WorldWideScience

Sample records for trioxide synergistically enhances

  1. The antitumor effect of arsenic trioxide on hepatocellular carcinoma is enhanced by andrographolide.

    Science.gov (United States)

    Duan, Xuhua; Li, Tengfei; Han, Xinwei; Ren, Jianzhuang; Chen, Pengfei; Li, Hao; Gong, Shaojun

    2017-10-31

    High concentrations of arsenic trioxide (As 2 O 3 ) are used to treat acute promyelocytic leukemia and solid tumors, with negative side effects to normal cells. Andrographolide is a traditional Chinese medicine that exerts anti-cancer, anti-inflammatory, anti-virus, and anti-diabetic effects. Here, we tested the effects of combined andrographolide with As 2 O 3 against hepatocellular carcinoma (HCC). We found that by increasing apoptosis, andrographolide synergistically enhanced the anti-tumor effects of As2O3 in HepG2 cells in vitro and in vivo . Furthermore, results from our microarray assays and experiments with mouse xenografts showed that EphB4 was downregulated by the combination of As 2 O 3 plus andrographolide. These findings suggest that the combination of andrographolide and As 2 O 3 could yield therapeutic benefits in the treatment of HCC.

  2. Resveratrol and arsenic trioxide act synergistically to kill tumor cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Xiao-Yan Zhao

    Full Text Available BACKGROUND AND AIMS: Arsenic trioxide (As2O3, which used as an effective agent in the treatment of leukaemia and other solid tumors, is largely limited by its toxicity. QT prolongation, torsades de pointes and sudden heart death have been implicated in the cardiotoxicity of As2O3. The present study was designed to explore whether the combination of As2O3 and resveratrol could generate a more powerful anti-cancer effect both in vitro and in vivo. MATERIALS AND METHODS: MTT assay was performed to assess the proliferation of Hela, MCF-7 and NB4 cells. Isobolographic analysis was used to evaluate combination index values from cell viability data. The apoptosis and the cellular reactive oxygen species (ROS level were assessed by fluorescent microscopy and flow cytometry separately in vitro. The effect of As2O3, alone and in combination with resveratrol on Hela tumor growth in an orthotopic nude mouse model was also investigated. The tumor volume and the immunohistochemical analysis of CD31, CD34 and VEGF were determined. RESULTS: Resveratrol dramatically enhanced the anti-cancer effect induced by As2O3 in vitro. In addition, isobolographic analysis further demonstrated that As2O3 and resveratrol generated a synergistic action. More apoptosis and ROS generation were observed in the combination treatment group. Similar synergistic effects were found in nude mice in vivo. The combination of As2O3 and resveratrol dramatically suppressed both tumor growth and angiogenesis in nude mice. CONCLUSIONS: Combining As2O3 with resveratrol would be a novel strategy to treat cancer in clinical practice.

  3. Targeting Hsp90 by 17-AAG in leukemia cells: mechanisms for synergistic and antagonistic drug combinations with arsenic trioxide and Ara-C.

    Science.gov (United States)

    Pelicano, H; Carew, J S; McQueen, T J; Andreeff, M; Plunkett, W; Keating, M J; Huang, P

    2006-04-01

    17-Allylamino-17-demethoxygeldanamycin (17-AAG) is a new anticancer agent currently in clinical trials. The ability of 17-AAG to abrogate the function of heat-shock protein Hsp90 and modulate cellular sensitivity to anticancer agents has prompted recent research to use this compound in drug combination therapy. Here we report that 17-AAG has striking opposite effects on the activity of arsenic trioxide (ATO) and ara-C. Combination of 17-AAG with ATO exhibited a synergistic effect in leukemia cells, whereas coincubation of 17-AAG and ara-C showed antagonistic activity. Mechanistic studies revealed that ATO exerted cytotoxic action by reactive oxygen species generation, and activated Akt survival pathway. 17-AAG abrogated Akt activation and enhanced the activity of ATO. In contrast, treatment of leukemia cells with 17-AAG caused a G1 arrest, a decrease in DNA synthesis and reduced ara-C incorporation into DNA, leading to antagonism. The ability of 17-AAG to enhance the antileukemia activity of ATO was further demonstrated in primary leukemia cells isolated from patients with acute myeloid leukemia and chronic lymphocytic leukemia, including cells from refractory patients. Our data suggest that combination of 17-AAG and ATO may be an effective therapeutic regimen. Caution should be exercised in using 17-AAG together with ara-C, as their combination effects are schedule dependent.

  4. Enhanced suppression of tumor growth by concomitant treatment of human lung cancer cells with suberoylanilide hydroxamic acid and arsenic trioxide

    International Nuclear Information System (INIS)

    Chien, Chia-Wen; Yao, Ju-Hsien; Chang, Shih-Yu; Lee, Pei-Chih; Lee, Te-Chang

    2011-01-01

    The efficacy of arsenic trioxide (ATO) against acute promyelocytic leukemia (APL) and relapsed APL has been well documented. ATO may cause DNA damage by generating reactive oxygen intermediates. Suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, modulates gene and protein expression via histone-dependent or -independent pathways that may result in chromatin decondensation, cell cycle arrest, differentiation, and apoptosis. We investigated whether ATO and SAHA act synergistically to enhance the death of cancer cells. Our current findings showed that combined treatment with ATO and SAHA resulted in enhanced suppression of non-small-cell lung carcinoma in vitro in H1299 cells and in vivo in a xenograft mouse model. Flow cytometric analysis of annexin V+ cells showed that apoptotic cell death was significantly enhanced after combined treatment with ATO and SAHA. At the doses used, ATO did not interfere with cell cycle progression, but SAHA induced p21 expression and led to G1 arrest. A Comet assay demonstrated that ATO, but not SAHA, induced DNA strand breaks in H1299 cells; however, co-treatment with SAHA significantly increased ATO-induced DNA damage. Moreover, SAHA enhanced acetylation of histone H3 and sensitized genomic DNA to DNase I digestion. Our results suggest that SAHA may cause chromatin relaxation and increase cellular susceptibility to ATO-induced DNA damage. Combined administration of SAHA and ATO may be an effective approach to the treatment of lung cancer. -- Highlights: ► ATO and SAHA are therapeutic agents with different action modes. ► Combination of ATO and SAHA synergistically inhibits tumor cell growth. ► SAHA loosens chromatin structure resulting in increased sensitivity to DNase I. ► ATO-induced DNA damage and apoptosis are enhanced by co-treatment with SAHA.

  5. Arsenic trioxide sensitizes glioblastoma to a myc inhibitor.

    Directory of Open Access Journals (Sweden)

    Yayoi Yoshimura

    Full Text Available Glioblastoma multiforme (GBM is associated with high mortality due to infiltrative growth and recurrence. Median survival of the patients is less than 15 months, increasing requirements for new therapies. We found that both arsenic trioxide and 10058F4, an inhibitor of Myc, induced differentiation of cancer stem-like cells (CSC of GBM and that arsenic trioxide drastically enhanced the anti-proliferative effect of 10058F4 but not apoptotic effects. EGFR-driven genetically engineered GBM mouse model showed that this cooperative effect is higher in EGFRvIII-expressing INK4a/Arf-/- neural stem cells (NSCs than in control wild type NSCs. In addition, treatment of GBM CSC xenografts with arsenic trioxide and 10058F4 resulted in significant decrease in tumor growth and increased differentiation with concomitant decrease of proneural and mesenchymal GBM CSCs in vivo. Our study was the first to evaluate arsenic trioxide and 10058F4 interaction in GBM CSC differentiation and to assess new opportunities for arsenic trioxide and 10058F4 combination as a promising approach for future differentiation therapy of GBM.

  6. Synergistic retention strategy of RGD active targeting and radiofrequency-enhanced permeability for intensified RF & chemotherapy synergistic tumor treatment.

    Science.gov (United States)

    Zhang, Kun; Li, Pei; He, Yaping; Bo, Xiaowan; Li, Xiaolong; Li, Dandan; Chen, Hangrong; Xu, Huixiong

    2016-08-01

    Despite gaining increasing attention, chelation of multiple active targeting ligands greatly increase the formation probability of protein corona, disabling active targeting. To overcome it, a synergistic retention strategy of RGD-mediated active targeting and radiofrequency (RF) electromagnetic field-enhanced permeability has been proposed here. It is validated that such a special synergistic retention strategy can promote more poly lactic-co-glycolic acid (PLGA)-based capsules encapsulating camptothecin (CPT) and solid DL-menthol (DLM) to enter and retain in tumor in vitro and in vivo upon exposure to RF irradiation, receiving an above 8 fold enhancement in HeLa retention. Moreover, the PLGA-based capsules can respond RF field to trigger the entrapped DLM to generate solid-liquid-gas (SLG) tri-phase transformation for enhancing RF ablation and CPT release. Therefore, depending on the enhanced RF ablation and released CPT and the validated synergistic retention effect, the inhibitory outcome for tumor growth has gained an over 10-fold improvement, realizing RF ablation & chemotherapy synergistic treatment against HeLa solid tumor, which indicates a significant promise in clinical RF ablation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Using synergistic exogenous phytohormones to enhance somatic ...

    African Journals Online (AJOL)

    Southern Forests: a Journal of Forest Science ... Eucalyptus spp. has been limited to germinated seeds, flowers, lignotubers or zygotic embryos. ... explants could be enhanced through pairing of synergistic exogenous plant growth regulators, ...

  8. Surface composition of carburized tungsten trioxide and its catalytic activity

    International Nuclear Information System (INIS)

    Nakazawa, M.; Okamoto, H.

    1985-01-01

    The surface composition and electronic structure of carburized tungsten trioxide are investigated using x-ray photoelectron spectroscopy (XPS). The relationship between the surface composition and the catalytic activity for methanol electro-oxidation is clarified. The tungsten carbide concentration in the surface layer increases with the carburization time. The formation of tungsten carbide enhances the catalytic activity. On the other hand, the presence of free carbon or tungsten trioxide in the surface layer reduces the activity remarkably. It is also shown that, the higher the electronic density of states near the Fermi level, the higher the catalytic activity

  9. Combination of Bifunctional Alkylating Agent and Arsenic Trioxide Synergistically Suppresses the Growth of Drug-Resistant Tumor Cells

    Directory of Open Access Journals (Sweden)

    Pei-Chih Lee

    2010-05-01

    Full Text Available Drug resistance is a crucial factor in the failure of cancer chemotherapy. In this study, we explored the effect of combining alkylating agents and arsenic trioxide (ATO on the suppression of tumor cells with inherited or acquired resistance to therapeutic agents. Our results showed that combining ATO and a synthetic derivative of 3a-aza-cyclopenta[a]indenes (BO-1012, a bifunctional alkylating agent causing DNA interstrand cross-links, was more effective in killing human cancer cell lines (H460, H1299, and PC3 than combining ATO and melphalan or thiotepa. We further demonstrated that the combination treatment of H460 cells with BO-1012 and ATO resulted in severe G2/M arrest and apoptosis. In a xenograft mouse model, the combination treatment with BO-1012 and ATO synergistically reduced tumor volumes in nude mice inoculated with H460 cells. Similarly, the combination of BO-1012 and ATO effectively reduced the growth of cisplatin-resistant NTUB1/P human bladder carcinoma cells. Furthermore, the repair of BO-1012-induced DNA interstrand cross-links was significantly inhibited by ATO, and consequently, γH2AX was remarkably increased and formed nuclear foci in H460 cells treated with this drug combination. In addition, Rad51 was activated by translocating and forming foci in nuclei on treatment with BO-1012, whereas its activation was significantly suppressed by ATO. We further revealed that ATO might mediate through the suppression of AKT activity to inactivate Rad51. Taken together, the present study reveals that a combination of bifunctional alkylating agents and ATO may be a rational strategy for treating cancers with inherited or acquired drug resistance.

  10. Ammonium and arsenic trioxide are potent facilitators of oligonucleotide function when delivered by gymnosis

    Science.gov (United States)

    Zhang, Xiaowei; Castanotto, Daniela; Liu, Xueli; Shemi, Amotz; Stein, Cy A

    2018-01-01

    Abstract Oligonucleotide (ON) concentrations employed for therapeutic applications vary widely, but in general are high enough to raise significant concerns for off target effects and cellular toxicity. However, lowering ON concentrations reduces the chances of a therapeutic response, since typically relatively small amounts of ON are taken up by targeted cells in tissue culture. It is therefore imperative to identify new strategies to improve the concentration dependence of ON function. In this work, we have identified ammonium ion (NH4+) as a non-toxic potent enhancer of ON activity in the nucleus and cytoplasm following delivery by gymnosis. NH4+ is a metabolite that has been extensively employed as diuretic, expectorant, for the treatment of renal calculi and in a variety of other diseases. Enhancement of function can be found in attached and suspension cells, including in difficult-to-transfect Jurkat T and CEM T cells. We have also demonstrated that NH4+ can synergistically interact with arsenic trioxide (arsenite) to further promote ON function without producing any apparent increased cellular toxicity. These small, inexpensive, widely distributed molecules could be useful not only in laboratory experiments but potentially in therapeutic ON-based combinatorial strategy for clinical applications. PMID:29522198

  11. Mineral trioxide aggregate enhances the odonto/osteogenic capacity of stem cells from inflammatory dental pulps via NF-κB pathway.

    Science.gov (United States)

    Wang, Y; Yan, M; Fan, Z; Ma, L; Yu, Y; Yu, J

    2014-10-01

    This study was designed to investigate the effects of mineral trioxide aggregate (MTA) on the osteo/odontogenic differentiation of inflammatory dental pulp stem cells (iDPSCs). inflammatory DPSCs were isolated from the inflammatory pulps of rat incisors and cocultured with MTA-conditioned medium. MTT assay and flow cytometry were performed to evaluate the proliferation of iDPSCs. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time RT-PCR, and Western blot assay were used to investigate the differentiation capacity as well as the involvement of NF-κB pathway in iDPSCs. Mineral trioxide aggregate-treated iDPSCs demonstrated the higher ALP activity and formed more mineralized nodules than the untreated group. The odonto/osteoblastic markers (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN, and Dspp/DSP, respectively) in MTA-treated iDPSCs were significantly upregulated as compared with untreated iDPSCs. Mechanistically, cytoplastic phos-P65 and nuclear P65 in MTA-treated iDPSCs were significantly increased in a time-dependent manner. Moreover, the inhibition of NF-κB pathway suppressed the MTA-induced odonto/osteoblastic differentiation of iDPSCs, as indicated by decreased ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic genes (Osx, Ocn, and Dspp). Mineral trioxide aggregate enhances the odonto/osteogenic capacity of DPSCs from inflammatory sites via activating the NF-κB pathway. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Arsenic trioxide synergistically enhances radiation response in human cervical cancer cells through ROS-dependent p38 MAPK and JNK signalling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Young-Hee; Park, Seung-Moo; Kim, Min-Jeong [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)] (and others)

    2006-07-01

    Many factors affect susceptibility of tumor cells to ionizing radiation. Among them intrinsic apoptosis sensitivity or resistancy seems to play an important role. The use of chemical modifiers as radiosensitizers in combination with low-dose irradiation may increase the therapeutic efficacy by overcoming a high apoptotic threshold. Several recent studies demonstrated additive effects of As{sub 2}O{sub 3} with conventional chemotherapeutic agents such as cisplatin, adriamycin, and etoposide, but no synergism. Previously, we have shown for the first time that As{sub 2}O{sub 3} sensitize human cervical cancer cells to ionizing radiation. Treatment of As{sub 2}O{sub 3} in combination of ionizing radiation has synergistic effects in decreasing clonogenic survival and in the regression of tumor growth in xenografts. We also have shown that the combination treatment enhanced apoptotic cell death through a reactive oxygen species-dependent pathway in human cervical cancer cells. In this study, we investigated the regulatory mechanism of ROS-mediated mitochondrial apoptotic cell death induced by combination treatment with As{sub 2}O{sub 3} and ionizing radiation in human cervical cancer cells.

  13. Arsenic Trioxide Injection

    Science.gov (United States)

    ... people who have not been helped by other types of chemotherapy or whose condition has improved but then worsened following treatment with other types of chemotherapy. Arsenic trioxide is in a class of medications ...

  14. Effect of precipitation route on the properties of antimony trioxide

    International Nuclear Information System (INIS)

    Abdullah, Abdul Halim; Noor, Nor Hayati Mohd; Ramli, Irmawati; Hashim, Mansor

    2008-01-01

    Antimony trioxide was prepared, using antimony potassium tartarate as starting material, via forward and reverse precipitation technique. The characteristics of the resulting antimony oxides were determined by BET surface area method, differential thermogravimetry analysis (DTG), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and SEM. The DTG curves for all uncalcined samples showed only a single endothermic peak which indicated that the sample is antimony trioxide. Unlike forward precipitation technique which resulted in a single antimony trioxide phase which is senarmontite, reverse precipitation technique produced antimony trioxide with both senarmontite and valentinite phase. Upon calcinations at 723 K, a small amount of Sb 2 O 4 with cervantite phase was formed at the expense of Sb 2 O 3 senarmontite phase as detected from the XRD pattern and infrared spectrum of RSb. The effect of preparation route on the properties of the antimony trioxide produced was clearly demonstrated

  15. Praziquantel synergistically enhances paclitaxel efficacy to inhibit cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Zhen Hua Wu

    Full Text Available The major challenges we are facing in cancer therapy with paclitaxel (PTX are the drug resistance and severe side effects. Massive efforts have been made to overcome these clinical challenges by combining PTX with other drugs. In this study, we reported the first preclinical data that praziquantel (PZQ, an anti-parasite agent, could greatly enhance the anticancer efficacy of PTX in various cancer cell lines, including PTX-resistant cell lines. Based on the combination index value, we demonstrated that PZQ synergistically enhanced PTX-induced cell growth inhibition. The co-treatment of PZQ and PTX also induced significant mitotic arrest and activated the apoptotic cascade. Moreover, PZQ combined with PTX resulted in a more pronounced inhibition of tumor growth compared with either drug alone in a mouse xenograft model. We tried to investigate the possible mechanisms of this synergistic efficacy induced by PZQ and PTX, and we found that the co-treatment of the two drugs could markedly decrease expression of X-linked inhibitor of apoptosis protein (XIAP, an anti-apoptotic protein. Our data further demonstrated that down-regulation of XIAP was required for the synergistic interaction between PZQ and PTX. Together, this study suggested that the combination of PZQ and PTX may represent a novel and effective anticancer strategy for optimizing PTX therapy.

  16. Mineral trioxide aggregate: part 2 - a review of the material aspects.

    Science.gov (United States)

    Malhotra, Neeraj; Agarwal, Antara; Mala, Kundabala

    2013-03-01

    The purpose of this two-part series is to review the composition, properties, and products of mineral trioxide aggregate (MTA) materials. PubMed and MedLine electronic databases were used to identify scientific papers from January 1991 to May 2010. Based on the selected inclusion criteria, citations were referenced from the scientific peer-reviewed dental literature. Mineral trioxide aggregate is a refined form of the parent compound, Portland cement (PC), and demonstrates a strong biocompatibility due to the high pH level and the material's ability to form hydroxyapatite. Mineral trioxide aggregate materials provide better microleakage protection than traditional endodontic materials as observed in findings from dye-leakage, fluid-filtration, protein-leakage, and bacterial penetration-leakage studies and has been recognized as a bioactive material. Various MTA commercial products are available, including gray mineral trioxide aggregate (GMTA), white mineral trioxide aggregate (WMTA), and mineral trioxide aggregate-Angelus (AMTA). Although these materials are indicated for various dental uses and applications, long-term in-vivo clinical studies are needed. Part 1 of this article highlighted and discussed the composition and characteristics of the material. Part 2 provides an overview of commercially available MTA materials.

  17. Enhanced generation of hydroxyl radicals on well-crystallized molybdenum trioxide/nano-graphite anode with sesame cake-like structure for degradation of bio-refractory antibiotic.

    Science.gov (United States)

    Tang, Bo; Du, Jiannan; Feng, Qingmao; Zhang, Jiaqi; Wu, Dan; Jiang, Xiankai; Dai, Ying; Zou, Jinlong

    2018-05-01

    Anodic electro-catalysis oxidation is a highly effective way to solve the pollution problem of antibiotics in wastewater and receiving water bodies. In this study, for the first time, molybdenum trioxide/Nano-graphite (MoO 3 /Nano-G) composites are synthesized as anodic catalysts by a surfactant-assisted solvothermal method followed by low-temperature calcination. The effects of the proportion of MoO 3 to Nano-G (10, 30 and 50%) on the properties of composites are investigated through structural characterizations and electrochemical measurements. Results indicate that MoO 3 (30)/Nano-G electrode displays the electro-catalysis degradation efficiency of 99.9% towards ceftazidime, which is much higher than those of Nano-G (46.7%) and dimensionally stable anode (69.2%). The degradation mechanism for ceftazidime is studied by investigating the yields and kinds of active species. Results show that all of the OH, O 2- and H 2 O 2 are responsible for the electro-catalytic degradation process, and the produced OH radicals are the major active species for ceftazidime degradation. The synergistic effects between MoO 3 and Nano-G greatly contribute to the activation of H 2 O molecules to produce OH, meanwhile the special sesame cake-like structure facilitates to the exposure of contaminants to OH on active sites to enhance the degradation efficiency. These results suggest that MoO 3 /Nano-G electrodes can be considered as the promising catalysts for treating bio-refractory organic wastewater. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Development of an arsenic trioxide vapor and arsine sampling train

    International Nuclear Information System (INIS)

    Crecelius, E.A.; Sanders, R.W.

    1980-01-01

    A sampling train was evaluated using 76 As tracer for the measurement of particulate arsenic, arsine, and arsenic trioxide vapor in air and industrial process gas streams. In this train, a demister was used to remove droplets of water and oil, and particulates were removed by a filter. Vapor arsenic trioxide was collected in an impinger solution, and arsine gas was collected on silvered quartz beads. Hydrogen sulfide gas did not reduce the arsine trapping efficiency of the silvered beads, and charcoal proved to be an effective trap for both arsine and arsenic trioxide vapor. 1 figure, 2 tables

  19. Blockage of JNK pathway enhances arsenic trioxide-induced apoptosis in human keratinocytes

    International Nuclear Information System (INIS)

    Huang, H.-S.; Liu, Z.-M.; Hong, D.-Y.

    2010-01-01

    Arsenic is well known as a carcinogen predisposing humans to some severe diseases and also as an effective medicine for treating acute promyelocytic leukemia, syphilis, and psoriasis. Multiple active mechanisms, including cell cycle arrest and apoptosis, have been proposed in therapy; however, the opposing effects of arsenic remain controversial. Our previous study found that arsenic trioxide (ATO)-induced activation of p21 WAF1/CIP1 (p21) led to A431 cell death through the antagonistic effects of the signaling of ERK1/2 and JNK1. In the current study, the inhibitory effects of JNK1 on ATO-induced p21 expression were explored. Over-expression of JNK1 in A431 cells could inhibit p21 expression, which was associated with HDAC1 and TGIF. Using the GST pull-down assay and fluorescence resonance energy transfer analysis, N-terminal domain (amino acids 1-108) of TGIF, critical to its binding with c-Jun, was found. Using reporter assays, requirement of the C-terminal domain (amino acids 138-272) of TGIF to suppress ATO-induced p21 expression was observed. Thus, the domains of TGIF that carried out its inhibitory effects on p21 were identified. Finally, treatment with JNK inhibitor SP600125 could enhance ATO-induced apoptosis of HaCaT keratinocytes by using flow cytometry.

  20. Paclitaxel and the dietary flavonoid fisetin: a synergistic combination that induces mitotic catastrophe and autophagic cell death in A549 non-small cell lung cancer cells.

    Science.gov (United States)

    Klimaszewska-Wisniewska, Anna; Halas-Wisniewska, Marta; Tadrowski, Tadeusz; Gagat, Maciej; Grzanka, Dariusz; Grzanka, Alina

    2016-01-01

    The use of the dietary polyphenols as chemosensitizing agents to enhance the efficacy of conventional cytostatic drugs has recently gained the attention of scientists and clinicians as a plausible approach for overcoming the limitations of chemotherapy (e.g. drug resistance and cytotoxicity). The aim of this study was to investigate whether a naturally occurring diet-based flavonoid, fisetin, at physiologically attainable concentrations, could act synergistically with clinically achievable doses of paclitaxel to produce growth inhibitory and/or pro-death effects on A549 non-small cell lung cancer cells, and if it does, what mechanisms might be involved. The drug-drug interactions were analyzed based on the combination index method of Chou and Talalay and the data from MTT assays. To provide some insights into the mechanism underlying the synergistic action of fisetin and paclitaxel, selected morphological, biochemical and molecular parameters were examined, including the morphology of cell nuclei and mitotic spindles, the pattern of LC3-II immunostaining, the formation of autophagic vacuoles at the electron and fluorescence microscopic level, the disruption of cell membrane asymmetry/integrity, cell cycle progression and the expression level of LC3-II, Bax, Bcl-2 and caspase-3 mRNA. Here, we reported the first experimental evidence for the existence of synergism between fisetin and paclitaxel in the in vitro model of non-small cell lung cancer. This synergism was, at least partially, ascribed to the induction of mitotic catastrophe. The switch from the cytoprotective autophagy to the autophagic cell death was also implicated in the mechanism of the synergistic action of fisetin and paclitaxel in the A549 cells. In addition, we revealed that the synergism between fisetin and paclitaxel was cell line-specific as well as that fisetin synergizes with arsenic trioxide, but not with mitoxantrone and methotrexate in the A549 cells. Our results provide rationale for

  1. Synergistic Enhancement of Cancer Therapy Using a Combination of Ceramide and Docetaxel

    Directory of Open Access Journals (Sweden)

    Li-Xia Feng

    2014-03-01

    Full Text Available Ceramide (CE-based combination therapy (CE combination as a novel therapeutic strategy has attracted great attention in the field of anti-cancer therapy. The principal purposes of this study were to investigate the synergistic effect of CE in combination with docetaxel (DTX (CE + DTX and to explore the synergy mechanisms of CE + DTX. The 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT and combination index (CI assay showed that simultaneous administration of CE and DTX with a molar ratio of 0.5:1 could generate the optimal synergistic effect on murine malignant melanoma cell (B16, CI = 0.31 and human breast carcinoma cell (MCF-7, CI = 0.48. The apoptosis, cell cycle, and cytoskeleton destruction study demonstrated that CE could target and destruct the microfilament actin, subsequently activate Caspase-3 and induce apoptosis. Meanwhile, DTX could target and disrupt the microtubules cytoskeleton, leading to a high proportion of cancer cells in G2/M-phase arrest. Moreover, CE plus DTX could cause a synergistic destruction of cytoskeleton, which resulted in a significantly higher apoptosis and a significantly higher arrest in G2/M arrest comparing with either agent alone (p < 0.01. The in vivo antitumor study evaluated in B16 tumor-bearing mice also validated the synergistic effects. All these results suggested that CE could enhance the antitumor activity of DTX in a synergistic manner, which suggest promising application prospects of CE + DTX combination treatment.

  2. THE SYNERGISTIC EFFECT OF HYBRID FLAME RETARDANTS ON PYROLYSIS BEHAVIOUR OF HYBRID COMPOSITE MATERIALS

    Directory of Open Access Journals (Sweden)

    M. T. ALBDIRY

    2012-06-01

    Full Text Available The aim of this investigation is to comprehensively understand the polymeric composite behavior under direct fire sources. The synergistic effects of hybrid flame retardant material on inhabiting the pyrolysis of hybrid reinforced fibers, woven roving (0°- 45° carbon and kevlar (50/50 wt/wt, and an araldite resin composites were studied. The composites were synthesised and coated primarily by zinc borate (2ZnO.3B2O3.3.5H2O and modified by antimony trioxide (Sb2O3 with different amounts (10-30 wt% of flame retardant materials. In the experiments, the composite samples were exposed to a direct flame source generated by oxyacetylene flame (~3000ºC at variable exposure distances of 10-20 mm. The synergic flame retardants role of antimony trioxide and zinc borate on the composite surface noticeably improves the flame resistance of the composite which is attributed to forming a protective mass and heat barrier on the composite surface and increasing the melt viscosity.

  3. On the effect of interaction of molybdenum trioxide and magnesium oxide in water

    International Nuclear Information System (INIS)

    Bunin, V.M.; Karelin, A.I.; Solov'eva, L.N.

    1992-01-01

    Interaction of molybdenum trioxide and magnesium oxide in water was studied. It is shown that molybdenum trioxide forms consecutively magnesium molybdate, dimolybdate and magnesium polymolybdates with magnesium oxide

  4. ETME, a novel β-elemene derivative, synergizes with arsenic trioxide in inducing apoptosis and cell cycle arrest in hepatocarcinoma cells via a p53-dependent pathway

    Directory of Open Access Journals (Sweden)

    Zhiying Yu

    2014-12-01

    Full Text Available Arsenic trioxide (ATO has been identified as an effective treatment for acute promyelocytic leukemia (APL but is much less effective against solid tumors such as hepatocellular carcinoma (HCC. In the search for ways to enhance its therapeutic efficacy against solid tumors, we have examined its use in combination with a novel derivative of β-elemene, N-(β-elemene-13-yltryptophan methyl ester (ETME. Here we report the effects of the combination on cell viability, apoptosis, the cell cycle and mitochondria membrane potential (MMP in HCC SMMC-7721 cells. We found that the two compounds acted synergistically to enhance antiproliferative activity and apoptosis. The combination also decreased the MMP, down-regulated Bcl-2 and pro-proteins of the caspase family, and up-regulated Bax and BID, all of which were reversed by the p53 inhibitor, pifithrin-α. In addition, the combination induced cell cycle arrest at the G2/M phase and reduced tumor volume and weight in an xenograft model of nude mice. Overall, the results suggest that ETME in combination with ATO may be useful in the treatment of HCC patients particularly those unresponsive to ATO alone.

  5. Programming voltage reduction in phase change memory cells with tungsten trioxide bottom heating layer/electrode

    International Nuclear Information System (INIS)

    Rao Feng; Song Zhitang; Gong Yuefeng; Wu Liangcai; Feng Songlin; Chen, Bomy

    2008-01-01

    A phase change memory cell with tungsten trioxide bottom heating layer/electrode is investigated. The crystalline tungsten trioxide heating layer promotes the temperature rise in the Ge 2 Sb 2 Te 5 layer which causes the reduction in the reset voltage compared to a conventional phase change memory cell. Theoretical thermal simulation and calculation for the reset process are applied to understand the thermal effect of the tungsten trioxide heating layer/electrode. The improvement in thermal efficiency of the PCM cell mainly originates from the low thermal conductivity of the crystalline tungsten trioxide material.

  6. Synergistic Enhancement of Microwave Absorption Using Hybridized Polyaniline@helical CNTs with Dual Chirality.

    Science.gov (United States)

    Tian, Xin; Meng, Fanbin; Meng, Fanchen; Chen, Xiangnan; Guo, Yifan; Wang, Ying; Zhu, Wenjun; Zhou, Zuowan

    2017-05-10

    In this study, we designed a dual-chirality hierarchical structure to achieve a synergistically enhanced effect in microwave absorption via the hybridization of nanomaterials. Herein, polyaniline (PANi) nanorods with tunable chirality are grown on helical carbon nanotubes (HCNTs), a typical nanoscale chiral structure, through in situ polymerization. The experimental results show that the hierarchical hybrids (PANi@HCNTs) exhibit distinctly dual chirality and a significant enhancement in electromagnetic (EM) losses compared to those of either pure PANi or HCNTs. The maximum reflection loss of the as-prepared hybrids can reach -32.5 dB at 8.9 GHz. Further analysis demonstrates that combinations of chiral acid-doped PANi and coiled HCNTs with molecular and nanoscale chirality lead to synergistic effects resulting from the dual chirality. The so-called cross-polarization may result in additional interactions with induced EM waves in addition to multiscaled relaxations from functional groups and interfacial polarizations, which can benefit EM absorption.

  7. The potential DNA toxic changes among workers exposed to antimony trioxide.

    Science.gov (United States)

    El Shanawany, Safaa; Foda, Nermine; Hashad, Doaa I; Salama, Naglaa; Sobh, Zahraa

    2017-05-01

    Occupational exposure to antimony has gained much interest when specific toxic effects were noticed among workers processing antimony. Thus, the aim of the present work was to investigate the potential DNA oxidative damage occurring among Egyptian workers occupationally exposed to antimony trioxide. The study was conducted on 25 subjects exposed to antimony trioxide while working in the polymerization process of polyester in Misrayon and Polyester Fiber Company, KafrEldawwar, Beheira, Egypt. Urinary antimony levels were assessed using inductive coupled plasma-optical emission spectrometry (ICP-OES) and considered as a biological exposure index. DNA damage and total oxidant capacity (TOC) were assessed using ELISA. DNA damage was detected in the form of increased apurinic/apyrimidinic (AP) sites among antimony trioxide-exposed workers compared to control subjects, but it could not be explained by oxidative mechanisms due to lack of significant correlation between DNA damage and measured TOC. Antimony trioxide might have a genotoxic impact on occupationally exposed workers which could not be attributed to oxidative stress in the studied cases.

  8. Synergistic enhancement in the co-gelation of salt-soluble pea proteins and whey proteins.

    Science.gov (United States)

    Wong, Douglas; Vasanthan, Thava; Ozimek, Lech

    2013-12-15

    This paper investigated the enhancement of thermal gelation properties when salt-soluble pea proteins were co-gelated with whey proteins in NaCl solutions, using different blend ratios, total protein concentrations, pH, and salt concentrations. Results showed that the thermal co-gelation of pea/whey proteins blended in ratio of 2:8 in NaCl solutions showed synergistic enhancement in storage modulus, gel hardness, paste viscosity and minimum gelation concentrations. The highest synergistic enhancement was observed at pH 6.0 as compared with pH 4.0 and 8.0, and at the lower total protein concentration of 10% as compared with 16% and 22% (w/v), as well as in lower NaCl concentrations of 0.5% and 1.0% as compared with 1.5%, 2.0%, 2.5%, and 3.0% (w/v). The least gelation concentrations were also lower in the different pea/whey protein blend ratios than in pure pea or whey proteins, when dissolved in 1.0% or 2.5% (w/v) NaCl aqueous solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Mineral Trioxide Aggregate and Portland Cement for Direct Pulp Capping in Dog: A Histopathological Evaluation

    Directory of Open Access Journals (Sweden)

    Maryam Bidar

    2014-09-01

    Full Text Available Background and aims. Mineral trioxide aggregate and calcium hydroxide are considered the gold standard pulp-capping materials. Recently, Portland cement has been introduced with properties similar to those of mineral trioxide aggregate. His-topathological effects of direct pulp capping using mineral trioxide aggregate and Portland cements on dog dental pulp tis-sue were evaluated in the present study. Materials and methods. This histopatological study was carried out on 64 dog premolars. First, the pulp was exposedwith a sterile bur. Then, the exposed pulp was capped with white or gray mineral trioxide aggregates and white or gray Port-land cements in each quadrant and sealed with glass-ionomer. The specimens were evaluated under a light microscope after 6 months. Statistical analysis was carried out using Kruskal-Wallis test. Statistical significance was defined at α=5%. Results. There was no acute inflammation in any of the specimens. Chronic inflammation in white and gray mineral triox-ide aggregates and white and gray Portland cements was reported to be 45.5%, 27.3%, 57.1% and 34.1%, respectively. Al-though the differences were not statistically significant, severe inflammation was observed mostly adjacent to white mineral trioxide aggregate. The largest extent of increased vascularization (45% and the least increase in fibrous tissue were ob-served adjacent to white mineral trioxide aggregate, with no significant differences. In addition, the least calcified tissue formed adjacent to white mineral trioxide aggregate, although the difference was not significant. Conclusion. The materials used in this study were equally effective as pulp protection materials following direct pulp cap-ping in dog teeth.

  10. Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites.

    Science.gov (United States)

    El Miri, Nassima; El Achaby, Mounir; Fihri, Aziz; Larzek, Mohamed; Zahouily, Mohamed; Abdelouahdi, Karima; Barakat, Abdellatif; Solhy, Abderrahim

    2016-02-10

    Novel functional hybrid nanofillers composed of cellulose nanocrystals (CNC) and graphene oxide nanosheets (GON), at different weight ratios (2:1, 1:1 and 1:2), were successfully prepared and characterized, and their synergistic effect in enhancing the properties of poly(vinyl alcohol) (PVA) nanocomposites was investigated. Due to the synergistic reinforcement, it was found that the Young's modulus, tensile strength and toughness of the PVA nanocomposite containing 5 wt% hybrid nanofiller (1:2) were significantly improved by 320%, 124% and 159%, respectively; and the elongation at break basically remained compared to the neat PVA matrix. In addition, the glass and melting temperatures as well as the moisture sorption of nanocomposites were also enhanced. This synergistic effect improved the dispersion homogeneity by avoiding the agglomeration phenomenon of nanofillers within the polymer matrix, resulting in nanocomposites with largely enhanced properties compared to those prepared from single nanofiller (CNC or GON). The preparation of these hybrid nanofillers and their incorporation into a polymer provided a novel method for the development of novel multifunctional nanocomposites based on the combination of existing nanomaterials. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Study of arsenic trioxide-induced vascular shutdown and enhancement with radiation in solid tumor

    International Nuclear Information System (INIS)

    Monzen, Hajime; Griffin, R.J.; Williams, B.W.; Amamo, Morikazu; Ando, Satoshi; Hasegawa, Takeo

    2004-01-01

    Arsenic trioxide (ATO) has been reported to be an effective chemotherapeutic agent for acute promyelocytic leukemia (APL), and, recently, anti-tumor effect has been demonstrated in solid tumors. However, little is known about the mechanism of action of the ATO effect on solid tumor. We investigated the anti-vascular effect of ATO and the potential of combining ATO with radiation therapy. We studied the anti-vascular effect of ATO and radiosensitization of squamous cell carcinoma (SCC) VII murine tumors of C3H mice. The anti-vascular effect was examined using magnetic resonance imaging (MRI), and radiosensitivity was studied by clonogenic assay and tumor growth delay. Histopathological changes of the tumors after various treatments were also observed with hematoxylin and eosin (H and E) staining. Necrosis and blood flow changes in the central region of tumors in the hind limbs of the animals were observed on T2-weighted imaging after an intraperitoneal (i.p.) injection of 8 mg/kg of ATO alone. ATO exposure followed by radiation decreased the clonogenic survival of SCC VII cells compared with either treatment alone. Tumor growth delay after 10-20 Gy of radiation alone was increased slightly compared with control tumors, but the combination of ATO injection 2 hours before exposure to 20 Gy of radiation significantly prolonged tumor growth delay by almost 20 days. The results suggest that ATO and radiation can enhance the radiosensitivity of solid tumor. (author)

  12. Synergistic enhancement of cellulase pairs linked by consensus ankyrin repeats: Determination of the roles of spacing, orientation, and enzyme identity.

    Science.gov (United States)

    Cunha, Eva S; Hatem, Christine L; Barrick, Doug

    2016-08-01

    Biomass deconstruction to small simple sugars is a potential approach to biofuels production; however, the highly recalcitrant nature of biomass limits the economic viability of this approach. Thus, research on efficient biomass degradation is necessary to achieve large-scale production of biofuels. Enhancement of cellulolytic activity by increasing synergism between cellulase enzymes holds promise in achieving high-yield biofuels production. Here we have inserted cellulase pairs from extremophiles into hyperstable α-helical consensus ankyrin repeat domain scaffolds. Such chimeric constructs allowed us to optimize arrays of enzyme pairs against a variety of cellulolytic substrates. We found that endocellulolytic domains CelA (CA) and Cel12A (C12A) act synergistically in the context of ankyrin repeats, with both three and four repeat spacing. The extent of synergy differs for different substrates. Also, having C12A N-terminal to CA provides greater synergy than the reverse construct, especially against filter paper. In contrast, we do not see synergy for these enzymes in tandem with CelK (CK) catalytic domain, a larger exocellulase, demonstrating the importance of enzyme identity in synergistic enhancement. Furthermore, we found endocellulases CelD and CA with three repeat spacing to act synergistically against filter paper. Importantly, connecting CA and C12A with a disordered linker of similar contour length shows no synergistic enhancement, indicating that synergism results from connecting these domains with folded ankyrin repeats. These results show that ankyrin arrays can be used to vary spacing and orientation between enzymes, helping to design and optimize artificial cellulosomes, providing a novel architecture for synergistic enhancement of enzymatic cellulose degradation. Proteins 2016; 84:1043-1054. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Synergistic Enhancement of Enzyme Performance and Resilience via Orthogonal Peptide-Protein Chemistry Enabled Multilayer Construction.

    Science.gov (United States)

    Zhang, Xue-Jian; Wang, Xiao-Wei; Sun, Jiaxing; Su, Chao; Yang, Shuguang; Zhang, Wen-Bin

    2018-05-16

    Protein immobilization is critical to utilize their unique functions in diverse applications. Herein, we report that orthogonal peptide-protein chemistry enabled multilayer construction can facilitate the incorporation of various folded structural domains, including calmodulin in different states, affibody and dihydrofolate reductase (DHFR). An extended conformation is found to be the most advantageous for steady film growth. The resulting protein thin films exhibit sensitive and selective responsive behaviors to bio-signals (Ca2+, TFP, NADPH, etc.) and fully maintain the catalytic activity of DHFR. The approach is applicable to different substrates such as hydrophobic gold and hydrophilic silica microparticles. The DHFR enzyme can be immobilized onto silica microparticles with tunable amounts. The multi-layer set-up exhibits a synergistic enhancement of DHFR activity with increasing number of bilayers and also makes the embedded DHFR more resilient to lyophilization. Therefore, this is a convenient and versatile method for protein immobilization with potential benefits of synergistic enhancement in enzyme performance and resilience.

  14. Polaron interaction energies in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Salje, E.; Tilley, R.J.D.

    1981-01-01

    Consideration of the properties of reduced tungsten trioxide suggest that the mobile charge carriers are polarons. As it is uncertain how the presence of polarons will influence the microstructures of the crystallographic shear (CS) planes present in reduced tungsten trioxide we have calculated both the polaron-CS plane and polaron-polaron interaction energy for a variety of circumstances. Three CS plane geometries were considered, (102), (103), and (001) CS plane arrays, and the nominal compositions of the crystals ranged from WO 2 70 to WO 3 0 . The polarons were assumed to have radii from 0.6 to 1.0 nm and the polaron-CS plane electrostatic interaction was assumed to be screened. The results suggest that for the most part the total interaction energy is small and is unlikely to be of major importance in controlling the microstructures found in CS planes. However, at very high polaron densities the interaction energy could be appreciable and may have some influence on the existence range of CS phases

  15. Enhancement of the antimicrobial properties of orthorhombic molybdenum trioxide by thermal induced fracturing of the hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Shafaei, Shahram; Van Opdenbosch, Daniel [Technische Universität München (TUM), Chair for Biogenic Polymers, Schulgasse 16, D-94315 Straubing (Germany); Fey, Tobias [Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of Materials Science and Engineering 3: Glass and Ceramics, Martensstraße 5, D-91058 Erlangen (Germany); Koch, Marcus; Kraus, Tobias [INM, Leibniz Institute for New Materials, Campus D2 2, D-66123 Saarbrücken (Germany); Guggenbichler, Josef Peter [AMiSTec GmbH & Co. KG, Leitweg 23, A-6345 Kössen (Austria); Zollfrank, Cordt, E-mail: cordt.zollfrank@tum.de [Technische Universität München (TUM), Chair for Biogenic Polymers, Schulgasse 16, D-94315 Straubing (Germany)

    2016-01-01

    The oxides of the transition metal molybdenum exhibit excellent antimicrobial properties. We present the preparation of molybdenum trioxide dihydrate (MoO{sub 3} × 2H{sub 2}O) by an acidification method and demonstrate the thermal phase development and morphological evolution during and after calcination from 25 °C to 600 °C. The thermal dehydration of the material was found to proceed in two steps. Microbiological roll-on tests using Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were performed and exceptional antimicrobial activities were determined for anhydrous samples with orthorhombic lattice symmetry and a large specific surface area. The increase in the specific surface area is due to crack formation and to the loss of the hydrate water after calcination at 300 °C. The results support the proposed antimicrobial mechanism for transition metal oxides, which based on a local acidity increase as a consequence of the augmented specific surface area. - Highlights: • Molybdenum trioxide dihydrate (MoO{sub 3} × 2H{sub 2}O) and anhydrous MoO{sub 3} after calcination exhibit exceptional antimicrobial activities • Especially the orthorhombic samples with a large specific surface area show excellent antimicrobial properties. • The increased specific surface area is due to crack formation and to loss of hydrate water after calcination at 300 °C. • Increased a local acidity as a consequence of the augmented surface area is related to the antimicrobial characteristics.

  16. Expression of cyclin A in A549 cell line after treatment with arsenic trioxide

    Directory of Open Access Journals (Sweden)

    Agnieszka Żuryń

    2015-12-01

    Full Text Available Background: Arsenic trioxide (ATO is an effective drug used in acute promyelocytic leukemia (AML. Many reports suggest that ATO can also be applied as an anticancer agent for solid tumors in the future. The influence of arsenic trioxide on the expression of different cell cycle regulators is poorly recognized. The purpose of the current study is to investigate how arsenic trioxide affects cyclin A expression and localization in the A549 cell line.Materials and methods: Morphological and ultrastructural changes in A549 cells were observed using light and transmission electron microscopes. Cyclin A localization was determined by immunofluorescence. Image-based cytometry was applied to evaluate the effect of arsenic trioxide on apoptosis and the cell cycle. Expression of cyclin A mRNA was quantified by real-time PCR.Results: After treatment with arsenic trioxide, increased numbers of cells with cytoplasmic localization of cyclin A were observed. The doses of 10 and 15 μM ATO slightly reduced expression of cyclin A mRNA. The apoptotic phenotype of cells was poorly represented, and the Tali imagebased cytometry analysis showed low percentages of apoptotic cells. The A549 population displayed an enriched fraction of cells in G0/G1 phase in the presence of 5μM ATO, whereas starting from the higher concentrations of the drug, i.e. 10 and 15 μM ATO, the G2/M fraction was on the increase.Discussion: Low expression of cyclin A in the A549 cell line may constitute a potential factor determining arsenic trioxide resistance. It could be hypothesized that the observed alterations in cyclin A expression/distribution may correlate well with changes in cell cycle regulation in our model, which in turn determines the outcome of the treatment.

  17. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Choe, Tae-Boo [Department of Microbiological Engineering, Kon-Kuk University, Gwangjin-gu, Seoul (Korea, Republic of); Hong, Seok-Il [Department of Laboratory Medicine, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Yi, Jae-Youn [Laboratory of Modulation of Radiobiological Responses, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of); Lee, Hyun-Gyu [Department of Microbiology and Immunology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Lee, Yun-Han, E-mail: yhlee87@yuhs.ac [Department of Radiation Oncology, College of Medicine, Yonsei University, 250 Seongsan-no, Seodaemun-gu, Seoul (Korea, Republic of); Park, In-Chul, E-mail: parkic@kcch.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, 215-4 Gongneung-dong, Nowon-gu, Seoul (Korea, Republic of)

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  18. Ambient pressure hydrometallurgical conversion of arsenic trioxide to crystalline scorodite

    Energy Technology Data Exchange (ETDEWEB)

    Debekaussen, R. [Corus Consulting and Technical Services, Delft (Netherlands); Droppert, D. [Solumet Inc., Montreal, PQ (Canada); Demopoulos, G. P. [McGill Univ., Dept. of Metallurgical Enginering, Montreal, PQ (Canada)

    2001-06-01

    Development of a novel process for the ambient pressure conversion of arsenic trioxide, a common, but extremely toxic by-product of the non-ferrous smelting industry, is described. The process consists of three main stages; (1) dissolution of arsenic trioxide, (2) oxidation of trivalent arsenic with the addition of hydrogen peroxide at 95 degree C, to pentavalent arsenic, and (3) step-wise precipitation of crystalline scorodite from highly concentrated arsenic containing solutions, by operating below a characteristics induction pH in the presence of seed material. The technical feasibility of the process has been confirmed by bench-scale testing of industrial flue dust material or acid plant effluents. 30 refs., 2 tabs., 5 figs.

  19. Antimony trioxide-induced apoptosis is dependent on SEK1/JNK signaling.

    Science.gov (United States)

    Mann, Koren K; Davison, Kelly; Colombo, Myrian; Colosimo, April L; Diaz, Zuanel; Padovani, Alessandra M S; Guo, Qi; Scrivens, P James; Gao, Wenli; Mader, Sylvie; Miller, Wilson H

    2006-01-05

    Very little is known concerning the toxicity of antimony, despite its commercial use as a flame retardant and medical use as a treatment for parasitic infections. Our previous studies show that antimony trioxide (Sb(2)O(3)) induces growth inhibition in patient-derived acute promyelocytic leukemia (APL) cell lines, a disease in which a related metal, arsenic trioxide (As(2)O(3)), is used clinically. However, signaling pathways initiated by Sb(2)O(3) treatment remain undefined. Here, we show that Sb(2)O(3) treatment of APL cells is associated with increased apoptosis as well as differentiation markers. Sb(2)O(3)-induced reactive oxygen species (ROS) correlated with increased apoptosis. In addition, when we decreased the buffering capacity of the cell by depleting glutathione, ROS production and apoptosis was enhanced. Arsenic-resistant APL cells with increased glutathione levels exhibited increased cross-resistance to Sb(2)O(3). Based on studies implicating c-jun kinase (JNK) in the mediation of the response to As(2)O(3), we investigated the role for JNK in Sb(2)O(3)-induced apoptosis. Sb(2)O(3) activates JNK and its downstream target, AP-1. In fibroblasts with a genetic deletion in SEK1, an upstream regulator of JNK, Sb(2)O(3)-induced growth inhibition as well as JNK activation was decreased. These data suggest roles for ROS and the SEK1/JNK pathway in the cytotoxicity associated with Sb(2)O(3) exposure.

  20. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    International Nuclear Information System (INIS)

    Mao, Jiamin; Yang, Jianbing; Zhang, Yan; Li, Ting; Wang, Cheng; Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang; Nie, Xiaoke; Chen, Gang

    2016-01-01

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  1. Arsenic trioxide mediates HAPI microglia inflammatory response and subsequent neuron apoptosis through p38/JNK MAPK/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Jiamin [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Yang, Jianbing [Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001 (China); Zhang, Yan [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Li, Ting [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Wang, Cheng [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Xu, Lingfei; Hu, Qiaoyun; Wang, Xiaoke; Jiang, Shengyang [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Nie, Xiaoke [Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China); Chen, Gang, E-mail: chengang@ntu.edu.cn [Department of Environmental Health, School of Public Health, Nantong University, Nantong, Jiangsu 226001 (China)

    2016-07-15

    Arsenic is a widely distributed toxic metalloid all over the world. Inorganic arsenic species are supposed to affect astrocytic functions and to cause neuron apoptosis in CNS. Microglias are the key cell type involved in innate immune responses in CNS, and microglia activation has been linked to inflammation and neurotoxicity. In this study, using ELISA, we showed that Arsenic trioxide up-regulated the expression and secretion of IL-1β in a dose-dependent manner and a time-dependent manner in cultured HAPI microglia cells. The secretion of IL-1β caused the apoptosis of SH-SY5Y. These pro-inflammatory responses were inhibited by the STAT3 blocker, AG490 and P38/JNK MAPK blockers SB202190, SP600125. Further, Arsenic trioxide exposure could induce phosphorylation and activation of STAT3, and the translocation of STAT3 from the cytosol to the nucleus in this HAPI microglia cell line. Thus, the STAT3 signaling pathway can be activated after Arsenic trioxide treatment. However, P38/JNK MAPK blockers SB202190, SP600125 also obviously attenuated STAT3 activation and transnuclear transport induced by Arsenic trioxide. In concert with these results, we highlighted that the secretion of IL-1β and STAT3 activation induced by Arsenic trioxide can be mediated by elevation of P38/JNK MAPK in HAPI microglia cells and then induced the toxicity of neurons. - Highlights: • Arsenic trioxide exposure induced expression of IL-β in HAPI microglia. • Arsenic trioxide exposure induced activation of MAPK pathways in HAPI microglia. • Arsenic trioxide exposure induced activation of STAT3 pathways in HAPI microglia. • The expression of IL-β though P38/JNK MAPK/STAT3 pathways in HAPI microglia.

  2. Clinical Assessment of Mineral Trioxide Aggregate in the Treatment ...

    African Journals Online (AJOL)

    2017-05-22

    May 22, 2017 ... (OH)2 (n = 49) or MTA (n = 51) and restored with composite resin in 73 patients. Periapical ... Clinical Assessment of Mineral Trioxide Aggregate in the Treatment of .... materials, light-cured glass ionomer cement base (Riva.

  3. Relapsed acute promyelocytic leukemia in a hemodialysis-dependent patient treated with arsenic trioxide: a case report

    Directory of Open Access Journals (Sweden)

    Emmons Gregory S

    2012-10-01

    Full Text Available Abstract Introduction In the relapsed setting, arsenic trioxide remains the backbone of treatment. Scant literature exists regarding treatment of relapsed acute promyelocytic leukemia in patients with renal failure. To the best of our knowledge we are the first to report a safe and effective means of treatment for relapsed acute promyelocytic leukemia in the setting of advanced renal failure, employing titration of arsenic trioxide based on clinical parameters rather than arsenic trioxide levels. Case presentation A 33-year-old Caucasian man with a history of acute promyelocytic leukemia in remission for 3 years, as well as dialysis-dependent chronic renal failure secondary to a solitary kidney and focal segmental glomerulosclerosis and human immunodeficiency virus infection, receiving highly active antiretroviral therapy presented to our hospital with bone marrow biopsy-confirmed relapsed acute promyelocytic leukemia. Arsenic trioxide was begun at a low dose with dose escalation based only on side effect profile monitoring and not laboratory testing for induction as well as maintenance without undue toxicity. Our patient achieved and remains in complete hematologic and molecular remission as of this writing. Conclusion Arsenic trioxide can be used safely and effectively to treat acute promyelocytic leukemia in patients with advanced renal failure using careful monitoring of side effects rather than blood levels of arsenic to guide therapeutic dosing.

  4. Retreatability of Root Canals Obturated using Mineral Trioxide ...

    African Journals Online (AJOL)

    2018-04-04

    Apr 4, 2018 ... 2018 Nigerian Journal of Clinical Practice | Published by Wolters Kluwer ‑ Medknow. Background: ... remaining RCFM was evaluated using digital camera. The images ... trioxide aggregate-based and two resin-based sealers. Niger J Clin ... glass ionomer cement and the specimens were stored at. 37°C in ...

  5. Synergistic enhancement of chemokine generation and lung injury by C5a or the membrane attack complex of complement

    DEFF Research Database (Denmark)

    Czermak, B J; Lentsch, A B; Bless, N M

    1999-01-01

    demonstrated synergistic production of C-X-C (macrophage inflammatory protein-2 and cytokine-induced neutrophil chemoattractant) and C-C (macrophage inflammatory protein-1alpha and monocyte chemoattractant-1) chemokines. In the absence of the costimulus, C5a or MAC did not induce chemokine generation....... In in vivo studies, C5a and MAC alone caused limited or no intrapulmonary generation of chemokines, but in the presence of a costimulus (IgG immune complexes) C5a and MAC caused synergistic intrapulmonary generation of C-X-C and C-C chemokines but not of tumor necrosis factor alpha. Under these conditions...... increased neutrophil accumulation occurred, as did lung injury. These observations suggest that C5a and MAC function synergistically with a costimulus to enhance chemokine generation and the intensity of the lung inflammatory response....

  6. Dose- and Time-Dependent Response of Human Leukemia (HL-60 Cells to Arsenic Trioxide Treatment

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2006-06-01

    Full Text Available The treatment of acute promyelocytic leukemia (APL has been based on the administration of all-trans retinoic acid plus anthracycline chemotherapy, which is very effective as first line therapy; however 25 to 30% of patients will relapse with their disease becoming refractory to conventional therapy. Recently, studies have shown arsenic trioxide to be effective in the treatment of acute promyelocytic leukemia. In this study, we used the human leukemia (HL-60 cell line as a model to evaluate the cytoxicity of arsenic trioxide based on the MTT assay. Data obtained from this assay indicated that arsenic trioxide significantly reduced the viability of HL-60 cells, showing LD50 values of 14.26 + 0.5μg/mL, 12.54 + 0.3μg/mL, and 6.4 + 0.6μg/mL upon 6, 12, and 24 hours of exposure, respectively; indicating a dose- and time-dependent response relationship. Findings from the present study indicate that arsenic trioxide is highly cytotoxic to human leukemia (HL-60 cells, supporting its use as an effective therapeutic agent in the management of acute promyelocytic leukemia.

  7. Summary of the Preliminary Analysis of Savannah River Depleted Uranium Trioxide

    International Nuclear Information System (INIS)

    2010-01-01

    This report summarizes a preliminary special analysis of the Savannah River Depleted Uranium Trioxide waste stream (SVRSURANIUM03, Revision 2). The analysis is considered preliminary because a final waste profile has not been submitted for review. The special analysis is performed to determine the acceptability of the waste stream for shallow land burial at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The Savannah River Depleted Uranium Trioxide waste stream requires a special analysis because the waste stream's sum of fractions exceeds one. The 99Tc activity concentration is 98 percent of the NNSS Waste Acceptance Criteria and the largest single contributor to the sum of fractions.

  8. An AP-2 element acts synergistically with the cyclic AMP- and Phorbol ester-inducible enhancer of the human proenkephalin gene

    Energy Technology Data Exchange (ETDEWEB)

    Hyman, S.E.; Comb, M.; Pearlberg, J.; Goodman, H.M.

    1989-01-01

    An enhancer with two DNA elements, one containing the sequence CGTCA, is required for cyclic AMP-and phorbol ester-inducible transcription of the human proenkephalin gene. The authors report that an AP-2 element located adjacent to the enhancer acts synergistically with it to confer maximal response to cyclic AMP and phorbol esters.

  9. Synthesis of vanadium trioxide

    International Nuclear Information System (INIS)

    Yankelevich, R.G.; Vinarov, I.V.; Sheka, I.A.; Pushek, N.G.

    1976-01-01

    There have been studied the conditions for production of vanadium trioxide in a single-stage process of V 2 O 5 reduction by gaseous ammonia. To determine the optimum conditions for V 2 O 5 reduction, there have been studied the temperature range of the reaction and the effect offered by the volumetric rate and time of ammonia injection. The following conditions have proved to be the optimum ones: temperature - 450 deg C, volumetric rate of NH 3 injection at a batch of 10 g - 4 l/h, time of recovery - 3 hours. In accordance with the adopted procedure there have been synthetized the samples containing 98 - 99% V 2 O 3 [ru

  10. Enhanced visible light-responsive photocatalytic activity of LnFeO3 (Ln = La, Sm) nanoparticles by synergistic catalysis

    International Nuclear Information System (INIS)

    Li, Li; Wang, Xiong; Zhang, Yange

    2014-01-01

    Highlights: • LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method. • The samples exhibit superior visible-light-responsive photocatalytic activity. • Synergistic effect will enhance the photodegradation of RhB under visible light. - Abstract: LnFeO 3 (Ln = La, Sm) nanoparticles were prepared by a facile sol–gel method with assistance of glycol at different calcination temperatures. The as-synthesized LnFeO 3 was characterized by X-ray diffraction, transmission electron microscopy, differential scanning calorimeter and thermogravimetric analysis, and UV–vis absorption spectroscopy. The photocatalytic behaviors of LnFeO 3 nanoparticles were evaluated by photodegradation of rhodamine B under visible light irradiation. The results indicate that the visible light-responsive photocatalytic activity of LnFeO 3 nanoparticles was enhanced remarkably by the synergistic effect between the semiconductor photocatalysis and Fenton-like reaction. And a possible catalytic mechanism was also proposed based on the experimental results

  11. A study on the alkali leaching of complex compound for molybdenum trioxide and ferric oxide

    International Nuclear Information System (INIS)

    Kim, C.G.; Whang, Y.K.

    1981-01-01

    This study is to determine the alkali-leaching meachanism by which complex compound by the reaction made between molybdenite (MoS 2 ) and ferric oxide (Fe 2 O 3 ) in the roasted are when molybdenum trioxide (MoO 3 ) is formed by the roasting reaction of molybdenite concentrate. The results obtained from this experiment are summarized as follows: The heating reaction analysis shows that the complex compound of iron molybdates (Fe 2 O 3 .3-4 MoO 3 ) is formed by the reaction of molybdenum trioxide and ferric oxide at temperatures of above 500 0 C. It is shown that at various reaction temperature below 400 0 C molybdenum trioxide is almost completely leached by caustic soda irrespective of the mole ratio of two chemical samples used for the experiment, whereas at temperature above 400 0 C the leaching rate of molybdenum trioxide decreases except that it varies from 70.77% at a temperature of 900 0 C at which the mole ratio is 1 to 1 to 84.08% at a temperature of 1000 0 C. The x-ray diffraction analysis has shown that the complex compound reacted at a temperature of 1000 0 C produces a complex compound with the crystal structure of iron molybdates, and the alkali-leached residues even with 19.0% of molybdenum trioxide, however, contain only α-Fe 2 O 3 , without showing iron molybdates. The crystalline compound of iron molybdates obtained as a result of heating reaction was leached by using caustic soda, while MoO 3 and Fe 2 O 3 in the leaching residue was found to contain other compounds unable to be leached by caustic soda. (author)

  12. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Directory of Open Access Journals (Sweden)

    Chenguo Yao

    Full Text Available Irreversible electroporation (IRE produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs to create a large electroporated area and long low-voltage pulses (LVPs to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  13. Irreversible electroporation ablation area enhanced by synergistic high- and low-voltage pulses.

    Science.gov (United States)

    Yao, Chenguo; Lv, Yanpeng; Dong, Shoulong; Zhao, Yajun; Liu, Hongmei

    2017-01-01

    Irreversible electroporation (IRE) produced by a pulsed electric field can ablate tissue. In this study, we achieved an enhancement in ablation area by using a combination of short high-voltage pulses (HVPs) to create a large electroporated area and long low-voltage pulses (LVPs) to ablate the electroporated area. The experiments were conducted in potato tuber slices. Slices were ablated with an array of four pairs of parallel steel electrodes using one of the following four electric pulse protocols: HVP, LVP, synergistic HVP+LVP (SHLVP) or LVP+HVP. Our results showed that the SHLVPs more effectively necrotized tissue than either the HVPs or LVPs, even when the SHLVP dose was the same as or lower than the HVP or LVP doses. The HVP and LVP order mattered and only HVPs+LVPs (SHLVPs) treatments increased the size of the ablation zone because the HVPs created a large electroporated area that was more susceptible to the subsequent LVPs. Real-time temperature change monitoring confirmed that the tissue was non-thermally ablated by the electric pulses. Theoretical calculations of the synergistic effects of the SHLVPs on tissue ablation were performed. Our proposed SHLVP protocol provides options for tissue ablation and may be applied to optimize the current clinical IRE protocols.

  14. The Effect of Adding Antimony Trioxide (Sb2O3 ‎On A.C Electrical Properties of (PVA-PEG Films

    Directory of Open Access Journals (Sweden)

    Akeel Shakir Alkelaby

    2017-12-01

    Full Text Available In this work, many samples have been prepared by adding Antimony Trioxide (Sb2O3 to the polyvinyl alcohol-poly ethylene glycol (PVA-PEG. The effect of the Sb2O3 added as a filler with different weight percentages on the A.C electrical properties have been investigated. The samples were prepared as films by solution cast technique. The experimental results of the A.C electrical properties show that the dielectric constant increase with the increasing frequency of applied electrical field and concentration of the Antimony Trioxide. Dielectric loss decrease with the increasing the frequency, while it increases with the increase of the concentration of the Antimony Trioxide. The A.C electrical conductivity increase with increasing the Antimony Trioxide contain and frequency for the composition.

  15. Mineral trioxide aggregate induces osteoblastogenesis via Atf6

    Directory of Open Access Journals (Sweden)

    Toyonobu Maeda

    2015-06-01

    Full Text Available Mineral trioxide aggregate (MTA has been recommended for various uses in endodontics. To understand the effects of MTA on alveolar bone, we examined whether MTA induces osteoblastic differentiation using MC3T3-E1 cells. MTA enhanced mineralization concomitant with alkaline phosphatase activity in a dose- and time-dependent manner. MTA increased production of collagens (Type I and Type III and matrix metalloproteinases (MMP-9 and MMP-13, suggesting that MTA affects bone matrix remodeling. MTA also induced Bglap (osteocalcin but not Bmp2 (bone morphogenetic protein-2 mRNA expression. We observed induction of Atf6 (activating transcription factor 6, an endoplasmic reticulum (ER stress response transcription factor mRNA expression and activation of Atf6 by MTA treatment. Forced expression of p50Atf6 (active form of Atf6 markedly enhanced Bglap mRNA expression. Chromatin immunoprecipitation assay was performed to investigate the increase in p50Atf6 binding to the Bglap promoter region by MTA treatment. Furthermore, knockdown of Atf6 gene expression by introduction of Tet-on Atf6 shRNA expression vector abrogated MTA-induced mineralization. These results suggest that MTA induces in vitro osteoblastogenesis through the Atf6–osteocalcin axis as ER stress signaling. Therefore, MTA in endodontic treatment may affect alveolar bone healing in the resorbed region caused by pulpal infection.

  16. Studying arsenic trioxide-induced apoptosis of Colo-16 cells with ...

    African Journals Online (AJOL)

    Jane

    2011-10-05

    Oct 5, 2011 ... induced apoptosis at the single cell level. Key words: Two-photon laser scanning microscopy, confocal laser scanning microscopy, human skin squamous carcinoma cells (Colo-16 cells), arsenic trioxide, apoptosis. INTRODUCTION. Although arsenic is poisonous and chronic arsenic exposure from ...

  17. Color in 'tungsten trioxide' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Duc, Tran Minh

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO_2_._7H_y (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO_2_._5, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers.

  18. Color in ''tungsten trioxide'' thin films

    International Nuclear Information System (INIS)

    Gerard, P.; Deneuville, A.; Hollinger, G.; Tran Minh Duc

    1977-01-01

    We show that evaporated tungsten trioxide amorphous layers commonly used in electrochromic displays actually have the composition WO/sub 2.7/H/sub y/ (0.2< y<0.5). We emphasize that coloration of virgin transparent films can be obtained without injection of any external ion into the layer, and further that around a critical substoichiometry by sputtering, namely, WO/sub 2.5/, one can prepare blue virgin layers without any hydrogen. The effect of substoichiometry on the valence of tungsten atoms has been followed by XPS measurements of sputtered layers

  19. Combination of Mineral Trioxide Aggregate and Platelet-rich Fibrin Promotes the Odontoblastic Differentiation and Mineralization of Human Dental Pulp Cells via BMP/Smad Signaling Pathway.

    Science.gov (United States)

    Woo, Su-Mi; Kim, Won-Jae; Lim, Hae-Soon; Choi, Nam-Ki; Kim, Sun-Hun; Kim, Seon-Mi; Jung, Ji-Yeon

    2016-01-01

    Recent reports have shown that the combined use of platelet-rich fibrin (PRF), an autologous fibrin matrix, and mineral trioxide aggregate (MTA) as root filling material is beneficial for the endodontic management of an open apex. However, the potential of the combination of MTA and PRF as an odontogenic inducer in human dental pulp cells (HDPCs) in vitro has not yet been studied. The purpose of this study was to evaluate the effect of the combination of MTA and PRF on odontoblastic maturation in HDPCs. HDPCs extracted from third molars were directly cultured with MTA and PRF extract (PRFe). Odontoblastic differentiation of HDPCs was evaluated by measuring the alkaline phosphatase (ALP) activity, and the expression of odontogenesis-related genes was detected using reverse-transcription polymerase chain reaction or Western blot. Mineralization formation was assessed by alizarin red staining. HDPCs treated with MTA and PRFe significantly up-regulated the expression of dentin sialoprotein and dentin matrix protein-1 and enhanced ALP activity and mineralization compared with those with MTA or PRFe treatment alone. In addition, the combination of MTA and PRFe induced the activation of bone morphogenic proteins (BMP)/Smad, whereas LDN193189, the bone morphogenic protein inhibitor, attenuated dentin sialophosphoprotein and dentin matrix protein-1 expression, ALP activity, and mineralization enhanced by MTA and PRFe treatment. This study shows that the combination of MTA and PRF has a synergistic effect on the stimulation of odontoblastic differentiation of HDPCs via the modulation of the BMP/Smad signaling pathway. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  20. Determination of antimony trioxide in fire-retardant conveyor belts

    Energy Technology Data Exchange (ETDEWEB)

    Rytych-Witwicka, B.; Szmyd, E.

    1976-12-01

    Two methods for the determination of antimony trioxide in rubber and pvc are described. One is a colorimetric method based on the reaction of antimony with rhodamine B; the other is a polarographic method. The results of the two methods show a satisfactory consistency and the methods themselves appear rapid and effective.

  1. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide

    International Nuclear Information System (INIS)

    Lin, Tseng-Hsi; Kuo, Hsing-Chun; Chou, Fen-Pi; Lu, Fung-Jou

    2008-01-01

    Arsenic trioxide (As 2 O 3 ) exhibits promising anticarcinogenic activity in acute promyelocytic leukemic patients and induces apoptosis in various tumor cells in vitro. Here, we investigated the effect of the natural alkaloid berberine on As 2 O 3 -mediated inhibition of cancer cell migration using rat and human glioma cell lines. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to determine the viability of rat C6 and human U-87 glioma cells after treatment with As 2 O 3 or berberine, and after co-treatment with As 2 O 3 and berberine. The wound scratch and Boyden chamber assays were applied to determine the effect of As 2 O 3 and berberine on the migration capacity and invasiveness of glioma cancer cells. Zymography and Western blot analyses provided information on the effect of As 2 O 3 and berberine on the intracellular translocation and activation of protein kinase C (PKC), and some PKC-related downstream factors. Most assays were performed three times, independently, and data were analyzed using ANOVA. The cell viability studies demonstrated that berberine enhances As 2 O 3 -mediated inhibition of glioma cell growth after 24 h incubation. Untreated control cells formed a confluent layer, the formation of which was inhibited upon incubation with 5 μM As 2 O 3 . The latter effect was even more pronounced in the presence of 10 μM berberine. The As 2 O 3 -mediated reduction in motility and invasion of glioma cells was enhanced upon co-treatment with berberine. Furthermore, it has been reported that PKC isoforms influence the morphology of the actin cytoskeleton, as well as the activation of metalloproteases MT1-MMP and MMP-2, reported to be involved in cancer cell migration. Treatment of glioma cells with As 2 O 3 and berberine significantly decreased the activation of PKC α and ε and led to actin cytoskeleton rearrangements. The levels of two downstream transcription factors, myc and jun, and MT1-MMP and MMP-2 were also

  2. Influence of the mode of preparation of the UO3 trioxide on its specific surface

    International Nuclear Information System (INIS)

    Sauteron, J.

    1960-01-01

    As the specific surface of uranium trioxide UO 3 closely depends on the preparation mode and conditions, the authors report and discuss several results obtained on uranium trioxides produced either by precipitation of uranyl nitrate (with oxygenated water, liquid or gaseous ammoniac, and ammonium carbonate), then by calcination at 350 C, or by thermal decomposition of the uranyl nitrate. The authors also studied the influence of calcination temperature of ammonium uranate on the specific surface of the obtained oxide (between 200 and 900 deg.) [fr

  3. Organic transformations catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zuolin [Iowa State Univ., Ames, IA (United States)

    1995-10-06

    Methylrhenium trioxide (MTO), CH3ReO3, was first prepared in 1979. MTO forms stable or unstable adducts with electron-rich ligands, such as amines (quinuclidine, 1,4-diazabicyclo-octane, pyridine, aniline, 2,2'-bipyridine), alkynes, olefins, 1,2-diols, catechols, hydrogen peroxide, water, thiophenols, 1,2-dithiols, triphenylphosphine, 2-aminophenols, 2-aminothiophenols, 8-hydroxyquinoline and halides (Cl-, Br-, I-). After coordination, different further reactions will occur for different reagents. Reactions described in this report include the dehydration of alcohols, direct amination of alcohols, activation of hydrogen peroxide, oxygen transfer, and decomposition of ethyl diazoacetate.

  4. Vorinostat enhances chemosensitivity to arsenic trioxide in K562 cell line

    Directory of Open Access Journals (Sweden)

    Nainong Li

    2015-05-01

    Full Text Available Objective. This study aimed to investigate the chemosensitive augmentation effect and mechanism of HDAC inhibitor Vorinostat (SAHA in combination with arsenic trioxide (ATO on proliferation and apoptosis of K562 cells.Methods. The CCK-8 assay was used to compare proliferation of the cells. Annexin-V and PI staining by flow cytometry and acridine orange/ethidium bromide stains were used to detect and quantify apoptosis. Western blot was used to detect expression of p21, Akt, pAkt, p210, Acetyl-Histone H3, and Acetyl-Histone H4 proteins.Results. SAHA and ATO inhibited proliferation of K562 cells in an additive and time- and dose-dependent manner. SAHA in combination with ATO showed significant apoptosis of K562 cells in comparison to the single drugs alone (p < 0.01. Both SAHA and ATO alone and in combination showed lower levels of p210 expression. SAHA and SAHA and ATO combined treatment showed increased levels of Acetyl-Histone H3 and Acetyl-Histone H4 protein expression. SAHA alone showed increased expression of p21, while ATO alone and in combination with SAHA showed no significant change. SAHA and ATO combined therapy showed lower levels of Akt and pAkt protein expression than SAHA or ATO alone.Conclusion. SAHA and ATO combined treatment inhibited proliferation, induced apoptosis, and showed a chemosensitive augmentation effect on K562 cells. The mechanism might be associated with increasing histone acetylation levels as well as regulating the Akt signaling pathway.

  5. Success Rate of Formocresol Pulpotomy versus Mineral Trioxide Aggregate in Human Primary Molar Tooth

    Directory of Open Access Journals (Sweden)

    S E Jabbarifar

    2004-12-01

    Full Text Available Background: In spite of long time and broad use of formaldehyde derivates (Fixation agent in primary tooth pulp treatment, There is some concerns about these derivates such as variability, inconsistency success rate, mutagenicity, cytotoxicity, alergenicity, and some other potential health hazards of them. Therefore other alternative pulpotomy procedures like Bioactive glass (BAG, Glutaraldehyde (2%, Hydroxyappetite (HA, Bone dried freezed (BDF, ferric sulfate (15%, laser, Electrosurgery (ES, Bone Morphogenic proteins (BMP, recombinant protein-1 (RP1, and Mineral Trioxide Aggregate (MTA have been compared. The purpose of this clinical trial is to assess radiographic and clinical success rate of Formocresol (FC pulpotomy in compare with MTA in human primary molar teeth. Methods: 64 molars were pulpotomized equally and randomly with mineral trioxide Aggregate and Formocresol. Prior to trial, we defined a case as failure, when one or more of the events such as external root resorption, internal root resorption, periapical and furca lucency, pain, swelling, mobility, dental abscess, or early extraction appeared. Every treated tooth was defined as successful, if any noted evident was not shown. Results: Totally, 60 teeth treatment (92.2 percent were successful and 7.8 percent were failed. Failure and success rates for MTA group were 6.3 and 93.7 percent, respectively. Failure and success rates in FC group were 8.4 and 90.2 percent respectively. The difference between MTA and FC treatment methods was not significant (Fisher Exact test. Conclusion: Findings of this study show that mineral trioxide aggregate can be an alternative procedure for FC pulpotomy of primary tooth. Keywords: Mineral trioxide aggregate, formocresol, pulpotomy, success and failure rate.

  6. Antimony Trioxide (ATO) - Summary of External Peer Review and Public Comments and Disposition

    Science.gov (United States)

    This document summarizes the public and external peer review comments that the EPA’s Office of Pollution Prevention and Toxics (OPPT) received for the draft work plan risk assessment for Antimony Trioxide (ATO).

  7. Electric heating of a unit for uranium trioxide production

    International Nuclear Information System (INIS)

    Faron, R.; Striff, A.

    1985-01-01

    Ammonium diuranate U 2 O 7 (NH 4 ) 2 containing about 50% of water is dried and transformed by calcination in uranium trioxide UO 3 . Drying and calcination was obtained by air heated by two burners using domestic fuel. In 1984 the plant was transformed for utilization of electric heating improving maintenance cost, decreasing heat losses and by energy saving the payback period on investment is of 2.6 years [fr

  8. Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires

    Science.gov (United States)

    Hussain, Tajamal; Shah, Asma Tufail; Shehzad, Khurram; Mujahid, Adnan; Farooqi, Zahoor Hussain; Raza, Muhammad Hamid; Ahmed, Mirza Nadeem; Nisa, Zaib Un

    2015-12-01

    Uniform porous anodized aluminum oxide (AAO) membrane has been synthesized by two-step anodization for fabricating tungsten trioxide (WO3) nanowires. Under assayed conditions, uniform porous structure of alumina (Al2O3) membrane with long range ordered hexagonal arrangements of nanopores was achieved. The self-assembled template possesses pores of internal diameter of 50 nm and interpore distance ( d int) of 80 nm with a thickness of about 80 µm, i.e., used for fabrication of nanostructures. WO3 nanowires have been fabricated by simple electroless deposition method inside Al2O3 nanopores. SEM images show tungsten trioxide nanowire with internal diameter of about 50 nm, similar to porous diameter of AAO template. XRD results showed that nanowires exist in cubic crystalline state with minor proportion of monoclinic phase.

  9. Synergistic efficacy of salicylic acid with a penetration enhancer on human skin monitored by OCT and diffuse reflectance spectroscopy

    Science.gov (United States)

    Zhao, Qingliang; Dai, Cuixia; Fan, Shanhui; Lv, Jing; Nie, Liming

    2016-10-01

    Salicylic acid (SA) has been frequently used as a facial chemical peeling agent (FCPA) in various cosmetics for facial rejuvenation and dermatological treatments in the clinic. However, there is a tradeoff between therapeutic effectiveness and possible adverse effects caused by this agent for cosmetologists. To optimize the cosmetic efficacy with minimal concentration, we proposed a chemical permeation enhancer (CPE) azone to synergistically work with SA on human skin in vivo. The optical properties of human skin after being treated with SA alone and SA combined with azone (SA@azone) were successively investigated by diffuse reflectance spectroscopy (DRS) and optical coherence tomography (OCT). Our results revealed that as the SA concentration increased, the light reflectance decreased and the absorption increased. We also found that SA@azone exhibited a synergistic effect on enhancing light penetration and OCT imaging depth. We demonstrated that the combination of DRS and OCT techniques could be used as a noninvasive, rapid and accurate measurement method to monitor the subtle changes of skin tissue after treatment with FCPA and CPE. The approach will greatly benefit the development of clinical cosmetic surgery, dermatosis diagnosis and therapeutic effect inspection in related biomedical studies.

  10. Synergistic interactions promote behavior spreading and alter phase transitions on multiplex networks

    Science.gov (United States)

    Liu, Quan-Hui; Wang, Wei; Cai, Shi-Min; Tang, Ming; Lai, Ying-Cheng

    2018-02-01

    Synergistic interactions are ubiquitous in the real world. Recent studies have revealed that, for a single-layer network, synergy can enhance spreading and even induce an explosive contagion. There is at the present a growing interest in behavior spreading dynamics on multiplex networks. What is the role of synergistic interactions in behavior spreading in such networked systems? To address this question, we articulate a synergistic behavior spreading model on a double layer network, where the key manifestation of the synergistic interactions is that the adoption of one behavior by a node in one layer enhances its probability of adopting the behavior in the other layer. A general result is that synergistic interactions can greatly enhance the spreading of the behaviors in both layers. A remarkable phenomenon is that the interactions can alter the nature of the phase transition associated with behavior adoption or spreading dynamics. In particular, depending on the transmission rate of one behavior in a network layer, synergistic interactions can lead to a discontinuous (first-order) or a continuous (second-order) transition in the adoption scope of the other behavior with respect to its transmission rate. A surprising two-stage spreading process can arise: due to synergy, nodes having adopted one behavior in one layer adopt the other behavior in the other layer and then prompt the remaining nodes in this layer to quickly adopt the behavior. Analytically, we develop an edge-based compartmental theory and perform a bifurcation analysis to fully understand, in the weak synergistic interaction regime where the dynamical correlation between the network layers is negligible, the role of the interactions in promoting the social behavioral spreading dynamics in the whole system.

  11. Synergistic enhancement of ethylene production and germination with kinetin and 1-aminocyclopropane-1-carboxylic Acid in lettuce seeds exposed to salinity stress.

    Science.gov (United States)

    Khan, A A; Huang, X L

    1988-08-01

    Relief of salt (0.1 molar NaCl) stress on germination of lettuce (Lactuca sativa L., cv Mesa 659) seeds occurred with applications of 0.05 millimolar kinetin (KIN) and 1 to 10 millimolar 1-aminocyclopropane 1-carboxylic acid (ACC). Treatment with KIN enhanced the pregermination ethylene production under saline condition. A synergistic or an additive enhancement of pregermination ethylene production and germination occurred under saline condition in the presence of KIN and a saturating dose (10 millimolar) of ACC. No KIN-ACC synergism was noted in ethylene production or germination under nonsaline condition. Addition of 1 millimolar aminoethoxyvinylglycine (AVG) inhibited the KIN-enhanced pregermination ethylene production (85 to 89%) and germination (58%) under saline condition but not the synergistic effect of KIN + ACC on ethylene production. Under nonsaline condition, AVG had no effect on germination even though ethylene production was strongly inhibited. Alleviation of salt stress by KIN was inhibited in a competitive manner by 2,5-norbornadiene (NBD) (0.02-0.2 milliliter per liter), and the addition of ACC and/or ethylene reduced this inhibition. An increase in the pregermination ethylene production and germination occurred also by cotylenin E (CN) under saline condition. However, neither AVG (1 millimolar) nor NBD (0.02 to 0.2 milliliter per liter) prevented the relief of salt stress by CN. Thus, KIN may alleviate salt stress on germination by promoting both ACC production and its conversion to ethylene. Rapid utilization of ACC may be the basis for the synergistic or the additive effect of KIN plus ACC. The need for ethylene production and action for the relief of salt stress is circumvented by a treatment with CN.

  12. Combination of arsenic and interferon-α inhibits expression of KSHV latent transcripts and synergistically improves survival of mice with primary effusion lymphomas.

    Science.gov (United States)

    El Hajj, Hiba; Ali, Jihane; Ghantous, Akram; Hodroj, Dana; Daher, Ahmad; Zibara, Kazem; Journo, Chloé; Otrock, Zaher; Zaatari, Ghazi; Mahieux, Renaud; El Sabban, Marwan; Bazarbachi, Ali; Abou Merhi, Raghida

    2013-01-01

    Kaposi sarcoma-associated herpesvirus (KSHV) is the etiologic agent of primary effusion lymphomas (PEL). PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN) inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.

  13. Monoblock Obturation Technique for Non-Vital Immature Permanent Maxillary Incisors Using Mineral Trioxide Aggregate: Results from Case Series

    International Nuclear Information System (INIS)

    Iqbal, Z.; Qureshi, A. H.

    2014-01-01

    Ten patients presented with non-vital immature teeth for root canal treatment. In all these cases the pre-operative clinical examination revealed apical periodontitis with a buccal sinus tract of endodontic origin. These cases were treated by a mineral trioxide aggregate (MTA) monoblock obturation technique. Follow-up evaluations were performed at 1 - 2 years after treatment. Eight out of 10 cases were associated with periradicular healing at follow-up evaluation. Mineral trioxide aggregate Monoblock obturation technique appears to be a valid material to obtain periradicular healing in teeth with open apices and necrotic pulps. (author)

  14. Fracture resistance and histological findings of immature teeth treated with mineral trioxide aggregate

    DEFF Research Database (Denmark)

    Hatibovic-Kofman, S.; Raimundo, L.; Zheng, L.

    2008-01-01

    The objective of the present study was to test the hypothesis that the fracture strength of calcium hydroxide and mineral trioxide aggregate (MTA)-filled immature teeth decreased over time. Immature mandibular incisors from sheep were extracted and the pulps were extirpated using an apical approach...

  15. Combination of arsenic and interferon-α inhibits expression of KSHV latent transcripts and synergistically improves survival of mice with primary effusion lymphomas.

    Directory of Open Access Journals (Sweden)

    Hiba El Hajj

    Full Text Available BACKGROUND: Kaposi sarcoma-associated herpesvirus (KSHV is the etiologic agent of primary effusion lymphomas (PEL. PEL cell lines infected with KSHV, but negative for Epstein-Barr virus have a tumorigenic potential in non-obese diabetic/severe combined immunodeficient mice and result in efficient engraftment and formation of malignant ascites with notable abdominal distension, consistent with the clinical manifestations of PEL in humans. METHODOLOGY/PRINCIPAL FINDINGS: Using this preclinical mouse model, we demonstrate that the combination of arsenic trioxide and interferon-alpha (IFN inhibits proliferation, induces apoptosis and downregulates the latent viral transcripts LANA-1, v-FLIP and v-Cyc in PEL cells derived from malignant ascites. Furthermore, this combination decreases the peritoneal volume and synergistically increases survival of PEL mice. CONCLUSION/SIGNIFICANCE: These results provide a promising rationale for the therapeutic use of arsenic/IFN in PEL patients.

  16. Silver-loaded nanotubular structures enhanced bactericidal efficiency of antibiotics with synergistic effect in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Xu N

    2017-01-01

    -positive Staphylococcus aureus (ATCC 25923, and methicillin-resistant Staphylococcus aureus (MRSA; ATCC 33591 and ATCC 43300. Moreover, after a relative short (3 weeks combinational treatment, animal experiments in vivo further proved the synergistic antibacterial effect by X-ray and histological and immunohistochemical analyses. These results demonstrated that the combination of Ag nanoparticles and antibiotics significantly enhanced the antibacterial effect both in vitro and in vivo through the synergistic effect. The strategy is promising for clinical application to reduce the usage of antibiotics and shorten the administration time of implant-associated infection. Keywords: implant-associated infection, silver nanoparticles, TiO2 nanotube, antibiotics, synergistic bactericidal activity

  17. Newly designed PdRuBi/N-Graphene catalysts with synergistic effects for enhanced ethylene glycol electro-oxidation

    International Nuclear Information System (INIS)

    Li, Tengfei; Huang, Yiyin; Ding, Kui; Wu, Peng; Abbas, Syed Comail; Ghausi, Muhammad Arsalan; Zhang, Teng; Wang, Yaobing

    2016-01-01

    Graphical abstract: We rationally design and synthesize a ternary PdRuBi/NG catalyst with significantly enhanced catalytic activity with synergetic effect of Ru and Bi towards ethylene glycol electro-oxidation. - Abstract: Palladium (Pd)-based catalysts are appealing electro-catalysts for alcohol oxidation reaction in fuel cell, but still not efficient as the complicated oxidation process and sluggish kinetic. Here we rationally design and synthesize a PdRuBi/NG tri-metallic catalyst with space synergetic effect for enhanced ethylene glycol electro-oxidation, in which both Ru and Bi in the catalyst are synergistic effective in promoting catalytic activity of Pd catalytic interlayer by electronic effect and surface modification mechanism respectively. It shows 4.2 times higher peak current density towards ethylene glycol electro-oxidation than commercial Pd/C catalyst, and the catalytic durability is also greatly improved.

  18. Arctigenin in combination with quercetin synergistically enhances the antiproliferative effect in prostate cancer cells.

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M; Vadgama, Jaydutt V

    2015-02-01

    We investigated whether a combination of two promising chemopreventive agents arctigenin (Arc) and quercetin (Q) increases the anticarcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of Arc and Q alone or in combination for 48 h. The antiproliferative activity of Arc was 10- to 20-fold stronger than Q in both cell lines. Their combination synergistically enhanced the antiproliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arc demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. The combination of Arc and Q that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Large-Batch Reduction of Molybdenum Trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Kiggans, Jr, James O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowden, Richard Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Menchhofer, Paul A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nunn, Stephen D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bryan, Chris [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    Unconverted, isotopically-enriched molybdenum metal must be recovered from the spent radiopharmaceutical solution used in NorthStar’s Technetium-99m generator and reused. The recycle process begins by recovering the metal from the aqueous potassium molybdate (K2MoO4) solutions as molybdenum trioxide (MoO3) employing a process developed at Argonne National Laboratory. The MoO3 powder is subsequently reduced to molybdenum metal powder which can be blended with new powder and further processed into a flowable form to be used to produce target disks for irradiation. The molybdenum oxide reduction process has been examined and scaled to produce kilogram quantities of metal powder suitable for processing into a useable form employing spray drying or similar technique and ultimately used for target fabrication.

  20. Towards enhancing photocatalytic hydrogen generation: Which is more important, alloy synergistic effect or plasmonic effect?

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhe; Kibria, Md Golam; AlOtaibi, Bandar; Duchesne, Paul N.; Besteiro, Lucas V.; Gao, Yu; Zhang, Qingzhe; Mi, Zetian; Zhang, Peng; Govorov, Alexander O.; Mai, Liqiang; Chaker, Mohamed; Ma, Dongling

    2018-02-01

    Synergistic effect in alloys and plasmonic effect have both been explored for increasing the efficiency of water splitting. In depth understanding and comparison of their respective contributions in certain promising systems is highly desired for catalyst development, yet rarely investigated so far. We report herein our thorough investigations on a series of highly interesting nanocomposites composed of Pt, Au and C3N4 nanocomponents, which are designed to benefit from both synergistic and plasmonic effects. Detailed analyses led to an important conclusion that the contribution from the synergistic effect was at least 3.5 times that from the plasmonic effect in the best performing sample, Pt50Au50 alloy decorated C3N4. It showed remarkable turnover frequency of >1.6 mmol h-1 g-1 at room temperature. Our work provides physical insights for catalyst development by rationally designing samples to compare long-known synergistic effect with recently emerging, attractive plasmonic effect and represents the first case study in the field.

  1. Phenomenological theory of synergistic effects in plasma-wall interaction

    International Nuclear Information System (INIS)

    Itoh, N.; Hasebe, Y.

    1986-01-01

    A phenomenological theory for synergistic effects under multi-species particle bombardement has been developed. The theory is based on a model in which two free-energy minima are assumed to be overcome under actions of radiation for a process to be completed. The synergistic factor, the ratio of the yield of the process under irradiation with two species of particles to the summation of the yields of the process under irradiation with each of two component species, is obtained as a function of the beam flux for several parameters relevant to thermodynamic and radiation-enhanced processes. The criterion for the synergistic effect is obtained. The theory has been shown to be able to explain the yield-flux relation obtained by Haasz et al. for hydrogen-induced methane formation from graphite. (orig.)

  2. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Science.gov (United States)

    Shu, Zhan; Zhang, Yi; Yang, Qian; Yang, Huaming

    2017-02-01

    Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs) and silver (Ag) into zinc oxide (ZnO) nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs) and Ag nanoparticles (Ag NPs) with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  3. Synergistic enhancement of iron oxide nanoparticle and gadolinium for dual-contrast MRI

    International Nuclear Information System (INIS)

    Zhang, Fan; Huang, Xinglu; Qian, Chunqi; Zhu, Lei; Hida, Naoki; Niu, Gang; Chen, Xiaoyuan

    2012-01-01

    Highlights: ► MR contrast agents exert influence on T 1 or T 2 relaxation time of the surrounding tissue. ► Combined use of iron oxide and Gd-DTPA can improve the sensitivity/specificity of lesion detection. ► Dual contrast MRI enhances the delineation of tumor borders and small lesions. ► The effect of DC-MRI can come from the high paramagnetic susceptibility of Gd 3+ . ► The effect of DC-MRI can also come from the distinct pharmacokinetic distribution of SPIO and Gd-DTPA. -- Abstract: Purpose: The use of MR contrast agents allows accurate diagnosis by exerting an influence on the longitudinal (T 1 ) or transverse (T 2 ) relaxation time of the surrounding tissue. In this study, we combined the use of iron oxide (IO) particles and nonspecific extracellular gadolinium chelate (Gd) in order to further improve the sensitivity and specificity of lesion detection. Procedures: With a 7-Tesla scanner, pre-contrasted, IO-enhanced and dual contrast agent enhanced MRIs were performed in phantom, normal animals, and animal models of lymph node tumor metastases and orthotopic brain tumor. For the dual-contrast (DC) MRI, we focused on the evaluation of T 2 weighted DC MRI with IO administered first, then followed by the injection of a bolus of gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA). Results: Based on the C/N ratios and MRI relaxometry, the synergistic effect of coordinated administration of Gd-DTPA and IO was observed and confirmed in phantom, normal liver and tumor models. At 30 min after administration of Feridex, Gd-DTPA further decreased T 2 relaxation in liver immediately after the injection. Additional administration of Gd-DTPA also immediately increased the signal contrast between tumor and brain parenchyma and maximized the C/N ratio to −4.12 ± 0.71. Dual contrast MRI also enhanced the delineation of tumor borders and small lesions. Conclusions: DC-MRI will be helpful to improve diagnostic accuracy and decrease the threshold size for

  4. Electrical properties of tungsten trioxide films

    International Nuclear Information System (INIS)

    Xu, Z.; Vetelino, J.F.; Lec, R.; Parker, D.C.

    1990-01-01

    Selectively doped semiconducting metal oxide (SMO) films have been shown to have applications as the sensing element in gas microsensors. Critical to the design and operation of these sensors is the SMO film. In the present work, the electrical properties of both intrinsic and extrinsic (doped with gold) tungsten trioxide (WO 3 ) films, which selectively sorb hydrogen sulfide (H 2 S), are investigated. Hall effect measurements are performed as a function of film thickness, temperature, gold-doping concentration, and H 2 S gas concentration. The conductivity was found to be n type and strongly dependent on temperature, gold doping concentration, and H 2 S gas concentration and less dependent on film thickness. The mobility was relatively high while the intrinsic carrier concentration was low when compared to typical semiconductor materials. The conductivity was shown to exhibit anomalous behavior at certain temperatures and H 2 S gas concentrations

  5. Colour centres in amorphous tungsten trioxide thin films

    International Nuclear Information System (INIS)

    Kleperis, J.J.; Cikmach, P.D.; Lusis, A.R.

    1984-01-01

    Magnetic, optical, and electrical properties of thin tungsten trioxide (a-WO 3 ) films obtained on substrates with different temperatures and annealed in air and vacuum are investigated. On the basis of these results and recent structural investigations a structure model of the a-WO 3 film is given: a spatial network of tightly bounded clusters which are built from hydrated WO 6 octahedra. These octahedra contain terminal oxygens and being axially distorted they are the sites for localization of injected electrons. The colour centres formed are paramagnetic (ESR signal from W 5+ ) and their optical absorption is satisfactorily described by the intervalence charge transfer between the localized states of W 5+ and W 6+ ions. (author)

  6. Contribution to the study of sulfur trioxide formation and determination of the sulfuric acid dew point in boiler plants

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, H.

    1983-11-01

    This paper analyzes chemical reaction kinetics of the formation of sulfur trioxide and sulfuric acid in combustion air and flue gas of steam generators. Formulae for sulfuric acid equilibrium reactions according to Wahnschaffe (W. Grimm, 1972) and R. Hasse, H.W. Borgmann (1962) are presented. Theoretical acid dew point, combustion parameters with influence on the dew point temperature and formation of sulfates are further discussed. Sulfur trioxide formation at temperatures above 1,000 C as a non-equilibrium reaction is outlined as another variant of chemical reactions. A graphic evaluation is made of dew point conditions in brown coal dust fired, and heating oil fired steam generators. (11 refs.)

  7. Carbon dioxide and nisin act synergistically on Listeria monocytogenes

    DEFF Research Database (Denmark)

    Nilsson, Lilian; Chen, Y.H.; Chikindas, M.L.

    2000-01-01

    This paper examines the synergistic action of carbon dioxide and nisin on Listeria monocytogenes Scott A wild-type and nisin-resistant (Nis(r)) cells grown in broth at 4 degrees C. Carbon dioxide extended the lag phase and decreased the specific growth rate of both strains, but to a greater degree...... for cultures in CO2. This synergism between nisin and CO2 was examined mechanistically by following the leakage of carboxyfluorescein (CF) from listerial liposomes. Carbon dioxide enhanced nisin-induced CF leakage, indicating that the synergistic action of CO2 and nisin occurs at the cytoplasmic membrane...

  8. Arctigenin in combination with quercetin synergistically enhances the anti-proliferative effect in prostate cancer cells

    Science.gov (United States)

    Wang, Piwen; Phan, Tien; Gordon, David; Chung, Seyung; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    Scope We investigated whether a combination of two promising chemopreventive agents arctigenin and quercetin increases the anti-carcinogenic potency at lower concentrations than necessary when used individually in prostate cancer. Methods and results Androgen-dependent LAPC-4 and LNCaP prostate cancer cells were treated with low doses of arctigenin and quercetin alone or in combination for 48h. The anti-proliferative activity of arctigenin was 10-20 fold stronger than quercetin in both cell lines. Their combination synergistically enhanced the anti-proliferative effect, with a stronger effect in androgen receptor (AR) wild-type LAPC-4 cells than in AR mutated LNCaP cells. Arctigenin demonstrated a strong ability to inhibit AR protein expression in LAPC-4 cells. The combination treatment significantly inhibited both AR and PI3K/Akt pathways compared to control. A protein array analysis revealed that the mixture targets multiple pathways particularly in LAPC-4 cells including Stat3 pathway. The mixture significantly inhibited the expression of several oncogenic microRNAs including miR-21, miR-19b, and miR-148a compared to control. The mixture also enhanced the inhibition of cell migration in both cell lines compared to individual compounds tested. Conclusion The combination of arctigenin and quercetin, that target similar pathways, at low physiological doses, provides a novel regimen with enhanced chemoprevention in prostate cancer. PMID:25380086

  9. Addition of Arsenic Trioxide into Induction Regimens Could Not Accelerate Recovery of Abnormality of Coagulation and Fibrinolysis in Patients with Acute Promyelocytic Leukemia.

    Directory of Open Access Journals (Sweden)

    Ye Zhang

    Full Text Available All-trans retinoic acid combined to anthracycline-based chemotherapy is the standard regimen of acute promyelocytic leukemia. The advent of arsenic trioxide has contributed to improve the anti-leukemic efficacy in acute promyelocytic leukemia. The objectives of the current study were to evaluate if dual induction by all-trans retinoic acid and arsenic trioxide could accelerate the recovery of abnormality of coagulation and fibrinolysis in patients with acute promyelocytic leukemia.Retrospective analysis was performed in 103 newly-diagnosed patients with acute promyelocytic leukemia. Hemostatic variables and the consumption of component blood were comparably analyzed among patients treated by different induction regimen with or without arsenic trioxide.Compared to patients with other subtypes of de novo acute myeloid leukemia, patients with acute promyelocytic leukemia had lower platelet counts and fibrinogen levels, significantly prolonged prothrombin time and elevated D-dimers (P<0.001. Acute promyelocytic leukemia patients with high or intermediate risk prognostic stratification presented lower initial fibrinogen level than that of low-risk group (P<0.05. After induction treatment, abnormal coagulation and fibrinolysis of patients with acute promyelocytic leukemia was significantly improved before day 10. The recovery of abnormal hemostatic variables (platelet, prothrombin time, fibrinogen and D-dimer was not significantly accelerated after adding arsenic trioxide in induction regimens; and the consumption of transfused component blood (platelet and plasma did not dramatically change either. Acute promyelocytic leukemia patients with high or intermediate risk prognostic stratification had higher platelet transfusion demands than that of low-risk group (P<0.05.Unexpectedly, adding arsenic trioxide could not accelerate the recovery of abnormality of coagulation and fibrinolysis in acute promyelocytic leukemia patients who received all

  10. Halloysite Nanotubes Supported Ag and ZnO Nanoparticles with Synergistically Enhanced Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Zhan Shu

    2017-02-01

    Full Text Available Abstract Novel antimicrobial nanocomposite incorporating halloysite nanotubes (HNTs and silver (Ag into zinc oxide (ZnO nanoparticles is prepared by integrating HNTs and decorating Ag nanoparticles. ZnO nanoparticles (ZnO NPs and Ag nanoparticles (Ag NPs with a size of about 100 and 8 nm, respectively, are dispersively anchored onto HNTs. The synergistic effects of ZnO NPs, Ag NPs, and HNTs led to the superior antibacterial activity of the Ag-ZnO/HNTs antibacterial nanocomposites. HNTs facilitated the dispersion and stability of ZnO NPs and brought them in close contact with bacteria, while Ag NPs could promote the separation of photogenerated electron-hole pairs and enhanced the antibacterial activity of ZnO NPs. The close contact with cell membrane enabled the nanoparticles to produce the increased concentration of reactive oxygen species and the metal ions to permeate into the cytoplasm, thus induced quick death of bacteria, indicating that Ag-ZnO/HNTs antibacterial nanocomposite is a promising candidate in the antibacterial fields.

  11. Dissimilatory antimonate reduction and production of antimony trioxide microcrystals by a novel microorganism.

    Science.gov (United States)

    Abin, Christopher A; Hollibaugh, James T

    2014-01-01

    Antimony (Sb) is a metalloid that has been exploited by humans since the beginning of modern civilization. The importance of Sb to such diverse industries as nanotechnology and health is underscored by the fact that it is currently the ninth-most mined metal worldwide. Although its toxicity mirrors that of its Group 15 neighbor arsenic, its environmental chemistry is very different, and, unlike arsenic, relatively little is known about the fate and transport of Sb, especially with regard to biologically mediated redox reactions. To further our understanding of the interactions between microorganisms and Sb, we have isolated a bacterium that is capable of using antimonate [Sb(V)] as a terminal electron acceptor for anaerobic respiration, resulting in the precipitation of antimonite [Sb(III)] as microcrystals of antimony trioxide. The bacterium, designated strain MLFW-2, is a sporulating member of a deeply branching lineage within the order Bacillales (phylum Firmicutes). This report provides the first unequivocal evidence that a bacterium is capable of conserving energy for growth and reproduction from the reduction of antimonate. Moreover, microbiological antimonate reduction may serve as a novel route for the production of antimony trioxide microcrystals of commercial significance to the nanotechnology industry.

  12. Enhancing effect of negative polypropylene electret on in vitro transdermal delivery of cyclosporine A solution and its synergistic effect with ethyl oleate

    International Nuclear Information System (INIS)

    Cui, L L; Liu, H Y; Ma, L; Liang, Y Y; Guo, X; Jiang, J

    2013-01-01

    In this study, the corona charged electrets at voltages of −500 V, −1000 V and −2000 V were made from polypropylene (PP) film. The cyclosporine A (CsA) and 10% ethyl oleate were chosen as the model drug and chemical enhancer, respectively. The charge storage stability of the electrets and the in vitro transdermal behaviour of the model drug in solution under different conditions were studied. The results indicate that the external electrostatic field of the negative PP electrets could penetrate through the rat skin and enhance the transdermal delivery of cyclosporine A. A synergistic effect on enhancing the transdermal delivery of cyclosporine A was observed by combining different surface potential negative PP electrets with 10% ethyl oleate, and the amount of transdermal delivery of CsA was greatly increased comparing with only application of electrets. Therefore, the combination application of electret and chemical enhancer could be a feasible strategy in enhancing transdermal delivery of small peptide drugs or some large molecular drugs.

  13. Co-delivery of chemotherapeutics and proteins for synergistic therapy.

    Science.gov (United States)

    He, Chaoliang; Tang, Zhaohui; Tian, Huayu; Chen, Xuesi

    2016-03-01

    Combination therapy with chemotherapeutics and protein therapeutics, typically cytokines and antibodies, has been a type of crucial approaches for synergistic cancer treatment. However, conventional approaches by simultaneous administration of free chemotherapeutic drugs and proteins lead to limitations for further optimizing the synergistic effects, due to the distinct in vivo pharmacokinetics and distribution of small drugs and proteins, insufficient tumor selectivity and tumor accumulation, unpredictable drug/protein ratios at tumor sites, short half-lives, and serious systemic adverse effects. Consequently, to obtain optimal synergistic anti-tumor efficacy, considerable efforts have been devoted to develop the co-delivery systems for co-incorporating chemotherapeutics and proteins into a single carrier system and subsequently releasing the dual or multiple payloads at desired target sites in a more controllable manner. The co-delivery systems result in markedly enhanced blood stability and in vivo half-lives of the small drugs and proteins, elevated tumor accumulation, as well as the capability of delivering the multiple agents to the same target sites with rational drug/protein ratios, which may facilitate maximizing the synergistic effects and therefore lead to optimal antitumor efficacy. This review emphasizes the recent advances in the co-delivery systems for chemotherapeutics and proteins, typically cytokines and antibodies, for systemic or localized synergistic cancer treatment. Moreover, the proposed mechanisms responsible for the synergy of chemotherapeutic drugs and proteins are discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Arsenic speciation in saliva of acute promyelocytic leukemia patients undergoing arsenic trioxide treatment

    OpenAIRE

    Chen, Baowei; Cao, Fenglin; Yuan, Chungang; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X. Chris

    2013-01-01

    Arsenic trioxide has been successfully used as a therapeutic in the treatment of acute promyelocytic leukemia (APL). Detailed monitoring of the therapeutic arsenic and its metabolites in various accessible specimens of APL patients can contribute to improving treatment efficacy and minimizing arsenic-induced side effects. This article focuses on the determination of arsenic species in saliva samples from APL patients undergoing arsenic treatment. Saliva samples were collected from nine APL pa...

  15. A new molybdenum trioxide hydrate MoO3.1/3H2O and a new monoclinic form of MoO3

    International Nuclear Information System (INIS)

    Harb, F.; Gerand, B.; Nowogrocki, G.; Figlarz, M.

    1986-01-01

    A new hydrate of molybdenum trioxide MoO 3 .1/3H 2 O has been obtained by hydrothermal treatment at 110 0 C of either aqueous suspensions of MoO 3 .2H 2 O or aqueous molybdic acid solutions. The hydrate crystallizes in the orthorhombic system, lattice parameters are given; a structural model is proposed by comparison with the isostructural WO 3 .1/3H 2 O phase. The dehydration of MoO 3 .1/3H 2 O leads to a new anhydrous molybdenum trioxide, monoclinic, the structure of which is of ReO 3 type [fr

  16. Reactions of ethyl diazoacetate catalyzed by methylrhenium trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Z.; Espenson, H. [Iowa State Univ., Ames, IA (United States)

    1995-11-03

    Methylrhenium trioxide (CH{sub 3}ReO{sub 3} or MTO) has found wise use in catalysis, including the epoxidation and metathesis of olefins, aldehyde olefination, and oxygen transfer. Extensive reports have now appeared in the area of MTO-catalyzed substrate oxidations with hydrogen peroxide. Certain catalytic applications of MTO for organic reactions that do not utilize peroxide have now been realized. In particular, a catalytic amount of MTO with ethyl diazoacetate (EDA) will convert aromatic imines to aziridines and convert aldehydes and ketones to epoxides. The aziridine preparation proceeds in high yields under anaerobic conditions more conveniently than with existing methods. Compounds with a three-membered heterocyclic ring can be obtained with the EDA/MTO catalytic system. Aromatic imines undergo cycloaddition reactions to give aziridines under mild conditions.

  17. Pulp-Capping with Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Peycheva Kalina

    2015-11-01

    Full Text Available There are two considerations for direct pulp capping - accidental mechanical pulp exposure and exposure caused by caries. Mineral trioxide aggregate (MTA was used as pulp-capping material to preserve the vitality of the pulpal tissues. Follow-up examinations revealed that treatment was successful in preserving pulpal vitality and continued development of the tooth. On the basis of available information, it appears that MTA is the material of choice for some clinical applications. Material and methods: Cases 18 - 8 teeth with grey MTA, 10 teeth with white MTA; diagnose: Pulpitis chronica ulcerosa, Electro pulpal test (EOD - 30-35 μA, pre-clinical X-ray - without changes in the structures, follow ups for 4 years. Successful treatments: without clinical symptoms and changes in the X-rays: 5 teeth with grey MTA, 8 teeth with white MTA for period of 4 years. Unsuccessful treatments: Clinical symptoms and sometimes changes in the X-ray: 3 with grey MTA, 2 with white MTA. MTA is an appropriate material for pulp-capping and follow-up examinations revealed that the treatment was successful in preserving pulpal vitality.

  18. Nanocarriers for DNA Vaccines: Co-Delivery of TLR-9 and NLR-2 Ligands Leads to Synergistic Enhancement of Proinflammatory Cytokine Release

    Directory of Open Access Journals (Sweden)

    Johanna Poecheim

    2015-12-01

    Full Text Available Adjuvants enhance immunogenicity of vaccines through either targeted antigen delivery or stimulation of immune receptors. Three cationic nanoparticle formulations were evaluated for their potential as carriers for a DNA vaccine, and muramyl dipeptide (MDP as immunostimulatory agent, to induce and increase immunogenicity of Mycobacterium tuberculosis antigen encoding plasmid DNA (pDNA. The formulations included (1 trimethyl chitosan (TMC nanoparticles, (2 a squalene-in-water nanoemulsion, and (3 a mineral oil-in-water nanoemulsion. The adjuvant effect of the pDNA-nanocomplexes was evaluated by serum antibody analysis in immunized mice. All three carriers display a strong adjuvant effect, however, only TMC nanoparticles were capable to bias immune responses towards Th1. pDNA naturally contains immunostimulatory unmethylated CpG motifs that are recognized by Toll-like receptor 9 (TLR-9. In mechanistic in vitro studies, activation of TLR-9 and the ability to enhance immunogenicity by simultaneously targeting TLR-9 and NOD-like receptor 2 (NLR-2 was determined by proinflammatory cytokine release in RAW264.7 macrophages. pDNA in combination with MDP was shown to significantly increase proinflammatory cytokine release in a synergistic manner, dependent on NLR-2 activation. In summary, novel pDNA-Ag85A loaded nanoparticle formulations, which induce antigen specific immune responses in mice were developed, taking advantage of the synergistic combinations of TLR and NLR agonists to increase the adjuvanticity of the carriers used.

  19. Response of maize to reduced urea application combined with compound nitrogen fertilizer synergists

    International Nuclear Information System (INIS)

    Tian Xiuying; WANG Zhengyin

    2006-01-01

    Pot and field experiments were conducted to study the response to application rate of urea labeled with 15 N combined with compound nitrogen fertilizer synergists in the growth, yield, uptake and utilization rate of urea of maize. In pot experiment, the standard urea application rate is 120 mg/perpot; in field experiment, the standard urea application rate is 157.5 kg/hm 2 . Maize with 15 N-urea. The results showed that the growth of maize seedling was obviously promoted with appropriate dosage of compound nitrogen fertilizer synergists (20%-60% of N). The treatments of urea application rate reduced by 5%-15% and added compound nitrogen fertilizer synergists, the growth and nitrogen content of maize were not significant changed, and the total 15 N uptake and nitrogen uptake by maize were the same as CK 2 or increased a little. Nitrogen use efficiency of other treatments increased by 5.6%-7.3% comparing with CK, except the treatment of urea application rate reduced by 30%. The apparent utilization rate of nitrogen was enhanced by 7.7%-17.0%. Under the field condition, maize yield, total uptake, net uptake, physiological rate and agronomic use efficiency of nitrogen were the same as CK or increased. The apparent utilization rate of nitrogen was enhanced by 14.8%-15.2% treated with urea reduced by 5%-15% (7.8-23.7 kg/hm 2 ) and added with compound nitrogen fertilizer synergists. It was not helpful for the growth and nitrogen utilization rate of maize when urea reduced by 30% and combined with compound nitrogen fertilizer synergists. As a result, treated with urea decreased by 15% and combined with appropriate dosage of compound nitrogen fertilizer synergists (20% of urea), the growth and yield of maize had litter effect and higher the uptake and utilization of nitrogen. (authors)

  20. Synergistic use of biochar, compost and plant growth-promoting rhizobacteria for enhancing cucumber growth under water deficit conditions.

    Science.gov (United States)

    Nadeem, Sajid M; Imran, Muhammad; Naveed, Muhammad; Khan, Muhammad Y; Ahmad, Maqshoof; Zahir, Zahir A; Crowley, David E

    2017-12-01

    Limited information is available about the effectiveness of biochar with plant growth-promoting rhizobacteria (PGPR) and compost. A greenhouse study was conducted to evaluate the effect of biochar in combination with compost and PGPR (Pseudomonas fluorescens) for alleviating water deficit stress. Both inoculated and un-inoculated cucumber seeds were sown in soil treated with biochar, compost and biochar + compost. Three water levels - field capacity (D0), 75% field capacity (D1) and 50% field capacity (D2) - were maintained. The results showed that water deficit stress significantly suppressed the growth of cucumber; however, synergistic use of biochar, compost and PGPR mitigated the negative impact of stress. At D2, the synergistic use of biochar, compost and PGPR caused significant increases in shoot length, shoot biomass, root length and root biomass, which were respectively 88, 77, 89 and 74% more than in the un-inoculated control. Significant improvements in chlorophyll and relative water contents as well as reduction in leaf electrolyte leakage demonstrated the effectiveness of this approach. Moreover, the highest population of P. fluorescens was observed where biochar and compost were applied together. These results suggest that application of biochar with PGPR and/or compost could be an effective strategy for enhancing plant growth under stress. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  1. Supramolecular Chitosan Micro-Platelets Synergistically Enhance Anti-Candida albicans Activity of Amphotericin B Using an Immunocompetent Murine Model.

    Science.gov (United States)

    Grisin, Tiphany; Bories, Christian; Bombardi, Martina; Loiseau, Philippe M; Rouffiac, Valérie; Solgadi, Audrey; Mallet, Jean-Maurice; Ponchel, Gilles; Bouchemal, Kawthar

    2017-05-01

    The aim of this work is to design new chitosan conjugates able to self-organize in aqueous solution in the form of micrometer-size platelets. When mixed with amphotericin B deoxycholate (AmB-DOC), micro-platelets act as a drug booster allowing further improvement in AmB-DOC anti-Candida albicans activity. Micro-platelets were obtained by mixing oleoyl chitosan and α-cyclodextrin in water. The formulation is specifically-engineered for mucosal application by dispersing chitosan micro-platelets into thermosensitive pluronic ® F127 20 wt% hydrogel. The formulation completely cured C. albicans vaginal infection in mice and had a superior activity in comparison with AmB-DOC without addition of chitosan micro-platelets. In vitro studies showed that the platelets significantly enhance AmB-DOC antifungal activity since the IC 50 and the MIC 90 decrease 4.5 and 4.8-times. Calculation of fractional inhibitory concentration index (FICI = 0.198) showed that chitosan micro-platelets act in a synergistic way with AmB-DOC against C. albicans. No synergy is found between spherical nanoparticles composed poly(isobutylcyanoacrylate)/chitosan and AmB-DOC. These results demonstrate for the first time the ability of flattened chitosan micro-platelets to have synergistic activity with AmB-DOC against C. albicans candidiasis and highlight the importance of rheological and mucoadhesive behaviors of hydrogels in the efficacy of the treatment.

  2. Arsenic trioxide: impact on the growth and differentiation of cancer cells and possible use in cancer therapy

    Directory of Open Access Journals (Sweden)

    Ewelina Hoffman

    2013-08-01

    Full Text Available Arsenic trioxide (As2O3 has recently been identified as an effective drug in different types of cancer therapy. It is a useful pharmacological agent in acute promyelocytic leukemia (APL treatment, especially the form that is resistant to conventional chemotherapy with all-trans retinoic acid (ATRA. What is more, laboratory data suggest that As2O3 is also active when it comes to several solid tumor cell lines. However, the mechanism of action is not fully understood. As2O3 in high doses triggers apoptosis, while in lower concentrations it induces partial differentiation. The As2O3 mechanism of action involves effects on mitochondrial transmembrane potential which lead to apoptosis. It also acts on the activity of JNK kinase, glutathione, caspases, NF-ĸB nuclear factor or pro- and antiapoptotic proteins. This publication presents the current knowledge about the influence of arsenic trioxide in cancer cells.

  3. In situ hydrogenation of molybdenum oxide nanowires for enhanced supercapacitors

    KAUST Repository

    Shakir, Imran

    2014-01-01

    In situ hydrogenation of orthorhombic molybdenum trioxide (α-MoO 3) nanowires has been achieved on a large scale by introducing alcohol during the hydrothermal synthesis for electrochemical energy storage supercapacitor devices. The hydrogenated molybdenum trioxide (H xMoO3) nanowires yield a specific capacitance of 168 F g-1 at 0.5 A g-1 and maintain 108 F g-1 at 10 A g-1, which is 36-fold higher than the capacitance obtained from pristine MoO3 nanowires at the same conditions. The electrochemical devices made with HxMoO3 nanowires exhibit excellent cycling stability by retaining 97% of their capacitance after 3000 cycles due to an enhanced electronic conductivity and increased density of hydroxyl groups on the surface of the MoO3 nanowires. This journal is © The Royal Society of Chemistry.

  4. Synergistic enhancing effect of N+C alloying on cyclic deformation behaviors in austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Kang, J. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Zhang, F.C., E-mail: zfc@ysu.edu.cn [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Long, X.Y. [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004 (China); Yang, Z.N. [National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Yanshan University, Qinhuangdao 066004 (China)

    2014-07-29

    Cyclic plastic and elastic strain controlled deformation behaviors of Mn18Cr7 austenitic steel with N0.6C0.3 synergistic enhancing alloying have been investigated using tension-compression low cycle fatigue and three-point bending high cycle fatigue testing. Results of cyclic deformation characteristic and fatigue damage mechanism have been compared to that in Mn12C1.2 steel. Mn18Cr7N0.6C0.3 steel always shows cyclic softening caused by enhanced planar sliding due to the interaction between N+C and the substitutional atoms as well as the dislocation, which is totally different from cyclic hardening in Mn12C1.2 steel caused by the interaction between C members of C–Mn couples with the dislocation. Enhanced effective stress is obtained due to the solid solution strengthening effect caused by the short range order at low strain amplitude while this effect does not work at high strain amplitude. Internal stress contributes most to the cyclic softening with the increase of strain amplitudes. Significant planar slip characteristic can be observed resulting from low stacking fault energy and high short range order effects in Mn18Cr7N0.6C0.3 steel and finally the parallel or intersecting thin sheets with dislocation tangles separated by dislocation free sheets are obtained with the prolonged cycles under cyclic elastic or plastic strain controlled fatigue testing. There exist amounts of small cracks on the surface of the Mn18Cr7N0.6C0.3 steel because fatigue crack initiation is promoted by the cyclic plastic strain localization. However, the zigzag configuration of the cracks reveals that the fatigue crack propagation is highly inhibited by the planar slip characteristic, which eventually improves the fatigue life.

  5. Development of a hybrid paclitaxel-loaded arsenite nanoparticle (HPAN) delivery system for synergistic combined therapy of paclitaxel-resistant cancer

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Fei-yan; Zhang, Yu [Nanchang University, College of Chemistry (China); Chen, Xiang-yu [Xiangya No.2 Hospital of Central South University, Department of Radiology (China); Li, Jia-qian; Xiao, Xiao-ping; Yu, Lu-lu; Tang, Qun, E-mail: tangqun@ncu.edu.cn [Nanchang University, Institute for Advanced Study (China)

    2017-04-15

    Multidrug resistance (MDR) is a major reason for failure of chemotherapy in a variety of human tumors. For instance, paclitaxel (PTX) has been widely used as a first-line anticancer drug, but resistance to PTX is becoming increasingly serious. Herein, we propose a strategy of combined therapy to overcome MDR of PTX by introducing a hybrid paclitaxel-loaded gadolinium arsenite nanoparticle (HPAN), where PTX was conjugated with rod-shaped gadolinium arsenite (GdAsO{sub x}) nanoparticle (NP). Triggered by endogenous inorganic phosphate (Pi), the hybrid nanoparticles readily collapse, thereby releasing PTX and arsenic trioxide (ATO). An MTT assay indicated IC50 values for HPAN one order of magnitude lower than for a simple equivalent mixture of PTX and ATO against PTX-resistant human colon cancer cells (HCT 166), indicating remarkable synergistic effect. Species type-dependent cellular uptake, induced apoptosis, and cell cycle modulation were also evaluated. Cellular uptake tests indicate that the HPAN presents higher PTX intracellular loading for the PTX-resistant cells and longer intracellular retention time, displaying resistance to drug efflux from the cancer cell than pristine PTX or the equivalent mixture of PTX and ATO. Cell cycle and apoptosis tests consistently proved that addition of HPAN resulted in higher G2/M and apoptosis in PTX-resistant cells. In vivo anticancer experiments evidenced that HPAN had better therapeutic effect on the resistant tumor in the murine xenograft model than pristine PTX or a mixture of PTX and ATO. Our results suggest that HPAN might enhance the therapeutic index and overcome PTX resistance and also demonstrate that the combined therapy is not only related to the species of combined agents but also their physiochemical states.

  6. Synthesis and Characterization of WO3/Graphene Nanocomposites for Enhanced Photocatalytic Activities by One-Step In-Situ Hydrothermal Reaction

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Hu

    2018-01-01

    Full Text Available Tungsten trioxide (WO3 nanorods are synthesized on the surface of graphene (GR sheets by using a one-step in-situ hydrothermal method employing sodium tungstate (Na2WO4·2H2O and graphene oxide (GO as precursors. The resulting WO3/GR nanocomposites are characterized by X-ray diffraction, Raman spectroscopy, transmission electron microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy. The results confirm that the interface between WO3 nanorod and graphene contains chemical bonds. The enhanced optical absorption properties are measured by UV-vis diffuse reflectance spectra. The photocatalytic activity of the WO3/GR nanocomposites under visible light is evaluated by the photodegradation of methylene blue, where the degradation rate of WO3/GR nanocomposites is shown to be double that of pure WO3. This is attributed to the synergistic effect of graphene and the WO3 nanorod, which greatly enhances the photocatalytic performance of the prepared sample, reduces the recombination of the photogenerated electron-hole pairs and increases the visible light absorption efficiency. Finally, the photocatalytic mechanism of the WO3/GR nanocomposites is presented. The synthesis of the prepared sample is convenient, direct and environmentally friendly. The study reports a highly efficient composite photocatalyst for the degradation of contaminants that can be applied to cleaning up the environment.

  7. Synergistic effects of iron powder on intumescent flame retardant polypropylene system

    Directory of Open Access Journals (Sweden)

    2009-06-01

    Full Text Available The effects of iron powder as a synergistic agent on the flame retardancy of intumescent flame retardant polypropylene composites (IFR-PP were studied. The thermogravimetric analysis (TGA and cone calorimeter (CONE were used to evaluate the synergistic effects of iron powder (Fe. The TGA data showed that Fe could enhance the thermal stability of the IFR-PP systems at high temperature and effectively increase the char residue formation. The CONE results revealed that Fe and IFR could clearly change the decomposition behavior of PP and form a char layer on the surface of the composites, consequently resulting in efficient reduction of the flammability parameters, such as heat release rate (HRR, mass loss (ML, Mass loss rate (MLR, total heat release (THR, carbon monoxide and so on. Thus, a suitable amount of Fe plays a synergistic effect in the flame retardancy of IFR composites.

  8. A residue-free green synergistic antifungal nanotechnology for pesticide thiram by ZnO nanoparticles

    Science.gov (United States)

    Xue, Jingzhe; Luo, Zhihui; Li, Ping; Ding, Yaping; Cui, Yi; Wu, Qingsheng

    2014-07-01

    Here we reported a residue-free green nanotechnology which synergistically enhance the pesticides efficiency and successively eliminate its residue. We built up a composite antifungal system by a simple pre-treating and assembling procedure for investigating synergy. Investigations showed 0.25 g/L ZnO nanoparticles (NPs) with 0.01 g/L thiram could inhibit the fungal growth in a synergistic mode. More importantly, the 0.25 g/L ZnO NPs completely degraded 0.01 g/L thiram under simulated sunlight irradiation within 6 hours. It was demonstrated that the formation of ZnO-thiram antifungal system, electrostatic adsorption of ZnO NPs to fungi cells and the cellular internalization of ZnO-thiram composites played important roles in synergy. Oxidative stress test indicated ZnO-induced oxidative damage was enhanced by thiram that finally result in synergistic antifungal effect. By reducing the pesticides usage, this nanotechnology could control the plant disease economically, more significantly, the following photocatalytic degradation of pesticide greatly benefit the human social by avoiding negative influence of pesticide residue on public health and environment.

  9. A New Method for Low-Temperature Decomposition of Chromites and Dichromium Trioxide using Bromic Acid Evaluated by Chromium Isotope Measurements

    Czech Academy of Sciences Publication Activity Database

    Chrastný, V.; Rohovec, Jan; Čadková, E.; Pašava, J.; Farkaš, J.; Novák, M.

    2014-01-01

    Roč. 38, č. 1 (2014), s. 103-110 ISSN 1639-4488 Institutional support: RVO:67985831 Keywords : chromites * dichromium trioxide * decomposition * chromium isotopes * bromic acid Subject RIV: DD - Geochemistry Impact factor: 3.792, year: 2013

  10. Crystallochemical transformations at low temperature reduction of molybdenum trioxide

    International Nuclear Information System (INIS)

    Solonin, Yu.M.

    1979-01-01

    Results are given of studying development of reaction products morphology at different stages of reduction of molybdenum trioxide separate crystals. It is determined that character of MoO 3 macrocrystals destruction at the first stage (MoO 3 -MoO 2 ) is determined by anisotropy of the chemical bond at the original crystal. MoO 2 nuclei are formed as intensively branched dendrite-like single crystals regularly oriented with respect to MoO 3 crystal. The degree of branching is determined by the reduction temperature and increases with its decrease. Formation of MoO 2 nuclei is proceeded by appearance of crystallographic shear planes in MoO 3 crystal. At the stage of MoO 2 -Mo transition no additional development of the reduction products surface takes place. The forming molybdenum crystals are strongly textured

  11. Synergistic growth inhibition of cancer cells harboring the RET/PTC1 ...

    Indian Academy of Sciences (India)

    Synergistic growth inhibition of cancer cells harboring the RET/PTC1 oncogene by staurosporine and rotenone involves enhanced cell death. ANTÓNIO PEDRO GONÇALVES, ARNALDO VIDEIRA, VALDEMAR MÁXIMO and PAULA SOARES. J. Biosci. 36(4), September 2011, 639-648, © Indian Academy of Sciences.

  12. Synergistic Effect of Cu2O and Urea as Modifiers of TiO2 for Enhanced Visible Light Activity

    Directory of Open Access Journals (Sweden)

    Marcin Janczarek

    2018-06-01

    Full Text Available Low cost compounds, i.e., Cu2O and urea, were used as TiO2 modifiers to introduce visible light activity. Simple and cheap methods were applied to synthesize an efficient and stable nanocomposite photocatalytic material. First, the core-shell structure TiO2–polytriazine derivatives were prepared. Thereafter, Cu2O was added as the second semiconductor to form a dual heterojunction system. Enhanced visible light activity was found for the above-mentioned nanocomposite, confirming a synergistic effect of Cu2O and urea (via polytriazine derivatives on titania surface. Two possible mechanisms of visible light activity of the considered material were proposed regarding the type II heterojunction and Z-scheme through the essential improvement of the charge separation effect.

  13. Sumoylation of the Tumor Suppressor Promyelocytic Leukemia Protein Regulates Arsenic Trioxide-Induced Collagen Synthesis in Osteoblasts.

    Science.gov (United States)

    Xu, Wen-Xiao; Liu, Sheng-Zhi; Wu, Di; Qiao, Guo-Fen; Yan, Jinglong

    2015-01-01

    Promyelocytic leukemia (PML) protein is a tumor suppressor that fuses with retinoic acid receptor-α (PML-RARα) to contribute to the initiation of acute promyelocytic leukemia (APL). Arsenic trioxide (ATO) upregulates expression of TGF-β1, promoting collagen synthesis in osteoblasts, and ATO binds directly to PML to induce oligomerization, sumoylation, and ubiquitination. However, how ATO upregulates TGF-β1 expression is uncertain. Thus, we suggested that PML sumoylation is responsible for regulation of TGF-β1 protein expression. Kunming mice were treated with ATO, and osteoblasts were counted under scanning electron microscopy. Masson's staining was used to quantify collagen content. hFOB1.19 cells were transfected with siRNA against UBC9 or RNF4, and then treated with ATO or FBS. TGF-β1, PML expression, and sumoylation were quantified with Western blot, and collagen quantified via immunocytochemistry. ATO enhanced osteoblast accumulation, collagen synthesis, and PML-NB formation in vivo. Knocking down UBC9 in hFOB1.19 cells inhibited ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. Conversely, knocking down RNF4 enhanced ATO- and FBS-induced PML sumoylation, TGF-β1 expression, and collagen synthesis. These data suggest that PML sumoylation is required for ATO-induced collagen synthesis in osteoblasts. © 2015 S. Karger AG, Basel.

  14. Insight into synergistically enhanced adsorption and visible light photocatalytic performance of Z-scheme heterojunction of SrTiO{sub 3}(La,Cr)-decorated WO{sub 3} nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xin; Jiang, Junzhe; Jia, Yushuai, E-mail: ysjia@jxnu.edu.cn; Qiu, Jinmin; Xia, Tonglin; Zhang, Yuhong; Li, Yuqin; Chen, Xiangshu, E-mail: cxs66cn@jxnu.edu.cn

    2017-08-01

    Highlights: • Fabrication of SrTiO{sub 3}(La,Cr)/WO{sub 3} heterojunction with well-defined morphology. • Synergistic effect of adsorption and photocatalytic elimination for methylene blue. • Adsorption kinetics and isotherm were investigated in detail. • Negative zeta potential and large surface area result in high adsorption capacity. • A novel Z-scheme mechanism for the enhanced photocatalytic activity is proposed. - Abstract: The efficient treatment of dye wastewater has been a hot topic of environment field. The integration of adsorption and photocatalytic degradation via fabrication of bi-component heterojunction photocatalyst is considered as a facile and effective strategy to enhance the dye elimination efficiency. In this report, a Z-scheme heterojunction material, SrTiO{sub 3}(La,Cr)/WO{sub 3} with bifunction of adsorption and photocatalysis was successfully synthesized for efficient removal of methylene blue (MB) under visible light irradiation. The morphology and microstructure characterization demonstrates that the SrTiO{sub 3}(La,Cr) nanoparticles are uniformly decorated on the WO{sub 3} nanosheets, forming an intimate heterojunction interface. MB degradation results indicate that the removal efficiency by the synergistic adsorption-photocatalysis process is greatly improved compared to pure WO{sub 3} and SrTiO{sub 3}(La,Cr) with the adsorption and photocatalytic activity closely related to the composition of the material. The possible mechanism for the enhanced photocatalytic activity could be ascribed to the formation of a Z-scheme heterojunction system based on active species trapping experiments. Furthermore, the investigations of adsorption kinetics and isotherm show that the adsorption process follows pseudo-second-order kinetic model and Langmuir isotherm, respectively. Due to the synergistic advantages of negative zeta potential, large surface area and accelerated separation of photogenerated carriers driven by Z

  15. Synergistic effects in threshold models on networks

    Science.gov (United States)

    Juul, Jonas S.; Porter, Mason A.

    2018-01-01

    Network structure can have a significant impact on the propagation of diseases, memes, and information on social networks. Different types of spreading processes (and other dynamical processes) are affected by network architecture in different ways, and it is important to develop tractable models of spreading processes on networks to explore such issues. In this paper, we incorporate the idea of synergy into a two-state ("active" or "passive") threshold model of social influence on networks. Our model's update rule is deterministic, and the influence of each meme-carrying (i.e., active) neighbor can—depending on a parameter—either be enhanced or inhibited by an amount that depends on the number of active neighbors of a node. Such a synergistic system models social behavior in which the willingness to adopt either accelerates or saturates in a way that depends on the number of neighbors who have adopted that behavior. We illustrate that our model's synergy parameter has a crucial effect on system dynamics, as it determines whether degree-k nodes are possible or impossible to activate. We simulate synergistic meme spreading on both random-graph models and networks constructed from empirical data. Using a heterogeneous mean-field approximation, which we derive under the assumption that a network is locally tree-like, we are able to determine which synergy-parameter values allow degree-k nodes to be activated for many networks and for a broad family of synergistic models.

  16. Transformative piezoelectric enhancement of P(VDF-TrFE) synergistically driven by nanoscale dimensional reduction and thermal treatment.

    Science.gov (United States)

    Ico, G; Myung, A; Kim, B S; Myung, N V; Nam, J

    2018-02-08

    Despite the significant potential of organic piezoelectric materials in the electro-mechanical or mechano-electrical applications that require light and flexible material properties, the intrinsically low piezoelectric performance as compared to traditional inorganic materials has limited their full utilization. In this study, we demonstrate that dimensional reduction of poly(vinylidene fluoride trifluoroethylene) (P(VDF-TrFE)) at the nanoscale by electrospinning, combined with an appropriate thermal treatment, induces a transformative enhancement in piezoelectric performance. Specifically, the piezoelectric coefficient (d 33 ) reached up to -108 pm V -1 , approaching that of inorganic counterparts. Electrospun mats composed of thermo-treated 30 nm nanofibers with a thickness of 15 μm produced a consistent peak-to-peak voltage of 38.5 V and a power output of 74.1 μW at a strain of 0.26% while sustaining energy production over 10k repeated actuations. The exceptional piezoelectric performance was realized by the enhancement of piezoelectric dipole alignment and the materialization of flexoelectricity, both from the synergistic effects of dimensional reduction and thermal treatment. Our findings suggest that dimensionally controlled and thermally treated electrospun P(VDF-TrFE) nanofibers provide an opportunity to exploit their flexibility and durability for mechanically challenging applications while matching the piezoelectric performance of brittle, inorganic piezoelectric materials.

  17. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: is it an additive or synergistic effect?

    Directory of Open Access Journals (Sweden)

    Saddler Jack N

    2011-10-01

    Full Text Available Abstract Background We and other workers have shown that accessory enzymes, such as β-glucosidase, xylanase, and cellulase cofactors, such as GH61, can considerably enhance the hydrolysis effectiveness of cellulase cocktails when added to pretreated lignocellulosic substrates. It is generally acknowledged that, among the several factors that hamper our current ability to attain efficient lignocellulosic biomass conversion yields at low enzyme loadings, a major problem lies in our incomplete understanding of the cooperative action of the different enzymes acting on pretreated lignocellulosic substrates. Results The reported work assessed the interaction between cellulase and xylanase enzymes and their potential to improve the hydrolysis efficiency of various pretreated lignocellulosic substrates when added at low protein loadings. When xylanases were added to the minimum amount of cellulase enzymes required to achieve 70% cellulose hydrolysis of steam pretreated corn stover (SPCS, or used to partially replace the equivalent cellulase dose, both approaches resulted in enhanced enzymatic hydrolysis. However, the xylanase supplementation approach increased the total protein loading required to achieve significant improvements in hydrolysis (an additive effect, whereas the partial replacement of cellulases with xylanase resulted in similar improvements in hydrolysis without increasing enzyme loading (a synergistic effect. The enhancement resulting from xylanase-aided synergism was higher when enzymes were added simultaneously at the beginning of hydrolysis. This co-hydrolysis of the xylan also influenced the gross fiber characteristics (for example, fiber swelling resulting in increased accessibility of the cellulose to the cellulase enzymes. These apparent increases in accessibility enhanced the steam pretreated corn stover digestibility, resulting in three times faster cellulose and xylan hydrolysis, a seven-fold decrease in cellulase loading and

  18. Management of immature teeth with apical infections using mineral trioxide aggregate

    Directory of Open Access Journals (Sweden)

    Sivakumar Nuvvula

    2010-01-01

    Full Text Available Traumatic injuries to the young permanent teeth lead to devitalization of the pulp with concomitant arrest in further development of the immature root of the involved tooth. Hermetic seal of the root canal system during obturation is not possible in such cases, due to the lack of an apical constriction. The traditional management technique in such cases has been apexification involving induction of a calcific barrier at the apex using calcium hydroxide, which in turn facilitates obturation of the root canal. However this becomes complicated when there is persistent infection leading to periapical changes. This case report describes the use of mineral trioxide aggregate (MTA for management of a periapically compromised immature tooth.

  19. Synergistic effect of iontophoresis and chemical enhancers on transdermal permeation of tolterodine tartrate for the treatment of overactive bladder

    Directory of Open Access Journals (Sweden)

    D. Prasanthi

    2013-01-01

    Full Text Available Purpose The objective of the study was to evaluate the synergistic transdermal permeation effect of chemical enhancers and iontophoresis technique on tolterodine tartrate (TT transdermal gel and to evaluate its pharmacokinetic properties. Materials and Methods Taguchi robust design was used for optimization of formulations. Skin permeation rates were evaluated using the Keshary-chein type diffusion cells in order to optimize the gel formulation. In-vivo studies of the optimized formulation were performed in a rabbit model and histopathology studies of optimized formulation were performed on rats. Results Transdermal gels were formulated successfully using Taguchi robust design method. The type of penetration enhancer, concentration of penetration enhancer, current density and pulse on/off ratio were chosen as independent variables. Type of penetration enhancer was found to be the significant factor for all the responses. Permeation parameters were evaluated when maximum cumulative amount permeated in 24 hours (Q24 was 145.71 ± 2.00µg/cm2 by CIT4 formulation over control (91.89 ± 2.30µg/cm2. Permeation was enhanced by 1.75 fold by CIT4 formulation. Formulation CIT4 containing nerolidol (5% and iontophoretic variables applied (0.5mA/cm2 and pulse on/off ratio 3:1 was optimized. In vivo studies with optimized formulation CIT4 showed increase in AUC and T1/2 when compared to oral suspension in rabbits. The histological studies showed changes in dermis indicating the effect of penetration enhancers and as iontophoresis was continued only for two cycles in periodic fashion so it did not cause any skin damage observed in the slides. Conclusion Results indicated that iontophoresis in combination with chemical enhancers is an effective method for transdermal administration of TT in the treatment of overactive bladder.

  20. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application

    International Nuclear Information System (INIS)

    Zhang, Yan-hong; Liu, Fu-qiang; Zhu, Chang-qing; Zhang, Xiao-peng; Wei, Meng-meng; Wang, Feng-he; Ling, Chen; Li, Ai-min

    2017-01-01

    Highlights: • A (N,Fe)-dual-functional bio-sorbent was newly synthesized. • Removal of Ni(II) and H_2PO_4"− could be remarkably enhanced over 3 times. • A multiple mechanism resulted in the synergic adsorption. • N/Fe-DB is efficient and repeatable in treating electroplating wastewater. - Abstract: A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H_2PO_4"− from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H_2PO_4"− were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H_2PO_4"− accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H_2PO_4"−. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.

  1. Experimental study on effect of arsenic trioxide on vascular smooth muscle cells

    International Nuclear Information System (INIS)

    Lu Qin; An Yanli; Niu Huanzhang; Teng Gaojun; Wang Zihao; Zhang Dongsheng; Fang Juanjuan

    2007-01-01

    Objective: To investigate the effect of arsenic trioxide (As 2 O 3 ) nanoparticles on rabbit vascular smooth muscle cells in vitro in comparison with normal form As 2 O 3 . Methods: The rabbit vascular smooth muscle cells were cultured in vitro. Nano and normal forms of As 2 O 3 with drug concentrations of 3 μmol/L were added into the cells. Cell proliferation curve was drawn according to the light absorption values of MTT test. Flow cytometry was applied to observe the apoptosis. DNA was extracted and underwent electrophoresis. Results: Cell proliferation treated with the 3 μmol/L concentration of As 2 O 3 was inhibited. Cell growth was inhibited markedly with increased treatment time, and the inhibition effect of nano drug form seemed stronger than that of normal form. MTT light absorption values of cells treated at 24, 48 and 72 h showed statistically significant difference (H=10.934, 15.039, 15.539, P 2 O 3 , normal drug form of As 2 O 3 and control group of cells without As 2 O 3 were 44.97%, 58.54%, 74.02% respectively. The early apoptosis rates were 16.89%, 11.27%, 11.20%, late apoptosis rates were 26.56%, 23.60%, 12.46%, and necrosis rates were 11.58%, 6.59%, 2.32% respectively. Agarose gel electrophoresis showed 'ladder' strand of DNA, with more strands and obscurity for nano drug form treated cells. Conclusion: Arsenic trioxide may inhibit the growth of rabbit vascular smooth muscle cells. The nano drug form showed stronger inhibition effect than that of the normal drug form. (authors)

  2. Combustion of environmentally altered molybdenum trioxide nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Kevin; Pantoya, Michelle L. [Mechanical Engineering Department, Texas Tech University, 2500 Broadway, Lubbock, TX 79409 (United States)

    2006-06-15

    Nanocomposite thermite mixtures are currently under development for many primer applications due to their high energy densities, high ignition sensitivity, and low release of toxins into the environment. However, variability and inconsistencies in combustion performance have not been sufficiently investigated. Environmental interactions with the reactants are thought to be a contributing factor to these variabilities. Combustion velocity experiments were conducted on aluminum (Al) and molybdenum trioxide (MoO{sub 3}) mixtures to investigate the role of environmental interactions such as light exposure and humidity. While the Al particles were maintained in an ambient, constant environment, the MoO{sub 3} particles were exposed to UV or fluorescent light, and highly humid environments. Results show that UV and fluorescent lighting over a period of days does not significantly contribute to performance deterioration. However, a humid environment severely decreases combustion performance if the oxidizer particles are not heat-treated. Heat treatment of the MoO{sub 3} greatly increases the material's ability to resist water absorption, yielding more repeatable combustion performance. This work further quantifies the role of the environment in the decrease of combustion performance of nanocomposites over time. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  3. The biomineralization ability of mineral trioxide aggregate and Portland cement on dentin enhances the push-out strength.

    Science.gov (United States)

    Reyes-Carmona, Jessie F; Felippe, Mara S; Felippe, Wilson T

    2010-02-01

    Recently, it was shown that the interaction of each of mineral trioxide aggregate (MTA) and Portland cement with dentin in phosphate-buffered saline (PBS) promotes a biomineralization process that leads to the formation of an interfacial layer with tag-like structures at the cement-dentin interface. This study analyzes the influence of the biomineralization process on the push-out strength of ProRoot MTA (Dentsply Tulsa Dental, Tulsa, OK), MTA Branco (Angelus Soluções Odontológicas, Londrina, PR, Brazil), MTA BIO (Angelus Soluções Odontológicas), or Portland cement with and without calcium chloride. Dentin discs with standardized cavities were filled with ProRoot MTA, MTA Branco, MTA BIO, white Portland cement + 20% bismuth oxide (PC1), or PC1 + 10% of calcium chloride (PC2). The specimens were randomly divided into two groups: cement in contact with a wet cotton pellet for 72 hours or immersed in PBS for 2 months. The bond strengths were measured with the Instron Testing machine (Model 4444; Instron Corp, Canton, MA), and the fractured surfaces on the root walls were observed by scanning electron microscopy. All samples immersed in PBS displayed a significantly greater resistance to displacement than that observed for the samples in contact with a wet cotton pellet for 72 hours (p Portland cements. It was concluded that the biomineralization process positively influenced the push-out bond strength of the cements, particularly the MTA groups. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  4. Synergistically Enhanced Performance of Ultrathin Nanostructured Silicon Solar Cells Embedded in Plasmonically Assisted, Multispectral Luminescent Waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung-Min; Dhar, Purnim; Chen, Huandong; Montenegro, Angelo; Liaw, Lauren; Kang, Dongseok; Gai, Boju; Benderskii, Alexander V.; Yoon, Jongseung

    2017-04-12

    Ultrathin silicon solar cells fabricated by anisotropic wet chemical etching of single-crystalline wafer materials represent an attractive materials platform that could provide many advantages for realizing high-performance, low-cost photovoltaics. However, their intrinsically limited photovoltaic performance arising from insufficient absorption of low-energy photons demands careful design of light management to maximize the efficiency and preserve the cost-effectiveness of solar cells. Herein we present an integrated flexible solar module of ultrathin, nanostructured silicon solar cells capable of simultaneously exploiting spectral upconversion and downshifting in conjunction with multispectral luminescent waveguides and a nanostructured plasmonic reflector to compensate for their weak optical absorption and enhance their performance. The 8 μm-thick silicon solar cells incorporating a hexagonally periodic nanostructured surface relief are surface-embedded in layered multispectral luminescent media containing organic dyes and NaYF4:Yb3+,Er3+ nanocrystals as downshifting and upconverting luminophores, respectively, via printing-enabled deterministic materials assembly. The ultrathin nanostructured silicon microcells in the composite luminescent waveguide exhibit strongly augmented photocurrent (~40.1 mA/cm2) and energy conversion efficiency (~12.8%) than devices with only a single type of luminescent species, owing to the synergistic contributions from optical downshifting, plasmonically enhanced upconversion, and waveguided photon flux for optical concentration, where the short-circuit current density increased by ~13.6 mA/cm2 compared with microcells in a nonluminescent medium on a plain silver reflector under a confined illumination.

  5. Assessing the efficiency of aluminium phosphide and arsenic trioxide in controlling the Indian crested porcupine (hystrix indica) in an irrigated forest plantation or Punjab, Pakistan

    International Nuclear Information System (INIS)

    Khan, A.A.

    2010-01-01

    The Indian crested porcupine, Hystrix indica, is widely distributed in the irrigated forests of Punjab, Pakistan and causes serious damage to trees, nursery stocking, field crops and vegetables. Field trials were conducted to determine the efficacy of aluminium phosphide (Phostoxin, 3g tablets) and arsenic trioxide bait (at 2.5g per apple) against the porcupine in a forest plantation. For fumigation with phostoxin, tablets were used at the rate of four, five, six and seven tablets per den. Observations showed that four tablets were ineffective, five and six tablets provided partial control, while seven tablets provided complete control of porcupines. Baiting with arsenic trioxide also resulted in 89 % reduction of the porcupine population occupying the treated dens. (author)

  6. AC conductivity and dielectric properties of bulk tungsten trioxide (WO3)

    Science.gov (United States)

    El-Nahass, M. M.; Ali, H. A. M.; Saadeldin, M.; Zaghllol, M.

    2012-11-01

    AC conductivity and dielectric properties of tungsten trioxide (WO3) in a pellet form were studied in the frequency range from 42 Hz to 5 MHz with a variation of temperature in the range from 303 K to 463 K. AC conductivity, σac(ω) was found to be a function of ωs where ω is the angular frequency and s is the frequency exponent. The values of s were found to be less than unity and decrease with increasing temperature, which supports the correlated barrier hopping mechanism (CBH) as the dominant mechanism for the conduction in WO3. The dielectric constant (ε‧) and dielectric loss (ε″) were measured. The Cole-Cole diagram determined complex impedance for different temperatures.

  7. Synergistic cytotoxic action of vitamin C and vitamin K3.

    Science.gov (United States)

    Zhang, W; Negoro, T; Satoh, K; Jiang, Y; Hashimoto, K; Kikuchi, H; Nishikawa, H; Miyata, T; Yamamoto, Y; Nakano, K; Yasumoto, E; Nakayachi, T; Mineno, K; Satoh, T; Sakagami, H

    2001-01-01

    We investigated the combination effect of sodium ascorbate (vitamin C) and menadione (vitamin K3) on the viability of various cultured cells. Human oral squamous cell carcinoma (HSC-2, HSC-3) and human promyelocytic leukemia (HL-60) cells were more sensitive to these vitamins as compared to normal cells (human gingival fibroblast HGF, human periodontal ligament fibroblast HPLF, human pulp cell HPC). The combination of vitamin C and vitamin K3 produced synergistic cytotoxicity against all these 6 cell lines. Treatment with vitamin C or vitamin K3, or their combination, induced internucleosomal DNA fragmentation only in HL-60 cells, but not in the oral tumor cell lines (HSC-2, HSC-3, HSG). ESR spectroscopy showed that vitamins C and K3 produce radicals under alkaline conditions and that the combination of these two vitamins synergistically enhanced their respective radical intensities.

  8. NTP Toxicology and Carcinogenesis Studies of Molybdenum Trioxide (CAS No. 1313-27-5) in F344 Rats and B6C3F1 Mice (Inhalation Studies).

    Science.gov (United States)

    1997-04-01

    Molybdenum is an essential element for the function of nitrogenase in plants and as a cofactor for enzymes including xanthine oxidoreductase, aldehyde oxidase, and sulfide oxidase in animals. Molybdenum trioxide is used primarily as an additive to steel and corrosion-resistant alloys. It is also used as a chemical intermediate for molybdenum products; an industrial catalyst; a pigment; a crop nutrient; components of glass, ceramics, and enamels; a flame retardant for polyester and polyvinyl chloride resins; and a reagent in chemical analyses. Molybdenum trioxide was nominated by the NCI for toxicity and carcinogenicity studies as a representative inorganic molybdenum compound. The production of molybdenum trioxide is the largest of all the molybdenum compounds examined. Male and female F344/N rats and B6C3F1 mice were exposed to molybdenum trioxide (approximately 99% pure) by inhalation for 14 days, 13 weeks, or 2 years. Genetic toxicology studies were conducted in Salmonella typhimurium and cultured Chinese hamster ovary cells. 14-DAY STUDY IN RATS: Groups of five male and five female F344/N rats were exposed to 0, 3, 10, 30, 100, or 300 mg molybdenum trioxide/m(3). Rats were exposed for 6 hours per day, 5 days per week, for a total of 10 exposure days during a 14-day period. All rats survived to the end of the study. The final mean body weights of male rats exposed to 100 mg/m(3) and male and female rats exposed to 300 mg/m(3) were significantly lower than those of the control groups. Male rats exposed to 300 mg/m(3) lost weight during the study. There were no clinical findings related to exposure to molybdenum trioxide. No chemical-related lesions were observed. 14-DAY STUDY IN MICE: Groups of five male and five female B6C3F1 mice were exposed to 0, 3, 10, 30, 100, or 300 mg molybdenum trioxide/m(3). Mice were exposed 6 hours per day, 5 days per week, for a total of 10 exposure days during a 14-day period. All mice survived to the end of the study. Final mean

  9. Pathogenesis and treatment of leukemia: an Asian perspective.

    Science.gov (United States)

    Kwong, Yok-Lam

    2012-03-01

    Leukemias occur worldwide, but there are important geographic differences in incidences. Three leukemias with special Asian perspectives, acute promyelocytic leukemia (APL), T-cell large granular lymphocyte (T-LGL) leukemia and NK-cell leukemia. In APL, China has made contributions in discovering the efficacy of all-trans retinoic acid (ATRA) and arsenic trioxide. Some APL patients are potentially curable after treatment with ATRA or arsenic trioxide as a single agent. Combined treatment of APL with ATRA and arsenic trioxide induces remission with deeper molecular response. An oral formulation of arsenic trioxide is available, making outpatient treatment feasible. Future regimens for APL should examine how ATRA and arsenic trioxide can be optimally combined with other synergistic drugs. Asian patients with T-LGL leukemia present more frequently with pure red cell aplasia, but less frequently with neutropenia, recurrent infection, splenomegaly and rheumatoid arthritis as compared with Western patients. These differences have potential effects on treatment and disease pathogenesis. NK-cell leukemia is rapidly fatal and occurs almost exclusively in Asian and South American patients. Conventional anthracycline-based chemotherapy designed for B-cell lymphomas do not work in NK-cell leukemias. Novel therapeutic approaches targeting cellular signaling pathways or preferentially upregulated genes are needed to improve outcome.

  10. Failure of antimony trioxide to induce micronuclei or chromosomal aberrations in rat bone-marrow after sub-chronic oral dosing.

    Science.gov (United States)

    Kirkland, David; Whitwell, James; Deyo, James; Serex, Tessa

    2007-03-05

    Antimony trioxide (Sb2O3, CAS 1309-64-4) is widely used as a flame retardant synergist in a number of household products, as a fining agent in glass manufacture, and as a catalyst in the manufacture of various types of polyester plastics. It does not induce point mutations in bacteria or mammalian cells, but is able to induce chromosomal aberrations (CA) in cultured cells in vitro. Although no CA or micronuclei (MN) have been induced after acute oral dosing of mice, repeated oral dosing for 14 or 21 days resulted in increased CA in one report, but did not result in increased MN in another. In order to further investigate its in vivo genotoxicity, Sb2O3 was dosed orally to groups of rats for 21 days at 250, 500 and 1000 mg/kg day. There were no clinical signs of toxicity in the Sb2O3-exposed animals except for some reductions in body-weight gain in the top dose group. Toxicokinetic measurements in a separate study confirmed bone-marrow exposure, and at higher levels than would have been achieved by single oral dosing. Large numbers of cells were scored for CA (600 metaphases/sex group) and MN (12,000 PCE/sex group) but frequencies of CA or MN in Sb2O3-treated rats were very similar to controls, and not biologically or statistically different, at all doses. These results provide further indication that Sb2O3 is not genotoxic to the bone marrow of rodents after 21 days of oral administration at high doses close to the maximum tolerated dose.

  11. Insights into the Synergistic Effect of Fungi and Bacteria for Reactive Red Decolorization

    Directory of Open Access Journals (Sweden)

    Dandan Zhou

    2014-01-01

    Full Text Available Bacterial contamination is a prevalent problem in fungal dye wastewater decolorization that prevents the development of this technology in practical engineering. New insight into the relationship between fungi and bacteria is given in terms of settleability, bioadsorption, and biodegradation, which all confirm their synergistic effect. Sterilization is implied to be not the only mechanism for fungi decolorization. When the fungi and bacteria isolated from the activated sludge were cocultured, fungi removed more than 70% of the reactive red through sole bioadsorption in 5 min and enhanced the settleability of the bacteria group from 7.7 to 18.4 in the aggregation index. Subsequently, the bacteria played a more significant role in dye biodegradation according to the ultraviolet-visible spectrum analysis. They further enhanced the decolorization efficiency to over 80% when cocultured with fungi. Therefore, the advanced bioadsorption and settleability of fungi, combined with the good dye biodegradation ability of bacteria, results in the synergistic effect of the coculture microorganisms.

  12. SEALING ABILITY OF MINERAL TRIOXIDE AGGREGATE, CALCIUM PHOSPHATE CEMENT, AND GLASS IONOMER CEMENT IN THE REPAIR OF FURCATION PERFORATIONS

    Directory of Open Access Journals (Sweden)

    Prabath Singh

    2013-01-01

    Full Text Available Objectives: The purpose of this study was to evaluate the in vitro sealing ability of three repair materials. Mineral trioxide aggregate (MTA; Group A, calcium phosphate cement (CPC; Group B, and light cured glass ionomer cement (GIC; Group C when used to repair the perforation created in the pulpal floor of fifty extracted human permanent molars. Materials and methods: Preparation of access openings and furcation perforations were done, and the teeth divided into five experimental groups (A, B, C including two controls (D, E with ten samples in each group randomly. Following the repair procedure, the pulp chambers and access openings were filled with composite resin and immersed in 2% methylene blue solution for 48 hours. The teeth were sectioned longitudinally and the linear dye penetration measured under a stereo­microscope. Results: The comparison of the linear length of micro-leakage (mm among the experimental groups revealed no significant difference (p = 0.332. On calculating the percentage of depth of leakage to the total length of the perforation, it was observed that the mean leakage was 35.5% in Group A, 53.6% in Group B and the highest, 87.5% in Group C. The mean of leakage percentage was statistically significant by Kruskal-Wallis test (p = 0.003. The results indicated that the dye penetration used as furcation perforation repair material was least with mineral trioxide aggregate. Comparing the depth of penetration of dye, 50% of the Group A samples showed less than 25% of depth penetration. While 40% of Group B cases had more than 50% dye penetration. In our study, all Group C teeth had ≥ 50% dye penetration. Conclusions: The present study indicated that GIC had the greatest dye penetration followed by CPC and MTA. Mineral trioxide aggregate and calcium phosphate cement had comparatively better sealing ability than glass ionomer cement.

  13. Multifold enhanced synergistic removal of nickel and phosphate by a (N,Fe)-dual-functional bio-sorbent: Mechanism and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yan-hong [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Liu, Fu-qiang, E-mail: jogia@163.com [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Zhu, Chang-qing; Zhang, Xiao-peng; Wei, Meng-meng [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China); Wang, Feng-he [School of Environment, Nanjing Normal University, Nanjing, 210023 (China); Ling, Chen; Li, Ai-min [State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023 (China); State Environmental Protection Engineering Center for Organic Chemical Industrial Waste Water Disposal Resource Reuse, Nanjing 210023 (China)

    2017-05-05

    Highlights: • A (N,Fe)-dual-functional bio-sorbent was newly synthesized. • Removal of Ni(II) and H{sub 2}PO{sub 4}{sup −} could be remarkably enhanced over 3 times. • A multiple mechanism resulted in the synergic adsorption. • N/Fe-DB is efficient and repeatable in treating electroplating wastewater. - Abstract: A novel (N,Fe)-dual-functional biosorbent (N/Fe-DB) capable of efficient synergistic removal of Ni(II) and H{sub 2}PO{sub 4}{sup −} from aqueous solution was synthesized. The adsorption capacities of Ni(II) and H{sub 2}PO{sub 4}{sup −} were both remarkably enhanced over 3 times compared with those in single systems. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed that complexation of amino groups and ligand exchange of hydrous ferric oxide in N/Fe-DB played dominant roles. The electric double layer compressing and chelating ligand of deprotonated H{sub 2}PO{sub 4}{sup −} accounted for the enhanced removal of Ni(II) in binary system, while cation bridge interaction promoted uptake of H{sub 2}PO{sub 4}{sup −}. Furthermore, the coadsorbates were sequentially recovered, with the ratios of more than 99.0%. Besides, the recovered N/Fe-DB remained stable and applicable to the treatment of real electroplating wastewater even after six adsorption-regeneration cycles. Since the electroplating industry is springing up, effective control of heavy metals and phosphate has attracted global concerns. Based on the enhanced coremoval properties and superb regenerability, N/Fe-DB is potentially applicable to practical production.

  14. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    International Nuclear Information System (INIS)

    Rangwala, Fatima; Williams, Kevin P; Smith, Ginger R; Thomas, Zainab; Allensworth, Jennifer L; Lyerly, H Kim; Diehl, Anna Mae; Morse, Michael A; Devi, Gayathri R

    2012-01-01

    Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO) in combination with sorafenib or fluorouracil (5-FU), in both hepatic tumor cells and stromal cells. Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC 50 : 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC 50 : 11.8 μM in LX2; 9.9 μM in HepG2). In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr) drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC)

  15. Differential effects of arsenic trioxide on chemosensitization in human hepatic tumor and stellate cell lines

    Directory of Open Access Journals (Sweden)

    Rangwala Fatima

    2012-09-01

    Full Text Available Abstract Background Crosstalk between malignant hepatocytes and the surrounding peritumoral stroma is a key modulator of hepatocarcinogenesis and therapeutic resistance. To examine the chemotherapy resistance of these two cellular compartments in vitro, we evaluated a well-established hepatic tumor cell line, HepG2, and an adult hepatic stellate cell line, LX2. The aim was to compare the chemosensitization potential of arsenic trioxide (ATO in combination with sorafenib or fluorouracil (5-FU, in both hepatic tumor cells and stromal cells. Methods Cytotoxicity of ATO, 5-FU, and sorafenib, alone and in combination against HepG2 cells and LX2 cells was measured by an automated high throughput cell-based proliferation assay. Changes in survival and apoptotic signaling pathways were analyzed by flow cytometry and western blot. Gene expression of the 5-FU metabolic enzyme, thymidylate synthase, was analyzed by real time PCR. Results Both HepG2 and LX2 cell lines were susceptible to single agent sorafenib and ATO at 24 hr (ATO IC50: 5.3 μM in LX2; 32.7 μM in HepG2; Sorafenib IC50: 11.8 μM in LX2; 9.9 μM in HepG2. In contrast, 5-FU cytotoxicity required higher concentrations and prolonged (48–72 hr drug exposure. Concurrent ATO and 5-FU treatment of HepG2 cells was synergistic, leading to increased cytotoxicity due in part to modulation of thymidylate synthase levels by ATO. Concurrent ATO and sorafenib treatment showed a trend towards increased HepG2 cytotoxicity, possibly due to a significant decrease in MAPK activation in comparison to treatment with ATO alone. Conclusions ATO differentially sensitizes hepatic tumor cells and adult hepatic stellate cells to 5-FU and sorafenib. Given the importance of both of these cell types in hepatocarcinogenesis, these data have implications for the rational development of anti-cancer therapy combinations for the treatment of hepatocellular carcinoma (HCC.

  16. Synergistically enhanced activity of nitrogen-doped carbon dots/graphene composites for oxygen reduction reaction

    Science.gov (United States)

    Liu, Hui; Zhao, Qingshan; Liu, Jingyan; Ma, Xiao; Rao, Yuan; Shao, Xiaodong; Li, Zhongtao; Wu, Wenting; Ning, Hui; Wu, Mingbo

    2017-11-01

    With rapid dissociative adsorption of oxygen, nitrogen-doped carbon nanomaterials have been demonstrated to be efficient alternative catalysts for oxygen reduction reaction (ORR) in fuel cells. Herein, we developed a mild hydrothermal strategy to construct nitrogen-doped carbon dots/graphene (NCDs-NG) composites towards ORR. Carbon dots (CDs) were derived from petroleum coke via acid oxidation while graphene oxide (GO) was obtained from graphite by modified Hummer's method. Graphene was employed as a conductive substrate to disperse CDs during hydrothermal reducing reaction while ammonia was utilized as N source to dope both graphene and CDs. The synergistic effects, i.e. CDs as pillars for graphene and catalytic sites for ORR, the high conductivity of graphene, the quick O2 adsorption on doped pyridinic nitrogen endow the NCDs-NG composites with enhanced ORR catalytic performance in alkaline electrolyte. The onset potential of -95 mV and kinetic current density of 12.7 mA cm-2 at -0.7 V (vs. Ag/AgCl) can be compared to those of the commercial 20 wt% Pt/C catalyst. The electron transfer number is about 3.9, revealing a four-electron pathway for ORR. The optimal NCDs-NG catalyst shows superior durability and methanol tolerance than 20 wt% Pt/C. This work demonstrates a feasible and effective strategy to prepare metal-free efficient ORR electrocatalysts for fuel cell applications.

  17. Synergistic effects of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields.

    Science.gov (United States)

    Zhang, Zhiping; Ji, Hairui; Gong, Guiping; Zhang, Xu; Tan, Tianwei

    2014-07-01

    The optimal mixed culture model of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris was confirmed to enhance lipid production. A double system bubble column photo-bioreactor was designed and used for demonstrating the relationship of yeast and alga in mixed culture. The results showed that using the log-phase cultures of yeast and alga as seeds for mixed culture, the improvements of biomass and lipid yields reached 17.3% and 70.9%, respectively, compared with those of monocultures. Growth curves of two species were confirmed in the double system bubble column photo-bioreactor, and the second growth of yeast was observed during 36-48 h of mixed culture. Synergistic effects of two species for cell growth and lipid accumulation were demonstrated on O2/CO2 balance, substance exchange, dissolved oxygen and pH adjustment in mixed culture. This study provided a theoretical basis and culture model for producing lipids by mixed culture in place of monoculture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Determining lower threshold concentrations for synergistic effects

    DEFF Research Database (Denmark)

    Bjergager, Maj-Britt Andersen; Dalhoff, Kristoffer; Kretschmann, Andreas

    2017-01-01

    which proven synergists cease to act as synergists towards the aquatic crustacean Daphnia magna. To do this, we compared several approaches and test-setups to evaluate which approach gives the most conservative estimate for the lower threshold for synergy for three known azole synergists. We focus...... on synergistic interactions between the pyrethroid insecticide, alpha-cypermethrin, and one of the three azole fungicides prochloraz, propiconazole or epoxiconazole measured on Daphnia magna immobilization. Three different experimental setups were applied: A standard 48h acute toxicity test, an adapted 48h test...... of immobile organisms increased more than two-fold above what was predicted by independent action (vertical assessment). All three tests confirmed the hypothesis of the existence of a lower azole threshold concentration below which no synergistic interaction was observed. The lower threshold concentration...

  19. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan, E-mail: twk@hanayng.ac.kr

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: • Tandem OLEDs with CGL were fabricated to enhance their efficiency. • The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. • The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. • Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current density–voltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplet–triplet exciton annihilation.

  20. In vitro synergistic antibacterial activity of Melissa officinalis L. and some preservatives

    Energy Technology Data Exchange (ETDEWEB)

    Stanojeic, D.; Comic, L.; Stefanovic, O.; Solujic Sukdolak, S.

    2010-07-01

    The aim of this study was to investigate the antibacterial activity of aqueous, ethanol and ethyl acetate extracts of the species Melissa officinalis L. and their in vitro synergistic action with preservatives, namely: sodium nitrite, sodium benzoate and potassium sorbate against selected food spoiling bacteria, for a potential use in food industry. Synergistic action was noticed in almost every combination between plant extracts and preservatives. This work showed that the active compounds from ethanol, ethyl acetate and aqueous extracts of Melissa officinalis L. significantly enhanced the effectiveness of tested preservatives. Synergism was established at plant extract and preservative concentrations corresponding to 1/4 and 1/8 minimal inhibitory concentration values, which indicated the possibility of avoiding the use of higher concentrations of tested preservatives. (Author) 25 refs.

  1. Enhanced Biofilm Formation and Increased Resistance to Antimicrobial Agents and Bacterial Invasion Are Caused by Synergistic Interactions in Multispecies Biofilms

    DEFF Research Database (Denmark)

    Burmølle, Mette; Webb, J.S.; Rao, D.

    2006-01-01

    from the surface of the marine alga Ulva australis, were screened for synergistic interactions within biofilms when present together in different combinations. Four isolates, Microbacterium phyllosphaerae, Shewanella japonica, Dokdonia donghaensis, and Acinetobacter lwoffii, were found to interact......Most biofilms in their natural environments are likely to consist of consortia of species that influence each other in synergistic and antagonistic manners. However, few reports specifically address interactions within multispecies biofilms. In this study, 17 epiphytic bacterial strains, isolated...... synergistically in biofilms formed in 96-well microtiter plates: biofilm biomass was observed to increase by >167% in biofilms formed by the four strains compared to biofilms composed of single strains. When exposed to the antibacterial agent hydrogen peroxide or tetracycline, the relative activity (exposed...

  2. Design and screening of synergistic blends of SiO2 nanoparticles and surfactants for enhanced oil recovery in high-temperature reservoirs

    International Nuclear Information System (INIS)

    Le, Nhu Y Thi; Pham, Duy Khanh; Le, Kim Hung; Nguyen, Phuong Tung

    2011-01-01

    SiO 2 nanoparticles (NPs) were synthesized by the sol–gel method in an ultrasound reactor and monodispersed NPs with an average particle size of 10–12 nm were obtained. The synergy occurring in blending NPs and anionic surfactant solutions was identified by ultra-low interfacial tension (IFT) reduction measured by a spinning drop tensiometer (Temco500). The oil displacement efficiency of the synergistic blends and surfactant solutions at Dragon South-East (DSE) reservoir temperature was evaluated using contact angle measurement (Dataphysics OCA 20). It was found that SiO 2 /surfactant synergistic blends displace oil as well as their original surfactant solutions at the same 1000 ppm total concentration. Abundant slag appearing in the SiO 2 /surfactant medium during oil displacement could be attributed to an adsorption of surfactants onto the NPs. The results indicate that at a concentration of 1000 ppm in total, the original surfactant SS16-47A and its blend with SiO 2 NPs in the ratio of 8:2 exhibited an IFT reduction as high as fourfold of the IFT recorded for the DSE oil–brine interface and very high speed of oil displacement. Therefore, it could potentially be applicable to enhanced oil recovery (EOR) in high-temperature reservoirs with high hardness-injection-brine, like the one at DSE. This opens up a new direction for developing effective EOR compositions, which require less surfactant and are environmentally safer

  3. Effect of Blood Contamination on Marginal Adaptation and Surface Microstructure of Mineral Trioxide Aggregate: A SEM Study

    OpenAIRE

    Amin Salem Milani; Saeed Rahimi; Mohammad Froughreyhani; Mahdi Vahid Pakdel

    2013-01-01

    Background and aims. In various clinical situations, mineral trioxide aggregate (MTA) may come into direct contact or even be mixed with blood. The aim of the present study was to evaluate the effect of exposure to blood on marginal adaptation and surface microstructure of MTA. Materials and methods. Thirty extracted human single-rooted teeth were used. Standard root canal treatment was carried out. Root-ends were resected, and retrocavities were prepared. The teeth were randomly ...

  4. Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles.

    Science.gov (United States)

    Wang, Guangjie; Jin, Feng; Dai, Nan; Zhong, Zhaoyang; Qing, Yi; Li, Mengxia; Yuan, Ruo; Wang, Dong

    2012-03-01

    A new metal-organic nanocomposite with synergistic catalysis function was prepared and developed to construct an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of tumor biomarker CA125. Silver nanoparticles (AgNPs) and nicotinamide adenine dinucleotide hydride (NADH) that can participate and catalyze the ECL reaction of Ru(bpy)(3)(2+) were employed as the metal component and the organic component to synthesize the metal-organic nanocomposite of NADH-AgNPs (NA). The novel ECL immunosensor was assembled via Ru(bpy)(3)(2+)-doped silica nanoparticles (Ru-SiO(2)) modified electrode with the NA as immune labels. First, the chitosan-suspended Ru-SiO(2) nanoparticles were cast on the gold electrode surface to immobilize the ECL probes of Ru(bpy)(3)(2+) and link gold nanoparticles. Then, the primary antibodies were loaded onto the modified electrode via the gold sulfhydryl covalent binding. After immunobinding the analytes of antigen, NA-attached secondary antibodies could be captured as a sandwich type on the electrode. Finally, based on the circularly synergistic catalysis by the silver and NADH for the solid-phase ECL of Ru(bpy)(3)(2+), the proposed immunosensor sensed the concentration of antigen. The synergistic ECL catalysis of metal-organic nanocomposite amplified response signal and pushed the detection limit down to 0.03 U ml(-1), which initiated a new ECL labeling field and has great significance for ECL immunoassays. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. The synergistic effect of chemical carcinogens enhances Epstein-Barr virus reactivation and tumor progression of nasopharyngeal carcinoma cells.

    Science.gov (United States)

    Fang, Chih-Yeu; Huang, Sheng-Yen; Wu, Chung-Chun; Hsu, Hui-Yu; Chou, Sheng-Ping; Tsai, Ching-Hwa; Chang, Yao; Takada, Kenzo; Chen, Jen-Yang

    2012-01-01

    Seroepidemiological studies imply a correlation between Epstein-Barr virus (EBV) reactivation and the development of nasopharyngeal carcinoma (NPC). N-nitroso compounds, phorbols, and butyrates are chemicals found in food and herb samples collected from NPC high-risk areas. These chemicals have been reported to be risk factors contributing to the development of NPC, however, the underlying mechanism is not fully understood. We have demonstrated previously that low dose N-methyl-N'-nitro-N-nitrosoguanidine (MNNG, 0.1 µg/ml) had a synergistic effect with 12-O-tetradecanoylphorbol-13-acetate (TPA) and sodium butyrate (SB) in enhancing EBV reactivation and genome instability in NPC cells harboring EBV. Considering that residents in NPC high-risk areas may contact regularly with these chemical carcinogens, it is vital to elucidate the relation between chemicals and EBV and their contributions to the carcinogenesis of NPC. In this study, we constructed a cell culture model to show that genome instability, alterations of cancer hallmark gene expression, and tumorigenicity were increased after recurrent EBV reactivation in NPC cells following combined treatment of TPA/SB and MNNG. NPC cells latently infected with EBV, NA, and the corresponding EBV-negative cell, NPC-TW01, were periodically treated with MNNG, TPA/SB, or TPA/SB combined with MNNG. With chemically-induced recurrent reactivation of EBV, the degree of genome instability was significantly enhanced in NA cells treated with a combination of TPA/SB and MNNG than those treated individually. The Matrigel invasiveness, as well as the tumorigenicity in mouse, was also enhanced in NA cells after recurrent EBV reactivation. Expression profile analysis by microarray indicates that many carcinogenesis-related genes were altered after recurrent EBV reactivation, and several aberrations observed in cell lines correspond to alterations in NPC lesions. These results indicate that cooperation between chemical carcinogens can

  6. Albumin nanoparticles with synergistic antitumor efficacy against metastatic lung cancers.

    Science.gov (United States)

    Kim, Bomi; Seo, Bohyung; Park, Sanghyun; Lee, Changkyu; Kim, Jong Oh; Oh, Kyung Taek; Lee, Eun Seong; Choi, Han-Gon; Youn, Yu Seok

    2017-10-01

    Albumin nanoparticles are well-known as effective drug carriers used to deliver hydrophobic chemotherapeutic agents. Albumin nanoparticles encapsulating curcumin and doxorubicin were fabricated using slightly modified nanoparticle albumin-bound (nab™) technology, and the synergistic effects of these two drugs were examined. Albumin nanoparticles encapsulating curcumin, doxorubicin, and both curcumin and doxorubicin were prepared using a high pressure homogenizer. The sizes of albumin nanoparticles were ∼130nm, which was considered to be suitable for the EPR (enhanced permeability and retention) effect. Albumin nanoparticles gradually released drugs over a period of 24h without burst effect. To confirm the synergistic effect of two drugs, in vitro cytotoxicity assay was performed using B16F10 melanoma cells. The cytotoxic effect on B16F10 melanoma cells was highest when co-treated with both curcumin and doxorubicin compared to single treatment of either curcumin and doxorubicin. The combined index calculated by medium-effect equation was 0.6069, indicating a synergistic effect. Results of confocal laser scanning microscopy and fluorescence-activated cell sorting corresponded to results from an in vitro cytotoxicity assay, indicating synergistic cytotoxicity induced by both drugs. A C57BL/6 mouse model induced by B16F10 lung metastasis was used to study in vivo therapeutic effects. When curcumin and doxorubicin were simultaneously treated, the metastatic melanoma mass in the lungs macroscopically decreased compared to curcumin or doxorubicin alone. Albumin nanoparticles encapsulating two anticancer drugs were shown to have an effective therapeutic result and would be an excellent way to treat resistant lung cancers. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Arsenic trioxide decreases the amount and inhibits the function of regulatory T cells, which may contribute to its efficacy in the treatment of acute promyelocytic leukemia.

    Science.gov (United States)

    Xu, Wen; Li, Xiaoxia; Quan, Lina; Yao, Jiying; Mu, Guannan; Guo, Jingjie; Wang, Yitong

    2018-03-01

    Arsenic trioxide (ATO) exhibits substantial clinical efficacy in the treatment of acute promyelocytic leukemia (APL). Here, we investigated whether ATO exerts its efficacy by affecting regulatory T (Treg) cells. We determined whether ATO treatment influenced the amount and function of purified Treg cells. We also examined the effect of ATO treatment on Treg cells from APL patients. ATO treatment induced apoptosis in purified Treg cells and dampened the inhibition of effector T (Teff) cells proliferation and the secretion of cytokine by Treg cells. Treg cell levels in the peripheral blood and serum IL-10 levels were dramatically decreased in APL patients after single ATO treatment. In summary, our results show that ATO decreases the amount and inhibits the function of Treg cells, thereby enhancing Teff cell function and overall anti-tumor immunity.

  8. Synergistic methane formation on pyrolytic graphite due to combined H+ ion and H0 atom impact

    International Nuclear Information System (INIS)

    Haasz, A.A.; Davis, J.W.; Auciello, O.; Strangeby, P.C.; Vietzke, E.; Flaskamp, K.; Philipps, V.

    1986-06-01

    Exposure of graphite to multispecies hydrogenic impact, as is the case in tokamaks, could lead to synergistic mechanisms resulting in an enhancement of methane formation, and consequently in increased carbon erosion. We present results obtained in controlled experiments in our laboratories in Toronto and Juelich for the synergistic methane production due to combined sub-eV H 0 atoms and energetic H + ion impact on pyrolytic graphite. Flux densities were 10 14 -2x10 16 H 0 /cm 2 s for the sub-eV H 0 atoms and 6x10 12 -5x10 15 H + /cm 2 for H + ions of 300 eV to 2.5 keV energy. Synergistic factors (defined as the ratio of methane formation rate due to combined H 0 and H + fluxes to the sum of the formation rates due to separate species impact) ranged from about 1.5-15 for the experimental parameters used. In addition, a spectrum of formed hydrocarbons in the synergistic reaction of H + and H 0 on graphite is presented

  9. Combined treatment of xenon and hypothermia in newborn rats--additive or synergistic effect?

    Directory of Open Access Journals (Sweden)

    Hemmen Sabir

    Full Text Available Breathing the inert gas Xenon (Xe enhances hypothermic (HT neuroprotection after hypoxia-ischemia (HI in small and large newborn animal models. The underlying mechanism of the enhancement is not yet fully understood, but the combined effect of Xe and HT could either be synergistic (larger than the two effects added or simply additive. A previously published study, using unilateral carotid ligation followed by hypoxia in seven day old (P7 rats, showed that the combination of mild HT (35°C and low Xe concentration (20%, both not being neuroprotective alone, had a synergistic effect and was neuroprotective when both were started with a 4 h delay after a moderate HI insult. To examine whether another laboratory could confirm this finding, we repeated key aspects of the study.After the HI-insult 120 pups were exposed to different post-insult treatments: three temperatures (normothermia (NT NT37°C, HT35°C, HT32°C or Xe concentrations (0%, 20% or 50% starting either immediately or with a 4 h delay. To assess the synergistic potency of Xe-HT, a second set (n = 101 of P7 pups were exposed to either HT35°C+Xe0%, NT+Xe20% or a combination of HT35°C+Xe20% starting with a 4 h delay after the insult. Brain damage was analyzed using relative hemispheric (ligated side/unligated side brain tissue area loss after seven day survival.Immediate HT32°C (p = 0.042, but not HT35°C significantly reduced brain injury compared to NT37°C. As previously shown, adding immediate Xe50% to HT32°C increased protection. Neither 4 h-delayed Xe20%, nor Xe50% at 37°C significantly reduced brain injury (p>0.050. In addition, neither 4 h-delayed HT35°C alone, nor HT35°C+Xe20% reduced brain injury. We found no synergistic effect of the combined treatments in this experimental model.Combining two treatments that individually were ineffective (delayed HT35°C and delayed Xe20% did not exert neuroprotection when combined, and therefore did not show a synergistic

  10. The synergistic effect of complex ligands for radioactive metal salts decontamination in supercritical CO2

    International Nuclear Information System (INIS)

    Go, M. S.; Park, K. H.; Kim, H. W.; Kim, H. D.

    2004-01-01

    The organophosphorus and dithiocarbamate ligands were used to extract five metal ions (Cd 2+ , Co 2+ , Cu 2+ , Pb 2+ , Zn 2+ ) in supercritical CO 2 so as to decontaminate the radioactive contaminants. The experiments confirmed that the ligands mixed together in a variety of the mixing ratios efficiently extracted all metal ions by more than 90% due to its synergistic effect. The UV-Vis spectrometer installed in a high-pressurized cell showed that the NaDDC was decomposed in supercritical CO 2 containing the water. It also proved that the synergistic effect improved the deprotonation of the organophosphorus ligand when NaDDC was used together with. In addition, we mixed organophosphorus ligand together with diethylamine, the decomposed NaDDC, to obtain the same extraction result of more than 90% as with NaDDC. The enhanced extraction efficiency shows the synergistic effect that is produced by combining two ligands together

  11. Photoresist removal using gaseous sulfur trioxide cleaning technology

    Science.gov (United States)

    Del Puppo, Helene; Bocian, Paul B.; Waleh, Ahmad

    1999-06-01

    A novel cleaning method for removing photoresists and organic polymers from semiconductor wafers is described. This non-plasma method uses anhydrous sulfur trioxide gas in a two-step process, during which, the substrate is first exposed to SO3 vapor at relatively low temperatures and then is rinsed with de-ionized water. The process is radically different from conventional plasma-ashing methods in that the photoresist is not etched or removed during the exposure to SO3. Rather, the removal of the modified photoresist takes place during the subsequent DI-water rinse step. The SO3 process completely removes photoresist and polymer residues in many post-etch applications. Additional advantages of the process are absence of halogen gases and elimination of the need for other solvents and wet chemicals. The process also enjoys a very low cost of ownership and has minimal environmental impact. The SEM and SIMS surface analysis results are presented to show the effectiveness of gaseous SO3 process after polysilicon, metal an oxide etch applications. The effects of both chlorine- and fluorine-based plasma chemistries on resist removal are described.

  12. Microleakage comparison of glass-ionomer and white mineral trioxide aggregate used as a coronal barrier in nonvital bleaching.

    Science.gov (United States)

    Vosoughhosseini, Sepideh; Lotfi, Mehrdad; Shahmoradi, Kaveh; Saghiri, Mohammad-Ali; Zand, Vahid; Mehdipour, Masoumeh; Ranjkesh, Bahram; Mokhtari, Hadi; Salemmilani, Amin; Doosti, Sirvan

    2011-11-01

    There is some evidence that the pH at the root surface is reduced by intracoronal placement of bleaching pastes, which is known to enhance osteoclastic activity. Therefore, it is recommended that a protective barrier be used over the canal filling to prevent leakage of bleaching agents. Glass-ionomer (GI) is commonly used as a coronal barrier before nonvital bleaching. Because mineral trioxide aggregate (MTA) creates high alkalinity after mixing with water, using MTA as a protective barrier over the canal filling may not only prevent leakage of bleaching agents and microorganisms, but may prevent cervical resorption. The aim of this study was to evaluate sealing ability of white mineral trioxide aggregate (WMTA) as a coronal barrier before nonvital bleaching. Root canals of one hundred thirty human maxillary incisors were instrumented and filled with gutta-percha without sealer. Gutta-percha was removed up to 3 mm below the cementoenamel junction (CEJ). The teeth were randomly divided into six experimental groups of 20 teeth each and two control groups of 5. In three experimental groups, WMTA was packed into the canal to the level of CEJ. In the remaining experimental groups, glass-ionomer (GI) was used as a coronal barrier. After a 24-hour incubation period, one of the following three bleaching agents was placed in the access cavity of each of the WMTA or GI groups. These three bleaching agents were 30% hydrogen peroxide, sodium perborate mixed with 30% hydrogen peroxide, and sodium perborate mixed with distilled water. The bleaching agents were replaced every 3 days for three times. In the positive controls, no coronal barrier was used. In the negative controls, all the tooth surfaces were covered by two layers of nail varnish. Microleakage was evaluated using protein leakage test. Statistical analyses were performed with the Kruskal-Wallis and Mann-Whitney tests. The experimental groups showed minimum leakage which was not significantly more than tha in the

  13. Synergistic effect of mixed neutron and gamma irradiation in bipolar operational amplifier OP07

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Liu, E-mail: liuyan@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wei, Chen; Shanchao, Yang; Xiaoming, Jin [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O.Box 69-10, Xi’an 710024 (China); Chaohui, He [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China)

    2016-09-21

    This paper presents the synergistic effects in bipolar operational amplifier OP07. The radiation effects are studied by neutron beam, gamma ray, and mixed neutron/gamma ray environments. The characterateristics of the synergistic effects are studied through comparison of different experiment results. The results show that the bipolar operational amplifier OP07 exhibited significant synergistic effects in the mixed neutron and gamma irradiation. The bipolar transistor is identified as the most radiation sensitive unit of the operational amplifier. In this paper, a series of simulations are performed on bipolar transistors in different radiation environments. In the theoretical simulation, the geometric model and calculations based on the Medici toolkit are built to study the radiation effects in bipolar components. The effect of mixed neutron and gamma irradiation is simulated based on the understanding of the underlying mechanisms of radiation effects in bipolar transistors. The simulated results agree well with the experimental data. The results of the experiments and simulation indicate that the radiation effects in the bipolar devices subjected to mixed neutron and gamma environments is not a simple combination of total ionizing dose (TID) effects and displacement damage. The data suggests that the TID effect could enhance the displacement damage. The synergistic effect should not be neglected in complex radiation environments.

  14. Nrf2 activation ameliorates cytotoxic effects of arsenic trioxide in acute promyelocytic leukemia cells through increased glutathione levels and arsenic efflux from cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, Shoichi; Suzuki, Toshihiro; Koike, Shin [Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 (Japan); Yuan, Bo; Takagi, Norio [Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 (Japan); Ogasawara, Yuki, E-mail: yo@my-pharm.ac.jp [Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 (Japan)

    2016-08-15

    Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, has been shown to activate nuclear transcription factor E2-related factor 2 (Nrf2), which plays a central role in cytoprotective responses to oxidative and electrophilic stress. Recently, the Nrf2-Kelch ECH associating protein 1 (Keap1) pathway has been associated with cancer drug resistance attributable to modulation of the expression and activation of antioxidant and detoxification enzymes. However, the exact mechanisms by which Nrf2 activation results in chemoresistance are insufficiently understood to date. This study investigated the mechanisms by which the cytotoxic effects of arsenic trioxide (ATO), an anticancer drug, were decreased in acute promyelocytic leukemia cells treated with CA, a typical activator of Nrf2 used to stimulate the Nrf2/Keap1 system. Our findings suggest that arsenic is non-enzymatically incorporated into NB4 cells and forms complexes that are dependent on intracellular glutathione (GSH) concentrations. In addition, the arsenic complexes are recognized as substrates by multidrug resistance proteins and subsequently excreted from the cells. Therefore, Nrf2-associated activation of the GSH biosynthetic pathway, followed by increased levels of intracellular GSH, are key mechanisms underlying accelerated arsenic efflux and attenuation of the cytotoxic effects of ATO. - Highlights: • Nrf2 activation attenuates the effect of arsenic trioxide to acute promyelocytic leukemia cells. • The sensitivity of arsenic trioxide to NB4 cells was dependent on efflux rate of arsenic. • Activation of the GSH biosynthesis is essential in Nrf2-regulated responses for arsenic efflux.

  15. Chemical and morphological characteristics of mineral trioxide aggregate and Portland cements.

    Science.gov (United States)

    Khan, Shahbaz; Kaleem, Muhammad; Fareed, Muhammad Amber; Habib, Amir; Iqbal, Kefi; Aslam, Ayesha; Ud Din, Shahab

    2016-01-01

    The purpose of this study was to investigate the chemical composition and particle morphology of white mineral trioxide aggregate (WMTA) and two white Portland cements (CEM 1 and CEM 2). Compositional analysis was performed by energy dispersive X-ray spectroscopy, X-ray fluorescence spectrometry and X-ray diffraction whereas, morphological characteristics were analyzed by scanning electron microscope and Laser scattering particle size distribution analyzer. The elemental composition of WMTA, CEM 1 and CEM 2 were similar except for the presence of higher amounts of bismuth in WMTA. Calcium oxide and silicon oxide constitute the major portion of the three materials whereas, tricalcium silicate was detected as the major mineral phase. The particle size distribution and morphology of WMTA was finer compared to CEM 1 and CEM 2. The three tested materials had relatively similar chemical composition and irregular particle morphologies.

  16. “RaMassays”: Synergistic Enhancement of Plasmon-Free Raman Scattering and Mass Spectrometry for Multimodal Analysis of Small Molecules

    Science.gov (United States)

    Alessandri, Ivano; Vassalini, Irene; Bertuzzi, Michela; Bontempi, Nicolò; Memo, Maurizio; Gianoncelli, Alessandra

    2016-10-01

    SiO2/TiO2 core/shell (T-rex) beads were exploited as “all-in-one” building-block materials to create analytical assays that combine plasmon-free surface enhanced Raman scattering (SERS) and surface assisted laser desorption/ionization (SALDI) mass spectrometry (RaMassays). Such a multi-modal approach relies on the unique optical properties of T-rex beads, which are able to harvest and manage light in both UV and Vis range, making ionization and Raman scattering more efficient. RaMassays were successfully applied to the detection of small (molecular weight, M.W. theobromine couples demonstrated the synergistic reciprocal reinforcement of SERS and SALDI. Finally, the conversion of L-tyrosine in L-DOPA was utilized to probe RaMassays as analytical tools for characterizing reaction intermediates without introducing any spurious effects. RaMassays exhibit important advantages over plasmonic nanoparticles in terms of reproducibility, absence of interference and potential integration in multiplexed devices.

  17. Comparative investigations of sodium arsenite, arsenic trioxide and cadmium sulphate in combination with gamma-radiation on apoptosis, micronuclei induction and DNA damage in a human lymphoblastoid cell line

    International Nuclear Information System (INIS)

    Hornhardt, Sabine; Gomolka, Maria; Walsh, Linda; Jung, Thomas

    2006-01-01

    In the field of radiation protection the combined exposure to radiation and other toxic agents is recognised as an important research area. To elucidate the basic mechanisms of simultaneous exposure, the interaction of the carcinogens and environmental toxicants cadmium and two arsenic compounds, arsenite and arsenic trioxide, in combination with gamma-radiation in human lymphoblastoid cells (TK6) were investigated. Gamma-radiation induced significant genotoxic effects such as micronuclei formation, DNA damage and apoptosis, whereas arsenic and cadmium had no significant effect on these indicators of cellular damage at non-toxic concentrations. However, in combination with gamma-radiation arsenic trioxide induced a more than additive apoptotic rate compared to the sum of the single effects. Here, the level of apoptotic cells was increased, in a dose-dependent way, up to two-fold compared to the irradiated control cells. Arsenite did not induce a significant additive effect at any of the concentrations or radiation doses tested. On the other hand, arsenic trioxide was less effective than arsenite in the induction of DNA protein cross-links. These data indicate that the two arsenic compounds interact through different pathways in the cell. Cadmium sulphate, like arsenite, had no significant effect on apoptosis in combination with gamma-radiation at low concentrations and, at high concentrations, even reduced the radiation-induced apoptosis. An additive effect on micronuclei induction was observed with 1 μM cadmium sulphate with an increase of up to 80% compared to the irradiated control cells. Toxic concentrations of cadmium and arsenic trioxide seemed to reduce micronuclei induction. The results presented here indicate that relatively low concentrations of arsenic and cadmium, close to those occurring in nature, may interfere with radiation effects. Differences in action of the two arsenic compounds were identified

  18. Glycyrrhetic acid synergistically enhances β₂-adrenergic receptor-Gs signaling by changing the location of Gαs in lipid rafts.

    Directory of Open Access Journals (Sweden)

    Qian Shi

    Full Text Available Glycyrrhetic acid (GA exerts synergistic anti-asthmatic effects via a β₂-adrenergic receptor (β₂AR-mediated pathway. Cholesterol is an important component of the structure and function of lipid rafts, which play critical roles in the β₂AR-Gs-adenylate cyclase (AC-mediated signaling pathway. Owing to the structural similarities between GA and cholesterol, we investigated the possibility that GA enhances β₂AR signaling by altering cholesterol distribution. Azide-terminal GA (ATGA was synthesized and applied to human embryonic kidney 293 (HEK293 cells expressing fusion β₂AR, and the electron spin resonance (ESR technique was utilized. GA was determined to be localized predominantly on membrane and decreased their cholesterol contents. Thus, the fluidity of the hydrophobic region increased but not the polar surface of the cell membrane. The conformations of membrane proteins were also changed. GA further changed the localization of Gαs from lipid rafts to non-raft regions, resulting the binding of β₂AR and Gαs, as well as in reduced β₂AR internalization. Co-localization of β₂AR, Gαs, and AC increased isoproterenol-induced cAMP production and cholesterol reloading attenuated this effect. A speculation wherein GA enhances beta-adrenergic activity by increasing the functional linkage between the subcomponents of the membrane β₂AR-protein kinase A (PKA signaling pathway was proposed. The enhanced efficacy of β₂AR agonists by this novel mechanism could prevent tachyphylaxis.

  19. Addition of DHA synergistically enhances the efficacy of regorafenib for kidney cancer therapy

    Science.gov (United States)

    Kim, Jeffrey; Ulu, Arzu; Wan, Debin; Yang, Jun; Hammock, Bruce D; Weiss, Robert H.

    2016-01-01

    Kidney cancer is the 6th most common cancer in the US and its incidence is increasing. The treatment of this malignancy took a major step forward with the recent introduction of targeted therapeutics such as the kinase inhibitors. Unfortunately, kinase inhibition is associated with the onset of resistance after 1–2 years of treatment. Regorafenib, like many multi-kinase inhibitors, was designed to block the activities of several key kinase pathways involved in oncogenesis (Ras/Raf/MEK/ERK) and tumor angiogenesis (VEGF-receptors), and we have recently shown that it also possesses soluble epoxide hydrolase (sEH) inhibitory activity which may be contributing to its salutary effects in patients. Since sEH inhibition results in increases in the DHA-derived epoxydocosapentaenoic acids (EDPs) which we have previously described to possess anti-cancer properties, we asked whether the addition of DHA to a therapeutic regimen in the presence of regorafenib would enhance its beneficial effects in vivo. We now show that the combination of regorafenib and DHA results in a synergistic effect upon tumor invasiveness as well as p-VEGFR attenuation. In addition, this combination showed a reduction in tumor weights, greater than each agent alone, in a mouse xenograft model of human RCC, yielding the expected oxylipin profiles; this data was supported in several RCC cell lines which showed similar results in vitro. Since DHA is the predominant component of fish oil, our data suggest that this non-toxic dietary supplement could be administered with regorafenib during therapy for advanced RCC and could be the basis of a clinical trial. PMID:26921392

  20. Synergistic effects of arsenic trioxide combined with ascorbic acid in human osteosarcoma MG-63 cells: a systems biology analysis.

    Science.gov (United States)

    Huang, X C; Maimaiti, X Y M; Huang, C W; Zhang, L; Li, Z B; Chen, Z G; Gao, X; Chen, T Y

    2014-01-01

    To further understand the synergistic mechanism of As2O3 and asscorbic acid (AA) in human osteosarcoma MG-63 cells by systems biology analysis. Human osteosarcoma MG-63 cells were treated by As2O3 (1 µmol/L), AA (62.5 µmol/L) and combined drugs (1 µmol/L As2O3 plus 62.5 µmol/L AA). Dynamic morphological characteristics were recorded by Cell-IQ system, and growth rate was calculated. Illumina beadchip assay was used to analyze the differential expression genes in different groups. Synergic effects on differential expression genes (DEGs) were analyzed by mixture linear model and singular value decomposition model. KEGG pathway annotations and GO enrichment analysis were performed to figure out the pathways involved in the synergic effects. We captured 1987 differential expression genes in combined therapy MG-63 cells. FAT1 gene was significantly upregulated in all three groups, which is a promising drug target as an important tumor suppressor analogue; meanwhile, HIST1H2BD gene was markedly downregulated in the As2O3 monotherapy group and the combined therapy group, which was found to be upregulated in prostatic cancer. These two genes might play critical roles in synergetic effects of AA and As2O3, although the exact mechanism needs further investigation. KEGG pathway analysis showed many DEGs were related with tight junction, and GO analysis also indicated that DEGs in the combined therapy cells gathered in occluding junction, apical junction complex, cell junction, and tight junction. AA potentiates the efficacy of As2O3 in MG-63 cells. Systems biology analysis showed the synergic effect on the DEGs.

  1. Sensory nerve cross-anastomosis and electrical muscle stimulation synergistically enhance functional recovery of chronically denervated muscle.

    Science.gov (United States)

    Willand, Michael P; Holmes, Michael; Bain, James R; de Bruin, Hubert; Fahnestock, Margaret

    2014-11-01

    Long-term muscle denervation leads to severe and irreversible atrophy coupled with loss of force and motor function. These factors contribute to poor functional recovery following delayed reinnervation. The authors' previous work demonstrated that temporarily suturing a sensory nerve to the distal motor stump (called sensory protection) significantly reduces muscle atrophy and improves function following reinnervation. The authors have also shown that 1 month of electrical stimulation of denervated muscle significantly improves function and reduces atrophy. In this study, the authors tested whether a combination of sensory protection and electrical stimulation would enhance functional recovery more than either treatment alone. Rat gastrocnemius muscles were denervated by cutting the tibial nerve. The peroneal nerve was then sutured to the distal tibial stump following 3 months of treatment (i.e., electrical stimulation, sensory protection, or both). Three months after peroneal repair, functional and histologic measurements were taken. All treatment groups had significantly higher muscle weight (pstimulation or sensory protection alone. The combined treatment also produced motor unit counts significantly greater than sensory protection alone (p<0.05). The combination treatment synergistically reduces atrophy and improves reinnervation and functional measures following delayed nerve repair, suggesting that these approaches work through different mechanisms. The authors' research supports the clinical use of both modalities together following peripheral nerve injury.

  2. The glutathione synthesis inhibitor buthionine sulfoximine synergistically enhanced melphalan activity against preclinical models of multiple myeloma

    International Nuclear Information System (INIS)

    Tagde, A; Singh, H; Kang, M H; Reynolds, C P

    2014-01-01

    Melphalan (L-PAM) has been an integral part of multiple myeloma (MM) treatment as a conditioning regimen before stem cell transplant (SCT). After initial response, most treated patients experience relapse with an aggressive phenotype. Increased glutathione (GSH) in MM may mediate resistance to L-PAM. We demonstrated that the GSH synthesis inhibitor buthionine sulfoximine (BSO) synergistically enhanced L-PAM activity (inducing 2–4 logs of cell kill) against nine MM cell lines (also in the presence of marrow stroma or cytokines) and in seven primary MM samples (combination indices <1.0). In MM cell lines, BSO significantly (P<0.05) depleted GSH, increased L-PAM-induced single-strand DNA breaks, mitochondrial depolarization, caspase cleavage and apoptosis. L-PAM depleted GSH, but GSH rapidly recovered in a L-PAM-resistant MM cell line unless also treated with BSO. Treatment with N-acetylcysteine antagonized BSO+L-PAM cytotoxicity without increasing GSH. In human MM xenografted into beige-nude-xid mice, BSO significantly depleted MM intracellular GSH and significantly increased apoptosis compared with L-PAM alone. BSO+L-PAM achieved complete responses (CRs) in three MM xenograft models including maintained CRs >100 days, and significantly increased the median event-free survival relative to L-PAM alone. Combining BSO with L-PAM warrants clinical testing in advanced MM

  3. Synergistic extraction of tetravalent actinides by mixtures of a β-diketone and a neutral donor : a review [Paper No. : IIIA-2

    International Nuclear Information System (INIS)

    Patil, S.K.; Ramakrishna, V.V.

    1979-01-01

    Synergistic extraction of metal ions by mixtures of a β-diketone and a neutral donor has been studied extensively. Due to large synergistic enhancement of extraction both the formulas of the extractable species and the adduct formation constants with various neutral donors have been ascertained. Relatively few such studies have been devoted to the extraction of tetravalent actinides and these are reviewed critically in the present paper. In addition the work on synergistic extraction of tetravelent actinides by HTTA in admixture with several neutral donors carried out at Radiochemistry Division, BARC, is included. Attempts are made to explain the observed trends in the adduct formation constants. (author)

  4. Crosstalk between monocytes and myometrial smooth muscle in culture generates synergistic pro-inflammatory cytokine production and enhances myocyte contraction, with effects opposed by progesterone.

    Science.gov (United States)

    Rajagopal, S P; Hutchinson, J L; Dorward, D A; Rossi, A G; Norman, J E

    2015-08-01

    Both term and preterm parturition are characterized by an influx of macrophages and neutrophils into the myometrium and cervix, with co-incident increased peripheral blood monocyte activation. Infection and inflammation are strongly implicated in the pathology of preterm labour (PTL), with progesterone considered a promising candidate for its prevention or treatment. In this study, we investigated the effect of monocytes on myometrial smooth muscle cell inflammatory cytokine production both alone and in response to LPS, a TLR4 agonist used to trigger PTL in vivo. We also investigated the effect of monocytes on myocyte contraction. Monocytes, isolated from peripheral blood samples from term pregnant women, were cultured alone, or co-cultured with PHM1-41 myometrial smooth muscle cells, for 24 h. In a third set of experiments, PHM1-41 myocytes were cultured for 24 h in isolation. Cytokine secretion was determined by ELISA or multiplex assays. Co-culture of monocytes and myocytes led to synergistic secretion of pro-inflammatory cytokines and chemokines including IL-6, IL-8 and MCP-1, with the secretion being further enhanced by LPS (100 ng/ml). The synergistic secretion of IL-6 and IL-8 from co-cultures was mediated in part by direct cell-cell contact, and by TNF. Conditioned media from co-cultures stimulated contraction of PHM1-41 myocytes, and the effect was inhibited by progesterone. Both progesterone and IL-10 inhibited LPS-stimulated IL-6 and IL-8 secretion from co-cultures, while progesterone also inhibited chemokine secretion. These data suggest that monocytes infiltrating the myometrium at labour participate in crosstalk that potentiates pro-inflammatory cytokine secretion, an effect that is enhanced by LPS, and can augment myocyte contraction. These effects are all partially inhibited by progesterone. © The Author 2015. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology.

  5. Type I collagen synergistically enhances PDGF-induced smooth muscle cell proliferation through pp60src-dependent crosstalk between the α2β1 integrin and PDGFβ receptor

    International Nuclear Information System (INIS)

    Hollenbeck, Scott T.; Itoh, Hiroyuki; Louie, Otway; Faries, Peter L.; Liu Bo; Kent, K. Craig

    2004-01-01

    Smooth muscle cells (SMCs) are exposed to both platelet-derived growth factor (PDGF) and type I collagen (CNI) at the time of arterial injury. In these studies we explore the individual and combined effects of these agonists on human saphenous vein SMC proliferation. PDGF-BB produced a 5.5-fold increase in SMC DNA synthesis whereas CNI stimulated DNA synthesis to a much lesser extent (1.6-fold increase). Alternatively, we observed an 8.3-fold increase in DNA synthesis when SMCs were co-incubated with CNI and PDGF-BB. Furthermore, stimulation of SMCs with PDGF-BB produced a significant increase in ERK-2 activity whereas CNI alone had no effect. Co-incubation of SMCs with PDGF-BB and CNI resulted in ERK-2 activity that was markedly greater than that produced by PDGF-BB alone. In a similar fashion, PDGF-BB induced phosphorylation of the PDGF receptor β (PDGFRβ) and CNI did not, whereas concurrent agonist stimulation produced a synergistic increase in receptor activity. Blocking antibodies to the α2 and β1 subunits eliminated this synergistic interaction, implicating the α2β1 integrin as the mediator of this effect. Immunoprecipitation of the α2β1 integrin in unstimulated SMCs followed by immunoblotting for the PDGFRβ as well as Src family members, pp60 src , Fyn, Lyn, and Yes demonstrated coassociation of α2β1 and the PDGFRβ as well as pp60 src . Incubation of cells with CNI and/or PDGF-BB did not change the degree of association. Finally, inhibition of Src activity with SU6656 eliminated the synergistic effect of CNI on PDGF-induced PDGFRβ phosphorylation suggesting an important role for pp60 src in the observed receptor crosstalk. Together, these data demonstrate that CNI synergistically enhances PDGF-induced SMC proliferation through Src-dependent crosstalk between the α2β1 integrin and the PDGFRβ

  6. Photodecomposition Profile of Curcumin in the Existence of Tungsten Trioxide Particles

    Science.gov (United States)

    Nandiyanto, A. B. D.; Zaen, R.; Oktiani, R.; Abdullah, A. G.

    2018-02-01

    The purpose of this study was to investigate the stability of curcumin solution in the existence of tungsten trioxide (WO3) particles under light illumination. In the experimental method, curcumin extracted from Indonesian local turmeric was added with WO3 microparticles and put into the photoreactor system. The photostability performance of curcumin was conducted for 22 hours using 100 W of Neon Lamp. The results showed that the curcumin solution was relatively stable. When curcumin without existence of WO3 was irradiated, no change in the curcumin concentration was found. However, when curcumin solution was mixed with WO3 particles, decreases in the concentration of curcumin was found. The concentration of curcumin with WO3 after light irradiation was about 73.58%. Based on the results, we concluded that the curcumin is relatively stable against light. However, its lightirradiation stability decreases with additional inorganic material.

  7. Use of arsenic trioxide in remission induction and consolidation therapy for acute promyelocytic leukaemia in the Australasian Leukaemia and Lymphoma Group (ALLG) APML4 study: a non-randomised phase 2 trial.

    Science.gov (United States)

    Iland, Harry J; Collins, Marnie; Bradstock, Ken; Supple, Shane G; Catalano, Alberto; Hertzberg, Mark; Browett, Peter; Grigg, Andrew; Firkin, Frank; Campbell, Lynda J; Hugman, Amanda; Reynolds, John; Di Iulio, Juliana; Tiley, Campbell; Taylor, Kerry; Filshie, Robin; Seldon, Michael; Taper, John; Szer, Jeff; Moore, John; Bashford, John; Seymour, John F

    2015-09-01

    Initial treatment of acute promyelocytic leukaemia traditionally involves tretinoin (all-trans retinoic acid) combined with anthracycline-based risk-adapted chemotherapy, with arsenic trioxide being the treatment of choice at relapse. To try to reduce the relapse rate, we combined arsenic trioxide with tretinoin and idarubicin in induction therapy, and used arsenic trioxide with tretinoin as consolidation therapy. Patients with previously untreated genetically confirmed acute promyelocytic leukaemia were eligible for this study. Eligibilty also required Eastern Cooperative Oncology Group performance status 0-3, age older than 1 year, normal left ventricular ejection fraction, Q-Tc interval less than 500 ms, absence of serious comorbidity, and written informed consent. Patients with genetic variants of acute promyelocytic leukaemia (fusion of genes other than PML with RARA) were ineligible. Induction comprised 45 mg/m(2) oral tretinoin in four divided doses daily on days 1-36, 6-12 mg/m(2) intravenous idarubicin on days 2, 4, 6, and 8, adjusted for age, and 0·15 mg/kg intravenous arsenic trioxide once daily on days 9-36. Supportive therapy included blood products for protocol-specified haemostatic targets, and 1 mg/kg prednisone daily as prophylaxis against differentiation syndrome. Two consolidation cycles with tretinoin and arsenic trioxide were followed by maintenance therapy with oral tretinoin, 6-mercaptopurine, and methotrexate for 2 years. The primary endpoints of the study were freedom from relapse and early death (within 36 days of treatment start) and we assessed improvement compared with the 2 year interim results. To assess durability of remission we compared the primary endpoints and disease-free and overall survival at 5 years in APML4 with the 2 year interim APML4 data and the APML3 treatment protocol that excluded arsenic trioxide. This study is registered with the Australian New Zealand Clinical Trials Registry, number ACTRN12605000070639. 124

  8. Revisiting the functional anatomy of the palmaris longus as a thenar synergist.

    Science.gov (United States)

    Moore, Colin W; Fanous, Jacob; Rice, Charles L

    2017-11-27

    Surgical studies describe the palmaris longus (PL) as a synergist in thumb abduction, which may facilitate its use in restoring thumb function using opponensplasty. However, beyond morphological descriptions and isometric thenar abduction strength measures, the evidence supporting the PL as a thenar synergist in-vivo is limited. The purpose here was to determine whether the PL provides synergistic contributions to thenar musculature by: (1) recording PL muscle activity using indwelling electromyography (EMG) during thumb movements; and (2) quantifying changes in PL muscle architecture using ultrasonography. In 10 healthy males, PL muscle activity was recorded during maximal thenar muscle contractions (abduction, flexion, opposition, adduction, and extension) with the wrist secured in a neutral position. The PL EMG was normalized to its maximal EMG recorded during isometric wrist flexion. Dynamic changes in PL muscle thickness (M T ) were determined during abduction and adduction using ultrasound imaging. The results indicate that the PL is activated during thenar movements with greatest relative PL EMG recorded during thenar abduction (46%), flexion (35%) and opposition (37%). Compared to rest, PL M T significantly increased (21%) during maximal thenar abduction. With direct measures in vivo, this study supports morphological and surgical observations indicating the PL acts as an extrinsic hand muscle in enhancing thenar muscle actions. Knowledge of the synergistic relationship between the PL and thenar musculature may allow for further development of surgical opponensplasty approaches using the abductor pollicis brevis and PL as a functional digastric unit. Clin. Anat, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Human harvest, climate change and their synergistic effects drove the Chinese Crested Tern to the brink of extinction

    Directory of Open Access Journals (Sweden)

    Shuihua Chen

    2015-07-01

    Full Text Available Synergistic effect refers to simultaneous actions of separate factors which have a greater total effect than the sum of the individual factor effects. However, there has been a limited knowledge on how synergistic effects occur and individual roles of different drivers are not often considered. Therefore, it becomes quite challenging to manage multiple threatening processes simultaneously in order to mitigate biodiversity loss. In this regard, our hypothesis is, if the traits actually play different roles in the synergistic interaction, conservation efforts could be made more effectively. To understand the synergistic effect and test our hypothesis, we examined the processes associated with the endangerment of critically endangered Chinese Crested Tern (Thalasseus bernsteini, whose total population number was estimated no more than 50. Through monitoring of breeding colonies and investigations into causative factors, combined with other data on human activities, we found that widespread human harvest of seabird eggs and increasing frequency of typhoons are the major factors that threatened the Chinese Crested Tern. Furthermore, 28 percent of breeding failures were due to the synergistic effects in which egg harvest-induced renestings suffered the higher frequent typhoons. In such combined interactions, the egg harvest has clearly served as a proximal factor for the population decline, and the superimposition of enhanced typhoon activity further accelerated the species toward imminent extinction. Our findings suggest that species endangerment, on one hand, should be treated as a synergistic process, while conservation efforts, on the other hand, should focus principally on combatting the threat that triggers synergistic effects.

  10. Repair of bone defect by nano-modified white mineral trioxide aggregates in rabbit: A histopathological study.

    Science.gov (United States)

    Saghiri, Mohammad-Ali; Orangi, Jafar; Tanideh, Nader; Asatourian, Armen; Janghorban, Kamal; Garcia-Godoy, Franklin; Sheibani, Nader

    2015-09-01

    Many researchers have tried to enhance materials functions in different aspects of science using nano-modification method, and in many cases the results have been encouraging. To evaluate the histopathological responses of the micro-/nano-size cement-type biomaterials derived from calcium silicate-based composition with addition of nano tricalcium aluminate (3CaO.Al2O3) on bone healing response. Ninety mature male rabbits were anesthetized and a bone defect was created in the right mandible. The rabbits were divided into three groups, which were in turn subdivided into five subgroups with six animals each based on the defect filled by: white mineral trioxide aggregate (WMTA), Nano-WMTA, WMTA without 3CaO.Al2O3, Nano-WMTA with 2% Nano-3CaO.Al2O3, and empty as control. Twenty, forty and sixty days postoperatively the animals were sacrificed and the right mandibles were removed for histopathological evaluations. Kruskal-Wallis test with post-hoc comparisons based on the LSMeans procedure was used for data analysis. All the experimental materials provoked a moderate to severe inflammatory reaction, which significantly differed from the control group (pbone formation and bone regeneration data showed significant differences between groups at 40- and 60- day intervals in all groups. Absence of 3CaO.Al2O3 leads to more inflammation and foreign body reaction than other groups in all time intervals. Both powder nano-modification and addition of 2% Nano-3CaO.Al2O3 to calcium silicate-based cement enhanced the favorable tissue response and osteogenesis properties of WMTA based materials.

  11. Synergistic Diazo-OH Insertion/Conia-Ene Cascade Catalysis for the Stereoselective Synthesis of γ-Butyrolactones and Tetrahydrofurans.

    Science.gov (United States)

    Hunter, Arianne C; Schlitzer, Steven C; Sharma, Indrajeet

    2016-11-02

    A novel and highly efficient diazo-OH insertion/Conia-ene cascade reaction of readily available homopropargylic acids and alcohols with diazo carbonyl compounds is described. The cascade reaction involves a synergistic Rh/Ag/Au catalyst cocktail and proceeds instantly with a variety of substituted diazo compounds and acids/alcohols to provide functionalized γ-butyrolactones and tetrahydrofurans with complete regio- and stereoselectivity. The unprecedented rate-enhancement, complete stereoselectivity, and the enabling of new Conia-ene cyclizations suggest a concerted [4+1]-cycloaddition reaction pathway under synergistic (Rh/Ag/Au)-catalysis conditions. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Retinoic acid and arsenic trioxide in the treatment of acute promyelocytic leukemia: current perspectives

    Directory of Open Access Journals (Sweden)

    McCulloch D

    2017-03-01

    Full Text Available Derek McCulloch, Christina Brown, Harry Iland Institute of Hematology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia Abstract: Acute promyelocytic leukemia (APL is a distinct subtype of acute myeloid leukemia (AML with a unique morphological appearance, associated coagulopathy and canonical balanced translocation of genetic material between chromosomes 15 and 17. APL was first described as a distinct subtype of AML in 1957 by Dr Leif Hillestad who recognized the pattern of an acute leukemia associated with fibrinolysis, hypofibrinogenemia and catastrophic hemorrhage. In the intervening years, the characteristic morphology of APL has been described fully with both classical hypergranular and variant microgranular forms. Both are characterized by a balanced translocation between the long arms of chromosomes 15 and 17, [t(15;17(q24;q21], giving rise to a unique fusion gene PML-RARA and an abnormal chimeric transcription factor (PML-RARA, which disrupts normal myeloid differentiation programs. The success of current treatments for APL is in marked contrast to the vast majority of patients with non-promyelocytic AML. The overall prognosis in non-promyelocytic AML is poor, and although there has been an improvement in overall survival in patients aged <60 years, only 30%–40% of younger patients are still alive 5 years after diagnosis. APL therapy has diverged from standard AML therapy through the empirical discovery of two agents that directly target the molecular basis of the disease. The evolution of treatment over the last 4 decades to include all-trans retinoic acid and arsenic trioxide, with chemotherapy limited to patients with high-risk disease, has led to complete remission in 90%–100% of patients in trials and rates of overall survival between 86% and 97%. Keywords: acute promyelocytic leukemia, ATRA, arsenic trioxide

  13. Uranium refining in South Africa. The production of uranium trioxide, considering raw material properties and nuclear purity requirements

    International Nuclear Information System (INIS)

    Colborn, R.P.; Bayne, D.L.G.; Slabber, M.N.

    1980-01-01

    Conventional practice results in raw materials being delivered to the uranium refineries in a form more suitable for transportation than for processing, and therefore the refineries are required to treat these raw materials to produce an acceptable intermediate feed stock. During this treatment, it is advantageous to include a purification step to ensure that the feed stock is of the required purity for nuclear grade uranium hexafluoride production, and this usually results in ammonium diuranate slurries of the required quality being produced as the intermediate feed stock. All subsequent processing steps can therefore be standardized and are effectively independent of the origin of the raw materials. It is established practice in South Africa to transport uranium as an ammonium diuranate slurry from the various mines to the Nufcor central processing plant for UOC production, and therefore the process for the production of uranium hexafluoride in South Africa was designed to take cognizance of existing transport techniques and to accept ammonium diuranate slurries as the raw material. The South African refinery will be able to process these slurries directly to uranium trioxide. This paper discusses the conditions under which the various ammonium diuranate raw materials, exhibiting a wide range of properties, can be effectively processed to produce a uranium trioxide of acceptably consistent properties. Mention is also made of the uranium hexafluoride distillation process adopted

  14. Synergistic and antagonistic effects of plant and dairy protein blends on the physicochemical stability of lycopene-loaded emulsions

    NARCIS (Netherlands)

    Ho, Kacie K.H.Y.; Schroën, Karin; San Martín-González, M.F.; Berton-Carabin, Claire C.

    2018-01-01

    Whey-plant protein-based emulsions had high physicochemical stability. Whey and plant protein blend-based interfaces were viscoelastic while casein-based interfaces were relatively viscous. Whey-plant and plant-plant protein blends behaved synergistically leading to enhanced emulsion stability.

  15. Establishment and characterization of arsenic trioxide resistant KB/ATO cells.

    Science.gov (United States)

    Zhang, Yun-Kai; Dai, Chunling; Yuan, Chun-Gang; Wu, Hsiang-Chun; Xiao, Zhijie; Lei, Zi-Ning; Yang, Dong-Hua; Le, X Chris; Fu, Liwu; Chen, Zhe-Sheng

    2017-09-01

    Arsenic trioxide (ATO) is used as a chemotherapeutic agent for the treatment of acute promyelocytic leukemia. However, increasing drug resistance is reducing its efficacy. Therefore, a better understanding of ATO resistance mechanism is required. In this study, we established an ATO-resistant human epidermoid carcinoma cell line, KB/ATO, from its parental KB-3-1 cells. In addition to ATO, KB/ATO cells also exhibited cross-resistance to other anticancer drugs such as cisplatin, antimony potassium tartrate, and 6-mercaptopurine. The arsenic accumulation in KB/ATO cells was significantly lower than that in KB-3-1 cells. Further analysis indicated that neither application of P-glycoprotein inhibitor, breast cancer resistant protein (BCRP) inhibitor, or multidrug resistance protein 1 (MRP1) inhibitor could eliminate ATO resistance. We found that the expression level of ABCB6 was increased in KB/ATO cells. In conclusion, ABCB6 could be an important factor for ATO resistance in KB/ATO cells. The ABCB6 level may serve as a predictive biomarker for the effectiveness of ATO therapy.

  16. [Mathematical modeling of synergistic interaction of sequential thermoradiation action on mammalian cells].

    Science.gov (United States)

    Belkina, S V; Semkina, M A; Kritskiĭ, R O; Petin, V G

    2010-01-01

    Data obtained by other authors for mammalian cells treated by sequential action of ionizing radiation and hyperthermia were used to estimate the dependence of synergistic enhancement ratio on the ratio of damages induced by these agents. Experimental results were described and interpreted by means of the mathematical model of synergism in accordance with which the synergism is expected to result from the additional lethal damage arising from the interaction of sublesions induced by both agents.

  17. Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production.

    Science.gov (United States)

    Arora, Neha; Patel, Alok; Pruthi, Parul A; Pruthi, Vikas

    2016-08-01

    The study synergistically optimized nitrogen and phosphorous concentrations for attainment of maximum lipid productivity in Chlorella minutissima. Nitrogen and phosphorous limited cells (N(L)P(L)) showed maximum lipid productivity (49.1±0.41mg/L/d), 1.47 folds higher than control. Nitrogen depletion resulted in reduced cell size with large sized lipid droplets encompassing most of the intracellular space while discrete lipid bodies were observed under nitrogen sufficiency. Synergistic N/P starvations showed more prominent effect on photosynthetic pigments as to individual deprivations. Phosphorous deficiency along with N starvation exhibited 17.12% decline in carbohydrate while no change in nitrogen sufficient cells were recorded. The optimum N(L)P(L) concentration showed balance between biomass and lipid by maintaining intermediate cell size, pigments, carbohydrate and proteins. FAME profile showed C14-C18 carbon chains in N(L)P(L) cells with biodiesel properties comparable to plant oil methyl esters. Hence, synergistic N/P limitation was effective for enhancing lipid productivity with reduced consumption of nutrients. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Statistical metamodeling for revealing synergistic antimicrobial interactions.

    Directory of Open Access Journals (Sweden)

    Hsiang Chia Chen

    2010-11-01

    Full Text Available Many bacterial pathogens are becoming drug resistant faster than we can develop new antimicrobials. To address this threat in public health, a metamodel antimicrobial cocktail optimization (MACO scheme is demonstrated for rapid screening of potent antibiotic cocktails using uropathogenic clinical isolates as model systems. With the MACO scheme, only 18 parallel trials were required to determine a potent antimicrobial cocktail out of hundreds of possible combinations. In particular, trimethoprim and gentamicin were identified to work synergistically for inhibiting the bacterial growth. Sensitivity analysis indicated gentamicin functions as a synergist for trimethoprim, and reduces its minimum inhibitory concentration for 40-fold. Validation study also confirmed that the trimethoprim-gentamicin synergistic cocktail effectively inhibited the growths of multiple strains of uropathogenic clinical isolates. With its effectiveness and simplicity, the MACO scheme possesses the potential to serve as a generic platform for identifying synergistic antimicrobial cocktails toward management of bacterial infection in the future.

  19. Synergistically enhanced stability of laccase immobilized on synthesized silver nanoparticles with water-soluble polymers.

    Science.gov (United States)

    Cunha, M N M; Felgueiras, H P; Gouveia, I; Zille, A

    2017-06-01

    Silver nanoparticles (AgNPs) were synthesized by citrate reduction method in the presence of polymers, poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA) and chitosan, used as stabilizing agents, and an oxidoreductase enzyme, laccase (Lac), with the goal of expanding the NPs antimicrobial action. AgNPs were characterized by UV-vis spectrometry, dynamic light scattering and transmission electron microscopy. As protecting agents, PEG and PVA promoted the formation of spherical uniformly-shaped, small-sized, monodispersed AgNPs (≈20nm). High Mw polymers were established as most effective in producing small-sized NPs. Chitosan's viscosity led to the formation of aggregates. Despite the decrease in Lac activity registered for the hybrid formulation, AgNPs-polymer-Lac, a significant augment in stability over time (up to 13days, at 50°C) was observed. This novel formulation displays improved synergistic performance over AgNPs-Lac or polymer-Lac conjugates, since in the former the Lac activity becomes residual at the end of 3days. By enabling many ionic interactions, chitosan restricted the mass transfer between Lac and substrate and, thus, inhibited the enzymatic activity. These hybrid nanocomposites made up of inorganic NPs, organic polymers and immobilized antimicrobial oxidoreductive enzymes represent a new class of materials with improved synergistic performance. Moreover, the Lac and the AgNPs different antimicrobial action, both in time and mechanism, may also constitute a new alternative to reduce the probability of developing resistance-associated mutations. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of white mineral trioxide aggregate compared with biomimetic carbonated apatite on dentine bridge formation and inflammatory response in a dental pulp model.

    Science.gov (United States)

    Danesh, F; Vahid, A; Jahanbani, J; Mashhadiabbas, F; Arman, E

    2012-01-01

      To evaluate the effects of apatite precipitation on the biocompatibility and hard tissue induction properties of white mineral trioxide aggregate (WMTA) in a dental pulp model.   Pulp exposures were created on the axial walls of 32 sound canine teeth of eight dogs. Four additional sound teeth served as controls. The pulps were capped either with WMTA or apatite derivatives [biomimetic carbonated apatite (BCAp)] in the interaction of WMTA with a synthetic tissue fluid and restored with zinc oxide-eugenol cement. After 7 and 70 days, the animals were killed, and the histological specimens taken from the teeth were stained with haematoxylin and eosin for histomorphological evaluation. The Brown and Brenn technique was employed to stain bacteria. The data were subjected to nonparametric Kruskall-Wallis analysis and Mann-Whitney U_tests.   Biomimetic carbonated apatite did not induce hard tissue bridge formation. WMTA performed significantly better than BCAp in this respect at both periods (P 0.05).   White mineral trioxide aggregate induced hard tissue formation via a mechanism other than that postulated via apatite formation. © 2011 International Endodontic Journal.

  1. White piedra: further evidence of a synergistic infection.

    Science.gov (United States)

    Youker, Summer R; Andreozzi, Robert J; Appelbaum, Peter C; Credito, Kim; Miller, Jeffrey J

    2003-10-01

    White piedra is a fungal infection of the hair shaft caused by Trichosporon beigelii. A synergistic coryneform bacterial infection is often present with T beigelii. White piedra, although not commonly reported to infect scalp hair in North America, is an important consideration in the differential diagnosis of scalp hair concretions. We report a case of white piedra of scalp hair with synergistic coryneform bacterial infection in two sisters, both US natives. Culture and light and electronmicroscopic evidence of the synergistic infection are presented.

  2. Synergistic effects of irradiation of waste water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.; Cooper, P.C.; Vandenburg, A.J.; Musselman, H.D.; Lowe, H.N.; Florida Inst. of Tech., Melbourne; Army Facilities Engineering Support Agency, Fort Belvoir, Va.

    1975-01-01

    Theoretical considerations of the use of high level radiation in the treatment of waste water have failed to consider the effects of the hydrated electron and the potential of possible synergistic effects of combining chlorine, oxygen, and irradiation. An extensive testing program at the University Center for Pollution Research of Florida Institute of Technology over the past four years has shown that irradiation of waste water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programs have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and fecal streptococcus bacteria indicate that the synergistic effects observed for fecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the interrelationships between the various effects on the bacteria. A definite shielding factor due to the turbidity of the waste water has been shown to exist. Synergistic effects have been shown to significantly offset the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste water. (orig.) [de

  3. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    International Nuclear Information System (INIS)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C.; Ballestas, Mary E.; Elmets, Craig A.; Robbins, David J.; Matalon, Sadis; Deshane, Jessy S.; Afaq, Farrukh; Bickers, David R.; Athar, Mohammad

    2013-01-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions

  4. Unfolded protein response (UPR) signaling regulates arsenic trioxide-mediated macrophage innate immune function disruption

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Ritesh K.; Li, Changzhao; Chaudhary, Sandeep C. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Ballestas, Mary E. [Department of Pediatrics Infectious Disease, Children' s of Alabama, School of Medicine, University of Alabama at Birmingham, AL (United States); Elmets, Craig A. [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Robbins, David J. [Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami (United States); Matalon, Sadis [Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL (United States); Deshane, Jessy S. [Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL (United States); Afaq, Farrukh [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States); Bickers, David R. [Department of Dermatology, Columbia University Medical Center, New York (United States); Athar, Mohammad, E-mail: mathar@uab.edu [Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, AL (United States)

    2013-11-01

    Arsenic exposure is known to disrupt innate immune functions in humans and in experimental animals. In this study, we provide a mechanism by which arsenic trioxide (ATO) disrupts macrophage functions. ATO treatment of murine macrophage cells diminished internalization of FITC-labeled latex beads, impaired clearance of phagocytosed fluorescent bacteria and reduced secretion of pro-inflammatory cytokines. These impairments in macrophage functions are associated with ATO-induced unfolded protein response (UPR) signaling pathway characterized by the enhancement in proteins such as GRP78, p-PERK, p-eIF2α, ATF4 and CHOP. The expression of these proteins is altered both at transcriptional and translational levels. Pretreatment with chemical chaperon, 4-phenylbutyric acid (PBA) attenuated the ATO-induced activation in UPR signaling and afforded protection against ATO-induced disruption of macrophage functions. This treatment also reduced ATO-mediated reactive oxygen species (ROS) generation. Interestingly, treatment with antioxidant N-acetylcysteine (NAC) prior to ATO exposure, not only reduced ROS production and UPR signaling but also improved macrophage functions. These data demonstrate that UPR signaling and ROS generation are interdependent and are involved in the arsenic-induced pathobiology of macrophage. These data also provide a novel strategy to block the ATO-dependent impairment in innate immune responses. - Highlights: • Inorganic arsenic to humans and experimental animals disrupt innate immune responses. • The mechanism underlying arsenic impaired macrophage functions involves UPR signaling. • Chemical chaperon attenuates arsenic-mediated macrophage function impairment. • Antioxidant, NAC blocks impairment in arsenic-treated macrophage functions.

  5. Combination of doxorubicin and low-intensity ultrasound causes a synergistic enhancement in cell killing and an additive enhancement in apoptosis induction in human lymphoma U937 cells.

    Science.gov (United States)

    Yoshida, Toru; Kondo, Takashi; Ogawa, Ryohei; Feril, Loreto B; Zhao, Qing-Li; Watanabe, Akihiko; Tsukada, Kazuhiro

    2008-04-01

    Potential clinical use of ultrasound (US) in enhancing the effects of anticancer drugs in the treatment of cancers has been highlighted in previous reports. Increased uptake of drugs by the cancer cells due to US has been suggested as a mechanism. However, the precise mechanism of the enhancement has not yet been elucidated. Here, the combined effects of low-intensity pulsed US and doxorubicin (DOX) on cell killing and apoptosis induction of U937 cells, and mechanisms involved were investigated. Human myelomonocytic lymphoma U937 cells were used for the experiments. Experiments were conducted in 4 groups: (1) non-treated, (2) DOX treated (DOX), (3) US treated (US), and (4) combined (DOX + US). In DOX +US, cells were exposed to 5 microM DOX for 30 min and sonicated by 1 MHz pulsed US (PRF 100 Hz, DF 10%) at intensities of 0.2-0.5 W/cm(2) for 60 s. The cells were washed and incubated for 6 h. The viability was evaluated by Trypan blue dye exclusion test and apoptosis and incorporation of DOX was assessed by flow cytometry. Involvement of sonoporation in molecular incorporation was evaluated using FITC-dextran, hydroxyl radical formation was measured by electron paramagnetic resonance-spin trapping, membrane alteration including lipid peroxidation and membrane fluidity by DOX was evaluated using cis-parinaric acid and perylene fluorescence polarization method, respectively. Synergistic enhancement in cell killing and additive enhancement in induction of apoptosis were observed at and above 0.3 W/cm(2). No enhancement was observed at 0.2 W/cm(2) in cell killing and induction of apoptosis. Hydroxyl radicals formation was detected at and above 0.3 W/cm(2). The radicals were produced more in the DOX + US than US alone. Incorporation of DOX was increased 13% in DOX + US (vs. DOX) at 0.5 W/cm(2). Involvement of sonoporation for increase of drug uptake was suggested by experiment using FITC-labeled dextran. We made the hypothesis that DOX treatment made the cells weaken

  6. HDAC inhibitor L-carnitine and proteasome inhibitor bortezomib synergistically exert anti-tumor activity in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available Combinations of proteasome inhibitors and histone deacetylases (HDAC inhibitors appear to be the most potent to produce synergistic cytotoxicity in preclinical trials. We have recently confirmed that L-carnitine (LC is an endogenous HDAC inhibitor. In the current study, the anti-tumor effect of LC plus proteasome inhibitor bortezomib (velcade, Vel was investigated both in cultured hepatoma cancer cells and in Balb/c mice bearing HepG2 tumor. Cell death and cell viability were assayed by flow cytometry and MTS, respectively. Gene, mRNA expression and protein levels were detected by gene microarray, quantitative real-time PCR and Western blot, respectively. The effect of Vel on the acetylation of histone H3 associated with the p21(cip1 gene promoter was examined by using ChIP assay and proteasome peptidase activity was detected by cell-based chymotrypsin-like (CT-like activity assay. Here we report that (i the combination of LC and Vel synergistically induces cytotoxicity in vitro; (ii the combination also synergistically inhibits tumor growth in vivo; (iii two major pathways are involved in the synergistical effects of the combinational treatment: increased p21(cip1 expression and histone acetylation in vitro and in vivo and enhanced Vel-induced proteasome inhibition by LC. The synergistic effect of LC and Vel in cancer therapy should have great potential in the future clinical trials.

  7. Co-delivery of cisplatin and CJM-126 via photothermal conversion nanoparticles for enhanced synergistic antitumor efficacy

    Science.gov (United States)

    You, Chaoqun; Wu, Hongshuai; Wang, Mingxin; Gao, Zhiguo; Zhang, Xiangyang; Sun, Baiwang

    2018-01-01

    Polymeric biomaterials that can be smartly disassembled through the cleavage of the covalent bonds in a controllable way upon an environmental stimulus such as pH change, redox, special enzymes, temperature, or ultrasound, as well as light irradiation, but are otherwise stable under normal physiological conditions have attracted great attention in recent decades. The 2-(4-aminophenyl) benzothiazole molecule (CJM-126), as one of the benzothiazole derivatives, has exhibited a synergistic effect with cisplatin (CDDP) and restrains the bioactivities of a series of human breast cancer cell lines. In our study, novel NIR-responsive targeted binary-drug-loaded nanoparticles encapsulating indocyanine green (ICG) dye were prepared as a new co-delivery and combined therapeutic vehicle. The prepared drug-loaded polymeric nanoparticles (TNPs/CDDP-ICG) are stable under normal physiological conditions, while burst drugs release upon NIR laser irradiation in a mild acidic environment. The results further confirmed that the designed co-delivery platform showed higher cytotoxicity than the single free CDDP due to the synergistic treatment of CJM-126 and CDDP in vitro. Taken together, the work might provide a promising approach for effective site-specific antitumor therapy.

  8. Synergistic effects of plant defense elicitors and Trichoderma harzianum on enhanced induction of antioxidant defense system in tomato against Fusarium wilt disease.

    Science.gov (United States)

    Zehra, Andleeb; Meena, Mukesh; Dubey, Manish Kumar; Aamir, Mohd; Upadhyay, R S

    2017-11-02

    Plant defense against their pathogens can be induced by a complex network of different inducers. The present study investigates the synergistic effect of Trichoderma harzianum, exogenous salicylic acid (SA) and methyl jasmonate (MeJA) over the response and regulation of the antioxidant defense mechanisms and lipid peroxidation in tomato plants against Fusarium wilt disease. In the present work, tomato plants were infected by Fusarium oxysporum f. sp. lycopersici 3 days after inoculated with T. harzianum and/or sprayed daily for 3 days with chemical inducers (SA and MeJA). Plants were analysed at 0, 24, 48, 72 and 96 h after inoculation with Fusarium oxysporum f. sp. lycopersici. Infection of tomato plants by pathogen led to strong reduction in the dry weight of roots and shoots with the enhanced concentration of H 2 O 2 and varying degree of lipid peroxidation. Concurrently, exogenous SA, when applied with pathogen greatly enhanced H 2 O 2 content as well as activities of antioxidant enzymes except catalase (CAT) and ascorbate peroxidase (APx). The pathogen challenged plants pretreated with T. harzianum and MeJA together exhibited less lipid peroxidation and as well as the elevated level of ascorbic acid and enhanced activities of antioxidant enzymes. All applied treatments protected tomato seedlings against Fusarium wilt disease but the percentage of protection was found higher in plants pretreated with the combination of T. harzianum and chemical inducers.

  9. Synergistic antioxidant activity of green tea with some herbs

    Directory of Open Access Journals (Sweden)

    Dheeraj P Jain

    2011-01-01

    Full Text Available Cardiovascular diseases, cancer, arthritis, etc. are caused by free radicals that are byproducts of metabolic pathways. Selected plants namely Vitis vinifera, Phyllanthus emblica L., Punica granatum, Cinnamomum cassia, Ginkgo biloba L., and Camellia sinensis Linn. are reported to produce antioxidant property. This study is undertaken to support the hypothesis that formulation of a polyherbal combination of these plants shows a synergistic effect with green tea. The extracts of each drug were characterized by phytochemical studies and tests for phenolics and flavonoids. In vitro antioxidant activity for individual drug and its combination was determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH, superoxide, and nitric oxide free radical scavenging methods. Our results suggest that a combination of all these herbs with green tea can synergistically enhance antioxidant activity and thus lower doses of each herb with green tea may be used. Antioxidant potential of polyherbal combination was also comparable to that of standard ascorbic acid. Studies showed that selected individual plants contained abundant quantity of phenolics and flavonoids and their polyherbal combination with green tea was found to produce best antioxidant activity among all individual extracts. This will help in avoiding undesirable side effects due to higher doses of single herb.

  10. Will mineral trioxide aggregate replace calcium hydroxide in treating pulpal and periodontal healing complications subsequent to dental trauma?

    DEFF Research Database (Denmark)

    Bakland, Leif K; Andreasen, Jens O

    2012-01-01

    Mineral trioxide aggregate (MTA) has over the last two decades begun to take the place of calcium hydroxide (CH) in the treatment of a variety of pulpal and periodontal healing complications following dental trauma. These conditions include teeth with: (i) exposed pulps, (ii) immature roots......, the quality of such induced hard tissues, and finally the dentin weakening effect of CH, which in some instances lead to cervical root fractures in immature teeth. MTA appears, from a relatively few clinical studies, to overcome these shortcomings of CH. The lack of long-term clinical studies, however, may...

  11. 78 FR 59679 - Antimony Trioxide TSCA Chemical Risk Assessment; Notice of Public Meetings and Opportunity To...

    Science.gov (United States)

    2013-09-27

    ...EPA's contractor, The Scientific Consulting Group (SCG), Inc., has identified a panel of scientific experts to conduct a peer review of EPA's draft Toxic Substances Control Act (TSCA) chemical risk assessment, ``TSCA Workplan Chemical Risk Assessment for Antimony Trioxide.'' EPA will hold three peer review meetings by web connect and teleconference. EPA invites the public to register to attend the meetings as observers and/or speakers providing oral comments during any or all of the peer review meetings as discussed in this notice. The public may also provide comment on whether they believe the appearance of conflict of interest exists for any proposed peer review panel expert.

  12. Critical Synergistic Concentration of Lecithin Phospholipids Improves the Antimicrobial Activity of Eugenol against Escherichia coli

    Science.gov (United States)

    Zhang, Haoshu; Dudley, Edward G.

    2017-01-01

    ABSTRACT In this study, the effect of individual lecithin phospholipids on the antimicrobial properties of eugenol against Escherichia coli C600 was investigated. We tested five major phospholipids common in soy or egg lecithin (1,2-dihexadecanoyl-sn-glycero-3-phosphocholine [DPPC], 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine [DSPC], 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine [DPPE], 1,2-dihexadecanoyl-sn-glycero-3-phosphate [sodium salt] [DPPA], and 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine [DPPS]) and one synthetic cationic phospholipid (1,2-dioctadecanoyl-sn-glycero-3-ethylphosphocholine [18:0 EPC]). Among the six phospholipids, DPPC, DSPC, DPPE, DPPA, and the cationic 18:0 EPC showed critical synergistic concentrations that significantly improved the inactivation effect of eugenol against E. coli after 30 min of exposure. At the critical synergistic concentration, an additional ca. 0.4 to 1.9 log reduction (ca. 0.66 to 2.17 log CFU/ml reduction) in the microbial population was observed compared to eugenol-only (control) treatments (ca. 0.25 log reduction). In all cases, increasing the phospholipid amount above the critical synergistic concentration (which was different for each phospholipid) resulted in antimicrobial properties similar to those seen with the eugenol-only (control) treatments. DPPS did not affect the antimicrobial properties of eugenol at the tested concentrations. The critical synergistic concentration of phospholipids was correlated with their critical micelle concentrations (CMC). IMPORTANCE Essential oils (EOs) are naturally occurring antimicrobials, with limited use in food due to their hydrophobicity and strong aroma. Lecithin is used as a natural emulsifier to stabilize EOs in aqueous systems. We previously demonstrated that, within a narrow critical-concentration window, lecithin can synergistically enhance the antimicrobial properties of eugenol. Since lecithin is a mixture of different phospholipids, we aimed to

  13. Critical Synergistic Concentration of Lecithin Phospholipids Improves the Antimicrobial Activity of Eugenol against Escherichia coli.

    Science.gov (United States)

    Zhang, Haoshu; Dudley, Edward G; Harte, Federico

    2017-11-01

    In this study, the effect of individual lecithin phospholipids on the antimicrobial properties of eugenol against Escherichia coli C600 was investigated. We tested five major phospholipids common in soy or egg lecithin (1,2-dihexadecanoyl-sn-glycero-3-phosphocholine [DPPC], 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine [DSPC], 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine [DPPE], 1,2-dihexadecanoyl-sn-glycero-3-phosphate [sodium salt] [DPPA], and 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine [DPPS]) and one synthetic cationic phospholipid (1,2-dioctadecanoyl-sn-glycero-3-ethylphosphocholine [18:0 EPC]). Among the six phospholipids, DPPC, DSPC, DPPE, DPPA, and the cationic 18:0 EPC showed critical synergistic concentrations that significantly improved the inactivation effect of eugenol against E. coli after 30 min of exposure. At the critical synergistic concentration, an additional ca. 0.4 to 1.9 log reduction (ca. 0.66 to 2.17 log CFU/ml reduction) in the microbial population was observed compared to eugenol-only (control) treatments (ca. 0.25 log reduction). In all cases, increasing the phospholipid amount above the critical synergistic concentration (which was different for each phospholipid) resulted in antimicrobial properties similar to those seen with the eugenol-only (control) treatments. DPPS did not affect the antimicrobial properties of eugenol at the tested concentrations. The critical synergistic concentration of phospholipids was correlated with their critical micelle concentrations (CMC). IMPORTANCE Essential oils (EOs) are naturally occurring antimicrobials, with limited use in food due to their hydrophobicity and strong aroma. Lecithin is used as a natural emulsifier to stabilize EOs in aqueous systems. We previously demonstrated that, within a narrow critical-concentration window, lecithin can synergistically enhance the antimicrobial properties of eugenol. Since lecithin is a mixture of different phospholipids, we aimed to identify

  14. Synergistic Interactions within a Multispecies Biofilm Enhance Individual Species Protection against Grazing by a Pelagic Protozoan

    Directory of Open Access Journals (Sweden)

    Prem K. Raghupathi

    2018-01-01

    Full Text Available Biofilm formation has been shown to confer protection against grazing, but little information is available on the effect of grazing on biofilm formation and protection in multispecies consortia. With most biofilms in nature being composed of multiple bacterial species, the interactions and dynamics of a multispecies bacterial biofilm subject to grazing by a pelagic protozoan predator were investigated. To this end, a mono and multispecies biofilms of four bacterial soil isolates, namely Xanthomonas retroflexus, Stenotrophomonas rhizophila, Microbacterium oxydans and Paenibacillus amylolyticus, were constructed and subjected to grazing by the ciliate Tetrahymena pyriformis. In monocultures, grazing strongly reduced planktonic cell numbers in P. amylolyticus and S. rhizophila and also X. retroflexus. At the same time, cell numbers in the underlying biofilms increased in S. rhizophila and X. retroflexus, but not in P. amylolyticus. This may be due to the fact that while grazing enhanced biofilm formation in the former two species, no biofilm was formed by P. amylolyticus in monoculture, either with or without grazing. In four-species biofilms, biofilm formation was higher than in the best monoculture, a strong biodiversity effect that was even more pronounced in the presence of grazing. While cell numbers of X. retroflexus, S. rhizophila, and P. amylolyticus in the planktonic fraction were greatly reduced in the presence of grazers, cell numbers of all three species strongly increased in the biofilm. Our results show that synergistic interactions between the four-species were important to induce biofilm formation, and suggest that bacterial members that produce more biofilm when exposed to the grazer not only protect themselves but also supported other members which are sensitive to grazing, thereby providing a “shared grazing protection” within the four-species biofilm model. Hence, complex interactions shape the dynamics of the biofilm and

  15. Synergistic tumor microenvironment targeting and blood-brain barrier penetration via a pH-responsive dual-ligand strategy for enhanced breast cancer and brain metastasis therapy.

    Science.gov (United States)

    Li, Man; Shi, Kairong; Tang, Xian; Wei, Jiaojie; Cun, Xingli; Long, Yang; Zhang, Zhirong; He, Qin

    2018-05-22

    Cancer associated fibroblasts (CAFs) which shape the tumor microenvironment (TME) and the presence of blood brain barrier (BBB) remain great challenges in targeting breast cancer and its brain metastasis. Herein, we reported a strategy using PTX-loaded liposome co-modified with acid-cleavable folic acid (FA) and BBB transmigrating cell penetrating peptide dNP2 peptide (cFd-Lip/PTX) for enhanced delivery to orthotopic breast cancer and its brain metastasis. Compared with single ligand or non-cleavable Fd modified liposomes, cFd-Lip exhibited synergistic TME targeting and BBB transmigration. Moreover, upon arrival at the TME, the acid-cleavable cFd-Lip/PTX showed sensitive cleavage of FA, which reduced the hindrance effect and maximized the function of both FA and dNP2 peptide. Consequently, efficient targeting of folate receptor (FR)-positive tumor cells and FR-negative CAFs was achieved, leading to enhanced anti-tumor activity. This strategy provides a feasible approach to the cascade targeting of TME and BBB transmigration in orthotopic and metastatic cancer treatment. Copyright © 2018. Published by Elsevier Inc.

  16. Azithromycin Synergistically Enhances Anti-Proliferative Activity of Vincristine in Cervical and Gastric Cancer Cells

    International Nuclear Information System (INIS)

    Zhou, Xuezhang; Zhang, Yuyan; Li, Yong; Hao, Xiujing; Liu, Xiaoming; Wang, Yujiong

    2012-01-01

    In this study, the anti-proliferative and anticancer activity of azithromycin (AZM) was examined. In the presence of AZM, cell growth was inhibited more effectively in Hela and SGC-7901 cancer cells, relative to transformed BHK-21 cells. The respective 50% inhibition of cell growth (IC 50 ) values for Hela, SGC-7901 and BHK-21 were 15.66, 26.05 and 91.00 µg/mL at 72 h post incubation, indicative of a selective cytotoxicity against cancer cells. Cell apoptosis analysis using Hoechst nuclear staining and annexin V-FITC binding assay further demonstrated that AZM was capable of inducing apoptosis in both cancer cells and transformed cells. The apoptosis induced by AZM was partly through a caspase-dependent mechanism with an up-regulation of apoptotic protein cleavage PARP and caspase-3 products, as well as a down-regulation of anti-apoptotic proteins, Mcl-1, bcl-2 and bcl-X1. More importantly, a combination of AZM and a low dose of the common anti-cancer chemotherapeutic agent vincristine (VCR), produced a selectively synergistic effect on apoptosis of Hela and SGC-7901 cells, but not BHK-21 cells. In the presence of 12.50 μg/mL of VCR, the respective IC 50 values of Hela, SGC-7901 and BHK-21 cells to AZM were reduced to 9.47 µg/mL, 8.43 µg/mL and 40.15 µg/mL at 72 h after the incubation, suggesting that the cytotoxicity of AZM had a selective anti-cancer effect on cancer over transformed cells in vitro. These results imply that AZM may be a potential anticancer agent for use in chemotherapy regimens, and it may minimize side effects via reduction of dosage and enhancing the effectiveness common chemotherapeutic drugs

  17. Synergistic pretreatment of waste activated sludge using CaO_2 in combination with microwave irradiation to enhance methane production during anaerobic digestion

    International Nuclear Information System (INIS)

    Wang, Jie; Li, Yongmei

    2016-01-01

    Highlights: • CaO_2/MW pretreatment synergistically enhanced WAS solubilization and CH_4 production. • MW irradiation facilitated more "·OH generation from CaO_2. • The optimal pretreatment condition for methane production was determined. • The growths of both hydrogenotrophic and acetate-utilizing methanogens were promoted. • The dewaterability of WAS was improved considerably by CaO_2/MW treatment. - Abstract: To investigate the effects of combined calcium peroxide (CaO_2) and microwave pretreatment on anaerobic digestion of waste activated sludge, lab-scale experiments were conducted to measure the solubilization, biodegradation, and dewaterability of the waste activated sludge. Additionally, the synergistic effects between CaO_2 and microwave were studied, and the microbial activity and methanogenic archaea community structure were analyzed. Combined pretreatment considerably facilitated the solubilization and subsequent anaerobic digestion of the waste activated sludge. The optimal pretreatment condition was CaO_2 (0.1 g/gVSS)/microwave (480 W, 2 min) for methane production during the subsequent anaerobic digestion process. Under this condition, 80.2% higher CH_4 accumulation yield was achieved after 16 d of anaerobic digestion when compared with the control. The synergistic effects of CaO_2/microwave pretreatment resulted from the different mechanisms of CaO_2 and microwave treatments. Further, microwave irradiation increased "·OH generation from CaO_2 and significantly alleviated the inhibitory effect of CaO_2 on methanogens. The activities of hydrolytic enzymes and acid-forming enzymes in the waste activated sludge were improved after CaO_2 (0.1 g/gVSS)/microwave (480 W, 2 min) pretreatment. Methanogenesis enzyme activity was also higher after CaO_2 treatment (0.1 g/gVSS)/microwave (480 W, 2 min) following a lag period. Illumina MiSeq sequencing analysis indicated that acetate-utilizing methanogen (Methanosaeta sp.) and H_2/CO_2-utilizing

  18. Synergistic Enhancement of Ternary Poly(3,4-ethylenedioxythiophene/Graphene Oxide/Manganese Oxide Composite as a Symmetrical Electrode for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Nur Hawa Nabilah Azman

    2018-06-01

    Full Text Available A novel facile preparation of poly(3,4-ethylenedioxythiophene/graphene oxide/manganese oxide (PEDOT/GO/MnO2 ternary composite as an electrode material for a supercapacitor was evaluated. The ternary composite was sandwiched together and separated by filter paper soaked in 1 M KCl in order to investigate the supercapacitive properties. The ternary composite exhibits a higher specific capacitance (239.4 F/g compared to PEDOT/GO (73.3 F/g at 25 mV/s. The incorporation of MnO2 which act as a spacer in the PEDOT/GO helps to improve the supercapacitive performance by maximizing the utilization of electrode materials by the electrolyte ions. The PEDOT/GO/MnO2 ternary composite displays a specific energy and specific power of 7.9 Wh/kg and 489.0 W/kg, respectively. The cycling stability test revealed that the ternary composite is able to achieve 95% capacitance retention even after 1000 cycles due to the synergistic effect between the PEDOT, GO, and MnO2 that helps to enhance the performance of the ternary composite for supercapacitor application.

  19. Microemulsion-based synergistic dual-drug codelivery system for enhanced apoptosis of tumor cells.

    Science.gov (United States)

    Qu, Ding; Ma, Yihua; Sun, Wenjie; Chen, Yan; Zhou, Jing; Liu, Congyan; Huang, Mengmeng

    2015-01-01

    A microemulsion-based synergistic dual-drug codelivery system was developed for enhanced cell apoptosis by transporting coix seed oil and etoposide into A549 (human lung carcinoma) cells simultaneously. Results obtained by dynamic light scattering showed that an etoposide (VP16)-loaded coix seed oil microemulsion (EC-ME) delivery system had a small size around 35 nm, a narrow polydispersity index, and a slightly negative surface charge. The encapsulating efficiency and total drug loading rate were 97.01% and 45.48%, respectively, by high-performance liquid chromatography. The release profiles at various pH values showed an obvious pH-responsive difference, with the accumulated amount of VP16 released at pH 4.5 (and pH 5.5) being 2.7-fold higher relative to that at pH 7.4. Morphologic alteration (particle swelling) associated with a mildly acidic pH environment was found on transmission electron microscopy. In the cell study, the EC-ME system showed a significantly greater antiproliferative effect toward A549 cells in comparison with free VP16 and the mixture of VP16 and coix seed oil. The half-maximal inhibitory concentration of the EC-ME system was 3.9-fold and 10.4-fold lower relative to that of free VP16 and a mixture of VP16 and coix seed oil, respectively. Moreover, fluorescein isothiocyanate and VP16 (the green fluorescent probe and entrapped drug, respectively) were efficiently internalized into the cells by means of coix seed oil microemulsion through intuitive observation and quantitative measurement. Importantly, an EC-ME system containing 20 μg/mL of VP16 showed a 3.3-fold and 3.5-fold improvement in induction of cell apoptosis compared with the VP-16-loaded microemulsion and free VP16, respectively. The EC-ME combination strategy holds promise as an efficient drug delivery system for induction of apoptosis and treatment of lung cancer.

  20. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement

    Directory of Open Access Journals (Sweden)

    Augusto Bodanezi

    2008-04-01

    Full Text Available This study investigated the solubility of mineral trioxide aggregate (MTA and Portland cement since its mixture until 672 hours, by means of two complimentary methods. Metal ring molds filled with the cements were covered with distilled water and, at each experimental time (3, 24, 72, 168, 336 and 672 hours, were weighed as soon as the plates in which the samples have been placed. Empty rings served as the control group (n=8. Mean weight gain and loss was determined and analyzed statistically by two-way ANOVA and Tukey's test for all pairwise comparisons. Only Portland cement showed less than 3% weight loss through 24 hours. Detached MTA residues were heavier than those of Portland cement over the 3 to 168 hours. The weight of MTA rings increased more than that of Portland rings within 672 hours (p=0.05. The findings of the present study indicate that, in an aqueous environment MTA is more soluble than Portland cement and exceeds the maximum weight loss considered acceptable by ISO 6876 standard (2001.

  1. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Bodanezi, Augusto; Carvalho, Nara; Silva, Daniela; Bernardineli, Norberti; Bramante, Clovis Monteiro; Garcia, Roberto Brandão; de Moraes, Ivaldo Gomes

    2008-01-01

    This study investigated the solubility of mineral trioxide aggregate (MTA) and Portland cement since its mixture until 672 hours, by means of two complimentary methods. Metal ring molds filled with the cements were covered with distilled water and, at each experimental time (3, 24, 72, 168, 336 and 672 hours), were weighed as soon as the plates in which the samples have been placed. Empty rings served as the control group (n=8). Mean weight gain and loss was determined and analyzed statistically by two-way ANOVA and Tukey's test for all pairwise comparisons. Only Portland cement showed less than 3% weight loss through 24 hours. Detached MTA residues were heavier than those of Portland cement over the 3 to 168 hours. The weight of MTA rings increased more than that of Portland rings within 672 hours (p=0.05). The findings of the present study indicate that, in an aqueous environment MTA is more soluble than Portland cement and exceeds the maximum weight loss considered acceptable by ISO 6876 standard (2001).

  2. The solubility of uranium trioxide simulated lung fluid

    International Nuclear Information System (INIS)

    Kravchiks, T.; Kol, R.; Prager, A.; German, U.; Oved, S.; Laichter, Y.

    1997-01-01

    Uranium trioxide is an important intermediate compound in the uranium production process. Inhalation of UO 3 aerosols can occur during this process. To assess the radiation dose from the intake of this compound it is necessary to know its transportability class, based on its dissolution rate in lung fluid. The International Commission on Radiological Protection (ICRP) has assigned UO 3 to Inhalation Class W (lung retention half-time of 10 to 100 days). A solubility study of UO 3 in a simulated lung fluid has been carried out using a batch/filter replacement method. Two tests were conducted over a 100-days period, during which 17 samples were collected and analyzed for their dissolved uranium content. The results show that about 40% of the total uranium was dissolved during the first days and nearly all was dissolved during 100 days. Expressed as the fraction of the total uranium remaining undissolved as a function of time, using a non-linear least squares regression fit, it was found that the solubility of UO 3 in simulated lung fluid could be expressed as a combination of two Inactions: about 25% of the UO 3 could be classified as type D (with lung retention half-time of several hours) and about 75% as type W (with half-time of 10-20 days). This classification is in agreement with recent investigations and indicates that UO 3 is more soluble than considered by ICRP. (authors)

  3. HematoPorphyrin Monomethyl Ether polymer contrast agent for ultrasound/photoacoustic dual-modality imaging-guided synergistic high intensity focused ultrasound (HIFU) therapy.

    Science.gov (United States)

    Yan, Sijing; Lu, Min; Ding, Xiaoya; Chen, Fei; He, Xuemei; Xu, Chunyan; Zhou, Hang; Wang, Qi; Hao, Lan; Zou, Jianzhong

    2016-08-18

    This study is to prepare a hematoporphyrin monomethyl ether (HMME)-loaded poly(lactic-co-glycolic acid) (PLGA) microcapsules (HMME/PLGA), which could not only function as efficient contrast agent for ultrasound (US)/photoacoustic (PA) imaging, but also as a synergistic agent for high intensity focused ultrasound (HIFU) ablation. Sonosensitizer HMME nanoparticles were integrated into PLGA microcapsules with the double emulsion evaporation method. After characterization, the cell-killing and cell proliferation-inhibiting effects of HMME/PLGA microcapsules on ovarian cancer SKOV3 cells were assessed. The US/PA imaging-enhancing effects and synergistic effects on HIFU were evaluated both in vitro and in vivo. HMME/PLGA microcapsules were highly dispersed with well-defined spherical morphology (357 ± 0.72 nm in diameter, PDI = 0.932). Encapsulation efficiency and drug-loading efficiency were 58.33 ± 0.95% and 4.73 ± 0.15%, respectively. The HMME/PLGA microcapsules remarkably killed the SKOV3 cells and inhibited the cell proliferation, significantly enhanced the US/PA imaging results and greatly enhanced the HIFU ablation effects on ovarian cancer in nude mice by the HMME-mediated sono-dynamic chemistry therapy (SDT). HMME/PLGA microcapsules represent a potential multifunctional contrast agent for HIFU diagnosis and treatment, which might provide a novel strategy for the highly efficient imaging-guided non-invasive HIFU synergistic therapy for cancers by SDT in clinic.

  4. Synergistic effect on co-gasification reactivity of biomass-petroleum coke blended char.

    Science.gov (United States)

    Wei, Juntao; Guo, Qinghua; Gong, Yan; Ding, Lu; Yu, Guangsuo

    2017-06-01

    In this work, effects of gasification temperature (900°C-1100°C) and blended ratio (3:1, 1:1, 1:3) on reactivity of petroleum coke and biomass co-gasification were studied in TGA. Quantification analysis of active AAEM transformation and in situ investigation of morphological structure variations in gasification were conducted respectively using inductively coupled plasma optical emission spectrometer and heating stage microscope to explore synergistic effect on co-gasification reactivity. The results indicated that char gasification reactivity was enhanced with increasing biomass proportion and gasification temperature. Synergistic effect on co-gasification reactivity was presented after complete generation of biomass ash, and gradually weakened with increasing temperature from 1000°C to 1100°C after reaching the most significant value at 1000°C. This phenomenon was well related with the appearance of molten biomass ash rich in glassy state potassium and the weakest inhibition effect on active potassium transformation during co-gasification at the temperature higher than 1000°C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Infrared Spectroscopy in the region X-Ray Diffraction and the mineral trioxide aggregate

    International Nuclear Information System (INIS)

    Barros, C.M.B.; Oliveira, S.V.; Silva, M.C.; Cartaxo, J.M.; Fook, M.V.L.

    2011-01-01

    In the nineties was introduced into the search field of biomaterials to mineral trioxide aggregate (MTA). It is a derivative of Portland cement with similar chemical properties and was initially developed as a root filling material in dentistry. This material is presented characteristics of mechanical, physical and biological meaningful when applied to biological environment. It was used to search a commercial MTA manipulated with distilled water and propylene glycol in order to verify chemical composition, infrared absorption bands and stages in the samples. The MTA has been characterized by XRF, XRD and FTIR. In X-ray fluorescence was found that the MTA has a characteristic composition of hydraulic cement. Through FTIR MTA mixed with water presents an enlargement in the absorption bands in the region 1467 and 873 cm-1. By means of XRD showed that there is no presence of toxic materials in the majority and secondary phases. (author)

  6. Indomethacin-Enhanced Anticancer Effect of Arsenic Trioxide in A549 Cell Line: Involvement of Apoptosis and Phospho-ERK and p38 MAPK Pathways

    Directory of Open Access Journals (Sweden)

    Ali Mandegary

    2013-01-01

    Full Text Available Background. Focusing on novel drug combinations that target different pathways especially apoptosis and MAPK could be a rationale for combination therapy in successful treatment of lung cancer. Concurrent use of cyclooxygenase (COX inhibitors with arsenic trioxide (ATO might be a possible treatment option. Methods. Cytotoxicity of ATO, dexamethasone (Dex, celecoxib (Cel, and Indomethacin (Indo individually or in combination was determined at 24, 48, and 72 hrs in A549 lung cancer cells. The COX-2 gene and protein expression, MAPK pathway proteins, and caspase-3 activity were studied for the most cytotoxic combinations. Results. The IC50s of ATO and Indo were 68.7 μmol/L and 396.5 μmol/L, respectively. Treatment of cells with combinations of clinically relevant concentrations of ATO and Indo resulted in greater growth inhibition and apoptosis induction than did either agent alone. Caspase-3 activity was considerably high in the presence of ATO and Indo but showed no difference in single or combination use. Phosphorylation of p38 and ERK1/2 was remarkable in the concurrent presence of both drugs. Conclusions. Combination therapy with ATO and Indo exerted a very potent in vitro cytotoxic effect against A549 lung cancer cells. Activation of ERK and p38 pathways might be the mechanism of higher cytotoxic effect of ATO-Indo combination.

  7. The in vitro synergistic inhibitory effect of human amniotic fluid and gentamicin on growth of Escherichia coli.

    Science.gov (United States)

    Miglioli, P A; Schoffel, U; Gianfranceschi, L

    1996-01-01

    The activity of serum and its synergistic effect with many antibiotics against bacteria are well known. Few reports are available on similar phenomena produced by human amniotic fluid (HAF). Thus we investigated the antibacterial activity of HAF and the presence of a synergistic effect with gentamicin (GM) against Escherichia coli strains. Antimicrobial activity was evaluated as a delay of the growth curve, using a turbidimetric method. E. coli ATCC 10798 and E. coli SC 12155 were employed as test micro-organisms in nutrient broth, and GM was used at a subinhibitory concentration. HAF exerted antibacterial activity and, cooperating with GM at subinhibitory concentration, enhanced its antibiotic activity against E. coli. The presence of Schlievert's glycoprotein in HAF could explain these results.

  8. Facile and controllable construction of vanadium pentoxide@conducting polymer core/shell nanostructures and their thickness-dependent synergistic energy storage properties

    International Nuclear Information System (INIS)

    Tong, Zhongqiu; Liu, Shikun; Li, Xingang; Ding, Yanbo; Zhao, Jiupeng; Li, Yao

    2016-01-01

    Graphical abstract: Here, we report a novel approach to prepare metal oxide@conducting polymer core/shell hybrids with controlled shell thickness and morphology, and the influence of PANI shell thickness on the electrochemical performance of V 2 O 5 @PANI core/shell hybrids is systematically investigated. Thickness-dependent synergistic electron transport, Li-ion diffusion distance, and shell mechanical strength mechanisms are proposed. - Highlights: • Thickness- and morphology-controlled V 2 O 5 /PANI core/shell hybrid nanofibers are fabricated. • The enhancement of energy storage performance of core/shell hybrids varies with the shell thickness. • Thickness-dependent synergistic electron transport, Li-ion diffusion distances, and shell mechanical strength mechanisms are proposed. - Abstract: Thickness- and morphology-controlled vanadium pentoxide/polyaniline (V 2 O 5 /PANI) core/shell hybrid nanofibers are fabricated by electropolymerization of PANI on V 2 O 5 nanofibers for enhanced energy storage. By simply adjusting the electrodeposition time, the thickness of the PANI shells can be controlled from 5 nm to 47 nm, and the morphology can be changed from coaxial to branched. The influence of shell thickness on the improved Li-ion storage performance of the V 2 O 5 /PANI core/shell nanofibers is systematically investigated, and this enhancement of charge capability and cycling stability strongly varies with the shell thickness. Thickness-dependent synergistic electron transport, Li-ion diffusion distances, and shell mechanical strength mechanisms are also proposed. These results provide meaningful references for developing new functional core/shell materials and high-performance energy storage composite materials.

  9. Synergistic effect of sevoflurane and isoflurane on inhibition of the adult-type muscle nicotinic acetylcholine receptor by rocuronium.

    Science.gov (United States)

    Liu, Li; Li, Wei; Wei, Ke; Cao, Jun; Luo, Jie; Wang, Bin; Min, Su

    2013-06-01

    Inhaled anesthetics increase the incidence of postoperative residual neuromuscular blockade, and the mechanism is still unclear. We have investigated the synergistic effect of low-concentration inhaled anesthetics and rocuronium on inhibition of the inward current of the adult-type muscle nicotinic acetylcholine receptor (ε-nAChR). Adult-type mouse muscle ε-nAChR was expressed in HEK293 cells by liposome transfection. The inward current of the ε-nAChR was activated by use of 10 μmol/L acetylcholine alone or in combination with different concentrations of sevoflurane, isoflurane, or rocuronium. The concentration-response curves of five cells were constructed, and the data yielded the 5, 25, and 50 % inhibitory concentrations (IC5, IC25, and IC50, respectively) for single-drug application. Subsequently, the functional channels were perfused by adding 0.5 IC5 of either sevoflurane or isoflurane (aqueous concentrations 140 and 100 μmol/L, respectively) to the solution, followed by addition of IC5, IC25, or IC50 rocuronium. The amount of inhibition was calculated to quantify their synergistic effect. The inhibitory effect of rocuronium was enhanced by sevoflurane or isoflurane in a concentration-dependent manner. Sevoflurane or isoflurane (0.5 IC5) with rocuronium at IC5, IC25, and IC50 synergistically inhibited the current amplitude of adult-type muscle ε-nAChR. When the IC5 of rocuronium was used, isoflurane had a stronger synergistic effect than sevoflurane (p rocuronium was applied at higher concentrations (IC25 and IC50), sevoflurane had an effect similar to that of isoflurane. For both inhaled anesthetics, the synergistic effect was more intense for rocuronium at IC5 than for rocuronium at IC25 or IC50. Residual-concentration sevoflurane or isoflurane has a strong synergistic effect with rocuronium at clinically relevant residual concentrations. A lower rocuronium concentration resulted in a stronger synergistic effect.

  10. Synergistic effect of eugenol with Colistin against clinical isolated Colistin-resistant Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Yi-ming Wang

    2018-01-01

    Full Text Available Abstract Background Bacterial infections have become more challenging to treat due to the emergence of multidrug-resistant pathogenic bacteria. Combined antibiotics prove to be a relatively effective method to control such resistant strains. This study aim to investigate synergistic activity of eugenol combined with colistin against a collection of clinical isolated Escherichia coli (E.coli strains, and to evaluate potential interaction. Methods Antimicrobial susceptibility, minimum inhibitory concentration (MIC and fractional inhibitory concentration index (FICI of the bacteria were determined by disk diffusion assay, broth microdilution method and checkerboard assay, respectively. The mcr-1 mRNA expression was measured by Real-time PCR. To predict possible interactions between eugenol and MCR-1, molecular docking assay was taken. Results For total fourteen strains including eight colistin-resistant strains, eugenol was determined with MIC values of 4 to 8 μg/mL. Checkerboard dilution test suggested that eugenol exhibited synergistic activity when combined with colistin (FICI ranging from 0.375 to 0.625. Comparison analysis of Real-time PCR showed that synergy could significantly down-regulate expression of mcr-1 gene. A metal ion coordination bond with catalytic zinc atom and a hydrogen bond with crucial amino acid residue Ser284 of MCR-1 were observed after molecular docking, indicating antibacterial activity and direct molecular interactions of eugenol with MCR-1 protein. Conclusions Our results demonstrated that eugenol exhibited synergistic effect with colistin and enhanced its antimicrobial activity. This might further contribute to the antibacterial actions against colistin-resistant E.coli strains. Graphical abstract Synergistic effect of eugenol with colistin against colistin-resistant Escherichia coli isolates.

  11. Enhancement of the priming efficacy of DNA vaccines encoding dendritic cell-targeted antigens by synergistic toll-like receptor ligands

    Directory of Open Access Journals (Sweden)

    Kornbluth Richard S

    2009-08-01

    Full Text Available Abstract Background Targeting of protein antigens to dendritic cells (DC via the DEC205 receptor enhances presentation of antigen-derived peptides on MHC-I and MHC-II molecules and, in the presence of costimulatory signals, antigen-specific immune responses. The immunogenicity and efficacy of DNA vaccination can also be enhanced by fusing the encoded antigen to single chain antibodies directed against DEC205. To further improve this strategy, we evaluated different toll-like receptor ligands (TLR and CD40 ligands (CD40L as adjuvants for DNA vaccines encoding a DEC205-single-chain antibody fused to the ovalbumin model antigen or HIV-1 Gag and assessed the priming efficacy of DNA in a DNA prime adenoviral vector boost immunization regimen. Results Mice were primed with the adjuvanted DEC-205 targeted DNA vaccines and boosted with adenoviral vectors encoding the same antigens. CD8+ T cell responses were determined after the adenoviral booster immunization, to determine how well the different DNA immunization regimens prime for the adenoviral boost. In the absence of adjuvants, targeting of DNA-encoded ovalbumin to DCs suppressed CD8+ T-cell responses after the adenoviral booster immunization. CD8+ T-cell responses to the DEC205 targeted DNA vaccines increased only slightly by adding either the TLR-9 ligand CpG, the TLR-3 ligand Poly I:C, or CD40 ligand expression plasmids. However, the combination of both TLR-ligands led to a strong enhancement of CD8+ T-cell responses compared to a non-targeted DNA vaccine. This finding was confirmed using HIV Gag as antigen. Conclusion Although DNA prime adenoviral vector boost immunizations belong to the strongest inducers of cytotoxic T cell responses in different animal models and humans, the CD8+ T cell responses can be further improved by targeting the DNA encoded antigen to DEC205 in the presence of synergistic TLR ligands CpG and Poly I:C.

  12. Egg Component-Composited Inverse Opal Particles for Synergistic Drug Delivery.

    Science.gov (United States)

    Liu, Yuxiao; Shao, Changmin; Bian, Feika; Yu, Yunru; Wang, Huan; Zhao, Yuanjin

    2018-05-23

    Microparticles have a demonstrated value in drug delivery systems. The attempts to develop this technology focus on the generation of functional microparticles by using innovative but accessible materials. Here, we present egg component-composited microparticles with a hybrid inverse opal structure for synergistic drug delivery. The egg component inverse opal particles were produced by using egg yolk to negatively replicate colloid crystal bead templates. Because of their huge specific surface areas, abundant nanopores, and complex nanochannels of the inverse opal structure, the resultant egg yolk particles could be loaded with different kinds of drugs, such as hydrophobic camptothecin (CPT), by simply immersing them into the corresponding drug solutions. Attractively, additional drugs, such as the hydrophilic doxorubicin (DOX), could also be encapsulated into the particles through the secondary filling of the drug-doped egg white hydrogel into the egg yolk inverse opal scaffolds, which realized the synergistic drug delivery for the particles. It was demonstrated that the egg-derived inverse opal particles were with large quantity and lasting releasing for the CPT and DOX codelivery, and thus could significantly reduce cell viability, and enhance therapeutic efficacy in treating cancer cells. These features of the egg component-composited inverse opal microparticles indicated that they are ideal microcarriers for drug delivery.

  13. In Vitro Synergistic Enhancement of Newcastle Disease Virus to 5-Fluorouracil Cytotoxicity against Tumor Cells

    Directory of Open Access Journals (Sweden)

    Ahmed M. Al-Shammari

    2016-01-01

    Full Text Available Background: Chemotherapy is one of the antitumor therapies used worldwide in spite of its serious side effects and unsatisfactory results. Many attempts have been made to increase its activity and reduce its toxicity. 5-Fluorouracil (5-FU is still a widely-used chemotherapeutic agent, especially in combination with other chemotherapies. Combination therapy seems to be the best option for targeting tumor cells by different mechanisms. Virotherapy is a promising agent for fighting cancer because of its safety and selectivity. Newcastle disease virus is safe, and it selectively targets tumor cells. We previously demonstrated that Newcastle disease virus (NDV could be used to augment other chemotherapeutic agents and reduce their toxicity by halving the administered dose and replacing the eliminated chemotherapeutic agents with the Newcastle disease virus; the same antitumor activity was maintained. Methods: In the current work, we tested this hypothesis on different tumor cell lines. We used the non-virulent LaSota strain of NDV in combination with 5-FU, and we measured the cytotoxicity effect. We evaluated this combination using Chou–Talalay analysis. Results: NDV was synergistic with 5-FU at low doses when used as a combination therapy on different cancer cells, and there were very mild effects on non-cancer cells. Conclusion: The combination of a virulent, non-pathogenic NDV–LaSota strain with a standard chemotherapeutic agent, 5-FU, has a synergistic effect on different tumor cells in vitro, suggesting this combination could be an important new adjuvant therapy for treating cancer.

  14. Overview of synergistic aging effects

    International Nuclear Information System (INIS)

    Steigelmann, W.; Farber, M.

    1982-01-01

    Proper, technically defensible qualification of materials and equipment for nuclear power facilities requires that the effects of combined environment exposures be addressed. The full significance of synergistic effects resulting from combined stresses still remains largely an unknown to be provided for by use of conservatisms, allowing a sizeable margin in test programs and analyses to account for possible combined effects. However, these margins, when applied to sequential aging tests, may under- or over-estimate the qualified life of the material or equipment. Experimentation with radiation dose-rate effects, simultaneous vs. sequential ordered exposures, and other combined environment testing are highlighted in this paper to provide an overview of the current state-of-knowledge concerning synergistic effects and their significance to qualification programs

  15. Pd-Pt alloys nanowires as support-less electrocatalyst with high synergistic enhancement in efficiency for methanol oxidation in acidic medium.

    Science.gov (United States)

    Rana, Moumita; Patil, Pramod K; Chhetri, Manjeet; Dileep, K; Datta, Ranjan; Gautam, Ujjal K

    2016-02-01

    In a facile approach, Pd73Pt27 alloy nanowires (NWs) with large aspect ratios were synthesized in high yield by using sacrificial templates. Unlike majority of processes, our synthesis was carried out in aqueous solution with no intermittent separating stages for the products, while maintaining the NW morphology up to ∼30% of Pt. Upon evaporation of their dispersion, the NWs transform into a stable porous membrane due to self-entanglement and can be directly lifted and employed for electrocatalytic applications without external catalyst supports. We show that the NW membranes exhibit efficient electrocatalytic performance for methanol oxidation reaction (MOR) with 10 times higher mass activity and 4.4 times higher specific activity in acidic media as compared to commercial Pt catalysts. The membrane electrocatalysts is robust and exhibited very good stability with retention of ∼70% mass-activity after 4000 potential cycles. Since Pd was found to be inert towards MOR in acidic medium, our investigation provides a direct estimate of synergistic enhancement of efficiency. Over 10 times increment of mass activity appears to be significantly higher than previous investigations in various other reaction media. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Surface-Enhanced Raman Spectroscopy Integrated Centrifugal Microfluidics Platform

    DEFF Research Database (Denmark)

    Durucan, Onur

    This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques and minia......This PhD thesis demonstrates (i) centrifugal microfluidics disc platform integrated with Au capped nanopillar (NP) substrates for surface-enhanced Raman spectroscopy (SERS) based sensing, and (ii) novel sample analysis concepts achieved by synergistical combination of sensing techniques...... dense array of NP structures. Furthermore, the wicking assisted nanofiltration procedure was accomplished in centrifugal microfluidics platform and as a result additional sample purification was achieved through the centrifugation process. In this way, the Au coated NP substrate was utilized...

  17. Synergistic effects of irradiation of waste-water

    International Nuclear Information System (INIS)

    Woodbridge, D.D.

    1975-01-01

    Water is an absolute necessity for all forms of animal and plant life. As man's requirements for water increase, the need for better methods of purification also increase. Technology has been slow to develop new methods of water treatment for the direct utilization of waste-water. Many new construction projects are at a standstill because waste-water treatment methods have not been developed to handle adequately the ever-increasing flow of sewage. Theoretical considerations of the use of high-level radiation in the treatment of waste-water have failed to consider the effects of the hydrated electron, and the potential of the possible synergistic effects of combining chlorine, oxygen and irradiation. An extensive testing programme at the University Center for Pollution Research of the Florida Institute of Technology over the past four years has shown that irradiation of waste-water samples immersed in an aqueous environment provide bacterial kill and reduction in organic pollution far greater than that obtained from theoretical considerations of G values and earlier experiments where the waste samples were not immersed in an aqueous environment. These testing programmes have investigated the synergistic effects of combining oxygen and irradiation. Each of these combined treatments resulted in an increased bacterial kill factor. Tests on Staphylococcus aureus bacteria and faecal streptococcus bacteria indicate that the synergistic effects observed for faecal coliform bacteria also apply to the pathogenic bacteria. A statistical analysis of the data obtained shows the relationships between the various effects on the bacteria. A definite shielding factor from the turbidity of the waste-water has been shown to exist. Synergistic effects have been shown to offset significantly the shielding effects. Optimization of these synergistic effects can greatly increase the effectiveness of irradiation in the treatment of waste-water. (author)

  18. Ionic Liquids: The Synergistic Catalytic Effect in the Synthesis of Cyclic Carbonates

    Directory of Open Access Journals (Sweden)

    Flora T.T. Ng

    2013-10-01

    Full Text Available This review presents the synergistic effect in the catalytic system of ionic liquids (ILs for the synthesis of cyclic carbonate from carbon dioxide and epoxide. The emphasis of this review is on three aspects: the catalytic system of metal-based ionic liquids, the catalytic system of hydrogen bond-promoted ionic liquids and supported ionic liquids. Metal and ionic liquids show a synergistic effect on the cycloaddition reactions of epoxides. The cations and anions of ionic liquids show a synergistic effect on the cycloaddition reactions. The functional groups in cations or supports combined with the anions have a synergistic effect on the cycloaddition reactions. Synergistic catalytic effects of ILs play an important role of promoting the cycloaddition reactions of epoxides. The design of catalytic system of ionic liquids will be possible if the synergistic effect on a molecular level is understood.

  19. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  20. Synergistic Interaction within Bifunctional Ruthenium Nanoparticle/SILP Catalysts for the Selective Hydrodeoxygenation of Phenols.

    Science.gov (United States)

    Luska, Kylie L; Migowski, Pedro; El Sayed, Sami; Leitner, Walter

    2015-12-21

    Ruthenium nanoparticles immobilized on acid-functionalized supported ionic liquid phases (Ru NPs@SILPs) act as efficient bifunctional catalysts in the hydrodeoxygenation of phenolic substrates under batch and continuous flow conditions. A synergistic interaction between the metal sites and acid groups within the bifunctional catalyst leads to enhanced catalytic activities for the overall transformation as compared to the individual steps catalyzed by the separate catalytic functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Redox Chemistry of Molybdenum Trioxide for Ultrafast Hydrogen-Ion Storage.

    Science.gov (United States)

    Wang, Xianfu; Xie, Yiming; Tang, Kai; Wang, Chao; Yan, Chenglin

    2018-05-11

    Hydrogen ions are ideal charge carriers for rechargeable batteries due to their small ionic radius and wide availability. However, little attention has been paid to hydrogen-ion storage devices because they generally deliver relatively low Coulombic efficiency as a result of the hydrogen evolution reaction that occurs in an aqueous electrolyte. Herein, we successfully demonstrate that hydrogen ions can be electrochemically stored in an inorganic molybdenum trioxide (MoO 3 ) electrode with high Coulombic efficiency and stability. The as-obtained electrode exhibits ultrafast hydrogen-ion storage properties with a specific capacity of 88 mA hg -1 at an ultrahigh rate of 100 C. The redox reaction mechanism of the MoO 3 electrode in the hydrogen-ion cell was investigated in detail. The results reveal a conversion reaction of the MoO 3 electrode into H 0.88 MoO 3 during the first hydrogen-ion insertion process and reversible intercalation/deintercalation of hydrogen ions between H 0.88 MoO 3 and H 0.12 MoO 3 during the following cycles. This study reveals new opportunities for the development of high-power energy storage devices with lightweight elements. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Root perforations treatment using mineral trioxide aggregate and Portland cements.

    Science.gov (United States)

    Silva Neto, José Dias da; Brito, Rafael Horácio de; Schnaider, Taylor Brandão; Gragnani, Alfredo; Engelman, Mírian; Ferreira, Lydia Masako

    2010-12-01

    Clinical, radiological and histological evaluation of root perforations treated with mineral trioxide aggregate (MTA) or Portland cements, and calcium sulfate barrier. One molar and 11 premolar teeth of a male mongrel dog received endodontic treatment and furcations were perforated with a high-speed round bur and treated with a calcium sulfate barrier. MTA, Portland cement type II (PCII) and type V (PCV), and white Portland cement (WPC) were used as obturation materials. The teeth were restored with composite resin and periapical radiographs were taken. The animal was euthanized 120 days post-surgery for treatment evaluation. Right lower first premolar (MTA), right lower third premolar (PCV), left lower second premolar (MTA), and right lower second premolar (WPC): clinically normal, slightly radio-transparent area on the furcation, little inflammatory infiltrate, and new-bone formation. Left lower third premolar (PCII), right upper first premolar (WPC), right upper third premolar (PCII), and left upper first molar (PCV): clinically normal, radiopaque area on the furcation, and new-bone formation. Right upper second premolar (MTA), left upper second premolar (WPC), left upper third premolar (PCII): presence of furcation lesion, large radiolucent area, and intense inflammatory infiltrate. All obturation materials used in this study induced new-bone formation.

  3. Synergistic extraction of trivalent lanthanoids with 3-phenyl-4-benzoyl-5-isoxazolone and various sulphoxides

    International Nuclear Information System (INIS)

    Sahu, S.K.; Chakravortty, V.; Reddy, M.L.P.; Ramamohan, T.R.

    1999-01-01

    Synergistic extraction of trivalent lanthanoids Nd, Tb and Tm with mixtures of 3-phenyl-4-benzoyl-5-isoxazolone (HPBI) and dioctyl sulphoxide (DOSO), bis-2-ethylhexyl sulphoxide (B2EHSO) or diphenyl sulphoxide (DPhSO) in xylene from perchlorate solution was investigated. Lanthanoids were found to be extracted as Ln(PBI) 3 with HPBI alone. In the presence of sulphoxides, Nd(III) was found to be extracted as Nd(PBI) 3 . S and Nd(PBI) 3 . 2 S (where S = sulphoxide). On the other hand, Tb(III) and Tm(III) were extracted as Tb(PBI) 3 . S and Tm(PBI) 3 . S respectively. The equilibrium constants of the synergistic species were found to increase monotonically with decreasing ionic radii of these metal ions. The addition of a sulphoxide to the metal chelate system not only enhances the extraction efficiency but also improves the selectivities among these trivalent lanthanoids. (orig.)

  4. pH-Responsive Magnetic Mesoporous Silica-Based Nanoplatform for Synergistic Photodynamic Therapy/Chemotherapy.

    Science.gov (United States)

    Tang, Xiang-Long; Jing, Feng; Lin, Ben-Lan; Cui, Sheng; Yu, Ru-Tong; Shen, Xiao-Dong; Wang, Ting-Wei

    2018-05-02

    By overcoming drug resistance and subsequently enhancing the treatment, the combination therapy of photodynamic therapy (PDT) and chemotherapy has promising potential for cancer treatment. However, the major challenge is how to establish an advanced nanoplatform that can be efficiently guided to tumor sites and can then stably release both chemotherapy drugs and a photosensitizer simultaneously and precisely. In this study, which considered the possibility and targeting efficiency of a magnetic targeting strategy, a novel Fe 3 O 4 @mSiO 2 (DOX)@HSA(Ce6) nanoplatform was successfully built; this platform could be employed as an efficient synergistic antitumor nanoplatform with magnetic guidance for highly specific targeting and retention. Doxorubicin (DOX) molecules were loaded into mesoporous silica with high loading capability, and the mesoporous channels were blocked by a polydopamine coating. Human serum albumin (HSA) was conjugated to the outer surface to increase the biocompatibility and blood circulation time, as well as to provide a vehicle for loading photosensitizer chlorin e6 (Ce6). The sustained release of DOX under acidic conditions and the PDT induced by red light exerted a synergistic inhibitory effect on glioma cells. Our experiments demonstrated that the pH-responsive Fe 3 O 4 @mSiO 2 (DOX)@HSA(Ce6) nanoplatform was guided to the tumor region by magnetic targeting and that the nanoplatform suppressed glioma tumor growth efficiently, implying that the system is a highly promising photodynamic therapy/chemotherapy combination nanoplatform with synergistic effects for cancer treatment.

  5. Synergistic Effects of Cabozantinib and EGFR-Specific CAR-NK-92 Cells in Renal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Zhang

    2017-01-01

    Full Text Available The chimeric antigen receptor-modified immune effector cell (CAR-T and CAR-NK therapies are newly developed adoptive treatments of cancers. However, their therapeutic efficacy against solid tumors is limited. Combining CAR-T or CAR-NK cells with chemotherapeutic drugs to treat solid tumor may be a promising strategy. We developed an epidermal growth factor- (EGFR- specific third-generation CAR. NK-92 cells were modified with the CAR by lentivirus infection. The specific killing ability of the CAR-modified NK-92 cells (CAR-NK-92 against renal cell carcinoma (RCC cell lines was confirmed in vitro. The synergistic effects of cabozantinib and EGFR-specific CAR-NK-92 cells were investigated in vitro and in vivo. Our results showed that the CAR-NK-92 cells lyse RCC cells in an EGFR-specific manner. Treatment with cabozantinib could increase EGFR and decrease PD-L1 membrane surface expression in RCC cells and enhance the killing ability of CAR-NK-92 cells against the RCC cells in vitro. Furthermore, the CAR-NK-92 cells show synergistic therapeutic efficacy with cabozantinib against human RCC xenograft models. Our results provided the basis for combination with chemotherapy as a novel strategy for enhancing the therapeutic efficacy of CAR-modified immune effector cells for solid tumors.

  6. Tungsten Trioxide/Zinc Tungstate Bilayers: Electrochromic Behaviors, Energy Storage and Electron Transfer

    International Nuclear Information System (INIS)

    Wei, Huige; Ding, Daowei; Yan, Xingru; Guo, Jiang; Shao, Lu; Chen, Haoran; Sun, Luyi; Colorado, Henry A.; Wei, Suying; Guo, Zhanhu

    2014-01-01

    Highlights: • Tungsten oxide and zinc tungstate bilayers have been prepared via a facile sol-gel method for integrated applications of electrochromic behaviors and energy storage;. • Electron transfer behaviors between the semiconductor bilayer films have been found dependent on the bilayer assembly sequence;. • Methylene blue (MB) has been employed for the first time as an indicator to study the electron transfer phenomenon in the bilayer films. - Abstract: Pair-sequentially spin-coated tungsten trioxide (WO 3 ) and zinc tungstate (ZnWO 4 ) bilayer films onto indium tin oxide (ITO) coated glass slides have been prepared via sol-gel methods followed by annealing. The bilayers (ZnWO 4 /WO 3 denoting the bilayer film with the inner layer of ZnWO 4 and the outer layer of WO 3 on the ITO while WO 3 /ZnWO 4 standing for the bilayer film with the inner layer of WO 3 and the outer layer of ZnWO 4 on the ITO) exhibit integrated functions of electrochromic and energy storage behaviors as indicated by the in situ spectroelectrochemistry and cyclic voltammetry (CV) results. Accordingly, blue color was observed for the bilayer films at -1 V in 0.5 M H 2 SO 4 solution. An areal capacitance of 140 and 230 μF/cm 2 was obtained for the ZnWO 4 /WO 3 , and WO 3 /ZnWO 4 film, respectively, at a scan rate of 0.05 V/s in the CV measurements. The CV results also unveiled the electron transfer behavior between the semiconductor films in the oxidation process, suggesting a sequence-dependent electrochemical response in the bilayer films. Meanwhile, methylene blue (MB) was used as an indicator to study the electron transfer phenomenon during the reduction process at negative potentials of -0.4 and -0.8 V, in 0.5 M Na 2 SO 4 . The results indicated that the electrons transfer across the bilayers was enhanced at more negative potentials

  7. Phenotypic Screening Identifies Synergistically Acting Natural Product Enhancing the Performance of Biomaterial Based Wound Healing

    Directory of Open Access Journals (Sweden)

    Srinivasan Sivasubramanian

    2017-07-01

    Full Text Available The potential of multifunctional wound heal biomaterial relies on the optimal content of therapeutic constituents as well as the desirable physical, chemical, and biological properties to accelerate the healing process. Formulating biomaterials such as amnion or collagen based scaffolds with natural products offer an affordable strategy to develop dressing material with high efficiency in healing wounds. Using image based phenotyping and quantification, we screened natural product derived bioactive compounds for modulators of types I and III collagen production from human foreskin derived fibroblast cells. The identified hit was then formulated with amnion to develop a biomaterial, and its biophysical properties, in vitro and in vivo effects were characterized. In addition, we performed functional profiling analyses by PCR array to understand the effect of individual components of these materials on various genes such as inflammatory mediators including chemokines and cytokines, growth factors, fibroblast stimulating markers for collagen secretion, matrix metalloproteinases, etc., associated with wound healing. FACS based cell cycle analyses were carried out to evaluate the potential of biomaterials for induction of proliferation of fibroblasts. Western blot analyses was done to examine the effect of biomaterial on collagen synthesis by cells and compared to cells grown in the presence of growth factors. This work demonstrated an uncomplicated way of identifying components that synergistically promote healing. Besides, we demonstrated that modulating local wound environment using biomaterials with bioactive compounds could enhance healing. This study finds that the developed biomaterials offer immense scope for healing wounds by means of their skin regenerative features such as anti-inflammatory, fibroblast stimulation for collagen secretion as well as inhibition of enzymes and markers impeding the healing, hydrodynamic properties complemented

  8. Investigation on the photophysical properties of tungsten trioxide and tungstate based nanocomposites

    Science.gov (United States)

    Palanisamy, G.; Pazhanivel, T.

    2018-04-01

    Tungsten trioxide (WO3), Metal tungstates (SrWO4, Cr2WO6), WO3/SrWO4 and WO3/Cr2WO6 nanocomposites were successfully prepared by microwave irradiation method at relatively low temperature (500 °C). The synthesized samples were subjected to different investigation techniques, to know the materials physical and chemical properties. The structural and phase change formation of nanoparticles were investigated through XRD analysis. It shows that, the nanoparticles have highly crystalline nature. The shape and composition of the prepared nanoparticles were investigated through SEM and EDAX analysis. The optical properties of the synthesized samples were verified by Ultraviolet-diffuse reflectance spectroscopy and photoluminescence spectrometer. The emission intensity maximum of WO3 nanoparticle was red shifted when compared to composites. It may be due to the effect of delocalized electrons in the parent material. Simultaneously, the emission intensity was decreased because of trap states occurred on the surface of the composite nanoparticles. The photoluminescence spectra of the synthesized samples exhibit different emission (violet and blue) behavior. Hence, it may be useful for light emitting diode (LED) applications.

  9. Kinetics and mechanism of the oxidation of alkenes and silanes by hydrogen peroxide catalyzed by methylrhenium trioxide (MTO) and a novel application of electrospray mass spectrometry to study the hydrolysis of MTO

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Haisong [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Conjugated dienes were oxidized by hydrogen peroxide with methylrhenium trioxide (MTO) as catalyst. Methylrhenium bis-peroxide was the major reactive catalyst present. Hydroxyalkenes and trisubstituted silane were also tested. Mechanisms for each of these reactions are presented.

  10. Long-term observation of the mineral trioxide aggregate extrusion into the periapical lesion: a case series

    Institute of Scientific and Technical Information of China (English)

    Seok-Woo Chang; Tae-Seok Oh; WooCheol Lee; Gary Shun-Pan Cheung; Hyeon-Cheol Kim

    2013-01-01

    One-step apexification using mineral trioxide aggregate (MTA) has been reported as an alternative treatment modality with more benefits than the use of long-term calcium hydroxide for teeth with open apex. However, orthograde placement of MTA is a challenging procedure in terms of length control. This case series describes the sequence of events following apical extrusion of MTA into the periapical area during a one-step apexification procedure for maxillary central incisor with an infected immature apex. Detailed long-term observation revealed complete resolution of the periapical radiolucent lesion around the extruded MTA. These cases revealed that direct contact with MTA had no negative effects on healing of the periapical tissues. However, intentional MTA overfilling into the periapical lesion is not to be recommended.

  11. Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Dan [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Ni, Wei, E-mail: niwei@iccas.ac.cn [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Cheng, Jianli; Wang, Zhuanpei; Wang, Ting; Guan, Qun [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Zhang, Yun, E-mail: y_zhang@scu.edu.cn [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Wu, Hao [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China); Li, Xiaodong [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China); Wang, Bin, E-mail: edward.bwang@gmail.com [Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang, 621900 (China)

    2017-08-15

    Graphical abstract: Flexible three-dimensional electrode comprised of stringed N-doped hollow carbon spheres shows a synergistic sulfur confinement mechanism and a higher energy/power density for the promising lithium-sulfur batteries compared with traditional electrodes. - Highlights: • Hollow carbon beads on string structure was first prepared. • Flexible 3D electrodes as graded reservoirs for polysulfides were conducted. • Synergistic effect for enhanced polysulfides storage was claimed. - Abstract: Three-dimensional (3D) flexible electrodes of stringed hollow nitrogen-doped (N-doped) carbon nanospheres as graded sulfur reservoirs and conductive frameworks were elaborately designed via a combination of the advantages of hollow structures, 3D electrodes and flexible devices. The as-prepared electrodes by a synergistic method of electrospinning, template sacrificing and activation for Li–S batteries without any binder or conductive additives but a 3D interconnected conductive network offered multiple transport paths for electrons and improved sulfur utilization and facilitated an easy access to Li{sup +} ingress/egress. With the increase of density of hollow carbon spheres in the strings, the self-supporting composite electrode reveals an enhanced synergistic mechanism for sulfur confinement and displays a better cycling stability and rate performance. It delivers a high initial specific capacity of 1422.6 mAh g{sup −1} at the current rate of 0.2C with the high sulfur content of 76 wt.%, and a much higher energy density of 754 Wh kg{sup −1} and power density of 1901 Wh kg{sup −1}, which greatly improve the energy/power density of traditional lithium–sulfur batteries and will be promising for further commercial applications.

  12. A theranostic prodrug delivery system based on Pt(IV) conjugated nano-graphene oxide with synergistic effect to enhance the therapeutic efficacy of Pt drug.

    Science.gov (United States)

    Li, Jingwen; Lyv, Zhonglin; Li, Yanli; Liu, Huan; Wang, Jinkui; Zhan, Wenjun; Chen, Hong; Chen, Huabing; Li, Xinming

    2015-05-01

    Due to their high NIR-optical absorption and high specific surface area, graphene oxide and graphene oxide-based nanocomposites have great potential in both drug delivery and photothermal therapy. In the work reported herein we successfully integrate a Pt(IV) complex (c,c,t-[Pt(NH3)2Cl2(OH)2]), PEGylated nano-graphene oxide (PEG-NGO), and a cell apoptosis sensor into a single platform to generate a multifunctional nanocomposite (PEG-NGO-Pt) which shows potential for targeted drug delivery and combined photothermal-chemotherapy under near infrared laser irradiation (NIR), and real-time monitoring of its therapeutic efficacy. Non-invasive imaging using a fluorescent probe immobilized on the GO shows an enhanced therapeutic effect of PEG-NGO-Pt in cancer treatment via apoptosis and cell death. Due to the enhanced cytotoxicity of cisplatin and the highly specific tumor targeting of PEG-NGO-Pt at elevated temperatures, this nanocomposite displays a synergistic effect in improving the therapeutic efficacy of the Pt drug with complete destruction of tumors, no tumor recurrence and minimal systemic toxicity in comparison with chemotherapy or photothermal treatment alone, highlighting the advantageous effects of integrating Pt(IV) with GO for anticancer treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Arsenic trioxide induced rhabdomyolysis, a rare but severe side effect, in an APL patient: a case report.

    Science.gov (United States)

    He, Haiyan; An, Ran; Hou, Jian; Fu, Weijun

    2017-06-01

    Arsenic trioxide (ATO), a component of the traditional Chinese medicine arsenic sublimate, promotes apoptosis and induces leukemic cell differentiation. Combined with all-trans-retinotic acid (ATRA), ATO has become the first-line induction therapy in treating acute promyelocytic leukemia (APL). The most common side effects of ATO include hepatotoxicity, gastrointestinal symptoms, water-sodium retention, and nervous system damage. In this report, we present a rare side effect, rhabdomyolysis, in a 68-year-old female APL patient who was treated with ATO. After taking 10 mg ATO daily for 6 days, she presented shortness of breath, myodynia, elevated creatine kinase, and acute renal insufficiency. This report describes the first case of ATO-induced rhabdomyolysis.

  14. Refractory acute promyelocytic leukemia successfully treated with combination therapy of arsenic trioxide and tamibarotene: A case report

    Directory of Open Access Journals (Sweden)

    Minoru Kojima

    2016-01-01

    Full Text Available A 40-year-old male developed refractory acute promyelocytic leukemia (APL after various treatments including all-trans retinoic acid, tamibarotene, arsenic trioxide (As2O3, conventional chemotherapy, and autologous peripheral blood stem cell transplantation. We attempted to use both tamibarotene and As2O3 as a combination therapy, and he achieved molecular complete remission. Grade 2 prolongation of the QTc interval on the electrocardiogram was observed during the therapy. The combination therapy of As2O3 and tamibarotene may be effective and tolerable for treating refractory APL cases who have no treatment options, even when they have previously been treated with tamibarotene and As2O3 as a single agent.

  15. A PAH growth mechanism and synergistic effect on PAH formation in counterflow diffusion flames

    KAUST Repository

    Wang, Yu

    2013-09-01

    A reaction mechanism having molecular growth up to benzene for hydrocarbon fuels with up to four carbon-atoms was extended to include the formation and growth of polycyclic aromatic hydrocarbons (PAHs) up to coronene (C24H12). The new mechanism was tested for ethylene premixed flames at low (20torr) and atmospheric pressures by comparing experimentally observed species concentrations with those of the computed ones for small chemical species and PAHs. As compared to several existing mechanisms in the literature, the newly developed mechanism showed an appreciable improvement in the predicted profiles of PAHs. The new mechanism was also used to simulate PAH formation in counterflow diffusion flames of ethylene to study the effects of mixing propane and benzene in the fuel stream. In the ethylene-propane flames, existing experimental results showed a synergistic effect in PAH concentrations, i.e. PAH concentrations first increased and then decreased with increasing propane mixing. This PAH behavior was successfully captured by the new mechanism. The synergistic effect was predicted to be more pronounced for larger PAH molecules as compared to the smaller ones, which is in agreement with experimental observations. In the experimental study in which the fuel stream of ethylene-propane flames was doped with benzene, a synergistic effect was mitigated for benzene, but was observed for large PAHs. This effect was also predicted in the computed PAH profiles for these flames. To explain these responses of PAHs in the flames of mixture fuels, a pathway analysis has been conducted, which show that several resonantly stabilized species as well as C4H4 and H atom contribute to the enhanced synergistic behaviors of larger PAHs as compared to the small ones in the flames of mixture fuels. © 2013 The Combustion Institute.

  16. In vivo synergistic cytogenetic effects of aminophylline on lymphocyte cultures from patients with lung cancer undergoing chemotherapy

    International Nuclear Information System (INIS)

    Mylonaki, Effie; Manika, Katerina; Zarogoulidis, Paul; Domvri, Kalliopi; Voutsas, Vasilis; Zarogoulidis, Kostas; Mourelatos, Dionysios

    2012-01-01

    Highlights: ► SCEs in vivo, a possible predictor of tumor chemoresponse. ► In vivo exposure to combined treatment, applying the SCE assay. ► Aminophylline enhances DNA instability induced by chemotherapy in vivo. ► In vivo synergistic effect of Aminophylline with the chemotherapeutic agents. - Abstract: Background: The anti-cancer and cytogenetic effects of aminophylline (AM) have been demonstrated in several clinical trials. The aim of the present study was to investigate the in vivo cytogenetic effects of AM in newly diagnosed patients with small cell (SCLC) and non-small cell lung cancer (NSCLC), receiving chemotherapy for the first time. Methods: Sister chromatid exchanges (SCEs) and proliferation rate index (PRI) were evaluated in peripheral blood lymphocyte cultures from six patients with SCLC and six patients with NSCLC after the in vitro addition of AM and after the in vivo administration of AM in patients receiving chemotherapy. Results: The in vitro addition of AM significantly increased SCEs only in SCLC patients (p 0.05). Conclusions: These observations suggest that AM enhances the results of concurrently administered chemotherapy by synergistically increasing its cytogenetic effects in patients with lung cancer

  17. Management of External Invasive Cervical Resorption Tooth with Mineral Trioxide Aggregate: A Case Report

    Directory of Open Access Journals (Sweden)

    Anuja Ikhar

    2013-01-01

    Full Text Available Invasive cervical resorption is entirely uncommon entities and the etiology is poorly understood. A 19 year old patient presented with fractured upper left central incisor and sinus tract opening on the distobuccal aspect in cervical region. Radiographic examination shows irregular radiolucency over the coronal one-third and it extended externally towards the external invasive resorption. After sectional obturation, the defect was accessed surgically. The resorption area was chemomechanically debrided using irrigant solution. Fibre post placement using flowable composite resin and Mineral Trioxide Aggregate (MTA was used to fill the resorptive defect, and the coronal access was temporarily sealed. Composite restoration was subsequently replaced with ceramic crown after 4 years. Radiographs at 1 and 4 years showed adequate repair of the resorption and endodontic success. Clinically and radiographically the tooth was asymptomatic, and no periodontal pocket was found after a 4-year followup.

  18. Synergistic neurotrophic effects of piracetam and thiotriazoline

    Directory of Open Access Journals (Sweden)

    O. A. Gromova

    2016-01-01

    Full Text Available The paper considers the synergy between the nootropic drug piracetam and the metabolic agent thiotriazoline that maintains energy metabolism and survival of neurons and other types of cells. Piracetam, a nootropic drug, a chemical pyrrolidone derivative, is used in neurological, psychiatric, and narcological practice. There is evidence on the positive effect of piracetam in elderly and senile patients with coronary heart disease. This drug is supposed to stimulate redox processes, to enhance glucose utilization, and to improve regional blood flow in the ischemic brain regions. Due to its action, the drug activates glycolytic processes and elevates ATP concentrations in brain tissue. Thiotriazoline is a compound that has antioxidant, anti-ischemic properties. The co-administration of piracetam and thiothriazoline is an innovation area in the treatment of stroke and other brain damages, especially in insulin resistance and high blood glucose levels. The paper considers the neurobiological properties of thiotriazoline and piracetam, which synergistically exert neuroprotective and neurotrophic effects.

  19. Application of non-invasive low strength pulsed electric field to EGCG treatment synergistically enhanced the inhibition effect on PANC-1 cells.

    Science.gov (United States)

    Hsieh, Chih-Hsiung; Lu, Chueh-Hsuan; Chen, Wei-Ting; Ma, Bo-Lun; Chao, Chih-Yu

    2017-01-01

    Traditional therapies for pancreatic cancer are usually expensive and likely to cause side effects, and most patients have the risk of recurrence and suffering pain. Here, we investigated combination treatment of epigallocatechin-3-gallate (EGCG) and non-invasive low strength pulsed electric field (PEF) on the human pancreatic cell line PANC-1. Cells were cultured in various concentrations of EGCG and exposed to trains of PEF. The results showed that the low strength PEF alone or single treatment with low concentration of EGCG did not obviously affect the cell proliferation and migration in PANC-1. However, the EGCG-induced inhibitions of cell viability and migration ability in PANC-1 were dramatically enhanced by the further exposure of low strength PEF (60 V/cm). In particular, the same combination treatment caused less inhibition of cell viability in non-malignant HEK293 cells. We also found the combination treatment significantly decreased the ratio of Bcl-2/Bax protein and increased caspase activity in PANC-1 cells, resulting in the promotion of apoptotic responses, evidenced by chromatin condensation. The findings of the present study reveal the synergistic reactions in the combination treatment may severely disturb mitochondria, enhance the intrinsic pathway transduction, and effectively induce apoptosis; moreover, the migration and invasion of PANC-1 cancer cells were also significantly suppressed. Since normal cells are less sensitive to this combination treatment, and the non-invasive PEF could be modified to focus on a specific location, this treatment may serve as a promising method for anti-cancer therapy.

  20. Synergistic acceleration of thyroid hormone degradation by phenobarbital and the PPARα agonist WY14643 in rat hepatocytes

    International Nuclear Information System (INIS)

    Wieneke, N.; Neuschaefer-Rube, F.; Bode, L.M.; Kuna, M.; Andres, J.; Carnevali, L.C.; Hirsch-Ernst, K.I.; Pueschel, G.P.

    2009-01-01

    Energy balance is maintained by controlling both energy intake and energy expenditure. Thyroid hormones play a crucial role in regulating energy expenditure. Their levels are adjusted by a tight feedback-controlled regulation of thyroid hormone production/incretion and by their hepatic metabolism. Thyroid hormone degradation has previously been shown to be enhanced by treatment with phenobarbital or other antiepileptic drugs due to a CAR-dependent induction of phase II enzymes of xenobiotic metabolism. We have recently shown, that PPARα agonists synergize with phenobarbital to induce another prototypical CAR target gene, CYP2B1. Therefore, it was tested whether a PPARα agonist could enhance the phenobarbital-dependent acceleration of thyroid hormone elimination. In primary cultures of rat hepatocytes the apparent half-life of T3 was reduced after induction with a combination of phenobarbital and the PPARα agonist WY14643 to a larger extent than after induction with either compound alone. The synergistic reduction of the half-life could be attributed to a synergistic induction of CAR and the CAR target genes that code for enzymes and transporters involved in the hepatic elimination of T3, such as OATP1A1, OATP1A3, UGT1A3 and UGT1A10. The PPARα-dependent CAR induction and the subsequent induction of T3-eliminating enzymes might be of physiological significance for the fasting-induced reduction in energy expenditure by fatty acids as natural PPARα ligands. The synergism of the PPARα agonist WY14643 and phenobarbital in inducing thyroid hormone breakdown might serve as a paradigm for the synergistic disruption of endocrine control by other combinations of xenobiotics.

  1. Determination of phosphorus and silicon in tungsten trioxide as reduced molybdotungsten complexes without matrix separation

    International Nuclear Information System (INIS)

    Chkanikova, O.K.; Dorokhova, E.N.

    1979-01-01

    Studied are conditions of formation and reduction of molybdotungsten phosphorus (MTPC) and molybdotungsten silicon (MTSC) complexes at high excess of the ligand. It is established that MTPC are formed in a wide pH range, limited by aggregate stability of the solution (pH 4.5). Using the method of isomolar series it is shown that at pH 1.2 a complex with one Mo atom in coordination sphere is formed, at pH 3.2 - with two Mo atoms. Spectrophotometric method of phosphorus and silicon determination of tungsten trioxide without the base separation is developed. The method is based on silicon determination after MTPC decomposition in the presence of citric acid and determination of silicon and phosphorus sum under conditions of MTPC formation in the presence of oxalic acid. Phosphorus amount is determined according to the difference

  2. Synergistic effects of F and Fe in co-doped TiO{sub 2} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yufei, E-mail: zhang.yu.fei@stu.xjtu.edu.cn; Shen, Huiyuan; Liu, Yanhua, E-mail: yhliu@mail.xjtu.edu.cn [Xi’an Jiaotong University, Department of Building Environment and Services Engineering, School of Human Settlements and Civil Engineering (China)

    2016-03-15

    TiO{sub 2} photocatalysts co-doped with F and Fe were synthesized by a sol–gel method. Synergistic effects of F and Fe in the co-doped TiO{sub 2} were verified by NH{sub 3} decomposition, X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet–visible (UV–Vis) absorption spectroscopy, and was analyzed by the simulation based on the density functional theory (DFT). The results from NH{sub 3} decomposition confirmed that the cooperation of F and Fe broadened the optical response of TiO{sub 2} to visible light region and also enhanced the photocatalytic activity of TiO{sub 2} under ultraviolet light. XRD patterns, SEM and HRTEM images showed that the co-doped samples were nanometric anatase with an average particle size of 25 nm. Co-doping with F and Fe inhibited the grain growth of TiO{sub 2} from anatase to rutile and resulted in a larger lattice defect. XPS analysis exhibited that the doped F and Fe atoms were into the TiO{sub 2} lattice. UV–Vis absorption spectra showed that its optical absorption edge was moved up to approximately 617 nm and its ultraviolet absorption was also enhanced. The DFT results indicated that the cooperation of Fe 3d and O 2p orbits narrowed the band gap of TiO{sub 2} and F 2p orbit widened the upper valence bands. The synergistic electron density around F and Fe in co-doped TiO{sub 2} was capable to enhance the photo-chemical stability of TiO{sub 2}.

  3. Mechanical properties and osteogenic activity of poly(l-lactide) fibrous membrane synergistically enhanced by chitosan nanofibers and polydopamine layer.

    Science.gov (United States)

    Liu, Hua; Li, Wenling; Wen, Wei; Luo, Binghong; Liu, Mingxian; Ding, Shan; Zhou, Changren

    2017-12-01

    To synergistically improve the mechanical properties and osteogenic activity of electrospinning poly(l-lactide) (PLLA) membrane, chitosan (CS) nanofibers were firstly introduced to prepare sub-micro and nanofibers interpenetrated PLLA/CS membrane, which was further surface modified with a polydopamine (PDA) layer to obtain PLLA/CS-PDA. Surface morphology, porosity, surface area and hydrophilicity of the obtained fibrous membranes were studied in detail. As compared to pure PLLA, the significant increase in the mechanical properties of the PLLA/CS, and especially of the PLLA/CS-PDA, was confirmed by tensile testing both in dry and wet states. Cells culture results indicated that both the PLLA/CS and PLLA/CS-PDA membranes, especially the latter, were more beneficial to adhesion, spreading and proliferation, as well as up-regulating alkaline phosphate activity and calcium deposition of MC3T3-E1 cells than PLLA membrane. Results suggested there was a synergistic effect of the CS nanofibers and PDA layer on the mechanical properties and osteogenic activity of PLLA membrane. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Synergistic effect of surface self-doping and Fe species-grafting for enhanced photocatalytic activity of TiO{sub 2} under visible-light

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lina [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Institute of Material Physics, Key Laboratory of Display Materials and Photoelectric Devices of Ministry of Education, Tianjin University of Technology, Tianjin 300384 (China); Wang, Changhua; Wan, Fangxu; Zheng, Han [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Center for Advanced Optoelectronic Functional Materials Research, Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024 (China)

    2017-02-28

    Highlights: • Anatase TiO{sub 2} was modified with Fe-ethoxide through wet impregnation method. • XPS and EPR investigation supported the formation of Vo and Fe species. • Vo improved the optical absorption properties to a larger extent. • Fe species inhibited the charge carrier recombination process. • Synergism between Vo and Fe species enhanced the photocatalytic activity. - Abstract: Surface grafting of transition-metal complexes or oxides is an appealing way to enhance the photocatalytic activity of TiO{sub 2} under visible-light excitation. However, the performance of these co-catalysts assistant TiO{sub 2} photocatalysts is still not sufficient enough due to their relatively weak visible-light absorption. Herein, we report a simple impregnation treatment with ferric ethoxide/ethanol solvent, followed with mild heating which can significantly enhance the visible-light absorption and photocatalytic activity of TiO{sub 2}. XPS and EPR analyses manifest that the oxygen vacancies (V{sub O}s) and Fe-species are simultaneously introduced to the surface of TiO{sub 2}. The chemical state and photocatalytic activity of the Fe-species-grafted TiO{sub 2−x} is dependent on the heating temperature after impregnation. The sample heat-treated at 250 °C exhibits the optimal photocatalytic performance for β-naphthol degradation with rate constant 6.0, 2.7, and 3.9 times higher than that of TiO{sub 2}, TiO{sub 2−x}, and Fe-TiO{sub 2}, respectively. The activity enhancement is discussed on the basis of the synergistic effect and energy-level matching of surface V{sub O}s and Fe-species co-catalyst, i.e. the V{sub O}s defects states increase the visible-light absorption and the Fe-species in the form of FeOOH promote the consumption of photo-generated electrons through multi-electron reduction of adsorbed molecule oxygen.

  5. Mathematical description of synergistic interaction between radon and smoking

    International Nuclear Information System (INIS)

    Jin Kyu Kim; Petin, V.G.; Belkina, S.V.

    2007-01-01

    Complete text of publication follows. Background: A certain level of background exposure to ionizing radiation and natural or man-made chemicals is always present in the environment. Radon and its short-lived decay products are considered as important sources of public exposure to the natural radioactivity. It is well known from epidemiological and toxicological studies that synergistic interaction between smoking and radon occurs, which is especially important for high natural background areas. Objective: This study has been done to suggest a mathematical model to describe the synergistic interaction of radon with tobacco smoking, and to demonstrate the ability of the model to describe carcinogenic effects of the combined action. Methods: A simple mathematical model was formulated to describe and predict the synergistic interaction of radon with smoking. The model postulates that the occurrence of synergism is to be expected as a result of additional carcinogenic damage arisen from the interaction of sublesions induced by the two factors under consideration. Results: The predictions of the model were verified by comparison with experimental data published by other researchers. The model appears to be appropriate and the predictions are valid. Conclusions: : The suggested mathematical model predicts the greatest level of synergistic effect and condition under which the maximum synergy is attained. The synergistic effect appeared to decline with any deviation from the optimal value of the ratio of carcinogenic effective damages produced by each agent alone.

  6. Studies of the fate of sulfur trioxide in coal-fired utility boilers based on modified selected condensation methods.

    Science.gov (United States)

    Cao, Yan; Zhou, Hongcang; Jiang, Wu; Chen, Chien-Wei; Pan, Wei-Ping

    2010-05-01

    The formation of sulfur trioxide (SO(3)) in coal-fired utility boilers can have negative effects on boiler performance and operation, such as fouling and corrosion of equipment, efficiency loss in the air preheater (APH), increase in stack opacity, and the formation of PM(2.5). Sulfur trioxide can also compete with mercury when bonding with injected activated carbons. Tests in a lab-scale reactor confirmed there are major interferences between fly ash and SO(3) during SO(3) sampling. A modified SO(3) procedure to maximize the elimination of measurement biases, based on the inertial-filter-sampling and the selective-condensation-collecting of SO(3), was applied in SO(3) tests in three full-scale utility boilers. For the two units burning bituminous coal, SO(3) levels starting at 20 to 25 ppmv at the inlet to the selective catalytic reduction (SCR), increased slightly across the SCR, owing to catalytic conversion of SO(2) to SO(3,) and then declined in other air pollutant control device (APCD) modules downstream to approximately 5 ppmv and 15 ppmv at the two sites, respectively. In the unit burning sub-bituminous coal, the much lower initial concentration of SO(3) estimated to be approximately 1.5 ppmv at the inlet to the SCR was reduced to about 0.8 ppmv across the SCR and to about 0.3 ppmv at the exit of the wet flue gas desulfurization (WFGD). The SO(3) removal efficiency across the WFGD scrubbers at the three sites was generally 35% or less. Reductions in SO(3) across either the APH or the dry electrostatic precipitator (ESP) in units burning high-sulfur bituminous coal were attributed to operating temperatures being below the dew point of SO(3).

  7. Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3.

    Directory of Open Access Journals (Sweden)

    Anna K Coussens

    2015-07-01

    Full Text Available Adjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidin antimicrobial peptide (CAMP expression. We investigated whether clinically attainable plasma concentrations of PBA (0.4-4 mM directly affect Mycobacterium tuberculosis (Mtb growth and human macrophage and PBMC response to infection. We also tested the ability of PBA to enhance the immunomodulatory actions of the vitamin D metabolite 25(OHD3 during infection and synergistically inhibit intracellular Mtb growth. PBA inhibited Mtb growth in broth with an MIC99 of 1 mM, which was reduced to 0.25 mM by lowering pH. During human macrophage infection, PBA treatment restricted Mtb uptake, phagocytic receptor expression and intracellular growth in a dose-dependent manner. PBA independently regulated CCL chemokine secretion and induced expression of the antimicrobial LTF (lactoferrin, the anti-inflammatory PROC (protein C and multiple genes within the NLRP3 inflammasome pathway. PBA co-treatment with 25(OHD3 synergistically modulated expression of numerous vitamin D-response genes, including CAMP, CYP24A1, CXCL10 and IL-37. This synergistic effect was dependent on MAPK signalling, while the effect of PBA on LTF, PROC and NLRP3 was MAPK-independent. During PBA and 25(OHD3 co-treatment of human macrophages, in the absence of exogenous proteinase 3 (PR3 to activate cathelicidin, Mtb growth restriction was dominated by the effect of PBA, while the addition of PR3 enhanced growth restriction by 25(OHD3 and PBA co-treatment. This suggests that PBA augments vitamin D-mediated cathelicidin-dependent Mtb growth restriction by human macrophages and independently induces antimicrobial and anti-inflammatory action. Therefore through both host-directed and bacterial

  8. Phenylbutyrate Is Bacteriostatic against Mycobacterium tuberculosis and Regulates the Macrophage Response to Infection, Synergistically with 25-Hydroxy-Vitamin D3.

    Science.gov (United States)

    Coussens, Anna K; Wilkinson, Robert J; Martineau, Adrian R

    2015-07-01

    Adjunctive vitamin D treatment for pulmonary tuberculosis enhances resolution of inflammation but has modest effects on bacterial clearance. Sodium 4-phenylbutyrate (PBA) is in clinical use for a range of conditions and has been shown to synergise with vitamin D metabolites to upregulate cathelicidin antimicrobial peptide (CAMP) expression. We investigated whether clinically attainable plasma concentrations of PBA (0.4-4 mM) directly affect Mycobacterium tuberculosis (Mtb) growth and human macrophage and PBMC response to infection. We also tested the ability of PBA to enhance the immunomodulatory actions of the vitamin D metabolite 25(OH)D3 during infection and synergistically inhibit intracellular Mtb growth. PBA inhibited Mtb growth in broth with an MIC99 of 1 mM, which was reduced to 0.25 mM by lowering pH. During human macrophage infection, PBA treatment restricted Mtb uptake, phagocytic receptor expression and intracellular growth in a dose-dependent manner. PBA independently regulated CCL chemokine secretion and induced expression of the antimicrobial LTF (lactoferrin), the anti-inflammatory PROC (protein C) and multiple genes within the NLRP3 inflammasome pathway. PBA co-treatment with 25(OH)D3 synergistically modulated expression of numerous vitamin D-response genes, including CAMP, CYP24A1, CXCL10 and IL-37. This synergistic effect was dependent on MAPK signalling, while the effect of PBA on LTF, PROC and NLRP3 was MAPK-independent. During PBA and 25(OH)D3 co-treatment of human macrophages, in the absence of exogenous proteinase 3 (PR3) to activate cathelicidin, Mtb growth restriction was dominated by the effect of PBA, while the addition of PR3 enhanced growth restriction by 25(OH)D3 and PBA co-treatment. This suggests that PBA augments vitamin D-mediated cathelicidin-dependent Mtb growth restriction by human macrophages and independently induces antimicrobial and anti-inflammatory action. Therefore through both host-directed and bacterial

  9. Proteasome inhibitor carfilzomib interacts synergistically with histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells.

    Science.gov (United States)

    Gao, Minjie; Gao, Lu; Tao, Yi; Hou, Jun; Yang, Guang; Wu, Xiaosong; Xu, Hongwei; Tompkins, Van S; Han, Ying; Wu, Huiqun; Zhan, Fenghuang; Shi, Jumei

    2014-06-01

    In the present study, we investigated the interactions between proteasome inhibitor carfilzomib (CFZ) and histone deacetylase inhibitor vorinostat in Jurkat T-leukemia cells. Coexposure of cells to minimally lethal concentrations of CFZ with very low concentration of vorinostat resulted in synergistic antiproliferative effects and enhanced apoptosis in Jurkat T-leukemia cells, accompanied with the sharply increased reactive oxygen species (ROS), the striking decrease in the mitochondrial membrane potential (MMP), the increased release of cytochrome c, the enhanced activation of caspase-9 and -3, and the cleavage of PARP. The combined treatment of Jurkat cells pre-treated with ROS scavengers N-acetylcysteine (NAC) significantly blocked the loss of mitochondrial membrane potential, suggesting that ROS generation was a former event of the loss of mitochondrial membrane potential. Furthermore, NAC also resulted in a marked reduction in apoptotic cells, indicating a critical role for increased ROS generation by combined treatment. In addition, combined treatment arrested the cell cycle in G2-M phase. These results imply that CFZ interacted synergistically with vorinostat in Jurkat T-leukemia cells, which raised the possibility that the combination of carfilzomib with vorinostat may represent a novel strategy in treating T-cell Leukemia. © The Author 2014. Published by ABBS Editorial Office in association with Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences.

  10. The evaluation, design and implementation of an automated storage and retrieval system for uranium trioxide powder (UO3) at Sellafield

    International Nuclear Information System (INIS)

    Fitt, C.R.; Mather, K.

    1993-01-01

    The paper initially sets out the methods used to evaluate the requirements for an automated system to store and retrieve drums of radioactive Uranium Trioxide (UO3) power arising from the Thermal Oxide Reprocessing Plant (THORP) at Sellafield Cumbria. This is followed by a description of the configuration of storage vaults used and of the development of a Self Guided Vehicle (SGV) to operate remotely within these vaults. The system evolved is based on a combination of well proven mechanical equipment and control techniques and the implementation of the design together with testing and control procedures are described. (author)

  11. Structural Change of Biomolecules and Application of Synergistic Interaction by Radiation

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Kim, J. H.; Yang, J. S.

    2008-12-01

    It is expected that motivation and basic technologies for the future R and D plans can be provided from the results of this study. This study has been done to develop fundamentals for radiation applications based on the existing radiation technology, and to establish technical basis for enhancing efficacy of radiation utilization by studying the simultaneous application of ionizing radiation with another factor. Application of radiation technology together with the existing technologies to enhance the physical, chemical, biological characteristics through structural changes of biomolecules will exert a favorable influence on the creation of de novo scientific and industrial values. A theoretical model for the combined action of ionizing radiation with another factor can make it possible to predict a prior the maximum value of synergistic interaction and the conditions for it. Furthermore, the results of this study give a clues for establishment of fundamental theories associated with positive efficacy of radiation applications

  12. Structural Change of Biomolecules and Application of Synergistic Interaction by Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Kim, J. H.; Yang, J. S.

    2008-12-15

    It is expected that motivation and basic technologies for the future R and D plans can be provided from the results of this study. This study has been done to develop fundamentals for radiation applications based on the existing radiation technology, and to establish technical basis for enhancing efficacy of radiation utilization by studying the simultaneous application of ionizing radiation with another factor. Application of radiation technology together with the existing technologies to enhance the physical, chemical, biological characteristics through structural changes of biomolecules will exert a favorable influence on the creation of de novo scientific and industrial values. A theoretical model for the combined action of ionizing radiation with another factor can make it possible to predict a prior the maximum value of synergistic interaction and the conditions for it. Furthermore, the results of this study give a clues for establishment of fundamental theories associated with positive efficacy of radiation applications

  13. Synergistic protective effect of picrorhiza with honey in acetaminophen induced hepatic injury.

    Science.gov (United States)

    Gupta, Prashant; Tripathi, Alok; Agrawal, Tripti; Narayan, Chandradeo; Singh, B M; Kumar, Mohan; Kumar, Arvind

    2016-08-01

    Rhizome of picrorhiza along with honey prevents hepatic damage and cure the acetaminophen (paracetamol) induced hepatotoxicity by modulating the activity of hepatic enzymes. Here, we studied the in vivo effects of Picrorhiza kurroa and honey on acetaminophen induced hepatotoxicity Balb/c mice model. Hepatic histopathological observations of acetaminophen fed (day-6) group showed more congestion, hemorrhage, necrosis, distorted hepatic architecture and nuclear inclusion. Such damages were recompensed to normal by picrorhiza or honey alone or both in combinations. We observed increased activity of SGPT and SGOT in injured liver tissues, and that too was compensated to normal with picrorhiza or honey alone or both in combinations. We observed 1.27 and 1.23-fold enhanced activity of SGPT in serum and liver lysate, respectively while SGOT showed 1.66 and 1.11 fold enhanced activity. These two enzymes are signature enzymes of liver damage. Thus, our results support that honey may be used with drug picrorhiza due to its synergistic role to enhance hepatoprotective and hepatoregenerative ability along with allopathic drugs to mitigate the hepatotoxic effects.

  14. Sodium Mercaptoethane Sulfonate Reduces Collagenolytic Degradation and Synergistically Enhances Antimicrobial Durability in an Antibiotic-Loaded Biopolymer Film for Prevention of Surgical-Site Infections

    Directory of Open Access Journals (Sweden)

    Joel Rosenblatt

    2017-01-01

    Full Text Available Implant-associated surgical-site infections can have significant clinical consequences. Previously we reported a method for prophylactically disinfecting implant surfaces in surgical pockets, where an antibiotic solution containing minocycline (M and rifampin (R was applied as a solid film in a crosslinked biopolymer matrix that partially liquefied in situ to provide extended prophylaxis. Here we studied the effect of adding sodium 2-mercaptoethane sulfonate (MeSNA on durability of prophylaxis in an in vitro model of implant-associated surgical-site infection. Adding MeSNA to the M/R biopolymer, antimicrobial film extended the duration for which biofilm formation by multidrug-resistant Pseudomonas aeruginosa (MDR-PA was prevented on silicone surfaces in the model. M/R films with and without MeSNA were effective in preventing colonization by methicillin-resistant Staphylococcus aureus. Independent experiments revealed that MeSNA directly inhibited proteolytic digestion of the biopolymer film and synergistically enhanced antimicrobial potency of M/R against MDR-PA. Incubation of the MeSNA containing films with L929 fibroblasts revealed no impairment of cellular metabolic activity or viability.

  15. The elastic strain energy of crystallographic shear planes in reduced tungsten trioxide

    International Nuclear Information System (INIS)

    Iguchi, E.; Tilley, R.J.D.

    1977-01-01

    Calculations of the elastic strain energy due to crystallographic shear (c.s.) planes lying upon 102, 103 and 001 planes in reduced tungsten trioxide crystals have been made. The cases analysed in detail are for both isolated c.s. planes and for pairs of c.s. planes. These results are used to determine the elastic strain energy per unit volume for crystals containing ordered arrays of c.s. planes. It was found that the magnitude of the elastic strain energy was in the sequence 001 < 102 < 103 and that at relatively small inter-c.s. spacings the curves of elastic strain energy against c.s. plane separation take the form of a series of peaks and valleys. These results are compared with experimental observations of c.s. plane spacings in substantially reduced crystals containing quasi-ordered arrays of c.s. planes and with observations of c.s. plane nucleation and growth in both slightly and more appreciably reduced crystals. It was found that the elastic strain energy plays a significant part in controlling the microstructure of c.s. plane arrays in such cases. (author)

  16. Ultrastrong Bioinspired Graphene-Based Fibers via Synergistic Toughening.

    Science.gov (United States)

    Zhang, Yuanyuan; Li, Yuchen; Ming, Peng; Zhang, Qi; Liu, Tianxi; Jiang, Lei; Cheng, Qunfeng

    2016-04-13

    Ultrastrong bioinspired graphene-based fibers are designed and prepared via synergistic toughening of ionic and covalent bonding. The tensile strength reaches up to 842.6 MPa and is superior to all other reported graphene-based fibers. In addition, its electrical conductivity is as high as 292.4 S cm(-1). This bioinspired synergistic toughening strategy supplies new insight toward the construction of integrated high-performance graphene-based fibers in the near future. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Mineral trioxide aggregate upregulates odonto/osteogenic capacity of bone marrow stromal cells from craniofacial bones via JNK and ERK MAPK signalling pathways.

    Science.gov (United States)

    Wang, Y; Li, J; Song, W; Yu, J

    2014-06-01

    The aim of this study was to investigate effects of mineral trioxide aggregate (MTA) on odonto/osteogenic differentiation of bone marrow stromal cells (BMSCs) from craniofacial bones. Craniofacial BMSCs were isolated from rat mandible and effects of MTA on their proliferation, differentiation and MAPK pathway involvement were subsequently investigated, in vitro. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2,5-tetrazoliumbromide) assay was performed to evaluate proliferation of the MTA-treated cells. Alkaline phosphatase (ALP) activity, alizarin red staining, real-time reverse transcription polymerase chain reaction and western blot assays were used to assess differentiation capacity as well as MAPK pathway involvement. 0.02 mg/ml MTA-treated BMSCs had significantly higher ALP activity and formed more mineralized nodules than the untreated group. Odonto/osteoblastic marker genes/proteins (Alp, Runx2/RUNX2, Osx/OSX, Ocn/OCN and Dspp/DSP respectively) in MTA-treated cells were remarkably upregulated compared to untreated ones. Mechanistically, phosphorylated Jun N-terminal kinase (P-JNK) and phosphorylated extracellular regulated protein kinases (P-ERK) in MTA-treated BMSCs increased significantly in a time-dependent manner, while inhibition of JNK and ERK MAPK pathways dramatically blocked MTA-induced odonto/osteoblastic differentiation, as indicated by reduced ALP levels, weakened mineralization capacity and downregulated levels of odonto/osteoblastic marker genes (Alp, Runx2, Osx, Ocn and Dspp). Mineral trioxide aggregate promoted odonto/osteogenic capacity of craniofacial BMSCs via JNK and ERK MAPK signalling pathways. © 2014 John Wiley & Sons Ltd.

  18. Mineral trioxide aggregate promotes the odonto/osteogenic differentiation and dentinogenesis of stem cells from apical papilla via nuclear factor kappa B signaling pathway.

    Science.gov (United States)

    Yan, Ming; Wu, Jintao; Yu, Yan; Wang, Yanping; Xie, Lizhe; Zhang, Guangdong; Yu, Jinhua; Zhang, Chengfei

    2014-05-01

    Mineral trioxide aggregate (MTA) has been widely used in clinical apexification and apexogenesis. However, the effects of MTA on the stem cells from apical papilla (SCAPs) and the precise mechanism of apexogenesis have not been elucidated in detail. Multiple colony-derived stem cells were isolated from the apical papillae, and the effects of MTA on the proliferation and differentiation of SCAPs were investigated both in vitro and in vivo. Activation of nuclear factor kappa B (NFκB) pathway in MTA-treated SCAPs was analyzed by immunofluorescence assay and Western blot. MTA at the concentration of 2 mg/mL did not affect the proliferation activity of SCAPs. However, 2 mg/mL MTA-treated SCAPs presented the ultrastructural changes, up-regulated alkaline phosphatase, increased calcium deposition, up-regulated expression of odontoblast markers (dentin sialoprotein and dentin sialophosphoprotein) and odonto/osteoblast markers (runt-related transcription factor 2 and osteocalcin), suggesting that MTA enhanced the odonto/osteoblastic differentiation of SCAPs in vitro. In vivo results confirmed that MTA can promote the regular dentinogenesis of SCAPs. Moreover, MTA-treated SCAPs exhibited the up-regulated cytoplasmic phos-IκBα and phos-P65, enhanced nuclear P65, and increased nuclear translocation of P65. When co-treated with BMS345541 (the specific NFκB inhibitor), MTA-mediated odonto/osteoblastic differentiation was significantly attenuated. MTA at the concentration of 2 mg/mL can improve the odonto/osteogenic capacity of SCAPs via the activation of NFκB pathway. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. Association of antioxidative enzymes with the synergistic effect of selenium and UV irradiation in enhancing plant growth

    Directory of Open Access Journals (Sweden)

    T. XUE

    2008-12-01

    Full Text Available Selenium (Se is able to defend human and animal cells against UV(B stress. Higher plants are generally considered not to require Se but to have a low tolerance to it. However, recently it has been demonstrated that Se is able to protect also plants against UV-induced oxidative stress and even to promote the growth of plants subjected to high-energy light. In the present study the effects of Se on antioxidative enzymes possibly associated with this synergistic effect were investigated. Ryegrass and lettuce were grown in soil supplemented with Se at 0, 0.1 or 1.0 mg kg-1 under normal light or subjected to UV episodes. Lipid peroxidation and the changes of antioxidative enzymes were measured at two growing stages. The positive synergistic effect of the lower Se dosage and UV was found to be at least partly associated with the antioxidative role of Se through increased glutathione peroxidase (GSH-Px and catalase (CAT activity, whereas ascorbate peroxidase (APX responded negatively to both factors. The contribution of the other enzymes studied seemed to be plant-specific: glutathione S-transferase (GST increased in both ryegrass assays and superoxide dismutase (SOD in the first lettuce assay. At the higher addition level Se acted as a pro-oxidant and diminished fresh weight yields. UV irradiation alleviated the toxicity coincidently with increase of CAT in ryegrass and SOD in lettuce.;

  20. Facility effluent monitoring plan for the uranium trioxide facility

    International Nuclear Information System (INIS)

    Thompson, R.J.; Sontag, S.

    1991-11-01

    A facility effluent monitoring plant is required by the US Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document is prepared using the specific guidelines identified in A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans, WHC-EP-0438. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the first annual report. It shall ensure long-range integrity of the effluent monitoring systems by requiring an update whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document must be reviewed annually even if there are no operational changes, and it must be updated as a minimum every three years. The UO 3 Plant is located in the south-central portion of the 200 West Area of the Hanford Site. The plant consists of two primary processing buildings and several ancillary facilities. The purpose of the UO 3 Plant is to receive uranyl nitrate hexahydrate (UNH) from the Plutonium-Uranium Extraction (PUREX) Plant, concentrate it, convert the UNH to uranium trioxide (UO 3 ) powder by calcination and package it for offsite shipment. The UO 3 Plant has been placed in a standby mode. There are two liquid discharges, and three gaseous exhaust stacks, and seven building exhausters that are active during standby conditions

  1. Synergistic augmentation of ATP-induced interleukin-6 production by arsenite in HaCaT cells.

    Science.gov (United States)

    Sumi, Daigo; Asao, Masashi; Okada, Hideta; Yogi, Kuniko; Miyataka, Hideki; Himeno, Seiichiro

    2016-06-01

    Chronic arsenic exposure causes cutaneous diseases such as hyperkeratosis and skin cancer. However, little information has been available regarding the molecular mechanisms underlying these symptoms. Because extracellular ATP and interleukin-6 (IL-6) are involved in pathological aspects of cutaneous diseases, we examined whether sodium arsenite (As(III)) affects ATP-induced IL-6 production in human epidermal keratinocyte HaCaT cells. The results showed that the addition of As(III) into the medium of HaCaT cells dose dependently increased the production of IL-6 induced by extracellular ATP, although As(III) alone had no effect on IL-6 production. To elucidate the mechanism of the synergistic effect of As(III) on IL-6 production by extracellular ATP, we next examined the phosphorylation of p38, ERK and epidermal growth factor receptor (EGFR), since we found that these signaling molecules were stimulated by exposure to extracellular ATP. The results indicated that ATP-induced phosphorylation of p38, ERK and EGFR was synergistically enhanced by co-exposure to As(III). To clarify the mechanisms underlying the enhanced phosphorylation of p38, ERK and EGFR by As(III), we explored two possible mechanisms: the inhibition of extracellular ATP degradation and the inhibition of protein tyrosine phosphatases (PTPs) activity by As(III). The degradation of extracellular ATP was not changed by As(III), whereas the activity of PTPs was significantly inhibited by As(III). Our results suggest that As(III) augments ATP-induced IL-6 production in HaCaT cells through enhanced phosphorylation of the EGFR and p38/ERK pathways, which is associated with the inhibition of PTPs activity.

  2. In vivo synergistic cytogenetic effects of aminophylline on lymphocyte cultures from patients with lung cancer undergoing chemotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Mylonaki, Effie; Manika, Katerina [Pulmonary Department, “G.Papanikolaou” General Hospital, Aristotle University of Thessaloniki (Greece); Zarogoulidis, Paul, E-mail: pzarog@hotmail.com [Pulmonary Department, “G.Papanikolaou” General Hospital, Aristotle University of Thessaloniki (Greece); Domvri, Kalliopi; Voutsas, Vasilis; Zarogoulidis, Kostas [Pulmonary Department, “G.Papanikolaou” General Hospital, Aristotle University of Thessaloniki (Greece); Mourelatos, Dionysios [Biology and Genetics, Medical School, Aristotle University of Thessaloniki (Greece)

    2012-12-15

    Highlights: ► SCEs in vivo, a possible predictor of tumor chemoresponse. ► In vivo exposure to combined treatment, applying the SCE assay. ► Aminophylline enhances DNA instability induced by chemotherapy in vivo. ► In vivo synergistic effect of Aminophylline with the chemotherapeutic agents. - Abstract: Background: The anti-cancer and cytogenetic effects of aminophylline (AM) have been demonstrated in several clinical trials. The aim of the present study was to investigate the in vivo cytogenetic effects of AM in newly diagnosed patients with small cell (SCLC) and non-small cell lung cancer (NSCLC), receiving chemotherapy for the first time. Methods: Sister chromatid exchanges (SCEs) and proliferation rate index (PRI) were evaluated in peripheral blood lymphocyte cultures from six patients with SCLC and six patients with NSCLC after the in vitro addition of AM and after the in vivo administration of AM in patients receiving chemotherapy. Results: The in vitro addition of AM significantly increased SCEs only in SCLC patients (p < 0.001). The in vivo administration of AM after chemotherapy increased SCEs in both cancer types (SCLC: p < 0.001, NSCLC: p = 0.003) and this increase was synergistic, the rates of SCEs in the presence of AM were higher than the expected SCE values if the increases above background for chemotherapy and AM were independent and additive (SCLC: p < 0.001, NSCLC: p = 0.008). Although in both groups of patients cell division delays were observed after the combined chemotherapy plus in vivo AM treatment, the correlation between the magnitude of the SCE response and the PRI depression was not statistically significant (p > 0.05). Conclusions: These observations suggest that AM enhances the results of concurrently administered chemotherapy by synergistically increasing its cytogenetic effects in patients with lung cancer.

  3. Sequential Exposure of Bortezomib and Vorinostat is Synergistic in Multiple Myeloma Cells

    Science.gov (United States)

    Nanavati, Charvi; Mager, Donald E.

    2018-01-01

    Purpose To examine the combination of bortezomib and vorinostat in multiple myeloma cells (U266) and xenografts, and to assess the nature of their potential interactions with semi-mechanistic pharmacodynamic models and biomarkers. Methods U266 proliferation was examined for a range of bortezomib and vorinostat exposure times and concentrations (alone and in combination). A non-competitive interaction model was used with interaction parameters that reflect the nature of drug interactions after simultaneous and sequential exposures. p21 and cleaved PARP were measured using immunoblotting to assess critical biomarker dynamics. For xenografts, data were extracted from literature and modeled with a PK/PD model with an interaction parameter. Results Estimated model parameters for simultaneous in vitro and xenograft treatments suggested additive drug effects. The sequence of bortezomib preincubation for 24 hours, followed by vorinostat for 24 hours, resulted in an estimated interaction term significantly less than 1, suggesting synergistic effects. p21 and cleaved PARP were also up-regulated the most in this sequence. Conclusions Semi-mechanistic pharmacodynamic modeling suggests synergistic pharmacodynamic interactions for the sequential administration of bortezomib followed by vorinostat. Increased p21 and cleaved PARP expression can potentially explain mechanisms of their enhanced effects, which require further PK/PD systems analysis to suggest an optimal dosing regimen. PMID:28101809

  4. Electrochemical catalytic activity of tungsten trioxide- modified graphite felt toward VO2+/VO2+ redox reaction

    International Nuclear Information System (INIS)

    Shen, Yang; Xu, Hongfeng; Xu, Pengcheng; Wu, Xiaoxin; Dong, Yiming; Lu, Lu

    2014-01-01

    A novel graphite felt electrode modified with tungsten trioxide (WO 3 ) was developed to improve the electrochemical performance of graphite felt toward the VO 2 + /VO 2+ redox pair. WO 3 was prepared using a hydrothermal method, and the morphology of WO 3 structures was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical property of WO 3 -modified graphite felt toward VO 2 + /VO 2+ was carefully characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The hydrogen-vanadium redox flow battery (H-VRFB) test indicates that single cells using 1.1 mg cm −2 WO 3 -modified graphite felt exhibited excellent performance at 70 mA cm −2 , and the corresponding coulombic, voltage, and energy efficiencies were 99.1%, 88.66% and 87.86%, respectively

  5. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  6. Coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration.

    Science.gov (United States)

    Miyatake, Kazumasa; Muneta, Takeshi; Ojima, Miyoko; Yamada, Jun; Matsukura, Yu; Abula, Kahaer; Sekiya, Ichiro; Tsuji, Kunikazu

    2016-05-31

    Although osteoarthritis (OA) is a multifactorial disease, little has been reported regarding the cooperative interaction among these factors on cartilage metabolism. Here we examined the synergistic effect of ovariectomy (OVX) and excessive mechanical stress (forced running) on articular cartilage homeostasis in a mouse model resembling a human postmenopausal condition. Mice were randomly divided into four groups, I: Sham, II: OVX, III: Sham and forced running (60 km in 6 weeks), and IV: OVX and forced running. Histological and immunohistochemical analyses were performed to evaluate the degeneration of articular cartilage and synovitis in the knee joint. Morphological changes of subchondral bone were analyzed by micro-CT. Micro-CT analyses showed significant loss of metaphyseal trabecular bone volume/tissue volume (BV/TV) after OVX as described previously. Forced running increased the trabecular BV/TV in all mice. In the epiphyseal region, no visible alteration in bone morphology or osteophyte formation was observed in any of the four groups. Histological analysis revealed that OVX or forced running respectively had subtle effects on cartilage degeneration. However, the combination of OVX and forced running synergistically enhanced synovitis and articular cartilage degeneration. Although morphological changes in chondrocytes were observed during OA initiation, no signs of bone marrow edema were observed in any of the four experimental groups. We report the coordinate and synergistic effects of extensive treadmill exercise and ovariectomy on articular cartilage degeneration. Since no surgical procedure was performed on the knee joint directly in this model, this model is useful in addressing the molecular pathogenesis of naturally occurring OA.

  7. Synergistic extraction of actinides : Part I. Hexa-and pentavalent actinides

    International Nuclear Information System (INIS)

    Patil, S.K.; Ramakrishna, V.V.

    1980-01-01

    A detailed discussion on the reported literature on the synergistic extraction of hexa- and pentavalent actinide ions, by different combinations of extractants and from different aqueous media, is presented. Structural aspects of the various complexes involved in synergism also are reviewed. A short account of the applications based on synergistic extraction is also given. (author)

  8. Synergistic activity of tenofovir and nevirapine combinations released from polycaprolactone matrices for potential enhanced prevention of HIV infection through the vaginal route.

    Science.gov (United States)

    Dang, Nhung T T; Sivakumaran, Haran; Harrich, David; Shaw, Paul N; Davis-Poynter, Nicholas; Coombes, Allan G A

    2014-10-01

    Polycaprolactone (PCL) matrices were simultaneously loaded with the antiviral agents, tenofovir (TFV) and nevirapine (NVP), in combination to provide synergistic activity in the prevention of HIV transmission through the vaginal route. TFV and NVP were incorporated in PCL matrices at theoretical loadings of 10%TFV-10% NVP, 5%TFV-5%NVP and 5%TFV-10%NVP, measured with respect to the PCL content of the matrices. Actual TFV loadings ranged from 2.1% to 4.2% equating to loading efficiencies of about 41-42%. The actual loadings of NVP were around half those of TFV (1.2-1.9%), resulting in loading efficiencies ranging from 17.2% to 23.5%. Approximately 80% of the initial content of TFV was released from the PCL matrices into simulated vaginal fluid (SVF) over a period of 30 days, which was almost double the cumulative release of NVP (40-45%). The release kinetics of both antivirals over 30 days were found to be described most satisfactorily by the Higuchi model. In vitro assay of release media containing combinations of TFV and NVP released from PCL matrices confirmed a potential synergistic/additive effect of the released antivirals on HIV-1 infection of HeLa cells. These findings indicate that PCL matrices loaded with combinations of TFV and NVP provide an effective strategy for the sustained vaginal delivery of antivirals with synergistic/additive activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Synergistic effects of oncolytic reovirus and docetaxel chemotherapy in prostate cancer

    Directory of Open Access Journals (Sweden)

    Prestwich Robin

    2011-06-01

    Full Text Available Abstract Background Reovirus type 3 Dearing (T3D has demonstrated oncolytic activity in vitro, in in vivo murine models and in early clinical trials. However the true potential of oncolytic viruses may only be realized fully in combination with other modalities such as chemotherapy, targeted therapy and radiotherapy. In this study, we examine the oncolytic activity of reovirus T3D and chemotherapeutic agents against human prostate cancer cell lines, with particular focus on the highly metastatic cell line PC3 and the chemotherapeutic agent docetaxel. Docetaxel is the standard of care for metastatic prostate cancer and acts by disrupting the normal process of microtubule assembly and disassembly. Reoviruses have been shown to associate with microtubules and may require this association for efficient viral replication. Methods The effects of reovirus and chemotherapy on in vitro cytotoxicity were investigated in PC3 and Du 145 cells and the interactions between agents were assessed by combination index analysis. An Annexin V/propidium iodide fluorescence-activated cell sorting-based assay was used to determine mode of cell death. The effects of reovirus and docetaxel administered as single agent or combination therapy were tested in vivo in a murine model. The effects of docetaxel and reovirus, alone and together, on microtubule stabilisation were investigated by Western blot analysis. Results Variable degrees of synergistic cytotoxicity were observed in PC3 and Du 145 cells exposed to live reovirus and several chemotherapy agents. Combination of reovirus infection with docetaxel exposure led to increased late apoptotic/necrotic cell populations. Reovirus/docetaxel combined therapy led to reduced tumour growth and increased survival in a PC3 tumour bearing mouse model. Microtubule stabilization was enhanced in PC3 cells treated with reovirus/docetaxel combined therapy compared to other reovirus/chemotherapy combinations. Conclusions The co

  10. Synergistic Man: Outcome Model for Counselors

    Science.gov (United States)

    Rousseve, Ronald J.

    1973-01-01

    Drawing on the insights of Ruth Benedict and Abraham Maslow in their search for an ethical gauge by which to rate personal-social health, this article proposes synergistic man'' as the desired outcome model for counselors. (Author)

  11. Study and characterization of ammonium diuranate and uranium trioxide by thermogravimetry and differential scanning calorimetry

    International Nuclear Information System (INIS)

    Dantas, J.M.

    1983-01-01

    Thermogravimetry (TG), Differential Thermogravimetry (DTG) and Differential Scanning Calorimetry (DSC) were used to characterize the thermal behavior of ammonium diuranate (ADU) and uranium trioxide (UO 3 ) produced at IPEN'S Chemical Enginnering Department. Compounds characterization was done using the molar ratios among the compounds and the oxides resulting from thermal decomposition. The TG and DTG curves registered for each sample were used for the determination of the following temperatures: - temperature of water evolution (free and crystallized water); - ammonia evolution and oxidation temperature; - ocluded ammonium nitrate decomposition temperature and - oxygen release temperature. The intermediate phases and their thermal stabilities were also identified by TG and DTG and confirmed by DSC curves, DSC curves showed also the exothermic and endothermic behavior of the processes involved. Finally, the great amount of data collected in this study can be handed as a guide by the professionals responsible for the operation of ADU,UO 3 and UF 4 pilot plants. (Author) [pt

  12. Chromium Trioxide Hole-Selective Heterocontacts for Silicon Solar Cells.

    Science.gov (United States)

    Lin, Wenjie; Wu, Weiliang; Liu, Zongtao; Qiu, Kaifu; Cai, Lun; Yao, Zhirong; Ai, Bin; Liang, Zongcun; Shen, Hui

    2018-04-25

    A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x , x solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm 2 ). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x /Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x . Compared with the commercialized p-type solar cell, the novel CrO x -based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.

  13. Robust, heat-resistant and multifunctional superhydrophobic coating of carbon microflowers with molybdenum trioxide nanoparticles.

    Science.gov (United States)

    Wu, Yang; Zhao, Meiyun; Guo, Zhiguang

    2017-11-15

    Superhydrophobic materials have triggered large interest due to their widespread applications, such as self-cleaning, corrosion resistance, anti-icing, and oil/water separation. However, suffering from weak mechanical strength, plenty of superhydrophobic materials are limited in practical application. Herein, we prepared hierarchical carbon microflowers (CMF) dispersed with molybdenum trioxide (MoO 3 ) nanoparticles (MoO 3 /CMF) via a two-step preparation method. Taking advantage of high-adhesion epoxy resin and the modification with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PDES), the modified MoO 3 /CMF (PDES-MoO 3 /CMF) coating on various substrates shows great waterproof ability, excellent chemical stability, good mechanical durability, and self-cleaning property. More significantly, the prepared PDES-MoO 3 /CMF powder with high thermal stability (250°C) can be used for oil/water separation due to its special flower-like structure and superhydrophobicity/superoleophilicity. All of these advantages endow the superhydrophobic powders with huge potential in the practical applications. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Mineral trioxide aggregate as a pulpotomy agent in primary molars: An in vivo study

    Directory of Open Access Journals (Sweden)

    Naik S

    2005-03-01

    Full Text Available The retention of pulpally involved deciduous tooth in a healthy state until the time of normal exfoliation remains to be one of the challenges for Pedodontists. A scientific noise has been generated about several materials some of which have been popular pulpotomy medicaments. Concerns have been raised about the toxicity and potential carcinogenicity of these materials, and alternatives have been proposed to maintain the partial pulp vitality, however to date no material has been accepted as an ideal pulpotomy agent. Mineral trioxide aggregate (MTA is a biocompatible material which provides a biological seal. MTA has been proposed as a potential medicament for various pulpal procedures like pulp capping with reversible pulpitis, apexification, repair of root perforations, etc. Hence the present study was done to evaluate the efficacy of MTA as a pulpotomy medicament. A clinical and radiographic evaluation was done on children where MTA was used as pulpotomy medicament in primary molars for a period of 6 months and it was found to be a successful material.

  15. Synergistic effects of non-thermal plasma-assisted catalyst and ultrasound on toluene removal.

    Science.gov (United States)

    Sun, Yongli; Zhou, Libo; Zhang, Luhong; Sui, Hong

    2012-01-01

    A wire-mesh catalyst coated by La0.8Sr0.2MnO3 was combined with a dielectric barrier discharge (DBD) reactor for toluene removal at atmospheric pressure. It was found that toluene removal efficiency and carbon dioxide selectivity were enhanced in the catalytic packed-bed reactor. In addition, ozone and nitrogen monoxide from the gas effluent byproducts decreased. This is the first time that ultrasound combined with plasma has been used for toluene removal. A synergistic effect on toluene removal was observed in the plasma-assisted ultrasound system. At the same time, the system increased toluene conversion and reduced ozone emission.

  16. Understanding mineral trioxide aggregate/Portland-cement: a review of literature and background factors.

    Science.gov (United States)

    Steffen, R; van Waes, H

    2009-06-01

    This was to carry out a review of the literature concerning mineral trioxide aggregate (MTA) and Portland cement with regards to clinical, biological and mechanical findings and a possible substitution of MTA through Portland cement for endodontic use. Electronic literature search of scientific papers from January 1993 to January 2009 was carried out on the MEDLINE and Scopus databases using specific key words. In total, 57 papers were identified that dealt with MTA and Portland cement in a relevant way. The review of 50 papers conforming to the applied criteria showed that MTA and Portland cements have the same clinical, biological and mechanical properties. In animal experiments and technical characterisations both materials seemed to have very similar properties. The only difference is bismuth oxide in MTA added for better radio opacity. It seems likely that MTA materials are based on industrial Portland cements mixed with bismuth oxide. More studies, especially some long-term studies comparing MTA and Portland cement, are necessary. The existing literature gives a solid base for clinical studies with Portland cement in order to replace MTA as an endodontic material. Portland cement could be a substitute for most endodontic materials used in primary teeth.

  17. Synergistic properties of graphitic carbon nitride/cerium molybdate nanocomposites for enhanced photocatalytic activity

    Science.gov (United States)

    Bhargava, V. S.; Singh, Gajendar; Sharma, Manu

    2018-05-01

    A polymeric semiconductor (g-C3N4), based nanocomposites have been achieved much attention due to its excellent thermal, chemical stability and suitable band positions for water splitting. g-C3N4 based nanocomposites show good performance in the field of photocatalysis, sensors, Li-ion batteries, supercapacitors and water purification technology. In this work, a series of novel g-C3N4/CeM nano composites were synthesized using a facile one-step ultra-sonication method. X-ray diffraction (XRD) pattern confirms the formation of g-C3N4 and cerium molybdate. The photocatalytic activity of nanocomposites indicated the substantial degradation of Methylene Blue (MB) dye up to 97% over the surface of g-C3N4/CeM under visible light illumination. All the g-C3N4/CeM composites possess higher photocatalytic activity than pure cerium molybdate. The proposed mechanism demonstrated that the different weight ratios of photocatalyst were most likely attributed to a synergistic effect between g-C3N4 and CeM. This approach is very simple, cost effective, and free from any surfactant that makes it valuable catalyst for various future applications.

  18. Synergistic effect of defined artificial extracellular matrices and pulsed electric fields on osteogenic differentiation of human MSCs.

    Science.gov (United States)

    Hess, Ricarda; Jaeschke, Anna; Neubert, Holger; Hintze, Vera; Moeller, Stephanie; Schnabelrauch, Matthias; Wiesmann, Hans-Peter; Hart, David A; Scharnweber, Dieter

    2012-12-01

    In vivo, bone formation is a complex, tightly regulated process, influenced by multiple biochemical and physical factors. To develop a vital bone tissue engineering construct, all of these individual components have to be considered and integrated to gain an in vivo-like stimulation of target cells. The purpose of the present studies was to investigate the synergistic role of defined biochemical and physical microenvironments with respect to osteogenic differentiation of human mesenchymal stem cells (MSCs). Biochemical microenvironments have been designed using artificial extracellular matrices (aECMs), containing collagen I (coll) and glycosaminoglycans (GAGs) like chondroitin sulfate (CS), or a high-sulfated hyaluronan derivative (sHya), formulated as coatings on three-dimensional poly(caprolactone-co-lactide) (PCL) scaffolds. As part of the physical microenvironment, cells were exposed to pulsed electric fields via transformer-like coupling (TC). Results showed that aECM containing sHya enhanced osteogenic differentiation represented by increases in ALP activity and gene-expression (RT-qPCR) of several bone-related proteins (RUNX-2, ALP, OPN). Electric field stimulation alone did not influence cell proliferation, but osteogenic differentiation was enhanced if osteogenic supplements were provided, showing synergistic effects by the combination of sHya and electric fields. These results will improve the understanding of bone regeneration processes and support the development of effective tissue engineered bone constructs. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Synergistic impacts of anthropogenic and biogenic emissions on summer surface O3 in East Asia.

    Science.gov (United States)

    Qu, Yu; An, Junling; Li, Jian

    2013-03-01

    A factor separation technique and an improved regional air quality model (RAQM) were applied to calculate synergistic contributions of anthropogenic volatile organic compounds (AVOCs), biogenic volatile organic compounds (BVOCs) and nitrogen oxides (NOx) to daily maximum surface 03 (O3DM) concentrations in East Asia in summer (June to August 2000). The summer averaged synergistic impacts of AVOCs and NOx are dominant in most areas of North China, with a maximum of 60 ppbv, while those of BVOCs and NOx are notable only in some limited areas with high BVOC emissions in South China, with a maximum of 25 ppbv. This result implies that BVOCs contribute much less to summer averaged O3DM concentrations than AVOCs in most areas of East Asia at a coarse spatial resolution (1 degree x 1 degree) although global emissions of BVOCs are much greater than those of AVOCs. Daily maximum total contributions of BVOCs can approach 20 ppbv in North China, but they can reach 40 ppbv in South China, approaching or exceeding those in some developed countries in Europe and North America. BVOC emissions in such special areas should be considered when 03 control measures are taken. Synergistic contributions among AVOCs, BVOCs and NOx significantly enhance O3 concentrations in the Beijing-Tianjin-Tangshan region and decrease them in some areas in South China. Thus, the total contributions of BVOCs to O3DM vary significantly from day to day and from location to location. This result suggests that 03 control measures obtained from episodic studies could be limited for long-term applications.

  20. Inspection, testing, and operating requiremens for the packaging and shipping of uranium trioxide in 55-gallon Department of Transportation (DOT) Specification 6M shipping packagings

    International Nuclear Information System (INIS)

    Toomer, D.V.

    1991-06-01

    This document identifies the inspection, testing and operating requirements for the packaging, loading, and shipping of uranium trioxide (UO 3 ) in 55-gallon DOT Specification 6M shipping packagings from the Idaho Chemical Processing Plant (ICPP). Compliance with this document assures established controls for the purchasing, packaging, loading, and shipping of DOT Specification 6M shipping packagings are maintained in strict accordance with applicable Code of Federal Regulations (CFRs) and Department of Energy (DOE) Orders. 7 refs., 3 figs., 1 tab

  1. Chemotherapeutic Impact Of Natural Antioxidant Flavonoids Gallic Acid Rutin Quercetin And Mannitol On Pathogenic Microbes And Their Synergistic Effect

    Directory of Open Access Journals (Sweden)

    Ganesh Ghosh

    2015-08-01

    Full Text Available Several studies suggest that natural flavonoids with antioxidants and can influence the response to chemotherapy as well as the development of adverse side effects that results from treatment with antineoplastic agents and Its prevalence over Multi drug resistant bacterial strain revived interest on Flavonoids. Synergistic effect is defined as passive interaction arises when two agents combine and together they exert an inhibitory effect that is greater than the sum of individual effect The new Synergistic therapy so that antioxidant are more effective in combination on multi drug resistant bacterial strain. Interaction between natural antioxidants and topoisomerase enzyme can be seen through Quercetin as a potent antimicrobial compound alone and in combination with other natural antioxidant like rutin. MICMBC result show antibacterial activity of the flavonoids were enhanced when used in combination against Staphylococcus aureus Bacillus cereus Bacillus subtilis Klebsiella pneumonae Escherichia coli as the test bacteria. The combination of rutin and quercetin rutin and gallic acid mannitol and gallic acid were much more effective than either flavonoid alone. Furthermore Its gave a good relation between these antioxidant compound and antimicrobial activity. Flavonoids as a chemotherapeutic agent and its Synergistic effect can be solution for various microbial disease conditions.

  2. Synergistic effects in mixed Escherichia coli biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Holler, B.M.; Molin, Søren

    2006-01-01

    Bacterial biofilms, often composed of multiple species and genetically distinct strains, develop under complex influences of cell-cell interactions. Although detailed knowledge about the mechanisms underlying formation of single-species laboratory biofilms has emerged, little is known about...... the pathways governing development of more complex heterogeneous communities. In this study, we established a laboratory model where biofilm-stimulating effects due to interactions between genetically diverse strains of Escherichia coli were monitored. Synergistic induction of biofilm formation resulting from...... the cocultivation of 403 undomesticated E. coli strains with a characterized E. coli K-12 strain was detected at a significant frequency. The survey suggests that different mechanisms underlie the observed stimulation, yet synergistic development of biofilm within the subset of E. coli isolates (n = 56) exhibiting...

  3. Synergistic anti-proliferative effects of gambogic acid with docetaxel in gastrointestinal cancer cell lines

    Directory of Open Access Journals (Sweden)

    Zou Zhengyun

    2012-04-01

    Full Text Available Summary Background Gambogic acid has a marked anti-tumor effect for gastric and colorectal cancers in vitro and in vivo. However, recent investigations on gambogic acid have focused mainly on mono-drug therapy, and its potential role in cancer therapy has not been comprehensively illustrated. This study aimed to assess the interaction between gambogic acid and docetaxel on human gastrointestinal cancer cells and to investigate the mechanism of gambogic acid plus docetaxel treatment-induced apoptotic cell death. Methods MTT assay was used to determine IC50 values in BGC-823, MKN-28, LOVO and SW-116 cells after gambogic acid and docetaxel administration. Median effect analysis was applied for determination of synergism and antagonism. Synergistic interaction between gambogic acid and docetaxel was evaluated using the combination index (CI method. Furthermore, cellular apoptosis was analyzed by Annexin-V and propidium iodide (PI double staining. Additionally, mRNA expression of drug-associated genes, i.e., β-tublin III and tau, and the apoptosis-related gene survivin, were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR. Results Gambogic acid provided a synergistic effect on the cytotoxicity induced by docetaxel in all four cell lines. The combined application of gambogic acid and docetaxel enhanced apoptosis in gastrointestinal cancer cells. Moreover, gambogic acid markedly decreased the mRNA expression of docetaxel-related genes, including β-tubulin III, tau and survivin, in BGC-823 cells. Conclusions Gambogic acid plus docetaxel produced a synergistic anti-tumor effect in gastrointestinal cancer cells, suggesting that the drug combination may offer a novel treatment option for patients with gastric and colorectal cancers.

  4. Synergistic Synthetic Biology: Units in Concert

    Science.gov (United States)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications. PMID:25022769

  5. Synergistic Synthetic Biology: Units in Concert

    International Nuclear Information System (INIS)

    Trosset, Jean-Yves; Carbonell, Pablo

    2013-01-01

    Synthetic biology aims at translating the methods and strategies from engineering into biology in order to streamline the design and construction of biological devices through standardized parts. Modular synthetic biology devices are designed by means of an adequate elimination of cross-talk that makes circuits orthogonal and specific. To that end, synthetic constructs need to be adequately optimized through in silico modeling by choosing the right complement of genetic parts and by experimental tuning through directed evolution and craftsmanship. In this review, we consider an additional and complementary tool available to the synthetic biologist for innovative design and successful construction of desired circuit functionalities: biological synergies. Synergy is a prevalent emergent property in biological systems that arises from the concerted action of multiple factors producing an amplification or cancelation effect compared with individual actions alone. Synergies appear in domains as diverse as those involved in chemical and protein activity, polypharmacology, and metabolic pathway complementarity. In conventional synthetic biology designs, synergistic cross-talk between parts and modules is generally attenuated in order to verify their orthogonality. Synergistic interactions, however, can induce emergent behavior that might prove useful for synthetic biology applications, like in functional circuit design, multi-drug treatment, or in sensing and delivery devices. Synergistic design principles are therefore complementary to those coming from orthogonal design and may provide added value to synthetic biology applications. The appropriate modeling, characterization, and design of synergies between biological parts and units will allow the discovery of yet unforeseeable, novel synthetic biology applications.

  6. Extraction of trivalent lanthanides and actinides by a synergistic mixture of thenoyltrifluoroacetone and a linear polyether

    International Nuclear Information System (INIS)

    Ensor, D.D.; Shah, A.H.

    1984-01-01

    Mixtures of a two component system, a linear polyether, 1,13-bis[8-quinolyl]-1,4,7,10,13-pentaoxatridecane, K-5, and thenoyltrifluoroacetone, HTTA, have been shown to exhibit synergistic character in the extraction of trivalent lanthanides and actinides. The effect of the addition of K-5 to the organic phase on the extractions of Ce(III), Eu(III), Tm(III), Am(III), Cm(III), Bk(III), and Cf(III) by HTTA in chloroform from 0.5M NaNO 3 at 25 0 C has been measured. These results indicate the extraction is enhanced by the formation of M(TTA) 3 K-5 adduct in the organic phase. The organic phase stability constants for the formation of these synergistic species have been calculated for all the metals studied. The magnitude of these organic phase stability constants for K-5 are similar to other common neutral donors. The order of stability does not follow the normal trend based on charge-to-radius ratio, but follows a pattern based on size, with Am(III) being the most stable

  7. SYNERGISTIC ANTIBACTERIAL EFFECT OF STEM BARK ...

    African Journals Online (AJOL)

    userpc

    ABSTRACT. The study was aimed at screening the stem bark extracts of Faidherbia albida and Psidium guajava for synergistic antibacterial effect against methicillin resistant Staphylococcus aureus (MRSA). The powdered plant materials were extracted with methanol using cold maceration technique and the extracts were ...

  8. A synergistic effect of artocarpanone from Artocarpus heterophyllus L. (Moraceae) on the antibacterial activity of selected antibiotics and cell membrane permeability.

    Science.gov (United States)

    Septama, Abdi Wira; Xiao, Jianbo; Panichayupakaranant, Pharkphoom

    2017-01-01

    Artocarpanone isolated from Artocarpus heterophyllus L. (Moraceae) exhibits antibacterial activity. The present study investigated synergistic activity between artocarpanone and tetracycline, ampicillin, and norfloxacin, respectively, against methicillin-resistant Staphylococcus aureus (MRSA), Pseudomonas aeruginosa , and Escherichia coli . A broth microdilution method was used for evaluating antibacterial susceptibility. Synergistic effects were identified using a checkerboard method, and a bacterial cell membrane disruption was investigated by assay of released 260 nm absorbing materials following bacteriolysis. Artocarpanone exhibited weak antibacterial activity against MRSA and P. aeruginosa with minimum inhibitory concentrations values of 125 and 500 μg/mL, respectively. However, the compound showed strong antibacterial activity against E. coli (7.8 μg/mL). The interaction between artocarpanone and all tested antibiotics revealed indifference and additive effects against P. aeruginosa and E. coli (fractional inhibitory concentration index [FICI] values of 0.75-1.25). The combination of artocarpanone (31.2 μg/mL) and norfloxacin (3.9 μg/mL) resulted in synergistic antibacterial activity against MRSA, with an FICI of 0.28, while the interaction between artocarpanone and tetracycline, and ampicillin showed an additive effect, with an FICI value of 0.5. A time-kill assay also indicated that artocarpanone had a synergistic effect on the antibacterial activity of norfloxacin. In addition, the combination of artocarpanone and norfloxacin altered the membrane permeability of MRSA. These findings suggest that artocarpanone may be used to enhance the antibacterial activity of norfloxacin against MRSA.

  9. Synergistic Antibacterial Effects of Nanoparticles Encapsulated with Scutellaria baicalensis and Pure Chlorhexidine on Oral Bacterial Biofilms

    Directory of Open Access Journals (Sweden)

    Ken Cham-Fai Leung

    2016-04-01

    Full Text Available Scutellaria baicalensis (SB is a traditional Chinese medicine for treating infectious and inflammatory diseases. Our recent study shows potent antibacterial effects of nanoparticle-encapsulated chlorhexidine (Nano-CHX. Herein, we explored the synergistic effects of the nanoparticle-encapsulated SB (Nano-SB and Nano-CHX on oral bacterial biofilms. Loading efficiency of Nano-SB was determined by thermogravimetric analysis, and its releasing profile was assessed by high-performance liquid chromatographyusing baicalin (a flavonoid compound of SB as the marker. The mucosal diffusion assay on Nano-SB was undertaken in a porcine model. The antibacterial effects of the mixed nanoparticles (Nano-MIX of Nano-SB and Nano-CHX at 9:1 (w/w ratio were analyzed in both planktonic and biofilm modes of representative oral bacteria. The Nano-MIX was effective on the mono-species biofilms of Streptococcus (S. mutans, S. sobrinus, Fusobacterium (F. nucleatum, and Aggregatibacter (A. actinomycetemcomitans (MIC 50 μg/mL at 24 h, and exhibited an enhanced effect against the multi-species biofilms such as S. mutans, F. nucleatum, A. actinomycetemcomitans, and Porphyromonas (P. gingivalis (MIC 12.5 μg/mL at 24 h that was supported by the findings of both scanning electron microscopy (SEM and confocal scanning laser microscopy (CLSM. This study shows enhanced synergistic antibacterial effects of the Nano-MIX on common oral bacterial biofilms, which could be potentially developed as a novel antimicrobial agent for clinical oral/periodontal care.

  10. Combination of Tramadol with Minocycline Exerted Synergistic Effects on a Rat Model of Nerve Injury-Induced Neuropathic Pain

    Directory of Open Access Journals (Sweden)

    Xiao-Peng Mei

    2012-09-01

    Full Text Available Neuropathic pain is a refractory clinical problem. Certain drugs, such as tramadol, proved useful for the treatment of neuropathic pain by inhibiting the activity of nociceptive neurons. Moreover, studies indicated that suppression or modulation of glial activation could prevent or reverse neuropathic pain, for example with the microglia inhibitor minocycline. However, few present clinical therapeutics focused on both neuronal and glial participation when treating neuropathic pain. Therefore, the present study hypothesized that combination of tramadol with minocycline as neuronal and glial activation inhibitor may exert some synergistic effects on spinal nerve ligation (SNL-induced neuropathic pain. Intrathecal tramadol or minocycline relieved SNL-induced mechanical allodynia in a dose-dependent manner. SNL-induced spinal dorsal horn Fos or OX42 expression was downregulated by intrathecal tramadol or minocycline. Combination of tramadol with minocycline exerted powerful and synergistic effects on SNL-induced neuropathic pain also in a dose-dependent manner. Moreover, the drug combination enhanced the suppression effects on SNL-induced spinal dorsal horn Fos and OX42 expression, compared to either drug administered alone. These results indicated that combination of tramadol with minocycline could exert synergistic effects on peripheral nerve injury-induced neuropathic pain; thus, a new strategy for treating neuropathic pain by breaking the interaction between neurons and glia bilaterally was also proposed.

  11. Arsenic trioxide inhibits Ewing's sarcoma cell invasiveness by targeting p38(MAPK) and c-Jun N-terminal kinase.

    Science.gov (United States)

    Zhang, Shuai; Guo, Wei; Ren, Ting-Ting; Lu, Xin-Chang; Tang, Guo-Qing; Zhao, Fu-Long

    2012-01-01

    Ewing's sarcoma is the second most frequent primary malignant bone tumor, mainly affecting children and young adults. The notorious metastatic capability of this tumor aggravates patient mortality and remains a problem to be overcome. We investigated the effect of arsenic trioxide (As₂O₃) on the metastasis capability of Ewing's sarcoma cells. We performed 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide assays to choose appropriate concentrations of As₂O₃ for the experiments. Migration, invasion, and adhesion assays were performed to assess the effect of As₂O₃ on the metastasis of Ewing's sarcoma. Immunofluorescent staining was used to observe cytoskeleton reorganization in Ewing's sarcoma cells treated with As₂O₃. Changes in matrix metalloproteinase-9 expression and the mitogen-activated protein kinase (MAPK) pathway were investigated using western blot. Inhibitors of p38(MAPK) (sb202190) and c-Jun NH₂-terminal kinase (JNK, sp600125) were used in invasion assays to determine the effect of p38(MAPK) and JNK. We found that As₂O₃ may markedly inhibit the migration and invasion capacity of Ewing's sarcoma cells with structural rearrangements of the actin cytoskeleton. The expressions of matrix metalloproteinase-9, phosphor-p38(MAPK), and phosphor-JNK were suppressed by As₂O₃ treatment in a dose-dependent manner. The inhibitors of p38(MAPK) (sb202190) and JNK (sp600125) enhanced the inhibition induced by As₂O₃, which was counteracted by anisomycin, an activating agent of p38(MAPK) and JNK. Taken together, our results demonstrate that As₂O₃ can inhibit the metastasis capability of RD-ES and A-673 cells and may have new therapeutic value for Ewing's sarcoma.

  12. Synergistic inhibitory effect of hyperbaric oxygen combined with sorafenib on hepatoma cells.

    Directory of Open Access Journals (Sweden)

    Hai-Shan Peng

    Full Text Available OBJECTIVES: Hypoxia is a common phenomenon in solid tumors, associated with chemotherapy and radiotherapy resistance, recurrence and metastasis. Hyperbaric oxygen (HBO therapy can increase tissue oxygen pressure and content to prevent the resistance, recurrence and metastasis of cancer. Presently, Sorafenib is a first-line drug, targeted for hepatocellular carcinoma (HCC but effective in only a small portion of patients and can induce hypoxia. The purpose of this study is to investigate the effect of HBO in combination with sorafenib on hepatoma cells. METHODS: Hepatoma cell lines (BEL-7402 and SK-Hep1 were treated with HBO at 2 atmosphere absolute pressure for 80 min per day or combined with sorafenib or cisplatin. At different time points, cells were tested for cell growth, colony formation, apoptosis, cell cycle and migration. Finally, miRNA from the hepatoma cells was detected by microRNA array and validated by qRT-PCR. RESULTS: Although HBO, sorafenib or cisplatin alone could inhibit growth of hepatoma cells, HBO combined with sorafenib or cisplatin resulted in much greater synergistic growth inhibition (cell proliferation and colony formation in hepatoma cells. Similarly, the synergistic effect of HBO and sorafenib on induction of apoptosis was also observed in hepatoma cells. HBO induced G1 arrest in SK-Hep1 not in BEL-7402 cells, but enhanced cell cycle arrest induced by sorafenib in BEL-7402 treated cells. However, HBO had no obvious effect on the migration of hepatoma cells, and microRNA array analysis showed that hepatoma cells with HBO treatment had significantly different microRNA expression profiles from those with blank control. CONCLUSIONS: We show for the first time that HBO combined with sorafenib results in synergistic growth inhibition and apoptosis in hepatoma cells, suggesting a potential application of HBO combined with sorafenib in HCC patients. Additionally, we also show that HBO significantly altered microRNA expression

  13. Effect of mineral trioxide aggregates and Portland cements on inflammatory cells.

    Science.gov (United States)

    Shahi, Shahriar; Rahimi, Saeed; Yavari, Hamid Reza; Mokhtari, Hadi; Roshangar, Leila; Abasi, Mehran Mesgary; Sattari, Sahar; Abdolrahimi, Majid

    2010-05-01

    Recently, some studies have compared mineral trioxide aggregate (MTA) with Portland cements, concluding that the principal ingredients of Portland cements are similar to those of MTA. The purpose of the present study was to evaluate the effect of gray MTA, white MTA, and gray and white Portland cements on inflammatory cells in rats. Fresh mixtures mixed with distilled water were placed in polyethylene tubes, which were implanted in the dorsal subcutaneous connective tissue of 60 Sprague-Dawley rats along with empty tubes as controls. Tissue specimens were collected after the rats were sacrificed after 7, 15, 30, 60, and 90 days. The specimens were fixed, stained, processed, and histologically evaluated under a light microscope. Inflammatory reactions were classified as grade 0: without inflammatory cells, grade I: sporadic infiltration of inflammatory cells, grade II: moderate infiltration (125 cells). Data were analyzed with the nonparametric (two factor) analysis of variance and Kruskal-Wallis H-test. All the groups showed grade III inflammation after 7 and 15 days; there was a decrease in the inflammatory process after 30, 60, and 90 days. After 90 days, gray MTA, white MTA, and control groups had grade 0 inflammatory process, but gray Portland cement and white Portland cement groups showed grade 0 to grade I inflammatory processes. MTAs were more biocompatible; however, more studies are required. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Synergistic inhibitory effect of berberine and d-limonene on human gastric carcinoma cell line MGC803.

    Science.gov (United States)

    Zhang, Xiu-Zhen; Wang, Ling; Liu, Dong-Wu; Tang, Guang-Yan; Zhang, Hong-Yu

    2014-09-01

    This study aims at evaluating the anticancer effects of berberine hydrochloride (berberine) and d-limonene, alone and in combination, on human gastric carcinoma cell line MGC803 to determine whether berberine and d-limonene work synergistically and elucidate their mechanisms. MGC803 cells were treated with berberine and d-limonene, alone and in combination, for 24-48 h. The inhibitory effects of these drugs on growth were determined by MTT assay. The combination index and drug reduction index were calculated with the Chou-Talalay method based on the median-effect principle. Flow cytometry and laser scanning confocal microscopy were employed to evaluate the effects of both drugs on cell-cycle perturbation and apoptosis, generation of reactive oxygen species (ROS), mitochondrial membrane potential, and expression of Bcl-2 and caspase-3 in MGC803 cells. Berberine or d-limonene alone can inhibit the growth of MGC803 cells in a dose- and time-dependent manner. Berberine and d-limonene at a combination ratio of 1:4 exhibited a synergistic effect on anti-MGC803 cells. The two drugs distinctly induced intracellular ROS generation, reduced the mitochondrial transmembrane potential (ΔΨm), enhanced the expression of caspase-3, and decreased the expression of Bcl-2. The combination of berberine and d-limonene showed more remarkable effects compared with drugs used singly in MGC803 cells. The combination of berberine and d-limonene exerted synergistic anticancer effects on MGC803 cells by cell-cycle arrest, ROS production, and apoptosis induction through the mitochondria-mediated intrinsic pathway.

  15. Synergistically enhanced photocatalytic hydrogen evolution performance of ZnCdS by co-loading graphene quantum dots and PdS dual cocatalysts under visible light

    Science.gov (United States)

    Wang, Fang; Su, Yanhong; Min, Shixiong; Li, Yanan; Lei, Yonggang; Hou, Jianhua

    2018-04-01

    Here, we report that the co-loading of graphene quantum dots (GQDs) and PdS dual cocatalysts on ZnCdS surface achieves a high efficiency photocatalytic H2 evolution under visible light (≥420 nm). The GQDs/ZnCdS/PdS photocatalyst was prepared by a facile two steps: hydrothermal coupling of GQDs on ZnCdS surface followed by an in-situ chemical deposition of PdS. The resulted GQDs/ZnCdS/PdS exhibits a H2 evolution rate of 517 μmol h-1, which is 15, 7, and 1.7 times higher than that of pure ZnCdS, GQDs/ZnCdS, and ZnCdS/PdS, respectively, demonstrating the synergistic effects of GQDs and PdS dual cocatalysts. A high apparent quantum efficiency (AQE) up to 22.4% can be achieved over GQDs/ZnCdS/PdS at 420 nm. GQDs/ZnCdS/PdS also has a relatively good stability. Such a considerable enhancement of photocatalytic activity was attributable to the co-loading of the GQDs and PdS as respective reduction and oxidation cocatalysts, leading to an efficient charge separation and surface reactions.

  16. Synergistic Effect between Metal-Nitrogen-Carbon Sheets and NiO Nanoparticles for Enhanced Electrochemical Water-Oxidation Performance.

    Science.gov (United States)

    Wang, Jun; Li, Kai; Zhong, Hai-xia; Xu, Dan; Wang, Zhong-li; Jiang, Zheng; Wu, Zhi-jian; Zhang, Xin-bo

    2015-09-01

    Identifying effective means to improve the electrochemical performance of oxygen-evolution catalysts represents a significant challenge in several emerging renewable energy technologies. Herein, we consider metal-nitrogen-carbon sheets which are commonly used for catalyzing the oxygen-reduction reaction (ORR), as the support to load NiO nanoparticles for the oxygen-evolution reaction (OER). FeNC sheets, as the advanced supports, synergistically promote the NiO nanocatalysts to exhibit superior performance in alkaline media, which is confirmed by experimental observations and density functional theory (DFT) calculations. Our findings show the advantages in considering the support effect for designing highly active, durable, and cost-effective OER electrocatalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. 16.1% Efficient Hysteresis-Free Mesostructured Perovskite Solar Cells Based on Synergistically Improved ZnO Nanorod Arrays

    KAUST Repository

    Mahmood, Khalid

    2015-06-01

    Significant efficiency improvements are reported in mesoscopic perovskite solar cells based on the development of a low-temperature solution-processed ZnO nanorod (NR) array exhibiting higher NR aspect ratio, enhanced electron density, and substantially reduced work function than conventional ZnO NRs. These features synergistically result in hysteresis-free, scan-independent, and stabilized devices with an efficiency of 16.1%. Electron-rich, nitrogen-doped ZnO (N:ZnO) NR-based electron transporting materials (ETMs) with enhanced electron mobility produced using ammonium acetate show consistently higher efficiencies by one to three power points than undoped ZnO NRs. Additionally, the preferential electrostatic interaction between the -nonpolar facets of N:ZnO and the conjugated polyelectrolyte polyethylenimine (PEI) has been relied on to promote the hydrothermal growth of high aspect ratio NR arrays and substantially improve the infiltration of the perovskite light absorber into the ETM. Using the same interactions, a conformal PEI coating on the electron-rich high aspect ratio N:ZnO NR arrays is -successfully applied, resulting in a favorable work function shift and altogether leading to the significant boost in efficiency from <10% up to >16%. These results largely surpass the state-of-the-art PCE of ZnO-based perovskite solar cells and highlight the benefits of synergistically combining mesoscale control with doping and surface modification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Evaluation of the sealing ability of bone cement as furcation perforation repair material when compared with mineral trioxide aggregate and calcium phosphate cement: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Rashmi Chordiya

    2010-01-01

    Full Text Available Aim: This study was undertaken to compare the sealing ability of bone cement as furcation perforation repair material when compared with mineral trioxide aggregate and calcium phosphate cement. Materials and Methods: A total of 70 sound mandibular molars were selected for this study. The sample teeth were randomly divided into five groups: group I - n=20, perforation repair material used, mineral trioxide aggregate; group II - n=20, perforation repair material used, calcium phosphate cement; group III - n=20, perforation repair material used, bone cement; group IV - positive control, n=5, the furcation were not repaired with any material; group V - negative control, n=5, furcation area intact, no perforation done. The teeth were immersed in silver nitrate solution for 2 hours and then rinsed with photographic developer solution for 6 hours. They were then sectioned in a longitudinal direction and examined under a stereomicroscope. In each section the actual values of dye leakage were calculated from outer margins of perforation to the level of pulpal floor and were then subjected to statistical analysis. Results: An unpaired ′t′ test revealed that different groups exhibited significantly different dye penetrations (P<0.01. Conclusion: Furcation perforation repaired with MTA showed minimum microleakage (mean 54.5%, calcium phosphate cement showed maximum microleakage (100%, and bone cement showed moderate dye leakage (87.8%.

  19. Synergistic effect of tungsten carbide and palladium on graphene for promoted ethanol electrooxidation.

    Science.gov (United States)

    Yang, Jun; Xie, Ying; Wang, Ruihong; Jiang, Baojiang; Tian, Chungui; Mu, Guang; Yin, Jie; Wang, Bo; Fu, Honggang

    2013-07-24

    The synergistic effect of WC and Pd has large benefit for ethanol electrooxidation. The small-sized Pd nanoparticles (NPs) decorated tungsten carbide on graphene (Pd-WC/GN) will be a promising anode catalyst for the direct ethanol fuel cells. The density functional theory (DFT) calculations reveal that the strong interaction exists at the interface between Pd and WC, which induces the electron transfer from WC to Pd. Fortunately, the nanoscale architecture of Pd-WC/GN has been successfully fabricated in our experiments. X-ray photoelectron spectrum further confirms the existence of electron transfer from WC to Pd in a Pd-WC/GN nanohybrid. Notably, electrochemical tests show that the Pd-WC/GN catalyst exhibits low onset potential, a large electrochemical surface area, high activity, and stability for ethanol electrooxidation in alkaline solution compared with Pd/graphene and Pd/commercial Vulcan 72R carbon catalysts. The enhancement can be attributed to the synergistic effect of Pd and WC on graphene. At the interface between Pd and WC, the electron transfer from WC to Pd leads to the increased electron densities of surface Pd, which is available for weakening adsorption of intermediate oxygen-containing species such as CO and activating catalyst. Meanwhile, the increased tungsten oxide induced by electron transfer can facilitate the effective removal of intermediate species adsorbed on the Pd surface through a bifunctional mechanism or hydrogen spillover effect.

  20. Achievement of High-Response Organic Field-Effect Transistor NO₂ Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction.

    Science.gov (United States)

    Han, Shijiao; Cheng, Jiang; Fan, Huidong; Yu, Junsheng; Li, Lu

    2016-10-21

    High-response organic field-effect transistor (OFET)-based NO₂ sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate) (ZnO/PMMA) hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO₂ analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO₂. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO₂ molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO₂ sensors in future electronic nose and environment monitoring.

  1. Adsorption of heavy metal ions on molybdenum and molybdenum trioxide from dilute aqueous solution

    International Nuclear Information System (INIS)

    Utsunomiya, Taizo; Hoshino, Yoshio; Sakabe, Ken-ichi

    1984-01-01

    The adsorption of heavy metal ions such as Co(II), Cu(II) and Pb(II) on molybdenum powder has been investigated by the batch technique as a function of soaking time, concentration of heavy metal ions and coexisting salts, pH etc. Molybdenum trioxide was also used as an adsorbent for a comparison to discuss the adsorption mechanism. The amount of these heavy metal ions adsorbed was highly pH and coexisting salts dependent. These adsorbents have features of selective adsorption for Pb(II) and large adsorption rate. The adsorption of heavy metal ions on these adsorbents proceeds independently or concurrently by following complex mechanism; (1) cation exchange reaction by hydroxyl radical on the surface of Mo and MoO 3 is predominant for most of heavy metal ions except Pb(II) [Co(II), Mn(II), Fe(III), Ni(II), Zn(II), Cd(II) and Sr(II)], (2) reduction (electron exchange reaction) to low ionic or metallic state after cation exchange reaction [Cu(II) and Ag(I) on Mo] and (3) formation of a compound [Pb(II) on both Mo and MoO 3 ]. (author)

  2. Mineral trioxide aggregate and Portland cement promote biomineralization in vivo.

    Science.gov (United States)

    Dreger, Luonothar Antunes Schmitt; Felippe, Wilson Tadeu; Reyes-Carmona, Jessie Fabiola; Felippe, Gabriela Santos; Bortoluzzi, Eduardo Antunes; Felippe, Mara Cristina Santos

    2012-03-01

    Mineral trioxide aggregate (MTA) and Portland cement have been shown to be bioactive because of their ability to produce biologically compatible carbonated apatite. This study analyzed the interaction of MTA and white Portland cement with dentin in vivo. Seventy-two human dentin tubes were filled with MTA Branco, MTA BIO, and white Portland cement + 20% bismuth oxide (PC1) or PC1 + 10% of calcium chloride (PC2) and implanted subcutaneously in 18 rats at 4 sites from the dorsal area. Empty dentin tubes, implanted in rats of a pilot study, were used as control. After 30, 60, and 90 days, the animals were killed, and the dentin tubes were retrieved for scanning electron microscope analysis. In the periods of 30 and 60 days, the mineral deposition in the material-dentin interface (interfacial layer) and in the interior of dentinal tubules was detected in more tubes filled with MTA Branco and MTA BIO than in tubes filled with PC1 and PC2. After 90 days, the interfacial layer and intratubular mineralization were detected in all tubes except for 3 and 1 of the tubes filled with PC2, respectively. It was concluded that all the cements tested were bioactive. The cements released some of their components in the tissue capable of stimulating mineral deposition in the cement-dentin interface and in the interior of the dentinal tubules. MTA BIO and MTA Branco were more effective in promoting the biomineralization process than Portland cements, mainly after 30 and 60 days. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Structural, electronic and magnetic properties of 3d metal trioxide clusters-doped monolayer graphene: A first-principles study

    Energy Technology Data Exchange (ETDEWEB)

    Rafique, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); M.U.E.T, S.Z.A.B, Campus Khairpur Mir' s, Sindh (Pakistan); Shuai, Yong, E-mail: shuaiyong1978@gmail.com [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China); Tan, He-Ping; Hassan, Muhammad [School of Energy Science and Engineering, Harbin Institute of Technology, 92 West Dazhi Street, Harbin 150001 (China)

    2017-03-31

    Highlights: • First-principles calculations are performed for TMO{sub 3} cluster-doped and TM atoms adsorbed at three O atoms-doped graphene. • Significant magnetic coupling behavior is observed between TM atoms and neighboring C and O atoms for both cases. • The direction of charge transfer is always from monolayer graphene to TMO{sub 3} clusters incorporated into graphene. • TiO{sub 3} and VO{sub 3} doped structures display dilute magnetic semiconductor behavior. • Five different orbitals (d{sub xy}, d{sub yz}, d{sub z}{sup 2}, d{sub xz} and d{sub x}{sup 2}{sub -y}{sup 2}) of 3d TM atoms give rise to magnetic moments for both cases. - Abstract: We present first-principles density-functional calculations for the structural, electronic and magnetic properties of monolayer graphene doped with 3d (Ti, V, Cr, Fe, Co, Mn and Ni) metal trioxide TMO{sub 3} halogen clusters. In this paper we used two approaches for 3d metal trioxide clusters (i) TMO{sub 3} halogen cluster was embedded in monolayer graphene substituting four carbon (C) atoms (ii) three C atoms were substituted by three oxygen (O) atoms in one graphene ring and TM atom was adsorbed at the hollow site of O atoms substituted graphene ring. All the impurities were tightly bonded in the graphene ring. In first case of TMO{sub 3} doped graphene layer, the bond length between C−O atom was reduced and bond length between TM-O atom was increased. In case of Cr, Fe, Co and Ni atoms substitution in between the O atoms, leads to Fermi level shifting to conduction band thereby causing the Dirac cone to move into valence band, however a band gap appears at high symmetric K-point. In case of TiO{sub 3} and VO{sub 3} substitution, system exhibits semiconductor properties. Interestingly, TiO{sub 3}-substituted system shows dilute magnetic semiconductor behavior with 2.00 μ{sub B} magnetic moment. On the other hand, the substitution of CoO{sub 3}, CrO{sub 3}, FeO{sub 3} and MnO{sub 3} induced 1.015 μ{sub B}, 2

  4. Apeksifikasi dengan mineral trioxide aggregate dan perawatan intracoronal bleaching pada gigi insisivus sentralis kiri maksila non vital diskolorasi

    Directory of Open Access Journals (Sweden)

    I. Inajati

    2016-08-01

    Full Text Available Affecification with mineral trioxide aggregate and care of intracoronal bleaching on the non vital discoloration maxillary left central incisor. Maxillary anterior teeth in children and adults often experience trauma. This later makes the dental pulp roots that are not completely formed face the necrosis and apical closure stop later causing the apex wide and open. The opened apex can be coped with the care of affecification. Mineral Trioxide Aggregate (MTA is the best material of affecification used for the formation of apical barrier. The purpose of this case report was to report the achievement of the apical sealing using MTA in the non-vital permanent maxillary left central incisor with the opened apical due to the trauma. The complaints of male patients aged 20 years was about the broken and discoloured left upper front teeth and becomes a traumatic event since the age of 10 years due to a fall and hit the cement floor. A clinical examination of non-vital teeth used the fracture Ellis IV class with wide open apex and discoloration. The radiographic image showed a widely opened apex with large root canal and there was a periapical radiolucency. The treatment given was affecification with MTA followed obturation with gutta-percha and sealer AH 26. In the following week it was continued with intracoronal bleaching with the application of sodium perborate and 30% hydrogen peroxide. Before treatment, the teeth were brownish (C4 and after treatment it turned into yellowish white (B2. A week after the bleaching treatment was completed and the installation of fibre post was done, followed by giving the composite resin restorations class IV cavity. The 2-week control later showed no abnormalities. In conclusion, the affecification treatment with MTA can accelerate treatment with the formation of apical barrier that stimulates the healing and may be followed by obturation with guttap percha followed by doing intracoronal bleaching and final

  5. Culture and neuroscience: additive or synergistic?

    Science.gov (United States)

    Dapretto, Mirella; Iacoboni, Marco

    2010-01-01

    The investigation of cultural phenomena using neuroscientific methods—cultural neuroscience (CN)—is receiving increasing attention. Yet it is unclear whether the integration of cultural study and neuroscience is merely additive, providing additional evidence of neural plasticity in the human brain, or truly synergistic, yielding discoveries that neither discipline could have achieved alone. We discuss how the parent fields to CN: cross-cultural psychology, psychological anthropology and cognitive neuroscience inform the investigation of the role of cultural experience in shaping the brain. Drawing on well-established methodologies from cross-cultural psychology and cognitive neuroscience, we outline a set of guidelines for CN, evaluate 17 CN studies in terms of these guidelines, and provide a summary table of our results. We conclude that the combination of culture and neuroscience is both additive and synergistic; while some CN methodologies and findings will represent the direct union of information from parent fields, CN studies employing the methodological rigor required by this logistically challenging new field have the potential to transform existing methodologies and produce unique findings. PMID:20083533

  6. Mathematical description and prognosis of Synergistic interaction of radon and tobacco smoking

    International Nuclear Information System (INIS)

    Kim, J. K.; Belkina, S. A.; Petin, V. G.

    2007-01-01

    : Radon and its short-lived decay products are considered as the important sources of public exposure to natural radioactivity. The synergistic interaction between tobacco smoking and radon is known to be an actual problem. This study has provided a mathematical description and prognosis of the carcinogenic effects after combined action of radon with smoking. Materials and Methods: A simple mathematical model was adjusted for the optimization and prognosis of the synergistic interaction of radon with smoking. The model postulates that the occurrence of synergism is to be expected as a result of additional carcinogenic damage arising from the interaction of sub lesions induced by the two agents under consideration. Results: The predictions of the model were verified by comparison with experimental data published by other researchers. The model appears to be appropriate and the predictions valid. Conclusion: The suggested mathematical model predicts the greatest level of synergistic effect and condition under which this level is reached. The synergistic effect appeared to decline with any deviation from the optimal value of the ratio of carcinogenic effective damages produced by each agent alone

  7. Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells.

    Directory of Open Access Journals (Sweden)

    Yanhong Gao

    Full Text Available Osteogenic differentiation from mesenchymal progenitor cells (MPCs are initiated and regulated by a cascade of signaling events. Either Wnt/β-catenin or estrogen signaling pathway has been shown to play an important role in regulating skeletal development and maintaining adult tissue homeostasis. Here, we investigate the potential crosstalk and synergy of these two signaling pathways in regulating osteogenic differentiation of MPCs. We find that the activation of estrogen receptor (ER signaling by estradiol (E2 or exogenously expressed ERα in MPCs synergistically enhances Wnt3A-induced early and late osteogenic markers, as well as matrix mineralization. The E2 or ERα-mediated synergy can be effectively blocked by ERα antagonist tamoxifen. E2 stimulation can enhance endochondral ossification of Wnt3A-transduced mouse fetal limb explants. Furthermore, exogenously expressed ERα significantly enhances the maturity and mineralization of Wnt3A-induced subcutaneous and intramuscular ectopic bone formation. Mechanistically, we demonstrate that E2 does not exert any detectable effect on β-catenin/Tcf reporter activity. However, ERα expression is up-regulated within the first 48h in AdWnt3A-transduced MPCs, whereas ERβ expression is significantly inhibited within 24h. Moreover, the key enzyme for the biosynthesis of estrogens aromatase is modulated by Wnt3A in a biphasic manner, up-regulated at 24h but reduced after 48h. Our results demonstrate that, while ER signaling acts synergistically with Wnt3A in promoting osteogenic differentiation, Wnt3A may crosstalk with ER signaling by up-regulating ERα expression and down-regulating ERβ expression in MPCs. Thus, the signaling crosstalk and synergy between these two pathways should be further explored as a potential therapeutic approach to combating bone and skeletal disorders, such as fracture healing and osteoporosis.

  8. Fatigue Resistant Bioinspired Composite from Synergistic Two-Dimensional Nanocomponents.

    Science.gov (United States)

    Wan, Sijie; Zhang, Qi; Zhou, Xiaohang; Li, Dechang; Ji, Baohua; Jiang, Lei; Cheng, Qunfeng

    2017-07-25

    Portable and wearable electronics require much more flexible graphene-based electrode with high fatigue life, which could repeatedly bend, fold, or stretch without sacrificing its mechanical properties and electrical conductivity. Herein, a kind of ultrahigh fatigue resistant graphene-based nanocomposite via tungsten disulfide (WS 2 ) nanosheets is synthesized by introducing a synergistic effect with covalently cross-linking inspired by the orderly layered structure and abundant interfacial interactions of nacre. The fatigue life of resultant graphene-based nanocomposites is more than one million times at the stress level of 270 MPa, and the electrical conductivity can be kept as high as 197.1 S/cm after 1.0 × 10 5 tensile testing cycles. These outstanding properties are attributed to the synergistic effect from lubrication of WS 2 nanosheets for deflecting crack propagation, and covalent bonding between adjacent GO nanosheets for bridging crack, which is verified by the molecular dynamics (MD) simulations. The WS 2 induced synergistic effect with covalent bonding offers a guidance for constructing graphene-based nanocomposites with high fatigue life, which have great potential for applications in flexible and wearable electronic devices, etc.

  9. Bone marrow necrosis in a patient with acute promyelocytic leukemia during re-induction therapy with arsenic trioxide.

    Science.gov (United States)

    Ishitsuka, Kenji; Shirahashi, Akihiko; Iwao, Yasuhiro; Shishime, Mikiko; Takamatsu, Yasushi; Takatsuka, Yoshifusa; Utsunomiya, Atae; Suzumiya, Junji; Hara, Syuji; Tamura, Kazuo

    2004-04-01

    Arsenic trioxide (As2O3) therapy at a daily dose of 0.15 mg/kg was given to a 60-yr-old Japanese male with refractory acute promyelocytic leukemia. White blood cell (WBC) of 6.6 x 10(3)/microl increased to 134 x 10(3)/microl following the administration of As2O3. Daily hydroxyurea (HU), and 6-mercaptopurine (6-MP) were added on days 7 and 19, respectively. Both HU and 6-MP were discontinued on day 28, when WBC declined to 54.0 x 10(3)/microl. He developed unexplained fever and profound cytopenia requiring multiple blood products transfusions. Bone marrow examination on day 42 revealed massive necrosis. Pharmacokinetics confirmed a mean maximum plasma arsenic concentration (Cpmax) and a half-life time (t1/2) of 6.9 microm and 3.2 h, respectively, in the therapeutic range. This is the first case of bone marrow necrosis after standard-dose As2O3 therapy.

  10. Investigation of physico-mechanical properties of flexible poly (vinyl chloride) filled with antimony trioxide using ionizing radiation.

    Science.gov (United States)

    Elnaggar, Mona Y; Fathy, E S; Hassan, Medhat M

    2018-04-12

    Composites of polyvinyl chloride (PVC) with 2% calcium carbonate, 2% diethyl phthalate, 2% paraffin wax and 2% lead sulphate and different contents of antimony trioxide (Sb 2 O 3 ) prepared by melting and irradiated with gamma ray have been considered. Assessment of the mechanical and thermal properties of the unirradiated and irradiated flexible polyvinyl chloride (FPVC) were completed utilizing elasticity (TS), Elongation at break (Eb) and thermogravimetric analysis measurements. TS and thermal stability of FPVC displayed advanced improvement after addition of additives and this approach highlighted the efficiency of those ingredients on PVC. The compounding of FPVC with Sb 2 O 3 in various extents was examined by FTIR, X-ray diffraction and scanning electron microscope methods. It is obvious that the presence of Sb 2 O 3 begins impacting oxidative degradation, leading to a decrease in mechanical properties up to 10%. Moreover, a slight increase in the thermal stability of composites by exposure to ionizing radiation is apparently due to cross-linking of FPVC chains.

  11. Esterase inhibition by synergists in the western flower thrips Frankliniella occidentalis.

    Science.gov (United States)

    López-Soler, Neus; Cervera, Amelia; Quinto, Vicente; Abellán, Jaime; Bielza, Pablo; Martínez-Pardo, Rafael; Garcerá, Maria Dolores

    2011-12-01

    Western flower thrips (WFT), Frankliniella occidentalis (Pergande), is among the most important crop pests in the south-eastern region of Spain. Its increasing resistance to insecticides constitutes a serious problem, and understanding the mechanisms involved is therefore of great interest. Use of synergists to inhibit the enzymes involved in insecticide detoxification is widely used to determine their responsibility for insecticide resistance. However, they do not always act as intended or expected, and caution must be exercised when interpreting synergist results. Laboratory-selected strains of WFT were used to analyse the effects of the synergists piperonyl butoxide (PBO), S,S,S-tributyl phosphorotrithioate (DEF) and methiocarb on total esterase activity. Significant differences were found, indicating esterase activity inhibition by DEF, a lower effect for methiocarb and a small inhibition of the activity by PBO. Esterase isoenzyme inhibition by these compounds showed a similar result; this assay revealed an extreme sensitivity of Triplet A (resistance-associated esterases) to DEF. In an in vivo assay carried out with these compounds at different incubation times, only DEF caused posterior in vitro esterase activity inhibition, with a maximum effect 1 h after treatment. In this work, only DEF shows true synergistic inhibition of WFT esterases. Copyright © 2011 Society of Chemical Industry.

  12. Achievement of High-Response Organic Field-Effect Transistor NO2 Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction

    Directory of Open Access Journals (Sweden)

    Shijiao Han

    2016-10-01

    Full Text Available High-response organic field-effect transistor (OFET-based NO2 sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate (ZnO/PMMA hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO2 analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO2. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO2 molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO2 sensors in future electronic nose and environment monitoring.

  13. Achievement of High-Response Organic Field-Effect Transistor NO2 Sensor by Using the Synergistic Effect of ZnO/PMMA Hybrid Dielectric and CuPc/Pentacene Heterojunction

    Science.gov (United States)

    Han, Shijiao; Cheng, Jiang; Fan, Huidong; Yu, Junsheng; Li, Lu

    2016-01-01

    High-response organic field-effect transistor (OFET)-based NO2 sensors were fabricated using the synergistic effect the synergistic effect of zinc oxide/poly(methyl methacrylate) (ZnO/PMMA) hybrid dielectric and CuPc/Pentacene heterojunction. Compared with the OFET sensors without synergistic effect, the fabricated OFET sensors showed a remarkable shift of saturation current, field-effect mobility and threshold voltage when exposed to various concentrations of NO2 analyte. Moreover, after being stored in atmosphere for 30 days, the variation of saturation current increased more than 10 folds at 0.5 ppm NO2. By analyzing the electrical characteristics, and the morphologies of organic semiconductor films of the OFET-based sensors, the performance enhancement was ascribed to the synergistic effect of the dielectric and organic semiconductor. The ZnO nanoparticles on PMMA dielectric surface decreased the grain size of pentacene formed on hybrid dielectric, facilitating the diffusion of CuPc molecules into the grain boundary of pentacene and the approach towards the conducting channel of OFET. Hence, NO2 molecules could interact with CuPc and ZnO nanoparticles at the interface of dielectric and organic semiconductor. Our results provided a promising strategy for the design of high performance OFET-based NO2 sensors in future electronic nose and environment monitoring. PMID:27775653

  14. Concomitant ingestion of lactic acid bacteria and black tea synergistically enhances flavonoid bioavailability and attenuates d-galactose-induced oxidative stress in mice via modulating glutathione antioxidant system.

    Science.gov (United States)

    Zhao, Danyue; Shah, Nagendra P

    2016-12-01

    Black tea (BT) has been positively linked to improved redox status, while its efficacy is limited due to the low bioavailability of BT flavonoids. In addition to the direct antioxidant activity, flavonoids regulate redox balance via inducing endogenous antioxidants, particularly glutathione (GSH) and GSH-dependent antioxidant enzymes. This work first examined the effect of lactic acid bacteria (LAB) and BT alone or in combination on flavonoid bioavailability and metabolism; next, the effect of LAB-fermented BT diet in attenuating oxidative stress in mice and the underlying mechanisms were studied. Phenolic profiles of plasma, urine and feces from healthy mice consuming plain yogurt, BT milk (BTM) or BT yogurt (BTY) were acquired using LC-MS/MS. Plasma antioxidant capacity, lipid peroxidation level, content of nonprotein thiols and expression of GSH-related antioxidant enzymes and Nrf2 were examined in d-galactose-treated mice. Total flavonoid content in plasma following a single dose of BTY attained 0.657 μmol/l, increased by 50% compared with the BTM group. Increased excretion of phenolic metabolite and hippuric acid in urine and feces indicated enhanced metabolism of flavonoids in BTY-fed mice. In the second study, 8-week concomitant LAB-BT treatment of oxidatively stressed mice effectively restored plasma antioxidant capacity and GSH levels, and mitigated lipid peroxidation, which were associated with significant induction of GSH-dependent antioxidant enzymes and nuclear accumulation of Nrf2. Our results demonstrated the effect of LAB fermentation in enhancing BT flavonoid bioavailability in vivo. The synergistic antioxidant efficacy of LAB-BT diet implied its therapeutic potential in enhancing antioxidant defenses and protecting organisms from oxidative damage. Copyright © 2016. Published by Elsevier Inc.

  15. New Yellow Synergist for Stable Pigment Dispersion of Inkjet Ink.

    Science.gov (United States)

    Song, Gihyun; Lee, Hayoon; Jung, Hyocheol; Kang, Seokwoo; Park, Jongwook

    2018-02-01

    Minimizing ink droplet and self-dispersed pigment mixture are becoming hot issues for high resolution of inkjet printing. New synergist including sulfonic acid group of PY-74 was suggested and synthesized. Pigment itself did not show water solubility but new synergist, SY-11 exhibited good solubility in water and organic solvents such as DMSO and DMF. When aqueous pigment ink was prepared with SY-11, storage stability of the ink has been remained for 7 days under periodically repeated heating and cooling conditions. Particle size of formulated ink was around 150 nm.

  16. Synergistic effect of Glomus fasciculatum and Trichoderma ...

    African Journals Online (AJOL)

    The plants treated with both fungus and mycorrhizal (F+M) treatment showed the maximum uptake of metals and thus the synergistic effect of these fungi can be exploited in decontamination of metals from tannery sludge. Key words: Phytoextraction, tannery sludge, heavy metals, resistant rhizosphere fungi, Arbuscular ...

  17. Synergistic Antimicrobial Activities Of Phytoestrogens In Crude ...

    African Journals Online (AJOL)

    Ethanolic, methanolic and aqueous extracts of both leaves were studied for their in-vitro synergistic antimicrobial activity against both Gram positive and Gram negative micro-organisms, and Yeast using Agar diffusion method. The GC-MS phytochemical screening of methanolic extract showed that the major compounds in ...

  18. Synergistic Smart Fuel For Microstructure Mediated Measurements

    Energy Technology Data Exchange (ETDEWEB)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2013-07-01

    Advancing the Nuclear Fuel Cycle and Next Generation Nuclear Power Plants requires enhancing our basic understanding of fuel and materials behavior under irradiation. The two most significant issues limiting the effectiveness and lifespan of the fuel are the loss of thermal conductivity of the fuel and the mechanical strength of both fuel and cladding. The core of a nuclear reactor presents an extremely harsh and challenging environment for both sensors and telemetry due to elevated temperatures and large fluxes of energetic and ionizing particles from radioactive decay processes. The majority of measurements are made in reactors using “radiation hardened” sensors and materials. A different approach has been pursued in this research that exploits high temperatures and materials that are robust with respect to ionizing radiation. This synergistically designed thermoacoustic sensor will be self-powered, wireless, and provide telemetry. The novel sensor will be able to provide reactor process information even if external electrical power and communication are unavailable. In addition, the form-factor for the sensor is identical to the existing fuel rods within reactors and contains no moving parts. Results from initial proof of concept experiments designed to characterize porosity, surface properties and monitor gas composition will be discussed.

  19. Successful Control of Disseminated Intravascular Coagulation by Recombinant Thrombomodulin during Arsenic Trioxide Treatment in Relapsed Patient with Acute Promyelocytic Leukemia

    Directory of Open Access Journals (Sweden)

    Motohiro Shindo

    2012-01-01

    Full Text Available Disseminated intravascular coagulation (DIC frequently occurs in patients with acute promyelocytic leukemia (APL. With the induction of therapy in APL using all-trans retinoic acid (ATRA, DIC can be controlled in most cases as ATRA usually shows immediate improvement of the APL. However, arsenic trioxide (ATO which has been used for the treatment of relapse in APL patients has shown to take time to suppress APL cells, therefore the control of DIC in APL with ATO treatment is a major problem. Recently, the recombinant soluble thrombomodulin fragment has received a lot of attention as the novel drug for the treatment of DIC with high efficacy. Here, we present a relapsed patient with APL in whom DIC was successfully and safely controlled by rTM during treatment with ATO.

  20. A comparative evaluation of ProRoot mineral trioxide aggregate and Portland cement as a pulpotomy medicament.

    Science.gov (United States)

    Bhagat, Dipti; Sunder, Ravi Kadur; Devendrappa, Shashikiran Nandihalli; Vanka, Amit; Choudaha, Nidhi

    2016-01-01

    Recently, some studies have compared mineral trioxide aggregate (MTA) with portland cement (PC), concluding that the principle ingredients of PC are similar to those of MTA. The purpose of the present study was to evaluate the biocompatibility of PC as a pulpotomy medicament. Thirty premolars that scheduled for extraction for therapeutic reasons were randomly assigned to two experimental groups: ProRoot MTA (PMTA) and PC. After isolation and pulp exposure, pulpotomy was carried out and pulps were dressed with PMTA and PC. After 6 months, the teeth were extracted and prepared for histological analysis based on Cox et al. criteria. The data were analyzed by Z-test of proportion with 1% of allowed error. No statistically significant difference was found between the two groups with respect to inflammatory response, soft tissue organization, and dentine bridge formation (P > 0.05). PC was associated with similar favorable biological response to pulpotomy treatment as PMTA. The findings of this study support the idea that PC can be considered a cheaper substitute to MTA.

  1. Arsenic speciation in hair and nails of acute promyelocytic leukemia (APL) patients undergoing arsenic trioxide treatment.

    Science.gov (United States)

    Chen, Baowei; Cao, Fenglin; Lu, Xiufen; Shen, Shengwen; Zhou, Jin; Le, X Chris

    2018-07-01

    Arsenic in hair and nails has been used to assess chronic exposure of humans to environmental arsenic. However, it remains to be seen whether it is appropriate to evaluate acute exposure to sub-lethal doses of arsenic typically used in therapeutics. In this study, hair, fingernail and toenail samples were collected from nine acute promyelocytic leukemia (APL) patients who were administered intravenously the daily dose of 10 mg arsenic trioxide (7.5 mg arsenic) for up to 54 days. These hair and nail samples were analyzed for arsenic species using high performance liquid chromatography separation and inductively coupled plasma mass spectrometry detection (HPLC-ICPMS). Inorganic arsenite was the predominant form among water-extractable arsenicals. Dimethylarsinic acid (DMA V ), monomethylarsonic acid (MMA V ), monomethylarsonous acid (MMA III ), monomethylmonothioarsonic acid (MMMTA V ), and dimethylmonothioarsinic acid (DMMTA V ) were also detected in both hair and nail samples. This is the first report of the detection of MMA III and MMMTA V as metabolites of arsenic in hair and nails of APL patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Proton Conductivity of Proton Exchange Membrane Synergistically Promoted by Different Functionalized Metal-Organic Frameworks.

    Science.gov (United States)

    Rao, Zhuang; Tang, Beibei; Wu, Peiyi

    2017-07-12

    In this study, two functionalized metal-organic frameworks (MOFs), UiO-66-SO 3 H and UiO-66-NH 2 , were synthesized. Then, different composite proton exchange membranes (PEMs) were prepared by single doping and codoping of these two MOFs, respectively. It was found that codoping of these two MOFs with suitable sizes was more conducive to the proton conductivity enhancement of the composite PEM. A synergistic effect between these two MOFs led to the the formation of more consecutive hydration channels in the composite PEM. It further greatly promoted the proton conductivity of the composite PEM. The proton conductivity of the codoped PEM reached up to 0.256 S/cm under 90 °C, 95% RH, which was ∼1.17 times higher than that of the recast Nafion (0.118 S/cm). Besides, the methanol permeability of the codoped PEM was prominently decreased owing to the methanol trapping effect of the pores of these two MOFs. Meanwhile, the high water and thermal stabilities of these two MOFs were beneficial to the high proton conductivity stability of the codoped PEM under high humidity and high temperature. The proton conductivity of the codoped PEM was almost unchanged throughout 3000 min of testing under 90 °C, 95% RH. This work provides a valuable reference for designing different functionalized MOFs to synergistically promote the proton conductivities of PEMs.

  3. Dose-adjusted arsenic trioxide for acute promyelocytic leukaemia in chronic renal failure.

    Science.gov (United States)

    Firkin, Frank; Roncolato, Fernando; Ho, Wai Khoon

    2015-10-01

    To determine the potential for arsenic trioxide (ATO) to be safely and effectively incorporated into induction therapy of newly diagnosed acute promyelocytic leukaemia (APL) in patients with severe chronic renal failure (CRF) by reduction of the ATO dosage to compensate for reduced renal elimination of arsenic in CRF. Two of the four CRF patients with APL in the study were dialysis-dependent, and two had eGFRs of 18 and 19 mL/min/1.73 m(2) . ATO dosage schedules were adjusted to obtain comparable whole-blood arsenic levels to those in APL patients with normal renal function who achieved molecular remission (MR) while receiving 10 mg ATO daily for 28 d. Average ATO administered per day in CRF patients ranged from 36 to 50% of the ATO administered to APL patients with normal renal function. No clinically significant cardiac, hepatic or other toxicities were detected. RT-PCR-negative MR was achieved after one treatment course in two patients and after two courses in the others. Relapse-free survival is 155, 60, 43 and 5 months. The observations in this pilot study have demonstrated whole-blood arsenic levels can provide a guide to adjustments of ATO dosage schedules that permit safe and effective therapeutic outcomes in APL patients with severely compromised renal function. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Synergistic effect of Elephantopus scaber L and Sauropus ...

    African Journals Online (AJOL)

    Synergistic effect of Elephantopus scaber L and Sauropus androgynus L ... Hematopoietic cells were isolated from bone marrow at 12 days post-infection. Prolactin ... breast milk after birth [2]. .... hosts as a natural means of protection against.

  5. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells.

    Directory of Open Access Journals (Sweden)

    Michele Cea

    Full Text Available Aberrant histone deacetylase (HDAC activity is frequent in human leukemias. However, while classical, NAD(+-independent HDACs are an established therapeutic target, the relevance of NAD(+-dependent HDACs (sirtuins in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527 and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+ levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.

  6. Synergistic radical scavenging potency of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes

    Energy Technology Data Exchange (ETDEWEB)

    Aadinath, W.; Bhushani, Anu; Anandharamakrishnan, C., E-mail: anandhram@cftri.res.in

    2016-07-01

    Curcumin is a highly potent nutraceutical associated with various health benefits. However, its hydrophobic nature affects its bioavailability and bioactivity, and limits nutraceutical applications. Drug-in-cyclodextrin-in-liposome has the ability to mask the hydrophobic nature of drug and achieve better encapsulation. Also, encapsulating iron oxide nanoparticles (IONPs) within liposomes endow additional beneficial functionalities of IONPs. In the present study, curcumin-β-cyclodextrin inclusion complex (IC) and IONPs were co-encapsulated within liposomes (curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes) to achieve the synergistic antioxidant potential of curcumin and IONPs. IC of curcumin-β-cyclodextrin was prepared by a simple rapid method and successful inclusion was confirmed by Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). Mean diameter of IONPs was found to be 180 nm and X-ray diffraction pattern confirmed the formation of hematite nanoparticles. Band gap energy calculated using absorption spectra was 2.25 eV, which falls in close proximity with the theoretically calculated values of hematite. Mean diameter of curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes was 67 nm and encapsulation efficiency of curcumin was found to be 71%. Further, the co-encapsulated particles possessed significantly low IC{sub 50} value (64.7791 μg/ml, p < 0.01) compared to conventional curcumin liposome and IONPs, indicating its synergistically enhanced radical scavenging property. - Highlights: • Curcumin-in-β-cyclodextrin-in-nanomagnetoliposomes (mean diameter, 67 nm) has been prepared. • Encapsulation efficiency of curcumin was found to be 71%. • IONPs in the nano-carrier play dual role of targeted delivery and radical scavenging activities. • Conjunction of IONPs and curcumin into the liposomes increases the radical scavenging activity.

  7. Accumulation and suppressive function of regulatory T cells in malignant ascites: Reducing their suppressive function using arsenic trioxide in vitro.

    Science.gov (United States)

    Hu, Zilong; Hu, Shidong; Wu, Youjun; Li, Songyan; He, Changzheng; Xing, Xiaowei; Wang, Yufeng; Du, Xiaohui

    2018-04-01

    Although adoptive cell therapy (ACT) has demonstrated effective and remarkable clinical responses in several studies, this approach does not lead to objective clinical responses in all cases. The function of ACT is often compromised by various tumor escape mechanisms, including the accumulation of immunoregulatory cells. As a result of peritoneal metastasis in the terminal stage, malignant ascites fluid lacks effectiveness and is a poor prognostic factor for gastric cancer. The present study assessed T-cell subsets in lymphocytes derived from malignant ascites, and investigated the effects of arsenic trioxide (As 2 O 3 ) on regulatory T cells (Tregs) and ascites-derived tumor-infiltrating lymphocytes (TILs) in vitro . In this study, lymphocytes were separated from malignant ascites and T-cell subsets were detected via flow cytometry. Forkhead box P3 (FoxP3) expression was assessed by immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. In addition, cytokines, including interleukin-10 (IL-10), transforming growth factor-β (TGF-β), and interferon-γ (IFN-γ), were measured by enzyme-linked immunosorbent assay (ELISA). Abundant Tregs were observed in ascites lymphocytes, which and exhibited a significantly increased frequency compared with that in the peripheral blood of patients. Furthermore, As 2 O 3 treatment significantly reduced Treg numbers and Foxp3 mRNA levels in vitro (P<0.05). IFN-γ levels in the supernatant of ascites-derived TILs were increased by As 2 O 3 , whereas IL-10 and TGF-β levels were significantly reduced (P<0.05). As 2 O 3 may induce selective depletion and inhibit immunosuppressive function of Tregs, and may enhance the cytotoxic activity of ascites-derived TILs.

  8. Synergistic Interactions of a Synthetic Lubricin-Mimetic with Fibronectin for Enhanced Wear Protection

    Directory of Open Access Journals (Sweden)

    Roberto C. Andresen Eguiluz

    2017-06-01

    Full Text Available Lubricin (LUB, a major mucinous glycoprotein of mammalian synovial fluids, is believed to provide excellent lubrication to cartilage surfaces. Consequently, when joint disease or replacement leads to increased friction and surface damage in the joint, robust synthetic LUB alternatives that could be used therapeutically to improve lubrication and surface protection are needed. Here, we report the characterization of a lubricating multiblock bottlebrush polymer whose architecture was inspired by LUB, and we investigate the role of fibronectin (FN, a glycoprotein found in the superficial zone of cartilage, in mediating the tribological properties of the polymer upon shear between mica surfaces. Our surface forces apparatus (SFA normal force measurements indicate that the lubricin-mimetic (mimLUB could be kept anchored between mica surfaces, even under high contact pressures, when an intermediate layer of FN was present. Additional SFA friction measurements show that FN would also extend the wearless friction regime of the polymer up to pressures of 3.4 MPa while ensuring stable friction coefficients (μ ≈ 0.28. These results demonstrate synergistic interactions between mimLUB and FN in assisting the lubrication and wear protection of ideal (mica substrates upon shear. Collectively, these findings suggest that our proposed mimLUB might be a promising alternative to LUB, as similar mechanisms could potentially facilitate the interaction between the polymer and cartilage surfaces in articular joints and prosthetic implants in vivo.

  9. Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria

    Directory of Open Access Journals (Sweden)

    Wu X

    2017-03-01

    Full Text Available Xiaozhe Wu,1 Zhan Li,1 Xiaolu Li,2,3 Yaomei Tian,1 Yingzi Fan,1 Chaoheng Yu,1 Bailing Zhou,1 Yi Liu,4 Rong Xiang,5 Li Yang1 1State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, 2International Center for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 3Department of Plastic and Burn Surgery, Affiliated Hospital of Southwest Medical University, Luzhou, 4Department of Microbial Examination, Sichuan Center for Disease Control and Prevention, Chengdu, 5Nankai University School of Medicine, Tianjin, People’s Republic of China Abstract: Antibiotic-resistant bacteria present a great threat to public health. In this study, the synergistic effects of antimicrobial peptides (AMPs and antibiotics on several multidrug-resistant bacterial strains were studied, and their synergistic effects on azithromycin (AZT-resistance genes were analyzed to determine the relationships between antimicrobial resistance and these synergistic effects. A checkerboard method was used to evaluate the synergistic effects of AMPs (DP7 and CLS001 and several antibiotics (gentamicin, vancomycin [VAN], AZT, and amoxicillin on clinical bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli. The AZT-resistance genes (ermA, ermB, ermC, mefA, and msrA were identified in the resistant strains using quantitative polymerase chain reaction. For all the clinical isolates tested that were resistant to different antibiotics, DP7 had high antimicrobial activity (≤32 mg/L. When DP7 was combined with VAN or AZT, the effect was most frequently synergistic. When we studied the resistance genes of the AZT-resistant isolates, the synergistic effect of DP7–AZT occurred most frequently in highly resistant strains or strains carrying more than two AZT-resistance genes. A transmission electron microscopic analysis of the S. aureus

  10. Nodal enhances the activity of FoxO3a and its synergistic interaction with Smads to regulate cyclin G2 transcription in ovarian cancer cells.

    Science.gov (United States)

    Fu, G; Peng, C

    2011-09-15

    Nodal, a member of the transforming growth factor-β superfamily, has been recently shown to suppress cell proliferation and to stimulate the expression of cyclin G2 (CCNG2) in human epithelial ovarian cancer cells. However, the precise mechanisms underlying these events are not fully understood. In this study, we investigated the transcriptional regulation of CCNG2 by the Nodal signaling pathway. In ovarian cancer cells, overexpression of Nodal or its receptors, activin receptor-like kinase 7 (ALK7) or ALK4, resulted in an increase in the CCNG2 promoter activity. Several putative Forkhead box class O (FoxO)3a-binding sites are present in the human CCNG2 promoter and overexpression of FoxO3a enhanced the CCNG2 promoter activity. The functional FoxO3a-binding element (FBE) was mapped to a proximal region located between -398 and -380 bp (FBE1) through deletion and mutation analyses, as well as chromatin immunoprecipitation (IP) assay. Interestingly, mutation of the FBE1 not only abolished the effect of FoxO3a, but also blocked Nodal-induced CCNG2 transcription. Nodal stimulated FoxO3a mRNA and protein expression through the canonical Smad pathway and suppressed FoxO3a inactivation by inhibiting AKT activity. Silencing of FoxO3a using small interfering RNA significantly reduced the effect of Nodal on the CCNG2 promoter activity. On the other hand, overexpression of Smad2 and Smad3 enhanced the FoxO3a-induced CCNG2 promoter activity whereas knockdown of Smad4 blocked the activity of FoxO3a. Furthermore, IP assays revealed that FoxO3a formed complexes with Smad proteins and that Nodal enhanced the binding of FoxO3a to the CCNG2 promoter. Finally, silencing of FoxO3a reversed the inhibitory effect of Nodal on cell proliferation. Taken together, these findings demonstrated that Nodal signaling promotes CCNG2 transcription by upregulating FoxO3a expression, inhibiting FoxO3a phosphorylation and enhancing its synergistic interaction with Smads. These results also suggest

  11. Hydrazine-based synergistic Ti(III)/N doping of surfactant-templated TiO{sub 2} thin films for enhanced visible light photocatalysis

    Energy Technology Data Exchange (ETDEWEB)

    Islam, Syed Z.; Rankin, Stephen E., E-mail: srankin@engr.uky.edu

    2016-10-01

    This study reports the preparation of titanium (Ti{sup 3+}) and nitrogen co-doped cubic ordered mesoporous TiO{sub 2} thin films using N{sub 2}H{sub 4} treatment. The resulting co-doped TiO{sub 2} (Ti{sup 3+}-N-TiO{sub 2}) thin films show significant enhancements in visible light absorption and photocatalytic activity. Cubic ordered mesoporous TiO{sub 2} thin films were prepared via a sol-gel method with Pluronic F127 as the pore template. After brief calcination, the TiO{sub 2} films were dipped into hydrazine hydrate which acts both as a nitrogen source and as a reducing agent, followed by heating at low temperature (90 °C). The hydrazine treatment period was varied from 5 to 20 h to obtain different degrees of reduction and nitrogen doping. X-ray photoelectron spectroscopy (XPS) analyses and UV–vis absorbance spectra of Ti{sup 3+}-N-TiO{sub 2} films indicate that the incorporated N atoms and Ti{sup 3+} reduce the band gap of TiO{sub 2} and thus enhance the absorption of visible light. The corresponding visible light photocatalytic activity of Ti{sup 3+}-N-TiO{sub 2} films was determined from the photocatalytic degradation of methylene blue under visible light illumination (at 455 nm). The Ti{sup 3+}-N-TiO{sub 2} films prepared with 10 h of treatment show the optimum photocatalytic activity, with a pseudo-first order rate coefficient of 0.12 h{sup −1}, which is 3 times greater than that of undoped TiO{sub 2} films. Calcination temperature and time were varied prior to hydrazine treatment to confirm that a brief calcination at low temperature (10 min at 350 °C) gave the best photochemical activity. In photoelectrochemical water oxidation using a 455 nm LED, the Ti{sup 3+}-N-TiO{sub 2} films prepared with 10 h of N{sub 2}H{sub 4} treatment show about 4 times the photocurrent compared to undoped TiO{sub 2} films. The present study suggests that hydrazine induced doping is a promising approach to enable synergistic incorporation of N and Ti{sup 3+} into the

  12. Synergistic energy conversion process using nuclear energy and fossil fuels

    International Nuclear Information System (INIS)

    Hori, Masao

    2007-01-01

    Because primary energies such as fossil fuels, nuclear energy and renewable energy are limited in quantity of supply, it is necessary to use available energies effectively for the increase of energy demand that is inevitable this century while keeping environment in good condition. For this purpose, an efficient synergistic energy conversion process using nuclear energy and fossil fuels together converted to energy carriers such are electricity, hydrogen, and synthetic fuels seems to be effective. Synergistic energy conversion processes containing nuclear energy were surveyed and effects of these processes on resource saving and the CO 2 emission reduction were discussed. (T.T.)

  13. Sealing ability of mineral trioxide aggregate (MTA) combined with distilled water, chlorhexidine, and doxycycline.

    Science.gov (United States)

    Arruda, Roberta A A; Cunha, Rodrigo S; Miguita, Kenner B; Silveira, Cláudia F M; De Martin, Alexandre S; Pinheiro, Sérgio L; Rocha, Daniel G P; Bueno, Carlos E S

    2012-09-01

    The aim of this study was to evaluate the sealing ability of mineral trioxide aggregate (MTA Bio) combined with different mixing agents (distilled water, chlorhexidine, doxycycline), used as an apical root-end filling material. Forty-two extracted human teeth were divided into three groups (n = 12); six teeth were used as controls. Root-ends were resected at 90 degrees, 3 mm from the apex. Root-end cavities were prepared using ultrasonic tips and filled with MTA Bio plus distilled water, 2% chlorhexidine solution, or 10% doxycycline solution. Apical sealing was assessed by microleakage of 50% silver nitrate solution. Roots were longitudinally sectioned in a buccolingual plane and analyzed using an operating microscope (20× magnification). Depth of dye leakage into the dentinal walls was measured in millimeters. Results were analyzed using ANOVA and Tukey's test (P = 0.05). MTA Bio plus distilled water showed significantly higher mean leakage results (1.06 mm) when compared with MTA Bio plus doxycycline (0.61 mm), and higher, although not significant, results when compared with MTA Bio plus chlorhexidine (0.79 mm). In conclusion, replacing distilled water with two biologically active mixing agents (doxycycline and chlorhexidine) did not alter the sealing properties of MTABio. The antimicrobial properties of these combinations should be further investigated.

  14. Absorbable Suture as an Apical Matrix in Single Visit Apexification with Mineral Trioxide Aggregate

    Directory of Open Access Journals (Sweden)

    Ayush Goyal

    2016-01-01

    Full Text Available Several procedures have been recommended to induce the root end barrier formation in teeth with open apices. Conventional treatment for such cases will require many appointments with an average duration of 12.9 months. During this period, the root canal is susceptible to reinfection from around the provisional restoration, which may promote apical periodontitis and arrest of apical repair. Mineral trioxide aggregate (MTA has been successfully used for one visit apexification wherein the root canal can be obturated within 24 hours after placement of MTA. Using a matrix prior to the placement of MTA avoids its extrusion, reduces leakage in the sealing material, and allows favorable response of the periapical tissues. This report presents a case of apexification where an absorbable suture was used as an apical matrix. Use of an absorbable suture circumvents all the problems associated with other conventional materials. Conclusion. Placement of the matrix made from the suture material is predictable and is easily positioned at the apex and the length can be adjusted as required. 10-month follow-up of the case shows resorbed matrix and bone healing in the periapical region. The patient was asymptomatic during the whole follow-up period and tooth exhibited mobility within physiologic limits and was functioning normally.

  15. Absorbable Suture as an Apical Matrix in Single Visit Apexification with Mineral Trioxide Aggregate.

    Science.gov (United States)

    Goyal, Ayush; Nikhil, Vineeta; Jha, Padmanabh

    2016-01-01

    Several procedures have been recommended to induce the root end barrier formation in teeth with open apices. Conventional treatment for such cases will require many appointments with an average duration of 12.9 months. During this period, the root canal is susceptible to reinfection from around the provisional restoration, which may promote apical periodontitis and arrest of apical repair. Mineral trioxide aggregate (MTA) has been successfully used for one visit apexification wherein the root canal can be obturated within 24 hours after placement of MTA. Using a matrix prior to the placement of MTA avoids its extrusion, reduces leakage in the sealing material, and allows favorable response of the periapical tissues. This report presents a case of apexification where an absorbable suture was used as an apical matrix. Use of an absorbable suture circumvents all the problems associated with other conventional materials. Conclusion . Placement of the matrix made from the suture material is predictable and is easily positioned at the apex and the length can be adjusted as required. 10-month follow-up of the case shows resorbed matrix and bone healing in the periapical region. The patient was asymptomatic during the whole follow-up period and tooth exhibited mobility within physiologic limits and was functioning normally.

  16. Comparison of mineral trioxide aggregate's composition with Portland cements and a new endodontic cement.

    Science.gov (United States)

    Asgary, Saeed; Eghbal, Mohammad Jafar; Parirokh, Masoud; Ghoddusi, Jamileh; Kheirieh, Sanam; Brink, Frank

    2009-02-01

    The aim of this study was to compare the compositions of mineral trioxide aggregates (MTAs), Portland cements (PCs), and a new endodontic cement (NEC). Our study also investigated the surface characteristics of MTA and NEC root-end fillings when immersed in normal saline. For part I, we prepared samples of 9 brands of MTAs, PCs, and NEC. The materials were imaged and analyzed by scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA). In part II, 3-mm-deep root-end preparations were filled with MTA or NEC and stored in normal saline for 1 week. Samples were imaged and analyzed by SEM and electron probe microanalysis (EPMA). EDXA investigations revealed differences in the dominant compounds of NEC, PCs, and MTAs. The major components of MTA and PC are the same except for bismuth. The most significant difference was the presence of higher concentrations of Fe (minor element) in gray MTA and PC when compared with white ones. EPMA results revealed remarkably different elements in MTA compared with surrounding dentin, whereas in the NEC group the distribution patterns of calcium, phosphorous, and oxygen were comparable. NEC differs chemically from MTAs and PCs and demonstrates comparable surface composition with adjacent dentin as a root-end filling material.

  17. Synergistic effects on dislocation loops in reduced-activation martensitic steel investigated by single and sequential hydrogen/helium ion irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiping [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Luo, Fengfeng [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Institute of Applied Physics, Jiangxi Academy of Sciences, Nanchang 330029 (China); Yu, Yanxia; Zheng, Zhongcheng; Shen, Zhenyu [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Guo, Liping, E-mail: guolp@whu.edu.cn [Hubei Nuclear Solid Physics Key Laboratory, Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and Technology, Wuhan University, Wuhan 430072 (China); Ren, Yaoyao [Center for Electron Microscopy, Wuhan University, Wuhan 430072 (China); Suo, Jinping [State Key Laboratory of Mould Technology, Institute of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-10-15

    Single-beam and sequential-beam irradiations were performed to investigate the H/He synergistic effect on dislocation loops in reduced-activation ferritic/martensitic (RAFM) steels. The irradiations were carried out with 10 keV H{sup +}, 18 keV He{sup +} and 160 keV Ar{sup +}, alone and in combination at 723 K. He{sup +} single-beam irradiation induced much larger dislocation loops than that induced by both H{sup +} and Ar{sup +} single-beam irradiation. H{sup +} post-irradiation after He{sup +} irradiation further increased the size of dislocation loops, whilst He{sup +} post-irradiation or Ar{sup +} post-irradiation following H{sup +} irradiation only slightly increased the size of dislocation loops. The experiment results indicate that pre-implanted H{sup +} can drastically inhibit the growth while post-implanted H{sup +} can significantly enhance the growth of dislocation loops induced by He{sup +} irradiation. The mechanisms behind the complex synergistic phenomena between H and He and the different roles that H and He played in the growth of dislocation loops are discussed.

  18. In vitro synergistic efficacy of conjugated linoleic acid, oleic acid, safflower oil and taxol cytotoxicity on PC3 cells.

    Science.gov (United States)

    Kızılşahin, Sadi; Nalbantsoy, Ayşe; Yavaşoğlu, N Ülkü Karabay

    2015-01-01

    The aim of this study was to determine in vitro synergistic efficacy of conjugated linoleic acid (CLA), oleic acid (OLA), safflower oil and taxol (Tax) cytotoxicity on human prostate cancer (PC3) cell line. To determine synergistic efficacy of oil combinations, PC3 treated with different doses of compounds alone and combined with 10 μg/mL Tax. The MTT results indicated that OLA-Tax combinations exhibited cytotoxicity against PC3 at doses of 30 nM+10 μg-Tax, 15 nM+5 μg-Tax and 7.5 nM+2.5 μg-Tax. The treatment of OLA or Tax did not show significant inhibition on PC3, while OLA-Tax combinations showed effective cytotoxicity at treated doses. CLA-Tax combinations demonstrated the same effect on PC3 as combined form with 45.72% versus the alone form as 74.51% viability. Cytotoxic synergy between Tax, OLA and CLA shows enhanced cytotoxicity on PC3 which might be used in the therapy of prostate cancer.

  19. Bis(2-ethylhexyl)-N,N-diethylcarbamoylmethyl phosphonate as a synergist in the extraction of trivalent lanthanides by 1-phenyl-3-methyl-4-trifluoroacetyl-pyrazolone-5

    International Nuclear Information System (INIS)

    Luxmi Varma, R.; Sujatha, S.; Reddy, M.L.P.; Prasada Rao, T.; Iyer, C.S.P.; Damodaran, A.D.

    1996-01-01

    Synergism in the extraction of trivalent lanthanides such as Nd. Eu and Lu has been investigated using mixtures of 1-phenyl-3-methyl-4-trifluoroacetyl-pyrazolone-5 (HPMTFP) and bis(2-ethylhexyl)-N,N-diethylcarbamoylmethyl phosphonate (CMP) in chloroform. Lanthanides are found to be extracted from 0.01 mol/dm 3 chloroacetate medium with HPMTFP as Ln(PMTFP) 3 or Ln(PMTFP) 3 . CMP in the absence or presence of CMP, respectively. The equilibrium constants of these synergistic species do not increase monotonically with atomic number but have a maximum at Eu. The addition of a synergist, CMP to the metal chelate system not only enhances the extraction efficiency but also improves the selectivities among these trivalent lanthanides. The IR results indicate that CMP acts as a bidentate ligand in these mixed-ligand systems. (orig.)

  20. The synergistic effect between coal macerals during hydropyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Q.; Li, W.; Chen, H.; Li, B. [CAS, Taiyuan (China)

    2007-01-15

    Using TGA technology, the volatile matter yields during hydropyrolysis of Chinese Shenmu coal and its derived high purity macerals under different heating rates and pressures were investigated. The {Delta}W, calculated by the difference between the volatile matter yield of parent coal and that of macerals, is used to evaluate the synergistic effect of macerals during hydropyrolysis. The results showed that with increasing pressure and decreasing heating rate, the Delta W increases. At temperature of 500{sup o}C and pressure of 3 MPa, the difference of volatile matter yield between parent coal and vitrinite reaches the maximum and the {Delta} W also occurs the highest value of 14.1%, suggesting the existence of the synergistic effect between macerals during hydropyrolysis. Based on the structural characteristics of macerals and the basic knowledge of hydropyrolysis, the possible explanation for the synergism are proposed.

  1. Ascorbic acid and a cytostatic inhibitor of glycolysis synergistically induce apoptosis in non-small cell lung cancer cells.

    Directory of Open Access Journals (Sweden)

    Saleha B Vuyyuri

    Full Text Available Ascorbic acid (AA exhibits significant anticancer activity at pharmacologic doses achievable by parenteral administration that have minimal effects on normal cells. Thus, AA has potential uses as a chemotherapeutic agent alone or in combination with other therapeutics that specifically target cancer-cell metabolism. We compared the effects of AA and combinations of AA with the glycolysis inhibitor 3-(3-pyridinyl-1-(4-pyridinyl-2-propen-1-one (3-PO on the viability of three non-small cell lung cancer (NSCLC cell lines to the effects on an immortalized lung epithelial cell line. AA concentrations of 0.5 to 5 mM caused a complete loss of viability in all NSCLC lines compared to a <10% loss of viability in the lung epithelial cell line. Combinations of AA and 3-PO synergistically enhanced cell death in all NSCLC cell lines at concentrations well below the IC50 concentrations for each compound alone. A synergistic interaction was not observed in combination treatments of lung epithelial cells and combination treatments that caused a complete loss of viability in NSCLC cells had modest effects on normal lung cell viability and reactive oxygen species (ROS levels. Combination treatments induced dramatically higher ROS levels compared to treatment with AA and 3-PO alone in NSCLC cells and combination-induced cell death was inhibited by addition of catalase to the medium. Analyses of DNA fragmentation, poly (ADP-ribose polymerase cleavage, annexin V-binding, and caspase activity demonstrated that AA-induced cell death is caused via the activation of apoptosis and that the combination treatments caused a synergistic induction of apoptosis. These results demonstrate the effectiveness of AA against NSCLC cells and that combinations of AA with 3-PO synergistically induce apoptosis via a ROS-dependent mechanism. These results support further evaluation of pharmacologic concentrations of AA as an adjuvant treatment for NSCLC and that combination of AA with

  2. Theoretical Approach to Synergistic Interaction of Ionizing Radiation with Other Factors

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Petinb, Vladislav G.

    2005-01-01

    Living objects including men are never exposed to merely one harmful agent. Many physical, chemical, biological and social factors may simultaneously exert their deleterious influence to man and the environment. Risk assessment is generally performed with the simplest assumption that the factor under consideration acts largely independently of others. However, the combined exposure to two harmful agents could result in a higher effect than would be expected from the addition of the separate exposures to individual agents. Hence, there is a possibility that, at least at high exposures, the combined effect of ionizing radiation with other environmental factors can be resulted in a greater overall risk. The problem is not so clear for low intensity and there is no possibility of testing all conceivable combinations of agents. For further insight into the mode of synergistic interaction, discussed are a common feature of synergistic interaction display and a theoretical model to describe, optimize and predict the synergistic effects

  3. Synergistic effects of Chinese herbal medicine: a comprehensive review of methodology and current research

    Directory of Open Access Journals (Sweden)

    Xian Zhou

    2016-07-01

    Full Text Available Traditional Chinese medicine is an important part of primary health care in Asian countries that has utilised complex herbal formulations (consisting 2 or more medicinal herbs for treating diseases over thousands of years. There seems to be a general assumption that the synergistic therapeutic effects of Chinese herbal medicine derive from the complex interactions between the multiple bioactive components within the herbs and/or herbal formulations. However, evidence to support these synergistic effects remains weak and controversial due to several reasons, including the very complex nature of Chinese herbal medicine, misconceptions about synergy, methodological challenges to study design. In this review, we clarify the definition of synergy, identify common errors in synergy research and describe current methodological approaches to test for synergistic interaction. We discuss the strengthen and weakness of these models in the context of Chinese herbal medicine and summarise the current status of synergy research in CHM. Despite the availability of some scientific data to support the synergistic effects of multi-herbal and/or herb-drug combinations, the level of evidence remains low and the clinical relevancy of most of these findings is undetermined. There remain significant challenges in the development of suitable methods for synergistic studies of complex herbal combinations.

  4. [Mineral trioxide aggragate pulpotomy for the treatment of immature permanent teeth with irreversible pulpitis: a preliminary clinical study].

    Science.gov (United States)

    Peng, Chufang; Zhao, Yuming; Yang, Yuan; Qin, Man

    2015-12-01

    To evaluate the preliminary clinical effect of mineral trioxide aggragate (MTA) pulpotomy on immature permanent teeth with irreversible pulpitis. Twenty-six immature permanent teeth with irreversible pulpitis were recuited from Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology. These teeth were treated with partial or full pulpotomy according to the condition of pulp bleeding. MTA was used as pulp capping material. Patients were recalled periodically after the treatment. Clinical and radiographic effects were evaluated. At one year follow-up, 20 teeth were evaluated as healed or healing, 2 teeth were evaluated as failure and 4 teeth were dropped out. The success rate was considered 91% (20/22). A dentinal bridge was radiographcally observed underneath the pulpotomy site in 13 teeth(65%, 13/20). MTA pulpotomy is an effective method for the treatment of immature permanent teeth with irreversible pulpitis. But further research with longer follow up period is required.

  5. Synergy of irofulven in combination with other DNA damaging agents: synergistic interaction with altretamine, alkylating, and platinum-derived agents in the MV522 lung tumor model.

    Science.gov (United States)

    Kelner, Michael J; McMorris, Trevor C; Rojas, Rafael J; Estes, Leita A; Suthipinijtham, Pharnuk

    2008-12-01

    Irofulven (MGI 114, NSC 683863) is a semisynthetic derivative of illudin S, a natural product present in the Omphalotus illudins (Jack O'Lantern) mushroom. This novel agent produces DNA damage, that in contrast to other agents, is predominately ignored by the global genome repair pathway of the nucleotide excision repair (NER)(2) system. The aim of this study was to determine the antitumor activity of irofulven when administered in combination with 44 different DNA damaging agents, whose damage is in general detected and repaired by the genome repair pathway. The human lung carcinoma MV522 cell line and its corresponding xenograft model were used to evaluate the activity of irofulven in combination with different DNA damaging agents. Two main classes of DNA damaging agents, platinum-derived agents, and select bifunctional alkylating agents, demonstrated in vivo synergistic or super-additive interaction with irofulven. DNA helicase inhibiting agents also demonstrated synergy in vitro, but an enhanced interaction with irofulven could not be demonstrated in vivo. There was no detectable synergistic activity between irofulven and agents capable of inducing DNA cleavage or intercalating into DNA. These results indicate that the antitumor activity of irofulven is enhanced when combined with platinum-derived agents, altretamine, and select alkylating agents such as melphalan or chlorambucil. A common factor between these agents appears to be the production of intrastrand DNA crosslinks. The synergistic interaction between irofulven and other agents may stem from the nucleotide excision repair system being selectively overwhelmed at two distinct points in the pathway, resulting in prolonged stalling of transcription forks, and subsequent initiation of apoptosis.

  6. OSU-2S/sorafenib synergistic antitumor combination against hepatocellular carcinoma: The role of PKCδ/p53

    Directory of Open Access Journals (Sweden)

    Hany A Omar

    2016-11-01

    Full Text Available Background: Sorafenib (Nexavar® is an FDA-approved systemic therapy for advanced hepatocellular carcinoma (HCC. However, the low efficacy and adverse effects at high doses limit the clinical application of sorafenib and strongly recommend its combination with other agents aiming at ameliorating its drawbacks. OSU-2S, a PKCδ activator, was selected as a potential candidate anticancer agent to be combined with sorafenib to promote the anti-cancer activity through synergistic interaction. Methods: The antitumor effects of sorafenib, OSU-2S and their combination were assessed by MTT assay, caspase activation, Western blotting, migration/invasion assays in four different HCC cell lines. The synergistic interactions were determined by Calcusyn analysis. PKCδ knockdown was used to elucidate the role of PKCδ activation as a mechanism for the synergy. The knockdown/over-expression of p53 was used to explain the differential sensitivity of HCC cell lines to sorafenib and/or OSU-2S. Results: OSU-2S synergistically enhanced the anti-proliferative effects of sorafenib in the four used HCC cell lines with combination indices < 1. This effect was accompanied by parallel increases in caspase 3/7 activity, PARP cleavage, PKCδ activation and HCC cell migration/invasion. In addition, PKCδ knockdown abolished the synergy between sorafenib and OSU-2S. Furthermore, p53 restoration in Hep3B cells through the over-expression rendered them more sensitive to both agents while p53 knockdown from HepG2 cells increased their resistance to both agents. Conclusions: OSU-2S augments the anti-proliferative effect of sorafenib in HCC cell lines, in part, through the activation of PKCδ. The p53 status in HCC cells predicts their sensitivity towards both sorafenib and OSU-2S. The proposed combination represents a therapeutically relevant approach that can lead to a new HCC therapeutic protocol.

  7. THE SYNERGISTIC SYLLABUS FOR TEACHING READING IN 32 TOURISM VOCATIONAL HIGH SCHOOL

    Directory of Open Access Journals (Sweden)

    Ahlis Qoidah Noor

    2017-12-01

    Full Text Available The new Syllabus at 2013 Curriculum for vocational high school created many problems to apply in the class. Based on the Need Analysis, the writer develops a Synergistic Syllabus for teaching Reading in vocational high school. It contains the syllabus combined from Task- Based Learning, Situational Syllabus, Program of International Student Assessment ( PISA item test and Character Building. It is a R and D research uses three phases of Observation, Developing and Try Out. It is in a True Experimental Research. The main findings are Reading Skill cannot be taught effectively for some reasons. There is no appropriate syllabus for teaching Reading; most teachers need some models in a syllabus. The results are the Synergistic Syllabus for teaching Reading, a set of Reading Material for Teaching Reading and a set of the lesson plan for one semester at Grade X of Tourism VHS. It is measured through mean, median and t- Test. To Sum up Synergistic Syllabus can develop many aspects, the systematic and meaningful activities in the class, motivation and good attitude. The standardized item of assignment, and a sense of competition in Reading activities and the Synergistic Syllabus assist teachers in teaching Reading using 2013 curriculum in the class effectively.

  8. Analyses of heavy metals in mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Schembri, Matthew; Peplow, George; Camilleri, Josette

    2010-07-01

    Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. A novel dipicolinamide-dicarbollide synergistic solvent system for actinide extraction

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Ajay Bhagwan [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Pune Univ. (India). Garware Research Centre; Pathak, Priyanath; Mohapatra, Prasanta Kumar [Bhabha Atomic Research Centre, Mumbai (India). Radiochemistry Div.; Shinde, Vaishali Sanjay [Pune Univ. (India). Garware Research Centre; Alyapyshev, M.Yu.; Babain, Vasiliy A. [Federal Agency for Atomic Energy, St. Petersburg (Russian Federation). V.G. Khlopin Radium Institute

    2014-09-01

    Solvent extraction studies of several actinide ions such as Am(III), U(VI), Np(IV), Np(VI), Pu(IV) were carried out from nitric acid medium using a synergistic mixture of N,N'-diethyl-N,N'-di(para)fluorophenyl-2,6-dipicolinamide, (DEtD(p)FPhDPA, DPA), and hydrogen dicarbollylcobaltate (H{sup +}CCD{sup -}) dissolved in phenyltrifluoromethylsulphone (PTMS). The effects of different parameters such as aqueous phase acidity (0.01-3 M HNO{sub 3}), oxidation states of metal ions, ligand concentration, nature of diluent and temperature on the extraction behavior of metal ions were studied. The extracted Am(III) species was determined as H{sup +}[Am(DPA){sub 2}(CCD){sub 4}]{sup -} With increasing aqueous phase acidities, the extractability of both Am(III) and Eu(III) was found to decrease. The synergistic mixture showed better extraction in mM concentrations as compared to previously studied dipicolinamides. The thermodynamic studies were performed to calculate heat of extraction reaction and the extraction constants. The proposed synergistic mixture showed good extraction for all the metal ions, though lanthanide actinide separation results are not encouraging. (orig.)

  10. Ozone acts alone and synergistically with ionizing radiation to induce in vitro neoplastic transformation

    Energy Technology Data Exchange (ETDEWEB)

    Borek, C; Zaider, M; Ong, A; Mason, H; Witz, G

    1986-09-01

    Ozone, a major chemical oxidant in the atmosphere, is an environmental air pollutant whose ability to act as a direct carcinogen is unclear. Using in vitro transformation, a technique which permits the study of oncogenesis in the absence of host specific effects, it is reported for the first time that ozone (5 p.p.m. for 5 min) induces neoplastic transformation in vitro in both primary hamster embryo cells and mouse fibroblast cultures (C3H/10-1/2). Exposure of the hamster and mouse cells to ozone also results in enhanced levels of free radical-mediated lipid peroxidation products. The carcinogenic interaction between ozone and ionizing radiation is also reported. Exposure of the cells to 3 or 4 Gy of ..gamma..-rays, 2 h prior to O/sub 3/ treatment, results in markedly enhanced rates of transformation, statistically consistent with a synergistic interaction between the agents. The results demonstrate that O/sub 3/ acts as a direct carcinogen and co-carcinogen on susceptible cells, therefore having important consequences for public health.

  11. Synergistic regulation of the mouse orphan nuclear receptor SHP gene promoter by CLOCK-BMAL1 and LRH-1

    International Nuclear Information System (INIS)

    Oiwa, Ako; Kakizawa, Tomoko; Miyamoto, Takahide; Yamashita, Koh; Jiang, Wei; Takeda, Teiji; Suzuki, Satoru; Hashizume, Kiyoshi

    2007-01-01

    Small heterodimer partner (SHP; NR0B2) is an orphan nuclear receptor and acts as a repressor for wide variety of nuclear hormone receptors. We demonstrated here that mouse SHP mRNA showed a circadian expression pattern in the liver. Transient transfection of the mSHP promoter demonstrated that CLOCK-BMAL1, core circadian clock components, bound to E-box (CACGTG), and stimulated the promoter activity by 4-fold. Liver receptor homologue-1 (LRH-1; NR5A2) stimulated the mSHP promoter, and CLOCK-BMAL1 synergistically enhanced the LRH-1-mediated transactivation. Interestingly, SHP did not affect the CLOCK-BMAL1-mediated promoter activity, but strongly repressed the synergistic activation of CLOCK-BMAL1 and LRH-1. Furthermore, in vitro pull-down assays revealed the existence of direct protein-protein interaction between LRH-1 and CLOCK. In summary, this study shows that CLOCK-BMAL1, LRH-1 and SHP coordinately regulate the mSHP gene to generate the circadian oscillation. The cyclic expression of mSHP may affect daily activity of other nuclear receptors and contribute to circadian liver functions

  12. Synergistic interactions between leaf beetle herbivory and fire enhance tamarisk (Tamarix spp.) mortality

    Science.gov (United States)

    Drus, Gail M.; Dudley, Tom L.; Antonio, Carla M.; Even, Thomas J.; Brooks, Matt L.; Matchett, J.R.

    2014-01-01

    The combined effects of herbivory and fire on plant mortality were investigated using prescribed burns of tamarisk (Tamarix ramosissima Lebed) exposed to herbivory by the saltcedar leaf beetle (Chrysomelidae: Diorhabda carinulata Desbrocher). Tamarix stands in the Humboldt Sink (NV, USA) were divided into three treatments: summer burn (August 2006), fall burn (October 2006) and control (unburned), and litter depth was manipulated to vary fire intensity within burn seasons. A gradient of existing herbivory impact was described with three plant condition metrics prior to fire: reduced proportions of green canopy, percent root crown starch sampled at the height of the growing season (August 2006), and percent root crown starch measured during dormancy (December 2006). August root crown starch concentration and proportion green canopy were strongly correlated, although the proportion green canopy predicted mortality better than August root crown starch. December root crown starch concentration was more depleted in unburned trees and in trees burned during the summer than in fall burn trees. Mortality in summer burned trees was higher than fall burned trees due to higher fire intensity, but December root crown starch available for resprouting in the spring was also lower in summer burned trees. The greatest mortality was observed in trees with the lowest December root crown starch concentration which were exposed to high fire intensity. Disproportionate changes in the slope and curvature of prediction traces as fire intensity and December starch reach reciprocal maximum and minimum levels indicate that beetle herbivory and fire intensity are synergistic.

  13. Investigating the synergistic antioxidant effects of some flavonoid and phenolic compounds

    Directory of Open Access Journals (Sweden)

    H. Hajimehdipoor

    2014-04-01

    Full Text Available Phenolic and flavonoid compounds are secondary metabolites of plants which possess various activities such as anti-inflammatory, analgesic, anti-diabetes and anticancer effects. It has been established that these compounds can scavenge free radicals produced in the body. Because of this ability, not only the plants containing phenolic and flavonoid compounds but also, the pure compounds are used in medicinal products for prevention and treatment of many disorders. Considering that the golden aim of the pharmaceutical industries is using the most effective compounds with lower concentrations, determination of the best combination of the compounds with synergistic effects is important. In the present study, synergistic antioxidant effects of four phenolic compounds including caffeic acid, gallic acid, rosmarinic acid, chlorogenic acid and two flavonoids,  rutin and quercetin, have been investigated by FRAP (Ferric Reducing Antioxidant Power method. The synergistic effect was assessed by comparing the experimental antioxidant activity of the mixtures with calculated theoretical values and the interactions of the compounds were determined. The results showed that combination of gallic acid and caffeic acid demonstrated considerable synergistic effects (137.8% while other combinations were less potent. Among examined substances, rutin was the only one which had no effect on the other compounds. The results of ternary combinations of compounds demonstrated antagonistic effects in some cases. This was more considerable in mixture of rutin, caffeic acid, rosmarinic acid (-21.8%, chlorogenic acid, caffeic acid, rosmarinic acid (-20%, rutin, rosmarinic acid, gallic acid (-18.5% and rutin, chlorogenic acid, caffeic acid (-15.8%, while, combination of quercetin, gallic acid, caffeic acid (59.4% and quercetin, gallic acid, rutin (55.2% showed the most synergistic effects. It was concluded that binary and ternary combination of quercetin, rutin, caffeic acid

  14. Are a healthy diet and physical activity synergistically associated with cognitive functioning in older adults?

    NARCIS (Netherlands)

    Nijholt, W.; Jager-Wittenaar, H.; Visser, M.; Van der Schans, C. P.; Hobbelen, J. S. M.

    Previous research has demonstrated that being both physically active and adhering a healthy diet is associated with improved cognitive functioning; however, it remains unclear whether these factors act synergistically. We investigated the synergistic association of a healthy diet and being

  15. Are a Healthy Diet and Physical Activity Synergistically Associated with Cognitive Functioning in Older Adults?

    NARCIS (Netherlands)

    Nijholt, W; Jager-Wittenaar, H; Visser, M; van der Schans, C P; Hobbelen, J S M

    2016-01-01

    OBJECTIVES: Previous research has demonstrated that being both physically active and adhering a healthy diet is associated with improved cognitive functioning; however, it remains unclear whether these factors act synergistically. We investigated the synergistic association of a healthy diet and

  16. Are a healthy diet and physical activity synergistically associated with cognitive functioning in older adults?

    NARCIS (Netherlands)

    Nijholt, Willemke; Jager, Harriët; Visser, M.; van der Schans, Cees; Hobbelen, Hans

    2015-01-01

    Objectives: Previous research has demonstrated that being both physically active and adhering a healthy diet is associated with improved cognitive functioning; however, it remains unclear whether these factors act synergistically. We investigated the synergistic association of a healthy diet and

  17. Synergistic effect of CART (cocaine- and amphetamine-regulated transcript peptide and cholecystokinin on food intake regulation in lean mice

    Directory of Open Access Journals (Sweden)

    Kiss Alexander

    2008-10-01

    Full Text Available Abstract Background CART (cocaine- and amphetamine-regulated transcript peptide and cholecystokinin (CCK are neuromodulators involved in feeding behavior. This study is based on previously found synergistic effect of leptin and CCK on food intake and our hypothesis on a co-operation of the CART peptide and CCK in food intake regulation and Fos activation in their common targets, the nucleus tractus solitarii of the brainstem (NTS, the paraventricular nucleus (PVN, and the dorsomedial nucleus (DMH of the hypothalamus. Results In fasted C57BL/6 mice, the anorexigenic effect of CART(61-102 in the doses of 0.1 or 0.5 μg/mouse was significantly enhanced by low doses of CCK-8 of 0.4 or 4 μg/kg, while 1 mg/kg dose of CCK-A receptor antagonist devazepide blocked the effect of CART(61-102 on food intake. After simultaneous administration of 0.1 μg/mouse CART(61-102 and of 4 μg/kg of CCK-8, the number of Fos-positive neurons in NTS, PVN, and DMH was significantly higher than after administration of each particular peptide. Besides, CART(61-102 and CCK-8 showed an additive effect on inhibition of the locomotor activity of mice in an open field test. Conclusion The synergistic and long-lasting effect of the CART peptide and CCK on food intake and their additive effect on Fos immunoreactivity in their common targets suggest a co-operative action of CART peptide and CCK which could be related to synergistic effect of leptin on CCK satiety.

  18. Synergistic bactericidal effect by combined exposure to Ag nanoparticles and UVA

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xiaoxu; Toyooka, Tatsushi; Ibuki, Yuko, E-mail: ibuki@u-shizuoka-ken.ac.jp

    2013-08-01

    Broad and strong antimicrobial properties of silver (Ag) have been used for biomedical applications, water treatment, etc. In this study, a synergistic antibacterial effect between Ag nanoparticles (AgNPs) and ultraviolet (UV) light was examined. AgNPs (< 0.1 μm) with subsequent exposure to UVA (320–400 nm) showed pronounced toxicity in Escherichia coli, but micro-sized Ag particles (> 1 μm) with UVA and AgNPs with UVB (280–325 nm) did not. As significant bactericidal activity was also exhibited by hydrogen peroxide-treated AgNPs, the surface oxidation of AgNPs caused by UVA irradiation was considered to contribute to the enhanced antibacterial effect. Although no difference in NP-incorporation rates was observed with or without the surface oxidation of AgNPs, a particle size of less than 0.1 μm was a factor for AgNPs uptake and an essential requirement for the antimicrobial function of Ag particles. Incorporated AgNPs oxidized by UVA irradiation released larger amounts of Ag ion inside cells than reduced AgNPs, which reacted with intercellular molecules having –SH groups such as glutathione. The synergistic use of AgNPs and UVA could become a powerful tool with broad antimicrobial applications. Highlights: • Combined treatment with AgNPs and UV achieved a remarkable antibacterial effect in E. coli. • For the antibacterial effect, it is necessary to satisfy the following requirements: • 1) Translocation of nano-sized Ag particles inside E. coli. • 2) Oxidation of AgNPs by UVA, and extensive and persistent release of Ag{sup +} inside E. coli. • Ag{sup +} released inside cells reacted with intercellular molecules having –SH groups such as GSH.

  19. Synergistic targeting of malignant pleural mesothelioma cells by MDM2 inhibitors and TRAIL agonists

    Science.gov (United States)

    Urso, Loredana; Biasini, Lorena; Zago, Giulia; Calabrese, Fiorella; Conte, Pier Franco; Ciminale, Vincenzo; Pasello, Giulia

    2017-01-01

    Malignant Pleural Mesothelioma (MPM) is a chemoresistant tumor characterized by low rate of p53 mutation and upregulation of Murine Double Minute 2 (MDM2), suggesting that it may be effectively targeted using MDM2 inhibitors. In the present study, we investigated the anticancer activity of the MDM2 inhibitors Nutlin 3a (in vitro) and RG7112 (in vivo), as single agents or in combination with rhTRAIL. In vitro studies were performed using MPM cell lines derived from epithelioid (ZL55, M14K), biphasic (MSTO211H) and sarcomatoid (ZL34) MPMs. In vivo studies were conducted on a sarcomatoid MPM mouse model. In all the cell lines tested (with the exception of ZL55, which carries a biallelic loss-of-function mutation of p53), Nutlin 3a enhanced p21, MDM2 and DR5 expression, and decreased survivin expression. These changes were associated to cell cycle arrest but not to a significant induction of apoptosis. A synergistic pro-apoptotic effect was obtained through the association of rhTRAIL in all the cell lines harboring functional p53. This synergistic interaction of MDM2 inhibitor and TRAIL agonist was confirmed using a mouse preclinical model. Our results suggest that the combined targeting of MDM2 and TRAIL might provide a novel therapeutic option for treatment of MPM patients, particularly in the case of sarcomatoid MPM with MDM2 overexpression and functional inactivation of wild-type p53. PMID:28562336

  20. Restructuring the crystalline cellulose hydrogen bond network enhances its depolymerization rate

    Science.gov (United States)

    Shishir P.S. Chundawat; Giovanni Bellesia; Nirmal Uppugundla; Leonardo da Costa Sousa; Dahai Gao; Albert M. Cheh; Umesh P. Agarwal; Christopher M. Bianchetti; George N. Phillips; Paul Langan; Venkatesh Balan; S. Gnanakaran; Bruce E. Dale

    2011-01-01

    Conversion of lignocellulose to biofuels is partly inefficient due to the deleterious impact of cellulose crystallinity on enzymatic saccharification. We demonstrate how the synergistic activity of cellulases was enhanced by altering the hydrogen bond network within crystalline cellulose fibrils. We provide a molecular-scale explanation of these phenomena through...

  1. The Synergistic Priming Effect of Exogenous Salicylic Acid and H2O2 on Chilling Tolerance Enhancement during Maize (Zea mays L.) Seed Germination.

    Science.gov (United States)

    Li, Zhan; Xu, Jungui; Gao, Yue; Wang, Chun; Guo, Genyuan; Luo, Ying; Huang, Yutao; Hu, Weimin; Sheteiwy, Mohamed S; Guan, Yajing; Hu, Jin

    2017-01-01

    Chilling stress is an important constraint for maize seedling establishment in the field. To examine the role of salicylic acid (SA) and hydrogen peroxide (H 2 O 2 ) in response to chilling stress, we investigated the effects of seed priming with SA, H 2 O 2 , and SA+H 2 O 2 combination on maize resistance under chilling stress (13°C). Priming with SA, H 2 O 2 , and especially SA+H 2 O 2 shortened seed germination time and enhanced seed vigor and seedling growth as compared with hydropriming and non-priming treatments under low temperature. Meanwhile, SA+H 2 O 2 priming notably increased the endogenous H 2 O 2 and SA content, antioxidant enzymes activities and their corresponding genes ZmPAL, ZmSOD4, ZmAPX2, ZmCAT2 , and ZmGR expression levels. The α-amylase activity was enhanced to mobilize starch to supply metabolites such as soluble sugar and energy for seed germination under chilling stress. In addition, the SA+H 2 O 2 combination positively up-regulated expressions of gibberellic acid (GA) biosynthesis genes ZmGA20ox1 and ZmGA3ox2 , and down-regulated GA catabolism gene ZmGA2ox1 expression; while it promoted GA signaling transduction genes expressions of ZmGID1 and ZmGID2 and decreased the level of seed germination inhibitor gene ZmRGL2 . The abscisic acid (ABA) catabolism gene ZmCYP707A2 and the expressions of ZmCPK11 and ZmSnRK2.1 encoding response receptors in ABA signaling pathway were all up-regulated. These results strongly suggested that priming with SA and H 2 O 2 synergistically promoted hormones metabolism and signal transduction, and enhanced energy supply and antioxidant enzymes activities under chilling stress, which were closely relevant with chilling injury alleviation and chilling-tolerance improvement in maize seed. Highlights: Seed germination and seedling growth were significantly improved under chilling stress by priming with SA+H 2 O 2 combination, which was closely relevant with the change of reactive oxygen species, metabolites and

  2. Antioxidant, antimicrobial and synergistic activities of tea polyphenols

    African Journals Online (AJOL)

    Microbial resistance to antibiotics has become an increasing global problem and there is a need to find out novel potent antimicrobial agents with alternative modes of action as accessories to antibiotic therapy. This study investigated the antioxidant, antimicrobial and synergistic properties of tea polyphenols. The tea ...

  3. Involvement of Ca2+ Signaling in the Synergistic Effects between Muscarinic Receptor Antagonists and β2-Adrenoceptor Agonists in Airway Smooth Muscle

    Directory of Open Access Journals (Sweden)

    Kentaro Fukunaga

    2016-09-01

    Full Text Available Long-acting muscarinic antagonists (LAMAs and short-acting β2-adrenoceptor agonists (SABAs play important roles in remedy for COPD. To propel a translational research for development of bronchodilator therapy, synergistic effects between SABAs with LAMAs were examined focused on Ca2+ signaling using simultaneous records of isometric tension and F340/F380 in fura-2-loaded tracheal smooth muscle. Glycopyrronium (3 nM, a LAMA, modestly reduced methacholine (1 μM-induced contraction. When procaterol, salbutamol and SABAs were applied in the presence of glycopyrronium, relaxant effects of these SABAs are markedly enhanced, and percent inhibition of tension was much greater than the sum of those for each agent and those expected from the BI theory. In contrast, percent inhibition of F340/F380 was not greater than those values. Bisindolylmaleimide, an inhibitor of protein kinase C (PKC, significantly increased the relaxant effect of LAMA without reducing F340/F380. Iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (KCa channels, significantly suppressed the effects of these combined agents with reducing F340/F380. In conclusion, combination of SABAs with LAMAs synergistically enhances inhibition of muscarinic contraction via decreasing both Ca2+ sensitization mediated by PKC and Ca2+ dynamics mediated by KCa channels. PKC and KCa channels may be molecular targets for cross talk between β2-adrenoceptors and muscarinic receptors.

  4. Can toxicokinetic and toxicodynamic modeling be used to understand and predict synergistic interactions between chemicals?

    DEFF Research Database (Denmark)

    Cedergreen, Nina; Dalhoff, Kristoffer; Li, Dan

    2017-01-01

    including synergists. The aim of the present study is to develop a mechanistic toxicokinetic (TK) and toxicodynamic (TD) model for the synergistic mixture of the azole fungicide, propiconazole (the synergist), and the insecticide, α-cypermethrin, on the mortality of the crustacean Daphnia magna. The study...... by their effect on the biotransformation rate but that this effect could only partly be explained by the effect of the two azoles on cytochrome P450 activity, measured on D. magna in vivo. TKTD models of interacting mixtures seem to be a promising tool to test mechanisms of interactions between chemicals...

  5. Modelling synergistic effects of appetite regulating hormones

    DEFF Research Database (Denmark)

    Schmidt, Julie Berg; Ritz, Christian

    2016-01-01

    We briefly reviewed one definition of dose addition, which is applicable within the framework of generalized linear models. We established how this definition of dose addition corresponds to effect addition in case only two doses per compound are considered for evaluating synergistic effects. The....... The link between definitions was exemplified for an appetite study where two appetite hormones were studied....

  6. Combined SEP and anti-PD-L1 antibody produces a synergistic antitumor effect in B16-F10 melanoma-bearing mice.

    Science.gov (United States)

    Hu, Zhengping; Ye, Liang; Xing, Yingying; Hu, Jinhang; Xi, Tao

    2018-01-09

    The increased PD-L1 induces poorer prognosis in melanoma. The treatment with PD-1/PD-L1 antibodies have a low response rate. The combination immunotherapies are the encouraging drug development strategy to receive maximal therapeutic benefit. In this study, we investigated the enhanced antitumor and immunomodulatory activity of combined SEP and αPD-L1 in B16-F10 melanoma-bearing mice. The results shown that combined SEP and αPD-L1 presented significant synergistic antitumor effects, increased the frequency of CD8 + and CD4 + T cells in spleen and tumor, cytotoxic activity of CTL in spleen, and IL-2 and IFN-γ levels in splenocytes and tumor. The combination treatment also produced synergistic increase in P-ERK1/2 level in spleen. Immunohistochemistry shown that SEP induced the PD-L1 expression in melanoma tissue possibly by promoting IFN-γ excretion, which led to the synergistic anti-tumor effects of aPD-L1 and SEP. Furthermore, in the purified T lymphocyte from the naive mice, the combination of SEP and αPD-L1 had more potent than SEP or αPD-L1 in promoting T lymphocyte proliferation and cytokines secretion including IL-2 and IFN-γ, at least partially by activating MEK/ERK pathway. Our study provides the scientific basis for a clinical trial that would involve combination of anti-PD-L1 mAb and SEP for sustained melanoma control.

  7. The status of mineral trioxide aggregate in endodontics education in dental schools in Turkey.

    Science.gov (United States)

    Tanalp, Jale; Karapinar-Kazandag, Meriç; Ersev, Handan; Bayirli, Gündüz

    2012-06-01

    The aim of this study was to assess the current status of mineral trioxide aggregate (MTA) as an educational material in dental schools in Turkey. A survey was sent to senior members of the endodontic departments of seventeen dental schools; fourteen responded. All respondents reported that they used MTA in their clinical practice, with apexification, perforations, retrograde fillings, and root resorptions being the most frequently occurring treatment procedures. All reported that information was given to students regarding MTA mainly as part of the curriculum. The third and fourth years were the periods when MTA was introduced to students in most of the schools. Twelve schools reported that students had the opportunity to observe procedures in which MTA was used, but students had the chance to use the material in a very minor proportion of the schools, mainly under the supervision of clinical instructors. Ten schools agreed that MTA should be included in the regular endodontic curriculum. Financial constraints seemed to be the predominant reason for those who answered this question negatively, followed by difficult handling properties and low radiopacity of the material. Within the limitations of this study, it can be concluded that ways should be sought to prevent financial difficulties from depriving dental students of the opportunity to receive information about contemporary methodologies such as MTA utilization.

  8. Arsenic species excretion after dimercaptopropanesulfonic acid (DMPS) treatment of an acute arsenic trioxide poisoning

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich-Ramm, R. [Ordinariat fuer Arbeitsmedizin der Universitaet Hamburg und Zentralinstitut fuer Arbeitsmedizin, Hamburg (Germany); Schaller, K.H.; Angerer, J. [Institut und Poliklinik fuer Arbeits-, Sozial- und Umweltmedizin der Universitaet Erlangen-Nuernberg, Schillerstr. 25, 91054 Erlangen (Germany); Horn, J. [Medizinische Klinik II, Toxikologische-internistische Intensivstation, Klinikum Nuernberg, Nuernberg (Germany)

    2003-02-01

    We studied the urinary excretion of the different arsenic species in urine samples from a young man who tried to commit suicide by ingesting about 0.6 g arsenic trioxide. He received immediate therapy with dimercaptopropanesulfonic acid (DMPS) after his delivery into the hospital. We assessed urinary arsenite (inorganic trivalent arsenic), arsenate (inorganic pentavalent arsenic), pentavalent dimethylarsinic acid (DMA) and pentavalent monomethylarsonic acid (MMA) in urine with ion-exchange chromatography and on-line hydride-technique atomic absorption spectrometry. The predominant amount of the excreted arsenic was unchanged trivalent inorganic arsenic (37.4%), followed by pentavalent inorganic arsenic (2.6%), MMA (2.1%), DMA (0.2%) and one unidentified arsenic species (0.7%, if calculated as DMA). In the first urine voiding in the clinic, the total arsenic concentration was 215 mg/l, which fell 1000-fold after 8 days of DMPS therapy. A most striking finding was the almost complete inhibition of the second methylation step in arsenic metabolism. As mechanisms for the reduced methylation efficiency, the saturation of the enzymatic process of arsenic methylation, the high dosage of antidote DMPS, which might inhibit the activity of the methyl transferases, and analytical reasons are discussed. The high dosage of DMPS is the most likely explanation. The patient left the hospital after a 12-day treatment with antidote. (orig.)

  9. Synergistic Antimicrobial Effect of Tribulus terrestris and Bitter Almond Extracts

    Directory of Open Access Journals (Sweden)

    Hamid Abtahi

    2014-12-01

    Full Text Available Background: The antimicrobial effects of the extracts of different kinds of plants have been demonstrated in several studies. However, no study has been conducted so far on the synergistic effects of two herbal extracts on their germicidal effects. In this study, in addition to antibacterial effects of the aqueous, methanol or ethanol extracts of Tribulus terrestris and bitter almond on some bacteria, the synergistic effects of the extracts of these two plants were also evaluated. Materials and Methods: In this experimental study, water, methanol and ethanol extracts of seeds were screened against some bacterial strains. Seeds were extracted by percolation method. Aliquots of the extracts at variable concentrations were then incubated with different bacterial strains, and the antimicrobial activities of the extracts from seeds were determined by MIC. Three antibiotics were used as reference compounds for antibacterial activities. Seeds extract inhibited significantly the growth of the tested bacterial strains. Results: The greatest synergistic effect of T. terrestris and bitter almond extracts is detected in methanol and aqueous extracts. Among the bacterial strains tested, Staphylococcus aureus was most susceptibility. Conclusion: The results showed the highest antibacterial effect in the combination of methanol extract of T. terrestris and the aqueous extract of the bitter almond.

  10. Tungstate as a synergist to phosphonate-based formulation for ...

    Indian Academy of Sciences (India)

    Administrator

    Synergistic inhibition of corrosion of carbon steel in low chloride aqueous .... 200 high resolution scanning electron microscope ..... mation of a thick and less permeable protective film ..... the surface of the metal due to its very low solubility.

  11. Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: impact of calcium ions.

    Science.gov (United States)

    Presečki, Ana Vrsalović; Blažević, Zvjezdana Findrik; Vasić-Rački, Durđa

    2013-11-01

    Starch hydrolysis was performed by the synergistic action of amylase and glucoamylase. For that purpose glucoamylase (Dextrozyme) and two amylases (Liquozyme and Termamyl) in different combinations were investigated. Experiments were carried out in the repetitive- and fed-batch modes at 65 °C and pH 5.5 with and without the addition of Ca(2+) ions. 100 % conversion of starch to glucose was achieved in batch experiments. Calcium ions significantly enhanced stability of the amylase Termamyl. The intensity of synergism between amylase Termamyl and glucoamylase Dextrozyme was higher than in the experiments carried out with amylase Liquozyme and Dextrozyme. Mathematical model of the complete reaction system was developed. Using the model, a possible explanation of the synergism between the amylase and glucoamylase was provided.

  12. The synergistic radiosensitizing effect of tirapazamine-conjugated gold nanoparticles on human hepatoma HepG2 cells under X-ray irradiation

    Directory of Open Access Journals (Sweden)

    Liu X

    2016-07-01

    Full Text Available Xi Liu,1–4 Yan Liu,1–4 Pengcheng Zhang,1–4 Xiaodong Jin,1–3 Xiaogang Zheng,1–4 Fei Ye,1–4 Weiqiang Chen,1–3 Qiang Li1–3 1Institute of Modern Physics, 2Key Laboratory of Heavy Ion Radiation Biology and Medicine, Chinese Academy of Sciences, 3Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, 4School of Life Science, University of Chinese Academy of Sciences, Beijing, People’s Republic of China Abstract: Reductive drug-functionalized gold nanoparticles (AuNPs have been proposed to enhance the damage of X-rays to cells through improving hydroxyl radical production by secondary electrons. In this work, polyethylene glycol-capped AuNPs were conjugated with tirapazamine (TPZ moiety, and then thioctyl TPZ (TPZs-modified AuNPs (TPZs-AuNPs were synthesized. The TPZs-AuNPs were characterized by transmission electron microscopy, ultraviolet-visible spectra, dynamic light scattering, and inductively coupled plasma mass spectrometry to have a size of 16.6±2.1 nm in diameter and a TPZs/AuNPs ratio of ~700:1. In contrast with PEGylated AuNPs, the as-synthesized TPZs-AuNPs exhibited 20% increment in hydroxyl radical production in water at 2.0 Gy, and 19% increase in sensitizer enhancement ratio at 10% survival fraction for human hepatoma HepG2 cells under X-ray irradiation. The production of reactive oxygen species in HepG2 cells exposed to X-rays in vitro demonstrated a synergistic radiosensitizing effect of AuNPs and TPZ moiety. Thus, the reductive drug-conjugated TPZs-AuNPs as a kind of AuNP radiosensitizer with low gold loading provide a new strategy for enhancing the efficacy of radiation therapy. Keywords: AuNPs, radiation enhancement, synergistic effect, human hepatoma cells, hydroxyl radical production

  13. Metformin synergistically enhances antiproliferative effects of cisplatin and etoposide in NCI-H460 human lung cancer cells

    Directory of Open Access Journals (Sweden)

    Sarah Fernandes Teixeira

    2013-12-01

    Full Text Available OBJECTIVE: To test the effectiveness of combining conventional antineoplastic drugs (cisplatin and etoposide with metformin in the treatment of non-small cell lung cancer in the NCI-H460 cell line, in order to develop new therapeutic options with high efficacy and low toxicity.METHODS: We used the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and calculated the combination index for the drugs studied.RESULTS: We found that the use of metformin as monotherapy reduced the metabolic viability of the cell line studied. Combining metformin with cisplatin or etoposide produced a synergistic effect and was more effective than was the use of cisplatin or etoposide as monotherapy.CONCLUSIONS: Metformin, due to its independent effects on liver kinase B1, had antiproliferative effects on the NCI-H460 cell line. When metformin was combined with cisplatin or etoposide, the cell death rate was even higher.

  14. Abdominal and internal intercostal motoneurones are strong synergists for expiration but are not synergists for Group I monosynaptic afferent inputs

    DEFF Research Database (Denmark)

    Ford, Tim W; Meehan, Claire Francesca; Kirkwood, Peter

    2014-01-01

    , 9 being in Group B Dist motoneurones. The complete absence of heteronymous monosynaptic Group I reflex excitation between muscles that are synergistically activated in expiration leads us to conclude that such connections from muscle spindle afferents of the thoracic nerves have little role...... in controlling expiratory movements but, where present, support other motor acts....

  15. Inhibitive and Synergistic Properties of Ethanolic Extract of ...

    African Journals Online (AJOL)

    It was also noted that only KCl was synergistic to the ethanol extract of Anogeissus leiocarpus, while other halides tested were antagonistic. All the data acquired reveal that the ethanolic extract of Anogeissus leiocarpus act as an inhibitor in the acid environment due to the phytochemicals: saponin, tannins, flavonoid, ...

  16. Kinetin Enhanced 1-Aminocyclopropane-1-Carboxylic Acid Utilization during Alleviation of High Temperatures Stress in Lettuce Seeds.

    Science.gov (United States)

    Khan, A A; Prusinski, J

    1989-10-01

    The thermoinhibition at 35 and 32 degrees C of pregermination ethylene production and germination in lettuce (Lactuca sativa L. cv Mesa 659) seeds was synergistically or additively alleviated by 0.05 millimolar kinetin (KIN) and 10 millimolar 1-aminocyclopropane-1-carboxylic acid (ACC). The synergistic effect of KIN + ACC on ethylene production and germination at 35 degrees C was inhibited by Co(2+) (44-46%) but not by aminoethoxyvinyl glycine (AVG). The uptake of ACC by the seed was not influenced by KIN. Upon slitting of the seed coats (composed of pericarp, testa and endosperm), following the uptake of chemicals, ACC was readily converted into ethylene at all temperatures, and the synergistic effects of KIN + ACC at 35 degrees C were lost. At 35 degrees C, KIN acted synergistically with ACC or ethephon (ETH) in alleviating the osmotic restraint. At 25 degrees C, ETH was more active than KIN or KIN + ACC in overcoming the osmotic restraint. Thus, the integrity of the seed coats, the KIN-enhanced ACC utilization, and an interaction of KIN with the ethylene produced may be the basis for the synergistic or additive effects of KIN + ACC at high temperature.

  17. Synergistic interaction between two linear inhibitors on a single ...

    African Journals Online (AJOL)

    ). vanadate (Van) and L-phenylalanine (L-phe) were studied using a modification of the common Yonetani-Theorell procedure proposed for studying synergistic inhibition. The modes of inhibition of ALP by Van and L-phe as analysed using the ...

  18. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaofei; Zhu, Yanshuang [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); He, Huabin [Department of Orthopedics, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Lou, Lianqing; Ye, Weiwei; Chen, Yongxin [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China); Wang, Jinghe, E-mail: Xiaofeili2000@163.com [Department of Infectious Diseases, Yiwu Central Hospita, 519 Nan men Street, Yiwu, Jinhua, Zhejing 322000 (China)

    2013-06-28

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis.

  19. Synergistically killing activity of aspirin and histone deacetylase inhibitor valproic acid (VPA) on hepatocellular cancer cells

    International Nuclear Information System (INIS)

    Li, Xiaofei; Zhu, Yanshuang; He, Huabin; Lou, Lianqing; Ye, Weiwei; Chen, Yongxin; Wang, Jinghe

    2013-01-01

    Highlights: •Novel combination therapy using aspirin and valproic acid (VPA). •Combination of aspirin and VPA elicits synergistic cytotoxic effects. •Combination of aspirin and VPA significantly reduces the drug dosage required alone. •Combination of aspirin and VPA significantly inhibit tumor growth. •Lower dose of aspirin in combination therapy will minimize side effects of aspirin. -- Abstract: Aspirin and valproic acid (VPA) have been extensively studied for inducing various malignancies growth inhibition respectively, despite their severe side effects. Here, we developed a novel combination by aspirin and VPA on hepatocellular cancer cells (HCCs). The viability of HCC lines were analyzed by MTT assay, apoptotic analysis of HepG2 and SMMC-7721 cell was performed. Real time-PCR and Western blotting were performed to determine the expression of apoptosis related genes and proteins such as Survivin, Bcl-2/Bax, Cyclin D1 and p15. Moreover, orthotopic xenograft tumors were challenged in nude mice to establish murine model, and then therapeutic effect was analyzed after drug combination therapy. The viability of HCC lines’ significantly decreased after drug combination treatment, and cancer cell apoptosis in combination group increasingly induced compared with single drug use. Therapeutic effect was significantly enhanced by combination therapy in tumor volume and tumor weight decrease. From the data shown here, aspirin and VPA combination have a synergistic killing effect on hepatocellular cancers cells proliferation and apoptosis

  20. Conjugated Polymer with Intrinsic Alkyne Units for Synergistically Enhanced Raman Imaging in Living Cells.

    Science.gov (United States)

    Li, Shengliang; Chen, Tao; Wang, Yunxia; Liu, Libing; Lv, Fengting; Li, Zhiliang; Huang, Yanyi; Schanze, Kirk S; Wang, Shu

    2017-10-16

    Development of Raman-active materials with enhanced and distinctive Raman vibrations in the Raman-silent region (1800-2800 cm -1 ) is highly required for specific molecular imaging of living cells with high spatial resolution. Herein, water-soluble cationic conjugated polymers (CCPs), poly(phenylene ethynylene) (PPE) derivatives, are explored for use as alkyne-state-dependent Raman probes for living cell imaging due to synergetic enhancement effect of alkyne vibrations in Raman-silent region compared to alkyne-containing small molecules. The enhanced alkyne signals result from the integration of alkyne groups into the rigid backbone and the delocalized π-conjugated structure. PPE-based conjugated polymer nanoparticles (CPNs) were also prepared as Raman-responsive nanomaterials for distinct imaging application. This work opens a new way into the development of conjugated polymer materials for enhanced Raman imaging. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Synergistic Combination of Unquenching and Plasmonic Fluorescence Enhancement in Fluorogenic Nucleic Acid Hybridization Probes.

    Science.gov (United States)

    Vietz, Carolin; Lalkens, Birka; Acuna, Guillermo P; Tinnefeld, Philip

    2017-10-11

    Fluorogenic nucleic acid hybridization probes are widely used for detecting and quantifying nucleic acids. The achieved sensitivity strongly depends on the contrast between a quenched closed form and an unquenched opened form with liberated fluorescence. So far, this contrast was improved by improving the quenching efficiency of the closed form. In this study, we modularly combine these probes with optical antennas used for plasmonic fluorescence enhancement and study the effect of the nanophotonic structure on the fluorescence of the quenched and the opened form. As quenched fluorescent dyes are usually enhanced more by fluorescence enhancement, a detrimental reduction of the contrast between closed and opened form was anticipated. In contrast, we could achieve a surprising increase of the contrast with full additivity of quenching of the dark form and fluorescence enhancement of the bright form. Using single-molecule experiments, we demonstrate that the additivity of the two mechanisms depends on the perfect quenching in the quenched form, and we delineate the rules for new nucleic acid probes for enhanced contrast and absolute brightness. Fluorogenic hybridization probes optimized not only for quenching but also for the brightness of the open form might find application in nucleic acid assays with PCR avoiding detection schemes.

  2. Evaluation of bone tissue response to a sealer containing mineral trioxide aggregate.

    Science.gov (United States)

    Assmann, Eloísa; Böttcher, Daiana Elisabeth; Hoppe, Carolina Bender; Grecca, Fabiana Soares; Kopper, Patrícia Maria Poli

    2015-01-01

    This study analyzed bone tissue reactions to MTA Fillapex (Ângelus Industria de Produtos Odontológicos Ltda, Londrina, Brazil) compared with an epoxy resin-based material in the femur of Wistar rats. Bone tissue reactions were evaluated in 15 animals after 7, 30, and 90 days (n = 5 per period). Three surgical cavities were prepared on the femur and filled with 0.2 mL MTA Fillapex, AH Plus (Dentsply DeTrey GmbH, Konstanz, Germany), or no sealer (negative control). By the end of each experimental period, 5 animals were randomly euthanized. The samples were histologically processed and analyzed using a light microscope. The presence of inflammatory cells, fibers, and hard tissue barrier formation was evaluated. Differences among the groups and between the 3 experimental periods were evaluated by using 2-way analysis of variance followed by the Bonferroni post hoc test (P ≤ .05). MTA Fillapex scored significantly higher for neutrophils at 7 days than at 90. At 7 days, the same occurred when comparing MTA Fillapex with AH Plus. The presence of lymphocytes/plasmocytes significantly decreased over time in all groups. Macrophages, giant cells, eosinophils, and fiber condensation presented no differences among groups and periods. Within 90 days, all groups presented complete hard tissue barrier formation. The presence of mineral trioxide aggregate in MTA Fillapex composition did not improve the bone tissue repair. The presence of sealers provided the re-establishment of the original bone tissue structure and the inflammatory response decreased over time, so they can be considered biocompatible. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Synergistic Adsorption and Flotation of New Mixed Cationic/Nonionic Collectors on Muscovite

    Directory of Open Access Journals (Sweden)

    Hao Jiang

    2017-05-01

    Full Text Available The mixed cationic collector cetyltrimethylammonium chloride (CTAC and nonionic collector octanol (OCT was found to exhibit a synergistic effect on the flotation and adsorption of muscovite. To understand the underlying synergistic mechanism, flotation, contact angle, surface tension, and adsorption measurements were carried out. The results obtained from flotation measurements indicated that the mixed CTAC/OCT exhibits a better collecting ability than CTAC or OCT. The recovery of muscovite with CTAC only rapidly decreased from 97.25% at pH 2.64 to 75.26% at pH 5.82, followed by a flat horizontal at a pH is higher than 6. In contrast, a high recovery of greater than 85% muscovite was observed using mixed CTAC/OCT at α CTAC = 0.67 (the mole ratio of CTAC:OCT = 2:1 over the investigated pH range. From the surface activity parameters (CMC, γ CMC, Γmax, Amin estimated from surface measurements and interaction parameters (βm, βσ, in addition to the micellar and interfacial compositions ( x 1 m , x 1 σ obtained from the theory of regular solutions, a synergistic effect is evident in the mixed micelle and at the water/air interface. Moreover, the mixed CTAC/OCT at α CTAC = 0.67 exhibited the maximum synergistic interaction. The results obtained from surface tension measurements indicated that the mixed CTAC/OCT exhibits considerably higher surface activities compared to single CTAC or OCT. The contact angle results confirmed that the mixed CTAC/OCT is a better collector than the individual CTAC or OCT for the flotation of muscovite. According to the results obtained from adsorption experiments, compared with that of individual CTAC or OCT, the amounts of CTAC and OCT adsorbed on the muscovite surface are considerably increase in the mixed systems because of co-adsorption. Based on these results, the mixed CTAC/OCT exhibits a remarkable synergistic effect during the flotation and adsorption of muscovite.

  4. Modulation of the multidrug efflux pump EmrD-3 from Vibrio cholerae by Allium sativum extract and the bioactive agent allyl sulfide plus synergistic enhancement of antimicrobial susceptibility by A. sativum extract.

    Science.gov (United States)

    Bruns, Merissa M; Kakarla, Prathusha; Floyd, Jared T; Mukherjee, Mun Mun; Ponce, Robert C; Garcia, John A; Ranaweera, Indrika; Sanford, Leslie M; Hernandez, Alberto J; Willmon, T Mark; Tolson, Grace L; Varela, Manuel F

    2017-10-01

    The causative agent of cholera, Vibrio cholerae, is a public health concern. Multidrug-resistant V. cholerae variants may reduce chemotherapeutic efficacies of severe cholera. We previously reported that the multidrug efflux pump EmrD-3 from V. cholerae confers resistance to multiple structurally distinct antimicrobials. Medicinal plant compounds are potential candidates for EmrD-3 efflux pump modulation. The antibacterial activities of garlic Allium sativum, although poorly understood, predicts that a main bioactive component, allyl sulfide, modulates EmrD-3 efflux. Thus, we tested whether A. sativum extract acts in synergy with antimicrobials and that a main bioactive component allyl sulfide inhibits EmrD-3 efflux. We found that A. sativum extract and allyl sulfide inhibited ethidium bromide efflux in cells harboring EmrD-3 and that A. sativum lowered the MICs of multiple antibacterials. We conclude that A. sativum and allyl sulfide inhibit EmrD-3 and that A. sativum extract synergistically enhances antibacterial agents.

  5. Early humans' egalitarian politics: runaway synergistic competition under an adapted veil of ignorance.

    Science.gov (United States)

    Harvey, Marc

    2014-09-01

    This paper proposes a model of human uniqueness based on an unusual distinction between two contrasted kinds of political competition and political status: (1) antagonistic competition, in quest of dominance (antagonistic status), a zero-sum, self-limiting game whose stake--who takes what, when, how--summarizes a classical definition of politics (Lasswell 1936), and (2) synergistic competition, in quest of merit (synergistic status), a positive-sum, self-reinforcing game whose stake becomes "who brings what to a team's common good." In this view, Rawls's (1971) famous virtual "veil of ignorance" mainly conceals politics' antagonistic stakes so as to devise the principles of a just, egalitarian society, yet without providing any means to enforce these ideals (Sen 2009). Instead, this paper proposes that human uniqueness flourished under a real "adapted veil of ignorance" concealing the steady inflation of synergistic politics which resulted from early humans' sturdy egalitarianism. This proposition divides into four parts: (1) early humans first stumbled on a purely cultural means to enforce a unique kind of within-team antagonistic equality--dyadic balanced deterrence thanks to handheld weapons (Chapais 2008); (2) this cultural innovation is thus closely tied to humans' darkest side, but it also launched the cumulative evolution of humans' brightest qualities--egalitarian team synergy and solidarity, together with the associated synergistic intelligence, culture, and communications; (3) runaway synergistic competition for differential merit among antagonistically equal obligate teammates is the single politically selective mechanism behind the cumulative evolution of all these brighter qualities, but numerous factors to be clarified here conceal this mighty evolutionary driver; (4) this veil of ignorance persists today, which explains why humans' unique prosocial capacities are still not clearly understood by science. The purpose of this paper is to start lifting

  6. Nine-month Angiographic and Two-year Clinical Follow-up of Novel Biodegradable-polymer Arsenic Trioxide-eluting Stent Versus Durable-polymer Sirolimus-eluting Stent For Coronary Artery Disease

    Directory of Open Access Journals (Sweden)

    Li Shen

    2015-01-01

    Full Text Available Background: Despite great reduction of in-stent restenosis, first-generation drug-eluting stents (DESs have increased the risk of late stent thrombosis due to delayed endothelialization. Arsenic trioxide, a natural substance that could inhibit cell proliferation and induce cell apoptosis, seems to be a promising surrogate of sirolimus to improve DES performance. This randomized controlled trial was to evaluate the efficacy and safety of a novel arsenic trioxide-eluting stent (AES, compared with traditional sirolimus-eluting stent (SES. Methods: Patients with symptoms of angina pectoris were enrolled and randomized to AES or SES group. The primary endpoint was target vessel failure (TVF, and the second endpoint includes rates of all-cause death, cardiac death or myocardial infarction, target lesion revascularization (TLR by telephone visit and late luminal loss (LLL at 9-month by angiographic follow-up. Results: From July 2007 to 2009, 212 patients were enrolled and randomized 1:1 to receive either AES or SES. At 2 years of follow-up, TVF rate was similar between AES and SES group (6.67% vs. 5.83%, P = 0.980. Frequency of all-cause death was significantly lower in AES group (0 vs. 4.85%, P = 0.028. There was no significant difference between AES and SES in frequency of TLR and in-stent restenosis, but greater in-stent LLL was observed for AES group (0.29 ± 0.52 mm vs. 0.10 ± 0.25 mm, P = 0.008. Conclusions: After 2 years of follow-up, AES demonstrated comparable efficacy and safety to SES for the treatment of de novo coronary artery lesions.

  7. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Science.gov (United States)

    Wambaugh, Morgan A; Shakya, Viplendra P S; Lewis, Adam J; Mulvey, Matthew A; Brown, Jessica C S

    2017-06-01

    Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M). O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT). We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional combinations that

  8. High-throughput identification and rational design of synergistic small-molecule pairs for combating and bypassing antibiotic resistance.

    Directory of Open Access Journals (Sweden)

    Morgan A Wambaugh

    2017-06-01

    Full Text Available Antibiotic-resistant infections kill approximately 23,000 people and cost $20,000,000,000 each year in the United States alone despite the widespread use of small-molecule antimicrobial combination therapy. Antibiotic combinations typically have an additive effect: the efficacy of the combination matches the sum of the efficacies of each antibiotic when used alone. Small molecules can also act synergistically when the efficacy of the combination is greater than the additive efficacy. However, synergistic combinations are rare and have been historically difficult to identify. High-throughput identification of synergistic pairs is limited by the scale of potential combinations: a modest collection of 1,000 small molecules involves 1 million pairwise combinations. Here, we describe a high-throughput method for rapid identification of synergistic small-molecule pairs, the overlap2 method (O2M. O2M extracts patterns from chemical-genetic datasets, which are created when a collection of mutants is grown in the presence of hundreds of different small molecules, producing a precise set of phenotypes induced by each small molecule across the mutant set. The identification of mutants that show the same phenotype when treated with known synergistic molecules allows us to pinpoint additional molecule combinations that also act synergistically. As a proof of concept, we focus on combinations with the antibiotics trimethoprim and sulfamethizole, which had been standard treatment against urinary tract infections until widespread resistance decreased efficacy. Using O2M, we screened a library of 2,000 small molecules and identified several that synergize with the antibiotic trimethoprim and/or sulfamethizole. The most potent of these synergistic interactions is with the antiviral drug azidothymidine (AZT. We then demonstrate that understanding the molecular mechanism underlying small-molecule synergistic interactions allows the rational design of additional

  9. Modelling of Amperometric Biosensor Used for Synergistic Substrates Determination

    Directory of Open Access Journals (Sweden)

    Dainius Simelevicius

    2012-04-01

    Full Text Available In this paper the operation of an amperometric biosensor producing a chemically amplified signal is modelled numerically. The chemical amplification is achieved by using synergistic substrates. The model is based on non-stationary reaction-diffusion equations. The model involves three layers (compartments: a layer of enzyme solution entrapped on the electrode surface, a dialysis membrane covering the enzyme layer and an outer diffusion layer which is modelled by the Nernst approach. The equation system is solved numerically by using the finite difference technique. The biosensor response and sensitivity are investigated by altering the model parameters influencing the enzyme kinetics as well as the mass transport by diffusion. The biosensor action was analyzed with a special emphasis to the effect of the chemical amplification. The simulation results qualitatively explain and confirm the experimentally observed effect of the synergistic substrates conversion on the biosensor response.

  10. Synergistic effect of casein glycomacropeptide on sodium caseinate foaming properties.

    Science.gov (United States)

    Morales, R; Martinez, M J; Pilosof, A M R

    2017-11-01

    Several strategies to improve the interfacial properties and foaming properties of proteins may be developed; among them, the use of mixtures of biopolymers that exhibit synergistic interactions. The aim of the present work was to evaluate the effect of casein glycomacropeptide (CMP) on foaming and surface properties of sodium caseinate (NaCas) and to establish the role of protein interactions in the aqueous phase. To this end particles size, interfacial and foaming properties of CMP, NaCas and NaCas-CMP mixtures at pH 5.5 and 7 were determined. At both pH, the interaction between CMP and NaCas induced a decrease in the aggregation state of NaCas. Single CMP foams showed the highest and NaCas the lowest foam overrun (FO) and the mixture exhibited intermediate values. CMP foam quickly drained. The drainage profile of mixed foams was closer to NaCas foams; at pH 5.5, mixed foams drained even slower than NaCas foam, exhibiting a synergistic performance. Additionally, a strong synergism was observed on the collapse of mixed foams at pH 5.5. Finally, a model to explain the synergistic effect observed on foaming properties in CMP-NaCas mixtures has been proposed; the reduced aggregation state of NaCas in the presence of CMP, made it more efficient for foam stabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. A green and efficient technology for the degradation of cellulosic materials: structure changes and enhanced enzymatic hydrolysis of natural cellulose pretreated by synergistic interaction of mechanical activation and metal salt.

    Science.gov (United States)

    Zhang, Yanjuan; Li, Qian; Su, Jianmei; Lin, Ye; Huang, Zuqiang; Lu, Yinghua; Sun, Guosong; Yang, Mei; Huang, Aimin; Hu, Huayu; Zhu, Yuanqin

    2015-02-01

    A new technology for the pretreatment of natural cellulose was developed, which combined mechanical activation (MA) and metal salt treatments in a stirring ball mill. Different valent metal nitrates were used to investigate the changes in degree of polymerization (DP) and crystallinity index (CrI) of cellulose after MA+metal salt (MAMS) pretreatment, and Al(NO3)3 showed better pretreatment effect than NaNO3 and Zn(NO3)2. The destruction of morphological structure of cellulose was mainly resulted from intense ball milling, and the comparative studies on the changes of DP and crystal structure of MA and MA+Al(NO3)3 pretreated cellulose samples showed a synergistic interaction of MA and Al(NO3)3 treatments with more effective changes of structural characteristics of MA+Al(NO3)3 pretreated cellulose and substantial increase of reducing sugar yield in enzymatic hydrolysis of cellulose. In addition, the results indicated that the presence of Al(NO3)3 had significant enhancement for the enzymatic hydrolysis of cellulose. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Human milk inactivates pathogens individually, additively, and synergistically.

    Science.gov (United States)

    Isaacs, Charles E

    2005-05-01

    Breast-feeding can reduce the incidence and the severity of gastrointestinal and respiratory infections in the suckling neonate by providing additional protective factors to the infant's mucosal surfaces. Human milk provides protection against a broad array of infectious agents through redundancy. Protective factors in milk can target multiple early steps in pathogen replication and target each step with more than one antimicrobial compound. The antimicrobial activity in human milk results from protective factors working not only individually but also additively and synergistically. Lipid-dependent antimicrobial activity in milk results from the additive activity of all antimicrobial lipids and not necessarily the concentration of one particular lipid. Antimicrobial milk lipids and peptides can work synergistically to decrease both the concentrations of individual compounds required for protection and, as importantly, greatly reduce the time needed for pathogen inactivation. The more rapidly pathogens are inactivated the less likely they are to establish an infection. The total antimicrobial protection provided by human milk appears to be far more than can be elucidated by examining protective factors individually.

  13. Synergistic effect of aqueous extract of Telfaria occidentalis on the ...

    African Journals Online (AJOL)

    Synergistic effect of aqueous extract of Telfaria occidentalis on the biological activities of ... Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ibadan. 2. ... development of resistance to most of the earlier drugs.

  14. Polymer-supported CuPd nanoalloy as a synergistic catalyst for electrocatalytic reduction of carbon dioxide to methane.

    Science.gov (United States)

    Zhang, Sheng; Kang, Peng; Bakir, Mohammed; Lapides, Alexander M; Dares, Christopher J; Meyer, Thomas J

    2015-12-29

    Developing sustainable energy strategies based on CO2 reduction is an increasingly important issue given the world's continued reliance on hydrocarbon fuels and the rise in CO2 concentrations in the atmosphere. An important option is electrochemical or photoelectrochemical CO2 reduction to carbon fuels. We describe here an electrodeposition strategy for preparing highly dispersed, ultrafine metal nanoparticle catalysts on an electroactive polymeric film including nanoalloys of Cu and Pd. Compared with nanoCu catalysts, which are state-of-the-art catalysts for CO2 reduction to hydrocarbons, the bimetallic CuPd nanoalloy catalyst exhibits a greater than twofold enhancement in Faradaic efficiency for CO2 reduction to methane. The origin of the enhancement is suggested to arise from a synergistic reactivity interplay between Pd-H sites and Cu-CO sites during electrochemical CO2 reduction. The polymer substrate also appears to provide a basis for the local concentration of CO2 resulting in the enhancement of catalytic current densities by threefold. The procedure for preparation of the nanoalloy catalyst is straightforward and appears to be generally applicable to the preparation of catalytic electrodes for incorporation into electrolysis devices.

  15. Synergistic effect of cellulase and xylanase during hydrolysis of natural lignocellulosic substrates.

    Science.gov (United States)

    Song, Hui-Ting; Gao, Yuan; Yang, Yi-Min; Xiao, Wen-Jing; Liu, Shi-Hui; Xia, Wu-Cheng; Liu, Zi-Lu; Yi, Li; Jiang, Zheng-Bing

    2016-11-01

    Synergistic combination of cellulase and xylanase has been performed on pre-treated substrates in many previous studies, while few on natural substrates. In this study, three unpretreated lignocellulosic substrates were studied, including corncob, corn stover, and rice straw. The results indicated that when the mixed cellulase and xylanase were applied, reducing sugar concentrations were calculated as 19.53, 15.56, and 17.35mg/ml, respectively, based on the 3,5 dinitrosalicylic acid (DNS) method. Compared to the treatment with only cellulose, the hydrolysis yields caused by mixed cellulase and xylanase were improved by 133%, 164%, and 545%, respectively. In addition, the conversion yield of corncob, corn stover, and rice straw by cellulase-xylanase co-treatment reached 43.9%, 48.5%, and 40.2%, respectively, based on HPLC analysis, which confirmed the synergistic effect of cellulase-xylanase that was much higher than either of the single enzyme treatment. The substrate morphology was also evaluated to explore the synergistic mechanism of cellulase-xylanase. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Synergistic effect of DDT and its metabolites in lipopolysaccharide-mediated TNF-α production is inhibited by progesterone in peripheral blood mononuclear cells.

    Science.gov (United States)

    Dominguez-Lopez, Pablo; Diaz-Cueto, Laura; Aguilar-Rojas, Arturo; Arechavaleta-Velasco, Fabian

    2017-07-01

    Increased TNF-α levels have been associated with adverse pregnancy outcomes. Lipopolysaccharide (LPS), 1,1,1-trichloro-2,2-bis-(chlorophenyl)ethane (DDT), 1,1-bis-(chlorophenyl)-2,2-dichloroethene (DDE), and 1,1-dichloro-2,2-bis(chlorophenyl)ethane (DDD) induce TNF-α release in peripheral blood mononuclear cells (PBMC). Conversely, progesterone (P4) inhibits TNF-α secretion. Pregnant women in malaria endemic areas may be co-exposure to these compounds. Thus, this study was to investigate the synergistic effect of LPS and these pesticides in PBMC and to assess P4 influence on this synergy. Cultured PBMC were exposed to each pesticide in the presence of LPS, P4, or their combination. TNF-α was measured by ELISA. All pesticides enhanced TNF-α synthesis in PBMC. Co-exposure with LPS synergizes TNF-α production, which is blocked by progesterone. These results indicate that these organochlorines act synergistically with LPS to induce TNF-α secretion in PBMC. This effect is blocked by P4. © 2017 Wiley Periodicals, Inc.

  17. Identifying Natural syNergist from Pongamia pinnata Using High-Speed Counter-Current Chromatography Combined with Isobolographic Analysis

    Directory of Open Access Journals (Sweden)

    Hao Yin

    2017-03-01

    Full Text Available For identifying the synergistic compounds from Pongamia pinnata, an approach based on high-speed counter-current chromatography (HSCCC combined with isobolographic analysis was designed to detect the synergistic effects in the complex mixture [...

  18. Clinical and radiographical evaluation of mineral trioxide aggregate, biodentine and propolis as pulpotomy medicaments in primary teeth

    Directory of Open Access Journals (Sweden)

    Bharti Kusum

    2015-11-01

    Full Text Available Objectives The purpose of this study was to evaluate the efficacy of mineral trioxide aggregate (MTA, Biodentine and Propolis as pulpotomy medicaments in primary dentition, both clinically and radiographically. Materials and Methods A total of 75 healthy 3 to 10 yr old children each having at least one carious primary molar tooth were selected. Random assignment of the pulpotomy medicaments was done as follows: Group I, MTA; Group II, Biodentine; Group III, Propolis. All the pulpotomized teeth were evaluated at 3, 6, and 9 mon clinically and radiographically, based on the scoring criteria system. Results The clinical success rates were found to be similar among the three groups at 3 and 6 mon where as a significant decrease in success rate was observed in Group III (84% compared to both Group I (100% and Group II (100% at 9 mon. Radiographic success rates over a period of 9 mon in Groups I, II, and III were 92, 80, and 72%, respectively. Conclusions Teeth treated with MTA and Biodentine showed more favorable clinical and radiographic success as compared to Propolis at 9 mon follow-up.

  19. Synergistic induction of profibrotic PAI-1 by TGF-β and radiation depends on p53

    International Nuclear Information System (INIS)

    Niemantsverdriet, Maarten; Jong, Edwin de; Langendijk, Johannes A.; Kampinga, Harm H.; Coppes, Robert P.

    2010-01-01

    Radiation-induced fibrosis is a severe side effect of radiotherapy. TGF-β and radiation synergistically induce expression of the profibrotic PAI-1 gene and this cooperation potentially involves p53. Here, we demonstrate that p53 is both indispensable and sufficient for the radiation effect inducing synergistic activation of PAI-1 by radiation and TGF-β.

  20. Synergistic effect of Murraya koenigii and Telfairia occidentalis ...

    African Journals Online (AJOL)

    Larger zones of inhibition were observed for M. Koenigii extract than T. occidentalis extract, and larger zones of inhibition were observed by their synergy than on their separate use. Synergistic antibacterial activity of the extract ranged from 0 mm to 20.0 ± 0.03 mm, zone of inhibition of M. koenigii extract ranged from 0 mm ...

  1. Spin-labeled 1-alkyl-1-nitrosourea synergists of antitumor antibiotics.

    Science.gov (United States)

    Gadjeva, V; Koldamova, R

    2001-01-01

    A new method for synthesis of four spin-labeled structural analogues of the antitumor drug 1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea (CCNU), using ethyl nitrite for nitrosation of the intermediate spin-labeled ureas has been described. In vitro synergistic effects of 1-ethyl-3-[4-(2,2,6,6-tetramethylpiperidine-1-oxyl)]-1-nitrosourea (3b) on the cytotoxicity of bleomycin and farmorubicin were found in human lymphoid leukemia tumor cells. We measured the tissue distribution of 3b in organ homogenates of C57BL mice by an electron paramagnetic resonance method. The spin-labeled nitrosourea was mainly localized in the lungs. Our results strongly support the development and validation of a new approach for synthesis of less toxic nitrosourea derivatives as potential synergists of antitumor drugs.

  2. Synergistic effects in radiation-induced particle ejection from solid surfaces

    International Nuclear Information System (INIS)

    Itoh, Noriaki

    1990-01-01

    A description is given on radiation-induced particle ejection from solid surfaces, emphasizing synergistic effects arising from multi-species particle irradiation and from irradiation under complex environments. First, it is pointed out that synergisms can be treated by introducing the effects of material modification on radiation-induced particle ejection. As examples of the effects of surface modification on the sputtering induced by elastic encounters, sputtering of alloys and chemical sputtering of graphite are briefly discussed. Then the particle ejection induced by electronic encounters is explained emphasizing the difference in the behaviors from materials to materials. The possible synergistic effects of electronic and elastic encounters are also described. Lastly, we point out the importance of understanding the elementary processes of material-particle interaction and of developing computer codes describing material behaviors under irradiation. (author)

  3. Oxygen vacancy induces self-doping effect and metalloid LSPR in non-stoichiometric tungsten suboxide synergistically contributing to the enhanced photoelectrocatalytic performance of WO3-x/TiO2-x heterojunction.

    Science.gov (United States)

    Huang, Weicheng; Wang, Jinxin; Bian, Lang; Zhao, Chaoyue; Liu, Danqing; Guo, Chongshen; Yang, Bin; Cao, Wenwu

    2018-06-27

    A WO3-x/TiO2-x nanotube array (NTA) heterojunction photoanode was strategically designed to improve photoelectrocatalytic (PEC) performance by establishing a synergistic vacancy-induced self-doping effect and localized surface plasmon resonance (LSPR) effect of metalloid non-stoichiometric tungsten suboxide. The WO3-x/TiO2-x NTA heterojunction photoanode was synthesized through a successive process of anodic oxidation to form TiO2 nanotube arrays, magnetron sputtering to deposit metalloid WO3-x, and post-hydrogen reduction to engender oxygen vacancy in TiO2-x as well as crystallization. On the merits of such a synergistic effect, WO3-x/TiO2-x shows higher light-harvesting ability, stronger photocurrent response, and resultant improved photoelectrocatalytic performance than the contrast of WO3-x/TiO2, WO3/TiO2 and TiO2, confirming the importance of oxygen vacancies in improving PEC performance. Theoretical calculation based on density functional theory was applied to investigate the electronic structural features of samples and reveal how the oxygen vacancy determines the optical property. The carrier density tuning mechanism and charge transfer model were considered to be associated with the synergistic effect of self-doping and metalloid LSPR effect in the WO3-x/TiO2-x NTA.

  4. Synergistic permeability enhancing effect of lysophospholipids and fatty acids on lipid membranes

    DEFF Research Database (Denmark)

    Davidsen, Jesper; Mouritsen, O.G.; Jørgensen, K.

    2002-01-01

    The permeability-enhancing effects of the two surfactants, 1-paltnitoyl-2-lyso-sn-gycero-3-pllosplloclloline (lysoPPC) and palmitic acid (PA), on lipid membranes that at physiological temperatures are in the gel, fluid, and liquid-ordered phases were determined using the concentration-dependent s...

  5. Natamycin and Azithromycin are Synergistic in vitro against Ocular Pathogenic Aspergillus flavus species complex and Fusarium solani species complex Isolates.

    Science.gov (United States)

    Guo, Haoyi; Zhou, Lutan; He, Yi; Gao, Chuanwen; Han, Lei; Xu, Yan

    2018-05-07

    The interaction of natamycin-azithromycin combination against 60 ocular fungal isolates was tested in vitro The combination produced 100% synergistic interactions when natamycin added azithromycin at 20, 40, 50 μg/ml against Aspergillus flavus species complex (AFSC) isolates and added azithromycin at 50 μg/ml against Fusarium solani species complex isolates. The combination with 50 μg/ml azithromycin enhanced natamycin's effect against AFSC isolates by reducing natamycin MICs from MIC 90 64μg/ml to MIC 90 0.031μg/ml. No antagonism was observed. Copyright © 2018 American Society for Microbiology.

  6. Synergistic effects of rmhTRAIL and 17-AAG on the proliferation and apoptosis of multiple myeloma cells.

    Science.gov (United States)

    Wang, Jing; Li, Yun; Sun, Wei; Liu, Jing; Chen, Wenming

    2018-03-22

    This study aimed to investigate synergistic effects of recombinant mutant human tumor necrosis factor-related apoptosis-inducing ligand (rmhTRAIL) and heat-shock protein 90 (HSP90) inhibitor (geldanamycin derivative 17 -allylamino- 17-demethoxy -geldanamycin, 17-AAG) on the proliferation and apoptosis of multiple myeloma (MM) cells. MTT assays evaluated inhibitory effects of rmhTRAIL and 17-AAG in different concentrations and treatment durations on the proliferation of RPMI8226 and U266 cells. The half maximal inhibitory concentration was calculated using OriginPro7.5. Synergistic effects of rmhTRAIL and 17-AAG on apoptosis of MM cells were detected using flow cytometry at 24 and 48 h post-treatment. To evaluate synergistic effects of rmhTRAIL and 17-AAG, the Q-value was calculated using King's formula. rmhTRAIL exhibited significant inhibitory effects on the proliferation of RPMI8226 cells in a dose- and time-dependent manner (>50%), whereas U266 cells were not sensitive to rmhTRAIL (80%). Significant synergistic effects of rmhTRAIL and 17-AAG on the proliferation of RPMI8226 cells were revealed (Q-value > 1.15), whereas synergistic effects were not evident on the proliferation of U266 cells (Q-value effects on apoptosis of RPMI8226 and U266 cells (Q-value > 1.15). The combined application of rmhTRAIL and 17-AAG revealed favorable synergistic effects in the treatment of MM.

  7. Ionizing/displacement synergistic effects induced by gamma and neutron irradiation in gate-controlled lateral PNP bipolar transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenhui, E-mail: wangchenhui@nint.ac.cn [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Chen, Wei; Yao, Zhibin; Jin, Xiaoming; Liu, Yan; Yang, Shanchao [State Key Laboratory of Intense Pulsed Irradiation Simulation and Effect, Northwest Institute of Nuclear Technology, P.O. Box 69-10, Xi’an 710024 (China); Wang, Zhikuan [State Key Laboratory of Analog Integrated Circuit, Chongqing 400060 (China)

    2016-09-21

    A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to do experimental validations and studies on the ionizing/displacement synergistic effects in the lateral PNP bipolar transistor. The individual and mixed irradiation experiments of gamma rays and neutrons are accomplished on the transistors. The common emitter current gain, gate sweep characteristics and sub-threshold sweep characteristics are measured after each exposure. The results indicate that under the sequential irradiation of gamma rays and neutrons, the response of the gate-controlled lateral PNP bipolar transistor does exhibit ionizing/displacement synergistic effects and base current degradation is more severe than the simple artificial sum of those under the individual gamma and neutron irradiation. Enough attention should be paid to this phenomenon in radiation damage evaluation. - Highlights: • A kind of gate-controlled lateral PNP bipolar transistor has been specially designed to facilitate the analysis of ionizing/displacement synergistic effects induced by the mixed irradiation of gamma and neutron. • The difference between ionizing/displacement synergistic effects and the simple sum of TID and displacement effects is analyzed. • The physical mechanisms of synergistic effects are explained.

  8. Synergistic effects of dendritic cell targeting and laser-microporation on enhancing epicutaneous skin vaccination efficacy.

    Science.gov (United States)

    Machado, Yoan; Duinkerken, Sanne; Hoepflinger, Veronika; Mayr, Melissa; Korotchenko, Evgeniia; Kurtaj, Almedina; Pablos, Isabel; Steiner, Markus; Stoecklinger, Angelika; Lübbers, Joyce; Schmid, Maximillian; Ritter, Uwe; Scheiblhofer, Sandra; Ablinger, Michael; Wally, Verena; Hochmann, Sarah; Raninger, Anna M; Strunk, Dirk; van Kooyk, Yvette; Thalhamer, Josef; Weiss, Richard

    2017-11-28

    Due to its unique immunological properties, the skin is an attractive target tissue for allergen-specific immunotherapy. In our current work, we combined a dendritic cell targeting approach with epicutaneous immunization using an ablative fractional laser to generate defined micropores in the upper layers of the skin. By coupling the major birch pollen allergen Bet v 1 to mannan from S. cerevisiae via mild periodate oxidation we generated hypoallergenic Bet-mannan neoglycoconjugates, which efficiently targeted CD14 + dendritic cells and Langerhans cells in human skin explants. Mannan conjugation resulted in sustained release from the skin and retention in secondary lymphoid organs, whereas unconjugated antigen showed fast renal clearance. In a mouse model, Bet-mannan neoglycoconjugates applied via laser-microporated skin synergistically elicited potent humoral and cellular immune responses, superior to intradermal injection. The induced antibody responses displayed IgE-blocking capacity, highlighting the therapeutic potential of the approach. Moreover, application via micropores, but not by intradermal injection, resulted in a mixed TH1/TH17-biased immune response. Our data clearly show that applying mannan-neoglycoconjugates to an organ rich in dendritic cells using laser-microporation is superior to intradermal injection. Due to their low IgE binding capacity and biodegradability, mannan neoglycoconjugates therefore represent an attractive formulation for allergen-specific epicutaneous immunotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Large-Scale Multifunctional Electrochromic-Energy Storage Device Based on Tungsten Trioxide Monohydrate Nanosheets and Prussian White.

    Science.gov (United States)

    Bi, Zhijie; Li, Xiaomin; Chen, Yongbo; He, Xiaoli; Xu, Xiaoke; Gao, Xiangdong

    2017-09-06

    A high-performance electrochromic-energy storage device (EESD) is developed, which successfully realizes the multifunctional combination of electrochromism and energy storage by constructing tungsten trioxide monohydrate (WO 3 ·H 2 O) nanosheets and Prussian white (PW) film as asymmetric electrodes. The EESD presents excellent electrochromic properties of broad optical modulation (61.7%), ultrafast response speed (1.84/1.95 s), and great coloration efficiency (139.4 cm 2 C -1 ). In particular, remarkable cyclic stability (sustaining 82.5% of its initial optical modulation after 2500 cycles as an electrochromic device, almost fully maintaining its capacitance after 1000 cycles as an energy storage device) is achieved. The EESD is also able to visually detect the energy storage level via reversible and fast color changes. Moreover, the EESD can be combined with commercial solar cells to constitute an intelligent operating system in the architectures, which would realize the adjustment of indoor sunlight and the improvement of physical comfort totally by the rational utilization of solar energy without additional electricity. Besides, a scaled-up EESD (10 × 11 cm 2 ) is further fabricated as a prototype. Such promising EESD shows huge potential in practically serving as electrochromic smart windows and energy storage devices.

  10. Healing of Horizontal Intra-alveolar Root Fractures after Endodontic Treatment with Mineral Trioxide Aggregate.

    Science.gov (United States)

    Kim, Dohyun; Yue, Wonyoung; Yoon, Tai-Cheol; Park, Sung-Ho; Kim, Euiseong

    2016-02-01

    The purpose of this retrospective study was to evaluate the healing type and assess the outcome of horizontal intra-alveolar root fractures after endodontic treatment with mineral trioxide aggregate (MTA) as filling material. The clinical database of the Department of Conservative Dentistry at Yonsei University Dental Hospital, Seoul, Korea, was searched for patients with histories of intra-alveolar root fractures and endodontic treatments with MTA between October 2005 and September 2014. Radiographic healing at the fracture line was evaluated independently by 2 examiners and was classified into 4 types according to Andreasen and Hjørting-Hansen. Of the 22 root-fractured teeth that received endodontic treatment with MTA, 19 cases participated in the follow-up after a period of at least 3 months. Seventeen of the 19 teeth (89.5%) exhibited healing of the root fractures. For each healing type, 7 teeth (36.8%) showed healing with calcified tissue, 8 teeth (42.1%) showed interposition of connective tissue, 2 teeth (10.5%) showed interposition of connective tissue and bone, and 2 teeth (10.5%) showed interposition of granulation tissue without healing. Within the limitations of this study, intra-alveolar root fractures showed satisfactory healing outcomes after endodontic treatment with MTA. MTA could be considered to be suitable filling material for the endodontic treatment of horizontal intra-alveolar root fractures. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Synergistic effects of plasma-activated medium and chemotherapeutic drugs in cancer treatment

    Science.gov (United States)

    Chen, Chao-Yu; Cheng, Yun-Chien; Cheng, Yi-Jing

    2018-04-01

    Chemotherapy is an important treatment method for metastatic cancer, but the drug-uptake efficiency of cancer cells needs to be enhanced in order to diminish the side effects of chemotherapeutic drugs and improve survival. The use of a nonequilibrium low-temperature atmospheric-pressure plasma jet (APPJ) has been demonstrated to exert selective effects in cancer therapy and to be able to enhance the uptake of molecules by cells, which makes an APPJ a good candidate adjuvant in combination chemotherapy. This study estimated the effects of direct helium-based APPJ (He-APPJ) exposure (DE) and He-APPJ-activated RPMI medium (PAM) on cell viability and migration. Both of these treatments decreased cell viability and inhibited cell migration, but to different degrees in different cell types. The use of PAM as a culture medium resulted in the dialkylcarbocyanine (DiI) fluorescent dye entering the cells more efficiently. PAM was combined with the anticancer drug doxorubicin (Doxo) to treat human heptocellular carcinoma HepG2 cells and human adenocarcinomic alveolar basal epithelial A549 cells. The results showed that the synergistic effects of combined PAM and Doxo treatment resulted in stronger lethality in cancer cells than did PAM or Doxo treatment alone. To sum up, PAM has potential as an adjuvant in combination with other drugs to improve curative cancer therapies.

  12. Neonicotinoid pesticides and nutritional stress synergistically reduce survival in honey bees.

    Science.gov (United States)

    Tosi, Simone; Nieh, James C; Sgolastra, Fabio; Cabbri, Riccardo; Medrzycki, Piotr

    2017-12-20

    The honey bee is a major pollinator whose health is of global concern. Declines in bee health are related to multiple factors, including resource quality and pesticide contamination. Intensive agricultural areas with crop monocultures potentially reduce the quality and quantity of available nutrients and expose bee foragers to pesticides. However, there is, to date, no evidence for synergistic effects between pesticides and nutritional stress in animals. The neonicotinoids clothianidin (CLO) and thiamethoxam (TMX) are common systemic pesticides that are used worldwide and found in nectar and pollen. We therefore tested if nutritional stress (limited access to nectar and access to nectar with low-sugar concentrations) and sublethal, field-realistic acute exposures to two neonicotinoids (CLO and TMX at 1/5 and 1/25 of LD 50 ) could alter bee survival, food consumption and haemolymph sugar levels. Bee survival was synergistically reduced by the combination of poor nutrition and pesticide exposure (-50%). Nutritional and pesticide stressors reduced also food consumption (-48%) and haemolymph levels of glucose (-60%) and trehalose (-27%). Our results provide the first demonstration that field-realistic nutritional stress and pesticide exposure can synergistically interact and cause significant harm to animal survival. These findings have implications for current pesticide risk assessment and pollinator protection. © 2017 The Author(s).

  13. Synergistic relationships among stress, depression, and troubled relationships: insights from psychoneuroimmunology.

    Science.gov (United States)

    Jaremka, Lisa M; Lindgren, Monica E; Kiecolt-Glaser, Janice K

    2013-04-01

    Stress and depression consistently elevate inflammation and are often experienced simultaneously, which is exemplified by people in troubled relationships. Troubled relationships also elevate inflammation, which may be partially explained by their ability to engender high levels of stress and depression. People who are stressed, depressed, or in troubled relationships are also at greater risk for health problems than their less distressed counterparts. Inflammation, a risk factor for a variety of age-related diseases including cardiovascular disease, Type II diabetes, metabolic syndrome, and frailty, may be one key mechanistic pathway linking distress to poor health. Obesity may further broaden the health implications of stress and depression; people who are stressed or depressed are often overweight, and adipose tissue is a major source of proinflammatory cytokines. Stress, depression, and troubled relationships may have synergistic inflammatory effects: loneliness, subclinical depression, and major depression enhance inflammatory responses to an acute stressful event. The relationship between distress and inflammation is bidirectional; depression enhances inflammation and inflammation promotes depression. Interesting questions emerge from this literature. For instance, some stressors may be more potent than others and thus may be more strongly linked to inflammation. In addition, it is possible that psychological and interpersonal resources may buffer the negative inflammatory effects of stress. Understanding the links among stress, depression, troubled relationships, and inflammation is an exciting area of research that may provide mechanistic insight into the links between distress and poor health. © 2013 Wiley Periodicals, Inc.

  14. Synergistic effect of pH-responsive folate-functionalized poloxamer 407-TPGS-mixed micelles on targeted delivery of anticancer drugs

    Directory of Open Access Journals (Sweden)

    Butt AM

    2015-02-01

    Full Text Available Adeel Masood Butt, Mohd Cairul Iqbal Mohd Amin, Haliza Katas Centre for Drug Delivery Research, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia Background: Doxorubicin (DOX, an anthracycline anticancer antibiotic, is used for treating various types of cancers. However, its use is associated with toxicity to normal cells and development of resistance due to overexpression of drug efflux pumps. Poloxamer 407 (P407 and vitamin E TPGS (d-α-tocopheryl polyethylene glycol succinate, TPGS are widely used polymers as drug delivery carriers and excipients for enhancing the drug retention times and stability. TPGS reduces multidrug resistance, induces apoptosis, and shows selective anticancer activity against tumor cells. Keeping in view the problems, we designed a mixed micelle system encapsulating DOX comprising TPGS for its selective anticancer activity and P407 conjugated with folic acid (FA for folate-mediated receptor targeting to cancer cells. Methods: FA-functionalized P407 was prepared by carbodiimide crosslinker chemistry. P407-TPGS/FA-P407-TPGS-mixed micelles were prepared by thin-film hydration method. Cytotoxicity of blank micelles, DOX, and DOX-loaded micelles was determined by alamarBlue® assay. Results: The size of micelles was less than 200 nm with encapsulation efficiency of 85% and 73% for P407-TPGS and FA-P407-TPGS micelles, respectively. Intracellular trafficking study using nile red-loaded micelles indicated improved drug uptake and perinuclear drug localization. The micelles show minimal toxicity to normal human cell line WRL-68, enhanced cellular uptake of DOX, reduced drug efflux, increased DOX–DNA binding in SKOV3 and DOX-resistant SKOV3 human ovarian carcinoma cell lines, and enhanced in vitro cytotoxicity as compared to free DOX. Conclusion: FA-P407-TPGS-DOX micelles show potential as a targeted nano-drug delivery system for DOX due to their multiple synergistic factors of selective anticancer

  15. Plant extracts of spices and coffee synergistically dampen nuclear factor-κB in U937 cells.

    Science.gov (United States)

    Kolberg, Marit; Paur, Ingvild; Balstad, Trude R; Pedersen, Sigrid; Jacobs, David R; Blomhoff, Rune

    2013-10-01

    A large array of bioactive plant compounds (phytochemicals) has been identified and synergy among these compounds might contribute to the beneficial effects of plant foods. The transcription factor nuclear factor-κB (NF-κB) has been suggested as a target for many phytochemicals. Due to the complexity of mechanisms involved in NF-κB regulation, including numerous feedback loops, and the large number of phytochemicals which regulate NF-κB activity, we hypothesize that synergistic or antagonistic effects are involved. The objectives of our study were to develop a statistical methodology to evaluate the concept of synergy and antagonism and to use this methodology in a monocytic cell line (U937 expressing an NF-κB-luciferase reporter) treated with lipopolysaccharide and phytochemical-rich plant extracts. Both synergistic and antagonistic effects were clearly observed. Observed synergy was most pronounced for the combinations of oregano and coffee, and thyme and oregano. For oregano and coffee the synergistic effect was highest at 5 mg/mL with 13.9% (P oregano the highest synergistic effects was at 3 mg/mL with 13.7% (P phytochemical-rich plants may exert synergistic and antagonistic effects on NF-κB regulation. Such complex mechanistic interactions between phytochemicals are likely to underlie the protective effects of a plant-based diet on life-style related diseases. © 2013 Elsevier Inc. All rights reserved.

  16. Synergistic In Vitro Antimalarial Activity of Omeprazole and Quinine

    OpenAIRE

    Skinner-Adams, T.; Davis, T. M. E.

    1999-01-01

    Previous studies have shown that the proton pump inhibitor omeprazole has antimalarial activity in vitro. The interactions of omeprazole with commonly used antimalarial drugs were assessed in vitro. Omeprazole and quinine combinations were synergistic; however, chloroquine and omeprazole combinations were antagonistic. Artemisinin drugs had additive antimalarial activities with omeprazole.

  17. Synergistic therapy of enalapril and Cordyceps sinensis in the ...

    African Journals Online (AJOL)

    Chronic allograft nephropathy (CAN) still remains an important factor that affects the long-term survival of renal recipients. The aim of the study was to investigate synergistic effect of enalapril (an angiotensin converting enzyme inhibitor, ACEI) and Cordyceps sinensis (Bailing capsule, fermented agent of C. sinensis) on ...

  18. Synergistic anti-Campylobacter jejuni activity of fluoroquinolone and macrolide antibiotics with phenolic compounds

    Science.gov (United States)

    Oh, Euna; Jeon, Byeonghwa

    2015-01-01

    The increasing resistance of Campylobacter to clinically important antibiotics, such as fluoroquinolones and macrolides, is a serious public health problem. The objective of this study is to investigate synergistic anti-Campylobacter jejuni activity of fluoroquinolones and macrolides in combination with phenolic compounds. Synergistic antimicrobial activity was measured by performing a checkerboard assay with ciprofloxacin and erythromycin in the presence of 21 phenolic compounds. Membrane permeability changes in C. jejuni by phenolic compounds were determined by measuring the level of intracellular uptake of 1-N-phenylnaphthylamine (NPN). Antibiotic accumulation assays were performed to evaluate the level of ciprofloxacin accumulation in C. jejuni. Six phenolic compounds, including p-coumaric acid, sinapic acid, caffeic acid, vanillic acid, gallic acid, and taxifolin, significantly increased the susceptibility to ciprofloxacin and erythromycin in several human and poultry isolates. The synergistic antimicrobial effect was also observed in ciprofloxacin- and erythromycin-resistant C. jejuni strains. The phenolic compounds also substantially increased membrane permeability and antibiotic accumulation in C. jejuni. Interestingly, some phenolic compounds, such as gallic acid and taxifolin, significantly reduced the expression of the CmeABC multidrug efflux pump. Phenolic compounds increased the NPN accumulation in the cmeB mutant, indicating phenolic compounds may affect the membrane permeability. In this study, we successfully demonstrated that combinational treatment of C. jejuni with antibiotics and phenolic compounds synergistically inhibits C. jejuni by impacting both antimicrobial influx and efflux. PMID:26528273

  19. Laser-assisted delivery of synergistic combination chemotherapy in in vivo skin.

    Science.gov (United States)

    Wenande, Emily; Tam, Joshua; Bhayana, Brijesh; Schlosser, Steven Kyle; Ishak, Emily; Farinelli, William A; Chlopik, Agata; Hoang, Mai P; Pinkhasov, Omar R; Caravan, Peter; Rox Anderson, R; Haedersdal, Merete

    2018-04-10

    The effectiveness of topical drugs for treatment of non-melanoma skin cancer is greatly reduced by insufficient penetration to deep skin layers. Ablative fractional lasers (AFLs) are known to enhance topical drug uptake by generating narrow microchannels through the skin, but information on AFL-drug delivery in in vivo conditions is limited. In this study, we examined pharmacokinetics, biodistribution and toxicity of two synergistic chemotherapy agents, cisplatin and 5-fluorouracil (5-FU), following AFL-assisted delivery alone or in combination in in vivo porcine skin. Detected at 0-120 h using mass spectrometry techniques, we demonstrated that fractional CO 2 laser pretreatment (196 microchannels/cm 2 , 852 μm ablation depth) leads to rapid drug uptake in 1500 μm deep skin layers, with a sixfold enhancement in peak cisplatin concentrations versus non-laser-treated controls (5 h, P = 0.005). Similarly, maximum 5-FU deposition was measured within an hour of AFL-delivery, and exceeded peak deposition in non-laser-exposed skin that had undergone topical drug exposure for 5 days. Overall, this accelerated and deeper cutaneous drug uptake resulted in significantly increased inflammatory and histopathological effects. Based on clinical scores and transepidermal water loss measurement, AFL intensified local toxic responses to drugs delivered alone and in combination, while systemic drug exposure remained undetectable. Quantitative histopathologic analyses correspondingly revealed significantly reduced epidermal proliferation and greater cellular apoptosis after AFL-drug delivery; particularly after combined cisplatin + 5-FU exposure. In sum, by overcoming the primary limitation of topical drug penetration and providing accelerated, enhanced and deeper delivery, AFL-assisted combination chemotherapy may represent a promising treatment strategy for non-melanoma skin cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Copper(II)/amine synergistically catalyzed enantioselective alkylation of cyclic N-acyl hemiaminals with aldehydes.

    Science.gov (United States)

    Sun, Shutao; Mao, Ying; Lou, Hongxiang; Liu, Lei

    2015-07-07

    The first catalytic asymmetric alkylation of N-acyl quinoliniums with aldehydes has been described. A copper/amine synergistic catalytic system has been developed, allowing the addition of functionalized aldehydes to a wide range of electronically varied N-acyl quinoliniums in good yields with excellent enantiocontrol. The synergistic catalytic system was also effective for N-acyl dihydroisoquinoliniums and β-caboliniums, demonstrating the general applicability of the protocol in the enantioselective alkylation of diverse cyclic N-acyl hemiaminals.

  1. Synergistic effects of mica and wollastonite fillers on thermal performance of intumescent fire retardant coating

    Energy Technology Data Exchange (ETDEWEB)

    Zia-ul-Mustafa, M., E-mail: engr.ziamustafa@gmail.com; Ahmad, Faiz; Megat-Yusoff, Puteri S. M.; Aziz, Hammad [Mechanical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750 Tronoh, Perak (Malaysia)

    2015-07-22

    In this study, intumescent fire retardant coatings (IFRC) were developed to investigate the synergistic effects of reinforced mica and wollastonite fillers based IFRC towards heat shielding, char expansion, char composition and char morphology. Ammonium poly-phosphate (APP) was used as acid source, expandable graphite (EG) as carbon source, melamine as blowing agent, boric acid as additive and Hardener H-2310 polyamide amine in bisphenol A epoxy resin BE-188(BPA) was used as curing agent. Bunsen burner fire test was used for thermal performance according to UL-94 for 1 h. Field Emission Scanning Electron Microscopy (FESEM) was used to observe char microstructure. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) were used to analyse char composition. The results showed that addition of clay filler in IFRC enhanced the fire protection performance of intumescent coating. X-Ray Diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) results showed the presence of boron phosphate, silicon phosphate oxide, aluminium borate in the char that improved the thermal performance of intumescent fire retardant coating (IFRC). Resultantly, the presence of these developed compounds enhanced the Integrity of structural steel upto 500°C.

  2. Herd Clustering: A synergistic data clustering approach using collective intelligence

    KAUST Repository

    Wong, Kachun; Peng, Chengbin; Li, Yue; Chan, Takming

    2014-01-01

    , this principle is used to develop a new clustering algorithm. Inspired by herd behavior, the clustering method is a synergistic approach using collective intelligence called Herd Clustering (HC). The novel part is laid in its first stage where data instances

  3. ING1 and 5-azacytidine act synergistically to block breast cancer cell growth.

    Directory of Open Access Journals (Sweden)

    Satbir Thakur

    Full Text Available Inhibitor of Growth (ING proteins are epigenetic "readers" that recognize trimethylated lysine 4 of histone H3 (H3K4Me3 and target histone acetyl transferase (HAT and histone deacetylase (HDAC complexes to chromatin.Here we asked whether dysregulating two epigenetic pathways with chemical inhibitors showed synergistic effects on breast cancer cell line killing. We also tested whether ING1 could synergize better with chemotherapeutics that target the same epigenetic mechanism such as the HDAC inhibitor LBH589 (Panobinostat or a different epigenetic mechanism such as 5-azacytidine (5azaC, which inhibits DNA methyl transferases. Simultaneous treatment of breast cancer cell lines with LBH589 and 5azaC did not show significant synergy in killing cells. However, combination treatment of ING1 with either LBH589 or 5azaC did show synergy. The combination of ING1b with 5azaC, which targets two distinct epigenetic mechanisms, was more effective at lower doses and enhanced apoptosis as determined by Annexin V staining and cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP. ING1b plus 5azaC also acted synergistically to increase γH2AX staining indicating significant levels of DNA damage were induced. Adenoviral delivery of ING1b with 5azaC also inhibited cancer cell growth in a murine xenograft model and led to tumor regression when viral concentration was optimized in vivo.These data show that targeting distinct epigenetic pathways can be more effective in blocking cancer cell line growth than targeting the same pathway with multiple agents, and that using viral delivery of epigenetic regulators can be more effective in synergizing with a chemical agent than using two chemotherapeutic agents. This study also indicates that the ING1 epigenetic regulator may have additional activities in the cell when expressed at high levels.

  4. Synergistic effect of solar radiation and solar heating to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2001-01-01

    Waterborne diseases are still common in developing countries as drinking water sources are contaminated and feasible means to reliably treat and disinfect these waters are not available. Many of these developing countries are in the tropical regions of the world where sunlight is plentiful. The objective of this study was to evaluate the effectiveness of combining solar radiation and solar heating to disinfect contaminated water using a modified Family Sol*Saver System (FSP). The non-UV transmittable cover sheet of the former FSP system was replaced with an UV transmittable plastic cover sheet to enable more wavelengths of sunlight to treat the water. Disinfection efficiency of both systems was evaluated based on reduction of the natural populations of faecal coliform, E. coli, enterococci, C. perfringens, total heterotrophic bacteria, hydrogen sulphide producing bacteria and FRNA virus. The results showed that under sunny and partly sunny conditions, water was heated to critical temperature (60 degrees C) in both the FSP systems inactivating more than 3 log (99.9%) of the concentrations of faecal coliform and E. coli to undetectable levels of heat worked synergistically to enhance the inactivation of faecal indicator bacteria. The relative log removal of indicator microorganism in the FSP treated water was total heterotrophic bacteria heat and radiation effects of sunlight were important in disinfecting water by solar units. The data indicated that direct radiation of sunlight worked synergistically with solar heating of the water to disinfect the water. Thus, effective disinfection was observed even when the water temperature did not reach 60 degrees C. Finally, the hydrogen sulphide test is a simple and reliable test that householders can use to determine whether their water had been sufficiently disinfected.

  5. Non-surgical retreatment of a failed apicoectomy without retrofilling using white mineral trioxide aggregate as an apical barrier.

    Science.gov (United States)

    Stefopoulos, Spyridon; Tzanetakis, Giorgos N; Kontakiotis, Evangelos G

    2012-01-01

    Root-end resected teeth with persistent apical periodontitis are usually retreated surgically or a combination of non-surgical and surgical retreatment is employed. However, patients are sometimes unwilling to be subjected to a second surgical procedure. The apical barrier technique that is used for apical closure of immature teeth with necrotic pulps may be an alternative to non-surgically retreat a failed apicoectomy. Mineral trioxide aggregate (MTA) has become the material of choice in such cases because of its excellent biocompatibility, sealing ability and osseoinductive properties. This case report describes the non-surgical retreatment of a failed apicoectomy with no attempt at retrofilling of a maxillary central incisor. White MTA was used to induce apical closure of the wide resected apical area. Four-year follow-up examination revealed an asymptomatic, fully functional tooth with a satisfactory healing of the apical lesion. White MTA apical barrier may constitute a reliable and efficient technique to non-surgically retreat teeth with failed root-end resection. The predictability of such a treatment is of great benefit for the patient who is unwilling to be submitted to a second surgical procedure.

  6. Surface microhardness of three thicknesses of mineral trioxide aggregate in different setting conditions

    Directory of Open Access Journals (Sweden)

    Noushin Shokouhinejad

    2014-11-01

    Full Text Available Objectives This study aimed to compare the surface microhardness of mineral trioxide aggregate (MTA samples having different thicknesses and exposed to human blood from one side and with or without a moist cotton pellet on the other side. Materials and Methods Ninety cylindrical molds with three heights of 2, 4, and 6 mm were fabricated. In group 1 (dry condition, molds with heights of 2, 4, and 6 mm (10 molds of each were filled with ProRoot MTA (Dentsply Tulsa Dental, and the upper surface of the material was not exposed to any additional moisture. In groups 2 and 3, a distilled water- or phosphate-buffered saline (PBS-moistened cotton pellet was placed on the upper side of MTA, respectively. The lower side of the molds in all the groups was in contact with human blood-wetted foams. After 4 day, the Vickers microhardness of the upper surface of MTA was measured. Results In the dry condition, the 4 and 6 mm-thick MTA samples showed significantly lower microhardness than the 2 mm-thick samples (p = 0.003 and p = 0.001, respectively. However, when a distilled water- or PBS-moistened cotton pellet was placed over the MTA, no significant difference was found between the surface microhardness of samples having the abovementioned three thicknesses of the material (p = 0.210 and p = 0.112, respectively. Conclusions It could be concluded that a moist cotton pellet must be placed over the 4 to 6 mm-thick MTA for better hydration of the material. However, this might not be necessary when 2 mm-thick MTA is used.

  7. A Hybrid Approach to Composite Damage and Failure Analysis Combining Synergistic Damage Mechanics and Peridynamics

    Science.gov (United States)

    2017-12-31

    Composite Damage and Failure Analysis Combinin Synergistic Damage Mechanics and Peridynamics 6. AUTHOR(S) 5b. GRANT NUMBER N00014-16-1-2173 5c...NUMBER 8. PERFORMING ORGANIZATION REPORT NUMBER Texas A&M Engineering Experiment Station (TEES) 400 Harvey Mitchell Parkway, Suite 300 College...1.3 related to Synergistic Damage Mechanics and Tasks 2.2 and 2.4 related to Peridynamics, as described in the project proposal. The activities

  8. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment

    Directory of Open Access Journals (Sweden)

    Wu B

    2017-03-01

    Full Text Available Bo Wu,1,2,* Shu-Ting Lu,1,* Liu-Jie Zhang,2 Ren-Xi Zhuo,2 Hai-Bo Xu,1 Shi-Wen Huang2 1Department of Radiology, Zhongnan Hospital of Wuhan University, 2Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, People’s Republic of China *These authors contributed equally to this work Abstract: Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid–polymer hybrid nanoparticles (LPNPs drug delivery system composed of monomethoxy-poly(ethylene glycol-S-S-hexadecyl (mPEG-S-S-C16, soybean lecithin, and poly(d,l-lactide-co-glycolide (PLGA was used for codelivery of doxorubicin (DOX and a Chinese herb extract triptolide (TPL. Hydrophobic DOX and TPL could be successfully loaded in LPNPs by self-assembly. More importantly, drug release and cellular uptake experiments demonstrated that the two drugs were reduction sensitive, released simultaneously from LPNPs, and taken up effectively by the tumor cells. DOX/TPL-coloaded LPNPs (DOX/TPL-LPNPs exhibited a high level of synergistic activation with low combination index (CI in vitro and in vivo. Moreover, the highest synergistic therapeutic effect was achieved at the ratio of 1:0.2 DOX/TPL. Further experiments showed that TPL enhanced the uptake of DOX by human oral cavity squamous cell carcinoma cells (KB cells. Overall, DOX/TPL-coencapsulated reduction-sensitive nanoparticles will be a promising strategy for cancer treatment. Keywords: triptolide, codelivery, reduction sensitive, synergistic effect

  9. Comprehension of synergistic mechanisms for uranium extraction from phosphate ores

    International Nuclear Information System (INIS)

    Pecheur, Olivia

    2014-01-01

    Uranium VI is commonly extracted from phosphoric ores by a well-known process exploiting the synergistic mixture of two extractant molecules: HDEHP and TOPO. In the field of liquid-liquid extraction, synergistic combinations are common but the mechanisms at the origin of the synergy are not well understood. A multi-scale approach has been used to describe these mechanisms, combining two different descriptions: the molecular scale focuses on the ion point of view, while the supramolecular scale focuses on extractants' aggregation. These two approaches have been rationalized by molecular dynamics computations. The results allow describing the synergy through the structure of the complexes and aggregates. With the same approach, some bifunctional compounds, combining the two extracting sites in one molecule, have been studied and compared to the HDEHP/TOPO system in order to identify the origin of their increased capacities in extraction and selectivity. (author) [fr

  10. Synergistic effects of liquid and gas phase discharges using pulsed high voltage for dyes degradation in the presence of oxygen.

    Science.gov (United States)

    Yang, Bin; Zhou, Minghua; Lei, Lecheng

    2005-07-01

    The technology of combined liquid and gas phase discharges (LGD) using pulsed high voltage for dyes degradation was developed in this study. Apparent synergistic effects for Acid orange II (AO) degradation in the presence of oxygen were observed. The enhancement of AO degradation rate was around 302%. Furthermore, higher energy efficiency was obtained comparing with individual liquid phase discharge (LD) or gas phase discharge process (GD). The AO degradation in the presence of oxygen by LGD proceeded through the direct ozone oxidation and the ozone decomposition induced by LD. Important operating parameters such as electrode distance, applied voltage, pulse repetition rate, and types of dyes were further investigated.

  11. Contrast-induced nephrotoxicity: possible synergistic effect of stress hyperglycemia.

    LENUS (Irish Health Repository)

    O'Donnell, David H

    2010-07-01

    Oxidative stress on the renal tubules has been implicated as a mechanism of injury in both stress hyperglycemia and contrast-induced nephrotoxicity. The purpose of this study was to determine whether the combination of these effects has a synergistic effect on accentuating renal tubular apoptosis and therefore increasing the risk of contrast-induced nephrotoxicity.

  12. Absence of synergistic enhancement of non-thermal effects of ultrasound on cell killing induced by ionizing radiation

    International Nuclear Information System (INIS)

    Kondo, T.; Kano, E.

    1987-01-01

    The present study was performed to elucidate the role of non-thermal effects (cavitation and direct effects) of ultrasound, in simultaneous combination with X-irradiation on the cytotoxicity of mouse L cells. Firstly, mouse L cells were exposed to X-rays and ultrasound (1 MHz continous wave, spatial peak temporal average intensity; 3.7 W/cm 2 ) simultaneously at 37 0 C under O 2 or Ar saturated conditions to examine the cavitational effect of ultrasound. Secondly, cells were exposed to X-rays and ultrasound at 37 0 C under N 2 O saturated conditions, which suppresses the cavitation, to examine the direct effects of ultrasound. The cavitational effect under O 2 and Ar saturated conditions induced an exponential decrease in cell survival, and resulted in an additive effect on cell killing with the combination of X-rays and ultrasound. The direct effect in the N 2 O conditions induced no cell killing and did not modify the cell killing induced by X-rays. These results suggested that the non-thermal effects of ultrasound did not interact synergistically with X-rays for cell killing. (author)

  13. Production of a recombinant swollenin from Trichoderma harzianum in Escherichia coli and its potential synergistic role in biomass degradation.

    Science.gov (United States)

    Santos, Clelton A; Ferreira-Filho, Jaire A; O'Donovan, Anthonia; Gupta, Vijai K; Tuohy, Maria G; Souza, Anete P

    2017-05-16

    Fungal swollenins (SWOs) constitute a class of accessory proteins that are homologous to canonical plant expansins. Expansins and expansin-related proteins are well known for acting in the deagglomeration of cellulose structure by loosening macrofibrils. Consequently, SWOs can increase the accessibility and efficiency of the other enzymes involved in the saccharification of cellulosic substrates. Thus, SWOs are promising targets for improving the hydrolysis of plant biomass and for use as an additive to enhance the efficiency of an enzyme cocktail designed for the production of biofuels. Here, we report the initial characterization of an SWO from Trichoderma harzianum (ThSwo) that was successfully produced using Escherichia coli as a host. Initially, transcriptome and secretome data were used to compare swo gene expression and the amount of secreted ThSwo. The results from structural modeling and phylogenetic analysis of the ThSwo protein showed that ThSwo does preserve some structural features of the plant expansins and family-45 glycosyl hydrolase enzymes, but it evolutionarily diverges from both of these protein classes. Recombinant ThSwo was purified at a high yield and with high purity and showed secondary folding similar to that of a native fungal SWO. Bioactivity assays revealed that the purified recombinant ThSwo created a rough and amorphous surface on Avicel and displayed a high synergistic effect with a commercial xylanase from T. viride, enhancing its hydrolytic performance up to 147 ± 7%. Many aspects of the structure and mechanism of action of fungal SWOs remain unknown. In the present study, we produced a recombinant, active SWO from T. harzianum using a prokaryotic host and confirmed its potential synergistic role in biomass degradation. Our work paves the way for further studies evaluating the structure and function of this protein, especially regarding its use in biotechnology.

  14. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives.

    Science.gov (United States)

    Zhang, Rui Xue; Wong, Ho Lun; Xue, Hui Yi; Eoh, June Young; Wu, Xiao Yu

    2016-10-28

    Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Structural, electronic, and magnetic properties of 3D metal trioxide and tetraoxide superhalogen cluster-doped monolayer BN

    International Nuclear Information System (INIS)

    Meng, Jingjing; Li, Dan; Niu, Yuan; Zhao, Hongmin; Liang, Chunjun; He, Zhiqun

    2016-01-01

    The structural, electronic, and magnetic properties of monolayer BN doped with 3D metal trioxide and tetraoxide superhalogen clusters are investigated using first-principle calculations. TMO_3_(_4_)-doped monolayer BN exhibits a low negative formation energy, whereas TM atoms embedded in monolayer BN show a high positive formation energy. TMO_3_(_4_) clusters are embedded more easily in monolayer BN than TM atoms. Compared with TMO_3-doped structures, TMO_4-doped structures have a higher structural stability because of their higher binding energies. Given their low negative formation energies, TMO_4-doped structures are more favored for specific applications than TMO_3-doped structures and TM atom-doped structures. Large magnetic moments per supercell and significant ferromagnetic couplings between a TM atom and neighboring B and N atoms on the BN layer were observed in all TMO_4-doped structures, except for TiO_4-doped structures. - Highlights: • TMO_3_(_4_) superhalogen clusters incorporated into monolayer BN were investigated. • TMO_3_(_4_) clusters are embedded more easily in monolayer BN than TM atoms. • TMO_4-doped structures are more favored for specific applications. • Large magnetic moments were observed in TMO_4-doped structures. • The band gap was sensitively dependent on the doped clusters.

  16. White mineral trioxide aggregate mixed with calcium chloride dihydrate: chemical analysis and biological properties

    Directory of Open Access Journals (Sweden)

    Hany Mohamed Aly Ahmed

    2017-04-01

    Full Text Available Objectives This study aimed to evaluate the chemical and biological properties of fast-set white mineral trioxide aggregate (FS WMTA, which was WMTA combined with calcium chloride dihydrate (CaCl2·2H2O, compared to that of WMTA. Materials and Methods Surface morphology, elemental, and phase analysis were examined using scanning electron microscope (SEM, energy dispersive X-ray microanalysis (EDX, and X-ray diffraction (XRD, respectively. The cytotoxicity and cell attachment properties were evaluated on human periodontal ligament fibroblasts (HPLFs using methyl-thiazol-diphenyltetrazolium (MTT assay and under SEM after 24 and 72 hours, respectively. Results Results showed that the addition of CaCl2·2H2O to WMTA affected the surface morphology and chemical composition. Although FS WMTA exhibited a non-cytotoxic profile, the cell viability values of this combination were lesser than WMTA, and the difference was significant in 7 out of 10 concentrations at the 2 time intervals (p < 0.05. HPLFs adhered over the surface of WMTA and at the interface, after 24 hours of incubation. After 72 hours, there were increased numbers of HPLFs with prominent cytoplasmic processes. Similar findings were observed with FS WMTA, but the cells were not as confluent as with WMTA. Conclusions The addition of CaCl2·2H2O to WMTA affected its chemical properties. The favorable biological profile of FS WMTA towards HPLFs may have a potential impact on its clinical application for repair of perforation defects.

  17. In vitro chemical and cellular tests applied to uranium trioxide with different hydration states

    International Nuclear Information System (INIS)

    Ansoborlo, E.; Chalabreysse, J.; Henge-Napoli, M.H.; Pujol, E.

    1992-01-01

    A simple and rapid in vitro chemical solubility test applicable to industrial uranium trioxide (UO 3 ) was developed together with two in vitro cellular tests using rat alveolar macrophages maintained either in gas phase or in alginate beads at 37 degrees C. Industrial UO 3 was characterized by particle size, X-ray, and IR spectra, and chemical transformation (e.g., aging and hydration of the dust) was also studied. Solvents used for the in vitro chemical solubility study included carbonates, citrates, phosphates, water, Eagle's basal medium, and Gamble's solution (simulated lung fluid), alone, with oxygen, or with superoxide ions. Results, expressed in terms of the half-time of dissolution, according to International Commission on Radiological Protection (ICRP) classification (D,W,Y), varied for different hydration states of UO 3 , showing a lower solubility of hydrated UO 3 in solvents compared to basic UO 3 or UO 3 heated at 450 degrees C. Two in vitro cellular tests on cultured rat alveolar macrophages (cells maintained in gas phase and cells immobilized in alginate beads) were used on the same UO 3 samples and generally showed a lower solution transfer rate in the presence of macrophages than in the culture medium alone. The results of in vitro chemical and cellular tests were compared, with four main conclusions; a good reproducibility of the three tests in Eagle's basal medium of the effect of hydration state on solubility, the classification of UO 3 in terms of ICRP solubility criteria, and the ability of macrophoges to decrease uranium solubility in medium. 16 refs., 3 figs., 4 tabs

  18. Enhanced inactivation of food-borne pathogens in ready-to-eat sliced ham by near-infrared heating combined with UV-C irradiation and mechanism of the synergistic bactericidal action.

    Science.gov (United States)

    Ha, Jae-Won; Kang, Dong-Hyun

    2015-01-01

    The objective of the study described in this article was, first, to investigate the effect of the simultaneous application of near-infrared (NIR) heating and UV irradiation on inactivation of Escherichia coli O157:H7, Salmonella enterica serovar Typhimurium, and Listeria monocytogenes in ready-to-eat (RTE) sliced ham and as well as its effect on product quality and, second, to elucidate the underlying mechanisms of the synergistic bactericidal action of NIR heating and UV irradiation. With the inoculation amounts used, simultaneous NIR-UV combined treatment for 70 s achieved 3.62, 4.17, and 3.43 log CFU reductions of E. coli O157:H7, S. Typhimurium, and L. monocytogenes, respectively. For all three pathogens, the simultaneous application of both technologies resulted in an additional log unit reduction as a result of their synergism compared to the sum of the reductions obtained after the individual treatments. To investigate the mechanisms of NIR-UV synergistic injury for a particular microorganism in a food base, we evaluated the effect of four types of metabolic inhibitors using the overlay method and confirmed that damage to cellular membranes and the inability of cells to repair these structures due to ribosomal damage were the primary factors related to the synergistic lethal effect. Additionally, NIR-UV combined treatment for a maximum of 70 s did not alter the color values or texture parameters of ham slices significantly (P > 0.05). These results suggest that a NIR-UV combined process could be an innovative antimicrobial intervention for RTE meat products. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Plasminogen activator inhibitor 1: Mechanisms of its synergistic regulation by growth factors

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiaoling [Iowa State Univ., Ames, IA (United States)

    2010-01-01

    My research is on the synergistic regulation of PAI-1 by EGF and TGF-β. The mechanism of synergistic regulation of PAI-1 by EGF and TGF-β are addressed. Methods are described for effective identification of RNA accessible sites for antisense oligodexoxynucleotides (ODNs) and siRNA. In this study effective AS-ODN sequences for both Lcn2 and Bcl2 were identified by in vitro tiled microarray studies. Our results suggest that hybridization of ODN arrays to a target mRNA under physiological conditions might be used as a rapid and reliable in vitro method to accurately identify targets on mRNA molecules for effective antisense and potential siRNA activity in vivo.

  20. Co-administration of morphine and gabapentin leads to dose dependent synergistic effects in a rat model of postoperative pain

    DEFF Research Database (Denmark)

    Papathanasiou, Theodoros; Juul, Rasmus Vestergaard; Heegaard, Anne-Marie

    2016-01-01

    dose combinations and investigate whether co-administration leads to synergistic effects in a preclinical model of postoperative pain. The pharmacodynamic effects of morphine (1, 3 and 7 mg/kg), gabapentin (10, 30 and 100 mg/kg) or their combination (9 combinations in total) were evaluated in the rat...... plantar incision model using an electronic von Frey device. The percentage of maximum possible effect (%MPE) and the area under the response curve (AUC) were used for evaluation of the antihyperalgesic effects of the drugs. Identification of synergistic interactions was based on Loewe additivity response...... surface analyses. The combination of morphine and gabapentin resulted in synergistic antihyperalgesic effects in a preclinical model of postoperative pain. The synergistic interactions were found to be dose dependent and the increase in observed response compared to the theoretical additive response...

  1. Highly transparent and rollable PVA-co-PE nanofibers synergistically reinforced with epoxy film for flexible electronic devices.

    Science.gov (United States)

    Xiong, Bing; Zhong, Weibing; Zhu, Qing; Liu, Ke; Li, Mufang; Sun, Gang; Wang, Dong

    2017-12-14

    The development of electronics towards a more functions-integrated, flexible and stretchable direction requires mechanically flexible substrates with high thermal and dimensional stability and optical transparency. Herein, rolls of an optically transparent PVA-co-PE nanofibrous membrane/epoxy composite with synergistically enhanced thermal stability, very low CTE, and outstanding mechanical properties are reported. The nanoscale size, the unique inter-stack structure, and the strong interfacial interactions between the PVA-co-PE nanofibers and the epoxy contribute to the synergistic effects. Because of the match between the refractive index (RI) of the PVA-co-PE nanofibers and the epoxy matrix, the visible light transmittance of nanocomposite film could be as high as 85% and the composite film was still optically transparent with a nanofiber loading content of up to 61.7 wt%. The break strength and compliance matrix of the composite film with a high fiber loading of 61.7 wt% increased by 2.3 times of that of the neat epoxy film and exceeded 3000 m 2 N -1 , respectively. PVA-co-PE nanofibers have a very low CTE value (3.634 × 10 -6 K -1 ) and could be applicable as a reinforcement to reduce the thermal expansion of epoxy. Furthermore, we developed a flexible alternating current electroluminescent (ACEL) device based on the transparent composite film and the experimental results showed that the transparent composite film could serve as substrate for flexible electronic devices. In addition, their electrical and optical properties were evaluated.

  2. Identifying arsenic trioxide (ATO) functions in leukemia cells by using time series gene expression profiles.

    Science.gov (United States)

    Yang, Hong; Lin, Shan; Cui, Jingru

    2014-02-10

    Arsenic trioxide (ATO) is presently the most active single agent in the treatment of acute promyelocytic leukemia (APL). In order to explore the molecular mechanism of ATO in leukemia cells with time series, we adopted bioinformatics strategy to analyze expression changing patterns and changes in transcription regulation modules of time series genes filtered from Gene Expression Omnibus database (GSE24946). We totally screened out 1847 time series genes for subsequent analysis. The KEGG (Kyoto encyclopedia of genes and genomes) pathways enrichment analysis of these genes showed that oxidative phosphorylation and ribosome were the top 2 significantly enriched pathways. STEM software was employed to compare changing patterns of gene expression with assigned 50 expression patterns. We screened out 7 significantly enriched patterns and 4 tendency charts of time series genes. The result of Gene Ontology showed that functions of times series genes mainly distributed in profiles 41, 40, 39 and 38. Seven genes with positive regulation of cell adhesion function were enriched in profile 40, and presented the same first increased model then decreased model as profile 40. The transcription module analysis showed that they mainly involved in oxidative phosphorylation pathway and ribosome pathway. Overall, our data summarized the gene expression changes in ATO treated K562-r cell lines with time and suggested that time series genes mainly regulated cell adhesive. Furthermore, our result may provide theoretical basis of molecular biology in treating acute promyelocytic leukemia. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Synergistic microbial consortium for bioenergy generation from complex natural energy sources.

    Science.gov (United States)

    Wang, Victor Bochuan; Yam, Joey Kuok Hoong; Chua, Song-Lin; Zhang, Qichun; Cao, Bin; Chye, Joachim Loo Say; Yang, Liang

    2014-01-01

    Microbial species have evolved diverse mechanisms for utilization of complex carbon sources. Proper combination of targeted species can affect bioenergy production from natural waste products. Here, we established a stable microbial consortium with Escherichia coli and Shewanella oneidensis in microbial fuel cells (MFCs) to produce bioenergy from an abundant natural energy source, in the form of the sarcocarp harvested from coconuts. This component is mostly discarded as waste. However, through its usage as a feedstock for MFCs to produce useful energy in this study, the sarcocarp can be utilized meaningfully. The monospecies S. oneidensis system was able to generate bioenergy in a short experimental time frame while the monospecies E. coli system generated significantly less bioenergy. A combination of E. coli and S. oneidensis in the ratio of 1:9 (v:v) significantly enhanced the experimental time frame and magnitude of bioenergy generation. The synergistic effect is suggested to arise from E. coli and S. oneidensis utilizing different nutrients as electron donors and effect of flavins secreted by S. oneidensis. Confocal images confirmed the presence of biofilms and point towards their importance in generating bioenergy in MFCs.

  4. Olive oil and vitamin D synergistically prevent bone loss in mice.

    Directory of Open Access Journals (Sweden)

    Camille Tagliaferri

    Full Text Available As the Mediterranean diet (and particularly olive oil has been associated with bone health, we investigated the impact of extra virgin oil as a source of polyphenols on bone metabolism. In that purpose sham-operated (SH or ovariectomized (OVX mice were subjected to refined or virgin olive oil. Two supplementary OVX groups were given either refined or virgin olive oil fortified with vitamin D3, to assess the possible synergistic effects with another liposoluble nutrient. After 30 days of exposure, bone mineral density and gene expression were evaluated. Consistent with previous data, ovariectomy was associated with increased bone turnover and led to impaired bone mass and micro-architecture. The expression of oxidative stress markers were enhanced as well. Virgin olive oil fortified with vitamin D3 prevented such changes in terms of both bone remodeling and bone mineral density. The expression of inflammation and oxidative stress mRNA was also lower in this group. Overall, our data suggest a protective impact of virgin olive oil as a source of polyphenols in addition to vitamin D3 on bone metabolism through improvement of oxidative stress and inflammation.

  5. Research on the relationship of institutional innovation, organizational learning and synergistic effect: An empirical study of chineses university spin-offs

    Directory of Open Access Journals (Sweden)

    Zhang Hao

    2014-06-01

    Full Text Available Purpose: At present, the Central Government of China pays more attention to the synergistic innovation, and the national strategy policy of “innovation driven development” are made to implementations. Thus, the university plays an important role in the national innovation system, so that how the university gets involved in innovative activities becomes the primary problem of innovation strategy. This paper utilizes Chinese university spin-offs survey data to identify the influence process from institutional innovation and organizational learning to synergistic effect of organization. Design/methodology/approach: Firstly, we found that following the procedural view, each one of these three elements can be divided into two parts. Then, we established structural equation modeling with the connections between these six subdivisions. Secondly, by taking 270 university Spin-offs in China as samples, we verified the fit of the model through statistical data on the questionnaire survey. Thirdly, we analyzed the relationship and influence path of the institutional innovation, organizational learning and synergistic effect. Findings: The results of empirical research show that institutional implementation process is positive correlation on both sides of synergistic effect, and, the intermediary role is obvious that external organizational learning played a regulatory role between institutional innovation synergistic effects. Research limitations/implications: A large-scale questionnaire survey showed that the influence path of “institutions -organization-innovation performance" are existed. Therefore, the system analysis framework should be introduced to the emergence and development of University spin-offs, and further explored the synergistic process of institutional change and organizational evolution. Practical implications: University spin-offs are a mode of university - industry cooperation, and it takes participation in market competition

  6. Selenoprotein-deficient transgenic mice exhibit enhanced exercise-induced muscle growth.

    Science.gov (United States)

    Hornberger, Troy A; McLoughlin, Thomas J; Leszczynski, Jori K; Armstrong, Dustin D; Jameson, Ruth R; Bowen, Phyllis E; Hwang, Eun-Sun; Hou, Honglin; Moustafa, Mohamed E; Carlson, Bradley A; Hatfield, Dolph L; Diamond, Alan M; Esser, Karyn A

    2003-10-01

    Dietary intake of selenium has been implicated in a wide range of health issues, including aging, heart disease and cancer. Selenium deficiency, which can reduce selenoprotein levels, has been associated with several striated muscle pathologies. To investigate the role of selenoproteins in skeletal muscle biology, we used a transgenic mouse (referred to as i6A-) that has reduced levels of selenoproteins due to the introduction and expression of a dominantly acting mutant form of selenocysteine transfer RNA (tRNA[Ser]Sec). As a consequence, each organ contains reduced levels of most selenoproteins, yet these mice are normal with regard to fertility, overall health, behavior and blood chemistries. In the present study, although skeletal muscles from i6A- mice were phenotypically indistinguishable from those of wild-type mice, plantaris muscles were approximately 50% heavier after synergist ablation, a model of exercise overload. Like muscle in wild-type mice, the enhanced growth in the i6A- mice was completely blocked by inhibition of the mammalian target of rapamycin (mTOR) pathway. Muscles of transgenic mice exhibited increased site-specific phosphorylation on both Akt and p70 ribosomal S6 kinase (p70S6k) (P accounting for the enhanced response to synergist ablation. Thus, a single genetic alteration resulted in enhanced skeletal muscle adaptation after exercise, and this is likely through subtle changes in the resting phosphorylation state of growth-related kinases.

  7. Mussel byssus-inspired engineering of synergistic nanointerfacial interactions as sacrificial bonds into carbon nanotube-reinforced soy protein/nanofibrillated cellulose nanocomposites: Versatile mechanical enhancement

    Science.gov (United States)

    Wang, Zhong; Zhao, Shujun; Kang, Haijiao; Zhang, Wei; Zhang, Shifeng; Li, Jianzhang

    2018-03-01

    Achieving flexible and stretchable biobased nanocomposites combining high strength and toughness is still a very challenging endeavor. Herein, we described a novel and versatile biomimetic design for tough and high-performance TEMPO-oxidized nanofibrillated cellulose (TONFC)/soy protein isolate (SPI) nanocomposites, which are triggered by catechol-mimetic carbon nanotubes (PCT) and iron ions (Fe(III)) to yield a strong yet sacrificial metal-ligand motifs into a chemically cross-linked architecture network. Taking advantage of self-polymerization of catechol-inspired natural tannic acid, PCT nanohybrid was prepared through adhering reactive poly-(tannic acid) (PTA) layer onto surfaces of carbon nanotubes via a simple dip-coating process. The high-functionality PCT induced the formation of the metal-ligand bonds through the ionic coordinates between the catechol groups in PCT and -COOH groups of TONFC skeleton with Fe(III) mediation that mimicked mussel byssus. Upon stretching, this tailored TONFC-Fe(III)-catechol coordination bonds served as sacrificial bonds that preferentially detach prior to the covalent network, which gave rise to efficient energy dissipation that the nanocomposites integrity was survived. As a result of these kind of synergistic interfacial interactions (sacrificial and covalent bonding), the optimal nanocomposite films processed high tensile strength (ca. 11.5 MPa), large elongation (ca. 79.3%), remarkable toughness (ca. 6.9 MJ m-3), and favorable water resistance as well as electrical conductivity. The proposed bioinspired strategy for designing plant protein-based materials enables control over their mechanical performance through the synergistic engineering of sacrificial bonds into the composite interface.

  8. The synergistic induction of bone formation by the osteogenic proteins of the TGF-β supergene family.

    Science.gov (United States)

    Ripamonti, Ugo; Parak, Ruqayya; Klar, Roland M; Dickens, Caroline; Dix-Peek, Thérèse; Duarte, Raquel

    2016-10-01

    The momentum to compose this Leading Opinion on the synergistic induction of bone formation suddenly arose when a simple question was formulated during a discussion session on how to boost the often limited induction of bone formation seen in clinical contexts. Re-examination of morphological and molecular data available on the rapid induction of bone formation by the recombinant human transforming growth factor-β3 (hTGF-β3) shows that hTGF-β3 replicates the synergistic induction of bone formation as invocated by binary applications of hOP-1:hTGF-β1 at 20:1 by weight when implanted in heterotopic sites of the rectus abdominis muscle of the Chacma baboon, Papio ursinus. The rapid induction of bone formation in primates by hTGF-β3 may stem from bursts of cladistic evolution, now redundant in lower animal species but still activated in primates by relatively high doses of hTGF-β3. Contrary to rodents, lagomorphs and canines, the three mammalian TGF-β isoforms induce rapid and substantial bone formation when implanted in heterotopic rectus abdominis muscle sites of P. ursinus, with unprecedented regeneration of full thickness mandibular defects with rapid mineralization and corticalization. Provocatively, thus providing potential molecular and biological rationales for the apparent redundancy of osteogenic molecular signals in primates, binary applications of recombinant human osteogenic protein-1 (hOP-1) with low doses of hTGF-β1 and -β3, synergize to induce massive ossicles in heterotopic rectus abdominis, orthotopic calvarial and mandibular sites of P. ursinus. The synergistic binary application of homologous but molecularly different soluble molecular signals has indicated that per force several secreted molecular signals are required singly, synchronously and synergistically to induce optimal osteogenesis. The morphological hallmark of the synergistic induction of bone formation is the rapid differentiation of large osteoid seams enveloping

  9. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid

    DEFF Research Database (Denmark)

    Meyer, Anne Merete Boye; Jacobsen, Charlotte Munch

    1996-01-01

    Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147.......Meyer, A. S. & C. Jacobsen, 1996. Fate of the synergistic antioxidant system ascorbic acid, lecithin, and tocopherol in mayonnaise: Partion of ascorbic acid, J. Food Lipids, 3, 139-147....

  10. Effects of immune synergist of Chinese medicinal herbs on the ...

    African Journals Online (AJOL)

    AJL

    2012-01-19

    Jan 19, 2012 ... 1Institute of Animal Husbandry and Veterinary Sciences, Shanxi Academy of Agricultural Sciences, Taiyuan 030032, China. 2Modern ... Two-month-old piglets were fed with 1, 1.5 and 2% immune synergist of Chinese medicinal herbs together with ..... saponins that are capable of activating immune system.

  11. NF1, Sp1 and HSF1 are synergistically involved in sulfide-induced sqr activation in echiuran worm Urechis unicinctus

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaolong; Qin, Zhenkui; Li, Xueyu; Ma, Xiaoyu; Gao, Beibei; Zhang, Zhifeng, E-mail: zzfp107@ouc.edu.cn

    2016-06-15

    Highlights: • Sulfide activates sqr transcription against respiratory toxicity in Urechis unicinctus. • Sulfide increases expressions and activities of NF1, Sp1 and HSF1 in a time-dependent manner. • NF1 and Sp1 participate in both basal and early sulfide-induced sqr transcription. • HSF1 functions more significantly than NF1 and Sp1 in sulfide-induced sqr transcription. • Transcription factors NF1, Sp1 and HSF1 enhance sqr promoter activity synergistically. - Abstract: Background: Sulfide is a well-known environmental toxic substance. Mitochondrial sulfide oxidation is a main mechanism of sulfide detoxification in organisms, and sulfide: quinone oxidoreductase (SQR) is a key enzyme which is involved in transferring electrons from sulfide to ubiquinone and converting sulfide into thiosulfate. Previous studies have revealed the SQR-mediated mitochondrial sulfide oxidation exists in the echiuran worm Urechis unicinctus, and its sqr mRNA level increased significantly when the worm is exposed to sulfide. In this study, we attempt to reveal the synergistic regulation of transcription factors on sulfide-induced sqr transcription in U. unicinctus. Methods: ChIP and EMSA were used to identify the interactions between sqr proximal promoter (from −391 to +194 bp) and transcription factors NF1 (nuclear factor 1) and Sp1 (specificity protein 1). Site-directed mutation and transfection assays further revealed their binding sites and synergistic roles of HSF1, NF1 and Sp1 in the sqr transcription. When U. unicinctus were exposed to 150 μM sulfide, the expression levels and nuclear contents of NF1 and Sp1 were examined by Western blotting, and the binding contents between NF1 or Sp1 and the sqr promoter were also detected by ChIP. Results: Transcription factors NF1 and Sp1 were confirmed to interact with the sqr proximal promoter, and their binding sites were identified in −75 to −69 bp for NF1 and −210 to −201 bp for Sp1. Transfection assays showed mutation

  12. Lack of a synergistic effect of arginine-glutamic acid on the physical stability of spray-dried bovine serum albumin.

    Science.gov (United States)

    Reslan, Mouhamad; Demir, Yusuf K; Trout, Bernhardt L; Chan, Hak-Kim; Kayser, Veysel

    2017-09-01

    Improving the physical stability of spray-dried proteins is essential for enabling pulmonary delivery of biotherapeutics as a noninvasive alternative to injections. Recently, a novel combination of two amino acids - l-arginine (l-Arg) and l-glutamic acid (l-Glu), has been reported to have synergistic protein-stabilizing effects on various protein solutions. Using spray-dried bovine serum albumin (BSA) reconstituted in solution as a model protein, we investigated the synergistic effect of these amino acids on the physical stability of proteins. Five BSA solutions were prepared: (1) BSA with no amino acids (control); (2) with 50 mM l-Arg; (3) with 200 mM l-Arg, (4) with 50 mM l-Glu and (5) with 25:25 mM of Arg:Glu. All solutions were spray-dried and accelerated studies at high temperatures were performed. Following accelerated studies, monomer BSA loss was measured using SE-HPLC. We found that l-Arg significantly improved the physical stability of spray-dried BSA even at low concentrations, however, when combined with l-Glu, was ineffective at reducing monomer BSA loss. Our findings demonstrate the limitations in using Arg-Glu for the stabilization of spray-dried BSA. Furthermore, we found that a low concentration of l-Glu enhanced monomer BSA loss. These findings may have significant implications on the design of future biotherapeutic formulations.

  13. The apical leakage of mineral trioxide aggregate as the retrograde filling material with various mixing agents

    Directory of Open Access Journals (Sweden)

    Ema Mulyawati

    2010-06-01

    Full Text Available Background: Mineral trioxide aggregate (MTA is relatively considered as a new material in endodontic. It even has been used as retrograde filling material due to its biocompatibility, antibacterial effect, sealing ability and anti-moist effect. Some materials have been used as mixing agent to achieve an appropiate setting of MTA. Purpose: The aim of this study is to investigate the effect of the mixing agents of MTA towards the apical leakage when they are used together as retrograde filling materials. Method: The samples of this research consist of 30 human extracted upper central incisors. First, the crown of each tooth is sectioned. The root canals are prepared by using the conventional technique and then are obturated with gutta percha. After cutting the root apex, 2 mm from apical, class 1 cavities are prepared by using fissure bur with the depth of 3 mm. The samples then are divided into 3 groups with 10 teeth for each. Group I uses aquabidest as mixing agent of MTA (MTA-aquabidest, group II uses saline (MTA-saline, while group III uses 0.12% chlorhexidine (MTA-chlorhexidine. The apex of each group then is filled with the mixing MTA determined already. Afterwards, clearing method is used to evaluate the apical leakage. The apical leakage actually is determined by measuring the depth of methylene blue penetration with stereomicroscope. The statictical analyses of the linear dye penetration then are performed with analysis of varians ANOVA. Result: The dye penetration for both MTA-aquadest and MTA-saline groups indicates the lowest penetration, and there is even a significant difference compared with MTA-0.12% chlorhexidine group (p<0.005. Conclusion: It can be concluded that aquabidest and saline as mixing agents of MTA produce less apical leakage compared with 0.12% chlorhexidine.Latar belakang: Mineral trioxide aggregate (MTA merupakan bahan yang relatif baru dalam bidang endodontik. Bahan tersebut diindikasikan sebagai bahan pengisi

  14. Synergistic reduction of toluylene blue induced by acetaldehyde and menadione in yeast cell suspension: Application to determination of yeast cell activity

    Directory of Open Access Journals (Sweden)

    Shiro Yamashoji

    2017-03-01

    Full Text Available Membrane permeant acetaldehyde and menadione induced the synergistic reduction of toluylene blue (TB acting as non-membrane permeant redox indicator in yeast cell suspension. NADH and acetaldehyde also induced the synergistic TB reduction in permeabilized yeast cells and phosphate buffer, but menadione had no ability to promote TB reduction. The pre-incubation of acetaldehyde inhibited the above synergistic reduction of TB in intact and permeabilized yeast cell suspension. The pre-incubation of acetaldehyde might promote NADH oxidation by alcohol dehydrogenase, because acetaldehyde decreased the intracellular NAD(PH concentration. The above facts indicate that the synergistic reduction of TB is controlled by the order of addition of menadione and acetaldehyde. The synergistic reduction of TB by menadione and acetaldehyde was proportional to viable yeast cell number from 104 to 2×106 cells/ml, and this assay was applicable to cytotoxicity test. The time required for the above assay was only 2 min.

  15. Ascorbic Acid-Induced Cardiac Differentiation of Murine Pluripotent Stem Cells: Transcriptional Profiling and Effect of a Small Molecule Synergist of Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Dina Ivanyuk

    2015-05-01

    Full Text Available Background: Reproducible and efficient differentiation of pluripotent stem cells (PSCs to cardiomyocytes (CMs is essential for their use in regenerative medicine, drug testing and disease modeling. The aim of this study was to evaluate the effect of some previously reported cardiogenic substances on cardiac differentiation of mouse PSCs. Methods: Differentiation was performed by embryoid body (EB-based method using three different murine PSC lines. The differentiation efficiency was monitored by RT-qPCR, immunocytochemistry and flow cytometry, and the effect mechanistically evaluated by transcriptome analysis of treated EBs. Results: Among the five tested compounds (ascorbic acid, dorsomorphin, cyclic adenosine 3',5'-monophosphate, cardiogenol C, cyclosporin A only ascorbic acid (AA exerted a strong and reproducible cardiogenic effect in CGR8 cells which was less consistent in other two PSC lines. AA induced only minor changes in transcriptome of CGR8 cells after administration during the initial two days of differentiation. Cardiospecific genes and transcripts involved in angiogenesis, erythropoiesis and hematopoiesis were up-regulated on day 5 but not on days 2 or 3 of differentiation. The cardiac differentiation efficiency was improved when QS11, a small-molecule synergist of Wnt/β-catenin signaling pathway, was added to cultures after AA-treatment. Conclusion: This study demonstrates that only minor transcriptional changes are sufficient for enhancement of cardiogenesis of murine PSCs by AA and that AA and QS11 exhibit synergistic effects and enhance the efficiency of CM differentiation of murine PSCs.

  16. Physicochemical Mechanisms of Synergistic Biological Action of Combinations of Aromatic Heterocyclic Compounds

    OpenAIRE

    Evstigneev, Maxim P.

    2013-01-01

    The mechanisms of synergistic biological effects observed in the simultaneous use of aromatic heterocyclic compounds in combination are reviewed, and the specific biological role of heteroassociation of aromatic molecules is discussed.

  17. The combination of BH3-mimetic ABT-737 with the alkylating agent temozolomide induces strong synergistic killing of melanoma cells independent of p53.

    Directory of Open Access Journals (Sweden)

    Steven N Reuland

    Full Text Available Metastatic melanoma has poor prognosis and is refractory to most conventional chemotherapies. The alkylating agent temozolomide (TMZ is commonly used in treating melanoma but has a disappointing response rate. Agents that can act cooperatively with TMZ and improve its efficacy are thus highly sought after. The BH3 mimetic ABT-737, which can induce apoptosis by targeting pro-survival Bcl-2 family members, has been found to enhance the efficacy of many conventional chemotherapeutic agents in multiple cancers. We found that combining TMZ and ABT-737 induced strong synergistic apoptosis in multiple human melanoma cell lines. When the drugs were used in combination in a mouse xenograft model, they drastically reduced tumor growth at concentrations where each individual drug had no significant effect. We found that TMZ treatment elevated p53 levels, and that the pro-apoptotic protein Noxa was elevated in TMZ/ABT-737 treated cells. Experiments with shRNA demonstrated that the synergistic effect of TMZ and ABT-737 was largely dependent on Noxa. Experiments with nutlin-3, a p53 inducer, demonstrated that p53 induction was sufficient for synergistic cell death with ABT-737 in a Noxa-dependent fashion. However, p53 was not necessary for TMZ/ABT-737 synergy as demonstrated by a p53-null line, indicating that TMZ and ABT-737 together induce Noxa in a p53-independent fashion. These results demonstrate that targeting anti-apoptotic Bcl-2 members is a promising method for treating metastatic melanoma, and that clinical trials with TMZ and Bcl-2 inhibitors are warranted.

  18. Synergistic interaction between a PDE5 inhibitor (sildenafil) and a new adenosine A2A receptor agonist (LASSBio-1359) improves pulmonary hypertension in rats.

    Science.gov (United States)

    Alencar, Allan K; Carvalho, Fábio I; Silva, Ananssa M; Martinez, Sabrina T; Calasans-Maia, Jorge A; Fraga, Carlos M; Barreiro, Eliezer J; Zapata-Sudo, Gisele; Sudo, Roberto T

    2018-01-01

    Pulmonary hypertension (PH) is characterized by enhanced pulmonary vascular resistance, which causes right ventricle (RV) pressure overload and results in right sided heart failure and death. This work investigated the effectiveness of a combined therapy with PDE5 inhibitor (PDE5i) and a new adenosine A2A receptor (A2AR) agonist in mitigating monocrotaline (MCT) induced PH in rats. An in vitro isobolographic analysis was performed to identify possible synergistic relaxation effect between sildenafil and LASSBio 1359 in rat pulmonary arteries (PAs). In the in vivo experiments, PH was induced in male Wistar rats by a single intraperitoneal injection of 60 mg/kg MCT. Rats were divided into the following groups: control (saline injection only), MCT + vehicle, MCT + sildenafil, MCT + LASSBio 1359 and MCT + combination of sildenafil and LASSBio 1359. Fourteen days after the MCT injection, rats were treated daily with oral administration of the regimen therapies or vehicle for 14 days. Cardiopulmonary system function and structure were evaluated by echocardiography. RV systolic pressure and PA endothelial function were measured. Isobolographic analysis showed a synergistic interaction between sildenafil and LASSBio 1359 in rat PAs. Combined therapy with sildenafil and LASSBio 1359 but not monotreatment with low dosages of either sildenafil or LASSBio 1359 ameliorated all of PH related abnormalities in cardiopulmonary function and structure in MCT challenged rats. The combination of sildenafil and LASSBio 1359 has a synergistic interaction, suggesting that combined use of these pharmacological targets may be an alternative to improve quality of life and outcomes for PH patients.

  19. In vitro synergistic effects of fisetin and norfloxacin against aquatic isolates of Serratia marcescens.

    Science.gov (United States)

    Dong, Jing; Ruan, Jing; Xu, Ning; Yang, Yibin; Ai, Xiaohui

    2016-01-01

    Serratia marcescens is a common pathogenic bacterium that can cause infections in both humans and animals. It can cause a range of diseases, from slight wound infections to life-threatening bacteraemia and pneumonia. The emergence of antimicrobial resistance has limited the treatment of the diseases caused by the bacterium to a great extent. Consequently, there is an urgent need to develop novel antimicrobial strategies against this pathogen. Synergistic strategy is a new approach to treat the infections caused by drug-resistant bacteria. In this paper, we isolated and identified the first multi-resistant pathogenic Serratia marcescens strain from diseased soft-shelled turtles (Pelodiscus sinensis) in China. We then performed a checkerboard assay; the results showed that out of 10 tested natural products fisetin had synergistic effects against S. marcescens when combined with norfloxacin. The time-kill curve assay further confirmed the results of the checkerboard assay. We found that this novel synergistic effect could significantly reduce the dosage of norfloxacin against S. marcescens. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid–polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment

    Science.gov (United States)

    Wu, Bo; Lu, Shu-Ting; Zhang, Liu-Jie; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid–polymer hybrid nanoparticles (LPNPs) drug delivery system composed of monomethoxy-poly(ethylene glycol)-S-S-hexadecyl (mPEG-S-S-C16), soybean lecithin, and poly(D,L-lactide-co-glycolide) (PLGA) was used for codelivery of doxorubicin (DOX) and a Chinese herb extract triptolide (TPL). Hydrophobic DOX and TPL could be successfully loaded in LPNPs by self-assembly. More importantly, drug release and cellular uptake experiments demonstrated that the two drugs were reduction sensitive, released simultaneously from LPNPs, and taken up effectively by the tumor cells. DOX/TPL-coloaded LPNPs (DOX/TPL-LPNPs) exhibited a high level of synergistic activation with low combination index (CI) in vitro and in vivo. Moreover, the highest synergistic therapeutic effect was achieved at the ratio of 1:0.2 DOX/TPL. Further experiments showed that TPL enhanced the uptake of DOX by human oral cavity squamous cell carcinoma cells (KB cells). Overall, DOX/TPL-coencapsulated reduction-sensitive nanoparticles will be a promising strategy for cancer treatment. PMID:28331310

  1. Codelivery of doxorubicin and triptolide with reduction-sensitive lipid-polymer hybrid nanoparticles for in vitro and in vivo synergistic cancer treatment.

    Science.gov (United States)

    Wu, Bo; Lu, Shu-Ting; Zhang, Liu-Jie; Zhuo, Ren-Xi; Xu, Hai-Bo; Huang, Shi-Wen

    2017-01-01

    Codelivery is a promising strategy to overcome the limitations of single chemotherapeutic agents in cancer treatment. Despite progress, codelivery of two or more different functional drugs to increase anticancer efficiency still remains a challenge. Here, reduction-sensitive lipid-polymer hybrid nanoparticles (LPNPs) drug delivery system composed of monomethoxy-poly(ethylene glycol)- S - S -hexadecyl (mPEG- S - S -C 16 ), soybean lecithin, and poly(D,L-lactide-co-glycolide) (PLGA) was used for codelivery of doxorubicin (DOX) and a Chinese herb extract triptolide (TPL). Hydrophobic DOX and TPL could be successfully loaded in LPNPs by self-assembly. More importantly, drug release and cellular uptake experiments demonstrated that the two drugs were reduction sensitive, released simultaneously from LPNPs, and taken up effectively by the tumor cells. DOX/TPL-coloaded LPNPs (DOX/TPL-LPNPs) exhibited a high level of synergistic activation with low combination index (CI) in vitro and in vivo. Moreover, the highest synergistic therapeutic effect was achieved at the ratio of 1:0.2 DOX/TPL. Further experiments showed that TPL enhanced the uptake of DOX by human oral cavity squamous cell carcinoma cells (KB cells). Overall, DOX/TPL-coencapsulated reduction-sensitive nanoparticles will be a promising strategy for cancer treatment.

  2. Synergistic anticancer effects of the 9.2.27PE immunotoxin and ABT-737 in melanoma.

    Directory of Open Access Journals (Sweden)

    Karianne Risberg

    Full Text Available In cancer, combinations of drugs targeting different cellular functions is well accepted to improve tumor control. We studied the effects of a Pseudomonas exotoxin A (PE-based immunotoxin, the 9.2.27PE, and the BH-3 mimetic compound ABT-737 in a panel of melanoma cell lines. The drug combination resulted in synergistic cytotoxicity, and the cell death observed was associated with apoptosis, as activation of caspase-3, inactivation of Poly (ADP-ribose polymerase (PARP and increased DNA fragmentation could be prevented by pre-treatment with caspase and cathepsin inhibitors. We further show that ABT-737 caused endoplasmic reticulum (ER stress with increased GRP78 and phosphorylated eIF2α protein levels. Moreover, treatment with ABT-737 increased the intracellular calcium levels, an effect which was enhanced by 9.2.27PE, which as a single entity drug had minimal effect on calcium release from the ER. In addition, silencing of Mcl-1 by short hairpin RNA (shRNA enhanced the intracellular calcium levels and cytotoxicity caused by ABT-737. Notably, the combination of 9.2.27PE and ABT-737 caused growth delay in a human melanoma xenograft mice model, supporting further investigations of this particular drug combination.

  3. Investigation of antioxidant interactions between Radix Astragali and Cimicifuga foetida and identification of synergistic antioxidant compounds.

    Directory of Open Access Journals (Sweden)

    Fei Wang

    Full Text Available The medicinal plants of Huang-qi (Radix Astragali and Sheng-ma (Cimicifuga foetida demonstrate significantly better antioxidant effects when used in combination than when used alone. However, the bioactive components and interactional mechanism underlying this synergistic action are still not well understood. In the present study, 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay was employed to investigate the antioxidant capacity of single herbs and their combination with the purpose of screening synergistic antioxidant compounds from them. Chromatographic isolation was performed on silica gel, Sephadex LH-20 columns and HPLC, and consequently to yield formononetin, calycosin, ferulic acid and isoferulic acid, which were identified by their retention time, UV λmax, MS and MS/MS data. The combination of isoferulic acid and calycosin at a dose ratio of 1∶1 resulted in significant synergy in scavenging DPPH radicals and ferric reducing antioxidant power (FRAP assay. Furthermore, the protective effects of these four potential synergistic compounds were examined using H2O2-induced HepG2 Cells bioassay. Results revealed that the similar synergy was observed in the combination of isoferulic acid and calycosin. These findings might provide some theoretical basis for the purported synergistic efficiency of Huang-qi and Sheng-ma as functional foods, dietary supplements and medicinal drugs.

  4. Synergistic Effect of Molybdate and Monoethanolamine on Corrosion Inhibition of Ductile Cast Iron in Tap Water

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. T.; Kim, Y. S. [Andong National University, Andong (Korea, Republic of); Chang, H. Y.; Lim, B. T.; Park, H. B. [KEPCO Engineering and Construction Company, Gimcheon (Korea, Republic of)

    2017-02-15

    A synergistic effect was observed in the combination of nitrite and ethanolamines. Ethanolamine is one of the representative organic corrosion inhibitors and can be categorized as adsorption type. However, nitrosamines can form when amines mix with sodium nitrite. Since nitrosamine is a carcinogen, the co-addition of nitrite and ethanolamine will be not practical, and thus, a non-toxic combination of inhibitors shall be needed. In order to maximize the effect of monoethanolamine, we focused on the addition of molybdate. Molybdate has been used to alternate the addition of chromate, but it showed insufficient oxidizing power relative to corrosion inhibitors. This work evaluated the synergistic effect of the co-addition of molybdate and monoethanolamine, and its corrosion mechanism was elucidated. A high concentration of molybdate or monoethanolamine was needed to inhibit the corrosion of ductile cast iron in tap water, but in the case of the co-addition of molybdate and monoethanolamine, a synergistic effect was observed. This synergistic effect could be attributed to the molybdate that partly oxidizes the metallic surface and the monoethanolamine that is simultaneously adsorbed on the graphite surface. This adsorbed layer then acts as the barrier layer that mitigates galvanic corrosion between the graphite and the matrix.

  5. Antioxidant synergistic effects of Osmanthus fragrans flowers with green tea and their major contributed antioxidant compounds

    OpenAIRE

    Mao, Shuqin; Wang, Kaidi; Lei, Yukun; Yao, Shuting; Lu, Baiyi; Huang, Weisu

    2017-01-01

    The antioxidant synergistic effects of Osmanthus fragrans flowers with green tea were evaluated, and their major antioxidant compounds contributed to the total amount of synergy were determined. The antioxidant compounds in O. fragrans flowers with green tea were identified by LC-MS and quantified by UPLC-PDA. The synergistic antioxidant interactions between O. fragrans flowers with green tea and their antioxidant compounds were tested using the Prieto?s model after the simulated digestion. T...

  6. Continuous energy recovery and nutrients removal from molasses wastewater by synergistic system of dark fermentation and algal culture under various fermentation types.

    Science.gov (United States)

    Ren, Hong-Yu; Kong, Fanying; Ma, Jun; Zhao, Lei; Xie, Guo-Jun; Xing, Defeng; Guo, Wan-Qian; Liu, Bing-Feng; Ren, Nan-Qi

    2018-03-01

    Synergistic system of dark fermentation and algal culture was initially operated at batch mode to investigate the energy production and nutrients removal from molasses wastewater in butyrate-type, ethanol-type and propionate-type fermentations. Butyrate-type fermentation was the most appropriate fermentation type for the synergistic system and exhibited the accumulative hydrogen volume of 658.3 mL L -1 and hydrogen yield of 131.7 mL g -1 COD. By-products from dark fermentation (mainly acetate and butyrate) were further used to cultivate oleaginous microalgae. The maximum algal biomass and lipid content reached 1.01 g L -1 and 38.5%, respectively. In continuous operation, the synergistic system was stable and efficient, and energy production increased from 8.77 kJ L -1  d -1 (dark fermentation) to 17.3 kJ L -1  d -1 (synergistic system). Total COD, TN and TP removal efficiencies in the synergistic system reached 91.1%, 89.1% and 85.7%, respectively. This study shows the potential of the synergistic system in energy recovery and wastewater treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Contamination of tooth-colored mineral trioxide aggregate used as a root-end filling material: a bacterial leakage study.

    Science.gov (United States)

    Montellano, Angela M; Schwartz, Scott A; Beeson, Thomas J

    2006-05-01

    This experiment investigated the ability of tooth-colored mineral trioxide aggregate (MTA) to maintain an apical seal in the presence of bacteria when contaminated with blood, saline or saliva. Ninety extracted human teeth with single canals were randomly placed into six groups of 15. Canals were prepared to size 50. The apical 3 mm of each root was removed and 3 mm root-end preparations were made with a #329 bur. Root-end preparations in groups 1 through 3 were filled with MTA after contamination with blood, saline, or saliva, respectively. In group 4, uncontaminated root-end preparations were filled with MTA. Groups 5 and 6 served as negative and positive controls. A tube/tooth assembly was utilized to suspend each root end in Trypticase Soy Broth (TSB). The access chambers were filled with Staphylococcus epidermidis. Positive growth over thirty days was demonstrated by turbidity of the TSB. Vitek analysis was used to confirm the presence of S. epidermidis in the positive samples. Data evaluation consisted of a chi(2) analysis (p < 0.05). Although all experimental groups demonstrated leakage, tooth-colored MTA contaminated with saliva (group 3) leaked significantly more than the uncontaminated tooth-colored MTA (group 4) (p = 0.028).

  8. Effect of different radiopacifying agents on the physicochemical properties of white Portland cement and white mineral trioxide aggregate.

    Science.gov (United States)

    Hungaro Duarte, Marco Antonio; Minotti, Paloma Gagliardi; Rodrigues, Clarissa Teles; Zapata, Ronald Ordinola; Bramante, Clovis Monteiro; Tanomaru Filho, Mário; Vivan, Rodrigo Ricci; Gomes de Moraes, Ivaldo; Bombarda de Andrade, Flaviana

    2012-03-01

    The aim of this study was to evaluate the pH, calcium ion release, setting time, and solubility of white mineral trioxide aggregate (WMTA) and white Portland cement (WPC) combined with the following radiopacifying agents: bismuth oxide (BO), calcium tungstate (CT), and zirconium oxide (ZO). Fifty acrylic teeth with root-end filling material were immersed in ultrapure water for measurement of pH and calcium release (atomic absorption spectrophotometry) at 3, 24, 72, and 168 hours. For evaluation of setting time, each material was analyzed according to the American Society for Testing and Materials guidelines 266/08. The solubility test was performed according to American National Standards Institute/American Dental Association specification no. 57/2000. Solubility, setting time, and pH values were compared by using analysis of variance and Tukey test, and the values of calcium release were compared by the Kruskal-Wallis and Miller tests. The significance level was set at 5%. The pH and calcium release were higher at 3 and 24 hours. WPC was the material with the higher values for both properties. WMTA had the greatest solubility among all materials (P Portland cement. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  9. Synergistic action of radiation and chemical carcinogen in induction of leukemia in mice, 3

    International Nuclear Information System (INIS)

    Kajitani, Takashi

    1982-01-01

    1. There was no synergistic interaction of radiation and N-nitrosoethylurea (NEU) in induction of leukemia if irradiation was confined to the thymic region. 2. Cell kinetics in the thymus and bone marrow of young-adult mice were studied following whole-body X-irradiation or local X-irradiation over the thymus. It was found that whole-body X-irradiation caused drastic injuries, followed by a vigorous regeneration in both thymus and bone marrow, whereas local X-irradiation caused much milder changes in the thymus than whole-body X-irradiation, and caused no apparent changes in the bone marrow. 3. A single dose of 5 mg of NEU force administered by gastric intubation was found to be moderately leukemogenic, inducing thymic lymphomas in 37% of young adult female C57BL/6N mice. 4. Whole-body X-irradiation with 400R enhanced the incidence of thymic lymphoma when mice were irradiated 5 days prior to a single dose of NEU force administered by gastric intubation. In contrast, no enhancing effect was observed when the mice were irradiated 30 days prior to a single dose of NEU. 5. The results indicate that whole-body X-irradiation right before NEU administration plays a role in providing a cell population either in the thymus or bone marrow susceptible to NEU during postirradiation repair-period. (author)

  10. A Synergistic effect of artocarpanone from Artocarpus heterophyllus Lam. (Moraceae on the antibacterial activity of some antibiotics and their effect on membrane permeability

    Directory of Open Access Journals (Sweden)

    Abdi Wira Septama

    2017-06-01

    Full Text Available Aim/backgrounds: Artocarpanone isolated from Artocarpus heterophyllus Lam. (Moraceae possesses antibacterial activity. The present study investigated any interaction between artocarpanone and some antibiotics including tetracycline, ampicillin and norfloxacin against Methicillin-resistant Staphylococcus aureus (MRSA, Pseudomonas aeruginosa and Escherichia coli, as well as determining any disruptive effect on bacterial membranes. Materials and methods: A broth microdilution method was used for the susceptibility assay. Any synergistic effect was determined using a checerboard method, and any membrane disruption effect was investigated using a bacteriolysis assay and a measurement of the released 260 nm absorbing materials. Results and discussion: Artocarpanone exhibited weak antibacterial activities against MRSA and P. aeruginosa with MIC values of 125 and 500 µg/mL, respectively. However, it showed the strong antibacterial activity against E. coli (7.8 µg/mL. The interaction between artcarpanone with all tested antibiotics against P. aeruginosa and E. coli only revealed indifference and additive effects (FICI values of 0.75-1.25. The interaction between artocarpanone (31.2 µg/mL and norfloxacin (3.9 µg/mL exhibited a synergistic antibacterial activity against MRSA, with a fractional inhibitory concentration index (FICI of 0.28, while the interaction between artocarpanone and tetracycline, and ampicillin showed an additive effect, with an FICI value of 0.5. A time kill assay also indicated that artocarpanone had a synergistic effect on the antibacterial activity of norfloxacin. In addition, a combination of artocarpanone and norfloxacin altered the membrane permeability of MRSA. Conclusion: These findings suggested that artocarpanone may be considered as an adjuvant to enhance the antibacterial activity of norfloxacin against MRSA. [J Complement Med Res 2017; 6(2.000: 186-191

  11. Anethole, a potential antimicrobial synergist, converts a fungistatic dodecanol to a fungicidal agent.

    Science.gov (United States)

    Fujita, Ken-Ichi; Fujita, Tomoko; Kubo, Isao

    2007-01-01

    Anethole shows synergistic effects on the antifungal activities of phytochemicals including polygodial and (2E)-undecenal against Saccharomyces cerevisiae and Candida albicans. It was found that a fungistatic dodecanol combined with a sublethal amount of anethole showed a fungicidal activity against S. cerevisiae. The MIC of dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control, indicating that the effect of dodecanol on this yeast was classified as sublethal damage. On the other hand, anethole completely restricted the recovery of cell viability. Therefore the expression of the synergistic effect was probably due to a blockade of the recovery process from dodecanol-induced stress.

  12. Non-equilibrium synergistic effects in atmospheric pressure plasmas.

    Science.gov (United States)

    Guo, Heng; Zhang, Xiao-Ning; Chen, Jian; Li, He-Ping; Ostrikov, Kostya Ken

    2018-03-19

    Non-equilibrium is one of the important features of an atmospheric gas discharge plasma. It involves complicated physical-chemical processes and plays a key role in various actual plasma processing. In this report, a novel complete non-equilibrium model is developed to reveal the non-equilibrium synergistic effects for the atmospheric-pressure low-temperature plasmas (AP-LTPs). It combines a thermal-chemical non-equilibrium fluid model for the quasi-neutral plasma region and a simplified sheath model for the electrode sheath region. The free-burning argon arc is selected as a model system because both the electrical-thermal-chemical equilibrium and non-equilibrium regions are involved simultaneously in this arc plasma system. The modeling results indicate for the first time that it is the strong and synergistic interactions among the mass, momentum and energy transfer processes that determine the self-consistent non-equilibrium characteristics of the AP-LTPs. An energy transfer process related to the non-uniform spatial distributions of the electron-to-heavy-particle temperature ratio has also been discovered for the first time. It has a significant influence for self-consistently predicting the transition region between the "hot" and "cold" equilibrium regions of an AP-LTP system. The modeling results would provide an instructive guidance for predicting and possibly controlling the non-equilibrium particle-energy transportation process in various AP-LTPs in future.

  13. Cone Beam Computed Tomography Evaluation of the Periapical Status of Nonvital Tooth with Open Apex Obturated with Mineral Trioxide Aggregate: A Case Report

    Directory of Open Access Journals (Sweden)

    Vijay Shekhar

    2013-01-01

    Full Text Available Management of a tooth with open apex is a challenge to the dental practitioners. Evaluation of the periapical healing is required in such cases by radiographic techniques. The objective of this paper was to assess the healing of a periapical lesion in a non-vital tooth with open apex treated with mineral trioxide aggregate (MTA obturation using cone beam computed tomography (CBCT. The endodontic treatment of a fractured non-vital discolored maxillary left lateral incisor with an open apex was done with MTA obturation. The clinical and radiographic followup done regularly showed that the tooth was clinically asymptomatic and that the size of the periapical lesion observed by intraoral periapical (IOPA radiographs and CBCT was decreased remarkably after two years. CBCT and IOPA radiographs were found to be useful radiographic tools to assess the healing of a large periapical lesion in a non-vital tooth with open apex managed by MTA obturation.

  14. Investigation of maltodextrin-based synergistic system with amino acid chiral ionic liquid as additive for enantioseparation in capillary electrophoresis.

    Science.gov (United States)

    Chen, Jiaquan; Du, Yingxiang; Sun, Xiaodong

    2017-12-01

    The combined use of chiral ionic liquids (ILs) and chiral selectors in capillary electrophoresis (CE) to establish a synergistic system has proven to be an effective approach for enantioseparation. In this article, tetramethylammonium-L-arginine, a kind of amino acid chiral IL, was applied to investigate its potential synergistic effect with maltodextrin in CE enantioseparation. The established maltodextrin-based synergistic system showed markedly improved enantioseparations compared with the single maltodextrin system. Parameters such as the chiral IL concentration, maltodextrin concentration, buffer pH, applied voltage, and capillary temperature were optimized. Satisfactory enantioseparation of the five studied drugs, including nefopam, duloxetine, ketoconazole, cetirizine, and citalopram was achieved in 50 mM Tris-H 3 PO 4 buffer solution (pH 3.0) containing 7.0% (m/v) maltodextrin and 60 mM tetramethylammonium-L-arginine. In addition, the chiral configuration of tetramethylammonium-L-arginine was also investigated to demonstrate the existence of a synergistic effect between chiral ILs and maltodextrin. © 2017 Wiley Periodicals, Inc.

  15. Mineral Trioxide Aggregate sebagai Penutup Perforasi Akar Lateral Premolar Mandibula Disertai Restorasi Onlei Resin Komposit

    Directory of Open Access Journals (Sweden)

    Nanda Kusumastuti

    2011-06-01

    Full Text Available Latar belakang. Kegagalan memperoleh arah preparasi saluran akar yang lurus merupakan salah satu penyebab utama perforasi akar lateral. Pemakaian mineral trioxide aggregate (MTA pada penutupan perforasi akar lateral memberikan kerapatan yang lebih baik dibandingkan bahan yang lain. Tujuan. Penulisan laporan ini untuk melaporkan penutupan perforasi akar lateral menggunakan MTA pada perawatan saluran akar gigi premolar dua kanan mandibula nekrosis pulpa dilanjutkan restorasi onlei resin komposit sehingga !ungsi gigi dapat tereapai kembali. Kasus dan penanganan. Pasien laki-Iaki berusia 35 tahun datang ke klinik Konservasi RSGM Prof. Soedomo dengan keluhan ingin melanjutkan perawatan gigi belakang kanan bawahnya yang pernah dirawat di dokter gigi sebelumnya tetapi tidak selesai. Pada pemeriksaan CE negati!, perkusi positi!, palpasi dan mobilitas negati!. Gambaran radiogra! terlihat adanya area radiolusen pada 1/3 akar lateral bagian mesial. Diagnosis gigi 45 adalah karies profunda dengan nekrosis pulpa disertai perforasi akar lateral. Preparasi saluran akar dilakukan dengan teknik crown down menggunakan protaper hand use. MTA setebal 3 mm ditempatkan dalam saluran akar yang mengalami perforasi akar lateral dan selanjutnya saluran akar diobturasi dengan teknik single cone. Tiga bulan setelah penutupan perforasi akar lateral, pasien tidak ada keluhan serta pada pemeriksaan perkusi, palpasi dan mobilitas negati! kemudian dilanjutkan dengan restorasi onlei resin komposit. Kesimpulan. Kasus premolar dua kanan mandibula yang mengalami perforasi akar lateral dapat disembuhkan dengan penggunaan MTA sebagai bahan penutup perforasi. Evaluasi pasea pengaplikasian MTA dilakukan pada bulan ke-3 menunjukkan hasil yang eukup memuaskan dengan ditandai daerah radiolusensi yang mengeeil pada daerah perforasi.

  16. Effects of Arsenic Trioxide on Radiofrequency Ablation of VX2 Liver Tumor: Intraarterial versus Intravenous Administration

    International Nuclear Information System (INIS)

    Seong, Nak Jong; Yoon, Chang Jin; Kang, Sung Gwon; Chung, Jin Wook; Kim, Hyo Cheol; Park, Jae Hyung

    2012-01-01

    Arsenic trioxide (As 2 O 3 ) can be used as a possible pharmaceutical alternative that augments radiofrequency (RF) ablation by reducing tumor blood flow. The aim of this study was to assess the effect of intraarterial and intravenous administration of As 2 O 3 on RF-induced ablation in an experimentally induced liver tumor. VX2 carcinoma was grown in the livers of 30 rabbits. As 2 O 3 (1 mg/kg) was administered through the hepatic artery (n = 10, group A) or ear vein (n = 10, group B), 30 minutes before RF ablation (125 mA ± 35; 90 ± 5 degrees Celsius). As a control group, 10 rabbits were treated with RF ablation alone (group C). RF was intentionally applied to the peripheral margin of the tumor so that ablation can cover the tumor and adjacent hepatic parenchyma. Ablation areas of the tumor and adjacent parenchymal changes among three groups were compared by the Kruskal-Wallis and Mann-Whitney U test. The overall ablation areas were 156 ± 28.9 mm 2 (group A), 119 ± 31.7 (group B), and 92 ± 17.4 (group C, p 2 ) than both group B (50 ± 19.4, p = 0.02) and group C (28 ± 2.2, p 2 O 3 . The intraarterial administration of As 2 O 3 seems to be helpful for the selective ablation of the tumor.

  17. Bacterial entombment by intratubular mineralization following orthograde mineral trioxide aggregate obturation:a scanning electron microscopy study

    Institute of Scientific and Technical Information of China (English)

    Jun Sang Yoo; Qiang Zhu; Kee-Yeon Kum; Seok-Woo Chang; So Ram Oh; Hiran Perinpanayagam; Sang-Min Lim; Yeon-Jee Yoo; Yeo-Rok Oh; Sang-Bin Woo; Seung-Hyun Han

    2014-01-01

    The time domain entombment of bacteria by intratubular mineralization following orthograde canal obturation with mineral trioxide aggregate (MTA) was studied by scanning electron microscopy (SEM). Single-rooted human premolars (n560) were instrumented to an apical size #50/0.06 using ProFile and treated as follows:Group 1 (n510) was filled with phosphate buffered saline (PBS);Group 2 (n510) was incubated with Enterococcus faecalis for 3 weeks, and then filled with PBS;Group 3 (n520) was obturated orthograde with a paste of OrthoMTA (BioMTA, Seoul, Korea) and PBS;and Group 4 (n520) was incubated with E. faecalis for 3 weeks and then obturated with OrthoMTA–PBS paste. Following their treatments, the coronal openings were sealed with PBS-soaked cotton and intermediate restorative material (IRM), and the roots were then stored in PBS for 1, 2, 4, 8 or 16 weeks. After each incubation period, the roots were split and their dentin/MTA interfaces examined in both longitudinal and horizontal directions by SEM. There appeared to be an increase in intratubular mineralization over time in the OrthoMTA-filled roots (Groups 3 and 4). Furthermore, there was a gradual entombment of bacteria within the dentinal tubules in the E. faecalis inoculated MTA-filled roots (Group 4). Therefore, the orthograde obturation of root canals with OrthoMTA mixed with PBS may create a favorable environment for bacterial entombment by intratubular mineralization.

  18. Identification of a novel acetate-utilizing bacterium belonging to Synergistes group 4 in anaerobic digester sludge.

    Science.gov (United States)

    Ito, Tsukasa; Yoshiguchi, Kazumi; Ariesyady, Herto Dwi; Okabe, Satoshi

    2011-12-01

    Major acetate-utilizing bacterial and archaeal populations in methanogenic anaerobic digester sludge were identified and quantified by radioisotope- and stable-isotope-based functional analyses, microautoradiography-fluorescence in situ hybridization (MAR-FISH) and stable-isotope probing of 16S rRNA (RNA-SIP) that can directly link 16S rRNA phylogeny with in situ metabolic function. First, MAR-FISH with (14)C-acetate indicated the significant utilization of acetate by only two major groups, unidentified bacterial cells and Methanosaeta-like filamentous archaeal cells, in the digester sludge. To identify the acetate-utilizing unidentified bacteria, RNA-SIP was conducted with (13)C(6)-glucose and (13)C(3)-propionate as sole carbon source, which were followed by phylogenetic analysis of 16S rRNA. We found that bacteria belonging to Synergistes group 4 were commonly detected in both 16S rRNA clone libraries derived from the sludge incubated with (13)C-glucose and (13)C-propionate. To confirm that this bacterial group can utilize acetate, specific FISH probe targeting for Synergistes group 4 was newly designed and applied to the sludge incubated with (14)C-acetate for MAR-FISH. The MAR-FISH result showed that bacteria belonging to Synergistes group 4 significantly took up acetate and their active population size was comparable to that of Methanosaeta in this sludge. In addition, as bacteria belonging to Synergistes group 4 had high K(m) for acetate and maximum utilization rate, they are more competitive for acetate over Methanosaeta at high acetate concentrations (2.5-10  mM). To our knowledge, it is the first time to report the acetate-utilizing activity of uncultured bacteria belonging to Synergistes group 4 and its competitive significance to acetoclastic methanogen, Methanosaeta.

  19. USING A DOE AND EIS TO EVALUATE THE SYNERGISTIC EFFECTS OF LOW TOXICITY INHIBITORS FOR MILD STEEL

    Directory of Open Access Journals (Sweden)

    G. V. Bueno

    2015-03-01

    Full Text Available Abstract Inhibitors are widely used to prevent corrosion in cooling-water systems, and their protective performance can be enhanced by combination. The aim of this paper is to identify possible synergistic effects between four low toxicity substances used as corrosion inhibitors for mild steel in industrial cooling-water systems. Electrochemical measurements were obtained following a design of experiments (DOE where the independent variables were the inhibitors concentrations and the response variable the charge transfer resistance estimated from impedance diagrams. Potentiodynamic polarization curves show that all of them act as anodic corrosion inhibitors. Among the tested formulations, only the interaction between sodium molybdate and sodium tungstate showed statistically significant effects, indicating that they can perform better when used together. The results of this work show the importance of using a statistical tool when designing inhibitor mixtures.

  20. Spontaneous occurrence of synergistic bacterial gangrene following external pelvic irradiation

    International Nuclear Information System (INIS)

    Husseinzadeh, N.; Nahhas, W.A.; Manders, E.K.; Whitney, C.W.; Mortel, R.

    1984-01-01

    A case of spontaneous synergistic bacterial gangrene occurring after external pelvic irradiation is presented in a 25-year-old woman with invasive cervical cancer. Treatment consisted of aggressive antibiotic therapy and extensive excision and debridement followed by split-thickness skin grafting. Both recovery and cosmetic results were satisfactory. The pathophysiology, predisposing factors, and treatment modalities are presented

  1. Synergistic combination therapy of antitumor agents, membrane modification agents and irradiation

    International Nuclear Information System (INIS)

    Watarai, Jiro; Itagaki, Takatomo; Akutsu, Thoru; Yamaguchi, Kouichi; Kato, Isao

    1983-01-01

    Larygeal cancer were treated with synergistic combination therapy of Futraful in suppository, vitamin A, cepharanthin and irradiation from April 1981 to June 1982. This combination therapy resulted in high percentage of the tumor regression in the case of the invading laryngeal cancer and negligible complication. (author)

  2. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: Proteomic characterization

    International Nuclear Information System (INIS)

    Wang Ying; He Qingyu; Chen Hongming; Chiu Jenfu

    2007-01-01

    The anti-estrogen tamoxifen and vitamin A-related compound, all-trans retinoic acid (RA), in combination act synergistically to inhibit the growth of MCF-7 human breast cancer cells. In the present study, we applied two-dimensional gel electrophoresis based proteomic approach to globally analyze this synergistic effect of RA and tamoxifen. Proteomic study revealed that multiple clusters of proteins were involved in RA and tamoxifen-induced apoptosis in MCF-7 breast cancer cells, including post-transcriptional and splicing factors, proteins related to cellular proliferation or differentiation, and proteins related to energy production and internal degradation systems. The negative growth factor-transforming growth factor β (TGFβ) was secreted by RA and/or tamoxifen treatment and was studies as a potential mediator of the synergistic effects of RA and tamoxifen in apoptosis. By comparing protein alterations in treatments of RA and tamoxifen alone or in combination to those of TGFβ treatment, or co-treatment with TGFβ inhibitor SB 431542, proteomic results showed that a number of proteins were involved in TGFβ signaling pathway. These results provide valuable insights into the mechanisms of RA and tamoxifen-induced TGFβ signaling pathway in breast cancer cells

  3. Synergistic Inhibition of Protein Fibrillation by Proline and Sorbitol: Biophysical Investigations.

    Directory of Open Access Journals (Sweden)

    Sinjan Choudhary

    Full Text Available We report here interesting synergistic effects of proline and sorbitol, two well-known chemical chaperones, in the inhibition of fibrillation of two proteins, insulin and lysozyme. A combination of many biophysical techniques has been used to understand the structural morphology and modes of interaction of the chaperones with the proteins during fibrillation. Both the chaperones establish stronger polar interactions in the elongation and saturation stages of fibrillation compared to that in the native stage. However, when presented as a mixture, we also see contribution of hydrophobic interactions. Thus, a co-operative adjustment of polar and hydrophobic interactions between the chaperones and the protein surface seems to drive the synergistic effects in the fibrillation process. In insulin, this synergy is quantitatively similar in all the stages of the fibrillation process. These observations would have significant implications for understanding protein folding concepts, in general, and for designing combination therapies against protein fibrillation, in particular.

  4. Synergistic Inhibition of Protein Fibrillation by Proline and Sorbitol: Biophysical Investigations.

    Science.gov (United States)

    Choudhary, Sinjan; Save, Shreyada N; Kishore, Nand; Hosur, Ramakrishna V

    2016-01-01

    We report here interesting synergistic effects of proline and sorbitol, two well-known chemical chaperones, in the inhibition of fibrillation of two proteins, insulin and lysozyme. A combination of many biophysical techniques has been used to understand the structural morphology and modes of interaction of the chaperones with the proteins during fibrillation. Both the chaperones establish stronger polar interactions in the elongation and saturation stages of fibrillation compared to that in the native stage. However, when presented as a mixture, we also see contribution of hydrophobic interactions. Thus, a co-operative adjustment of polar and hydrophobic interactions between the chaperones and the protein surface seems to drive the synergistic effects in the fibrillation process. In insulin, this synergy is quantitatively similar in all the stages of the fibrillation process. These observations would have significant implications for understanding protein folding concepts, in general, and for designing combination therapies against protein fibrillation, in particular.

  5. Use of reflectors to enhance the synergistic effects of solar heating and solar wavelengths to disinfect drinking water sources.

    Science.gov (United States)

    Rijal, G K; Fujioka, R S

    2003-01-01

    Aluminum reflectors were added to solar units designed to inactivate faecal microorganisms (faecal coliform, E. coli, enterococci, FRNA coliphage, C. perfringens) in stream water and diluted sewage by the two mechanisms (solar heat, solar UV) known to inactivate microorganisms. During sunny conditions, solar units with and without reflectors inactivated E. coli to water standards. Solar units with reflectors disinfected the water sooner by increasing the water temperature by 8-10 degrees C to 64-75 degrees C. However, FRNA coliphages were still detected in these samples, indicating that this treatment may not inactivate pathogenic human enteric viruses. During cloudy conditions, reflectors only increased the water temperature by 3-4 degrees C to a maximum of 43-49 degrees C and E. coli was not completely inactivated. Under sunny and cloudy conditions, the UV wavelengths of sunlight worked synergistically with increasing water temperatures and were able to disinfect microorganisms at temperatures (45-56 degrees C), which were not effective in inactivating microorganisms. Relative resistance to the solar disinfecting effects were C. perfringens > FRNA coliphages > enterococci > E. coli > faecal coliform.

  6. Synergistic effects of heat and irradiation treatment (thermoradiation) in the sterilization of medical products

    International Nuclear Information System (INIS)

    Trauth, C.A. Jr.; Sivinski, H.D.

    1975-01-01

    This paper describes a generic class of sterilization processes is which properly chosen combinations of radiation and heat synergistically inactivate many bacteria and viruses. Treatments with optimal combinations are shown to offer the possibility of using lower total doses and lower temperatures than would be required separately for sterilization. This results from easier elimination of heat-labile, radioresistant organisms and radiolabile, heat-resistant organisms, and from synergistic inactivation of organisms which are both radioresistant and heat resistant. These processes depend upon temperature, dose-rate, and time in fairly complex ways; therefore, an analytical framework in which they can be defined is also presented. (author)

  7. DNA damage in human lymphocytes due to synergistic interaction between ionizing radiation and pesticide

    International Nuclear Information System (INIS)

    Kim, J. K.; Lee, K. H.; Lee, B. H.; Chun, K. J.

    2001-01-01

    Biological risks may arise from the possibility of the synergistic interaction between harmful factors such as ionizing radiation and pesticide. The effect of pesticide on radiation-induced DNA damage in human in human blood lymphocytes was evaluated by the single cell gel electrophoresis (SCGE) assay. The lymphocytes, with or without pretreatment of the pesticide, were exposed to 2.0 Gy of gamma ray. Significantly increased tail moment, which was a marker of DNA strand breaks in SCGE assay, showed an excellent dose-response relationship. The present study confirms that the pesticide has the cytotoxic effect on lymphocytes and that it interacts synergistically with ionizing radiationon DNA damage, as well

  8. Magnetically targeted delivery of DOX loaded Cu9S5@mSiO2@Fe3O4-PEG nanocomposites for combined MR imaging and chemo/photothermal synergistic therapy

    Science.gov (United States)

    Liu, Bei; Zhang, Xinyang; Li, Chunxia; He, Fei; Chen, Yinyin; Huang, Shanshan; Jin, Dayong; Yang, Piaoping; Cheng, Ziyong; Lin, Jun

    2016-06-01

    The combination of multi-theranostic modes in a controlled fashion has received tremendous attention for the construction of cooperative therapeutic systems in nanomedicine. Herein, we have synthesized a smart magnetically targeted nanocarrier system, Cu9S5@mSiO2@Fe3O4-PEG (labelled as CMF), which integrates NIR triggered photothermal therapy, pH/NIR-responsive chemotherapy and MR imaging into one nanoplatform to enhance the therapeutic efficacy. This new multifunctional paradigm has a uniform and monodisperse sesame ball-like structure by decorating tiny Fe3O4 nanoparticles on the surface of Cu9S5@mSiO2 before a further PEG modification to improve its hydrophilicity and biocompatibility. With doxorubicin (DOX) payload, the as-obtained CMF-DOX composites can simultaneously provide an intense heating effect and enhanced DOX release upon 980 nm NIR light exposure, achieving a combined chemo/photothermal therapy. Under the influence of an external magnetic field, the magnetically targeted synergistic therapeutic effect of CMF-DOX can lead to highly superior inhibition of animal H22 tumor in vivo when compared to any of the single approaches alone. The results revealed that this Cu9S5 based magnetically targeted chemo/photothermal synergistic nanocarrier system has great promise in future MR imaging assisted tumor targeted therapy of cancer.

  9. Stimuli-Responsive NO Release for On-Demand Gas-Sensitized Synergistic Cancer Therapy.

    Science.gov (United States)

    Fan, Wenpei; Yung, Bryant C; Chen, Xiaoyuan

    2018-03-08

    Featuring high biocompatibility, the emerging field of gas therapy has attracted extensive attention in the medical and scientific communities. Currently, considerable research has focused on the gasotransmitter nitric oxide (NO) owing to its unparalleled dual roles in directly killing cancer cells at high concentrations and cooperatively sensitizing cancer cells to other treatments for synergistic therapy. Of particular note, recent state-of-the-art studies have turned our attention to the chemical design of various endogenous/exogenous stimuli-responsive NO-releasing nanomedicines and their biomedical applications for on-demand NO-sensitized synergistic cancer therapy, which are discussed in this Minireview. Moreover, the potential challenges regarding NO gas therapy are also described, aiming to advance the development of NO nanomedicines as well as usher in new frontiers in this fertile research area. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Antimicrobial and synergistic studies of ranunculus muricatus l. against some indigenous bacteria

    International Nuclear Information System (INIS)

    Rasool, S.; Mughal, T.A.

    2014-01-01

    In the present study, antibacterial activity of the whole plant methanolic extract of Ranunculus muricatus L., was analyzed against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, Bacillus pumilus, Salmonella typhimurium and Pseudomonas aeroginosa. Methanol was regarded as an excellent solvent for antimicrobial activity. It was observed as best bactericidal at a minimal inhibitory concentration (MIC) of 1-10 micro g/ml against all the bacterial cultures viz. B. pumilus, B. subtilis, S. aureus, E. coli, P. aeroginosa and S. typhimurium. Synergistic antibacterial activity of methanolic extracts was tested with respect to solvent extract of leaves of Ricinus communis, Nerium oleander, Withania somnifera, whole plant of Heliotropiaum curassavicum and fruits of Citrullus colocynthis. Synergistical study revealed the best antibacterial activity against B. subtilis and B. pumilus at a level of 1 micro g/ml except E. coli and S. aureus. (author)

  11. Synergistic attenuation of myocardial fibrosis in spontaneously hypertensive rats by joint treatment with benazepril and candesartan.

    Science.gov (United States)

    Meng, Guoliang; Wu, Feng; Yang, Liyun; Zhu, Hongyan; Gu, Jinhua; He, Min; Xu, Jiliang

    2009-07-01

    Benazepril, an angiotensin-converting enzyme inhibitor, and candesartan, an angiotensin receptor blocker, are common drugs for treating hypertension. This study aimed to investigate the enhanced attenuation of myocardial fibrosis in spontaneously hypertensive rats (SHRs) possibly induced by joint treatment with benazepril and candesartan and the possible involvement of transforming growth factor beta1 (TGF-beta1)-Smad signaling pathway. SHRs were treated with benazepril at 10 mg.kg.d, candesartan at 4 mg.kg.d, and a combination of 2 drugs at half dose, respectively, for 12 weeks. Echocardiography and histology indicated that joint treatment with 2 drugs more significantly inhibited myocardial fibrosis in SHRs than either monotherapy, as evidenced by the changes in cardiac structural parameters, ultrasonic integrated backscatters, collagen volume fraction, and perivascular collagen area. The collagen analyses further revealed that significant decreases in total collagen concentration, the ratio of collagen type I to type III, and collagen cross-linking were found after the enhanced attenuation of myocardial fibrosis. Western blot analysis showed that the protein expression of TGF-beta1 and Smad3 was significantly decreased after joint treatment with 2 drugs. We conclude that synergistic attenuation of myocardial fibrosis in SHRs is produced by combined use of benazepril and candesartan possibly through the modulation of TGF-beta/Smad signaling proteins.

  12. Synergistic effects of pyrrolizidine alkaloids and lipopolysaccharide on preterm delivery and intrauterine fetal death in mice.

    Science.gov (United States)

    Guo, Yu; Ma, Zhenguo; Kou, Hao; Sun, Rongze; Yang, Hanxiao; Smith, Charles Vincent; Zheng, Jiang; Wang, Hui

    2013-08-29

    Preterm birth is the leading cause of death for newborn infants, and lipopolysaccharide (LPS) is commonly used to induce preterm delivery in experimental animals. Pyrrolizidine alkaloids (PAs) are widespread and occur in foods, herbs, and other plants. This study was to investigate the synergistic effects of LPS and two representative PAs, retrorsine (RTS) and monocrotaline (MCT), on preterm delivery and fetal death. Pregnant Kunming mice were divided into seven groups: control, RTS, MCT, LPS, RTS+LPS and two MCT+LPS groups. Animals in PAs and PAs+LPS groups were dosed intragastrically with RTS (10mg/kg) or MCT (20 mg/kg or 60 mg/kg) from gestational day (GD) 9 to GD16; mice given LPS were injected intraperitoneally with 150 μg/kg on GD15.5. Latencies to delivery, numbers of pups live and dead at birth were recorded, and livers of live neonates were collected. The incidence of LPS-induced preterm birth was enhanced in dams pretreated with MCT, and combination of PAs and LPS increased fetal mortality from PAs. The enhancement of LPS-induced preterm delivery and fetal demise in animals exposed chronically to PAs and other substances found in foods and beverages consumed widely by humans merits further focused investigation. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Synergistic effect of tungsten disulfide and cenosphere combination on braking performance of composite friction materials

    International Nuclear Information System (INIS)

    Kachhap, Rakesh K.; Satapathy, Bhabani K.

    2014-01-01

    Graphical abstract: Graphical abstract showing correlation between enhanced frictional stability and enhanced visc-oelastic energy dissipation. - Highlights: • Developed new class of brake composites based on WS 2 and cenosphere. • Synergistic effect of WS 2 and cenosphere for enhanced friction stability. • Wear surface morphology revealed composition specific topography. • Friction fade-recovery performance remained optimal. - Abstract: Tungsten disulfide (WS 2 /TDS) based cenosphere (Cn) filled friction composites with varying cenosphere to WS 2 ratio (Cn/TDS) were fabricated by compression molding of phenolic resin based dry formulation mix and evaluated for their thermal, thermo-mechanical and tribological performances. The loss and revival of braking friction effectiveness due to heating or cooling of the disc termed as fade and recovery performance have been characterized on a Krauss friction testing machine following ECE R-90 industrial standards. The fade performance remained dependent on Cn/TDS, where enhanced fading could be correlated to lower Cn/TDS value accompanied with broader frictional fluctuations i.e. μ max –μ min . A decrease in the frictional-recovery response ensued with increase in Cn/TDS. Dynamic mechanical analysis revealed an increase in storage modulus till 2.5 wt.% of TDS loading followed by consistent decrease whereas two distinct peaks in loss modulus plots that are composition independent have been observed. Scanning electron microscopy revealed the worn surface morphology associated with the dynamics of contact patches formation and deformation vis-a-vis friction layer formation as integrally responsible for the observed friction performance. Energy dispersive analysis of X-rays (EDX) enabled compositional analysis of the friction layer viz. Fe, W, Si, and Al content which may have a mechanistic role in controlling phenomena like, disc rubbing, lubricity, porosity, and hardness of friction layer formed during braking

  14. Synergistic Effect of Fluorinated and N Doped TiO2 Nanoparticles Leading to Different Microstructure and Enhanced Photocatalytic Bacterial Inactivation

    Directory of Open Access Journals (Sweden)

    Irena Milosevic

    2017-11-01

    Full Text Available This work focuses on the development of a facile and scalable wet milling method followed by heat treatment to prepare fluorinated and/or N-doped TiO2 nanopowders with improved photocatalytic properties under visible light. The structural and electronic properties of doped particles were investigated by various techniques. The successful doping of TiO2 was confirmed by X-ray photoelectron spectroscopy (XPS, and the atoms appeared to be mainly located in interstitial positions for N whereas the fluorination is located at the TiO2 surface. The formation of intragap states was found to be responsible for the band gap narrowing leading to the faster bacterial inactivation dynamics observed for the fluorinated and N doped TiO2 particles compared to N-doped TiO2. This was attributed to a synergistic effect. The results presented in this study confirmed the suitability of the preparation approach for the large-scale production of cost-efficient doped TiO2 for effective bacterial inactivation.

  15. Enhancing blood donor skin disinfection using natural oils.

    Science.gov (United States)

    Alabdullatif, Meshari; Boujezza, Imen; Mekni, Mohamed; Taha, Mariam; Kumaran, Dilini; Yi, Qi-Long; Landoulsi, Ahmed; Ramirez-Arcos, Sandra

    2017-12-01

    Effective donor skin disinfection is essential in preventing bacterial contamination of blood components with skin flora bacteria like Staphylococcus epidermidis. Cell aggregates of S. epidermidis (biofilms) are found on the skin and are resistant to the commonly used donor skin disinfectants chlorhexidine-gluconate and isopropyl alcohol. It has been demonstrated that essential oils synergistically enhance the antibacterial activity of chlorhexidine-gluconate. The objective of this study was to test plant-extracted essential oils in combination with chlorhexidine-gluconate or chlorhexidine-gluconate plus isopropyl alcohol for their ability to eliminate S. epidermidis biofilms. The composition of oils extracted from Artemisia herba-alba, Lavandula multifida, Origanum marjoram, Rosmarinus officinalis, and Thymus capitatus was analyzed using gas chromatography-mass spectrometry. A rabbit model was used to assess skin irritation caused by the oils. In addition, the anti-biofilm activity of the oils used alone or in combination with chlorhexidine-gluconate or chlorhexidine-gluconate plus isopropyl alcohol was tested against S. epidermidis biofilms. Essential oil concentrations 10%, 20%, and 30% were chosen for anti-biofilm assays, because skin irritation was observed at concentrations greater than 30%. All oils except for O. marjoram had anti-biofilm activity at these three concentrations. L. multifida synergistically enhanced the anti-biofilm activity of chlorhexidine-gluconate and resulted in the highest anti-biofilm activity observed when combined with chlorhexidine-gluconate plus isopropyl alcohol. Gas chromatography-mass spectrometry revealed that the main component contributing to the activity of L. multifida oil was a natural terpene alcohol called linalool. The anti-biofilm activity of chlorhexidine-gluconate plus isopropyl alcohol can be greatly enhanced by L. multifida oil or linalool. Therefore, these components could potentially be used to improve blood

  16. In Situ Synthesis of Monomer Casting Nylon-6/Graphene-Polysiloxane Nanocomposites: Intercalation Structure, Synergistic Reinforcing, and Friction-Reducing Effect.

    Science.gov (United States)

    Li, Chengjie; Xiang, Meng; Zhao, Xiaowen; Ye, Lin

    2017-09-27

    On the basis of the industrialized graphene nanosheets (GNs) product, we synthesized monomer casting nylon-6 (MC PA6)/GN-3-aminopropyl-terminated poly(dimethylsiloxane) (APDMS) nanocomposite in situ through the anchoring effect of APDMS onto the GN surface. APDMS/PA6 molecules were confirmed to intercalate into the GN layers by the formation of strong interfacial interactions. The intercalation ratio and the average layer thickness of the grafted GN sample decreased in the presence of APDMS. Moreover, for MC PA6/GN-APDMS nanocomposite, GN-APDMS was uniformly distributed in the matrix and no phase separation was observed. The size of spherical APDMS particles was obviously reduced compared with that of MC PA6/APDMS composite, revealing a strong interaction between APDMS and GN and the enhancement of compatibility in the composite system. Compared with neat MC PA6, the addition of GN-APDMS resulted in 12% increase in the tensile strength and 37% increase in the impact strength; meanwhile, increase in both the storage modulus (E') and the glass transition temperature (T g ) indicated synergistic reinforcing and toughening effect of GN-APDMS on MC PA6. Furthermore, over 81 and 48% reduction in the friction coefficient and the specific wear rate, respectively, was achieved for the nanocomposite, and the worn surface displayed flat and smooth features with a uniform depth distribution, a low annealing effect, and a reduced friction heat, further confirming the synergistic friction-reducing effect of GN-APDMS on MC PA6.

  17. Synergistic effects of tacrolimus and azole antifungal compounds in fluconazole-susceptible and fluconazole-resistant Candida glabrata isolates

    Directory of Open Access Journals (Sweden)

    Laura Bedin Denardi

    2015-03-01

    Full Text Available In vitro interaction between tacrolimus (FK506 and four azoles (fluconazole, ketoconazole, itraconazole and voriconazole against thirty clinical isolates of both fluconazole susceptible and -resistant Candida glabrata were evaluated by the checkerboard microdilution method. Synergistic, indifferent or antagonism interactions were found for combinations of the antifungal agents and FK506. A larger synergistic effect was observed for the combinations of FK506 with itraconazole and voriconazole (43%, followed by that of the combination with ketoconazole (37%, against fluconazole-susceptible isolates. For fluconazole-resistant C. glabrata, a higher synergistic effect was obtained from FK506 combined with ketoconazole (77%, itraconazole (73%, voriconazole (63% and fluconazole (60%. The synergisms that we observed in vitro, notably against fluconazole-resistant C. glabrata isolates, are promising and warrant further analysis of their applications in experimental in vivo studies.

  18. Synergistic antioxidant activity of milk sphingomyeline and its sphingoid base with α-tocopherol on fish oil triacylglycerol.

    Science.gov (United States)

    Shimajiri, Junki; Shiota, Makoto; Hosokawa, Masashi; Miyashita, Kazuo

    2013-08-21

    The effects of milk phospholipids (PLs), sphingolipids (SLs), and their sphingoid backbone on the oxidation of fish oil triacylglycerol (TAG) were examined with or without α-tocopherol. All compounds had little effect on the TAG oxidation in the absence of α-tocopherol. On the other hand, they could act synergistically with α-tocopherol. The highest synergistic activity was shown by sphingoid bases, followed by sphingomyelin (SPM) and other amine-containing PLs and SLs. This result showed that the synergistic activity increased with an increasing concentration of amine group of PLs, SLs, or sphingoid bases in the reaction mixture. The comparison of changes in α-tocopherol content in fish oil TAG and tricaprylin suggested that antioxidant compounds would be formed from the amine group and the lipid oxidation products in a mild oxidation condition controlled by α-tocopherol.

  19. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Directory of Open Access Journals (Sweden)

    Benjamin A Nacev

    Full Text Available Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA, an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50 dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.

  20. Synergistic inhibition of endothelial cell proliferation, tube formation, and sprouting by cyclosporin A and itraconazole.

    Science.gov (United States)

    Nacev, Benjamin A; Liu, Jun O

    2011-01-01

    Pathological angiogenesis contributes to a number of diseases including cancer and macular degeneration. Although angiogenesis inhibitors are available in the clinic, their efficacy against most cancers is modest due in part to the existence of alternative and compensatory signaling pathways. Given that angiogenesis is dependent on multiple growth factors and a broad signaling network in vivo, we sought to explore the potential of multidrug cocktails for angiogenesis inhibition. We have screened 741 clinical drug combinations for the synergistic inhibition of endothelial cell proliferation. We focused specifically on existing clinical drugs since the re-purposing of clinical drugs allows for a more rapid and cost effective transition to clinical studies when compared to new drug entities. Our screen identified cyclosporin A (CsA), an immunosuppressant, and itraconazole, an antifungal drug, as a synergistic pair of inhibitors of endothelial cell proliferation. In combination, the IC(50) dose of each drug is reduced by 3 to 9 fold. We also tested the ability of the combination to inhibit endothelial cell tube formation and sprouting, which are dependent on two essential processes in angiogenesis, endothelial cell migration and differentiation. We found that CsA and itraconazole synergistically inhibit tube network size and sprout formation. Lastly, we tested the combination on human foreskin fibroblast viability as well as Jurkat T cell and HeLa cell proliferation, and found that endothelial cells are selectively targeted. Thus, it is possible to combine existing clinical drugs to synergistically inhibit in vitro models of angiogenesis. This strategy may be useful in pursuing the next generation of antiangiogenesis therapy.