the decreased setting time and increased ion release. Taking cell functions into account, the Si concentration released from MTA with laser irradiation may be lower than a critical value, and this information could lead to the development of new regenerative therapies for dentin and periodontal tissue. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Shear bond strength of different restorative materials to mineral trioxide aggregate and Biodentine.

    Science.gov (United States)

    Tulumbaci, Fatih; Almaz, Merve Erkmen; Arikan, Volkan; Mutluay, Merve Safa

    2017-01-01

    Mineral trioxide aggregate (MTA) and Biodentine (calcium silicate-based materials) have great importance in dentistry. There is no study comparing the bond strength of Biodentine and MTA for composite, compomer, and compomer or resin-modified glass ionomer (RMGIC). Although many advantages of Biodentine over MTA; in this study, MTA has shown better shear bond strength (SBS) to restorative materials. Recently, a variety of calcium silicate-based materials are often used for pulp capping, perforation repair, and endodontic therapies. After those treatment procedures, teeth are commonly restored with composite resin, (RMGIC materials in pediatric dentistry. The aim of this study was to evaluate the SBS of composite resin (Filtek™ Z250; 3M ESPE, USA), compomer (Dyract XP; LD Caulk/Dentsply, USA), and resin-modified glass ionomer (Photac-Fil Quick Aplicap; 3M ESPE, USA) to white MTA and Biodentine. Ninety acrylic cylindrical blocks were prepared and divided into two groups ( n = 45). The acrylic blocks were randomly allocated into 3 subgroups; Group-1A: MTA + composite (Filtek™ Z250), Group-1B: MTA + compomer (Dyract XP), Group-1C: MTA + RMGIC (Photac-Fil Quick Aplicap), Group-2A: Biodentine + composite, Group-2B: Biodentine + compomer, Group-2C: Biodentine + RMGIC. The specimens were mounted in Universal Testing Machine. A crosshead speed 1 mm/min was applied to each specimen using a knife-edge blade until the bond between the MTA/Biodentine and restorative material failed. Failure modes of each group were evaluated under polarized light microscope at ×40 magnification. There was no statistically significant difference between MTA + Composite resin with MTA + Compomer; and MTA + RMGIC with Biodentine + RMGIC ( P > 0.05). There were statistically significant differences between other groups ( P MTA; MTA has shown better SBS to compomer and composite resin materials than Biodentine.

  10. Effect of mineral trioxide aggregate surface treatments on morphology and bond strength to composite resin.

    Science.gov (United States)

    Shin, Joo-Hee; Jang, Ji-Hyun; Park, Sang Hyuk; Kim, Euiseong

    2014-08-01

    The aim of this study was to evaluate the micromorphologic changes that accompany different surface treatments on mineral trioxide aggregate (MTA) and their effect on the bond strength to the composite resin with 4 adhesive systems. Three types of MTA cement, ProRoot MTA (WMTA) (Dentsply, Tulsa, OK), MTA Angelus (AMTA) (Angelus, Londrina, PR, Brazil), and Endocem MTA (EMTA) (Maruchi, Wonju, Korea), were prepared and stored for a week to encourage setting. Surface treatment was performed using phosphoric acid or self-etch primer, and an untreated MTA surface was prepared as a control. The surface changes were observed using scanning electron microscopy. MTA surfaces were bonded with 4 adhesive systems, including Scotchbond Multipurpose (3M ESPE, St Paul, MN), Single Bond 2 (3M ESPE), Clearfil SE BOND (Kuraray, Osaka, Japan), and AdheSE One F (Ivoclar Vivadent, Schaan, Liechtenstein), to evaluate the adhesive effectiveness of MTA followed by composite resin restoration. The shear bond strength of the polymerized specimens was tested. For WMTA and AMTA, untreated surfaces showed an irregular crystalline plate with clusters of globular aggregate particles. For EMTA, the untreated surface presented a reticular matrix with acicular crystals. After surface treatment, superficial crystalline structures were eroded regardless of the MTA cement and adhesive system used. WMTA bonded significantly more strongly than AMTA and EMTA, regardless of the adhesive system used. In the WMTA and AMTA groups, AdheSE One F showed the highest bond strength to the composite. For EMTA, no significant differences were found across adhesive systems. Acidic treatment of the MTA surface affected the micromorphology and the bond strength to the composite. Within the limitations of this study, using a 1-step self-etch adhesive system might result in a strong bond to WMTA when the composite resin restoration is required over MTA cement. Copyright © 2014 American Association of Endodontists

  11. Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2014-11-01

    Full Text Available Objectives This study aimed to compare the surface microhardness of mineral trioxide aggregate (MTA samples having different thicknesses and exposed to human blood from one side and with or without a moist cotton pellet on the other side. Materials and Methods Ninety cylindrical molds with three heights of 2, 4, and 6 mm were fabricated. In group 1 (dry condition, molds with heights of 2, 4, and 6 mm (10 molds of each were filled with ProRoot MTA (Dentsply Tulsa Dental, and the upper surface of the material was not exposed to any additional moisture. In groups 2 and 3, a distilled water- or phosphate-buffered saline (PBS-moistened cotton pellet was placed on the upper side of MTA, respectively. The lower side of the molds in all the groups was in contact with human blood-wetted foams. After 4 day, the Vickers microhardness of the upper surface of MTA was measured. Results In the dry condition, the 4 and 6 mm-thick MTA samples showed significantly lower microhardness than the 2 mm-thick samples (p = 0.003 and p = 0.001, respectively. However, when a distilled water- or PBS-moistened cotton pellet was placed over the MTA, no significant difference was found between the surface microhardness of samples having the abovementioned three thicknesses of the material (p = 0.210 and p = 0.112, respectively. Conclusions It could be concluded that a moist cotton pellet must be placed over the 4 to 6 mm-thick MTA for better hydration of the material. However, this might not be necessary when 2 mm-thick MTA is used.

  12. Calcium Hydroxide versus Mineral Trioxide Aggregate for Direct Pulp Capping: A Cost-effectiveness Analysis.

    Science.gov (United States)

    Schwendicke, Falk; Brouwer, Fredrik; Stolpe, Michael

    2015-12-01

    Recent evidence finds mineral trioxide aggregate (MTA) more effective than calcium hydroxide (CH) for direct pulp capping (DPC). The present study assessed the cost-effectiveness of MTA versus CH for DPC using a model-based simulation approach. A mixed public/private payer perspective in the context of German health care was adopted. We modeled a permanent molar with a vital asymptomatic, exposed pulp treated via DPC with either MTA or CH. The tooth was followed over the lifetime of a 20-year-old patient using Markov models. Transition probabilities were obtained from systematically and nonsystematically collected data. The primary health outcome was tooth retention time. Costs for DPC were estimated via microcosting. Required personnel time for application was estimated using a survey among German specialized and general dentists. Material expenses were calculated based on market prices in 2015. All other costs were derived from public and private item fee catalogues. Uncertainty was introduced via probabilistic and univariate sensitivity analyses. DPC using MTA was both more effective and less costly (52 years retention, lifetime costs = 1368 Euro) than CH (49 years, 1527 Euro). Regardless of a payer's willingness to pay, DPC with MTA had the higher probability of being cost-effective. The identified ranking was not affected by parameter or structural uncertainty or heterogeneity. MTA was more cost-effective than CH for DPC despite higher initial treatment costs because expensive retreatments were avoided. Our estimates apply only on the basis of current evidence and within the chosen health care setting. From a payer's perspective, MTA should be used for DPC. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  13. The effects of various mixing solutions on the biocompatibility of mineral trioxide aggregate.

    Science.gov (United States)

    Karygianni, L; Proksch, S; Schneider, S; Vach, K; Hellwig, E; Steinberg, T; Schulz, S D; Tchorz, J P; Altenburger, M J

    2016-06-01

    To evaluate the effects of various mixing solutions on the biocompatibility of mineral trioxide aggregate (MTA). Human alveolar osteoblasts (hOAs) were incubated with eluates of 24 h-set cement discs of MTA mixed with sterile H2 O, 3% sodium hypochlorite (NaOCl), 4% articaine (Ultracain(®) D-S), 0.9% NaCl, Ringer's solution or citrated blood, respectively. The cell proliferation in the presence of eluates was assessed by real-time cell analysis, and the expression of genes associated with proliferation (histone H3, HistH3), inflammation (interleukin-6, IL-6, matrix metalloproteinases 1 and 3, MMP1, MMP3) or apoptosis (caspase 3, Casp3) was analysed by qPCR after 24 and 72 h. The ultrastructure of cells grown on cement discs was visualized by scanning electron microscopy (SEM), whilst actin cytoskeleton was monitored by fluorescence staining in the presence of eluates after 7 and 14 days. A repeated-measure analysis was performed, and P-values were adjusted by Tukey. Whilst articaine-MTA sustained hOA proliferation patterns similar to H2 O-MTA, NaOCl-MTA reduced hOA proliferation and significantly increased the expression of MMP1 and MMP3. The addition of H2 O and articaine modulated the gene expression of Casp3 or Hist3H3. The use of NaCl, Ringer and blood induced mRNA levels comparable to matched controls. With the exception of NaOCl-MTA, SEM and FM revealed regular hOA morphology for all mixing solutions. NaOCl was highly cytotoxic for hOAs whilst all other mixing solutions can be considered as convenient biocompatible mixing solutions as alternatives to H2 O for clinical use. © 2015 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  14. Regaining apical patency after obturation with gutta-percha and a sealer containing mineral trioxide aggregate.

    Science.gov (United States)

    Carpenter, Matthew T; Sidow, Stephanie J; Lindsey, Kimberly W; Chuang, Augustine; McPherson, James C

    2014-04-01

    MTA Fillapex (Angelus Solucoes Odontologicas, Londrina PR, Brazil) was introduced as a mineral trioxide aggregate (MTA)-based sealer used for endodontic obturation. There is a lack of research that evaluates the ability of different solvents to soften MTA-based sealers during retreatment. This study tested the ability of 4 commonly used endodontic solvents to soften gutta-percha and MTA Fillapex to allow for the re-establishment of apical patency. Eighty-six extracted maxillary anterior teeth were instrumented to the working length to a size 45 (.04 taper size). Teeth were divided into 2 groups (n = 43 for each group). MTA Fillapex was placed into all canals. Group 1 was obturated with gutta-percha to the working length, and group 2 was obturated 2 mm short of the working length to ensure the apical 2 mm was filled with sealer only. Both groups were divided into 4 subgroups (n = 10). The remaining teeth served as the control group. Each subgroup was exposed to 1 of the following solvents: chloroform, Endosolv R (Septodont, Saint-Maur, France), Endosolv E (Septodont), or eucalyptol. Patency was re-established in 100% of the teeth in groups 1 and 2 when tested with chloroform or Endosolv E, 80% of the teeth in group 1 and 90% in group 2 when tested with eucalyptol, and 10% of the teeth in group 1 and 50% in group 2 tested when with Endosolv R. The chi-square test indicated there was a statistical difference between Endosolv R and the other tested solvents for both groups. Chloroform, Endosolv E, and Eucalyptol soften GP and MTA Fillapex sufficiently to aid in re-establishing apical patency during endodontic retreatment. Published by Elsevier Inc.

  15. Biocompatibility of Accelerated Mineral Trioxide Aggregate on Stem Cells Derived from Human Dental Pulp.

    Science.gov (United States)

    Kulan, Pinar; Karabiyik, Ozge; Kose, Gamze T; Kargul, Betul

    2016-02-01

    The aim of this study was to evaluate the effects of several additives on the setting time and cytotoxicity of accelerated-set mineral trioxide aggregate (MTA) on stem cells of human dental pulp. ProRoot white MTA (WMTA) (Dentsply Tulsa Dental, Johnson City, TN) was mixed with various additives including distilled water, 2.5% disodium hydrogen phosphate (Na2HPO4) (Merck, Darmstadt, Germany), K-Y Jelly (Johnson & Johnson, Markham, ON, Canada), and 5% and 10% calcium chloride (CaCl2) (Merck). The setting times were evaluated using a Vicat apparatus (Alsa Lab, Istanbul, Turkey). Human dental pulp stem cells were isolated and seeded into 48-well plates at 2 × 10(3) cells per well and incubated with MTA samples for 24 hours, 3 days, and 7 days. Cell viability was evaluated using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. MTA mixed with 10% CaCl2 showed the lowest setting time (P MTA groups and the control group. MTA mixed with K-Y Jelly in all groups showed the lowest cell viability at all time points (P MTA mixed with distilled water, 5% CaCl2, 10% CaCl2, and Na2HPO4 increased significantly through time (P MTA mixed with 5% and 10% CaCl2 and Na2HPO4 is biocompatible with dental pulp stem cells in terms of cell viability. Further in vitro and in vivo investigations are required to prove the clinical applications of MTA mixed with various additives. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  16. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy.

    Science.gov (United States)

    Parirokh, M; Torabinejad, M; Dummer, P M H

    2018-02-01

    Mineral trioxide aggregate (MTA) is a bioactive endodontic cement (BEC) mainly comprised of calcium and silicate elements. The cement was introduced by Torabinejad in the 1990s and has been approved by the Food and Drug Administration to be used in the United States in 1997. A number of new BECs have also been introduced to the market, including BioAggregate, Biodentine, BioRoot RCS, calcium-enriched mixture cement, Endo-CPM, Endocem, EndoSequence, EndoBinder, EndoSeal MTA, iRoot, MicroMega MTA, MTA Bio, MTA Fillapex, MTA Plus, NeoMTA Plus, OrthoMTA, Quick-Set, RetroMTA, Tech Biosealer and TheraCal LC. It has been claimed that these materials have properties similar to those of MTA without its drawbacks. In this article, the chemical composition and the application of MTA and other BECs for vital pulp therapy (VPT), including indirect pulp cap, direct pulp cap, partial pulpotomy, pulpotomy and partial pulpectomy, have been reviewed and compared. Based on selected keywords, all papers regarding chemical composition and VPT applications of BECs had been reviewed. Most of the materials had calcium and silicate in their composition. Instead of referring to the cements based on their chemical compositions, we suggest the term 'bioactive endodontic cements (BECs)', which seems more appropriate for these materials because, in spite of differences in their chemical compositions, bioactivity is a common property for all of them. Numerous articles were found regarding use of BECs as VPT agents for indirect and direct pulp capping, partial pulpotomy and cervical pulpotomy. Most of these investigations used MTA for VPT. In most studies, newly introduced materials have been compared to MTA. Some of the BECs have shown promising results; however, the number of their studies compared to investigations on MTA is limited. Most studies had several methodological shortcomings. Future investigations with rigorous methods and materials are needed. © 2017 International Endodontic

  17. Expression of Mineralization Markers during Pulp Response to Biodentine and Mineral Trioxide Aggregate.

    Science.gov (United States)

    Daltoé, Mariana O; Paula-Silva, Francisco Wanderley G; Faccioli, Lúcia H; Gatón-Hernández, Patrícia M; De Rossi, Andiara; Bezerra Silva, Léa Assed

    2016-04-01

    The purpose of this study was to compare the cell viability of dental pulp cells treated with Biodentine (Septodont, Saint-Maur, France) and mineral trioxide aggregate (MTA) and the in vitro and in vivo expression of mineralization markers induced by the 2 materials. Human dental pulp cells isolated from 6 permanent teeth were stimulated with Biodentine and MTA extracts. Cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay, and quantitative reverse-transcriptase polymerase chain reaction was used to determine the expression of mineralization markers. Specimens of teeth from dogs treated with Biodentine and MTA after pulpotomy were used to determine the presence of osteopontin and alkaline phosphatase by immunohistochemistry and runt-related transcription factor 2 by immunofluorescence. No significant differences in cell viability were found between MTA and Biodentine extracts and controls after 24 and 48 hours (P > .05). After 48 hours, osteopontin (SPP1), alkaline phosphatase (ALP), and runt-related transcription factor 2 (RUNX2) expression was higher in MTA and Biodentine than in controls (P MTA samples (P mineralized tissue bridge was significantly different between materials (P MTA and Biodentine (P = .2). Also, no significant difference in the number of cells labeled for runt-related transcription factor 2 by immunofluorescence was observed between materials (P > .05). Biodentine stimulated similar markers as MTA, but staining was more intense and spread over a larger area of the pulp tissue. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Fracture resistance and stress distribution of simulated immature teeth after apexification with mineral trioxide aggregate.

    Science.gov (United States)

    Brito-Júnior, M; Pereira, R D; Veríssimo, C; Soares, C J; Faria-e-Silva, A L; Camilo, C C; Sousa-Neto, M D

    2014-10-01

    To evaluate the effect of adhesive restorations on fracture resistance and stress distribution in teeth with simulated immature apices and apical plugs of mineral trioxide aggregate (MTA). Sixty bovine incisors were sectioned 8 mm above and 12 mm below the cemento-enamel junction (CEJ). The root canal was enlarged using a diamond bur, resulting in remaining root canal walls with 0.1-0.2 mm of thickness. A 5-mm apical plug of MTA was placed and the teeth were restored according to the following groups: GP--the root canal was filled with gutta-percha and endodontic sealer; CR--the root canal was filled with light-cured composite resin inserted incrementally; FP--a fibre post was cemented into the root canal; and RFP--the fibre post was relined with composite resin prior to the cementation into the root canal. A load was applied on the crown of all teeth at 135° to their long axis until fracture. Data was analysed by one-way anova and SNK tests (α = 0.05), whilst the fracture pattern was evaluated according to the position of the fracture. Stress distributions in the restored teeth were verified by finite element analysis. Teeth restored with fibre posts and relined fibre posts were associated with the highest fracture resistance, whilst the GP group had the lowest values. GP and RC groups had similar fracture resistance values (P = 0.109). All fractures types involved the cervical and middle thirds of roots. The GP model had high levels of stress concentration in the cervical and middle thirds of roots. No difference was found amongst the stress concentration in the RC, FP and RFP models. Restorative protocols alter the fracture resistance and stress distribution of immature teeth after placement of MTA apical plugs. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  19. Effect of pH on compressive strength of some modification of mineral trioxide aggregate

    Science.gov (United States)

    Saghiri, Mohammad A.; Garcia-Godoy, Franklin; Asatourian, Armen; Lotfi, Mehrdad; Khezri-Boukani, Kaveh

    2013-01-01

    Objectives: Recently, it was shown that NanoMTA improved the setting time and promoted a better hydration process which prevents washout and the dislodgment of this novel biomaterial in comparison with WTMA. This study analyzed the compressive strength of ProRoot WMTA (Dentsply), a NanoWMTA (Kamal Asgar Research Center), and Bioaggregate (Innovative Bioceramix) after its exposure to a range of environmental pH conditions during hydration. Study Design: After mixing the cements under aseptic condition and based on the manufacturers` recommendations, the cements were condensed with moderate force using plugger into 9 × 6 mm split molds. Each type of cement was then randomly divided into three groups (n=10). Specimens were exposed to environments with pH values of 4.4, 7.4, or 10.4 for 3 days. Cement pellets were compressed by using an Instron testing machine. Values were recorded and compared. Data were analyzed by using one-way analysis of variance and a post hoc Tukey’s test. Results: After 3 days, the samples were solid when probed with an explorer before removing them from the molds. The greatest mean compressive strength 133.19±11.14 MPa was observed after exposure to a pH value of 10.4 for NanoWMTA. The values decreased to 111.41±8.26 MPa after exposure to a pH value of 4.4. Increasing of pH had a significant effect on the compressive strength of the groups (pmineral trioxide aggregate, Nano. PMID:23722137

  20. Shear bond strength of different restorative materials to mineral trioxide aggregate and Biodentine

    Science.gov (United States)

    Tulumbaci, Fatih; Almaz, Merve Erkmen; Arikan, Volkan; Mutluay, Merve Safa

    2017-01-01

    Significance of Study: Mineral trioxide aggregate (MTA) and Biodentine (calcium silicate-based materials) have great importance in dentistry. There is no study comparing the bond strength of Biodentine and MTA for composite, compomer, and compomer or resin-modified glass ionomer (RMGIC). Although many advantages of Biodentine over MTA; in this study, MTA has shown better shear bond strength (SBS) to restorative materials. Aim: Recently, a variety of calcium silicate-based materials are often used for pulp capping, perforation repair, and endodontic therapies. After those treatment procedures, teeth are commonly restored with composite resin, (RMGIC materials in pediatric dentistry. The aim of this study was to evaluate the SBS of composite resin (Filtek™ Z250; 3M ESPE, USA), compomer (Dyract XP; LD Caulk/Dentsply, USA), and resin-modified glass ionomer (Photac-Fil Quick Aplicap; 3M ESPE, USA) to white MTA and Biodentine. Materials and Methods: Ninety acrylic cylindrical blocks were prepared and divided into two groups (n = 45). The acrylic blocks were randomly allocated into 3 subgroups; Group-1A: MTA + composite (Filtek™ Z250), Group-1B: MTA + compomer (Dyract XP), Group-1C: MTA + RMGIC (Photac-Fil Quick Aplicap), Group-2A: Biodentine + composite, Group-2B: Biodentine + compomer, Group-2C: Biodentine + RMGIC. The specimens were mounted in Universal Testing Machine. A crosshead speed 1 mm/min was applied to each specimen using a knife-edge blade until the bond between the MTA/Biodentine and restorative material failed. Failure modes of each group were evaluated under polarized light microscope at ×40 magnification. Results: There was no statistically significant difference between MTA + Composite resin with MTA + Compomer; and MTA + RMGIC with Biodentine + RMGIC (P > 0.05). There were statistically significant differences between other groups (P < 0.05). Conclusions: The results of the present study displayed that although many advantages of Biodentine over

  1. Antifungal activity of endosequence root repair material and mineral trioxide aggregate.

    Science.gov (United States)

    Alsalleeh, Fahd; Chung, Nicole; Stephenson, Lane

    2014-11-01

    The purpose of this study was to investigate the antifungal activity of Endosequence Root Repair Material (ERRM; Brasseler USA, Savannah, GA) as compared with mineral trioxide aggregate (MTA) using Candida albicans. All materials were packed into sterilized intravenous tubing to obtain standardized samples and allowed to set for 3 or 24 hours and then exposed to a suspension of C. albicans for incubations of 24 or 48 hours. To analyze the mechanisms of the material's antifungal activity, additional samples of each test material were prepared in the same manner and allowed to set for 24 hours; these were then incubated in a culture medium for 24 hours. The pH of each conditioned media was measured before transferring to wells containing C. albicans. The development of biofilm was analyzed after 24 and 48 hours with 2,3-bis (2-methoxy-4-nitro-5-sulfophenyl)-5-([phenyl amino] carbonyl)-2H-tetrazolium hydroxide reduction assay. Materials in both experimental groups significantly limited biofilm formation at each interval (ie, 24 and 48 hours). After incubating for a 24-hour period in the presence of C. albicans, ERRM in both experimental groups showed a reduction in biofilm formation that was statistically significant in comparison with MTA. However, when set for 24 hours and incubated for 48 hours, gray MTA and white MTA showed a more substantial reduction in biofilm formation than comparable samples of ERRM. Cultured media conditioned with test materials showed statistically significant antifungal biofilm activity after 48 hours. All materials tested have comparable antifungal biofilm activity. It appeared that changing the environment, such as the pH, contributed to this activity. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties

    Science.gov (United States)

    2017-01-01

    Objectives This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA), which was WMTA combined with calcium chloride dihydrate (CaCl2·2H2O), compared to that of WMTA. Materials and Methods Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM), energy dispersive X-ray microanalysis (EDX), and X-ray diffraction (XRD), respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs) using methyl-thiazol-diphenyltetrazolium (MTT) assay and under SEM after 24 and 72 hours, respectively. Results Results showed that the addition of CaCl2·2H2O to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05). HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. Conclusions The addition of CaCl2·2H2O to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects. PMID:28808634

  3. Direct Pulp Capping with Calcium Hydroxide or Mineral Trioxide Aggregate: A Meta-analysis.

    Science.gov (United States)

    Li, Zhaofei; Cao, Lihua; Fan, Mingwen; Xu, Qingan

    2015-09-01

    The purpose of this study was to compare the effectiveness of mineral trioxide aggregate (MTA) and calcium hydroxide (CH) as pulp capping materials in humans by means of a meta-analysis. The PubMed, Cochrane Library, Embase, and Web of Knowledge databases were used in the literature search from their establishment date until December 7, 2014. Studies that met the inclusion criteria were accepted, and necessary information was extracted by 2 authors independently using a standardized form. The success rate, inflammatory response, and dentin bridge formation were evaluated. Thirteen studies met the inclusion criteria. There was no significant heterogeneity between studies, so a fixed-effects model was used. The MTA treatment groups showed a significantly higher success rate compared with CH-capped groups (randomized controlled trials: odds ratio [OR] = 2.26; 95% confidence interval [CI] = 1.33-3.85; P = .003; retrospective nonrandomized trials: OR = 2.88; 95% CI, 1.86-4.44; P < .00001). MTA was superior to CH in terms of the absence of an inflammatory response as well as dentin bridge formation, with the OR being 4.56 (95% CI, 2.65-7.83) and 3.56 (95% CI, 1.89-6.70), respectively. MTA has a higher success rate and results in less pulpal inflammatory response and more predictable hard dentin bridge formation than CH. MTA appears to be a suitable replacement of CH used for direct pulp capping. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Effect of bismuth oxide on white mineral trioxide aggregate: chemical characterization and physical properties.

    Science.gov (United States)

    Grazziotin-Soares, R; Nekoofar, M H; Davies, T E; Bafail, A; Alhaddar, E; Hübler, R; Busato, A L S; Dummer, P M H

    2014-06-01

    To assess the effect of bismuth oxide (Bi2 O3 ) on the chemical characterization and physical properties of White mineral trioxide aggregate (MTA) Angelus. Commercially available White MTA Angelus and White MTA Angelus without Bi2 O3 provided by the manufacturer especially for this study were subjected to the following tests: Rietveld X-ray diffraction analysis (XRD), energy-dispersive X-ray analysis (EDX), scanning electron microscopy (SEM), compressive strength, Vickers microhardness test and setting time. Chemical analysis data were reported descriptively, and physical properties were expressed as means and standard deviations. Data were analysed using Student's t-test and Mann-Whitney U test (P = 0.05). Calcium silicate peaks were reduced in the diffractograms of both hydrated materials. Bismuth particles were found on the surface of White MTA Angelus, and a greater amount of particles characterized as calcium hydroxide was observed by visual examination on White MTA without Bi2 O3 . The material without Bi2 O3 had the shortest final setting time (38.33 min, P = 0.002), the highest Vickers microhardness mean value (72.35 MPa, P = 0.000) and similar compressive strength results (P = 0.329) when compared with the commercially available White MTA Angelus containing Bi2 O3 . The lack of Bi2 O3 was associated with an increase in Vickers microhardness, a reduction in final setting time, absence of Bi2 O3 peaks in diffractograms, as well as a large amount of calcium and a morphology characteristic of calcium hydroxide in EDX/SEM analysis. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  5. Outcome of Direct Pulp Capping with Mineral Trioxide Aggregate: A Prospective Study.

    Science.gov (United States)

    Marques, Miguel Seruca; Wesselink, Paul R; Shemesh, Hagay

    2015-07-01

    The aim of this experimental study was to assess the outcome of direct pulp capping with mineral trioxide aggregate (MTA) after complete excavation of caries in permanent dentition with a 2-visit treatment protocol. Sixty-four teeth with deep carious lesions were consecutively selected. The mean age of the patients was 36.1 ± 15 years. An initial diagnosis of deep caries, with no irreversible pulp involvement, was made. Excavation of caries was performed under a rubber dam and operating microscope magnification. White MTA was applied, and a provisional restoration was placed. At the following appointment, positive sensibility testing and the MTA setting were confirmed. Bonded composite restorations were placed afterward. The patient was recalled at least 1 year after treatment for clinical and radiographic control. Outcome was described as success or failure. Success was defined as lack of complaints from the patient, positive reaction to cold testing, no sensitivity to percussion, and no widening of the periodontal ligament on the recall periapical radiograph. Forty-six teeth (77.9%) were recalled after 3.6 years (standard deviation = 1.1 years). The overall success rate was 91.3%. The success rate in occlusal caries was 100% and 89.7% in proximal caries (difference = 10.3%; 95% confidence interval [CI], 8.5-89.1). The success rate in initial caries was 94.7% and 88.9% in secondary caries (difference = 5.8%; 95% CI, -48.1 to 59.7). The success rate in patients younger than 40 years was 100% and 80% in patients aged 40 years or older (difference = 20%; 95% CI, 4.2-35.8). Direct pulp capping with MTA after pulp exposure during excavation of deep caries could maintain pulp vitality in permanent teeth when a 2-visit treatment protocol is observed. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  6. Therapeutic Potential of Delivering Arsenic Trioxide into HPV-Infected Cervical Cancer Cells Using Liposomal Nanotechnology

    Science.gov (United States)

    Wang, Xiaoyan; Li, Dong; Ghali, Lucy; Xia, Ruidong; Munoz, Leonardo P.; Garelick, Hemda; Bell, Celia; Wen, Xuesong

    2016-02-01

    Arsenic trioxide (ATO) has been used successfully to treat acute promyelocytic leukaemia, and since this discovery, it has also been researched as a possible treatment for other haematological and solid cancers. Even though many positive results have been found in the laboratory, wider clinical use of ATO has been compromised by its toxicity at higher concentrations. The aim of this study was to explore an improved method for delivering ATO using liposomal nanotechnology to evaluate whether this could reduce drug toxicity and improve the efficacy of ATO in treating human papillomavirus (HPV)-associated cancers. HeLa, C33a, and human keratinocytes were exposed to 5 μm of ATO in both free and liposomal forms for 48 h. The stability of the prepared samples was tested using inductively coupled plasma optical emission spectrometer (ICP-OES) to measure the intracellular arsenic concentrations after treatment. Fluorescent double-immunocytochemical staining was carried out to evaluate the protein expression levels of HPV-E6 oncogene and caspase-3. Cell apoptosis was analysed by flow cytometry. Results showed that liposomal ATO was more effective than free ATO in reducing protein levels of HPV-E6 and inducing cell apoptosis in HeLa cells. Moreover, lower toxicity was observed when liposomal-delivered ATO was used. This could be explained by lower intracellular concentrations of arsenic. The slowly accumulated intracellular ATO through liposomal delivery might act as a reservoir which releases ATO gradually to maintain its anti-HPV effects. To conclude, liposome-delivered ATO could protect cells from the direct toxic effects induced by higher concentrations of intracellular ATO. Different pathways may be involved in this process, depending on local architecture of the tissues and HPV status.

  7. Negligible expression of arsenic in some commercially available brands of Portland cement and mineral trioxide aggregate.

    Science.gov (United States)

    De-Deus, Gustavo; de Souza, Maria Claudia Brandão; Sergio Fidel, Rivail Antonio; Fidel, Sandra Rivera; de Campos, Reinaldo Calixto; Luna, Aderval S

    2009-06-01

    This study was designed aiming to determine and compare the amount of arsenic in some brands of mineral trioxide aggregate (MTA) and Portland cement. In the present study, arsenic species (As[III], As[V], and dimethylarsinic acid) were separated by high-performance liquid chromatography (HPLC) using a strong anion exchange column and converted into arsines by online HG. The instrumental coupling, HPLC-HG-AFS, was applied to 0.2 g of each cement that was prior digested in a solution of HCl, HNO(3), and HBF(4). Data were expressed as a part per million, and the preliminary analysis of the raw pooled data revealed a bell-shaped distribution. Statistical analysis was performed using one-way analysis of variance for multiple comparisons. In all chromatograms obtained, only type III arsenic could be detected. The minimum amount of arsenic was detected in samples of white MTA ProRoot (3.3 x 10-4) and the maximum in the samples MTA Bio Angelus (Angelus, Londrina, PR, Brazil) (8.6 x 10-4). In the Gray MTA (Angelus), gray ProRoot MTA (Tulsa/Dentsply, Tulsa, OK) and CP Juntalider (Brasilatex Ltda, Diadema, SP, Brazil) did not detect any trace of arsenic. The values of arsenic found in CP Irajazinho (Votorantim Cimentos, Rio Branco, SP, Brazil) and white MTA Angelus were intermediaries to minimum and maximum values. The nonparametric test Kruskal-Wallis showed statistically similar results among all cements tested (p > 0.5). Overall, the present study showed that all cements showed insignificant amounts of type III arsenic as well as no trace of arsenic DMA and type V could be detected.

  8. Analyses of heavy metals in mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Schembri, Matthew; Peplow, George; Camilleri, Josette

    2010-07-01

    Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. D90: The Strongest Contributor to Setting Time in Mineral Trioxide Aggregate and Portland Cement.

    Science.gov (United States)

    Ha, William N; Bentz, Dale P; Kahler, Bill; Walsh, Laurence J

    2015-07-01

    The setting times of commercial mineral trioxide aggregate (MTA) and Portland cements vary. It was hypothesized that much of this variation was caused by differences in particle size distribution. Two gram samples from 11 MTA-type cements were analyzed by laser diffraction to determine their particle size distributions characterized by their percentile equivalent diameters (the 10th percentile, the median, and the 90th percentile [d90], respectively). Setting time data were received from manufacturers who performed indentation setting time tests as specified by the standards relevant to dentistry, ISO 6786 (9 respondents) or ISO 9917.1 (1 respondent), or not divulged to the authors (1 respondent). In a parallel experiment, 6 samples of different size graded Portland cements were produced using the same cement clinker. The measurement of setting time for Portland cement pastes was performed using American Society for Testing and Materials C 191. Cumulative heat release was measured using isothermal calorimetry to assess the reactions occurring during the setting of these pastes. In all experiments, linear correlations were assessed between setting times, heat release, and the 3 particle size parameters. Particle size varied considerably among MTA cements. For MTA cements, d90 was the particle size characteristic showing the highest positive linear correlation with setting time (r = 0.538). For Portland cement, d90 gave an even higher linear correlation for the initial setting time (r = 0.804) and the final setting time (r = 0.873) and exhibited a strong negative linear correlation for cumulative heat release (r = 0.901). Smaller particle sizes result in faster setting times, with d90 (the largest particles) being most closely correlated with the setting times of the samples. Copyright © 2015 American Association of Endodontists. All rights reserved.

  10. Combined effect of arsenic trioxide and radiation on physical properties of hemoglobin biopolymer

    Directory of Open Access Journals (Sweden)

    Aisha A. Saad-El-Din

    2014-10-01

    Full Text Available Arsenic trioxide (As2O3 has been recently established as one of the most effective drugs for the treatment of patients with acute promyelocytic leukemia. However, it was widely used in therapeutic of many kinds of cancer by combining it with ionizing radiation. Thus, the purpose of the present study was to explain the combined effect of As2O3 and gamma irradiation on hemoglobin (Hb structure. Measurements using fourier transform infrared (FTIR and UV-visible spectra were done. This study included five groups: control, irradiation with single dose of gamma irradiation of 5 Gy, intraperitonial injection with single dose of 10 mg/kg body weight of As2O3, As2O3+5 Gy and 5 Gy+As2O3. The results reported that the absorbance of secondary amide, amide I and amide II of all groups were lowerd than control, whereas the absorbance of amide III and amide IV for As2O3 and 5 Gy followed by As2O3 injection has been increased. For UV-visible spectra, As2O3 injection decreased the absorbance of globin-heme and soret bands and increased β, α and 630 bands compared with control. On injection with As2O3 followed by 5 Gy showed a decrease in globin-heme, soret, β and α bands and increase in 630 band. Moreover, 5 Gy followed by As2O3 demonestrated a decrease in globin-heme, β, α and 630 bands and an increase in soret band, also the ratio of α/β showed an increase in absorbance compared with control. The results concluded that 5 Gy followed by As2O3 showed some sort of repair in the structure of rats hemoglobin rather than injection with As2O3 and 5 Gy both individually.

  11. Biodentine and mineral trioxide aggregate induce similar cellular responses in a fibroblast cell line.

    Science.gov (United States)

    Corral Nuñez, Camila M; Bosomworth, Helen J; Field, Claire; Whitworth, John M; Valentine, Ruth A

    2014-03-01

    The aim of this study was to assess the cell viability and messenger RNA expression of interleukin (IL)-1α and IL-6 in 3T3 fibroblast cells when in direct contact with Biodentine (Septodont, Saint Maur de Fossés, France) and mineral trioxide aggregate (MTA). Biodentine and MTA were coated onto coverslips and allowed to set. An uncoated coverslip and one coated with GC Fuji IX (GC Corporation, Tokyo, Japan) were used as controls. Coverslips were cultured with 3T3 fibroblast cells. Cell viability was assessed quantitatively using AlamarBlue dye (Serotec, Oxford, UK) after 3, 6, 24, and 72 hours. Morphologic cell changes of 3T3 cells in contact with BD and MTA were observed by scanning electron microscopy, and cytokine expression was assessed at the messenger RNA level by semiquantitative reverse-transcription polymerase chain reaction after 3 and 24 hours of direct contact with the materials. Cells in contact with Biodentine and MTA showed similar viability to untreated control cells at all time points, with the exception of 6 hours when viability was decreased with both treatments. Examination by scanning electron microscopy revealed cells adhering to most of the Biodentine surface after 24 hours. However, for MTA samples, significantly fewer cells were observed. The messenger RNA expression of IL-1α and IL-6 by cells in contact with Biodentine was similar to cells in contact with MTA. Biodentine and MTA showed similar cytotoxicity and induced a similar pattern of cytokine expression. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  12. Evaluation of pulpotomy in primary molars with mineral trioxide aggregate and formocresol

    Directory of Open Access Journals (Sweden)

    Aeinehchi M

    2007-01-01

    Full Text Available Background and Aim: Vital pulpotomy in primary teeth is performed to maintain the vitality of the pulp and tooth until normal exfoliation. Different materials such as zinc oxide- eugenol, calcium hydroxide and formocresol are used in this procedure. The aim of this study was to evaluate the application of formocresol (FC and mineral trioxide aggregate (MTA in pulpotomy of primary molars. Materials and Methods: In this clinical trial, one hundred and twenty six children (aged 5 to 9 years old with dental caries that were candidate for pulpotomy were selected and randomly divided into two groups. After removing the roof of the pulp chamber, coronal pulp was cut at the orifices and bleeding controlled. In control group, formocresol was applied for 5 minutes. In case group, MTA paste was used as pulpotomy agent. The crowns of both groups were restored with amalgam and the teeth were evaluated clinically and radiographically after 3 and 6 months follow up. Data were analyzed by Fisher test with p<0.05 as the limit of significance. Results: No sign of clinical failure was observed after 3 and 6 months follow-up. Comparison between the two methods revealed no significant difference in radiographic findings of the teeth and surrounding tissues after 3 months follow-up. However, after 6 months follow-up, internal resorption was observed radiographically in four cases of formocresol group. Conclusion: Based on the results of this study, pulpotomy with MTA showed more successful results than formocresol radiographically. MTA is recommended as a good substitute for formocresol in pulpotomy of primary molars.

  13. Randomized controlled trial of mineral trioxide aggregate and formocresol for pulpotomy in primary molar teeth.

    Science.gov (United States)

    Aeinehchi, M; Dadvand, S; Fayazi, S; Bayat-Movahed, S

    2007-04-01

    To compare the outcome after 6 months of the application of formocresol (FC) or mineral trioxide aggregate (MTA) during pulpotomy in primary molar teeth. A maximum of 126 children (aged 5-9 years) with carious primary teeth that required pulpotomy were selected. Following randomization, a standard pulpotomy preparation was undertaken, and the coronal pulp removed and bleeding arrested. In the FC group, cotton balls, soaked in FC, were placed for 5 min, and then the pulp chamber was filled with Zonalin, a pulpotomy agent. In the MTA group, a 1-mm-thick paste of MTA was used as a pulpotomy agent. The crowns in both groups were restored with amalgam or glass ionomer. The teeth of 100 patients were evaluated and compared clinically and radiographically after 3 and 6 months. No signs of clinical failure were observed at the 3- and 6-month follow-up appointments in either group. There were no significant differences in the radiographic findings of the teeth and surrounding tissue at the 3-month follow-up. However, at the 6-month follow-up, significantly more cases (P = 0.036) with root resorption were seen in the FC group; no cases of resorption occurred amongst the MTA cases. The surrounding tissue showed radiographic signs of post-treatment disease in four FC cases; none was seen in the MTA cases. After 6 months, pulpotomy with MTA was associated with fewer cases of root resorption and post-treatment disease. MTA appears to be a reliable alternative material for pulpotomy in primary molar teeth.

  14. Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth.

    Science.gov (United States)

    Agamy, Hadeer A; Bakry, Niveen S; Mounir, Maha M F; Avery, David R

    2004-01-01

    The aim of this study was to use clinical, radiographic, and histologic examinations to compare the relative success of gray mineral trioxide aggregate (MTA), white MTA, and formocresol as pulp dressings in pulpotomized primary teeth. Twenty-four children, each with at least 3 primary molars requiring pulpotomy, were selected for this study's clinical and radiographic portion. An additional 15 carious primary teeth planned for serial extraction were selected for this study's histologic portion. All selected teeth were evenly divided into 3 test groups and treated with pulpotomies. Gray MTA was used as the pulp dressing for one third of the teeth, white MTA was the dressing for one third, and the remaining one third were treated with formocresol. The treated teeth selected for the clinical and radiographic evaluations were monitored periodically for 12 months. The treated teeth selected for histologic study were monitored periodically and extracted 6 months postoperatively. Four children with 12 pulpotomized teeth failed to return for any follow-up evaluations in the clinical and radiographic study. Of the remaining 60 teeth in 20 patients, 1 tooth (gray MTA) exfoliated normally and 6 teeth (4 white MTA and 2 formocresol) failed due to abscesses. The remaining 53 teeth appeared to be clinically and radiographically successful 12 months postoperatively. Pulp canal obliteration was a radiographic finding in 11 teeth treated with gray MTA and 1 tooth treated with white MTA. In the histologic study, both types of MTA successfully induced thick dentin bridge formation at the amputation sites, while formocresol induced thin, poorly calcified dentin. Teeth treated with gray MTA demonstrated pulp architecture nearest to normal pulp by preserving the odontoblastic layer and delicate fibrocellular matrix, yet few inflammatory cells or isolated calcified bodies were seen. Teeth treated with white MTA showed a denser fibrotic pattern, with more isolated calcifications in the

  15. Synergistic Impacts of Electrolyte Adsorption on the Thermoelectric Properties of Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Nakano, Motohiro; Nakashima, Takuya; Kawai, Tsuyoshi; Nonoguchi, Yoshiyuki

    2017-08-01

    Single-walled carbon nanotubes are promising candidates for light-weight and flexible energy materials. Recently, the thermoelectric properties of single-walled carbon nanotubes have been dramatically improved by ionic liquid addition; however, controlling factors remain unsolved. Here the thermoelectric properties of single-walled carbon nanotubes enhanced by electrolytes are investigated. Complementary characterization with absorption, Raman, and X-ray photoelectron spectroscopy reveals that shallow hole doping plays a partial role in the enhanced electrical conductivity. The molecular factors controlling the thermoelectric properties of carbon nanotubes are systematically investigated in terms of the ionic functionalities of ionic liquids. It is revealed that appropriate ionic liquids show a synergistic enhancement in conductivity and the Seebeck coefficient. The discovery of significantly precise doping enables the generation of thermoelectric power factor exceeding 460 µW m - 1 K -2 . © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synergistic estrogenic effects of Fusarium and Alternaria mycotoxins in vitro.

    Science.gov (United States)

    Vejdovszky, Katharina; Hahn, Kathrin; Braun, Dominik; Warth, Benedikt; Marko, Doris

    2017-03-01

    Mycotoxins are toxic secondary metabolites formed by various fungal species that are found as natural contaminants in food. This very heterogeneous group of compounds triggers multiple toxic mechanisms, including endocrine disruptive potential. Current risk assessment of mycotoxins, as for most chemical substances, is based on the effects of single compounds. However, concern on a potential enhancement of risks by interactions of single substances in naturally occurring mixtures has greatly increased recently. In this study, the combinatory effects of three mycoestrogens were investigated in detail. This includes the endocrine disruptors zearalenone (ZEN) and α-zearalenol (α-ZEL) produced by Fusarium fungi and alternariol (AOH), a cytotoxic and estrogenic mycotoxin formed by Alternaria species. For evaluation of effects, estrogen-dependent activation of alkaline phosphatase (AlP) and cell proliferation were tested in the adenocarcinoma cell line Ishikawa. The estrogenic potential varied among the single substances. Half maximum effect concentrations (EC50) for AlP activation were evaluated for α-ZEL, ZEN and AOH as 37 pM, 562 pM and 995 nM, respectively. All three mycotoxins were found to act as partial agonists. The majority of binary combinations, even at very low concentrations in the case of α-ZEL, showed strong synergism in the AlP assay. These potentiating phenomena of mycotoxin mixtures highlight the urgent need to incorporate combinatory effects into future risk assessment, especially when endocrine disruptors are involved. To the best of our knowledge, this study presents the first investigation on synergistic effects of mycoestrogens.

  17. Synergistic activity of letrozole and sorafenib on breast cancer cells.

    Science.gov (United States)

    Bonelli, Mara A; Fumarola, Claudia; Alfieri, Roberta R; La Monica, Silvia; Cavazzoni, Andrea; Galetti, Maricla; Gatti, Rita; Belletti, Silvana; Harris, Adrian L; Fox, Stephen B; Evans, Dean B; Dowsett, Mitch; Martin, Lesley-Ann; Bottini, Alberto; Generali, Daniele; Petronini, Pier Giorgio

    2010-11-01

    Estrogens induce breast tumor cell proliferation by directly regulating gene expression via the estrogen receptor (ER) transcriptional activity and by affecting growth factor signaling pathways such as mitogen-activated protein kinase (MAPK) and AKT/mammalian target of rapamycin Complex1 (mTORC1) cascades. In this study we demonstrated the preclinical therapeutic efficacy of combining the aromatase inhibitor letrozole with the multi-kinase inhibitor sorafenib in aromatase-expressing breast cancer cell lines. Treatment with letrozole reduced testosterone-driven cell proliferation, by inhibiting the synthesis of estrogens. Sorafenib inhibited cell proliferation in a concentration-dependent manner; this effect was not dependent on sorafenib-mediated inhibition of Raf1, but involved the down-regulation of mTORC1 and its targets p70S6K and 4E-binding protein 1 (4E-BP1). At concentrations of 5-10 μM the growth-inhibitory effect of sorafenib was associated with the induction of apoptosis, as indicated by release of cytochrome c and Apoptosis-Inducing Factor into the cytosol, activation of caspase-9 and caspase-7, and PARP-1 cleavage. Combination of letrozole and sorafenib produced a synergistic inhibition of cell proliferation associated with an enhanced accumulation of cells in the G(0)/G(1) phase of the cell cycle and with a down-regulation of the cell cycle regulatory proteins c-myc, cyclin D1, and phospho-Rb. In addition, longer experiments (12 weeks) demonstrated that sorafenib may be effective in preventing the acquisition of resistance towards letrozole. Together, these results indicate that combination of letrozole and sorafenib might constitute a promising approach to the treatment of hormone-dependent breast cancer.

  18. Comparison of Gray Mineral Trioxide Aggregate and Diluted Formocresol in Pulpotomized Primary Molars: A 6- to 24-month Observation

    Science.gov (United States)

    Sushynski, John M.; Zealand, Cameron M.; Botero, Tatiana M.; Boynton, James R.; Majewski, Robert F.; Shelburne, Charles E.; Hu, Jan ChingChun

    2016-01-01

    Purpose The purpose of this multisite, multioperator, prospective, randomized, controlled clinical trial was to evaluate 2-year outcomes of diluted formocresol (DFC) compared to gray mineral trioxide aggregate (GMTA) as pulpotomy medicaments. Methods Following the standard pulpotomy procedure, the pulp stumps of 252 primary molars in 168 healthy children were randomly covered with GMTA or DFC. Pulp chambers were filled with Intermediate Restorative Material (IRM®) and teeth were restored with stainless steel crowns. At each follow-up appointment, the clinical status of the treated tooth was assessed and radiographs were taken. A total of 694 clinical and radiographic evaluations were analyzed. Results Gender, study site, arch type, and tooth type did not influence treatment outcome. At the combined 6- to 24-month follow-up, clinical success in the DFC group was no different than for the GMTA group. Radiographically, a significantly lower success rate was found in the DFC group vs the MTA group at all time points (P<.01). Dentin bridge formation was observed at a significantly higher frequency among the GMTA group (P<.01), while internal root resorption was observed at a higher frequency in the DFC group (P<.01). Conclusion At the combined 6- to 24-month follow-up, gray mineral trioxide aggregate demonstrated significantly better radiographic outcomes vs diluted formocresol as pulpotomy medicaments. PMID:23211896

  19. Mineral trioxide aggregate apical plugs in teeth with open apical foramina: a retrospective analysis of treatment outcome.

    Science.gov (United States)

    Mente, Johannes; Hage, Nathalie; Pfefferle, Thorsten; Koch, Martin Jean; Dreyhaupt, Jens; Staehle, Hans Joerg; Friedman, Shimon

    2009-10-01

    Teeth with open apical foramina present a challenge during root canal treatment, and little is known about the clinical outcome of treatment in such teeth. This retrospective study assessed healing of teeth with open apices managed by the placement of mineral trioxide aggregate apical plugs. Seventy-two patients with 78 teeth with apical resorption or excessive apical enlargement, treated between 2000 and 2006, were contacted for follow-up examination 12 to 68 months after treatment (median 30.9 months). Treatments were provided by supervised undergraduate students (27%), general dentists (32%), or dentists who had focused on endodontics (41%). The outcome based on clinical and radiographic criteria was assessed by calibrated examiners and dichotomized as "healed" or "disease." Of 56 teeth examined (72% recall), 84% were healed. Teeth without or with preoperative periapical radiolucency had a healed rate of 100% and 78%, respectively. None of the variables analyzed had a significant effect on the outcome. The results supported the management of open apical foramina with mineral trioxide aggregate apical plugs.

  20. The effect of sodium hypochlorite application on the success of calcium hydroxide and mineral trioxide aggregate pulpotomies in primary teeth.

    Science.gov (United States)

    Akcay, Merve; Sari, Saziye

    2014-01-01

    This study's purpose was to evaluate the success of calcium hydroxide (CH) and mineral trioxide aggregate (MTA) pulpotomies following the use of five percent sodium hypochlorite (NaOCl) as an antibacterial agent to clean the chamber prior to application of the pulpotomy agent. A total of 128 teeth were randomly divided into two pulpotomy groups (CH or MTA). The teeth in each pulpotomy group, CH and MTA, were further randomly divided into subgroups to receive either the NaOCl (experimental) or saline (control) cleaning agent prior to applying the pulpotomy agent. The treatments were followed clinically and radiographically for 12 months. The radiographic success rates were 84 percent for CH NaOCl, 74 percent for CH saline control, 97 percent for MTA NaOCl, and 100 percent for MTA saline control. There were no significant differences between the radiographic success rates in the CH and MTA subgroups (CH NaOCl-CH control and MTA NaOCl-MTA control); no significant differences were observed when comparing the CH NaOCl-MTA NaOCl groups and the CH NaOCl-MTA control groups. Use of sodium hypochlorite as an antibacterial agent prior to application of the pulpotomy agent improved the success of calcium hydroxide pulpotomies to equal the success of mineral trioxide aggregate pulpotomies for observation up to 12 months.

  1. A pan-European comparison of the use of mineral trioxide aggregate (MTA) by postgraduates in paediatric dentistry.

    Science.gov (United States)

    Foley, J I

    2013-04-01

    To assess the current usage and opinions of mineral trioxide aggregate (MTA) amongst European postgraduates (PG) in paediatric dentistry. An on-line structured questionnaire. The programme directors of all EAPD-accredited programmes in paediatric dentistry were contacted by e-mail and invited to disseminate the web-link for a structured on-line questionnaire to all PG students on their programmes. The survey sought details of usage of MTA in both the primary and permanent dentitions and also, previous and future educational requirements for cement use. Responses were received from 29/44 (F: 27; M: 2) PG students. MTA was used in the primary dentition by 6/29 and 17/29 PG for pulp capping and pulpotomy procedures, respectively. In non-vital permanent teeth, MTA was used for apical barrier formation by 26/29 PG students, 15/29 for pulpotomy procedures and 10/29 to repair root perforations. Barriers to the use of MTA related to material cost and other materials being deemed more appropriate. Overall, 27/29 demonstrated an interest in further educational opportunities in material use. Mineral trioxide aggregate appears to be in regular use amongst PG dentists in paediatric dentistry throughout Europe.

  2. Treatment outcome after repair of root perforations with mineral trioxide aggregate: a retrospective evaluation of 90 teeth.

    Science.gov (United States)

    Krupp, Christian; Bargholz, Clemens; Brüsehaber, Martin; Hülsmann, Michael

    2013-11-01

    In this retrospective study, the success rate for the repair of root perforations using mineral trioxide aggregate was investigated. One hundred forty consecutive cases of teeth with perforations were included in the sample; 128 finally met the inclusion criteria. All treatments were performed between 1999 and 2009 in a dental office limited to endodontics. Perforations were sealed with mineral trioxide aggregate using a dental operating microscope. Treatment success was assessed by analyzing clinical data and radiographs 1-10 years after treatment. The radiographs were evaluated by 2 independent calibrated examiners. The outcome measure was dichotomized as "healed" or "failure." The relationship between preoperative data and treatment outcome was examined to determine potential prognostic factors. From 128 teeth, 90 were accessible for recall (70.3%). The mean follow-up interval was 3.4 years. Sixty-six teeth (73.3%) were classified as healed. A significant relationship between treatment success and the presence of a preoperative lesion at the perforation site was found. Those teeth in which a lesion at the perforation site was present before treatment showed a lower healing rate. Teeth with a preoperative communication between the perforation and the oral cavity showed the lowest success rate. Two prognostic factors for healing of teeth with perforations were identified. The presence of a preoperative lesion at the perforation site and direct contact between the perforation and the oral cavity were related to lower treatment success rates. Copyright © 2013 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Perforating internal root resorption repaired with mineral trioxide aggregate caused complete resolution of odontogenic sinus mucositis: a case report.

    Science.gov (United States)

    Bendyk-Szeffer, Maja; Łagocka, Ryta; Trusewicz, Matylda; Lipski, Mariusz; Buczkowska-Radlińska, Jadwiga

    2015-02-01

    An extensive perforating internal root resorption accompanied by apical periodontitis and odontogenic sinus mucositis was detected on preoperative cone-beam computed tomographic scans in a first maxillary molar. After the chemomechanical debridement of the root canals, calcium hydroxide was placed as a temporary dressing for 7 days. Mineral trioxide aggregate was used to fill the perforation site with the aid of a surgical microscope. At the next visit, the root with the resorption defect was filled with warm vertical compaction of gutta-percha. A control cone-beam computed tomographic scan acquired 6 months after the endodontic treatment revealed complete resolution of the sinus retention cyst. Moreover, the patient's frequent otolaryngologic disturbances ceased. The tooth was functional with satisfactory clinical and radiographic results after 12 months. Based on the results of this case, successful repair of an extensive, perforating internal resorption with mineral trioxide aggregate may lead to complete resolution of apical periodontitis and maxillary sinus retention cyst. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Clinical results with two different methods of root-end preparation and filling in apical surgery: mineral trioxide aggregate and adhesive resin composite

    DEFF Research Database (Denmark)

    von Arx, Thomas; Hanni, Stefan; Jensen, Simon Storgaard

    2010-01-01

    The aim of apical surgery is to hermetically seal the root canal system after root-end resection, thereby enabling periradicular healing. The objective of this nonrandomized prospective clinical study was to report results of 2 different root-end preparation and filling methods, ie, mineral triox...... trioxide aggregate (MTA) and an adhesive resin composite (Retroplast)....

  5. Mitochondrial uncouplers act synergistically with the fumigant phosphine to disrupt mitochondrial membrane potential and cause cell death.

    Science.gov (United States)

    Valmas, Nicholas; Zuryn, Steven; Ebert, Paul R

    2008-10-30

    Phosphine is the most widely used fumigant for the protection of stored commodities against insect pests, especially food products such as grain. However, pest insects are developing resistance to phosphine and thereby threatening its future use. As phosphine inhibits cytochrome c oxidase (complex IV) of the mitochondrial respiratory chain and reduces the strength of the mitochondrial membrane potential (DeltaPsi(m)), we reasoned that mitochondrial uncouplers should act synergistically with phosphine. The mitochondrial uncouplers FCCP and PCP caused complete mortality in populations of both wild-type and phosphine-resistant lines of Caenorhabditis elegans simultaneously exposed to uncoupler and phosphine at concentrations that were individually nonlethal. Strong synergism was also observed with a third uncoupler DNP. We have also tested an alternative complex IV inhibitor, azide, with FCCP and found that this also caused a synergistic enhancement of toxicity in C. elegans. To investigate potential causes of the synergism, we measured DeltaPsi(m), ATP content, and oxidative damage (lipid hydroperoxides) in nematodes subjected to phosphine-FCCP treatment and found that neither an observed 50% depletion in ATP nor oxidative stress accounted for the synergistic effect. Instead, a synergistic reduction in DeltaPsi(m) was observed upon phosphine-FCCP co-treatment suggesting that this is directly responsible for the subsequent mortality. These results support the hypothesis that phosphine-induced mortality results from the in vivo disruption of normal mitochondrial activity. Furthermore, we have identified a novel pathway that can be targeted to overcome genetic resistance to phosphine.

  6. Identifying the Key Role of Pyridinic-N-Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER.

    Science.gov (United States)

    Wang, Xue-Rui; Liu, Jie-Yu; Liu, Zi-Wei; Wang, Wei-Chao; Luo, Jun; Han, Xiao-Peng; Du, Xi-Wen; Qiao, Shi-Zhang; Yang, Jing

    2018-04-20

    For many regenerative electrochemical energy-conversion systems, hybrid electrocatalysts comprising transition metal (TM) oxides and heteroatom-doped (e.g., nitrogen-doped) carbonaceous materials are promising bifunctional oxygen reduction reaction/oxygen evolution reaction electrocatalysts, whose enhanced electrocatalytic activities are attributed to the synergistic effect originated from the TM-N-C active sites. However, it is still ambiguous which configuration of nitrogen dopants, either pyridinic or pyrrolic N, when bonded to the TM in oxides, predominately contributes to the synergistic effect. Herein, an innovative strategy based on laser irradiation is described to controllably tune the relative concentrations of pyridinic and pyrrolic nitrogen dopants in the hybrid catalyst, i.e., NiCo 2 O 4 NPs/N-doped mesoporous graphene. Comparative studies reveal the dominant role of pyridinic-NCo bonding, instead of pyrrolic-N bonding, in synergistically promoting reversible oxygen electrocatalysis. Moreover, density functional theory calculations provide deep insights into the corresponding synergistic mechanism. The optimized hybrid, NiCo/NLG-270, manifests outstanding reversible oxygen electrocatalytic activities, leading to an overpotential different ΔE among the lowest value for highly efficient bifunctional catalysts. In a practical reversible Zn-air battery, NiCo/NLG-270 exhibits superior charge/discharge performance and long-term durability compared to the noble metal electrocatalysts. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Turmeric and Chinese goldthread synergistically inhibit prostate cancer cell proliferation and NF-kB signaling

    Directory of Open Access Journals (Sweden)

    Yi Zhao

    2014-07-01

    Full Text Available Background: Pre-clinical studies using bioactive compounds from botanicals appear to offer some protection against cancer. Research using single bioactives contributes greatly to our understanding of their mechanism of action, but in vitro studies demand concentrations that are higher than achievable in humans (µM. However, maintaining these bioactives in the presence of other compounds originally derived from the food or extract of origin may synergistically lower the bioactive dose so translatability becomes feasible. The objective of this study was to determine if bio-efficacy of phytonutrients can be enhanced when used in combination even at doses that are ineffective for any compound when used in isolation. Methods: The anti-proliferative and molecular effects of herbs (turmeric and Chinese goldthread and their bioactives (curcumin and ar-turmerone, berberine and coptisine, respectively were determined in isolation and in combination. Using CWR22Rv1 and HEK293 cells, cell proliferation (as assessed by the MTT assay and NF-κB promoter activity (using a luciferase reporter construct were evaluated and synergy of action was assessed by the ChouTalalay method utilizing CompuSyn® software. Results: Turmeric and Chinese goldthread act synergistically (combination index<1 when inhibiting cell proliferation with all cell lines tested. The synergy of action of combinations of companion bioactives from the same herb (i.e., curcumin/ar-turmerone and berberine/coptisine and bioactives from different herbs (i.e., curcumin/berberine help to explain why turmeric and Chinese goldthread are more effective than their major bioactives in isolation. At the molecule level, curcumin+ar-turmerone and curcumin+coptisine synergistically attenuated TNFα- stimulated NF-κB promoter activity. Even compounds with poor efficacy become more biologically active in the presence of companion compounds. Importantly, the effects of combining any two bioactives or herbal

  8. Addition of Arsenic Trioxide into Induction Regimens Could Not Accelerate Recovery of Abnormality of Coagulation and Fibrinolysis in Patients with Acute Promyelocytic Leukemia.

    Directory of Open Access Journals (Sweden)

    Ye Zhang

    Full Text Available All-trans retinoic acid combined to anthracycline-based chemotherapy is the standard regimen of acute promyelocytic leukemia. The advent of arsenic trioxide has contributed to improve the anti-leukemic efficacy in acute promyelocytic leukemia. The objectives of the current study were to evaluate if dual induction by all-trans retinoic acid and arsenic trioxide could accelerate the recovery of abnormality of coagulation and fibrinolysis in patients with acute promyelocytic leukemia.Retrospective analysis was performed in 103 newly-diagnosed patients with acute promyelocytic leukemia. Hemostatic variables and the consumption of component blood were comparably analyzed among patients treated by different induction regimen with or without arsenic trioxide.Compared to patients with other subtypes of de novo acute myeloid leukemia, patients with acute promyelocytic leukemia had lower platelet counts and fibrinogen levels, significantly prolonged prothrombin time and elevated D-dimers (P<0.001. Acute promyelocytic leukemia patients with high or intermediate risk prognostic stratification presented lower initial fibrinogen level than that of low-risk group (P<0.05. After induction treatment, abnormal coagulation and fibrinolysis of patients with acute promyelocytic leukemia was significantly improved before day 10. The recovery of abnormal hemostatic variables (platelet, prothrombin time, fibrinogen and D-dimer was not significantly accelerated after adding arsenic trioxide in induction regimens; and the consumption of transfused component blood (platelet and plasma did not dramatically change either. Acute promyelocytic leukemia patients with high or intermediate risk prognostic stratification had higher platelet transfusion demands than that of low-risk group (P<0.05.Unexpectedly, adding arsenic trioxide could not accelerate the recovery of abnormality of coagulation and fibrinolysis in acute promyelocytic leukemia patients who received all

  9. Mathematical description of synergistic interaction between radon and smoking

    International Nuclear Information System (INIS)

    Jin Kyu Kim; Petin, V.G.; Belkina, S.V.

    2007-01-01

    Complete text of publication follows. Background: A certain level of background exposure to ionizing radiation and natural or man-made chemicals is always present in the environment. Radon and its short-lived decay products are considered as important sources of public exposure to the natural radioactivity. It is well known from epidemiological and toxicological studies that synergistic interaction between smoking and radon occurs, which is especially important for high natural background areas. Objective: This study has been done to suggest a mathematical model to describe the synergistic interaction of radon with tobacco smoking, and to demonstrate the ability of the model to describe carcinogenic effects of the combined action. Methods: A simple mathematical model was formulated to describe and predict the synergistic interaction of radon with smoking. The model postulates that the occurrence of synergism is to be expected as a result of additional carcinogenic damage arisen from the interaction of sublesions induced by the two factors under consideration. Results: The predictions of the model were verified by comparison with experimental data published by other researchers. The model appears to be appropriate and the predictions are valid. Conclusions: : The suggested mathematical model predicts the greatest level of synergistic effect and condition under which the maximum synergy is attained. The synergistic effect appeared to decline with any deviation from the optimal value of the ratio of carcinogenic effective damages produced by each agent alone.

  10. Insights into the Synergistic Effect of Fungi and Bacteria for Reactive Red Decolorization

    Directory of Open Access Journals (Sweden)

    Dandan Zhou

    2014-01-01

    Full Text Available Bacterial contamination is a prevalent problem in fungal dye wastewater decolorization that prevents the development of this technology in practical engineering. New insight into the relationship between fungi and bacteria is given in terms of settleability, bioadsorption, and biodegradation, which all confirm their synergistic effect. Sterilization is implied to be not the only mechanism for fungi decolorization. When the fungi and bacteria isolated from the activated sludge were cocultured, fungi removed more than 70% of the reactive red through sole bioadsorption in 5 min and enhanced the settleability of the bacteria group from 7.7 to 18.4 in the aggregation index. Subsequently, the bacteria played a more significant role in dye biodegradation according to the ultraviolet-visible spectrum analysis. They further enhanced the decolorization efficiency to over 80% when cocultured with fungi. Therefore, the advanced bioadsorption and settleability of fungi, combined with the good dye biodegradation ability of bacteria, results in the synergistic effect of the coculture microorganisms.

  11. Proteasome inhibitor carfilzomib interacts synergistically with histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells.

    Science.gov (United States)

    Gao, Minjie; Gao, Lu; Tao, Yi; Hou, Jun; Yang, Guang; Wu, Xiaosong; Xu, Hongwei; Tompkins, Van S; Han, Ying; Wu, Huiqun; Zhan, Fenghuang; Shi, Jumei

    2014-06-01

    In the present study, we investigated the interactions between proteasome inhibitor carfilzomib (CFZ) and histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells. Coexposure of cells to minimally lethal concentrations of CFZ with very low concentration of vorinostat resulted in synergistic antiproliferative effects and enhanced apoptosis in Jurkat T-leukemia cells, accompanied with the sharply increased reactive oxygen species (ROS), the striking decrease in the mitochondrial membrane potential (MMP), the increased release of cytochrome c, the enhanced activation of caspase-9 and -3, and the cleavage of PARP. The combined treatment of Jurkat cells pre-treated with ROS scavengers N-acetylcysteine (NAC) significantly blocked the loss of mitochondrial membrane potential, suggesting that ROS generation was a former event of the loss of mitochondrial membrane potential. Furthermore, NAC also resulted in a marked reduction in apoptotic cells, indicating a critical role for increased ROS generation by combined treatment. In addition, combined treatment arrested the cell cycle in G2-M phase. These results imply that CFZ interacted synergistically with vorinostat in Jurkat T-leukemia cells, which raised the possibility that the combination of carfilzomib with vorinostat may represent a novel strategy in treating T-cell Leukemia. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  12. Effect of acidic environment on dislocation resistance of endosequence root repair material and mineral trioxide aggregate.

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2014-04-01

    Full Text Available The aim of this study was to compare the effect of an acidic environment on dislocation resistance (push-out bond strength of EndoSequence Root Repair Material (ERRM putty and ERRM paste, a new bioceramic-based material, to that of mineral tri-oxide aggregate (MTA.One-hundred twenty root dentin slices with standardized canal spaces were divided into 6 groups (n = 20 each and filled with tooth-colored ProRoot MTA (groups 1 and 2, ERRM putty (groups 3 and 4, or ERRM paste (groups 5 and 6. The specimens of groups 1, 3, and 5 were exposed to phosphate buffered saline (PBS solution (pH=7.4 and those of groups 2, 4, and 6 were exposed to butyric acid (pH= 4.4. The specimens were then incubated for 4 days at 37°C. The push-out bond strength was then measured using a universal testing machine. Failure modes after the push-out test were examined under a light microscope at ×40 magnification. The data for dislocation resistance were analyzed using the t-test and one-way analysis of variance.In PBS environment (pH=7.4, there were no significant differences among materials (P=0.30; but the mean push-out bond strength of ERRM putty was significantly higher than that of other materials in an acidic environment (P<0.001. Push-out bond strength of MTA and ERRM paste decreased after exposure to an acidic environment; whereas ERRM putty was not affected by acidic pH. The bond failure mode was predominantly cohesive for all groups except for MTA in an acidic environment; which showed mixed bond failure in most of the specimens.The force needed for dislocation of MTA and ERRM paste was significantly lower in samples stored in acidic pH; however, push-out bond strength of ERRM putty was not influenced by acidity.

  13. Effects of Arsenic Trioxide on Radiofrequency Ablation of VX2 Liver Tumor: Intraarterial versus Intravenous Administration

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Nak Jong; Yoon, Chang Jin; Kang, Sung Gwon [Seoul National University Bundang Hospital, Seongnam (Korea, Republic of); Chung, Jin Wook; Kim, Hyo Cheol; Park, Jae Hyung [Seoul National University Hospital, Seoul (Korea, Republic of)

    2012-03-15

    Arsenic trioxide (As{sub 2}O{sub 3}) can be used as a possible pharmaceutical alternative that augments radiofrequency (RF) ablation by reducing tumor blood flow. The aim of this study was to assess the effect of intraarterial and intravenous administration of As{sub 2}O{sub 3} on RF-induced ablation in an experimentally induced liver tumor. VX2 carcinoma was grown in the livers of 30 rabbits. As{sub 2}O{sub 3} (1 mg/kg) was administered through the hepatic artery (n = 10, group A) or ear vein (n = 10, group B), 30 minutes before RF ablation (125 mA {+-} 35; 90 {+-} 5 degrees Celsius). As a control group, 10 rabbits were treated with RF ablation alone (group C). RF was intentionally applied to the peripheral margin of the tumor so that ablation can cover the tumor and adjacent hepatic parenchyma. Ablation areas of the tumor and adjacent parenchymal changes among three groups were compared by the Kruskal-Wallis and Mann-Whitney U test. The overall ablation areas were 156 {+-} 28.9 mm{sup 2} (group A), 119 {+-} 31.7 (group B), and 92 {+-} 17.4 (group C, p < 0.04). The ablation area of the tumor was significantly larger in group A (73 {+-} 19.7 mm{sup 2}) than both group B (50 {+-} 19.4, p = 0.02) and group C (28 {+-} 2.2, p < 0.01). The ratios of the tumoral ablation area to the overall ablation area were larger in group A (47 {+-} 10.5%) than that of the other groups (42 {+-} 7.3% in group B and 32 {+-} 5.6% in group C) (p < 0.03). Radiofrequency-induced ablation area can be increased with intraarterial or intravenous administration of As{sub 2}O{sub 3}. The intraarterial administration of As{sub 2}O{sub 3} seems to be helpful for the selective ablation of the tumor.

  14. Towards Near-Infrared Photosensitization of Tungsten Trioxide Nanostructured Films by Upconverting Nanoparticles

    Science.gov (United States)

    Venne, Frederic

    Nanostructured metal oxides semiconductors are widely used in solar energy related applications, such as in dye-sensitized solar cells. Tungsten trioxide (WO3) is an electrochromic material, extensively investigated in solar energy conversion (e.g. photoelectrochemistry) and conservation (e.g. electrochromism). However, WO3, because of its wide bandgap (≈ 2.5 eV), is transparent to an important portion of the solar spectrum and can effectively absorb light only up to ca. 500 nm, which limits the power conversion efficiency of devices based thereon. Upconverting materials can absorb several low-energy photons to emit one high-energy photon. In particular, upconverting nanoparticles are widely studied in biomedical and solar energy applications, as they can transform two or several infrared photons in a visible photon. As the Sun contains important NIR and IR portion, UCNPs are interesting candidates to transform NIR or IR light into visible light to be absorbed by wide bandgap semiconductor, such as metal oxides. The work presented in this master's thesis consists in embedding NaGdF4:Er3+, Yb3+ UCNPs into a nanostructured WO3 matrix. The objective is to increase the power conversion efficiency of WO3 after solar light harvesting. The integration of two materials with nanostructured nature has the potential to lead to a good synergy between them. We include an article in this master's thesis. In this article, we report on the mixing of NaGdF4:Er3+, Yb 3+ UCNPs with WO3 in solution and on the deposition of the two-component solution on ITO-patterned electrodes. After engineering the fabrication and deposition of the thin nanocomposite films, they were systematically studied. Morphology was studied by atomic force microscopy, structure by X-ray diffraction, photoluminescence by fluorescence hyperspectral microscopy, and charge carrier transport under NIR irradiation by current-time measurements. Notably, we observed an increase in the value of the current with

  15. Arsenic trioxide inhibits cell proliferation and human papillomavirus oncogene expression in cervical cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hongtao [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China); Gao, Peng [Department of Internal Medicine, University of Iowa, Iowa City, IA 52242 (United States); Zheng, Jie, E-mail: jiezheng54@126.com [Department of Pathology, School of Medicine, Southeast University, Nanjing 210009 (China)

    2014-09-05

    Highlights: • As{sub 2}O{sub 3} inhibits growth of cervical cancer cells and expression of HPV oncogenes in these cells. • HPV-negative cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-positive cervical cancer cells. • HPV-18 positive cervical cancer cells are more sensitive to As{sub 2}O{sub 3} than HPV-16 positive cancer cells. • Down-regulation of HPV oncogenes by As{sub 2}O{sub 3} is partially due to the diminished AP-1 binding. - Abstract: Arsenic trioxide (As{sub 2}O{sub 3}) has shown therapeutic effects in some leukemias and solid cancers. However, the molecular mechanisms of its anticancer efficacy have not been clearly elucidated, particularly in solid cancers. Our previous data showed that As{sub 2}O{sub 3} induced apoptosis of human papillomavirus (HPV) 16 DNA-immortalized human cervical epithelial cells and cervical cancer cells and inhibited the expression of HPV oncogenes in these cells. In the present study, we systemically examined the effects of As{sub 2}O{sub 3} on five human cervical cancer cell lines and explored the possible molecular mechanisms. MTT assay showed that HPV-negative C33A cells were more sensitive to growth inhibition induced by As{sub 2}O{sub 3} than HPV-positive cervical cancer cells, and HPV 18-positive HeLa and C4-I cells were more sensitive to As{sub 2}O{sub 3} than HPV 16-positive CaSki and SiHa cells. After As{sub 2}O{sub 3} treatment, both mRNA and protein levels of HPV E6 and E7 obviously decreased in all HPV positive cell lines. In contrast, p53 and Rb protein levels increased in all tested cell lines. Transcription factor AP-1 protein expression decreased significantly in HeLa, CaSki and C33A cells with ELISA method. These results suggest that As{sub 2}O{sub 3} is a potential anticancer drug for cervical cancer.

  16. [Comparison of in vitro antimicrobial activities of bioaggregate and mineral trioxide aggregate].

    Science.gov (United States)

    Cavdar Tetik, Esma Asuman; Dartar Öztan, Meltem; Kıyan, Mehmet

    2013-07-01

    Treatment outcome of endodontic perforations depends on successful elimination of the associated microorganisms and infected tissues as well as the effective seal of the root-end or perforation site to prevent future contamination. Ideally, perforation repair material has to be bacteriostatic or bactericidal in order to prevent bacterial contamination as well as good sealing properties and biocompatibility. The aim of this study was to evaluate the antimicrobial effects of BioAggregate (BA) and Mineral Trioxide Aggregate (MTA) on the standard strains of Candida albicans, Enterococcus faecalis, Escherichia coli, Streptococcus mutans, Streptococcus sanguinis and Pseudomonas aeruginosa using the agar disc diffusion test. Colonies of each strains were harvested from the medium and microorganisms were diluted to obtain a suspension of approximately 108 cfu/ml. Petri plates with blood agar base with 5% sheep blood or Sabouraud dextrose agar (for C.albicans) were inoculated with experimental suspensions and BA and MTA discs prepared as 2 mm length and 6 mm diameter were placed. After 24 and 48 hours incubation, the diameters of the zones of inhibition were measured. The results of the disc diffusion tests showed that BA and MTA were effective on the tested microorganisms at 24 and 48 hours incubation periods. BA and MTA showed similar antimicrobial effects on C.albicans and E.coli. BA was more effective than MTA on S.mutans, E.faecalis and P.aeruginosa, however MTA was more effective than BA on S.sanguinis at 48 hours. When the time efficiency of the materials were compared, there was no statistically difference between 24 to 48 hours on E.coli, E.faecalis, S.mutans, S.sanguinis in both two groups (p> 0.05). There was statistically significant decrease 24 to 48 hours on C.albicans in BA and MTA groups and P.aeruginosa in BA group (p< 0.05). It can be concluded that although BA and MTA displayed similar antimicrobial efficacy on the tested microorganisms newly improved

  17. Activity of Nanobins Loaded with Cisplatin and Arsenic Trioxide in Primary and Metastatic Breast Cancer

    Science.gov (United States)

    Swindell, Elden Peter, III

    Despite recent advances in breast cancer screening and detection, the disease is still a leading cause of death for women of all ages. Young, African-American women are disproportionally affected with a type of breast cancer, triple-negative breast cancer, which is particularly difficult to treat and has the worst prognosis of any breast cancer subtype. These tumors often spread to the lungs, liver, bones and brains of patients, which is ultimately fatal. This dissertation presents results from a series of in vivo and in vitro experiments that investigate the clinical utility of a novel nanoparticulate formulation of cisplatin and arsenic trioxide, NB(Pt,As) for treating primary and metastatic triple-negative breast cancer. These nanobins consist of a solid, crystalline metal nanoparticle surrounded by a lipid bilayer with 80-90 nm diameter. This drug payload is extremely stable, and so NB(Pt,As) is extremely well tolerated in mice. Furthermore, NB(Pt,As) is effective in two different mouse models of breast cancer, one of primary tumor growth an another of lung metastases. A discovery presented here, that thiol containing compounds are required for drug release, may explain these seemingly incongruous results. The large amount of intracellular thiol can trigger drug release, while the low concentration of free thiols in blood is insufficient to cause drug release. To improve the treatment of brain tumors with this unique drug, we added transferrin to the surface of the nanobin using copper-catalyzed "click" chemistry, which preserves protein activity. The addition of transferrin to the nanobins enables 10 fold greater uptake in the brains of mice treated with the transferrin-targeted nanobins Tf-NB(Pt,A) compared to NB(Pt,As). By penetrating the blood brain barrier, the Tf-NB(Pt,As) was able to reduce breast cancer metastases in the brains of mice, whereas NB(Pt,As) had no effect. Taken together, these results demonstrate the intricate balance of drug release

  18. Matrix metalloproteinase-9 is involved in chronic lymphocytic leukemia cell response to fludarabine and arsenic trioxide.

    Directory of Open Access Journals (Sweden)

    Irene Amigo-Jiménez

    Full Text Available Matrix metalloproteinase-9 (MMP-9 contributes to chronic lymphocytic leukemia (CLL pathology by regulating cell migration and preventing spontaneous apoptosis. It is not known if MMP-9 is involved in CLL cell response to chemotherapy and we address this in the present study, using arsenic trioxide (ATO and fludarabine as examples of cytotoxic drugs.We used primary cells from the peripheral blood of CLL patients and MEC-1 cells stably transfected with an empty vector or a vector containing MMP-9. The effect of ATO and fludarabine was determined by flow cytometry and by the MTT assay. Expression of mRNA was measured by RT-PCR and qPCR. Secreted and cell-bound MMP-9 was analyzed by gelatin zymography and flow cytometry, respectively. Protein expression was analyzed by Western blotting and immunoprecipitation. Statistical analyses were performed using the two-tailed Student's t-test.In response to ATO or fludarabine, CLL cells transcriptionally upregulated MMP-9, preceding the onset of apoptosis. Upregulated MMP-9 primarily localized to the membrane of early apoptotic cells and blocking apoptosis with Z-VAD prevented MMP-9 upregulation, thus linking MMP-9 to the apoptotic process. Culturing CLL cells on MMP-9 or stromal cells induced drug resistance, which was overcome by anti-MMP-9 antibodies. Accordingly, MMP-9-MEC-1 transfectants showed higher viability upon drug treatment than Mock-MEC-1 cells, and this effect was blocked by silencing MMP-9 with specific siRNAs. Following drug exposure, expression of anti-apoptotic proteins (Mcl-1, Bcl-xL, Bcl-2 and the Mcl-1/Bim, Mcl-1/Noxa, Bcl-2/Bax ratios were higher in MMP-9-cells than in Mock-cells. Similar results were obtained upon culturing primary CLL cells on MMP-9.Our study describes for the first time that MMP-9 induces drug resistance by modulating proteins of the Bcl-2 family and upregulating the corresponding anti-apoptotic/pro-apoptotic ratios. This is a novel role for MMP-9 contributing to CLL

  19. Calcium Enriched Mixture and Mineral Trioxide Aggregate Activities against Enterococcus Faecalis in Presence of Dentin

    Science.gov (United States)

    Razmi, Hasan; Aminsobhani, Mohsen; Bolhari, Behnam; Shamshirgar, Farin; Shahsavan, Shadi; Shamshiri, Ahmad Reza

    2013-01-01

    Introduction The purpose of this in vitro study was to compare the antibacterial activity of Calcium Enriched Mixture (CEM) with ProRoot Mineral Trioxide Aggregate (MTA) against Enterococcus faecalis (E. faecalis) in the presence/absence of dentin powder. Materials and Methods Two series of freshly mixed (10, 50, and 100 mg), set crushed powder (10, 50, and 100 mg), and pieces of uncrushed set (50, 100 mg) of CEM and MTA were prepared (n = 32 groups). All samples were suspended in normal saline for direct exposure test against E. faecalis; in the second series, 50 mg of the dentin powder was also added to the solution. Dentin powder suspension and bacterial suspension served as negative and positive control groups, respectively (n = 2). The suspensions were incubated at room temperature for 1, 60, and 240 min; each group was tested five times and survival of the bacteria in test solutions was assessed by 10-fold serial dilutions and cultured on Brain Heart Infusion (BHI) plates. The plates were incubated at 37ºC. The mean values of log10 CFU were calculated and compared in all tested groups. The total number of tests added up to 510 times. Results In presence of dentin powder, freshly mixed powder from set materials, and pieces of uncrushed set materials of both tested cements killed > 95% of the bacterial cell in 1 min. Adding dentin powder caused an increase in antibacterial activity of freshly mixed powder from crushed set CEM and MTA but no acceleration in bacterial killing was observed, when dentin was mixed with set or uncrushed cements. Dentin powder alone reduced the number of viable bacteria in the 4-hour duration. There were no significant differences between different weights of freshly mixed, crushed set powder and uncrushed set of CEM cement and MTA at different times. Conclusion Under the conditions of this in vitro study, CEM cement as well as MTA have antibacterial effects against E. faecalis. The addition of equal amounts of dentin powder to the

  20. Mineral trioxide aggregate improves healing response of periodontal tissue to injury in mice

    Science.gov (United States)

    Zdrilic, I. Vidovic; de Azevedo Queiroz, I. O.; Matthews, B. G.; Gomes-Filho, J. E.; Mina, M.; Kalajzic, I.

    2018-01-01

    Background and Objective Mineral trioxide aggregate (MTA) is a biomaterial used in endodontic procedures as it exerts beneficial effects on regenerative processes. In this study, we evaluate the effect of MTA on healing of periodontal ligament (PDL) and surrounding tissue, following injury, in a transgenic mouse model and on the differentiation of murine mesenchymal progenitor cells in vitro. Material and Methods We used an inducible Cre-loxP in vivo fate mapping approach to examine the effects of MTA on the contributions of descendants of cells expressing the αSMA-CreERT2 transgene (SMA9+) to the PDL and alveolar bone after experimental injury to the root furcation on the maxillary first molars. Col2.3GFP was used as a marker to identify mature osteoblasts, cementoblasts and PDL fibroblasts. The effects of MTA were examined 2, 17 and 30 days after injury and compared histologically with sealing using an adhesive system. The effects of two dilutions of medium conditioned with MTA on proliferation and differentiation of mesenchymal progenitor cells derived from bone marrow (BMSC) and periodontal ligament (PDLC) in vitro were examined using the PrestoBlue viability assay, alkaline phosphatase and Von Kossa staining. The expression of markers of differentiation was assessed using real-time PCR. Results Histological analyses showed better repair in teeth restored with MTA, as shown by greater expansion of SMA9+ progenitor cells and Col2.3GFP+ osteoblasts compared with control teeth. We also observed a positive effect on differentiation of SMA9+ progenitors into osteoblasts and cementoblasts in the apical region distant from the site of injury. The in vitro data showed that MTA-conditioned medium reduced cell viability and osteogenic differentiation in both PDLC and BMSC, indicated by reduced von Kossa staining and lower expression of osteocalcin and bone sialoprotein. In addition, cultures grown in the presence of MTA had marked decreases in SMA9+ and Col2.3GFP+ areas

  1. Investigation of a novel mechanically mixed mineral trioxide aggregate (MM-MTA(™) ).

    Science.gov (United States)

    Khalil, I; Naaman, A; Camilleri, J

    2015-08-01

    To characterize a novel mechanically mixed mineral trioxide aggregate product (MM-MTA, MicroMega, Besançon, France) and to investigate the physical and chemical properties in comparison with ProRoot MTA (Dentsply, Tulsa Dental, Johnson City, TN, USA) and MTA Angelus (Angelus, Londrina, Brazil). The three materials were mixed according to manufacturer's instructions. Specimens 10 mm in diameter and 2 mm high were prepared and characterized by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD) analysis after 1-day and 28-day storage in physiological solution. Calcium ion leaching in solution and pH of the elution were also assessed. Furthermore, the setting time, radiopacity and material porosity were investigated. Statistical analysis was performed by anova and Tukey's post hoc tests. All the MTAs tested were composed primarily of tricalcium silicate and bismuth oxide. In addition, MM-MTA exhibited additional peaks for chlorine evident in the EDS analysis; calcium carbonate was present in the set material detected by XRD. Calcium hydroxide was present in the set ProRoot MTA and MTA Angelus. Calcium ion leaching and alkalization of the storage solution were demonstrated in all the materials. Both MM-MTA and MTA Angelus had a shorter setting time when compared to ProRoot MTA (P MTA exhibited larger pores and more porosity than MTA Angelus and MM-MTA. All the materials exhibited radiopacity greater than the 3 mm aluminium thickness specified in ISO 6876 (2012). MM-MTA, ProRoot MTA and MTA Angelus are composed of Portland cement and bismuth oxide. In addition, MM-MTA contains calcium carbonate and a chloride accelerator. These additives affect the material hydration and the properties of the set material. The properties of MM-MTA are a result of a combination of factors, namely the particular cement mineralogy, radiopacifier loading, effective water-cement ratio and mechanical mixing. © 2014 International

  2. Effect of additives on mineral trioxide aggregate setting reaction product formation.

    Science.gov (United States)

    Zapf, Angela M; Chedella, Sharath C V; Berzins, David W

    2015-01-01

    Mineral trioxide aggregate (MTA) sets via hydration of calcium silicates to yield calcium silicate hydrates and calcium hydroxide (Ca[OH]2). However, a drawback of MTA is its long setting time. Therefore, many additives have been suggested to reduce the setting time. The effect those additives have on setting reaction product formation has been ignored. The objective was to examine the effect additives have on MTA's setting time and setting reaction using differential scanning calorimetry (DSC). MTA powder was prepared with distilled water (control), phosphate buffered saline, 5% calcium chloride (CaCl2), 3% sodium hypochlorite (NaOCl), or lidocaine in a 3:1 mixture and placed in crucibles for DSC evaluation. The setting exothermic reactions were evaluated at 37°C for 8 hours to determine the setting time. Separate samples were stored and evaluated using dynamic DSC scans (37°C→640°C at10°C/min) at 1 day, 1 week, 1 month, and 3 months (n = 9/group/time). Dynamic DSC quantifies the reaction product formed from the amount of heat required to decompose it. Thermographic peaks were integrated to determine enthalpy, which was analyzed with analysis of variance/Tukey test (α = 0.05). Isothermal DSC identified 2 main exothermal peaks occurring at 44 ± 12 and 343 ± 57 minutes for the control. Only the CaCl2 additive was an accelerant, which was observed by a greater exothermic peak at 101 ± 11 minutes, indicating a decreased setting time. The dynamic DSC scans produced an endothermic peak around 450°C-550°C attributed to Ca(OH)2 decomposition. The use of a few additives (NaOCl and lidocaine) resulted in significantly less Ca(OH)2 product formation. DSC was used to discriminate calcium hydroxide formation in MTA mixed with various additives and showed NaOCl and lidocaine are detrimental to MTA reaction product formation, whereas CaCl2 accelerated the reaction. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Azole Fungicides as Synergists in the Aquatic Environment

    DEFF Research Database (Denmark)

    Bjergager, Maj-Britt Andersen

    hazard.This PhD thesis evaluates the role of the so called azole fungicides as synergists in the aquaticenvironment through an assessment of the effect of sorption, time and azole concentration on theoccurrence and magnitude of synergistic interactions with pyrethroid insecticides towards...... the aquaticcrustacean Daphnia magna in both laboratory experiments and natural-like environments. In the PhDthesis, synergy is defined as happening in mixtures where either EC50 values decrease more than two-foldbelow the prediction by the model of Concentration Addition (horizontal assessment of synergy) or wherethe...... in stormwater runoff ordrain water and in the aquatic environment, the pesticides mainly occur in sorbed form. Sorption istraditionally considered to limit bioaccessibility and toxicity of hydrophobic compounds, hence,synergistic interactions may be limited in natural environments compared to laboratory studies...

  4. Kinetics and mechanism of the oxidation of alkenes and silanes by hydrogen peroxide catalyzed by methylrhenium trioxide (MTO) and a novel application of electrospray mass spectrometry to study the hydrolysis of MTO

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Haisong [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Conjugated dienes were oxidized by hydrogen peroxide with methylrhenium trioxide (MTO) as catalyst. Methylrhenium bis-peroxide was the major reactive catalyst present. Hydroxyalkenes and trisubstituted silane were also tested. Mechanisms for each of these reactions are presented.

  5. Structural Change of Biomolecules and Application of Synergistic Interaction by Radiation

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, J. H.; Yang, J. S.

    2008-12-01

    It is expected that motivation and basic technologies for the future R and D plans can be provided from the results of this study. This study has been done to develop fundamentals for radiation applications based on the existing radiation technology, and to establish technical basis for enhancing efficacy of radiation utilization by studying the simultaneous application of ionizing radiation with another factor. Application of radiation technology together with the existing technologies to enhance the physical, chemical, biological characteristics through structural changes of biomolecules will exert a favorable influence on the creation of de novo scientific and industrial values. A theoretical model for the combined action of ionizing radiation with another factor can make it possible to predict a prior the maximum value of synergistic interaction and the conditions for it. Furthermore, the results of this study give a clues for establishment of fundamental theories associated with positive efficacy of radiation applications

  6. [Synergistic mechanism of steam explosion combined with laccase treatment for straw delignification].

    Science.gov (United States)

    Li, Guanhua; Chen, Hongzhang

    2014-06-01

    Components separation is the key technology in biorefinery. Combination of steam explosion and laccase was used, and synergistic effect of the combined pretreatment was evaluated in terms of physical structure, chemical components and extraction of lignin. The results showed that steam explosion can destroy the rigid structure and increase the specific surface area of straw, which facilitated the laccase pretreatment. The laccase pretreatment can modify the lignin structure based on the Fourier transform infrared test, as a result the delignification of straw was enhanced. Nuclei Growth model with a time dependent rate constant can describe the delignification, and the kinetics parameters indicated that the combined pretreatment improved the reaction sites and made the delignification reaction more sensitive to temperature. The combined pretreatment enhanced delignification, and can be a promising technology as an alternative to the existing pretreatment.

  7. Ultrastrong Bioinspired Graphene-Based Fibers via Synergistic Toughening.

    Science.gov (United States)

    Zhang, Yuanyuan; Li, Yuchen; Ming, Peng; Zhang, Qi; Liu, Tianxi; Jiang, Lei; Cheng, Qunfeng

    2016-04-13

    Ultrastrong bioinspired graphene-based fibers are designed and prepared via synergistic toughening of ionic and covalent bonding. The tensile strength reaches up to 842.6 MPa and is superior to all other reported graphene-based fibers. In addition, its electrical conductivity is as high as 292.4 S cm(-1). This bioinspired synergistic toughening strategy supplies new insight toward the construction of integrated high-performance graphene-based fibers in the near future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  9. Synergistic interactions of bradykinin, thrombin, interleukin 1 and tumor necrosis factor on prostanoid biosynthesis in human periodontal-ligament cells.

    Science.gov (United States)

    Ransjö, M; Marklund, M; Persson, M; Lerner, U H

    1998-04-01

    Prostaglandins are involved in force-induced orthodontic tooth movement. Bradykinin (BK) and thrombin are known to cause a significant time- and concentration-dependent burst of prostanoid biosynthesis in cultured human periodontal-ligament (PDL) cells. The aim now was to investigate interactive effects between interleukin 1 alpha, -beta (IL-1 alpha, -1 beta), tumour necrosis factor-alpha,-beta (TNF-alpha, -beta) and BK or thrombin on prostaglandin biosynthesis in human PDL cells. IL-1 alpha and -1 beta produced time- and concentration-dependent stimulation of prostanoid biosynthesis [prostaglandin (PG)E2 and 6-keto-PGF1alpha]. Synergistic stimulation of prostanoid biosynthesis was demonstrated when BK or thrombin were added together with IL-1 alpha or -1 beta. BK and IL-1 beta both significantly stimulated the release of [3H]arachidonic acid. No synergistic effect on [3H]arachidonic acid release was seen when BK and IL-1 beta were added simultaneously. These data suggest that the synergistic effect of BK and IL-1 beta on prostanoid biosynthesis is not due to interactions at the receptor level nor to enhanced release of arachidonic acid, but may be due to increased activity of cyclo-oxygenase. Also, TNF-alpha and -beta produced a concentration-dependent stimulation of PGE2 formation in cultured human PDL cells. Synergistic effects of BK and thrombin were demonstrated when PGE2 production was stimulated in combination with TNF-beta. In addition, a synergistic effect on the PGE2 response to IL-1 alpha or -1 beta was demonstrated when added in combination with TNF-alpha. These experiments demonstrate synergistic interactions between BK, thrombin, IL-1 and TNF on prostaglandin biosynthesis in cultured human PDL cells. The findings suggest that inflammatory mediators may act in concert in stimulating prostanoid production in response to pro-inflammatory stimuli. As an inflammatory reaction is seen in the periodontal ligament when teeth are orthodontically treated, this

  10. Synergistic Anticancer Effects of Silibinin and Chrysin in T47D Breast Cancer Cells

    Science.gov (United States)

    Javan Maasomi, Zahra; Pilehvar Soltanahmadi, Younes; Dadashpour, Mehdi; Alipour, Shahriar; Abolhasani, Somayeh; Zarghami, Nosratollah

    2017-05-01

    Objective: Breast cancer is one of the most significant causes of female cancer death worldwide. Although several chemotherapeutics have been developed to treat this type of cancer, issues remain such as low survival rates and high reoccurrence after chemotherapy and radiotherapy. To explore a chemopreventive approach to enhancing breast cancer treatment efficacy, the antiproliferative effects of a combination of chrysin and silibinin, two herbal substances, in T47D breast cancer cells were assessed. Materials and Methods: Cytotoxicity of the agents singly and in combination was evaluated by MTT assay. Also, qRT-PCR was used to measure the expression levels of hTERT and cyclin D1 genes after 48 h treatment. Results: Cell viability assays revealed that chrysin or silibinin alone inhibited proliferation in a dose and time-dependent manner, and combining the drugs synergistically induced growth inhibition in the breast cancer cell line. The precise nature of this interaction was further analyzed by the median-effect method, where the combination indices (CI) were T47D cell proliferation. qPCR results showed that the drug combination also synergistically down-regulated the mRNA levels of hTERT and cyclin D1 at all used concentrations compared with the drugs used alone after 48 h treatment (P ≤ 0.05). Conclusion: The data provide evidence that synergistic antiproliferative effects of Chrysin and Silibinin are linked to the down-regulation of cyclin D1 and hTERT genes, and suggest that their combination may have therapeutic value in treatment of breast cancer. Creative Commons Attribution License

  11. Coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration.

    Science.gov (United States)

    Miyatake, Kazumasa; Muneta, Takeshi; Ojima, Miyoko; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Tsuji, Kunikazu

    2016-05-31

    Although osteoarthritis (OA) is a multifactorial disease, little has been reported regarding the cooperative interaction among these factors on cartilage metabolism. Here we examined the synergistic effect of ovariectomy (OVX) and excessive mechanical stress (forced running) on articular cartilage homeostasis in a mouse model resembling a human postmenopausal condition. Mice were randomly divided into four groups, I: Sham, II: OVX, III: Sham and forced running (60 km in 6 weeks), and IV: OVX and forced running. Histological and immunohistochemical analyses were performed to evaluate the degeneration of articular cartilage and synovitis in the knee joint. Morphological changes of subchondral bone were analyzed by micro-CT. Micro-CT analyses showed significant loss of metaphyseal trabecular bone volume/tissue volume (BV/TV) after OVX as described previously. Forced running increased the trabecular BV/TV in all mice. In the epiphyseal region, no visible alteration in bone morphology or osteophyte formation was observed in any of the four groups. Histological analysis revealed that OVX or forced running respectively had subtle effects on cartilage degeneration. However, the combination of OVX and forced running synergistically enhanced synovitis and articular cartilage degeneration. Although morphological changes in chondrocytes were observed during OA initiation, no signs of bone marrow edema were observed in any of the four experimental groups. We report the coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration. Since no surgical procedure was performed on the knee joint directly in this model, this model is useful in addressing the molecular pathogenesis of naturally occurring OA.

  12. Synergistic impacts of anthropogenic and biogenic emissions on summer surface O3 in East Asia.

    Science.gov (United States)

    Qu, Yu; An, Junling; Li, Jian

    2013-03-01

    A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs), biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface 03 (O3DM) concentrations in East Asia in summer (June to August 2000). The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China, with a maximum of 60 ppbv, while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China, with a maximum of 25 ppbv. This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1 degree x 1 degree) although global emissions of BVOCs are much greater than those of AVOCs. Daily maximum total contributions of BVOCs can approach 20 ppbv in North China, but they can reach 40 ppbv in South China, approaching or exceeding those in some developed countries in Europe and North America. BVOC emissions in such special areas should be considered when 03 control measures are taken. Synergistic contributions among AVOCs, BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China. Thus, the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location. This result suggests that 03 control measures obtained from episodic studies could be limited for long-term applications.

  13. Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Hai-Shan Peng

    Full Text Available OBJECTIVES: Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. METHODS: Hepatoma cell lines (BEL-7402 and SK-Hep1 were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. RESULTS: Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. CONCLUSIONS: We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression

  14. Synergistic anti-proliferative effects of gambogic acid with docetaxel in gastrointestinal cancer cell lines

    Directory of Open Access Journals (Sweden)

    Zou Zhengyun

    2012-04-01

    Full Text Available Summary Background Gambogic acid has a marked anti-tumor effect for gastric and colorectal cancers in vitro and in vivo. However, recent investigations on gambogic acid have focused mainly on mono-drug therapy, and its potential role in cancer therapy has not been comprehensively illustrated. This study aimed to assess the interaction between gambogic acid and docetaxel on human gastrointestinal cancer cells and to investigate the mechanism of gambogic acid plus docetaxel treatment-induced apoptotic cell death. Methods MTT assay was used to determine IC50 values in BGC-823, MKN-28, LOVO and SW-116 cells after gambogic acid and docetaxel administration. Median effect analysis was applied for determination of synergism and antagonism. Synergistic interaction between gambogic acid and docetaxel was evaluated using the combination index (CI method. Furthermore, cellular apoptosis was analyzed by Annexin-V and propidium iodide (PI double staining. Additionally, mRNA expression of drug-associated genes, i.e., β-tublin III and tau, and the apoptosis-related gene survivin, were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR. Results Gambogic acid provided a synergistic effect on the cytotoxicity induced by docetaxel in all four cell lines. The combined application of gambogic acid and docetaxel enhanced apoptosis in gastrointestinal cancer cells. Moreover, gambogic acid markedly decreased the mRNA expression of docetaxel-related genes, including β-tubulin III, tau and survivin, in BGC-823 cells. Conclusions Gambogic acid plus docetaxel produced a synergistic anti-tumor effect in gastrointestinal cancer cells, suggesting that the drug combination may offer a novel treatment option for patients with gastric and colorectal cancers.

  15. [Mineral trioxide aggragate pulpotomy for the treatment of immature permanent teeth with irreversible pulpitis: a preliminary clinical study].

    Science.gov (United States)

    Peng, Chufang; Zhao, Yuming; Yang, Yuan; Qin, Man

    2015-12-01

    To evaluate the preliminary clinical effect of mineral trioxide aggragate (MTA) pulpotomy on immature permanent teeth with irreversible pulpitis. Twenty-six immature permanent teeth with irreversible pulpitis were recuited from Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology. These teeth were treated with partial or full pulpotomy according to the condition of pulp bleeding. MTA was used as pulp capping material. Patients were recalled periodically after the treatment. Clinical and radiographic effects were evaluated. At one year follow-up, 20 teeth were evaluated as healed or healing, 2 teeth were evaluated as failure and 4 teeth were dropped out. The success rate was considered 91% (20/22). A dentinal bridge was radiographcally observed underneath the pulpotomy site in 13 teeth(65%, 13/20). MTA pulpotomy is an effective method for the treatment of immature permanent teeth with irreversible pulpitis. But further research with longer follow up period is required.

  16. Long-term observation of the mineral trioxide aggregate extrusion into the periapical lesion: a case series

    Science.gov (United States)

    Chang, Seok-Woo; Oh, Tae-Seok; Lee, WooCheol; Shun-Pan Cheung, Gary; Kim, Hyeon-Cheol

    2013-01-01

    One-step apexification using mineral trioxide aggregate (MTA) has been reported as an alternative treatment modality with more benefits than the use of long-term calcium hydroxide for teeth with open apex. However, orthograde placement of MTA is a challenging procedure in terms of length control. This case series describes the sequence of events following apical extrusion of MTA into the periapical area during a one-step apexification procedure for maxillary central incisor with an infected immature apex. Detailed long-term observation revealed complete resolution of the periapical radiolucent lesion around the extruded MTA. These cases revealed that direct contact with MTA had no negative effects on healing of the periapical tissues. However, intentional MTA overfilling into the periapical lesion is not to be recommended. PMID:23558344

  17. Assessment of the cytotoxicity of a mineral trioxide aggregate-based sealer with respect to macrophage activity.

    Science.gov (United States)

    Braga, Julia Mourão; Oliveira, Ricardo Reis; de Castro Martins, Renata; Vieira, Leda Quercia; Sobrinho, Antonio Paulino Ribeiro

    2015-10-01

    To assess the influence of co-culture with mineral trioxide aggregate (MTA) and MTA Fillapex (FLPX) on the viability, adherence, and phagocytosis activity of peritoneal macrophages from two mouse strains. Cellular viability, adherence, and phagocytosis of Saccharomyces boulardii were assayed in the presence of capillaries containing MTA and MTA Fillapex. The data were analyzed using parametric (Student's t) and non-parametric (Mann-Whitney) tests. FLPX was severely cytotoxic and decreased cell viability, adherence, and phagocytic activity of both macrophage subtypes. Cells that were treated with MTA Fillapex remained viable (>80%) for only 4 h after stimulation. Macrophages from C57BL/6 mice presented higher adherence and higher phagocytic activity compared with macrophages from BALB/c mice. Comparison of MTA and FLPX effects upon macrophages indicates that FLPX may impair macrophage activity and viability, while MTA seems to increase phagocytic activity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. The Effect of Mineral Trioxide Aggregate Mixed with Chlorhexidine as Direct Pulp Capping Agent in Dogs Teeth: A Histologic Study.

    Science.gov (United States)

    Manochehrifar, Hamed; Parirokh, Masoud; Kakooei, Sina; Oloomi, Mohammad Mehdi; Asgary, Saeed; Eghbal, Mohammad Jafar; Mashhadi Abbas, Fatemeh

    2016-01-01

    The aim of the present investigation was to compare the efficacy of mineral trioxide aggregate (MTA) and 0.2% chlorhexidine (CHX) mixture to pure MTA, as a pulp capping material. The pulp of 24 lateral incisors and canines from four dogs were exposed and capped either with MTA or MTA+0.2% CHX. After 2 months the animals were sacrificed and the teeth were prepared for histological evaluation in terms of calcified bridge formation, the degree of inflammation and presence of necrosis. The Fisher's exact test was used for data analysis. The results showed that formation of complete calcified bridge in MTA specimens was significantly more than MTA+CHX ( P MTA and MTA+CHX groups ( P >0.05). Mixing MTA with CHX as pulp capping agent had a significant negative impact on formation of calcified bridge on directly capped dog's teeth.

  19. Comparative Osteogenesis of Radiopaque Dicalcium Silicate Cement and White-Colored Mineral Trioxide Aggregate in a Rabbit Femur Model

    Science.gov (United States)

    Wu, Buor-Chang; Huang, Shu-Ching; Ding, Shinn-Jyh

    2013-01-01

    The radiopaque dicalcium silicate cement (RDSC) displayed a shortened setting time and good biocompatibility. This study aimed to compare the regenerative potential of RDSC and white-colored mineral trioxide aggregate (WMTA) using a rabbit femur model. The animals were sacrificed at one, three and six months to accomplish histological and biochemical analyses. The results indicated that after one month of implantation, WMTA was associated with a greyish color alteration within its mass, while RDSC presented color stability even at six months. Histological assay with Masson’s Trichrome and Von Kossa stains showed the presence of newly formed bone surrounding the implanted sites in the rabbit femur. The histochemical data revealed that the RDSC group had significantly more bone regeneration than did the WMTA groups at three and six months. The conclusion drawn is that the encouraging results support the potential applications of RDSC as an improved alternative to WMTA for endodontic uses. PMID:28788416

  20. Successful Control of Disseminated Intravascular Coagulation by Recombinant Thrombomodulin during Arsenic Trioxide Treatment in Relapsed Patient with Acute Promyelocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Motohiro Shindo

    2012-01-01

    Full Text Available Disseminated intravascular coagulation (DIC frequently occurs in patients with acute promyelocytic leukemia (APL. With the induction of therapy in APL using all-trans retinoic acid (ATRA, DIC can be controlled in most cases as ATRA usually shows immediate improvement of the APL. However, arsenic trioxide (ATO which has been used for the treatment of relapse in APL patients has shown to take time to suppress APL cells, therefore the control of DIC in APL with ATO treatment is a major problem. Recently, the recombinant soluble thrombomodulin fragment has received a lot of attention as the novel drug for the treatment of DIC with high efficacy. Here, we present a relapsed patient with APL in whom DIC was successfully and safely controlled by rTM during treatment with ATO.

  1. Will mineral trioxide aggregate replace calcium hydroxide in treating pulpal and periodontal healing complications subsequent to dental trauma?

    DEFF Research Database (Denmark)

    Bakland, Leif K; Andreasen, Jens O

    2012-01-01

    and pulp necrosis, (iii) root fractures and pulp necrosis located in the coronal part of the pulps, and (iv) external infection-related (inflammatory) root resorption. The main reasons for replacing CH with MTA in these situations have generally been the delayed effect when using CH to induce hard tissues......, the quality of such induced hard tissues, and finally the dentin weakening effect of CH, which in some instances lead to cervical root fractures in immature teeth. MTA appears, from a relatively few clinical studies, to overcome these shortcomings of CH. The lack of long-term clinical studies, however, may......Mineral trioxide aggregate (MTA) has over the last two decades begun to take the place of calcium hydroxide (CH) in the treatment of a variety of pulpal and periodontal healing complications following dental trauma. These conditions include teeth with: (i) exposed pulps, (ii) immature roots...

  2. Histological evaluation of the effect of three medicaments; trichloracetic acid, formocresol and mineral trioxide aggregate on pulpotomised teeth of dogs.

    Science.gov (United States)

    Karami, Babak; Khayat, Akbar; Moazami, Fariborz; Pardis, Soheil; Abbott, Paul

    2009-04-01

    The aim of this study was to use clinical, radiographic and histological examinations to compare the dental pulp response in 162 premolar roots of eight dogs when trichloracetic acid (TCA), formocresol, mineral trioxide aggregate (MTA) and zinc oxide eugenol were used as pulpotomy agents. The teeth were divided into four groups. Following pulpotomy, the teeth were restored with amalgam. The animals were sacrificed at 48 h, 2, 4 and 8 weeks (two dogs at each interval). Histological evaluation indicated no cases with necrosis. After 8 weeks follow up, dentine bridge formation was evident in 20%, 50% and 91.7% of formocresol, TCA and MTA cases respectively. The first signs of bridge formation were seen for MTA at 2 weeks and for TCA at 4 weeks. MTA was superior to formocresol and TCA in treating pulps in dogs. However, bridge formation was seen in 50% of TCA cases after 8 weeks which is a desirable finding in pulpotomy procedures.

  3. Comparison of gray mineral trioxide aggregate and diluted formocresol in pulpotomized primary molars: a 6- to 24-month observation.

    Science.gov (United States)

    Sushynski, John M; Zealand, Cameron M; Botero, Tatiana M; Boynton, James R; Majewski, Robert F; Shelburne, Charles E; Hu, Jan Chingchun

    2012-01-01

    The purpose of this multisite, multioperator, prospective, randomized, controlled clinical trial was to evaluate 2-year outcomes of diluted formocresol (DFC) compared to gray mineral trioxide aggregate (GMTA) as pulpotomy medicaments. Following the standard pulpotomy procedure, the pulp stumps of 252 primary molars in 168 healthy children were randomly covered with GMTA or DFC. Pulp chambers were filled with Intermediate Restorative Material (IRM(®)) and teeth were restored with stainless steel crowns. At each follow-up appointment, the clinical status of the treated tooth was assessed and radiographs were taken. A total of 694 clinical and radiographic evaluations were analyzed. Gender, study site, arch type, and tooth type did not influence treatment outcome. At the combined 6- to 24-month follow-up, clinical success in the DFC group was no different than for the GMTA group. Radiographically, a significantly lower success rate was found in the DFC group vs the MTA group at all time points (Pformocresol as pulpotomy medicaments.

  4. Inhibitive and Synergistic Properties of Ethanolic Extract of ...

    African Journals Online (AJOL)

    It was also noted that only KCl was synergistic to the ethanol extract of Anogeissus leiocarpus, while other halides tested were antagonistic. All the data acquired reveal that the ethanolic extract of Anogeissus leiocarpus act as an inhibitor in the acid environment due to the phytochemicals: saponin, tannins, flavonoid, ...

  5. Synergistic Effect of Trehalose and Saccharose Pretreatment on ...

    African Journals Online (AJOL)

    2). Osmotic fragility is an important factor in the maintenance of RBC integrity and normal functions [23]. Trehalose and saccharose pretreatment synergistically decreased lyophilization-rehydration-induced damage on. RBC osmotic fragility by reducing the osmotic fragility (Fig. 3). PS is only distributed in the internal side of ...

  6. Synergistic therapy of enalapril and Cordyceps sinensis in the ...

    African Journals Online (AJOL)

    Chronic allograft nephropathy (CAN) still remains an important factor that affects the long-term survival of renal recipients. The aim of the study was to investigate synergistic effect of enalapril (an angiotensin converting enzyme inhibitor, ACEI) and Cordyceps sinensis (Bailing capsule, fermented agent of C. sinensis) on ...

  7. Synergistic Effect of Trehalose and Saccharose Pretreatment on ...

    African Journals Online (AJOL)

    Purpose: To investigate the synergistic effect of trehalose and saccharose pretreatment on maintenance of lyophilized human red blood cell (RBC) quality. Methods: RBCs were pre-treated with trehalose and saccharose, and then lyophilized and re-hydrated. Prior to lyophilization and after re hydration, RBC parameters, ...

  8. Synergistic antibacterial effect of stem bark extracts of Faidherbia ...

    African Journals Online (AJOL)

    The study was aimed at screening the stem bark extracts of Faidherbia albida and Psidium guajava for synergistic antibacterial effect against methicillin resistant Staphylococcus aureus (MRSA). The powdered plant materials were extracted with methanol using cold maceration technique and the extracts were screened for ...

  9. Hybrid Nanotechnologies for Detection and Synergistic Therapies for Breast Cancer

    Science.gov (United States)

    2012-10-01

    diagnostic nanosystems for therapeutic and theranostic targeting of breast cancers . 15. SUBJECT TERMS anti-angiogenesis, phage display, tumor homing...Therapies for Breast Cancer PRINCIPAL INVESTIGATOR: Erkki Ruoslahti, M.D., Ph.D...for Detection and Synergistic Therapies for Breast Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-09-1-0698 5c. PROGRAM ELEMENT NUMBER

  10. Antioxidant, antimicrobial and synergistic activities of tea polyphenols

    African Journals Online (AJOL)

    Microbial resistance to antibiotics has become an increasing global problem and there is a need to find out novel potent antimicrobial agents with alternative modes of action as accessories to antibiotic therapy. This study investigated the antioxidant, antimicrobial and synergistic properties of tea polyphenols. The tea ...

  11. Synergistic effects of ethanolic plant extract mixtures against food ...

    African Journals Online (AJOL)

    Synergistic effects were observed when mixtures of ethanolic plant extract against food-borne pathogen bacteria were used, so this may be a better way to design alternative pathogen control methodologies for food-borne pathogen bacteria. Keywords: Larrea tridentate, Flourensia cernua, Opuntia ficus-indica, ethanolic ...

  12. Synergistic Effect of Poultry Manure and Sawdust on Changes in ...

    African Journals Online (AJOL)

    Synergistic Effect of Poultry Manure and Sawdust on Changes in Soil Structural Indices of a Sandy-Clay Loam Ultisol. ... Decreases in bulk density occurred as a result of increase in amendment applied, the trend was 8t>4t>2t for all the amendments. However, only the application of 8t/ha of poultry manure decrease bulk ...

  13. Synergistic effects of squalene and polyunsaturated fatty acid ...

    African Journals Online (AJOL)

    We have studied the synergistic effects of squalene and polyunsaturated fatty acids (PUFA concentrate) on isoprenaline-induced infarction in rats with respect to changes in the levels of plasma diagnostic marker enzymes and myocardial antioxidant defense system. Intraperitoneal injection of isoprenaline caused a ...

  14. Synergistic interaction between two linear inhibitors on a single ...

    African Journals Online (AJOL)

    ). vanadate (Van) and L-phenylalanine (L-phe) were studied using a modification of the common Yonetani-Theorell procedure proposed for studying synergistic inhibition. The modes of inhibition of ALP by Van and L-phe as analysed using the ...

  15. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...

  16. Contrast-induced nephrotoxicity: possible synergistic effect of stress hyperglycemia.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Oxidative stress on the renal tubules has been implicated as a mechanism of injury in both stress hyperglycemia and contrast-induced nephrotoxicity. The purpose of this study was to determine whether the combination of these effects has a synergistic effect on accentuating renal tubular apoptosis and therefore increasing the risk of contrast-induced nephrotoxicity.

  17. Synergistic effect of Murraya koenigii and Telfairia occidentalis ...

    African Journals Online (AJOL)

    Larger zones of inhibition were observed for M. Koenigii extract than T. occidentalis extract, and larger zones of inhibition were observed by their synergy than on their separate use. Synergistic antibacterial activity of the extract ranged from 0 mm to 20.0 ± 0.03 mm, zone of inhibition of M. koenigii extract ranged from 0 mm ...

  18. Tungstate as a synergist to phosphonate-based formulation for ...

    Indian Academy of Sciences (India)

    Administrator

    Tungstate as a synergist to phosphonate based formulation for corrosion control of carbon steel. 641. IEp (%) = 100 [1 – (i′corr/icorr)],. (2) where icorr and i′corr are the corrosion current densi- ties in case of the control and inhibitor solutions respectively. Impedance spectra in the form of Nyquist plots were recorded at ...

  19. Synergistic Activity of Methanolic Extract of Adenium obesum ...

    African Journals Online (AJOL)

    Synergistic Activity of Methanolic Extract of Adenium obesum (Apocynaceae) Stem-Bark and Oxytetracycline against Some Clinical Bacterial Isolates. ... Phytochemical examination of the extract revealed the presence of alkaloids, steroids, saponins, glycosides, anthraquinones, tannins and flavonoids. This result indicated ...

  20. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping

    2010-05-01

    The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).

  1. Arsenic trioxide-based therapy in relapsed/refractory multiple myeloma patients: a meta-analysis and systematic review

    Directory of Open Access Journals (Sweden)

    He XP

    2014-09-01

    Full Text Available Xuepeng He, Kai Yang, Peng Chen, Bing Liu, Yuan Zhang, Fang Wang, Zhi Guo, Xiaodong Liu, Jinxing Lou, Huiren Chen Department of Hematology, General Hospital of Beijing Military Area of PLA, Beijing, People’s Republic of China Abstract: Multiple myeloma (MM is a clonal malignancy characterized by the proliferation of malignant plasma cells in the bone marrow and the production of monoclonal immunoglobulin. Although some newly approved drugs (thalidomide, lenalidomide, and bortezomib demonstrate significant benefit for MM patients with improved survival, all MM patients still relapse. Arsenic trioxide (ATO is the most active single agent in acute promyelocytic leukemia, the antitumor activity of which is partly dependent on the production of reactive oxygen species. Due to its multifaceted effects observed on MM cell lines and primary myeloma cells, Phase I/II trials have been conducted in heavily pretreated patients with relapsed or refractory MM. Therapy regimens varied dramatically as to the dosage of ATO and monotherapy versus combination therapy with other agents available for the treatment of MM. Although ATO-based combination treatment was well tolerated by most patients, most trials found that ATO has limited effects on MM patients. However, since small numbers of patients were randomized to different treatment arms, trials have not been statistically powered to determine the differences in progression-free survival and overall survival among the experimental arms. Therefore, large Phase III studies of ATO-based randomized controlled trials will be needed to establish whether ATO has any potential beneficial effects in the clinical setting. Keywords: multiple myeloma, arsenic trioxide, clinical trial, therapy, meta-analysis

  2. Synergistic effects of irradiation of waste-water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.

    1975-01-01

    Water is an absolute necessity for all forms of animal and plant life. As man's requirements for water increase, the need for better methods of purification also increase. Technology has been slow to develop new methods of water treatment for the direct utilization of waste-water. Many new construction projects are at a standstill because waste-water treatment methods have not been developed to handle adequately the ever-increasing flow of sewage. Theoretical considerations of the use of high-level radiation in the treatment of waste-water have failed to consider the effects of the hydrated electron, and the potential of the possible synergistic effects of combining chlorine, oxygen and irradiation. An extensive testing programme at the University Center for Pollution Research of the Florida Institute of Technology over the past four years has shown that irradiation of waste-water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programmes have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and faecal streptococcus bacteria indicate that the synergistic effects observed for faecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the relationships between the various effects on the bacteria. A definite shielding factor from the turbidity of the waste-water has been shown to exist. Synergistic effects have been shown to offset significantly the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste-water. (author)

  3. Are a healthy diet and physical activity synergistically associated with cognitive functioning in older adults?

    NARCIS (Netherlands)

    Nijholt, W.; Jager-Wittenaar, H.; Visser, M.; Van der Schans, C. P.; Hobbelen, J. S. M.

    Previous research has demonstrated that being both physically active and adhering a healthy diet is associated with improved cognitive functioning; however, it remains unclear whether these factors act synergistically. We investigated the synergistic association of a healthy diet and being

  4. A tumor-targeted activatable phthalocyanine-tetrapeptide-doxorubicin conjugate for synergistic chemo-photodynamic therapy.

    Science.gov (United States)

    Ke, Mei-Rong; Chen, Shao-Fang; Peng, Xiao-Hui; Zheng, Qiao-Feng; Zheng, Bi-Yuan; Yeh, Chih-Kuang; Huang, Jian-Dong

    2017-02-15

    Chemo-photodynamic therapy is a promising strategy for cancer treatments. However, it remains a challenge to develop a chemo-photodynamic therapeutic agent with little side effect, high tumor-targeting, and efficient synergistic effect simultaneously. Herein, we report a zinc(II) phthalocyanine (ZnPc)-doxorubicin (DOX) prodrug linked with a fibroblast activation protein (FAP)-responsive short peptide with the sequence of Thr-Ser-Gly-Pro for chemo-photodynamic therapy. In the conjugate, both photosensitizing activity of ZnPc and cytotoxicity of DOX are inhibited obviously. However, FAP-triggered separation of the photosensitizer and DOX can enhance fluorescence emission, singlet oxygen generation, dark- and photo-cytotoxicity significantly, and lead to a synergistic anticancer efficacy against HepG2 cells. The prodrug can also be specifically and efficiently activated in tumor tissue of mice. Thus, this prodrug shows great potential for clinical application in chemo-photodynamic therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char.

    Science.gov (United States)

    Wei, Juntao; Guo, Qinghua; Gong, Yan; Ding, Lu; Yu, Guangsuo

    2017-06-01

    In this work, effects of gasification temperature (900°C-1100°C) and blended ratio (3:1, 1:1, 1:3) on reactivity of petroleum coke and biomass co-gasification were studied in TGA. Quantification analysis of active AAEM transformation and in situ investigation of morphological structure variations in gasification were conducted respectively using inductively coupled plasma optical emission spectrometer and heating stage microscope to explore synergistic effect on co-gasification reactivity. The results indicated that char gasification reactivity was enhanced with increasing biomass proportion and gasification temperature. Synergistic effect on co-gasification reactivity was presented after complete generation of biomass ash, and gradually weakened with increasing temperature from 1000°C to 1100°C after reaching the most significant value at 1000°C. This phenomenon was well related with the appearance of molten biomass ash rich in glassy state potassium and the weakest inhibition effect on active potassium transformation during co-gasification at the temperature higher than 1000°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Characteristics and synergistic effects of co-pyrolysis of yinning coal and poplar sawdust

    Directory of Open Access Journals (Sweden)

    Zhu Shenghua

    2016-01-01

    Full Text Available Co-process of biomass and coal is perceived as a way to enhance the energy utilization by virtue of the integrated and interactive effects between different types of carbonaceous fuels. The purpose of this study was to investigate the co-pyrolysis characteristics of Yining coal and poplar sawdust, and to determine whether there is any synergistic effect in pyrolytic product yields. The coal was blended with sawdust at a mass fraction of 9:1, 7:3, 5:5, 3:7 and 1:9 respectively. The change of char yields, maximum weight loss rate and the corresponding temperature of different coal/sawdust blends during pyrolysis were compared by thermogravimetric analysis (TG. The total tar yields during separate coal, sawdust as well as their blends pyrolysis were acquired from the low temperature aluminum retort distillation test. By compare the experimental and theoretical value of the char yields from TG and tar yields from carbonization test, it was observed that co-pyrolysis of coal/sawdust blends produced less char and tar than the total amount produced by separate coal and sawdust pyrolysis. The different product distribution suggested that there was synergy effect in gas product yields. The co-pyrolysis of demineralized and devolatilized sawdust with coal indicated that the ash in the sawdust was the main contributor to the synergistic effect.

  7. Evaluation of synergistic anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans.

    Science.gov (United States)

    Canturk, Zerrin

    2018-01-01

    This study aimed to investigate the synergy between anticandidal and apoptotic effects of ferulic acid and caspofungin against Candida albicans and Candida glabrata, with the help of a quantitative checkerboard microdilution assay using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) as a viability dye. Apoptotic effects of caspofungin and ferulic acid concentrations (alone and combined) were analyzed for C. albicans and C. glabrata based on annexin V-propidium iodide binding capacities using flow cytometric analysis. C. albicans showed a synergistic effect, represented by a fractional inhibitory concentration index of 0.5). Early and late apoptotic effects of caspofungin and ferulic acid concentrations (1 μg/mL and 1000 μg/mL) were calculated as 55.7% and 18.3%, respectively, while their necrotic effects were determined as 5.8% and 51.6%, respectively, using flow cytometric analyses. The apoptotic effects of the combination of caspofungin and ferulic acid at concentrations of 1 μg/mL and 1000 μg/mL on C. albicans and C. glabrata were 73.0% and 48.7%, respectively. Ferulic acid also demonstrated a synergistic effect in combination with caspofungin against C. albicans. Another possibility is to combine the existing anticandidal drug with phytochemicals to enhance the efficacy of anticandidal drug. Copyright © 2017. Published by Elsevier B.V.

  8. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO 3 H and UiO-66-NH 2 , were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  9. Synergistic effect between ammonium polyphosphate and expandable graphite on flame-retarded poly(butylene terephthalate)

    Science.gov (United States)

    Zhang, Weizhou; Ren, Jiawei; Wei, Ting; Guo, Weihong

    2018-02-01

    In this paper, the synergistic effect of ammonium polyphosphate (APP) and expandable graphite (EG) on flame-retarded poly(butylene terephthalate) (PBT) was systermically investigated using limiting oxygen index (LOI), UL-94 testing, microscale combustion calorimetry (MCC), thermal-gravimetric analysis (TGA) and scanning electronic microscopy (SEM). PBT composites containing 20 wt% of APP: EG (1:3) combinations exhibits a high LOI value of 29.8 and reaches V-0 rating in UL-94 testing, indicating that the flame retardant property is greatly enhanced compared to the composites solely with APP or EG. SEM images show that the combination of APP and EG could promote the formation of a compact char layer. The compact char layer protects the PBT resin efficiently by preventing penetration of heat flux inside the matrix and retards the decomposition of PBT, consequently improves the thermal stability of PBT materials as revealed by TGA. All of the results demonstrate that APP and EG are high efficiency synergists for improving the flame retardation of PBT materials.

  10. Tribological and antioxidation synergistic effect study of sulfonate-modified nano calcium carbonate.

    Directory of Open Access Journals (Sweden)

    He Zhongyi

    Full Text Available A middle base number sulphonate-modified nano calcium carbonate (SMC with an average size of 35 nm was synthesized, and its tribological and antioxidation synergistic behaviors with ashless antioxidant N-phenyl-α-naphthylamine (T531 in hydrogenated oil (5Cst were evaluated. The results demonstrate that adding this synthesized additive even at a low amount (<2.0 wt.% can evidently improve its load-carrying capacity by 1.5 times and enhance its antiwear performance; in addition, the friction-reducing effect of additive in the high load was better than that in low load. The SMC have a good synergistic antioxidation effect with T531, which verifies the nano calcium carbonate compound was a kind of multifunctional and high-performance additive. The chemical composition of the rubbing surface which formed on the boundary film was analyzed by using scanning electron microscopy (SEM and X-ray photoelectron spectroscopy (XPS. The results indicating that the excellent antiwear and load-carrying performance could be attributed to the forming of boundary lubrication film which composed of calcium carbonate, oxides, ferrites, sulphide and FeSO4, and so on. Its ability to increase oxidation free energy of base oil is the main reason for increasing its antioxidant collaboration property with ashless antioxidant T531.

  11. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins

    Science.gov (United States)

    Klongsiriwet, Chaweewan; Quijada, Jessica; Williams, Andrew R.; Mueller-Harvey, Irene; Williamson, Elizabeth M.; Hoste, Hervé

    2015-01-01

    This study investigated the separate and combined anthelmintic (AH) effects of different phenolic compounds, including condensed tannins and flavonoids, all of which are known to occur in willow leaves, a potentially valuable dry season feed. A range of contrasting model tannins, which span the whole range of willow tannins, were isolated from tilia flowers, goat willow leaves, black currant leaves and red curran