WorldWideScience

Sample records for triose phosphate isomerase

  1. Isolation and sequence analysis of the gene encoding triose phosphate isomerase from Zygosaccharomyces bailii.

    Science.gov (United States)

    Merico, A; Rodrigues, F; Côrte-Real, M; Porro, D; Ranzi, B M; Compagno, C

    2001-06-30

    The ZbTPI1 gene encoding triose phosphate isomerase (TIM) was cloned from a Zygosaccharomyces bailii genomic library by complementation of the Saccharomyces cerevisiae tpi1 mutant strain. The nucleotide sequence of a 1.5 kb fragment showed an open reading frame (ORF) of 746 bp, encoding a protein of 248 amino acid residues. The deduced amino acid sequence shares a high degree of homology with TIMs from other yeast species, including some highly conserved regions. The analysis of the promoter sequence of the ZbTPI1 revealed the presence of putative motifs known to have regulatory functions in S. cerevisiae. The GenBank Accession No. of ZbTPI1 is AF325852. Copyright 2001 John Wiley & Sons, Ltd.

  2. Performance of Glutamate Dehydrogenase and Triose Phosphate Isomerase Genes in the Analysis of Genotypic Variability of Isolates of Giardia duodenalis from Livestocks

    Science.gov (United States)

    Fava, Natália M. N.; Soares, Rodrigo M.; Scalia, Luana A. M.; Kalapothakis, Evanguedes; Pena, Isabella F.; Vieira, Carlos U.; Faria, Elaine S. M.; Cunha, Maria J.; Couto, Talles R.; Cury, Márcia Cristina

    2013-01-01

    Giardia duodenalis is a small intestinal protozoan parasite of several terrestrial vertebrates. This work aims to assess the genotypic variability of Giardia duodenalis isolates from cattle, sheep and pigs in the Southeast of Brazil, by comparing the standard characterization between glutamate dehydrogenase (gdh) and triose phosphate isomerase (tpi) primers. Fecal samples from the three groups of animals were analyzed using the zinc sulphate centrifugal flotation technique. Out of 59 positive samples, 30 were from cattle, 26 from sheep and 3 from pigs. Cyst pellets were stored and submitted to PCR and nested-PCR reactions with gdh and tpi primers. Fragment amplification of gdh and tpi genes was observed in 25 (42.4%) and 36 (61.0%) samples, respectively. Regarding the sequencing, 24 sequences were obtained with gdh and 20 with tpi. For both genes, there was a prevalence of E specific species assemblage, although some isolates have been identified as A and B, by the tpi sequencing. This has also shown a larger number of heterogeneous sequences, which have been attribute to mixed infections between assemblages B and E. The largest variability of inter-assemblage associated to the frequency of heterogeneity provided by tpi sequencing reinforces the polymorphic nature of this gene and makes it an excellent target for studies on molecular epidemiology. PMID:24308010

  3. Th1 stimulatory proteins of Leishmania donovani: comparative cellular and protective responses of rTriose phosphate isomerase, rProtein disulfide isomerase and rElongation factor-2 in combination with rHSP70 against visceral leishmaniasis.

    Science.gov (United States)

    Jaiswal, Anil Kumar; Khare, Prashant; Joshi, Sumit; Kushawaha, Pramod Kumar; Sundar, Shyam; Dube, Anuradha

    2014-01-01

    In visceral leishmaniasis, the recovery from the disease is always associated with the generation of Th1-type of cellular responses. Based on this, we have previously identified several Th1-stimulatory proteins of Leishmania donovani -triose phosphate isomerase (TPI), protein disulfide isomerase (PDI) and elongation factor-2 (EL-2) etc. including heat shock protein 70 (HSP70) which induced Th1-type of cellular responses in both cured Leishmania patients/hamsters. Since, HSPs, being the logical targets for vaccines aimed at augmenting cellular immunity and can be early targets in the immune response against intracellular pathogens; they could be exploited as vaccine/adjuvant to induce long-term immunity more effectively. Therefore, in this study, we checked whether HSP70 can further enhance the immunogenicity and protective responses of the above said Th1-stimulatory proteins. Since, in most of the studies, immunogenicity of HSP70 of L. donovani was assessed in native condition, herein we generated recombinant HSP70 and tested its potential to stimulate immune responses in lymphocytes of cured Leishmania infected hamsters as well as in the peripheral blood mononuclear cells (PBMCs) of cured patients of VL either individually or in combination with above mentioned recombinant proteins. rLdHSP70 alone elicited strong cellular responses along with remarkable up-regulation of IFN-γ and IL-12 cytokines and extremely lower level of IL-4 and IL-10. Among the various combinations, rLdHSP70 + rLdPDI emerged as superior one augmenting improved cellular responses followed by rLdHSP70 + rLdEL-2. These combinations were further evaluated for its protective potential wherein rLdHSP70 + rLdPDI again conferred utmost protection (∼80%) followed by rLdHSP70 + rLdEL-2 (∼75%) and generated a strong cellular immune response with significant increase in the levels of iNOS transcript as well as IFN-γ and IL-12 cytokines which was further supported by the high level of IgG2 antibody

  4. Genetics Home Reference: glucose phosphate isomerase deficiency

    Science.gov (United States)

    ... Breme K, Laspe P, Muirhead H, Davies C, Winkler H, Schröter W, Lakomek M. Molecular basis of ... 4):450-4. Citation on PubMed Lakomek M, Winkler H. Erythrocyte pyruvate kinase- and glucose phosphate isomerase ...

  5. Erythritol feeds the pentose phosphate pathway via three new isomerases leading to D-erythrose-4-phosphate in Brucella

    Science.gov (United States)

    Barbier, Thibault; Collard, François; Zúñiga-Ripa, Amaia; Moriyón, Ignacio; Godard, Thibault; Becker, Judith; Wittmann, Christoph; Van Schaftingen, Emile; Letesson, Jean-Jacques

    2014-01-01

    Erythritol is an important nutrient for several α-2 Proteobacteria, including N2-fixing plant endosymbionts and Brucella, a worldwide pathogen that finds this four-carbon polyol in genital tissues. Erythritol metabolism involves phosphorylation to l-erythritol-4-phosphate by the kinase EryA and oxidation of the latter to l-3-tetrulose 4-phosphate by the dehydrogenase EryB. It is accepted that further steps involve oxidation by the putative dehydrogenase EryC and subsequent decarboxylation to yield triose-phosphates. Accordingly, growth on erythritol as the sole C source should require aldolase and fructose-1,6-bisphosphatase to produce essential hexose-6-monophosphate. However, we observed that a mutant devoid of fructose-1,6-bisphosphatases grew normally on erythritol and that EryC, which was assumed to be a dehydrogenase, actually belongs to the xylose isomerase superfamily. Moreover, we found that TpiA2 and RpiB, distant homologs of triose phosphate isomerase and ribose 5-phosphate isomerase B, were necessary, as previously shown for Rhizobium. By using purified recombinant enzymes, we demonstrated that l-3-tetrulose-4-phosphate was converted to d-erythrose 4-phosphate through three previously unknown isomerization reactions catalyzed by EryC (tetrulose-4-phosphate racemase), TpiA2 (d-3-tetrulose-4-phosphate isomerase; renamed EryH), and RpiB (d-erythrose-4-phosphate isomerase; renamed EryI), a pathway fully consistent with the isotopomer distribution of the erythrose-4-phosphate-derived amino acids phenylalanine and tyrosine obtained from bacteria grown on 13C-labeled erythritol. d-Erythrose-4-phosphate is then converted by enzymes of the pentose phosphate pathway to glyceraldehyde 3-phosphate and fructose 6-phosphate, thus bypassing fructose-1,6-bisphosphatase. This is the first description to our knowledge of a route feeding carbohydrate metabolism exclusively via d-erythrose 4-phosphate, a pathway that may provide clues to the preferential metabolism of

  6. A novel glucose 6-phosphate isomerase from Listeria monocytogenes.

    Science.gov (United States)

    Cech, David L; Wang, Pan-Fen; Holt, Melissa C; Assimon, Victoria A; Schaub, Jeffrey M; Holler, Tod P; Woodard, Ronald W

    2014-10-01

    D-Arabinose 5-phosphate isomerases (APIs) catalyze the interconversion of D-ribulose 5-phosphate and D-arabinose 5-phosphate (A5P). A5P is an intermediate in the biosynthesis of 3-deoxy-D-manno-octulosonate (Kdo), an essential component of lipopolysaccharide, the lipopolysaccharide found in the outer membrane of Gram-negative bacteria. The genome of the Gram-positive pathogen Listeria monocytogenes contains a gene encoding a putative sugar isomerase domain API, Q723E8, with significant similarity to c3406, the only one of four APIs from Escherichia coli CFT073 that lacks a cystathionine-β-synthase domain. However, L. monocytogenes lacks genes encoding any of the other enzymes of the Kdo biosynthesis pathway. Realizing that the discovery of an API in a Gram-positive bacterium could provide insight into an alternate physiological role of A5P in the cell, we prepared and purified recombinant Q723E8. We found that Q723E8 does not possess API activity, but instead is a novel GPI (D-glucose 6-phosphate isomerase). However, the GPI activity of Q723E8 is weak compared with previously described GPIS. L. monocytogenes contains an ortholog of the well-studied two-domain bacterial GPI, so this maybe redundant. Based on this evidence glucose utilization is likely not the primary physiological role of Q723E8.

  7. Carbon-13-enriched carbohydrates: preparation of triose, tetrose, and pentose phosphates.

    Science.gov (United States)

    Serianni, A S; Pierce, J; Barker, R

    1979-04-03

    Three-, four-, and five-carbon aldononitrile phosphates were prepared, purified, and catalyticlly reduced with palladium--barium sulfate (5%) to the corresponding aldose phosphates in high yields at pH 1.7 +/- 0.1 and atmopsheric pressure. DL-Glyceraldehyde 3-phosphate and the tetrose 4-phosphates were prepared with carbon-13 enrichment at C-1, while the pentose 5-phosphates were prepared with enrichment at C-1 and C-2. Preparations of glycolaldehyde phosphate and d-glyceraldehyde 3-phosphate by lead tetra-acetate oxidation of glycerol phosphate and fructose 6-phosphate, respectively, are described. The proportions of cyclic hemiacetals and linear gem-diol forms of the two- to five-carbon aldose phosphates in aqueous solution are reported. Carbon-13 chemical shifts and carbon--phosphorus and carbon--hydrogen coupling constants for the furanose phosphate ring and linear gem-diol phosphates are reported and discussed. d-[2(-13)C]Ribulose 1,5-bisphosphate and L-[3,4(-13)C]sorbose 1,6-bisphosphate were prepared enzymatically from D-[2(-13)C]ribose 5-phosphate and dl-[1(-13)C]glyceraldehyde 3-phosphate, respectively.

  8. An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished

    DEFF Research Database (Denmark)

    Schneider, Anja; Häusler, Rainer E; Kolukisaoglu, Uner

    2002-01-01

    The Arabidopsis thaliana tpt-1 mutant which is defective in the chloroplast triose phosphate/phosphate translocator (TPT) was isolated by reverse genetics. It contains a T-DNA insertion 24 bp upstream of the start ATG of the TPT gene. The mutant lacks TPT transcripts and triose phosphate (TP......,6-bisphosphatase. Despite its regulatory role in the feed-forward control of sucrose biosynthesis, variations in the fructose 2,6-bisphosphate content upon illumination were similar in the mutant and the wild type. Crosses of tpt-1 with mutants unable to mobilise starch (sex1) or to synthesise starch (adg1......-1) revealed that growth and photosynthesis of the double mutants was severely impaired only when starch biosynthesis, but not its mobilisation, was affected. For tpt-1/sex1 combining a lack in the TPT with a deficiency in starch mobilisation, an additional compensatory mechanism emerged, i.e. the formation...

  9. Human glucose phosphate isomerase: Exon mapping and gene structure

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Weiming; Lee, Pauline; Beutler, E. [Scripps Research Inst., La Jolla, CA (United States)

    1995-10-10

    The structure of the gene for human glucose phosphate isomerase (GPI) has been determined. Three GPI clones were isolated from a human genomic library by using a full-length GPI cDNA probe and were characterized. Oligonucleotides based on the known cDNA sequence were used as primers in amplification and sequence analyses. This led to the identification of the exon-intron junctions. By this approach, 18 exons and 17 introns have been identified. The exons range in size from 44 to 431 nucleotides. The intronic sequences surrounding the exons provide useful information for the identification of mutations that give rise to human GPI deficiency associated with chronic hemolytic anemia. 13 refs., 4 figs., 1 tab.

  10. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    Lobley, Carina M. C.; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E.; Nettleship, Joanne E.; Brandao-Neto, Jose; Owens, Raymond J.; O’Toole, Paul W.; Walsh, Martin A.

    2012-01-01

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  11. Diagnostic value of glucose-6-phosphate isomerase in rheumatoid arthritis.

    Science.gov (United States)

    Fan, Lie Ying; Zong, Ming; Wang, Qiang; Yang, Lin; Sun, Li Shan; Ye, Qin; Ding, Yuan Yuan; Ma, Jian Wei

    2010-12-14

    Although glucose-6-phosphate isomerase (G6PI), anti-G6PI antibodies and G6PI-containing immune complexes (G6PI-CIC) have proved high expression in patients with rheumatoid arthritis (RA), comprehensive evaluation of the G6PI-derived markers, G6PI antigen, anti-G6PI Abs, G6PI-CIC and G6PI mRNA, in the diagnosis of RA remains necessary. We measured G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC as well as anti-cyclic citrullinated peptide antibodies (anti-CCP Abs) in serum and concomitantly synovial fluid (SF) by ELISA in RA, other rheumatic diseases and healthy controls. The G6PI mRNA expression in peripheral blood mononuclear cells (PBMCs) was assessed with real-time PCR. As compared with non-RA patients, RA patients had increased levels of G6PI antigen, anti-G6PI Abs, C1q/G6PI-CIC and G6PI mRNA expression in sera or PBMCs, and increased levels of G6PI and C1q/G6PI-CIC in SF. The serum G6PI levels in RA patients positively correlated with anti-G6PI Abs, C1q/G6PI-CIC, G6PI mRNA, anti-CCP Abs, RF, CRP and ESR, respectively. The area under curve analyses demonstrated that serum G6PI had the best discriminating power for RA and active RA followed by C1q/G6PI-CIC, anti-G6PI Abs and G6PI mRNA. The simultaneous use of serum G6PI and anti-CCP Abs assays in the form of either of them tested positive gave improved sensitivities of 88.1% for RA and 95.8% for active RA. Despite the elevated expression of all G6PI-derived markers in RA, the serum G6PI has the best discriminating power among the four G6PI-derived markers. The serum G6PI determination either alone or in combination with anti-CCP Abs improves the diagnosis of RA. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Substrate specificity of a glucose-6-phosphate isomerase from Pyrococcus furiosus for monosaccharides.

    Science.gov (United States)

    Yoon, Ran-Young; Yeom, Soo-Jin; Park, Chang-Su; Oh, Deok-Kun

    2009-05-01

    We purified recombinant glucose-6-phosphate isomerase from Pyrococcus furiosus using heat treatment and Hi-Trap anion-exchange chromatography with a final specific activity of 0.39 U mg(-1). The activity of the glucose-6-phosphate isomerase for L: -talose isomerization was optimal at pH 7.0, 95 degrees C, and 1.5 mM Co(2+). The half-lives of the enzyme at 65 degrees C, 75 degrees C, 85 degrees C, and 95 degrees C were 170, 41, 19, and 7.9 h, respectively. Glucose-6-phosphate isomerase catalyzed the interconversion between two different aldoses and ketose for all pentoses and hexoses via two isomerization reactions. This enzyme has a unique activity order as follows: aldose substrates with hydroxyl groups oriented in the same direction at C2, C3, and C4 > C2 and C4 > C2 and C3 > C3 and C4. L: -Talose and D: -ribulose exhibited the most preferred substrates among the aldoses and ketoses, respectively. L: -Talose was converted to L: -tagatose and L: -galactose by glucose-6-phosphate isomerase with 80% and 5% conversion yields after about 420 min, respectively, whereas D: -ribulose was converted to D: -ribose and D: -arabinose with 53% and 8% conversion yields after about 240 min, respectively.

  13. Crystal Structure and Substrate Specificity of D-Galactose-6-Phosphate Isomerase Complexed with Substrates

    Science.gov (United States)

    Lee, Jung-Kul; Pan, Cheol-Ho

    2013-01-01

    D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26), which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD), catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi). Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays. PMID:24015281

  14. Crystal structure and substrate specificity of D-galactose-6-phosphate isomerase complexed with substrates.

    Directory of Open Access Journals (Sweden)

    Woo-Suk Jung

    Full Text Available D-Galactose-6-phosphate isomerase from Lactobacillus rhamnosus (LacAB; EC 5.3.1.26, which is encoded by the tagatose-6-phosphate pathway gene cluster (lacABCD, catalyzes the isomerization of D-galactose-6-phosphate to D-tagatose-6-phosphate during lactose catabolism and is used to produce rare sugars as low-calorie natural sweeteners. The crystal structures of LacAB and its complex with D-tagatose-6-phosphate revealed that LacAB is a homotetramer of LacA and LacB subunits, with a structure similar to that of ribose-5-phosphate isomerase (Rpi. Structurally, LacAB belongs to the RpiB/LacAB superfamily, having a Rossmann-like αβα sandwich fold as has been identified in pentose phosphate isomerase and hexose phosphate isomerase. In contrast to other family members, the LacB subunit also has a unique α7 helix in its C-terminus. One active site is distinctly located at the interface between LacA and LacB, whereas two active sites are present in RpiB. In the structure of the product complex, the phosphate group of D-tagatose-6-phosphate is bound to three arginine residues, including Arg-39, producing a different substrate orientation than that in RpiB, where the substrate binds at Asp-43. Due to the proximity of the Arg-134 residue and backbone Cα of the α6 helix in LacA to the last Asp-172 residue of LacB with a hydrogen bond, a six-carbon sugar-phosphate can bind in the larger pocket of LacAB, compared with RpiB. His-96 in the active site is important for ring opening and substrate orientation, and Cys-65 is essential for the isomerization activity of the enzyme. Two rare sugar substrates, D-psicose and D-ribulose, show optimal binding in the LacAB-substrate complex. These findings were supported by the results of LacA activity assays.

  15. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118.

    Science.gov (United States)

    Lobley, Carina M C; Aller, Pierre; Douangamath, Alice; Reddivari, Yamini; Bumann, Mario; Bird, Louise E; Nettleship, Joanne E; Brandao-Neto, Jose; Owens, Raymond J; O'Toole, Paul W; Walsh, Martin A

    2012-12-01

    The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β D-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography.

  16. Identification of a d-Arabinose-5-Phosphate Isomerase in the Gram-Positive Clostridium tetani.

    Science.gov (United States)

    Cech, David L; Markin, Katherine; Woodard, Ronald W

    2017-09-01

    d-Arabinose-5-phosphate (A5P) isomerases (APIs) catalyze the interconversion of d-ribulose-5-phosphate and d-arabinose-5-phosphate. Various Gram-negative bacteria, such as the uropathogenic Escherichia coli strain CFT073, contain multiple API paralogs (KdsD, GutQ, KpsF, and c3406) that have been assigned various cellular functions. The d-arabinose-5-phosphate formed by these enzymes seems to play important roles in the biosynthesis of lipopolysaccharide (LPS) and group 2 K-antigen capsules, as well as in the regulation of the cellular d-glucitol uptake and uropathogenic infectivity/virulence. The genome of a Gram-positive pathogenic bacterium, Clostridium tetani , contains a gene encoding a putative API, C. tetani API (CtAPI), even though C. tetani lacks both LPS and capsid biosynthetic genes. To better understand the physiological role of d-arabinose-5-phosphate in this Gram-positive organism, recombinant CtAPI was purified and characterized. CtAPI displays biochemical characteristics similar to those of APIs from Gram-negative organisms and complements the API deficiency of an E. coli API knockout strain. Thus, CtAPI represents the first d-arabinose-5-phosphate isomerase to be identified and characterized from a Gram-positive bacterium. IMPORTANCE The genome of Clostridium tetani , a pathogenic Gram-positive bacterium and the causative agent of tetanus, contains a gene (the CtAPI gene) that shares high sequence similarity with those of genes encoding d-arabinose-5-phosphate isomerases. APIs play an important role within Gram-negative bacteria in d-arabinose-5-phosphate production for lipopolysaccharide biosynthesis, capsule formation, and regulation of cellular d-glucitol uptake. The significance of our research is in identifying and characterizing CtAPI, the first Gram-positive API. Our findings show that CtAPI is specific to the interconversion of arabinose-5-phosphate and ribulose-5-phosphate while having no activity with the other sugars and sugar phosphates

  17. Preliminary crystallographic analysis of two hypothetical ribose-5-phosphate isomerases from Streptococcus mutans

    International Nuclear Information System (INIS)

    Wang, Chen; Fan, Xuexin; Cao, Xiaofang; Liu, Xiang; Li, Lanfen; Su, Xiaodong

    2012-01-01

    Two hypothetical ribose-5-phosphate isomerases from S. mutans have been produced in E. coli and crystallized. The crystals diffracted to high resolutions suitable for crystallographic analyses. Study of the enzymes from sugar metabolic pathways may provide a better understanding of the pathogenesis of the human oral pathogen Streptococcus mutans. Bioinformatics, biochemical and crystallization methods were used to characterize and understand the function of two putative ribose-5-phosphate isomerases: SMU1234 and SMU2142. The proteins were cloned and constructed with N-terminal His tags. Protein purification was performed by Ni 2+ -chelating and size-exclusion chromatography. The crystals of SUM1234 diffracted to 1.9 Å resolution and belonged to space group P2 1 2 1 2 1 , with unit-cell parameters a = 48.97, b = 98.27, c = 101.09 Å, α = β = γ = 90°. The optimized SMU2142 crystals diffracted to 2.7 Å resolution and belonged to space group P1, with unit-cell parameters a = 53.7, b = 54.1, c = 86.5 Å, α = 74.2, β = 73.5, γ = 83.7°. Initial phasing of both proteins was attempted by molecular replacement; the structure of SMU1234 could easily be solved, but no useful results were obtained for SMU2142. Therefore, SeMet-labelled SMU2142 will be prepared for phasing

  18. Characterization of a Mannose-6-Phosphate Isomerase from Bacillus amyloliquefaciens and Its Application in Fructose-6-Phosphate Production.

    Directory of Open Access Journals (Sweden)

    Sujan Sigdel

    Full Text Available The BaM6PI gene encoding a mannose-6-phosphate isomerase (M6PI, EC 5.3.1.8 was cloned from Bacillus amyloliquefaciens DSM7 and overexpressed in Escherichia coli. The enzyme activity of BaM6PI was optimal at pH and temperature of 7.5 and 70°C, respectively, with a kcat/Km of 13,900 s-1 mM-1 for mannose-6-phosphate (M6P. The purified BaM6PI demonstrated the highest catalytic efficiency of all characterized M6PIs. Although M6PIs have been characterized from several other sources, BaM6PI is distinguished from other M6PIs by its wide pH range and high catalytic efficiency for M6P. The binding orientation of the substrate M6P in the active site of BaM6PI shed light on the molecular basis of its unusually high activity. BaM6PI showed 97% substrate conversion from M6P to fructose-6-phosphate demonstrating the potential for using BaM6PI in industrial applications.

  19. A preliminary X-ray study of sedoheptulose-7-phosphate isomerase from Burkholderia pseudomallei.

    Science.gov (United States)

    Kim, Mi Sun; Shin, Dong Hae

    2009-11-01

    Sedoheptulose-7-phosphate isomerase (GmhA) converts d-sedoheptulose 7-phosphate to d,d-heptose 7-phosphate. This is the first step in the biosynthesis pathway of NDP-heptose, which is responsible for the pleiotropic phenotype. This biosynthesis pathway is the target of inhibitors to increase the membrane permeability of Gram-negative pathogens or of adjuvants working synergistically with known antibiotics. Burkholderia pseudomallei is the causative agent of melioidosis, a seriously invasive disease in animals and humans in tropical and subtropical areas. GmhA from B. pseudomallei is one of the targets of antibiotic adjuvants for melioidosis. In this study, GmhA has been cloned, expressed, purified and crystallized. Synchrotron X-ray data were also collected to 1.9 angstrom resolution. The crystal belonged to the primitive orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 61.3, b = 84.2, c = 142.3 angstrom. A full structural determination is under way in order to provide insights into the structure- function relationships of this protein.

  20. Expression and knockdown analysis of glucose phosphate isomerase in chicken primordial germ cells.

    Science.gov (United States)

    Rengaraj, Deivendran; Lee, Sang In; Yoo, Min; Kim, Tae Hyun; Song, Gwonhwa; Han, Jae Yong

    2012-09-01

    Glucose is an important monosaccharide required to generate energy in all cells. After entry into cells, glucose is phosphorylated to glucose-6-phosphate and then transformed into glycogen or metabolized to produce energy. Glucose phosphate isomerase (GPI) catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. Without GPI activity or fructose-6-phosphate, many steps of glucose metabolism would not occur. The requirement for GPI activity for normal functioning of primordial germ cells (PGCs) needs to be identified. In this study, we first examined the expression of chicken GPI during early embryonic development and germ cell development. GPI expression was strongly and ubiquitously detected in chicken early embryos and embryonic tissues at Embryonic Day 6.5 (E6.5). Continuous GPI expression was detected in PGCs and germ cells of both sexes during gonadal development. Specifically, GPI expression was stronger in male germ cells than in female germ cells during embryonic development and the majority of post-hatching development. Then, we used siRNA-1499 to knock down GPI expression in PGCs. siRNA-1499 caused an 85% knockdown in GPI, and PGC proliferation was also affected 48 h after transfection. We further examined the knockdown effects on 28 genes related to the glycolysis/gluconeogenesis pathway and the endogenous glucose level in chicken PGCs. Among genes related to glycolysis/gluconeogenesis, 20 genes showed approximately 3-fold lower expression, 4 showed approximately 10-fold lower, and 2 showed approximately 100-fold lower expression in knockdown PGCs. The endogenous glucose level was significantly reduced in knockdown PGCs. We conclude that the GPI gene is crucial for maintaining glycolysis and supplying energy to developing PGCs.

  1. Suppression of glucose-6-phosphate-isomerase induced arthritis by oral administration of transgenic rice seeds expressing altered peptide ligands of glucose-6-phosphate-isomerase.

    Science.gov (United States)

    Hirota, Tomoya; Tsuboi, Hiroto; Iizuka-Koga, Mana; Takahashi, Hiroyuki; Asashima, Hiromitsu; Yokosawa, Masahiro; Kondo, Yuya; Ohta, Masaru; Wakasa, Yuhya; Matsumoto, Isao; Takaiwa, Fumio; Sumida, Takayuki

    2017-05-01

    To investigate the effects of transgenic rice seeds expressing the altered peptide ligand (APL) of human glucose-6-phosphate-isomerase (hGPI 325-339 ) in mice model of GPI-induced arthritis (GIA). We generated transgenic rice expressing T-cell epitope of hGPI 325-339 and APL12 contained in the seed endosperm. The transgenic rice seeds were orally administered prophylactically before the induction of GIA. The severity of arthritis and titers of serum anti-GPI antibodies were evaluated. We examined for IL-17 production in splenocytes and inguinal lymph node (iLN) cells, and analyzed the expression levels of functional molecules in splenocytes. Prophylactic treatment of GIA mice with APL12 transgenic (APL12-TG) rice seeds significantly reduced the severity of arthritis and titers of serum anti-GPI antibodies compared with non-transgenic (Non-TG) rice-treated mice. APL12-TG and hGPI 325-339 transgenic (hGPI 325-339 -TG) rice seeds improved the histopathological arthritis scores and decreased IL-17 production compared with non-TG rice-treated mice. APL12-TG rice-treated GIA mice showed upregulation of Foxp3 and GITR protein in CD4  +  CD25  +  Foxp3 +  cells in the spleen compared with non-TG rice- and hGPI 325-339 -TG rice-treated mice. APL12-TG rice seeds improved the severity of GIA through a decrease in production of IL-17 and anti-GPI antibodies via upregulation of Foxp3 and GITR expression on Treg cells in spleen.

  2. Mannose Phosphate Isomerase Isoenzymes in Plutella xylostella Support Common Genetic Bases of Resistance to Bacillus thuringiensis Toxins in Lepidopteran Species

    OpenAIRE

    Herrero, Salvador; Ferré, Juan; Escriche, Baltasar

    2001-01-01

    A strong correlation between two mannose phosphate isomerase (MPI) isoenzymes and resistance to Cry1A toxins from Bacillus thuringiensis has been found in a Plutella xylostella population. MPI linkage to Cry1A resistance had previously been reported for a Heliothis virescens population. The fact that the two populations share similar biochemical, genetic, and cross-resistance profiles of resistance suggests the occurrence of homologous resistance loci in both species.

  3. NMR studies on mechanism of isomerisation of fructose 6-phosphate to glucose 6-phosphate catalysed by phosphoglucose isomerase from Thermococcus kodakarensis.

    Science.gov (United States)

    Abbas, Shahzada Nadeem; Mok, Kenneth Hun; Rashid, Naeem; Xie, Yongjing; Ruether, Manuel; O'Brien, John; Akhtar, Muhammad

    2016-06-01

    The fate of hydrogen atoms at C-2 of glucose 6-phosphate (G6P) and C-1 of fructose 6-phosphate (F6P) was studied in the reaction catalysed by phosphoglucose isomerase from Thermococcus kodakarensis (TkPGI) through 1D and 2D NMR methods. When the reaction was performed in (2)H2O the hydrogen atoms in the aforementioned positions were exchanged with deuterons indicating that the isomerization occurred by a cis-enediol intermediate involving C-1 pro-R hydrogen of F6P. These features are similar to those described for phosphoglucose isomerases from rabbit muscle and Pyrococcus furiosus. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Genetic variants in glucose-6-phosphate isomerase gene as prognosis predictors in hepatocellular carcinoma.

    Science.gov (United States)

    Lyu, Zhuomin; Chen, Yibing; Guo, Xu; Zhou, Feng; Yan, Zhaoyong; Xing, Jinliang; An, Jiaze; Zhang, Hongxin

    2016-12-01

    Metabolic reprogramming is an important hallmark of cancer cells, including the alterations of activity and expression of enzymes in glucose metabolism. Previous studies have demonstrated the critical role of glucise-6-phosphate isomerase (GPI) in cancer initiation, metastasis and progression. However, the significance of single nucleotide polymorphisms (SNPs) in GPI gene has not been investigated in hepatocellular carcinoma (HCC). In this study, a total of 3 functional SNPs in GPI gene were genotyped in 492 HCC patients with surgical treatment. Multivariate Cox proportional hazards model and Kaplan-Meier curve were used for the analysis of overall survival (OS) and recurrence-free survival (RFS). The homozygous variant genotypes of rs7248411 in mRNA splice sites of GPI gene were significantly associated with an increased risk of death in the multivariate analysis (Hazard ratio [HR], 2.07; 95% confidence interval [95% CI]: 1.16-3.68 in a recessive model). In stratified analysis, the association remained significant in patients with high α-fetal protein (AFP) level (HR=2.37, 95% CI 1.25-4.49). Moreover, we identified the interaction between rs7248411 and AFP level in predicting the prognosis of HCC patients (P for interaction<0.001). Our data suggest that GPI gene polymorphism may serve as potential biomarkers to predict the OS of HCC. Further studies with different ethnicities are needed to validate our findings and generalize its clinical utility. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  5. Cloning, expression, purification, crystallization and preliminary X-ray crystallographic analysis of the mannose 6-phosphate isomerase from Salmonella typhimurium

    Energy Technology Data Exchange (ETDEWEB)

    Gowda, Giri; Sagurthi, Someswar Rao [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India); Savithri, H. S. [Department of Biochemistry, Indian Institute of Science, Bangalore 560 012 (India); Murthy, M. R. N., E-mail: mrn@mbu.iisc.ernet.in [Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012 (India)

    2008-02-01

    The cloning, expression, purification, crystallization and preliminary X-ray crystallographic studies of mannose 6-phosphate isomerase from S. typhimurium are reported. Mannose 6-phosphate isomerase (MPI; EC 5.3.1.8) catalyzes the reversible isomerization of d-mannose 6-phosphate (M6P) and d-fructose 6-phosphate (F6P). In the eukaryotes and prokaryotes investigated to date, the enzyme has been reported to play a crucial role in d-mannose metabolism and supply of the activated mannose donor guanosine diphosphate d-mannose (GDP-d-mannose). In the present study, MPI was cloned from Salmonella typhimurium, overexpressed in Escherichia coli and purified using Ni–NTA affinity column chromatography. Purified MPI crystallized in space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 36.03, b = 92.2, c = 111.01 Å. A data set extending to 1.66 Å resolution was collected with 98.8% completeness using an image-plate detector system mounted on a rotating-anode X-ray generator. The asymmetric unit of the crystal cell was compatible with the presence of a monomer of MPI. A preliminary structure solution of the enzyme has been obtained by molecular replacement using Candida albicans MPI as the phasing model and the program Phaser. Further refinement and model building are in progress.

  6. Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells.

    Science.gov (United States)

    Das, Mahua R; Bag, Arup K; Saha, Shekhar; Ghosh, Alok; Dey, Sumit K; Das, Provas; Mandal, Chitra; Ray, Subhankar; Chakrabarti, Saikat; Ray, Manju; Jana, Siddhartha S

    2016-02-24

    For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. PKM2

  7. Molecular association of glucose-6-phosphate isomerase and pyruvate kinase M2 with glyceraldehyde-3-phosphate dehydrogenase in cancer cells

    International Nuclear Information System (INIS)

    Das, Mahua R.; Bag, Arup K.; Saha, Shekhar; Ghosh, Alok; Dey, Sumit K.; Das, Provas; Mandal, Chitra; Ray, Subhankar; Chakrabarti, Saikat; Ray, Manju; Jana, Siddhartha S.

    2016-01-01

    For a long time cancer cells are known for increased uptake of glucose and its metabolization through glycolysis. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key regulatory enzyme of this pathway and can produce ATP through oxidative level of phosphorylation. Previously, we reported that GAPDH purified from a variety of malignant tissues, but not from normal tissues, was strongly inactivated by a normal metabolite, methylglyoxal (MG). Molecular mechanism behind MG mediated GAPDH inhibition in cancer cells is not well understood. GAPDH was purified from Ehrlich ascites carcinoma (EAC) cells based on its enzymatic activity. GAPDH associated proteins in EAC cells and 3-methylcholanthrene (3MC) induced mouse tumor tissue were detected by mass spectrometry analysis and immunoprecipitation (IP) experiment, respectively. Interacting domains of GAPDH and its associated proteins were assessed by in silico molecular docking analysis. Mechanism of MG mediated GAPDH inactivation in cancer cells was evaluated by measuring enzyme activity, Circular dichroism (CD) spectroscopy, IP and mass spectrometry analyses. Here, we report that GAPDH is associated with glucose-6-phosphate isomerase (GPI) and pyruvate kinase M2 (PKM2) in Ehrlich ascites carcinoma (EAC) cells and also in 3-methylcholanthrene (3MC) induced mouse tumor tissue. Molecular docking analyses suggest C-terminal domain preference for the interaction between GAPDH and GPI. However, both C and N termini of PKM2 might be interacting with the C terminal domain of GAPDH. Expression of both PKM2 and GPI is increased in 3MC induced tumor compared with the normal tissue. In presence of 1 mM MG, association of GAPDH with PKM2 or GPI is not perturbed, but the enzymatic activity of GAPDH is reduced to 26.8 ± 5 % in 3MC induced tumor and 57.8 ± 2.3 % in EAC cells. Treatment of MG to purified GAPDH complex leads to glycation at R399 residue of PKM2 only, and changes the secondary structure of the protein complex. PKM2

  8. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras.

    Science.gov (United States)

    Keighren, Margaret A; Flockhart, Jean H; West, John D

    2016-05-15

    The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1(-/-) null mouse embryos die but a previous study showed that some homozygous Gpi1(-/-) null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1(-/-)↔Gpi1(c/c) chimaera with functional Gpi1(-/-) null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1(-/-) null cells in adult Gpi1(-/-)↔Gpi1(c/c) chimaeras and determine if Gpi1(-/-) null germ cells are functional. Analysis of adult Gpi1(-/-)↔Gpi1(c/c) chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1(-/-) null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1(-/-) null oocytes in one female Gpi1(-/-)↔Gpi1(c/c) chimaera were functional and provided preliminary evidence that one male putative Gpi1(-/-)↔Gpi1(c/c) chimaera produced functional spermatozoa from homozygous Gpi1(-/-) null germ cells. Although the male chimaera was almost certainly Gpi1(-/-)↔Gpi1(c/c), this part of the study is considered preliminary because only blood was typed for GPI. Gpi1(-/-) null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1(-/-) null germ cells, it successfully identified functional Gpi1(-/-) null oocytes and revealed that some Gpi1(-/-) null cells could survive in many adult tissues. © 2016. Published by The Company of Biologists Ltd.

  9. [Significance of glucose-6-phosphate isomerase assay in early diagnosis of rheumatoid arthritis].

    Science.gov (United States)

    Xu, J; Liu, J; Zhu, L; Zhang, X W; Li, Z G

    2016-12-18

    To explore the titer of glucose-6-phosphate isomerase (GPI) for early diagnosis of the outpatient with rheumatoid arthritis (RA) in real life, and to analyze its relationship with disease activity. In the study, 1 051 patients with arthritis were collected in the group who had joints tender and swelling, and 90 cases of healthy people as a control group. ELISA method was used to detect the serum level of GPI, and according to clinical features and laboratory test, all the patients including 525 RA patients, the other patients including osteoarthritis (OA), 134 cases of seronegative spine joint disease (SpA), 104 cases of systemic lupus erythematosus (SLE), 31 cases of primary Sjogren syndrome (pSS), 24 cases of gout arthritis (GA), 22 cases of other connective tissue diseases (including polymyalgia rheumatica, dermatomyositis, systemic sclerosis, adult Still disease) and 46 cases of other diseases (including 165 cases of osteoporosis, avascular necrosis of the femoral head, traumatic osteomyelitis, bone and joint disease, juvenile rheumatoid arthritis, tumor). The diagnostic values of GPI were assessed, and the differences between the GPI positive and negative groups of the RA patients in clinical characteristics, disease activity, severity and inflammatory index analyzed. The positive rate of serum GPI in the patients with RA was 55.4%, contrasting to other autoimmune diseases (14.3%) and healthy controls (7.78%)(P<0.001). Compared with the OA and SpA patients, the RA group was increased more significantly, and the difference was statistically significant (P<0.001). The diagnostic value of GPI alone for RA was 0.39 mg/L, the sensitivity was 54.2%, and specificity was 87.3%. The positive rate of GPI in RF negative patients was 36.1%; the positive rate of GPI in anti-CCP antibody negative patients was 34.2%; the positive rate of GPI in RF and anti-CCP antibody negative patients was 24.1%. The level of GPI had positive correlation (P<0.05) with ESR, RF, anti

  10. Survival of glucose phosphate isomerase null somatic cells and germ cells in adult mouse chimaeras

    Directory of Open Access Journals (Sweden)

    Margaret A. Keighren

    2016-05-01

    Full Text Available The mouse Gpi1 gene encodes the glycolytic enzyme glucose phosphate isomerase. Homozygous Gpi1−/− null mouse embryos die but a previous study showed that some homozygous Gpi1−/− null cells survived when combined with wild-type cells in fetal chimaeras. One adult female Gpi1−/−↔Gpi1c/c chimaera with functional Gpi1−/− null oocytes was also identified in a preliminary study. The aims were to characterise the survival of Gpi1−/− null cells in adult Gpi1−/−↔Gpi1c/c chimaeras and determine if Gpi1−/− null germ cells are functional. Analysis of adult Gpi1−/−↔Gpi1c/c chimaeras with pigment and a reiterated transgenic lineage marker showed that low numbers of homozygous Gpi1−/− null cells could survive in many tissues of adult chimaeras, including oocytes. Breeding experiments confirmed that Gpi1−/− null oocytes in one female Gpi1−/−↔Gpi1c/c chimaera were functional and provided preliminary evidence that one male putative Gpi1−/−↔Gpi1c/c chimaera produced functional spermatozoa from homozygous Gpi1−/− null germ cells. Although the male chimaera was almost certainly Gpi1−/−↔Gpi1c/c, this part of the study is considered preliminary because only blood was typed for GPI. Gpi1−/− null germ cells should survive in a chimaeric testis if they are supported by wild-type Sertoli cells. It is also feasible that spermatozoa could bypass a block at GPI, but not blocks at some later steps in glycolysis, by using fructose, rather than glucose, as the substrate for glycolysis. Although chimaera analysis proved inefficient for studying the fate of Gpi1−/− null germ cells, it successfully identified functional Gpi1−/− null oocytes and revealed that some Gpi1−/− null cells could survive in many adult tissues.

  11. B cell depletion reduces the number of autoreactive T helper cells and prevents glucose-6-phosphate isomerase-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Oliver Frey

    Full Text Available The therapeutic benefit of B cell depletion in patients with rheumatoid arthritis has provided proof of concept that B cells are relevant for the pathogenesis of arthritis. It remains unknown which B cell effector functions contribute to the induction or chronification of arthritis. We studied the clinical and immunological effects of B cell depletion in glucose-6-phosphate isomerase-induced arthritis. We targeted CD22 to deplete B cells. Mice were depleted of B cells before or after immunization with glucose-6-phosphate isomerase (G6PI. The clinical and histological effects were studied. G6PI-specific antibody responses were measured by ELISA. G6PI-specific T helper (Th cell responses were assayed by polychromatic flow cytometry. B cell depletion prior to G6PI-immunization prevented arthritis. B cell depletion after immunization ameliorated arthritis, whereas B cell depletion in arthritic mice was ineffective. Transfer of antibodies from arthritic mice into B cell depleted recipients did not reconstitute arthritis. B cell depleted mice harbored much fewer G6PI-specific Th cells than control animals. B cell depletion prevents but does not cure G6PI-induced arthritis. Arthritis prevention upon B cell depletion is associated with a drastic reduction in the number of G6PI-specific effector Th cells.

  12. Characterisation of Aspergillus niger phosphoglucose isomerase. Use for quantitative determination of erythrose 4-phosphate

    NARCIS (Netherlands)

    Ruijter, G.J.G.; Visser, J.

    1999-01-01

    Phosphoglucose isomerase (PGI) was purified from Aspergillus niger and the in vitro kinetic properties of the enzyme were related to its functioning in vivo. A new assay method was developed to study the forward reaction making use of mannitol 1-P dehydrogenase as the coupling enzyme. In this simple

  13. Identification of a novel tandemly repeated sequence present in an intron of the glucose phosphate isomerase (GPI) gene in mouse and man

    Energy Technology Data Exchange (ETDEWEB)

    Faik, P.; Walker, J.I.H.; Morgan, M.J. (Guy' s Hospital, London (United Kingdom))

    1994-05-01

    Glucose phosphate isomerase (GPI, glucose 6-phosphate ketol-isomerase, EC 5.3.1.9) is a housekeeping gene expressed in all tissues and organisms that utilize glycolysis and gluconeogenesis. Deficiency in humans leads to a rare form of nonspherocytic hemolytic anemia. The authors have isolated a 3.2-kb mouse cDNA containing glucose phosphate isomerase coding sequence and a 2.1-kb intronic sequence and a large proportion of the human gene (approaching 55 kb) in four phage [lambda] recombinants. A 4-kb intronic fragment from the human gene showing homology to the mouse intronic sequence has been isolated and sequenced. The fragment contains approximately 1.5 kb of sequence that is composited of 30 repeat units of a novel 50-kb tandemly repeated unit. The mouse intronic sequence contains 18 similar units. The human consensus sequence differs from the mouse consensus sequence at only 7 positions out of 50 (positions 16, 26, 27, 42, 43, 47, and 48). A probe containing the repeat element detects polymorphisms, specific to glucose phosphate isomerase, in human DNA. The repeat element does not appear to be present at any other loci in human DNA. The conservation of this intronic repeat element extends to pig and Chinese hamster. 26 refs., 4 figs.

  14. [Significance of antibodies to the citrullinated glucose-6-phosphate isomerase peptides in rheumatoid arthritis].

    Science.gov (United States)

    Wu, D; Sun, L; Li, C H; Yang, L; Zhao, J X; Liu, X Y

    2016-12-18

    To detect the anti-citrullinated glucose-6-phosphate isomerase (GPI) 70-88 peptide antibody (anti-C-GPI(70-88) antibody), anti-citrullinated GPI 435-453 peptide antibody (anti-C-GPI(435-453) antibody), anti-GPI 70-88 peptide antibody (anti-GPI(70-88) antibody) and anti-GPI 435-453 peptide antibody(anti-GPI(435-453) antibody) in the serum of rheumatoid arthritis (RA) patients, and examine the diagnostic values of the anti-C-GPI peptide antibodies in RA. The anti-C-GPI(70-88) antibody, anti-C-GPI(435-453) antibody, anti-GPI(70-88) antibody and anti-GPI(435-453) antibody were detected by enzyme-linked immunosorbent assay (ELISA) in 191 RA patients, 129 other rheumatic diseases and 74 healthy controls. The clinical and laboratory data of the patients with RA were collected, and the values of anti-C-GPI peptide antibodies in the diagnosis of RA and the relationships of anti-C-GPI peptide antibodies with the clinical and laboratory parameters analyzed. (1) The mean titers of the anti-C-GPI(70-88) antibody and the anti-C-GPI(435-453) antibody in the RA patients (respectively, 68.71 ± 4.20 and 51.78 ± 3.13) were significantly higher than those with other rheumatic diseases and healthy individuals (P <0.05). However, the mean titers of the anti-GPI(70-88) antibody and anti-GPI(435-453) antibody in the RA patients were similar to those with other rheumatic diseases and healthy individuals. (2) The diagnostic sensitivity and specificity of the anti-C-GPI(70-88) antibody for RA were 41.88% and 84.50% respectively; and the diagnostic sensitivity and specificity of the anti-C-GPI(435-453) antibody for RA were 46.05% and 86.05% respectively. The sensitivity of combined detection of the two anti-C-GPI peptide antibodies was 50.79%, and the specificity was 81.40%. (3) The positive rates of the anti-C-GPI(70-88) antibody and the anti-C-GPI(435-453) antibody were 35% and 45% respectively in those patients with negative anti-cyclic citrullinated peptide antibody, anti

  15. Competitive inhibitors of type B ribose 5-phosphate isomerases: design, synthesis and kinetic evaluation of new D-allose and D-allulose 6-phosphate derivatives.

    Science.gov (United States)

    Mariano, Sandrine; Roos, Annette K; Mowbray, Sherry L; Salmon, Laurent

    2009-05-12

    This study reports syntheses of d-allose 6-phosphate (All6P), D-allulose (or D-psicose) 6-phosphate (Allu6P), and seven D-ribose 5-phosphate isomerase (Rpi) inhibitors. The inhibitors were designed as analogues of the 6-carbon high-energy intermediate postulated for the All6P to Allu6P isomerization reaction (Allpi activity) catalyzed by type B Rpi from Escherichiacoli (EcRpiB). 5-Phospho-D-ribonate, easily obtained through oxidative cleavage of either All6P or Allu6P, led to the original synthon 5-dihydrogenophospho-D-ribono-1,4-lactone from which the other inhibitors could be synthesized through nucleophilic addition in one step. Kinetic evaluation on Allpi activity of EcRpiB shows that two of these compounds, 5-phospho-D-ribonohydroxamic acid and N-(5-phospho-D-ribonoyl)-methylamine, indeed behave as new efficient inhibitors of EcRpiB; further, 5-phospho-D-ribonohydroxamic acid was demonstrated to have competitive inhibition. Kinetic evaluation on Rpi activity of both EcRpiB and RpiB from Mycobacterium tuberculosis (MtRpiB) shows that several of the designed 6-carbon high-energy intermediate analogues are new competitive inhibitors of both RpiBs. One of them, 5-phospho-D-ribonate, not only appears as the strongest competitive inhibitor of a Rpi ever reported in the literature, with a K(i) value of 9 microM for MtRpiB, but also displays specific inhibition of MtRpiB versus EcRpiB.

  16. Enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are good markers to predict human sperm freezability.

    Science.gov (United States)

    Jiang, Xu-ping; Wang, Shang-qian; Wang, Wei; Xu, Yang; Xu, Zhen; Tang, Jing-yuan; Sun, Hong-yong; Wang, Zeng-jun; Zhang, Wei

    2015-08-01

    Sperm cryopreservation is a method to preserve sperm samples for a long period. However, the fertility of sperm decreases markedly after freezing and thawing in a certain amount of samples. The aim of the present study was to find useful and reliable predictive biomarkers of the capacity to withstand the freeze-thawing process in human ejaculates. Previous researches have shown that enolase1 (ENO1) and glucose-6-phosphate isomerase (GPI) are closely related to spermatozoa quality. We chose the two proteins as probable markers of sperm freezing capacity. Ejaculate samples were separated into good freezability ejaculates (GFE) and poor freezability ejaculates (PFE) according to progressive motility of the sperm after thawing. Before starting cryopreservation protocols, the two proteins from each group were compared using western blot analysis and immunofluorescence. Results showed that normalized content of ENO1 (P<0.05) and GPI (P<0.01) were both significantly higher in GFE than in PFE. The association of ENO1 and GPI with postthaw sperm viability and motility was confirmed using Pearson's linear correlation. In conclusion, ENO1 and GPI can be used as markers of human sperm freezability before starting the cryopreservation procedure. Copyright © 2015. Published by Elsevier Inc.

  17. Glucose-6-phosphate isomerase promotes the proliferation and inhibits the apoptosis in fibroblast-like synoviocytes in rheumatoid arthritis.

    Science.gov (United States)

    Zong, Ming; Lu, Tianbao; Fan, Shasha; Zhang, Hui; Gong, Ruhan; Sun, Lishan; Fu, Zhiyan; Fan, Lieying

    2015-04-14

    Fibroblast-like synoviocytes (FLS) play an important role in the pathogenesis of rheumatoid arthritis (RA). This study aimed to investigate the role of glucose 6-phosphate isomerase (GPI) in the proliferation of RA-FLS. The distribution of GPI in synovial tissues from RA and osteoarthritis (OA) patients was examined by immunohistochemical analysis. FLS were isolated and cultured, cellular GPI level was detected by real-time polymerase chain reaction (PCR) and Western blot analysis, and secreted GPI was detected by Western blot and enzyme-linked immunosorbent assay (ELISA). Doxorubicin (Adriamycin, ADR) was used to induce apoptosis. Cell proliferation was determined by MTS assay. Flow cytometry was used to detect cell cycle and apoptosis. Secreted pro-inflammatory cytokines were measured by ELISA. GPI was abundant in RA-FLS and was an autocrine factor of FLS. The proliferation of both RA and OA FLS was increased after GPI overexpression, but was decreased after GPI knockdown. Meanwhile, exogenous GPI stimulated, while GPI antibody inhibited, FLS proliferation. GPI positively regulated its receptor glycoprotein 78 and promoted G1/S phase transition via extracellular regulated protein kinases activation and Cyclin D1 upregulation. GPI inhibited ADR-induced apoptosis accompanied by decreased Fas and increased Survivin in RA FLS. Furthermore, GPI increased the secretion of tumor necrosis factor-α and interleukin-1β by FLS. GPI plays a pathophysiologic role in RA by stimulating the proliferation, inhibiting the apoptosis, and increasing pro-inflammatory cytokine secretion of FLS.

  18. Peptidylarginine deiminase type 4 deficiency reduced arthritis severity in a glucose-6-phosphate isomerase-induced arthritis model.

    Science.gov (United States)

    Seri, Yu; Shoda, Hirofumi; Suzuki, Akari; Matsumoto, Isao; Sumida, Takayuki; Fujio, Keishi; Yamamoto, Kazuhiko

    2015-08-21

    Peptidyl arginine deiminase 4 (PAD4) is an enzyme that is involved in protein citrullination, and is a target for anti-citrullinated peptide antibodies (ACPAs) in rheumatoid arthritis (RA). Genetic polymorphisms in the PADI4 gene encoding PAD4 are associated with RA susceptibility. We herein analyzed the roles of PADI4 in inflammatory arthritis using a glucose-6-phosphate isomerase (GPI)-induced arthritis (GIA) model in Padi4 knockout (KO) mice. Arthritis severity, serum anti-GPI antibody titers, and IL-6 concentrations were significantly reduced in Padi4 KO mice. The frequency of Th17 cells was decreased in GPI-immunized Padi4 KO mice, whereas WT and Padi4-deficient naïve CD4(+) T cells displayed the same efficiencies for Th17 cell differentiation in vitro. In addition, the numbers of myeloid lineage cells were reduced with the increased expression of pro-apoptotic genes in GPI-immunized Padi4 KO mice. Furthermore, the survival of Padi4-deficient neutrophils was impaired in vitro. Our results suggest that PADI4 exacerbates arthritis with diverse immunological modifications.

  19. Glucose-6-phosphate isomerase is an endogenous inhibitor to myofibril-bound serine proteinase of crucian carp (Carassius auratus).

    Science.gov (United States)

    Sun, Le-Chang; Zhou, Li-Gen; Du, Cui-Hong; Cai, Qiu-Feng; Hara, Kenji; Su, Wen-Jin; Cao, Min-Jie

    2009-06-24

    Glucose-6-phosphate isomerase (GPI) was purified to homogeneity from the skeletal muscle of crucian carp ( Carassius auratus ) by ammonium sulfate fractionation, column chromatographies of Q-Sepharose, SP-Sepharose, and Superdex 200 with a yield of 8.0%, and purification folds of 468. The molecular mass of GPI was 120 kDa as estimated by gel filtration, while on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two subunits (55 and 65 kDa) were identified, suggesting that it is a heterodimer. Interestingly, GPI revealed specific inhibitory activity toward a myofibril-bound serine proteinase (MBSP) from crucian carp, while no inhibitory activity was identified toward other serine proteinases, such as white croaker MBSP and crucian carp trypsin. Kinetic analysis showed that GPI is a competitive inhibitor toward MBSP, and the K(i) was 0.32 microM. Our present results indicated that the multifunctional protein GPI is an endogenous inhibitor to MBSP and may play a significant role in the regulation of muscular protein metabolism in vivo.

  20. Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37.

    Science.gov (United States)

    Kainulainen, Veera; Loimaranta, Vuokko; Pekkala, Anna; Edelman, Sanna; Antikainen, Jenni; Kylväjä, Riikka; Laaksonen, Maiju; Laakkonen, Liisa; Finne, Jukka; Korhonen, Timo K

    2012-05-01

    Glutamine synthetase (GS) and glucose-6-phosphate isomerase (GPI) were identified as novel adhesive moonlighting proteins of Lactobacillus crispatus ST1. Both proteins were bound onto the bacterial surface at acidic pHs, whereas a suspension of the cells to pH 8 caused their release into the buffer, a pattern previously observed with surface-bound enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. crispatus. The pH shift was associated with a rapid and transient increase in cell wall permeability, as measured by cell staining with propidium iodide. A gradual increase in the release of the four moonlighting proteins was also observed after the treatment of L. crispatus ST1 cells with increasing concentrations of the antimicrobial cationic peptide LL-37, which kills bacteria by disturbing membrane integrity and was here observed to increase the cell wall permeability of L. crispatus ST1. At pH 4, the fusion proteins His(6)-GS, His(6)-GPI, His(6)-enolase, and His(6)-GAPDH showed localized binding to cell division septa and poles of L. crispatus ST1 cells, whereas no binding to Lactobacillus rhamnosus GG was detected. Strain ST1 showed a pH-dependent adherence to the basement membrane preparation Matrigel. Purified His(6)-GS and His(6)-GPI proteins bound to type I collagen, and His(6)-GS also bound to laminin, and their level of binding was higher at pH 5.5 than at pH 6.5. His(6)-GS also expressed a plasminogen receptor function. The results show the strain-dependent surface association of moonlighting proteins in lactobacilli and that these proteins are released from the L. crispatus surface after cell trauma, under conditions of alkaline stress, or in the presence of the antimicrobial peptide LL-37 produced by human cells.

  1. An Arabidopsis thaliana knock-out mutant of the chloroplast triose phosphate/phosphate translocator is severely compromised only when starch synthesis, but not starch mobilisation is abolished

    DEFF Research Database (Denmark)

    Schneider, Anja; Häusler, Rainer E; Kolukisaoglu, Uner

    2002-01-01

    )-specific transport activities are reduced to below 5% of the wild type. Analyses of diurnal variations in the contents of starch, soluble sugars and phosphorylated intermediates combined with 14CO2 labelling studies showed, that the lack of TP export for cytosolic sucrose biosynthesis was almost fully compensated...... by both continuous accelerated starch turnover and export of neutral sugars from the stroma throughout the day. The utilisation of glucose 6-phosphate (generated from exported glucose) rather than TP for sucrose biosynthesis in the light bypasses the key regulatory step catalysed by cytosolic fructose 1...

  2. Development of novel sugar isomerases by optimization of active sites in phosphosugar isomerases for monosaccharides.

    Science.gov (United States)

    Yeom, Soo-Jin; Kim, Yeong-Su; Oh, Deok-Kun

    2013-02-01

    Phosphosugar isomerases can catalyze the isomerization of not only phosphosugar but also of monosaccharides, suggesting that the phosphosugar isomerases can be used as sugar isomerases that do not exist in nature. Determination of active-site residues of phosphosugar isomerases, including ribose-5-phosphate isomerase from Clostridium difficile (CDRPI), mannose-6-phosphate isomerase from Bacillus subtilis (BSMPI), and glucose-6-phosphate isomerase from Pyrococcus furiosus (PFGPI), was accomplished by docking of monosaccharides onto the structure models of the isomerases. The determinant residues, including Arg133 of CDRPI, Arg192 of BSMPI, and Thr85 of PFGPI, were subjected to alanine substitutions and found to act as phosphate-binding sites. R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI displayed the highest catalytic efficiencies for monosaccharides at each position. These residues exhibited 1.8-, 3.5-, and 4.9-fold higher catalytic efficiencies, respectively, for the monosaccharides than the wild-type enzyme. However, the activities of these 3 variant enzymes for phosphosugars as the original substrates disappeared. Thus, R133D of CDRPI, R192 of BSMPI, and T85Q of PFGPI are no longer phosphosugar isomerases; instead, they are changed to a d-ribose isomerase, an l-ribose isomerase, and an l-talose isomerase, respectively. In this study, we used substrate-tailored optimization to develop novel sugar isomerases which are not found in nature based on phosphosugar isomerases.

  3. Identification of human basic fetoprotein as glucose-6-phosphate isomerase by using N- and C-terminal sequence tags and terminal tag database.

    Science.gov (United States)

    Kuyama, Hiroki; Yoshizawa, Akiyasu C; Nakajima, Chihiro; Hosako, Mutsumi; Tanaka, Koichi

    2015-08-10

    Human basic fetoprotein (BFP), found in fetal serum and tissue extracts as well as in extracts of various cancer tissues, has long been known as a marker protein for cancers; however, the primary sequence has not yet been reported. This paper describes the identification of BFP using the N- and C-terminal amino acid sequence tags (Ac-AALTRDPQFQ and QQREARVQ, respectively) clarified by mass spectrometry-based methods, and a terminal tag database (ProteinCarta). In this study, BFP was identified as glucose-6-phosphate isomerase (G6PI_HUMAN). Copyright © 2015 Elsevier B.V. All rights reserved.

  4. The Sugar Model: Autocatalytic Activity of the Triose Ammonia Reaction

    Science.gov (United States)

    Weber, Arthur L.

    2007-04-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose ammonia reaction product on the kinetics of a second identical triose ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate of formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  5. Activation of Invariant NKT cells with glycolipid ligand α-galactosylceramide ameliorates glucose-6-phosphate isomerase peptide-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Masanobu Horikoshi

    Full Text Available OBJECTIVE: Invariant natural killer T (iNKT cells regulate collagen-induced arthritis (CIA when activated by their potent glycolipid ligand, alpha-galactosylceramide (α-GalCer. Glucose-6-phosphate isomerase (GPI-induced arthritis is a closer model of human rheumatoid arthritis based on its association with CD4+ T cells and cytokines such as TNF-α and IL-6 than CIA. Dominant T cell epitope peptide of GPI (GPI325-339 can induce arthritis similar to GPI-induced arthritis. In this study, we investigated the roles of activation of iNKT cells by α-GalCer in GPI peptide-induced arthritis. METHODS: Arthritis was induced in susceptible DBA1 mice with GPI peptide and its severity was assessed clinically. The arthritic mice were treated with either the vehicle (DMSO or α-GalCer. iNKT cells were detected in draining lymph nodes (dLNs by flow cytometry, while serum anti-GPI antibody levels were measured by enzyme-linked immunosorbent assay. To evaluate GPI peptide-specific cytokine production from CD4+ T cells, immunized mice were euthanized and dLN CD4+ cells were re-stimulated by GPI-peptide in the presence of antigen-presenting cells. RESULTS: α-GalCer induced iNKT cell expansion in dLNs and significantly decreased the severity of GPI peptide-induced arthritis. In α-GalCer-treated mice, anti-GPI antibody production (total IgG, IgG1, IgG2b and IL-17, IFN-γ, IL-2, and TNF-α produced by GPI peptide-specific T cells were significantly suppressed at day 10. Moreover, GPI-reactive T cells from mice immunized with GPI and α-GalCer did not generate any cytokines even when these cells were co-cultured with APC from mice immunized with GPI alone. In vitro depletion of iNKT cells did not alter the suppressive effect of α-GalCer on CD4+ T cells. CONCLUSION: α-GalCer significantly suppressed GPI peptide-induced arthritis through the suppression of GPI-specific CD4+ T cells.

  6. The 2.2 Å Resolution Structure of RpiB/AlsB from Escherichia coli Illustrates a New Approach to the Ribose-5-phosphate Isomerase Reaction

    Science.gov (United States)

    Zhang, Rong-Guang; Andersson, C. Evalena; Skarina, Tatiana; Evdokimova, Elena; Edwards, Aled M.; Joachimiak, Andrzej; Savchenko, Alexei; Mowbray, Sherry L.

    2009-01-01

    Ribose-5-phosphate isomerases (EC 5.3.1.6) interconvert ribose 5-phosphate and ribulose 5-phosphate. This reaction permits the synthesis of ribose from other sugars, as well as the recycling of sugars from nucleotide breakdown. Two unrelated types of enzyme can catalyze the reaction. The most common, RpiA, is present in almost all organisms (including Escherichia coli), and is highly conserved. The second type, RpiB, is present in some bacterial and eukaryotic species and is well conserved. In E. coli, RpiB is sometimes referred to as AlsB, because it can take part in the metabolism of the rare sugar, allose, as well as the much more common ribose sugars. We report here the structure of RpiB/AlsB from E. coli, solved by multi-wavelength anomalous diffraction (MAD) phasing, and refined to 2.2 Å resolution. RpiB is the first structure to be solved from pfam02502 (the RpiB/LacAB family). It exhibits a Rossmann-type αβα-sandwich fold that is common to many nucleotide-binding proteins, as well as other proteins with different functions. This structure is quite distinct from that of the previously solved RpiA; although both are, to some extent, based on the Rossmann fold, their tertiary and quaternary structures are very different. The four molecules in the RpiB asymmetric unit represent a dimer of dimers. Active-site residues were identified at the interface between the subunits, such that each active site has contributions from both subunits. Kinetic studies indicate that RpiB is nearly as efficient as RpiA, despite its completely different catalytic machinery. The sequence and structural results further suggest that the two homologous components of LacAB (galactose-6-phosphate isomerase) will compose a bi-functional enzyme; the second activity is unknown. PMID:14499611

  7. The 2.2 A resolution structure of RpiB/AlsB from Escherichia coli illustrates a new approach to the ribose-5-phosphate isomerase reaction.

    Science.gov (United States)

    Zhang, Rong-Guang; Andersson, C Evalena; Skarina, Tatiana; Evdokimova, Elena; Edwards, Aled M; Joachimiak, Andrzej; Savchenko, Alexei; Mowbray, Sherry L

    2003-10-03

    Ribose-5-phosphate isomerases (EC 5.3.1.6) interconvert ribose 5-phosphate and ribulose 5-phosphate. This reaction permits the synthesis of ribose from other sugars, as well as the recycling of sugars from nucleotide breakdown. Two unrelated types of enzyme can catalyze the reaction. The most common, RpiA, is present in almost all organisms (including Escherichia coli), and is highly conserved. The second type, RpiB, is present in some bacterial and eukaryotic species and is well conserved. In E.coli, RpiB is sometimes referred to as AlsB, because it can take part in the metabolism of the rare sugar, allose, as well as the much more common ribose sugars. We report here the structure of RpiB/AlsB from E.coli, solved by multi-wavelength anomalous diffraction (MAD) phasing, and refined to 2.2A resolution. RpiB is the first structure to be solved from pfam02502 (the RpiB/LacAB family). It exhibits a Rossmann-type alphabetaalpha-sandwich fold that is common to many nucleotide-binding proteins, as well as other proteins with different functions. This structure is quite distinct from that of the previously solved RpiA; although both are, to some extent, based on the Rossmann fold, their tertiary and quaternary structures are very different. The four molecules in the RpiB asymmetric unit represent a dimer of dimers. Active-site residues were identified at the interface between the subunits, such that each active site has contributions from both subunits. Kinetic studies indicate that RpiB is nearly as efficient as RpiA, despite its completely different catalytic machinery. The sequence and structural results further suggest that the two homologous components of LacAB (galactose-6-phosphate isomerase) will compose a bi-functional enzyme; the second activity is unknown.

  8. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.

    Science.gov (United States)

    Zhou, Hang; Cheng, Jing-Sheng; Wang, Benjamin L; Fink, Gerald R; Stephanopoulos, Gregory

    2012-11-01

    Xylose is the main pentose and second most abundant sugar in lignocellulosic feedstocks. To improve xylose utilization, necessary for the cost-effective bioconversion of lignocellulose, several metabolic engineering approaches have been employed in the yeast Saccharomyces cerevisiae. In this study, we describe the rational metabolic engineering of a S. cerevisiae strain, including overexpression of the Piromyces xylose isomerase gene (XYLA), Pichia stipitis xylulose kinase (XYL3) and genes of the non-oxidative pentose phosphate pathway (PPP). This engineered strain (H131-A3) was used to initialize a three-stage process of evolutionary engineering, through first aerobic and anaerobic sequential batch cultivation followed by growth in a xylose-limited chemostat. The evolved strain H131-A3-AL(CS) displayed significantly increased anaerobic growth rate (0.203±0.006 h⁻¹) and xylose consumption rate (1.866 g g⁻¹ h⁻¹) along with high ethanol conversion yield (0.41 g/g). These figures exceed by a significant margin any other performance metrics on xylose utilization and ethanol production by S. cerevisiae reported to-date. Further inverse metabolic engineering based on functional complementation suggested that efficient xylose assimilation is attributed, in part, to the elevated expression level of xylose isomerase, which was accomplished through the multiple-copy integration of XYLA in the chromosome of the evolved strain. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph

    International Nuclear Information System (INIS)

    Bennett, R. Kyle; Gonzalez, Jacqueline E.; Whitaker, W. Brian; Antoniewicz, Maciek R.; Papoutsakis, Eleftherios T.

    2017-01-01

    Synthetic methylotrophy aims to develop non-native methylotrophic microorganisms to utilize methane or methanol to produce chemicals and biofuels. We report two complimentary strategies to further engineer a previously engineered methylotrophic E. coli strain for improved methanol utilization. First, we demonstrate improved methanol assimilation in the presence of small amounts of yeast extract by expressing the non-oxidative pentose phosphate pathway (PPP) from Bacillus methanolicus. Second, we demonstrate improved co-utilization of methanol and glucose by deleting the phosphoglucose isomerase gene (pgi), which rerouted glucose carbon flux through the oxidative PPP. Both strategies led to significant improvements in methanol assimilation as determined by 13 C-labeling in intracellular metabolites. As a result, introduction of an acetone-formation pathway in the pgi-deficient methylotrophic E. coli strain led to improved methanol utilization and acetone titers during glucose fed-batch fermentation.

  10. Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph.

    Science.gov (United States)

    Bennett, R Kyle; Gonzalez, Jacqueline E; Whitaker, W Brian; Antoniewicz, Maciek R; Papoutsakis, Eleftherios T

    2018-01-01

    Synthetic methylotrophy aims to develop non-native methylotrophic microorganisms to utilize methane or methanol to produce chemicals and biofuels. We report two complimentary strategies to further engineer a previously engineered methylotrophic E. coli strain for improved methanol utilization. First, we demonstrate improved methanol assimilation in the presence of small amounts of yeast extract by expressing the non-oxidative pentose phosphate pathway (PPP) from Bacillus methanolicus. Second, we demonstrate improved co-utilization of methanol and glucose by deleting the phosphoglucose isomerase gene (pgi), which rerouted glucose carbon flux through the oxidative PPP. Both strategies led to significant improvements in methanol assimilation as determined by 13 C-labeling in intracellular metabolites. Introduction of an acetone-formation pathway in the pgi-deficient methylotrophic E. coli strain led to improved methanol utilization and acetone titers during glucose fed-batch fermentation. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  11. Patients with inflammatory arthritic diseases harbor elevated serum and synovial fluid levels of free and immune-complexed glucose-6-phosphate isomerase (G6PI)

    DEFF Research Database (Denmark)

    Schaller, Monica; Stohl, William; Benoit, Vivian

    2006-01-01

    In K/BxN mice, anti-glucose-6-phosphate isomerase (G6PI) IgG antibodies (Abs) cause joint-specific inflammation and destruction. Anti-G6PI Abs are also present in humans with inflammatory arthritis, especially among patients with rheumatoid arthritis (RA). A contributing factor to the induction...... of such autoantibodies may be upregulated expression of the corresponding antigen G6PI in affected tissues and/or increased levels of G6PI in the circulation. To determine G6PI levels and the presence of free G6PI and/or G6PI-containing immune complexes in sera and synovial fluids (SF) of patients with different...

  12. Disrupting glucose-6-phosphate isomerase fully suppresses the "Warburg effect" and activates OXPHOS with minimal impact on tumor growth except in hypoxia.

    Science.gov (United States)

    de Padua, Monique Cunha; Delodi, Giulia; Vučetić, Milica; Durivault, Jérôme; Vial, Valérie; Bayer, Pascale; Noleto, Guilhermina Rodrigues; Mazure, Nathalie M; Ždralević, Maša; Pouysségur, Jacques

    2017-10-20

    As Otto Warburg first observed, cancer cells largely favor fermentative glycolysis for growth even under aerobic conditions. This energy paradox also extends to rapidly growing normal cells indicating that glycolysis is optimal for fast growth and biomass production. Here we further explored this concept by genetic ablation of fermentative glycolysis in two fast growing cancer cell lines: human colon adenocarcinoma LS174T and B16 mouse melanoma. We disrupted the upstream glycolytic enzyme, glucose-6-phosphate isomerase ( GPI ), to allow cells to re-route glucose-6-phosphate flux into the pentose-phosphate branch. Indeed, GPI -KO severely reduced glucose consumption and suppressed lactic acid secretion, which reprogrammed these cells to rely on oxidative phosphorylation and mitochondrial ATP production to maintain viability. In contrast to previous pharmacological inhibition of glycolysis that suppressed tumor growth, GPI -KO surprisingly demonstrated only a moderate impact on normoxic cell growth. However, hypoxic (1% O 2 ) cell growth was severely restricted. Despite in vitro growth restriction under hypoxia, tumor growth rates in vivo were reduced less than 2-fold for both GPI -KO cancer cell lines. Combined our results indicate that exclusive use of oxidative metabolism has the capacity to provide metabolic precursors for biomass synthesis and fast growth. This work and others clearly indicate that metabolic cancer cell plasticity poses a strong limitation to anticancer strategies.

  13. Purification, crystallization and preliminary crytallographic analysis of phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus

    NARCIS (Netherlands)

    Akerboom, A.P.; Turnbull, A.P.; Hargreaves, D.; Fischer, M.; Geus, de D.; Sedelnikova, S.E.; Berrisford, J.M.; Baker, P.J.; Verhees, C.H.; Oost, van der J.; Rice, D.W.

    2003-01-01

    The glycolytic enzyme phosphoglucose isomerase catalyses the reversible isomerization of glucose 6-phosphate to fructose 6-phosphate. The phosphoglucose isomerase from the hyperthermophilic archaeon Pyrococcus furiosus, which shows no sequence similarity to any known bacterial or eukaryotic

  14. Prebiotic synthesis of phosphoenol pyruvate by α-phosphorylation-controlled triose glycolysis

    Science.gov (United States)

    Coggins, Adam J.; Powner, Matthew W.

    2017-04-01

    Phosphoenol pyruvate is the highest-energy phosphate found in living organisms and is one of the most versatile molecules in metabolism. Consequently, it is an essential intermediate in a wide variety of biochemical pathways, including carbon fixation, the shikimate pathway, substrate-level phosphorylation, gluconeogenesis and glycolysis. Triose glycolysis (generation of ATP from glyceraldehyde 3-phosphate via phosphoenol pyruvate) is among the most central and highly conserved pathways in metabolism. Here, we demonstrate the efficient and robust synthesis of phosphoenol pyruvate from prebiotic nucleotide precursors, glycolaldehyde and glyceraldehyde. Furthermore, phosphoenol pyruvate is derived within an α-phosphorylation controlled reaction network that gives access to glyceric acid 2-phosphate, glyceric acid 3-phosphate, phosphoserine and pyruvate. Our results demonstrate that the key components of a core metabolic pathway central to energy transduction and amino acid, sugar, nucleotide and lipid biosyntheses can be reconstituted in high yield under mild, prebiotically plausible conditions.

  15. Synthesis and modifications of heterocyclic derivatives of D-arabinose: potential inhibitors of glucose-6-phosphate isomerase and glucosamine-6-phosphate synthase; Sintese e modificacoes de derivados heterociclicos de d-arabinose: potenciais inibidores de glicose-6-fosfato isomerase e de glicosamina-6-fosfato sintase

    Energy Technology Data Exchange (ETDEWEB)

    Viana, Renato Marcio Ribeiro; Prado, Maria Auxiliadora Fontes; Alves, Ricardo Jose [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Fac. de Farmacia. Dept. de Produtos Farmaceuticos]. E-mail: ricardodylan@farmacia.ufmg.br

    2008-07-01

    The synthesis of -5-(D-arabino-1,2,3,4-tetrahydroxybutyl)tetrazole and -2-(d-arabino-1,2,3,4-tetra-acetoxybutyl)-5-methyl-1,3,4-oxadiazole from d-arabinose is described. Attempts at removing the protecting groups of the oxadiazole derivative were unsuccessful, leading to products resulting from the opening of the oxadiazole ring. The unprotected tetrazole derivative was selectively phosphorylated at the primary hydroxyl group with diethyl phosphoryl chloride. The resulting 5-[d-arabino-4-(diethylphosphoryloxy)-1,2,3-trihydroxybutyl]tetrazole is a protected form of a potential inhibitor of the enzymes glucose-6-phosphate isomerase and glucosamine synthase. (author)

  16. Biotransformation of fructose to allose by one-pot reaction usingFlavonifractor plautiiD-allulose 3-epimerase andClostridium thermocellumribose5-phosphate isomerase.

    Science.gov (United States)

    Lee, Tae-Eui; Shin, Kyung-Chul; Oh, Deok-Kun

    2018-01-11

    D-Allose is a potential medical sugar because it has anti-cancer, anti-hypertensive, anti-inflammatory, anti-oxidative, and immunosuppressant activities. Allose production from fructose as a cheap substrate was performed byone-pot reaction using Flavonifractor plautii D-allulose 3-epimerase (FP-DAE) and Clostridium thermocellumribose 5-phosphate isomerase (CT-RPI). The optimal reaction conditions for allose production were pH 7.5, 60°C,0.1 g/l FP-DAE, 12 g/l CT-RPI, and 600 g/l fructose in the presence of 1 mM Co²⁺. Under these optimized conditions, FP-DAE and CT-RPIproduced79 g/l allose for 2 h, with a conversion yield of 13%.This is the first biotransformation of fructose to allose by a two-enzyme system.The productionof allose by one-pot reaction usingFP-DAE and CT-RPIwas 1.3-fold higher than that by two-stepreactionusing the two enzymes.

  17. Efficacy of combination treatment with fingolimod (FTY720) plus pathogenic autoantigen in a glucose-6-phosphate isomerase peptide (GPI325-339)-induced arthritis mouse model.

    Science.gov (United States)

    Yoshida, Yuya; Tsuji, Takumi; Watanabe, Sayaka; Matsushima, Ayane; Matsushima, Yuki; Banno, Rie; Fujita, Tetsuro; Kohno, Takeyuki

    2013-01-01

    Fingolimod (FTY720) is known to have a significant therapeutic effect in various autoimmune disease models. Here, we examined FTY720 in a model of rheumatoid arthritis, induced by immunizing DBA/1 mice with a peptide consisting of residues 325 through 339 of glucose-6-phosphate isomerase (GPI325-339). The efficacy was evaluated in terms of macroscopic findings, inflammatory cell infiltration and autoantibody level. Prophylactic administration of FTY720 from the day of immunization significantly suppressed the development of paw swelling, but therapeutic administration of FTY720 from onset of symptoms on day 8-9 was less effective. Interestingly, however, combination treatment with FTY720 plus GPI325-339 for 5 d after onset of symptoms significantly reduced the severity of symptoms in all mice, and no relapse occurred after booster immunization. Taking into account the reported mechanism of action of FTY720, these results indicate that combination treatment with FTY720 plus pathogenic autoantigen might efficiently induce immune tolerance by sequestering circulating autoantigen-specific lymphocytes from blood and peripheral tissues to the secondary lymphoid tissues. Combination treatment with FTY720 plus pathogenic autoantigen may become a breakthrough treatment for remission-induction in patients with autoimmune diseases including rheumatoid arthritis.

  18. Hereditary nonspherocytic hemolytic anemia caused by red cell glucose-6-phosphate isomerase (GPI) deficiency in two Portuguese patients: Clinical features and molecular study.

    Science.gov (United States)

    Manco, Licínio; Bento, Celeste; Victor, Bruno L; Pereira, Janet; Relvas, Luís; Brito, Rui M; Seabra, Carlos; Maia, Tabita M; Ribeiro, M Letícia

    2016-09-01

    Glucose-6-phosphate isomerase (GPI) deficiency cause hereditary nonspherocytic hemolytic anemia (HNSHA) of variable severity in individuals homozygous or compound heterozygous for mutations in GPI gene. This work presents clinical features and genotypic results of two patients of Portuguese origin with GPI deficiency. The patients suffer from a mild hemolytic anemia (Hb levels ranging from 10 to 12.7g/mL) associated with macrocytosis, reticulocytosis, hyperbilirubinemia, hyperferritinemia and slight splenomegaly. Genomic DNA sequencing revealed in one patient homozygosity for a new missense mutation in exon 3, c.260G>C (p.Gly87Ala), and in the second patient compound heterozygosity for the same missense mutation (p.Gly87Ala), along with a frameshift mutation resulting from a single nucleotide deletion in exon 14, c.1238delA (p.Gln413Arg fs*24). Mutation p.Gln413Arg fs*24 is the first frameshift null mutation to be described in GPI deficiency. Molecular modeling suggests that the structural change induced by the p.Gly87Ala pathogenic variant has direct impact in the structural arrangement of the region close to the active site of the enzyme. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Next-generation sequencing unravels homozygous mutation in glucose-6-phosphate isomerase, GPIc.1040G>A (p.Arg347His) causing hemolysis in an Indian infant.

    Science.gov (United States)

    Jamwal, Manu; Aggarwal, Anu; Das, Anirban; Maitra, Arindam; Sharma, Prashant; Krishnan, Shekhar; Arora, Neeraj; Bansal, Deepak; Das, Reena

    2017-05-01

    Inherited anemias diagnostic workup requires a step-wise algorithm. Causal genes implicated in congenital hemolytic anemia are numerous, making a gene-by-gene approach by Sanger sequencing time consuming, expensive and labour intensive. Targeted resequencing can be of great use in explaining these cases. Six months female presented with neonatal jaundice and negative family history. Clinical and laboratory evidences were suggestive of hemolytic anemia. G6PD deficiency, thalassemias, hemoglobinopathies, autoimmune hemolytic anemia, hereditary spherocytosis and pyruvate kinase deficiency were excluded. Targeted resequencing on Illumina MiSeq using TruSight One sequencing panel was performed to identify the causative mutations. 35-40% of RBCs were acanthocytes and echinocytes. A missense homozygous mutation was found inglucose-6-phosphate isomerase, GPI [c.1040G>A (p.Arg347His), rs137853583] which results in nonspherocytic hemolytic anemia. This study describes GPI p.Arg347His mutation for the first time from India and is the first report of red cell GPI deficiency diagnosed using NGS-based resequencing and highlights the potential of this technique in clinical practice. Copyright © 2017. Published by Elsevier B.V.

  20. Hereditary non-spherocytic hemolytic anemia and severe glucose phosphate isomerase deficiency in an Indian patient homozygous for the L487F mutation in the human GPI gene.

    Science.gov (United States)

    Warang, Prashant; Kedar, Prabhakar; Ghosh, Kanjaksha; Colah, Roshan B

    2012-08-01

    Homozygous glucose phosphate isomerase (GPI) deficiency is one of the most important erythroenzymopathies causing hereditary non-spherocytic hemolytic anemia (HNSHA). We report an Indian patient with HNSHA showing 85 % reduction in GPI activity resulting from a homozygous missense replacement g.1459C > T in exon 16, leading to a substitution of the protein residue L487F mutation. This mutation has been detected previously in a compound heterozygous state along with another mutation in a GPI deficient patient elsewhere. To our knowledge, this is the first report of HNSHA associated with GPI deficiency with the homozygous L487F mutation, as well as the first report from India of GPI deficiency. Molecular modeling using the human crystal structure of GPI as a model was performed to determine how this mutation could affect enzyme structure and function. The enzyme is present in a dimeric form necessary for normal activity; the L487F mutation causes a loss of the ability of GPI to dimerize, which decreases the thermostability of the enzyme and results in significant changes in erythrocyte metabolism.

  1. Discovery of ebselen as an inhibitor of Cryptosporidium parvum glucose-6-phosphate isomerase (CpGPI) by high-throughput screening of existing drugs.

    Science.gov (United States)

    Eltahan, Rana; Guo, Fengguang; Zhang, Haili; Xiang, Lixin; Zhu, Guan

    2018-01-25

    Cryptosporidium parvum is a water-borne and food-borne apicomplexan pathogen. It is one of the top four diarrheal-causing pathogens in children under the age of five in developing countries, and an opportunistic pathogen in immunocompromised individuals. Unlike other apicomplexans, C. parvum lacks Kreb's cycle and cytochrome-based respiration, thus relying mainly on glycolysis to produce ATP. In this study, we characterized the primary biochemical features of the C. parvum glucose-6-phosphate isomerase (CpGPI) and determined its Michaelis constant towards fructose-6-phosphate (K m  = 0.309 mM, V max  = 31.72 nmol/μg/min). We also discovered that ebselen, an organoselenium drug, was a selective inhibitor of CpGPI by high-throughput screening of 1200 known drugs. Ebselen acted on CpGPI as an allosteric noncompetitive inhibitor (IC 50  = 8.33 μM; K i  = 36.33 μM), while complete inhibition of CpGPI activity was not achieved. Ebselen could also inhibit the growth of C. parvum in vitro (EC 50  = 165 μM) at concentrations nontoxic to host cells, albeit with a relatively small in vitro safety window of 4.2 (cytotoxicity TC 50 on HCT-8 cells = 700 μM). Additionally, ebselen might also target other enzymes in the parasite, leading to the parasite growth reduction. Therefore, although ebselen is useful in studying the inhibition of CpGPI enzyme activity, further proof is needed to chemically and/or genetically validate CpGPI as a drug target. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Structural modeling and docking studies of ribose 5-phosphate isomerase from Leishmania major and Homo sapiens: a comparative analysis for Leishmaniasis treatment.

    Science.gov (United States)

    Capriles, Priscila V S Z; Baptista, Luiz Phillippe R; Guedes, Isabella A; Guimarães, Ana Carolina R; Custódio, Fabio L; Alves-Ferreira, Marcelo; Dardenne, Laurent E

    2015-02-01

    Leishmaniases are caused by protozoa of the genus Leishmania and are considered the second-highest cause of death worldwide by parasitic infection. The drugs available for treatment in humans are becoming ineffective mainly due to parasite resistance; therefore, it is extremely important to develop a new chemotherapy against these parasites. A crucial aspect of drug design development is the identification and characterization of novel molecular targets. In this work, through an in silico comparative analysis between the genomes of Leishmania major and Homo sapiens, the enzyme ribose 5-phosphate isomerase (R5PI) was indicated as a promising molecular target. R5PI is an important enzyme that acts in the pentose phosphate pathway and catalyzes the interconversion of d-ribose-5-phosphate (R5P) and d-ribulose-5-phosphate (5RP). R5PI activity is found in two analogous groups of enzymes called RpiA (found in H. sapiens) and RpiB (found in L. major). Here, we present the first report of the three-dimensional (3D) structures and active sites of RpiB from L. major (LmRpiB) and RpiA from H. sapiens (HsRpiA). Three-dimensional models were constructed by applying a hybrid methodology that combines comparative and ab initio modeling techniques, and the active site was characterized based on docking studies of the substrates R5P (furanose and ring-opened forms) and 5RP. Our comparative analyses show that these proteins are structural analogs and that distinct residues participate in the interconversion of R5P and 5RP. We propose two distinct reaction mechanisms for the reversible isomerization of R5P to 5RP, which is catalyzed by LmRpiB and HsRpiA. We expect that the present results will be important in guiding future molecular modeling studies to develop new drugs that are specially designed to inhibit the parasitic form of the enzyme without significant effects on the human analog. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Anti-citrullinated glucose-6-phosphate isomerase peptide antibodies in patients with rheumatoid arthritis are associated with HLA-DRB1 shared epitope alleles and disease activity.

    Science.gov (United States)

    Umeda, N; Matsumoto, I; Ito, I; Kawasaki, A; Tanaka, Y; Inoue, A; Tsuboi, H; Suzuki, T; Hayashi, T; Ito, S; Tsuchiya, N; Sumida, T

    2013-04-01

    To identify and characterize anti-citrullinated glucose-6-phosphate isomerase (GPI) peptide antibodies in patients with rheumatoid arthritis (RA). Nine GPI arginine-bearing peptides in human GPI protein were selected and cyclic citrullinated GPI peptides (CCG-1-9) were constructed. Samples were obtained from RA (n = 208), systemic lupus erythematosus (SLE) (n = 101), Sjögren's syndrome (SS; n = 101) and healthy controls (n = 174). Antibodies against CCG-1-9 were measured, and anti-citrullinated α-enolase-1 (CEP-1), -cyclic citrullinated peptides (CCP) and -GPI proteins antibodies were also examined. Patients with RA were genotyped for HLA-DRB1. The numbers of shared epitope (SE) alleles were counted and compared with those of the autoantibodies. Rabbit GPI was citrullinated with rabbit peptidylarginine deiminase and immunoblot analysis of RA sera performed. The levels of autoantibodies were compared before and after treatment with TNF antagonists in 58 RA patients. Anti-CCG-2, -4 and -7 antibodies were detected in 25·5, 33·2 and 37·0% patients with RA, respectively, and these antibodies were very specific for RA (specificity, 98·1-99·7%). Altogether, 44·2, 86·1 and 13·9% of RA sera were positive for anti-CEP-1, -CCP and -GPI protein antibodies, respectively. Anti-CCG-2, -4 and -7 antibodies were correlated with anti-CCP and anti-CEP-1 antibodies and with the presence of HLA-DRB1 SE alleles. Citrullinated GPI protein was detected using RA sera. Treatment with tumour necrosis factor antagonists reduced significantly the levels of anti-CCG-2 and -7 but not of anti-CEP-1 antibodies. This is the first report documenting the presence of anti-CCG antibodies in RA. Anti-CCG-2 and -7 antibodies could be considered as markers for the diagnosis of RA and its disease activity. © 2012 British Society for Immunology.

  4. The Sugar Model: Autocatalytic Activity of the Triose-Ammonia Reaction

    Science.gov (United States)

    Weber, Arthur L.

    2006-01-01

    Reaction of triose sugars with ammonia under anaerobic conditions yielded autocatalytic products. The autocatalytic behavior of the products was examined by measuring the effect of the crude triose-ammonia reaction product on the kinetics of a second identical triose-ammonia reaction. The reaction product showed autocatalytic activity by increasing both the rate of disappearance of triose and the rate formation of pyruvaldehyde, the product of triose dehydration. This synthetic process is considered a reasonable model of origin-of-life chemistry because it uses plausible prebiotic substrates, and resembles modern biosynthesis by employing the energized carbon groups of sugars to drive the synthesis of autocatalytic molecules.

  5. Plasmid linkage of the D-tagatose 6-phosphate pathway in Streptococcus lactis: effect on lactose and galactose metabolism.

    Science.gov (United States)

    Crow, V L; Davey, G P; Pearce, L E; Thomas, T D

    1983-01-01

    The three enzymes of the D-tagatose 6-phosphate pathway (galactose 6-phosphate isomerase, D-tagatose 6-phosphate kinase, and tagatose 1,6-diphosphate aldolase) were absent in lactose-negative (Lac-) derivatives of Streptococcus lactis C10, H1, and 133 grown on galactose. The lactose phosphoenolpyruvate-dependent phosphotransferase system and phospho-beta-galactosidase activities were also absent in Lac- derivatives of strains H1 and 133 and were low (possibly absent) in C10 Lac-. In all three Lac- derivatives, low galactose phosphotransferase system activity was found. On galactose, Lac- derivatives grew more slowly (presumably using the Leloir pathway) than the wild-type strains and accumulated high intracellular concentrations of galactose 6-phosphate (up to 49 mM); no intracellular tagatose 1,6-diphosphate was detected. The data suggest that the Lac phenotype is plasmid linked in the three strains studied, with the evidence being more substantial for strain H1. A Lac- derivative of H1 contained a single plasmid (33 megadaltons) which was absent from the Lac- mutant. We suggest that the genes linked to the lactose plasmid in S. lactis are more numerous than previously envisaged, coding for all of the enzymes involved in lactose metabolism from initial transport to the formation of triose phosphates via the D-tagatose 6-phosphate pathway. Images PMID:6294064

  6. Identification of a noncanonical function for ribose-5-phosphate isomerase A promotes colorectal cancer formation by stabilizing and activating β-catenin via a novel C-terminal domain.

    Directory of Open Access Journals (Sweden)

    Yu-Ting Chou

    2018-01-01

    Full Text Available Altered metabolism is one of the hallmarks of cancers. Deregulation of ribose-5-phosphate isomerase A (RPIA in the pentose phosphate pathway (PPP is known to promote tumorigenesis in liver, lung, and breast tissues. Yet, the molecular mechanism of RPIA-mediated colorectal cancer (CRC is unknown. Our study demonstrates a noncanonical function of RPIA in CRC. Data from the mRNAs of 80 patients' CRC tissues and paired nontumor tissues and protein levels, as well as a CRC tissue array, indicate RPIA is significantly elevated in CRC. RPIA modulates cell proliferation and oncogenicity via activation of β-catenin in colon cancer cell lines. Unlike its role in PPP in which RPIA functions within the cytosol, RPIA enters the nucleus to form a complex with the adenomatous polyposis coli (APC and β-catenin. This association protects β-catenin by preventing its phosphorylation, ubiquitination, and subsequent degradation. The C-terminus of RPIA (amino acids 290 to 311, a region distinct from its enzymatic domain, is necessary for RPIA-mediated tumorigenesis. Consistent with results in vitro, RPIA increases the expression of β-catenin and its target genes, and induces tumorigenesis in gut-specific promotor-carrying RPIA transgenic zebrafish. Together, we demonstrate a novel function of RPIA in CRC formation in which RPIA enters the nucleus and stabilizes β-catenin activity and suggests that RPIA might be a biomarker for targeted therapy and prognosis.

  7. Glucose-6-phosphate isomerase deficiency results in mTOR activation, failed translocation of lipin 1α to the nucleus and hypersensitivity to glucose: Implications for the inherited glycolytic disease.

    Science.gov (United States)

    Haller, Jorge F; Krawczyk, Sarah A; Gostilovitch, Lubov; Corkey, Barbara E; Zoeller, Raphael A

    2011-11-01

    Inherited glucose-6-phosphate isomerase (GPI) deficiency is the second most frequent glycolytic erythroenzymopathy in humans. Patients present with non-spherocytic anemia of variable severity and with neuromuscular dysfunction. We previously described Chinese hamster (CHO) cell lines with mutations in GPI and loss of GPI activity. This resulted in a temperature sensitivity and severe reduction in the synthesis of glycerolipids due to a reduction in phosphatidate phosphatase (PAP). In the current article we attempt to describe the nature of this pleiotropic effect. We cloned and sequenced the CHO lipin 1 cDNA, a gene that codes for PAP activity. Overexpression of lipin 1 in the GPI-deficient cell line, GroD1 resulted in increased PAP activity, however it failed to restore glycerolipid biosynthesis. Fluorescence microscopy showed a failure of GPI-deficient cells to localize lipin 1α to the nucleus. We also found that glucose-6-phosphate levels in GroD1 cells were 10-fold over normal. Lowering glucose levels in the growth medium partially restored glycerolipid biosynthesis and nuclear localization of lipin 1α. Western blot analysis of the elements within the mTOR pathway, which influences lipin 1 activity, was consistent with an abnormal activation of this system. Combined, these data suggest that GPI deficiency results in an accumulation of glucose-6-phosphate, and possibly other glucose-derived metabolites, leading to activation of mTOR and sequestration of lipin 1 to the cytosol, preventing its proper functioning. These results shed light on the mechanism underlying the pathologies associated with inherited GPI deficiency and the variability in the severity of the symptoms observed in these patients. 2011 Elsevier B.V. All rights reserved.

  8. Functional Mechanism(s) of the Inhibition of Disease Progression by Combination Treatment with Fingolimod Plus Pathogenic Antigen in a Glucose-6-phosphate Isomerase Peptide-Induced Arthritis Mouse Model.

    Science.gov (United States)

    Yoshida, Yuya; Mikami, Norihisa; Matsushima, Yuki; Otani, Fumiya; Miyawaki, Mai; Takatsuji, Miku; Banno, Rie; Tsuji, Takumi; Fujita, Tetsuro; Tsujikawa, Kazutake; Kohno, Takeyuki

    2015-01-01

    We previously reported that combination treatment with fingolimod (FTY720) plus antigenic peptide of glucose-6-phosphate isomerase (residues 325-339) (GPI325-339) from the onset of symptoms significantly inhibited disease progression in a mouse model of GPI325-339-induced arthritis. In this study, we investigated the mechanism(s) involved. The model mice were treated from arthritis onset with FTY720 alone, GPI325-339 alone, or the combination of FTY720 plus GPI325-339. At the end of treatment, inguinal lymph nodes (LNs) were excised and examined histologically and in flow cytometry. Levels of apoptotic cells, programmed death-1-expressing CD4(+)forkhead box P3(-) nonregulatory T cells (non-Tregs), and cytotoxic T-lymphocyte antigen 4-expressing non-Tregs in inguinal LNs were markedly increased in the combination treatment group mice. Regulatory T cells (Tregs) were also increased. These results indicate that combination treatment with FTY720 plus GPI325-339 inhibits the progression of arthritis by inducing clonal deletion and anergy of pathogenic T cells and also by immune suppression via Tregs.

  9. Two novel mutations (p.(Ser160Pro) and p.(Arg472Cys)) causing glucose-6-phosphate isomerase deficiency are associated with erythroid dysplasia and inappropriately suppressed hepcidin.

    Science.gov (United States)

    Mojzikova, Renata; Koralkova, Pavla; Holub, Dusan; Saxova, Zuzana; Pospisilova, Dagmar; Prochazkova, Daniela; Dzubak, Petr; Horvathova, Monika; Divoky, Vladimir

    2018-03-01

    Glucose-6-phosphate isomerase (GPI) deficiency, a genetic disorder responsible for chronic nonspherocytic hemolytic anemia, is the second most common red blood cell glycolytic enzymopathy. We report three patients from two unrelated families of Czech and Slovak origin with macrocytic hemolytic anemia due to GPI deficiency. The first patient had 15% of residual GPI activity resulting from two new heterozygous missense mutations c.478T>C and c.1414C>T leading to substitutions p.(Ser160Pro) and p.(Arg472Cys). Two other patients (siblings) inherited the same c.1414C>T p.(Arg472Cys) mutation in a homozygous constitution and lost approximately 89% of their GPI activity. Erythroid hyperplasia with dysplastic features was observed in the bone marrow of all three patients. Low hepcidin/ferritin ratio and elevated soluble transferrin receptor detected in our GPI-deficient patients suggest disturbed balance between erythropoiesis and iron metabolism contributing to iron overload. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. cDNA cloning of glucose-6-phosphate isomerase from crucian carp (Carassius carassius) and expression of the active region as myofibril-bound serine proteinase inhibitor in Escherichia coli.

    Science.gov (United States)

    Han, Long; Cao, Min-Jie; Shi, Chao-lan; Wei, Xiao-Nan; Li, Huan; Du, Cui-Hong

    2014-02-01

    Glucose-6-phosphate isomerase (GPI) (EC 5.3.1.9) can act as a myofibril-bound serine proteinase (MBSP) inhibitor (MBSPI) in fish. In order to better understand the biological information of the GPI and its functional domain for inhibiting MBSP, the cDNA of GPI was cloned from crucian carp (Carassius carassius) with RT-PCR, nested-PCR and 3'-RACE. The result of sequencing showed that the GPI cDNA had an open reading frame of 1662bp encoding 553 amino acid residues. After constructing and comparing the three-dimensional structures of GPI and MBSP, the middle fragment of crucian carp GPI (GPI-M) was predicted as a functional domain for inhibiting MBSP. Then the crucian carp GPI-M gene was cloned and expressed in Escherichia coli. SDS-polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant GPI-M (rGPI-M) with molecular mass of approximately 21kDa in the form of inclusion bodies. The rGPI-M was obtained at an electrophoresis level purity of approximately 95% after denaturation and dialysis renaturation. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Regulation of glucose phosphate isomerase by the 3'UTR-specific miRNAs miR-302b and miR-17-5p in chicken primordial germ cells.

    Science.gov (United States)

    Rengaraj, Deivendran; Park, Tae Sub; Lee, Sang In; Lee, Bo Ram; Han, Beom Ku; Song, Gwonhwa; Han, Jae Yong

    2013-08-01

    Glucose phosphate isomerase (GPI) involves in the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate in glucose pathways. Because glucose metabolism is crucial for the proliferation and differentiation of embryonic stem and germ cells, reducing GPI expression may affect the characteristic features of these cells. MicroRNAs (miRNAs) have been shown to regulate genes. In the present study, we investigated the regulation of chicken GPI by its predicted miRNAs. We determined the expression patterns of seven GPI 3'-untranslated region (3'UTR)-targeting miRNAs, including the gga-miR-302 cluster, gga-miR-106, gga-miR-17-5p, and gga-miR-20 cluster in chicken primordial germ cells (PGCs), compared with GPI mRNA. Among the miRNAs, gga-miR-302b, gga-miR-302d, and gga-miR-17-5p were expressed at lower levels than GPI mRNA. The remaining four miRNAs-gga-miR-302c, gga-miR-106, gga-miR-20a, and gga-miR-20b-were expressed at higher levels than the expression of GPI mRNA. Next, we cotransfected four candidate miRNAs-gga-miR-302b, gga-miR-106, gga-miR-17-5p, and gga-miR-20a-with GPI 3'UTR into 293FT cells by dual fluorescence reporter assay. Overexpression of gga-miR-302b and gga-miR-17-5p miRNAs in 293FT cells significantly downregulated GPI expression, whereas the other two miRNAs had no effect. Then, knockdown and overexpression of these four candidate miRNAs were performed by RNA interference assay to regulate GPI in PGCs. In the RNA interference assay, the expression of GPI was greatly regulated by gga-miR-302b and gga-miR-17-5p. Finally, we examined the effects of GPI regulation on PGC proliferation and migration. Our results suggested that the regulation of GPI by gga-miR-302b and gga-miR-17-5p affected PGCs proliferation. However, regulation of GPI using these two miRNAs did not affect the migration of PGCs into embryonic gonads.

  12. Antigen-specific over-expression of human cartilage glycoprotein 39 on CD4+ CD25+ forkhead box protein 3+ regulatory T cells in the generation of glucose-6-phosphate isomerase-induced arthritis.

    Science.gov (United States)

    Tanaka, Y; Matsumoto, I; Inoue, A; Umeda, N; Takai, C; Sumida, T

    2014-08-01

    Human cartilage gp-39 (HC gp-39) is a well-known autoantigen in rheumatoid arthritis (RA). However, the exact localization, fluctuation and function of HC gp-39 in RA are unknown. Therefore, using a glucose-6-phosphate isomerase (GPI)-induced model of arthritis, we investigated these aspects of HC gp-39 in arthritis. The rise in serum HC gp-39 levels was detected on the early phase of GPI-induced arthritis (day 7) and the HC gp-39 mRNA was increased significantly on splenic CD4(+) T cells on day7, but not on CD11b(+) cells. Moreover, to identify the characterization of HC gp-39(+) CD4(+) T cells, we assessed the analysis of T helper (Th) subsets. As a result, HC gp-39 was expressed dominantly in CD4(+) CD25(+) forkhead box protein 3 (FoxP3)(+) refulatory T cells (T(reg)), but not in Th1, Th2 or Th17 cells. Furthermore, to investigate the effect of HC gp-39 to CD4(+) T cells, T cell proliferation assay and cytokine production from CD4(+) T cells using recombinant HC gp-39 was assessed. We found that GPI-specific T cell proliferation and interferon (IFN)-γ or interleukin (IL)-17 production were clearly suppressed by addition of recombinant HC gp-39. Antigen-specific over-expression of HC gp-39 in splenic CD4(+) CD25(+) FoxP3(+) T(reg) cells occurs in the induction phase of GPI-induced arthritis, and addition of recombinant HC gp-39 suppresses antigen-specific T-cell proliferation and cytokine production, suggesting that HC gp-39 in CD4(+) T cells might play a regulatory role in arthritis. © 2014 British Society for Immunology.

  13. A guide to the effects of a large portion of the residues of triosephosphate isomerase on catalysis, stability, druggability, and human disease.

    Science.gov (United States)

    Olivares-Illana, Vanesa; Riveros-Rosas, Hector; Cabrera, Nallely; Tuena de Gómez-Puyou, Marietta; Pérez-Montfort, Ruy; Costas, Miguel; Gómez-Puyou, Armando

    2017-07-01

    Triosephosphate isomerase (TIM) is a ubiquitous enzyme, which appeared early in evolution. TIM is responsible for obtaining net ATP from glycolysis and producing an extra pyruvate molecule for each glucose molecule, under aerobic and anaerobic conditions. It is placed in a metabolic crossroad that allows a quick balance of the triose phosphate aldolase produced by glycolysis, and is also linked to lipid metabolism through the alternation of glycerol-3-phosphate and the pentose cycle. TIM is one of the most studied enzymes with more than 199 structures deposited in the PDB. The interest for this enzyme stems from the fact that it is involved in glycolysis, but also in aging, human diseases and metabolism. TIM has been a target in the search for chemical compounds against infectious diseases and is a model to study catalytic features. Until February 2017, 62% of all residues of the protein have been studied by mutagenesis and/or using other approaches. Here, we present a detailed and comprehensive recompilation of the reported effects on TIM catalysis, stability, druggability and human disease produced by each of the amino acids studied, contributing to a better understanding of the properties of this fundamental protein. The information reviewed here shows that the role of the noncatalytic residues depend on their molecular context, the delicate balance between the short and long-range interactions in concerted action determining the properties of the protein. Each protein should be regarded as a unique entity that has evolved to be functional in the organism to which it belongs. Proteins 2017; 85:1190-1211. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  14. Co-production of hydrogen and ethanol from glucose inEscherichia coliby activation of pentose-phosphate pathway through deletion of phosphoglucose isomerase (pgi) and overexpression of glucose-6-phosphate dehydrogenase (zwf) and 6-phosphogluconate dehydrogenase (gnd).

    Science.gov (United States)

    Sundara Sekar, Balaji; Seol, Eunhee; Park, Sunghoon

    2017-01-01

    Biologically, hydrogen (H 2 ) can be produced through dark fermentation and photofermentation. Dark fermentation is fast in rate and simple in reactor design, but H 2 production yield is unsatisfactorily low as glucose. To address this challenge, simultaneous production of H 2 and ethanol has been suggested. Co-production of ethanol and H 2 requires enhanced formation of NAD(P)H during catabolism of glucose, which can be accomplished by diversion of glycolytic flux from the Embden-Meyerhof-Parnas (EMP) pathway to the pentose-phosphate (PP) pathway in Escherichia coli . However, the disruption of pgi ( p hospho g lucose i somerase) for complete diversion of carbon flux to the PP pathway made E. coli unable to grow on glucose under anaerobic condition. Here, we demonstrate that, when glucose-6-phosphate dehydrogenase (Zwf) and 6-phosphogluconate dehydrogenase (Gnd), two major enzymes of the PP pathway, are homologously overexpressed, E. coli Δ pgi can recover its anaerobic growth capability on glucose. Further, with additional deletions of Δ hycA , Δ hyaAB , Δ hybBC , Δ ldhA , and Δ frdAB , the recombinant Δ pgi mutant could produce 1.69 mol H 2 and 1.50 mol ethanol from 1 mol glucose. However, acetate was produced at 0.18 mol mol -1 glucose, indicating that some carbon is metabolized through the Entner-Doudoroff (ED) pathway. To further improve the flux via the PP pathway, heterologous zwf and gnd from Leuconostoc mesenteroides and Gluconobacter oxydans , respectively, which are less inhibited by NADPH, were overexpressed. The new recombinant produced more ethanol at 1.62 mol mol -1 glucose along with 1.74 mol H 2  mol -1 glucose, which are close to the theoretically maximal yields, 1.67 mol mol -1 each for ethanol and H 2 . However, the attempt to delete the ED pathway in the Δ pgi mutant to operate the PP pathway as the sole glycolytic route, was unsuccessful. By deletion of pgi and overexpression of heterologous zwf and gnd in E. coli Δ hyc

  15. Crystal structure of Pyrococcus furiosus phosphoglucose isomerase: Implications for substrate binding and catalysis

    NARCIS (Netherlands)

    Berrisford, J.M.; Akerboom, A.P.; Turnbull, A.P.; Geus, de D.; Sedelnikova, S.E.; Staton, I.; McLeod, C.W.; Verhees, C.H.; Oost, van der J.; Rice, D.W.; Baker, P.J.

    2003-01-01

    Phosphoglucose isomerase (PGI) catalyzes the reversible isomerization between D-fructose 6-phosphate and D-glucose 6-phosphate as part of the glycolytic pathway. PGI from the Archaea Pyrococcus furiosus (Pfu) was crystallized, and its structure was determined by x-ray diffraction to a 2-Angstrom

  16. Brønsted acid ionic liquid catalyzed formation of pyruvaldehyde dimethylacetal from triose sugars

    DEFF Research Database (Denmark)

    Shunmugavel, Saravanamurugan; Riisager, Anders

    2013-01-01

    A series of sulfonic acid functionalized ionic liquids (SO3H-ILs) have been synthesized, characterized and investigated as catalysts for the conversion of the triose sugars, 1,3-dihydroxyacetone (DHA) and glyceraldehyde (GLA), to pyruvaldehyde dimethylacetal (PADA) in methanol. Depending on the r......A series of sulfonic acid functionalized ionic liquids (SO3H-ILs) have been synthesized, characterized and investigated as catalysts for the conversion of the triose sugars, 1,3-dihydroxyacetone (DHA) and glyceraldehyde (GLA), to pyruvaldehyde dimethylacetal (PADA) in methanol. Depending...... on the reaction conditions and the applied SO3H-ILs a good yield of up to 52% of PADA was obtained. Under identical reaction conditions the derivative of PADA, 1,1,2,2-tetramethoxy propane (TMP), could be obtained in yields up to 49% using another SO3H-IL....

  17. Binding energy and catalysis by D-xylose isomerase: kinetic, product, and X-ray crystallographic analysis of enzyme-catalyzed isomerization of (R)-glyceraldehyde.

    Science.gov (United States)

    Toteva, Maria M; Silvaggi, Nicholas R; Allen, Karen N; Richard, John P

    2011-11-22

    D-Xylose isomerase (XI) and triosephosphate isomerase (TIM) catalyze the aldose-ketose isomerization reactions of D-xylose and d-glyceraldehyde 3-phosphate (DGAP), respectively. D-Glyceraldehyde (DGA) is the triose fragment common to the substrates for XI and TIM. The XI-catalyzed isomerization of DGA to give dihydroxyacetone (DHA) in D(2)O was monitored by (1)H nuclear magnetic resonance spectroscopy, and a k(cat)/K(m) of 0.034 M(-1) s(-1) was determined for this isomerization at pD 7.0. This is similar to the k(cat)/K(m) of 0.017 M(-1) s(-1) for the TIM-catalyzed carbon deprotonation reaction of DGA in D(2)O at pD 7.0 [Amyes, T. L., O'Donoghue, A. C., and Richard, J. P. (2001) J. Am. Chem. Soc. 123, 11325-11326]. The much larger activation barrier for XI-catalyzed isomerization of D-xylose (k(cat)/K(m) = 490 M(-1) s(-1)) versus that for the TIM-catalyzed isomerization of DGAP (k(cat)/K(m) = 9.6 × 10(6) M(-1) s(-1)) is due to (i) the barrier to conversion of cyclic d-xylose to the reactive linear sugar (5.4 kcal/mol) being larger than that for conversion of DGAP hydrate to the free aldehyde (1.7 kcal/mol) and (ii) the intrinsic binding energy [Jencks, W. P. (1975) Adv. Enzymol. Relat. Areas Mol. Biol. 43, 219-410] of the terminal ethylene glycol fragment of D-xylose (9.3 kcal/mol) being smaller than that of the phosphodianion group of DGAP (~12 kcal/mol). The XI-catalyzed isomerization of DGA in D(2)O at pD 7.0 gives a 90% yield of [1-(1)H]DHA and a 10% yield of [1-(2)H]DHA, the product of isomerization with incorporation of deuterium from solvent D(2)O. By comparison, the transfer of (3)H from the labeled hexose substrate to solvent is observed only once in every 10(9) turnovers for the XI-catalyzed isomerization of [2-(3)H]glucose in H(2)O [Allen, K. N., Lavie, A., Farber, G. K., Glasfeld, A., Petsko, G. A., and Ringe, D. (1994) Biochemistry 33, 1481-1487]. We propose that truncation of the terminal ethylene glycol fragment of d-xylose to give DGA results in a

  18. Binding Energy and Catalysis by D-Xylose Isomerase: Kinetic, Product and X-Ray Crystallographic Analysis of Enzyme-Catalyzed Isomerization of (R)-Glyceraldehyde‡, ¶

    Science.gov (United States)

    Toteva, Maria M.; Silvaggi, Nicholas R.; Allen, Karen N.; Richard, John P.

    2011-01-01

    D-Xylose isomerase (XI) and triosephosphate isomerase (TIM) catalyze the aldose-ketose isomerization reactions of D-xylose and D-glyceraldehyde 3-phosphate (DGAP), respectively. D-Glyceraldehyde (DGA) is the triose fragment common to the substrates for XI and TIM. The XI-catalyzed isomerization of DGA to give dihydroxyacetone (DHA) in D2O was monitored by 1H NMR spectroscopy and kcat/Km = 0.034 M−1 s−1 was determined for this isomerization at pD 7.0. This is similar to kcat/Km = 0.017 M−1 s−1 for the TIM-catalyzed carbon deprotonation reaction of DGA in D2O at pD 7.0 [Amyes, T. L.; O’Donoghue, A. C. and Richard J. P. (2001) J. Am. Chem. Soc. 123, 11325–11326]. The much larger activation barrier for XI-catalyzed isomerization of D-xylose (kcat/Km = 490 M−1 s−1) than for the TIM-catalyzed isomerization of DGAP (kcat/Km = 9.6 x 106 M−1 s−1) is due to: (i) The larger barrier to conversion of cyclic D-xylose to the reactive linear sugar (5.4 kcal/mol) than for conversion of DGAP hydrate to the free aldehyde (1.7 kcal/mol). (ii) The smaller intrinsic binding energy [Jencks, W. P. (1975) Adv. Enzymol. Relat. Areas Mol. Biol. 43, 219–410] of the terminal ethylene glycol fragment of D-xylose (9.3 kcal/mol) than of the phosphodianion group of DGAP (ca. 12 kcal/mol). The XI-catalyzed isomerization of DGA in D2O at pD 7.0 gives a 90% yield of [1-1H]-DHA and a 10% yield of [1-2H]-DHA, the product of isomerization with deuterium incorporation from solvent D2O. By comparison, the transfer of 3H from labeled hexose substrate to solvent is observed only once in every 109 turnovers for the XI-catalyzed isomerization of [2-3H]-glucose in H2O [Allen, K. N., Lavie, A., Farber, G. K., Glasfeld, A., Petsko, G. A., and Ringe, D. (1994), Biochemistry 33, 1481–1487]. We propose that truncation of the terminal ethylene glycol fragment of D-xylose to give DGA results in a large decrease in the rate of XI-catalyzed isomerization with hydride transfer compared with that

  19. Arabidopsis Phosphomannose Isomerase 1, but Not Phosphomannose Isomerase 2, Is Essential for Ascorbic Acid Biosynthesis*S⃞

    OpenAIRE

    Maruta, Takanori; Yonemitsu, Miki; Yabuta, Yukinori; Tamoi, Masahiro; Ishikawa, Takahiro; Shigeoka, Shigeru

    2008-01-01

    We studied molecular and functional properties of Arabidopsis phosphomannose isomerase isoenzymes (PMI1 and PMI2) that catalyze reversible isomerization between d-fructose 6-phosphate and d-mannose 6-phosphate (Man-6P). The apparent Km and Vmax values for Man-6P of purified recombinant PMI1 were 41.3 ± 4.2 μm and 1.89 μmol/min/mg protein, respectively, whereas those of purified recombinant PMI2 were 372 ± 13 μm and 22.5 μmol/min/mg protein, respectively. Both PMI1 ...

  20. Alteration of reducing powers in an isogenic phosphoglucose isomerase (pgi)-disrupted Escherichia coli expressing NAD(P)-dependent malic enzymes and NADP-dependent glyceraldehyde 3-phosphate dehydrogenase.

    Science.gov (United States)

    Kim, S; Lee, C H; Nam, S W; Kim, P

    2011-05-01

    To understand the intracellular reducing power metabolism, growth and intracellular NAD(P)H concentrations of a phosphoglucose isomerase (pgi)-disrupted Escherichia coli (KS002) were investigated with the expressions of redox enzymes. The isogenic pgi-mutation enabled E. coli to harbour two times both the intracellular NADPH and NADH at half the growth rate. The wild-type expressing NAD-dependent malic enzyme (maeA) was incapable of sufficient growth (malic enzyme (maeB) enabled wild-type and KS002 strains to grow without significant alteration. The alterations of reducing powers and the growth were analysed in the genetic engineered E. coli strains. The potential application of the cells with the high intracellular NAD(P)H level is discussed based on the results. Metabolic engineering strategy for higher reducing power regeneration is provided. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  1. The structures of inhibitor complexes of Pyrococcus furiosus Phosphoglucose Isomerase provide insights into substrate binding and catalysis

    NARCIS (Netherlands)

    Berrisford, J.M.; Akerboom, A.P.; Brouns, S.J.J.; Sedelnikova, S.E.; Turnbull, A.P.; Oost, van der J.; Salmon, L.; Hardre, R.; Murray, I.A.; Blackburn, G.M.; Rice, D.W.; Baker, P.

    2004-01-01

    Pyrococcus furiosus phosphoglucose isomerase (PfPGI) is a metal-containing enzyme that catalyses the interconversion of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P). The recent structure of PfPGI has confirmed the hypothesis that the enzyme belongs to the cupin superfamily and identified

  2. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.

    Science.gov (United States)

    Kuyper, Marko; Hartog, Miranda M P; Toirkens, Maurice J; Almering, Marinka J H; Winkler, Aaron A; van Dijken, Johannes P; Pronk, Jack T

    2005-02-01

    After an extensive selection procedure, Saccharomyces cerevisiae strains that express the xylose isomerase gene from the fungus Piromyces sp. E2 can grow anaerobically on xylose with a mu(max) of 0.03 h(-1). In order to investigate whether reactions downstream of the isomerase control the rate of xylose consumption, we overexpressed structural genes for all enzymes involved in the conversion of xylulose to glycolytic intermediates, in a xylose-isomerase-expressing S. cerevisiae strain. The overexpressed enzymes were xylulokinase (EC 2.7.1.17), ribulose 5-phosphate isomerase (EC 5.3.1.6), ribulose 5-phosphate epimerase (EC 5.3.1.1), transketolase (EC 2.2.1.1) and transaldolase (EC 2.2.1.2). In addition, the GRE3 gene encoding aldose reductase was deleted to further minimise xylitol production. Surprisingly the resulting strain grew anaerobically on xylose in synthetic media with a mu(max) as high as 0.09 h(-1) without any non-defined mutagenesis or selection. During growth on xylose, xylulose formation was absent and xylitol production was negligible. The specific xylose consumption rate in anaerobic xylose cultures was 1.1 g xylose (g biomass)(-1) h(-1). Mixtures of glucose and xylose were sequentially but completely consumed by anaerobic batch cultures, with glucose as the preferred substrate.

  3. A Tale of Two Isomerases: Compact versus Extended Active Sites in Ketosteroid Isomerase and Phosphoglucose Isomerase

    Energy Technology Data Exchange (ETDEWEB)

    Somarowthu, Srinivas; Brodkin, Heather R.; D’Aquino, J. Alejandro; Ringe, Dagmar; Ondrechen, Mary Jo; Beuning, Penny J. (Brandeis); (NEU)

    2012-07-11

    Understanding the catalytic efficiency and specificity of enzymes is a fundamental question of major practical and conceptual importance in biochemistry. Although progress in biochemical and structural studies has enriched our knowledge of enzymes, the role in enzyme catalysis of residues that are not nearest neighbors of the reacting substrate molecule is largely unexplored experimentally. Here computational active site predictors, THEMATICS and POOL, were employed to identify functionally important residues that are not in direct contact with the reacting substrate molecule. These predictions then guided experiments to explore the active sites of two isomerases, Pseudomonas putida ketosteroid isomerase (KSI) and human phosphoglucose isomerase (PGI), as prototypes for very different types of predicted active sites. Both KSI and PGI are members of EC 5.3 and catalyze similar reactions, but they represent significantly different degrees of remote residue participation, as predicted by THEMATICS and POOL. For KSI, a compact active site of mostly first-shell residues is predicted, but for PGI, an extended active site in which residues in the first, second, and third layers around the reacting substrate are predicted. Predicted residues that have not been previously tested experimentally were investigated by site-directed mutagenesis and kinetic analysis. In human PGI, single-point mutations of the predicted second- and third-shell residues K362, H100, E495, D511, H396, and Q388 show significant decreases in catalytic activity relative to that of the wild type. The results of these experiments demonstrate that, as predicted, remote residues are very important in PGI catalysis but make only small contributions to catalysis in KSI.

  4. Bioproduction of D-Tagatose from D-Galactose Using Phosphoglucose Isomerase from Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Patel, Manisha J; Patel, Arti T; Akhani, Rekha; Dedania, Samir; Patel, Darshan H

    2016-07-01

    Pseudomonas aeruginosa PAO1 phosphoglucose isomerase was purified as an active soluble form by a single-step purification using Ni-NTA chromatography that showed homogeneity on SDS-PAGE with molecular mass ∼62 kDa. The optimum temperature and pH for the maximum isomerization activity with D-galactose were 60 °C and 7.0, respectively. Generally, sugar phosphate isomerases show metal-independent activity but PA-PGI exhibited metal-dependent isomerization activity with aldosugars and optimally catalyzed the D-galactose isomerization in the presence of 1.0 mM MnCl2. The apparent Km and Vmax for D-galactose under standardized conditions were calculated to be 1029 mM (±31.30 with S.E.) and 5.95 U/mg (±0.9 with S.E.), respectively. Equilibrium reached after 180 min with production of 567.51 μM D-tagatose from 1000 mM of D-galactose. Though, the bioconversion ratio is low but it can be increased by immobilization and enzyme engineering. Although various L-arabinose isomerases have been characterized for bioproduction of D-tagatose, P. aeruginosa glucose phosphate isomerase is distinguished from the other L-arabinose isomerases by its optimal temperature (60 °C) for D-tagatose production being mesophilic bacteria, making it an alternate choice for bulk production.

  5. The Case of Ketosteroid Isomerase

    Science.gov (United States)

    Fried, Stephen D.; Boxer, Steven G.

    2011-01-01

    Structures of enzymes invariably reveal the proximity of acidic and basic residues to reactive sites on the substrate, so it is natural and common to suggest that enzymes employ concerted mechanisms to catalyze their difficult reactions. Ketosteroid Isomerase (KSI) has served as a paradigm of enzymatic proton transfer chemistry, and its catalytic effect has previously been attributed to concerted proton transfer. We employ a specific inhibitor that contains an IR probe that reports directly and quantitatively on the ionization state of the ligand when bound in the active site of KSI. Measurement of the fractional ionization provides a missing link in a thermodynamic cycle that can discriminate the free energy advantage of a concerted versus non-concerted mechanism. It is found that the maximum thermodynamic advantage that KSI could capture from a concerted mechanism (ΔΔG∘ = 0.5 kcal mol−1) is quite small. PMID:22148842

  6. Evidence for extracellular enzymic activity of the isolated perfused rat heart

    Science.gov (United States)

    Williamson, John R.; DiPietro, David L.

    1965-01-01

    1. The dissimilation of a number of externally added hexose phosphates and 5′-nucleotides by the perfused rat heart is described, and non-specific esterase and 5′-nucleotidase activity associated with the superficial cell membrane or vascular system has been demonstrated. 2. The rate of production of 14CO2 from [U-14C]glucose 6-phosphate suggests that oxidation occurred after hydrolysis to glucose. The incorporation of isotope from [U-14C]glucose 6-phosphate into glycogen was small, and similar to that obtained with [U-14C]glucose as substrate. 3. Glucose 6-phosphate was also partially isomerized to fructose 6-phosphate. Similarly, fructose 6-phosphate was converted mainly into glucose 6-phosphate, but also into glucose and inorganic phosphate. When fructose 1,6-diphosphate was added to the perfusate, a mixture of glucose 6-phosphate, fructose 6-phosphate and triose phosphates accumulated in the medium approximately in the equilibrium proportions of the phosphohexose-isomerase and triose phosphate-isomerase reactions, together with inorganic phosphate and some glucose. Glucose 1-phosphate was hydrolysed to glucose, but was not converted into glucose 6-phosphate. Leakage of enzymes out into the perfusion fluid did not occur. 4. This demonstration that phosphohexose isomerase, triose phosphate isomerase and aldolase may react with extracellular substrates at an appreciable rate suggests that these enzymes are attached to the cell membrane. PMID:14333561

  7. Thermoinactivation Mechanism of Glucose Isomerase

    Science.gov (United States)

    Lim, Leng Hong; Saville, Bradley A.

    In this article, the mechanisms of thermoinactivation of glucose isomerase (GI) from Streptomyces rubiginosus (in soluble and immobilized forms) were investigated, particularly the contributions of thiol oxidation of the enzyme's cysteine residue and a "Maillard-like" reaction between the enzyme and sugars in high fructose corn syrup (HFCS). Soluble GI (SGI) was successfully immobilized on silica gel (13.5 μm particle size), with an activity yield between 20 and 40%. The immobilized GI (IGI) has high enzyme retention on the support during the glucose isomerization process. In batch reactors, SGI (half-life =145 h) was more stable than IGI (half-life=27 h) at 60°C in HFCS, whereas at 80°C, IGI (half-life=12 h) was more stable than SGI (half-life=5.2 h). IGI was subject to thiol oxidation at 60°C, which contributed to the enzyme's deactivation. IGI was subject to thiol oxidation at 80°C, but this did not contribute to the deactivation of the enzyme. SGI did not undergo thiol oxidation at 60°C, but at 80°C SGI underwent severe precipitation and thiol oxidation, which caused the enzyme to deactivate. Experimental results show that immobilization suppresses the destablizing effect of thiol oxidation on GI. A "Maillard-like" reaction between SGI and the sugars also caused SGI thermoinactivation at 60, 70, and 80°C, but had minimal effect on IGI. At 60 and 80°C, IGI had higher thermostability in continuous reactors than in batch reactors, possibily because of reduced contact with deleterious compounds in HFCS.

  8. Molecular and industrial aspects of glucose isomerase.

    OpenAIRE

    Bhosale, S H; Rao, M B; Deshpande, V V

    1996-01-01

    Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a ...

  9. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis

    NARCIS (Netherlands)

    Verhoeven, Maarten D; Lee, Misun; Kamoen, Lycka; van den Broek, Marcel; Janssen, Dick B; Daran, Jean-Marc G; van Maris, Antonius J A; Pronk, Jack T

    2017-01-01

    Combined overexpression of xylulokinase, pentose-phosphate-pathway enzymes and a heterologous xylose isomerase (XI) is required but insufficient for anaerobic growth of Saccharomyces cerevisiae on d-xylose. Single-step Cas9-assisted implementation of these modifications yielded a yeast strain

  10. Functional differences in yeast protein disulfide isomerases

    DEFF Research Database (Denmark)

    Nørgaard, P; Westphal, V; Tachibana, C

    2001-01-01

    PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several...

  11. Phosphoglucose isomerase polymorphism in cultivated groundnut ...

    African Journals Online (AJOL)

    Horizontal starch gel electrophoresis was used to study one of the enzymes involved in glycolysis, Phosphoglucose isomerase subunits (PGI) (EC 5.3.1.9), in the cultivated groundnut, Arachis hypogaea, and some of its wild relatives. Two gene loci specifying PGI were detected. The more anodal locus, Pgi-1, was ...

  12. Glucose (xylose) isomerase production from thermotolerant and ...

    African Journals Online (AJOL)

    Glucose (xylose) isomerase (GI) is one of the most important industrial enzymes. It is used widely to catalyze the reversible conversion of D-glucose to D-fructose in vivo. The latter is used on a wide scale in the production of the high fructose corn syrup (HFCS) from corn starch. The great need of a thermostable GI, which is ...

  13. Bifunctional phosphoglucose/phosphomannose isomerases from the Archaea Aeropyrum pernix and Thermoplasma acidophilum constitute a novel enzyme family within the phosphoglucose isomerase superfamily.

    Science.gov (United States)

    Hansen, Thomas; Wendorff, Daniel; Schönheit, Peter

    2004-01-16

    The hyperthermophilic crenarchaeon Aeropyrum pernix contains phosphoglucose isomerase (PGI) activity. However, obvious homologs with significant identity to known PGIs could not be identified in the sequenced genome of this organism. The PGI activity from A. pernix was purified and characterized. Kinetic analysis revealed that, unlike all known PGIs, the enzyme catalyzed reversible isomerization not only of glucose 6-phosphate but also of epimeric mannose 6-phosphate at similar catalytic efficiency, thus defining the protein as bifunctional phosphoglucose/phosphomannose isomerase (PGI/PMI). The gene pgi/pmi encoding PGI/PMI (open reading frame APE0768) was identified by matrix-assisted laser desorption ionization time-of-flight analyses; the gene was overexpressed in Escherichia coli as functional PGI/PMI. Putative PGI/PMI homologs were identified in several (hyper)thermophilic archaea and two bacteria. The homolog from Thermoplasma acidophilum (Ta1419) was overexpressed in E. coli, and the recombinant enzyme was characterized as bifunctional PGI/PMI. PGI/PMIs showed low sequence identity to the PGI superfamily and formed a distinct phylogenetic cluster. However, secondary structure predictions and the presence of several conserved amino acids potentially involved in catalysis indicate some structural and functional similarity to the PGI superfamily. Thus, we propose that bifunctional PGI/PMI constitutes a novel protein family within the PGI superfamily.

  14. Triosephosphate isomerase (TPI) facilitates the replication of WSSV in Exopalaemon carinicauda.

    Science.gov (United States)

    Liu, Fei; Li, Shihao; Liu, Guangxing; Li, Fuhua

    2017-06-01

    Triosephosphate isomerase (TPI) is a vital enzyme in the glycolytic pathway, which can catalyze the interconversion of glyceraldehyde-3-phosphate (GAP) and dihydroxyacetone phosphate (DHAP). DHAP is involved in lipid metabolism and phospholipid synthesis. In order to know the role of TPI in WSSV infection to prawn, we cloned the full length cDNA of triosephosphate isomerase gene (EcTPI) from Exopalaemon carinicauda, and its function during WSSV infection was analyzed. EcTPI transcripts were widely distributed in all tissues, but showed relatively higher expression levels in the gill and epidermis. Its expression was apparently up-regulated after 24 h post WSSV injection (hpi), when the virus load began to rise. Furthermore, we detected the expressions of the key genes encoding the enzymes which catalyze the key steps in the glycolysis during WSSV infection. The data showed that genes encoding the enzymes which catalyzed upper steps of glycolysis to produce GAP, including hexokinase (HK), glucose-6-phosphate isomerase (GPI) and phosphofructokinase-1 (PFK-1), were significantly up-regulated at 24 and 27 hpi. Genes encoding the enzymes catalyzing down steps of glycolysis after GAP, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase (ENO) and pyruvate kinase (PK), were apparent down-regulated at 24 and 27 hpi. Meanwhile, the gene encoding the enzyme glycerol-3-phosphate dehydrogenase (GPDH) catalyzing DHAP to glycerol-3-phosphate (G-3-P) showed down-regulation at 12-27 hpi, while the gene encoding dihydroxyacetone-phosphate acyltransferase (DHAPAT) catalyzing DHAP to further synthesis of phospholipids showed up-regulation at 12-24 hpi. These data suggested that WSSV infection could change the glycolysis pathway to make them produce more phospholipids which could be very helpful for virus replication. In order to further confirm the above speculation, dsRNA interference (RNAi) approach was used to knock down EcTPI gene and analyze its effect on WSSV

  15. Phosphate Salts

    Science.gov (United States)

    ... many different combinations of the chemical phosphate with salts and minerals. Foods high in phosphate include dairy products, whole grain cereals, nuts, and certain meats. Phosphates found in dairy products ... People use phosphate salts for medicine. Be careful not to confuse phosphate ...

  16. L'endométriose pariétale cicatricielle après césarienne: une entité rare

    African Journals Online (AJOL)

    L'endométriose de la paroi est une entité clinique rare, dont la physiopathologie demeure imprécise. Elle survient le plus souvent après une intervention chirurgicale gynécologique ou obstétricale. Nous rapportons le cas d'une patiente présentant une douleur cyclique, au niveau de la cicatrice de césarienne, Avec à ...

  17. Synthesis and biological evaluation of arabinose 5-phosphate mimics modified at position five.

    Science.gov (United States)

    Cipolla, Laura; Airoldi, Cristina; Sperandeo, Paola; Gianera, Serena; Polissi, Alessandra; Nicotra, Francesco; Gabrielli, Luca

    2014-05-07

    A set of new metabolically stable arabinose 5-phosphate analogues possessing phosphate mimetic groups at position 5 was synthesised. Their ability to interact with arabinose 5-phosphate isomerase from Pseudomonas aeruginosa was evaluated by STD-NMR studies. The synthesised compounds were also characterised for their activity in vivo on P. aeruginosa and Escherichia coli strains. Unfortunately, none of the synthesised compounds was able neither to bind API nor to inhibit bacterial growth. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Human triosephosphate isomerase deficiency resulting from mutation of Phe-240

    Energy Technology Data Exchange (ETDEWEB)

    Minling Chang; Xiaoyun Wu; Maquat, L.E. (Roswell Park Cancer Inst., Buffalo, NY (United States)); Artymiuk, P.J. (Univ. of Sheffield (United Kingdom)); Hollan, S. (National Inst. of Hematology and Blood Transfusion, Budapest (Hungary)); Lammi, A. (Children' s Hospital, Sydney (Australia))

    1993-06-01

    Triosephosphate isomerase (TPI; D-glyceraldehyde-3-phosphate ketolisomerase [E.C.5.3.1.1]) deficiency is an autosomal recessive disorder that typically results in chronic, nonspherocytic hemolytic anemia and in neuromuscular impairment. The molecular basis of this disease was analyzed for one Hungarian family and for two Australian families by localizing the defects in TPI cDNA and by determining how each defect affects TPI gene expression. The Hungarian family is noteworthy in having the first reported case of an individual, A. Jo., who harbors two defective TPI alleles but who does not manifest neuromuscular disabilities. This family was characterized by two mutations that have never been described. One is a missense mutation within codon 240 (TTC [Phe][r arrow]CTC [Leu]), which creates a thermolabile protein, as indicated by the results of enzyme activity assays using cell extracts. This substitution, which changes a phylogenetically conserved amino acid, may affect enzyme activity by dusrupting intersubunit contacts or substrate binding, as deduced from enzyme structural studies. The other mutation has yet to be localized but reduces the abundance of TPI mRNA 10--20-fold. Each of the Australian families was characterized by a previously described mutation within codon 104 (GAG [Glu][r arrow]GAC [Asp]), which also results in thermolabile protein. 49 refs., 6 figs., 1 tab.

  19. It takes two to tango: defining an essential second active site in pyridoxal 5'-phosphate synthase.

    Directory of Open Access Journals (Sweden)

    Cyril Moccand

    Full Text Available The prevalent de novo biosynthetic pathway of vitamin B6 involves only two enzymes (Pdx1 and Pdx2 that form an ornate multisubunit complex functioning as a glutamine amidotransferase. The synthase subunit, Pdx1, utilizes ribose 5-phosphate and glyceraldehyde 3-phosphate, as well as ammonia derived from the glutaminase activity of Pdx2 to directly form the cofactor vitamer, pyridoxal 5'-phosphate. Given the fact that a single enzyme performs the majority of the chemistry behind this reaction, a complicated mechanism is anticipated. Recently, the individual steps along the reaction co-ordinate are beginning to be unraveled. In particular, the binding of the pentose substrate and the first steps of the reaction have been elucidated but it is not known if the latter part of the chemistry, involving the triose sugar, takes place in the same or a disparate site. Here, we demonstrate through the use of enzyme assays, enzyme kinetics, and mutagenesis studies that indeed a second site is involved in binding the triose sugar and moreover, is the location of the final vitamin product, pyridoxal 5'-phosphate. Furthermore, we show that product release is triggered by the presence of a PLP-dependent enzyme. Finally, we provide evidence that a single arginine residue of the C terminus of Pdx1 is responsible for coordinating co-operativity in this elaborate protein machinery.

  20. Purification and characterization of a linoleate isomerase from ...

    African Journals Online (AJOL)

    Linoleate isomerase (EC 5.2.1.5) catalyzes the isomerization of linoleic acid to generate conjugated linoleic acid. Previously, we isolated a strain of Lactobacillus plantarum ZS2058 with great capacity for producing conjugated linoleic acid from fermented vegetables. This work aimed to purify the linoleate isomerase from L.

  1. 21 CFR 184.1372 - Insoluble glucose isomerase enzyme preparations.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Insoluble glucose isomerase enzyme preparations... enzyme preparations. (a) Insoluble glucose isomerase enzyme preparations are used in the production of... additional requirements for enzyme preparations in the Food Chemicals Codex, 3d Ed. (1981), p. 107, which is...

  2. Process for the production of a new glucose isomerase enzyme

    NARCIS (Netherlands)

    Luiten, Rudolf Gijsbertus Marie; Quax, Wim; Mrabet, Nadir; Schuurhuizen, Paul William

    1990-01-01

    This invention relates to a process for the production of new mutant glucose isomerases which have improved properties under application conditions. These glucose isomerases are obtained by the expression of a gene which codes for the said enzyme which has an amino acid sequence which differs by at

  3. Multilocus genotyping of Giardia duodenalis in lambs from Spain reveals a high hetrogeneity

    Science.gov (United States)

    Fecal specimens from 120 lambs in Valencia (Spain) were analyzed for Giardia duodenalis by IFA and nested-PCR using the beta giardin, glutamate dehydrogenase (gdh), triose phosphate isomerase (tpi) and small subunit ribosomal RNA (ssurRNA) genes. The highest prevalence was obtained using the ssurRN...

  4. Scandium phosphates

    International Nuclear Information System (INIS)

    Mel'nikov, P.P.; Komissarova, L.N.

    1988-01-01

    The review deals with scandium phosphates known by now, including mono- and condensed phosphates (di-, tri-, tetra phosphates and more condensed forms). Phosphates with complex cation and anion parts are also considered. The methods of preparation, structural types, structure peculiarities, physicochemical characteristics are generalized and application fields of the compounds mentioned are indicated

  5. Unique phenotypic expression of glucosephosphate isomerase deficiency.

    Science.gov (United States)

    Paglia, D E; Paredes, R; Valentine, W N; Dorantes, S; Konrad, P N

    1975-01-01

    Studies of a Mexican kindred present evidence for a unique phenotype of erythrocyte glucosephosphate isomerase, GPI Valle Hermoso. The proband was apparently the homozygous recipient of a mutant autosomal allele governing production of an isozyme characterized by decreased activity, marked thermal instability, normal kinetics and pH optimum, and normal starch gel electrophoretic patterns. Unlike previously known cases, leukocyte and plasma GPI activities were unimpaired. This suggested that the structural alteration primarily induced enzyme instability without drastically curtailing catalytic effectiveness, thereby allowing compensation by cells capable of continued protein synthesis. Age-related losses of GPI, however, were not evident by density-gradient fractionation of affected erythrocytes.

  6. Phosphate sensing

    Science.gov (United States)

    Bergwitz, Clemens; Jüppner, Harald

    2011-01-01

    Human phosphate homeostasis is regulated at the level of intestinal absorption of phosphate from the diet, release of phosphate through bone resorption, and renal phosphate excretion and involves the actions of parathyroid hormone (PTH), 1,25-dihydroxy-vitamin D (1,25-(OH)2-D), and fibroblast growth factor 23 (FGF23) to maintain circulating phosphate levels within a narrow normal range, which is essential for numerous cellular functions, for the growth of tissues and for bone mineralization. Prokaryotic and single cellular eukaryotic organisms such as bacteria and yeast “sense” ambient phosphate with a multi-protein complex located in their plasma membrane, which modulates the expression of genes important for phosphate uptake and metabolism (pho pathway). Database searches based on amino acid sequence conservation alone have been unable to identify metazoan orthologs of the bacterial and yeast phosphate sensors. Thus little is known about how human and other metazoan cells sense inorganic phosphate to regulate the effects of phosphate on cell metabolism (“metabolic” sensing) or to regulate the levels of extracellular phosphate via feedback system(s) (“endocrine” sensing). Whether the “metabolic” and the “endocrine” sensor use the same or different signal transduction cascades is unknown. This chapter will review the bacterial and yeast phosphate sensors, and then discuss what is currently known about the metabolic and endocrine effects of phosphate in multicellular organisms and humans. PMID:21406298

  7. Selective Isolation of Acidophilic Streptomyces Strains for Glucose Isomerase Production

    OpenAIRE

    Bok, Song H.; Seidman, Martin; Wopat, Paula W.

    1984-01-01

    Approximately 260 Streptomyces strains were isolated from neutral pH farmland soil and evaluated for their ability to produce glucose isomerase. The number of acidophilic Streptomyces organisms growing at pH 4.0 was low, i.e., 103 organisms per g of soil. All of the isolates showed glucose isomerase activity when they were grown in a medium containing d-xylose, an inducer for glucose isomerase. More than half of the strains tested developed heavy growth in 24 h, and many produced high titers ...

  8. Sodium Phosphate

    Science.gov (United States)

    Sodium phosphate is used in adults 18 years of age or older to empty the colon (large intestine, bowel) ... view of the walls of the colon. Sodium phosphate is in a class of medications called saline ...

  9. Endoglucanase activity at a second site inPyrococcus furiosustriosephosphate isomerase-Promiscuity or compensation for a metabolic handicap?

    Science.gov (United States)

    Sharma, Prerna; Guptasarma, Purnananda

    2017-08-01

    The eight-stranded (β/α) 8 barrel fold known as the Triosephosphate isomerase (TIM) barrel is the most commonly observed fold in enzymes, displaying an eightfold structural symmetry. The sequences and structures of different TIM barrel enzymes suggest that nature exploits the modularity inherent in the eightfold symmetry to generate enzymes with diverse enzymatic activities and, in certain cases, more than one catalytic activity per enzyme. Here, we report the discovery, verification, and characterization of such an additional activity, a novel endoglucanase/cellulase activity in what is otherwise a triosephosphate isomerase from the hyperthermophile archaeon Pyrococcus furiosus (PfuTIM). The activity is seen in two different ranges of temperatures, with one maximum at 40 °C and a second maximum close to 100 °C. The endoglucanase/cellulase activity is inhibited by norharman, a TIM inhibitor, which is suspected to bind at a site different to that of the regular substrate, glyceraldehyde-3-phosphate (G3P). However, endoglucanase/cellulose activity is not inhibited either by G3P analogs or by glycine-scanning mutations involving residues in loops 1, 4, and 6 of PfuTIM, which are known to be important for TIM activity. It appears, therefore, that two different sites on PfuTIM are responsible for the observed TIM and endoglucanase activities. We discuss possible correlations between this discovery and certain unusual features of the glycolytic pathway in P. furiosus . Pyrococcus furiosus Triosephosphate isomerase (EC:5.3.1.1).

  10. Optimization of lactulose synthesis from whey lactose by immobilized β-galactosidase and glucose isomerase.

    Science.gov (United States)

    Song, Yoon-Seok; Lee, Hee-Uk; Park, Chulhwan; Kim, Seung-Wook

    2013-03-22

    In the present study, commercially available whey was used as a lactose source, and immobilized β-galactosidase and glucose isomerase were used to synthesize lactulose from whey lactose in the absence of fructose. Optimal reaction conditions, such as lactose concentration, temperature, ionic strength of the buffer, and ratio of immobilized enzymes, were determined to improve lactulose synthesis using immobilized enzymes. Lactulose synthesis using immobilized enzymes improved markedly after optimizing the reaction conditions. When the lactulose synthesis was carried out at 53.5°C using 20% (w/v) whey lactose, 12U/ml of immobilized β-galactosidase and 60U/ml of immobilized glucose isomerase in 100mM sodium phosphate buffer at pH 7.5, the lactulose concentration and specific productivity were 7.68g/l and 0.32mg/Uh, respectively. Additionally, when the immobilized enzymes were reused for lactulose synthesis, their catalytic activity was 57.1% after 7 repeated uses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Uptake of 13C-glucose by cell suspensions of carrot (Daucus carota) measured by in vivo NMR: Cycling of triose, pentose- and hexose-phosphates

    NARCIS (Netherlands)

    Krook, J.; Vreugdenhil, D.; Dijkema, C.; Plas, van der L.H.W.

    2000-01-01

    After a lag phase of 2 days, batch-grown cells of carrot (Daucus carota L.) cv. Flakkese entered the exponential growth phase and started to accumulate sucrose and hexoses. Short-term feeding 13C-glucose in this period resulted in only minor labelling of sucrose or fructose. CO2 production from

  12. Structural and biochemical characterization of a recombinant triosephosphate isomerase from Rhipicephalus (Boophilus) microplus.

    Science.gov (United States)

    Moraes, Jorge; Arreola, Rodrigo; Cabrera, Nallely; Saramago, Luiz; Freitas, Daniela; Masuda, Aoi; da Silva Vaz, Itabajara; Tuena de Gomez-Puyou, Marietta; Perez-Montfort, Ruy; Gomez-Puyou, Armando; Logullo, Carlos

    2011-06-01

    Triosephosphate isomerase (TIM) is an enzyme with a role in glycolysis and gluconeogenesis by catalyzing the interconversion between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This enzyme has been used as a target in endoparasite drug development. In this work we cloned, expressed, purified and studied kinetic and structural characteristics of TIM from tick embryos, Rhipicephalus (Boophilus) microplus (BmTIM). The Km and Vmax of the recombinant BmTIM with glyceraldehyde 3-phosphate as substrate, were 0.47 mM and 6031 μmol min⁻¹ mg protein⁻¹, respectively. The resolution of the diffracted crystal was estimated to be 2.4 Å and the overall data showed that BmTIM is similar to other reported dimeric TIMs. However, we found that, in comparison to other TIMs, BmTIM has the highest content of cysteine residues (nine cysteine residues per monomer). Only two cysteines could make disulfide bonds in monomers of BmTIM. Furthermore, BmTIM was highly sensitive to the action of the thiol reagents dithionitrobenzoic acid and methyl methane thiosulfonate, suggesting that there are five cysteines exposed in each dimer and that these residues could be employed in the development of species-specific inhibitors. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Structural and biochemical characterization of a recombinant triosephosphate isomerase from Rhipicephalus (Boophilus) microplus

    Energy Technology Data Exchange (ETDEWEB)

    Moraes, Jorge; Arreola, Rodrigo; Cabrera, Nallely; Saramago, Luiz; Freitas, Daniela; Masuda, Aoi; da Silva Vaz Jr., Itabajara; Tuena de Gomez-Puyou, Marietta; Perez-Montfort, Ruy; Gomez-Puyou, Armando; Logullo, Carlos (UNICAMP); (UFRGS-Brazil); (UNAM-Mexico)

    2012-02-06

    Triosephosphate isomerase (TIM) is an enzyme with a role in glycolysis and gluconeogenesis by catalyzing the interconversion between glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. This enzyme has been used as a target in endoparasite drug development. In this work we cloned, expressed, purified and studied kinetic and structural characteristics of TIM from tick embryos, Rhipicephalus (Boophilus) microplus (BmTIM). The Km and Vmax of the recombinant BmTIM with glyceraldehyde 3-phosphate as substrate, were 0.47 mM and 6031 {micro}mol min{sup -1} mg protein{sup -1}, respectively. The resolution of the diffracted crystal was estimated to be 2.4 {angstrom} and the overall data showed that BmTIM is similar to other reported dimeric TIMs. However, we found that, in comparison to other TIMs, BmTIM has the highest content of cysteine residues (nine cysteine residues per monomer). Only two cysteines could make disulfide bonds in monomers of BmTIM. Furthermore, BmTIM was highly sensitive to the action of the thiol reagents dithionitrobenzoic acid and methyl methane thiosulfonate, suggesting that there are five cysteines exposed in each dimer and that these residues could be employed in the development of species-specific inhibitors.

  14. Molecular and industrial aspects of glucose isomerase.

    Science.gov (United States)

    Bhosale, S H; Rao, M B; Deshpande, V V

    1996-06-01

    Glucose isomerase (GI) (D-xylose ketol-isomerase; EC. 5.3.1.5) catalyzes the reversible isomerization of D-glucose and D-xylose to D-fructose and D-xylulose, respectively. The enzyme has the largest market in the food industry because of its application in the production of high-fructose corn syrup (HFCS). HFCS, an equilibrium mixture of glucose and fructose, is 1.3 times sweeter than sucrose and serves as a sweetener for use by diabetics. Interconversion of xylose to xylulose by GI serves a nutritional requirement in saprophytic bacteria and has a potential application in the bioconversion of hemicellulose to ethanol. The enzyme is widely distributed in prokaryotes. Intensive research efforts are directed toward improving its suitability for industrial application. Development of microbial strains capable of utilizing xylan-containing raw materials for growth or screening for constitutive mutants of GI is expected to lead to discontinuation of the use of xylose as an inducer for the production of the enzyme. Elimination of Co2+ from the fermentation medium is desirable for avoiding health problems arising from human consumption of HFCS. Immobilization of GI provides an efficient means for its easy recovery and reuse and lowers the cost of its use. X-ray crystallographic and genetic engineering studies support a hydride shift mechanism for the action of GI. Cloning of GI in homologous as well as heterologous hosts has been carried out, with the prime aim of overproducing the enzyme and deciphering the genetic organization of individual genes (xylA, xylB, and xylR) in the xyl operon of different microorganisms. The organization of xylA and xylB seems to be highly conserved in all bacteria. The two genes are transcribed from the same strand in Escherichia coli and Bacillus and Lactobacillus species, whereas they are transcribed divergently on different strands in Streptomyces species. A comparison of the xylA sequences from several bacterial sources revealed the

  15. Molecular characterization of the glucose isomerase from the thermophilic bacterium Fervidobacterium gondwanense

    NARCIS (Netherlands)

    Kluskens, L.D.; Zeilstra, J.B.; Geerling, A.C.M.; Vos, de W.M.; Oost, van der J.

    2010-01-01

    The gene coding for xylose isomerase from the thermophilic bacterium Fervidobacterium gondwanense was cloned and overexpressed in Escherichia coli. The produced xylose isomerase (XylA), which closely resembles counterparts from Thermotoga maritima and T. neapolitana, was purified and characterized.

  16. Construction of phosphomannose isomerase (PMI) transformation vectors and evaluation of the effectiveness of vectors in tobacco (Nicotiana tabacum L).

    Science.gov (United States)

    Bahariah, Bohari; Parveez, Ghulam Kadir Ahmad; Masani, Mat Yunus Abdul; Khalid, Norzulaani

    2012-01-01

    Phosphomannose isomerase (pmi) gene isolated from Escherichia coli allows transgenic plants carrying it to convert mannose-6- phosphate (from mannose), a carbon source that could not be naturally utilized by plants into fructose-6-phosphate which can be utilized by plants as a carbon source. This conversion ability provides energy source to allow the transformed cells to survive on the medium containing mannose. In this study, four transformation vectors carrying the pmi gene alone or in combination with the β-glucuronidase (gusA) gene were constructed and driven by either the maize ubiquitin (Ubi1) or the cauliflower mosaic virus (CaMV35S) promoter. Restriction digestion, PCR amplification and sequencing were carried out to ensure sequence integrity and orientation. Tobacco was used as a model system to study the effectiveness of the constructs and selection system. PMI11G and pMI3G, which carry gusA gene, were used to study the gene transient expression in tobacco. PMI3 construct, which only carries the pmi gene driven by CaMV35S promoter, was stably transformed into tobacco using biolistics after selection on 30 g 1(-1) mannose without sucrose. Transgenic plants were verified using PCR analysis. PMI/pmi - Phosphomannose isomerase, Ubi1 - Maize ubiquitin promoter, CaMV35S - Cauliflower mosaic virus 35S promoter, gusA - β-glucuronidase GUS reporter gene.

  17. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  18. Compact conformations of human protein disulfide isomerase.

    Directory of Open Access Journals (Sweden)

    Shang Yang

    Full Text Available Protein disulfide isomerase (PDI composed of four thioredoxin-like domains a, b, b', and a', is a key enzyme catalyzing oxidative protein folding in the endoplasmic reticulum. Large scale molecular dynamics simulations starting from the crystal structures of human PDI (hPDI in the oxidized and reduced states were performed. The results indicate that hPDI adopts more compact conformations in solution than in the crystal structures, which are stabilized primarily by inter-domain interactions, including the salt bridges between domains a and b' observed for the first time. A prominent feature of the compact conformations is that the two catalytic domains a and a' can locate close enough for intra-molecular electron transfer, which was confirmed by the characterization of an intermediate with a disulfide between the two domains. Mutations, which disrupt the inter-domain interactions, lead to decreased reductase activity of hPDI. Our molecular dynamics simulations and biochemical experiments reveal the intrinsic conformational dynamics of hPDI and its biological impact.

  19. Las poblaciones de Phytophthora infestans presentes en papa en el altiplano Cundiboyacense en 1996 son monomórficas para la enzima glucosa-6-fosfato Isomerasa Populations of Phytophthora infestans present on potato in the Cundinamarca and Boyacá plateau in 1996 are monomorphic for glucose-6-phosphate isomerase

    Directory of Open Access Journals (Sweden)

    Gualtero Cúellar Elsa Janeth

    1998-06-01

    ólo genotipo. Esta homogeneidad, en lo que se refiere a GPI en la población, permite concluir que en esta zona predomina la reproducción asexual, a través de la cual la variación genética es mínima o no se presenta. Resultados alternativos como la aparición de genotipos nuevos apoyarían la existencia de migraciones de otras poblaciones o la recombinación sexual explicada por la presencia de los tipos de apareamiento A1 y A2.
    Potato late blight, a disease caused by the Oomycete Phytophthora infestans, is responsible in great proportion for severe decrements in potato production in the Cundinamarca and Boyacá plateaus. Until now, late blight control has been done mainly with fungicides. The widened genetic variability in populations of this organism for a number of traits, including sensitivity to commercially available fungicides, observed in a world-wide perspective, has shown the need to research the genetic structure of local populations. This study was launched to characterize the populations of P. infestans in Cundinamarca and Boyacá through the polymorphism of glucose-6-phosfate isomerase (GPI. The results pointed at a clonal nature of these populations. All the local isolates were homozygous monomorphic for GPI, with genotype 100/100. Isolate Ro showed genotype 86/100 that corresponds to lineage US-1. Isolate MT2 showed genotype 84/100. These iso lates correspond to heterozygous populations that may have resulted from sexual reproduction. Isolate HIN had genotype 100/100, coinciding with local isolates. This isolate belongs to mating type A1 and corresponds to lineage US-6. This lineage represents one of the earliest migrations from Mexico to the United States, Europe and the rest of the world. Prior to the migrations of mating type A2. Results indicate that local populations are not too diverse, and suggest a clonal orrqtn. These results agree with the evaluation of this same population as regards sensitivity to metalaxil and mating type (Gonzalez, 1997

  20. Free and Immobilized Glucose Isomerase from Streptomyces phaeochromogenes1

    Science.gov (United States)

    Strandberg, Gerald W.; Smiley, Karl L.

    1971-01-01

    Properties were determined of the glucose isomerase from Streptomyces phaeochromogenes NRRL B-3559. The enzyme exhibited a temperature optimum of 80 C and a pH optimum of about 8. The effect of various buffers on activity of the enzyme and the optimum pH were studied. Michaelis constants for glucose and Mg2+ were 0.25 and 0.025 m, respectively. Co2+ enhanced enzyme activity. A functional polyacrylamide-entrapped glucose isomerase was prepared. The conditions for entrapment and use of the bound enzyme were examined. PMID:5575565

  1. Characteristics of chalcone isomerase promoter in crabapple leaves ...

    African Journals Online (AJOL)

    Anthocyanins are secondary metabolites found in higher plants that contribute to the colors of plants and chalcone isomerase (CHI) is one of the key enzymes in anthocyanin biosynthetic pathway. What characteristic is CHI promoter known as the regulation sequence of CHI gene, has been rarely investigated. We isolated A ...

  2. Cloning and characterization of peptidylprolyl isomerase B in the ...

    African Journals Online (AJOL)

    Peptidylprolyl isomerases (PPIases) play essential roles in protein folding and are implicated in immune response and cell cycle control. Our previous proteomic analysis indicated that Bombyx mori PPIases may be involved in anti- Bombyx mori nucleopolyhedrovirus (BmNPV) response. To help investigate this mechanism, ...

  3. Purification and some properties of glucose isomerase from Bacillus ...

    African Journals Online (AJOL)

    The objective of this study is to produce and purify glucose isomerase (GI) from Bacillus megaterium and to determine some of its properties. Soil sample was collected from cassava starch processing site and used immediately for bacterial isolation. Selected isolate produced the best GI activity in a preliminary test.

  4. Analyzing the effect of decreasing cytosolic triosephosphate isomerase on Solanum tuberosum hairy root cells using a kinetic-metabolic model.

    Science.gov (United States)

    Valancin, Alexandre; Srinivasan, Balasubrahmanyan; Rivoal, Jean; Jolicoeur, Mario

    2013-03-01

    A kinetic-metabolic model of Solanum tuberosum hairy roots is presented in the interest of understanding the effect on the plant cell metabolism of a 90% decrease in cytosolic triosephosphate isomerase (cTPI, EC 5.3.1.1) expression by antisense RNA. The model considers major metabolic pathways including glycolysis, pentose phosphate pathway, and TCA cycle, as well as anabolic reactions leading to lipids, nucleic acids, amino acids, and structural hexoses synthesis. Measurements were taken from shake flask cultures for six extracellular nutrients (sucrose, fructose, glucose, ammonia, nitrate, and inorganic phosphate) and 15 intracellular compounds including sugar phosphates (G6P, F6P, R5P, E4P) and organic acids (PYR, aKG, SUCC, FUM, MAL) and the six nutrients. From model simulations and experimental data it can be noted that plant cell metabolism redistributes metabolic fluxes to compensate for the cTPI decrease, leading to modifications in metabolites levels. Antisense roots showed increased exchanges between the pentose phosphate pathway and the glycolysis, an increased oxygen uptake and growth rate. Copyright © 2012 Wiley Periodicals, Inc.

  5. (IV) phosphates

    Indian Academy of Sciences (India)

    M(IV) phosphates of the class of tetravalent metal acid (TMA) salts where M (IV) = Zr, Ti, Sn has been synthesized by the sol-gel method. These materials have been characterized for elemental analysis (ICP-AES), thermal analysis (TGA, DSC), X-ray analysis and FTIR spectroscopy. Chemical resistivity of these materials ...

  6. Cloning and expression of the Clostridium thermosulfurogenes glucose isomerase gene in Escherichia coli and Bacillus subtilis.

    OpenAIRE

    Lee, C Y; Bhatnagar, L; Saha, B C; Lee, Y E; Takagi, M; Imanaka, T; Bagdasarian, M; Zeikus, J G

    1990-01-01

    The gene that encodes thermostable glucose isomerase in Clostridium thermosulfurogenes was cloned by complementation of glucose isomerase activity in a xylA mutant of Escherichia coli. A new assay method for thermostable glucose isomerase activity on agar plates, using a top agar mixture containing fructose, glucose oxidase, peroxidase, and benzidine, was developed. One positive clone, carrying plasmid pCGI38, was isolated from a cosmid library of C. thermosulfurogenes DNA. The plasmid was fu...

  7. Constitutive production of extracellular glucose isomerase by an osmophillic Aspergillus sp. under submerged conditions.

    Science.gov (United States)

    Sayyed, Riyaz Zafar; Shimpi, G B; Chincholkar, S B

    2010-10-01

    We report constitutive production of glucose isomerase (GI) under submerged growth of Aspergillus sp. in glucose phosphate broth (GPB). The fungus produced significant quantities of extracellular GI in GPB without supplementing the inducer (xylose). The maximum biomass (872 mg) and highest level of GI (1126 U) were obtained in 42 h at 30 °C and 120 rpm. Equal level of biomass and enzyme were produced in GPB with glucose and xylose, but the amount of biomass and enzyme was drastically reduced when the fungus was grown on other carbon sources. Optimum biomass, enzyme units and enzyme activity were obtained with 40 and 1 g/l of glucose, respectively. Growth of Aspergillus sp. and enzyme synthesis even at high glucose concentration (60 g/l) indicated the osmophillic nature of the fungus. Increasing the glucose concentration above 1 and 40 g/l did not support the growth and enzyme activity. Among various organic and inorganic nitrogen sources used, yeast extract, peptone and NH4SO4 gave the best biomass and enzyme yields. Addition of Mg(2+) and Mn(2+) in GPB significantly enhanced the enzyme production. Under optimized conditions in modified GPB, the yield of biomass and synthesis and activity of GI were significantly enhanced.

  8. Escherichia coli rpiA gene encoding ribose phosphate isomerase A

    DEFF Research Database (Denmark)

    Hove-Jensen, Bjarne; Maigaard, Marianne

    1993-01-01

    of the presumed translation start codon. Analysis of the 3' end of the transcript by S1 nuclease mapping showed that transcription termination occurred within an adenylate-rich sequence following a guanylate-cytidylate-rich stem-loop structure resembling a rho factor-independent transcription terminator. Host...

  9. Nucleotide sequence of the triosephosphate isomerase gene from Macaca mulatta

    Energy Technology Data Exchange (ETDEWEB)

    Old, S.E.; Mohrenweiser, H.W. (Univ. of Michigan, Ann Arbor (USA))

    1988-09-26

    The triosephosphate isomerase gene from a rhesus monkey, Macaca mulatta, charon 34 library was sequenced. The human and chimpanzee enzymes differ from the rhesus enzyme at ASN 20 and GLU 198. The nucleotide sequence identity between rhesus and human is 97% in the coding region and >94% in the flanking regions. Comparison of the rhesus and chimp genes, including the intron and flanking sequences, does not suggest a mechanism for generating the two TPI peptides of proliferating cells from hominoids and a single peptide from the rhesus gene.

  10. Studies on the production of glucose isomerase by Bacillus licheniformis

    Directory of Open Access Journals (Sweden)

    Nwokoro Ogbonnaya

    2015-09-01

    Full Text Available This work reports the effects of some culture conditions on the production of glucose isomerase by Bacillus licheniformis. The bacterium was selected based on the release of 3.62 mg/mL fructose from the fermentation of glucose. Enzyme was produced using a variety of carbon substrates but the highest enzyme activity was detected in a medium containing 0.5% xylose and 1% glycerol (specific activity = 6.88 U/mg protein. Media containing only xylose or glucose gave lower enzyme productivies (specific activities= 4.60 and 2.35 U/mg protein respectively. The effects of nitrogen substrates on glucose isomerase production showed that yeast extract supported maximum enzyme activity (specific activity = 5.24 U/mg protein. Lowest enzyme activity was observed with sodium trioxonitrate (specific activity = 2.44 U/mg protein. In general, organic nitrogen substrates supported higher enzyme productivity than inorganic nitrogen substrates. Best enzyme activity was observed in the presence of Mg2+ (specific activity = 6.85 U/mg protein while Hg2+ was inhibitory (specific activity = 1.02 U/mg protein. The optimum pH for best enzyme activity was 6.0 while optimum temperature for enzyme production was 50ºC.

  11. Characterization of a mutant glucose isomerase from Thermoanaerobacterium saccharolyticum.

    Science.gov (United States)

    Xu, Heng; Shen, Dong; Wu, Xue-Qiang; Liu, Zhi-Wei; Yang, Qi-He

    2014-10-01

    A series of site-directed mutant glucose isomerase at tryptophan 139 from Thermoanaerobacterium saccharolyticum strain B6A were purified to gel electrophoretic homogeneity, and the biochemical properties were determined. W139F mutation is the most efficient mutant derivative with a tenfold increase in its catalytic efficiency toward glucose compared with the native GI. With a maximal activity at 80 °C of 59.58 U/mg on glucose, this mutant derivative is the most active type ever reported. The enzyme activity was maximal at 90 °C and like other glucose isomerase, this mutant enzyme required Co(2+) or Mg(2+) for enzyme activity and thermal stability (stable for 20 h at 80 °C in the absence of substrate). Its optimum pH was around 7.0, and it had 86 % of its maximum activity at pH 6.0 incubated for 12 h at 60 °C. This enzyme was determined as thermostable and weak-acid stable. These findings indicated that the mutant GI W139F from T. saccharolyticum strain B6A is appropriate for use as a potential candidate for high-fructose corn syrup producing enzyme.

  12. [Cloning of Escherichia coli K12 xylose isomerase (glucose isomerase) and studying the enzymatic properties of its expression product].

    Science.gov (United States)

    Rozanov, A S; Zagrebel'nyĭ, S N; Beklemishchev, A B

    2009-01-01

    The coding region of Escherichia coli K12 xylose (glucose) isomerase gene was inserted into the pRAC expression vector and cloned in E. coli BL21 (DE3) cells. After induction of expression of the cloned gene, the proportion of recombinant xylose isomerase accounted for 40% of the total protein content. As a result of one-stage purification by affinity chromatography, a protein preparation of 90% purity was obtained. The recombinant enzyme catalyzed the isomerization of glucose to fructose and exhibited maximum activity (0.8 U/mg) at 45 degrees C and pH 6.8. The enzyme required Mg2+ ions as a cofactor. When Mg2+ and Co2+ ions were simultaneously present in the reaction medium, the enzyme activity increased by 15-20%. Complete replacement of Mg2+ with Co2+ decreased the enzyme activity. In the presence of Ca2+ at concentrations comparable to the concentration of Mg2+, the enzyme was not inhibited, although published data reported inhibition of similar enzymes by Ca2+. The recombinant enzyme exhibited a very low thermostability: it underwent a slow inactivation when incubated at 45 degrees C and was completely inactivated after incubation at 65 degrees C for 1 h.

  13. Structure and Stability of the Dimeric Triosephosphate Isomerase from the Thermophilic Archaeon Thermoplasma acidophilum.

    Directory of Open Access Journals (Sweden)

    Sang Ho Park

    Full Text Available Thermoplasma acidophilum is a thermophilic archaeon that uses both non-phosphorylative Entner-Doudoroff (ED pathway and Embden-Meyerhof-Parnas (EMP pathway for glucose degradation. While triosephosphate isomerase (TPI, a well-known glycolytic enzyme, is not involved in the ED pathway in T. acidophilum, it has been considered to play an important role in the EMP pathway. Here, we report crystal structures of apo- and glycerol-3-phosphate-bound TPI from T. acidophilum (TaTPI. TaTPI adopts the canonical TIM-barrel fold with eight α-helices and parallel eight β-strands. Although TaTPI shares ~30% sequence identity to other TPIs from thermophilic species that adopt tetrameric conformation for enzymatic activity in their harsh physiological environments, TaTPI exists as a dimer in solution. We confirmed the dimeric conformation of TaTPI by analytical ultracentrifugation and size-exclusion chromatography. Helix 5 as well as helix 4 of thermostable tetrameric TPIs have been known to play crucial roles in oligomerization, forming a hydrophobic interface. However, TaTPI contains unique charged-amino acid residues in the helix 5 and adopts dimer conformation. TaTPI exhibits the apparent Td value of 74.6°C and maintains its overall structure with some changes in the secondary structure contents at extremely acidic conditions (pH 1-2. Based on our structural and biophysical analyses of TaTPI, more compact structure of the protomer with reduced length of loops and certain patches on the surface could account for the robust nature of Thermoplasma acidophilum TPI.

  14. Expression and characterization of calcium- and zinc-tolerant xylose isomerase from Anoxybacillus kamchatkensis G10.

    Science.gov (United States)

    Park, Yeong-Jun; Jung, Byung Kwon; Hong, Sung-Jun; Park, Gun-Seok; Ibal, Jerald Conrad; Pham, HuyQuang; Shin, Jae-Ho

    2018-02-13

    The enzyme xylose isomerase (EC 5.3.1.5, XI) is responsible for theconversion of an aldose to ketose, especially xylose to xylulose. Owing to the ability of XI to isomerize glucose to fructose, this enzyme is used in the food industry to prepare high-fructose corn syrup. Therefore, we studiedthe characteristics of XI from Anoxybacillus kamchatkensis G10, a thermophilic bacterium. First, a gene coding for XI ( xylA ) was insertedinto the pET-21a (+) expression vector and the construct was transformed into an Escherichia coli competent cell BL21 (DE3). The expression of recombinant XI was induced in the absence of isopropyl-thio-β-galactopyranoside and purified using Ni-NTA affinity chromatography. The optimum temperature of recombinant XI was80°Cand measurement of the heat stability indicated that 55% of residual activity was maintained after 2 h incubation at 60°C. The optimum pH was found to be 7.5 in sodium phosphate buffer. Magnesium, manganese, and cobalt ions were found to increase enzyme activity; manganese was the most effective. Additionally,recombinant XI was resistant to the presence of Ca²⁺ andZn²⁺ ions. The kinetic properties, K m and V max , were calculated as 81.44 mM and 2.237μmol/min/mg, respectively. Through redundancy analysis, XI of A. kamchatkensis G10 was classified into a family containing type II XIs produced by the genera Geobacillus, Bacillus , and Thermotoga .These results suggested that the thermostable nature of XI of A. kamchatkensis G10 may be advantageous in industrial applications and food processing.

  15. Regulation of serum phosphate

    Science.gov (United States)

    Lederer, Eleanor

    2014-01-01

    The regulation of serum phosphate, an acknowledged risk factor for chronic kidney disease and cardiovascular mortality, is poorly understood. The discovery of fibroblast growth factor 23 (FGF23) as a key regulator of renal phosphate handling and activation of vitamin D has revolutionized our comprehension of phosphate homeostasis. Through as yet undetermined mechanisms, circulating and dietary phosphate appear to have a direct effect on FGF23 release by bone cells that, in turn, causes renal phosphate excretion and decreases intestinal phosphate absorption through a decrease in vitamin D production. Thus, the two major phosphaturic hormones, PTH and FGF23, have opposing effects on vitamin D production, placing vitamin D at the nexus of phosphate homeostasis. While our understanding of phosphate homeostasis has advanced, the factors determining regulation of serum phosphate level remain enigmatic. Diet, time of day, season, gender, age and genetics have all been identified as significant contributors to serum phosphate level. The effects of these factors on serum phosphate have major implications for what is understood as ‘normal’ and for studies of phosphate homeostasis and metabolism. Moreover, other hormonal mediators such as dopamine, insulin-like growth factor, and angiotensin II also affect renal handling of phosphate. How the major hormone effects on phosphate handling are regulated and how the effect of these other factors are integrated to yield the measurable serum phosphate are only now beginning to be studied. PMID:24973411

  16. A zebrafish model of congenital disorders of glycosylation with phosphomannose isomerase deficiency reveals an early opportunity for corrective mannose supplementation

    Directory of Open Access Journals (Sweden)

    Jaime Chu

    2013-01-01

    Individuals with congenital disorders of glycosylation (CDG have recessive mutations in genes required for protein N-glycosylation, resulting in multi-systemic disease. Despite the well-characterized biochemical consequences in these individuals, the underlying cellular defects that contribute to CDG are not well understood. Synthesis of the lipid-linked oligosaccharide (LLO, which serves as the sugar donor for the N-glycosylation of secretory proteins, requires conversion of fructose-6-phosphate to mannose-6-phosphate via the phosphomannose isomerase (MPI enzyme. Individuals who are deficient in MPI present with bleeding, diarrhea, edema, gastrointestinal bleeding and liver fibrosis. MPI-CDG patients can be treated with oral mannose supplements, which is converted to mannose-6-phosphate through a minor complementary metabolic pathway, restoring protein glycosylation and ameliorating most symptoms, although liver disease continues to progress. Because Mpi deletion in mice causes early embryonic lethality and thus is difficult to study, we used zebrafish to establish a model of MPI-CDG. We used a morpholino to block mpi mRNA translation and established a concentration that consistently yielded 13% residual Mpi enzyme activity at 4 days post-fertilization (dpf, which is within the range of MPI activity detected in fibroblasts from MPI-CDG patients. Fluorophore-assisted carbohydrate electrophoresis detected decreased LLO and N-glycans in mpi morphants. These deficiencies resulted in 50% embryonic lethality by 4 dpf. Multi-systemic abnormalities, including small eyes, dysmorphic jaws, pericardial edema, a small liver and curled tails, occurred in 82% of the surviving larvae. Importantly, these phenotypes could be rescued with mannose supplementation. Thus, parallel processes in fish and humans contribute to the phenotypes caused by Mpi depletion. Interestingly, mannose was only effective if provided prior to 24 hpf. These data provide insight into treatment efficacy

  17. Optimizing crystal volume for neutron diffraction: D-xylose isomerase.

    Science.gov (United States)

    Snell, Edward H; van der Woerd, Mark J; Damon, Michael; Judge, Russell A; Myles, Dean A A; Meilleur, Flora

    2006-09-01

    Neutron diffraction is uniquely sensitive to hydrogen positions and protonation state. In that context structural information from neutron data is complementary to that provided through X-ray diffraction. However, there are practical obstacles to overcome in fully exploiting the potential of neutron diffraction, i.e. low flux and weak scattering. Several approaches are available to overcome these obstacles and we have investigated the simplest: increasing the diffracting volume of the crystals. Volume is a quantifiable metric that is well suited for experimental design and optimization techniques. By using response surface methods we have optimized the xylose isomerase crystal volume, enabling neutron diffraction while we determined the crystallization parameters with a minimum of experiments. Our results suggest a systematic means of enabling neutron diffraction studies for a larger number of samples that require information on hydrogen position and/or protonation state.

  18. Mammalian peptide isomerase: platypus-type activity is present in mouse heart.

    Science.gov (United States)

    Koh, Jennifer M S; Chow, Stephanie J P; Crossett, Ben; Kuchel, Philip W

    2010-06-01

    Male platypus (Ornithorhynchus anatinus) venom has a peptidyl aminoacyl L/D-isomerase (hereafter called peptide isomerase) that converts the second amino acid residue in from the N-terminus from the L- to the D-form, and vice versa. A reversed-phase high-performance liquid chromatography (RP-HPLC) assay has been developed to monitor the interconversion using synthetic hexapeptides derived from defensin-like peptide-2 (DLP-2) and DLP-4 as substrates. It was hypothesised that animals other than the platypus would have peptide isomerase with the same substrate specificity. Accordingly, eight mouse tissues were tested and heart was shown to have the activity. This is notable for being the first evidence of a peptide isomerase being present in a higher mammal and heralds finding the activity in man.

  19. Relationship between deficiency of phosphoglucose isomerase in Coprinus macrorhizus and fruiting body formation.

    OpenAIRE

    Nyunoya, H; Ishikawa, T

    1980-01-01

    A mutant (pgi) of Coprinus macrorhizus deficient in phosphoglucose isomerase did not grow on fructose and grew poorly on glucose. The pgi mutation inhibited the formation of monokaryotic and dikaryotic fruiting bodies.

  20. INDUCTION AND REPRESSION OF l-ARABINOSE ISOMERASE IN PEDIOCOCCUS PENTOSACEUS1

    Science.gov (United States)

    Dobrogosz, Walter J.; DeMoss, Ralph D.

    1963-01-01

    Dobrogosz, Walter J. (University of Illinois, Urbana) and Ralph D. DeMoss. Induction and repression of l-arabinose isomerase in Pediococcus pentosaceus. J. Bacteriol. 85:1350–1355. 1963.—The inducible l-arabinose isomerase of Pediococcus pentosaceus can be rapidly and conveniently measured in whole-cell preparations by use of a standard colorimetric procedure originally developed for studies with cell-free enzyme preparations. The enzyme is measured by its ability to catalyze the isomerization of l-arabinose to l-ribulose. Whole cells suspended in a suitable buffer and pretreated with toluene were shown to exhibit this isomerase activity at a level comparable with that observed in cell-free enzyme preparations. Conditions for optimal induction of l-arabinose isomerase are described. In addition, it was determined that the formation of this enzyme is subject to repression by glucose, i.e., via catabolite repression. PMID:14047229

  1. Phosphate Uptake by Phosphate-Starved Euglena

    Science.gov (United States)

    BLUM, J. J.

    1966-01-01

    Phosphate-deprived Euglena acquire the ability to rapidly in-corporate added phosphate and, also, synthesize an induced acid phosphatase localized in the pellicle. The phosphate uptake system is saturated at low concentrations of phosphate and is inhibited by dinitrophenol, by low temperature, by K+, Li+, and Na+ ions, and competitively by arsenate. The orthophosphate incorporated into the cell is rapidly converted into organic forms but enough remains unesterified to suggest that the uptake is an active transport process. The data do not rule out the possibility that the induced phosphatase is involved in the transport process. PMID:5924104

  2. Structural Basis for Redox Regulation of Cytoplasmic and Chloroplastic Triosephosphate Isomerases from Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Laura Margarita López-Castillo

    2016-12-01

    Full Text Available In plants triosephosphate isomerase (TPI interconverts glyceraldehyde 3-phosphate (G3P and dihydroxyacetone phosphate (DHAP during glycolysis, gluconeogenesis, and the Calvin-Benson cycle. The nuclear genome of land plants encodes two tpi genes, one gene product is located in the cytoplasm and the other is imported into the chloroplast. Herein we report the crystal structures of the TPIs from the vascular plant Arabidopsis thaliana (AtTPIs and address their enzymatic modulation by redox agents. Cytoplasmic TPI (cTPI and chloroplast TPI (pdTPI share more than 60% amino acid identity and assemble as (β-α8 dimers with high structural homology. cTPI and pdTPI harbor two and one accessible thiol groups per monomer respectively. cTPI and pdTPI present a cysteine at an equivalent structural position (C13 and C15 respectively and cTPI also contains a specific solvent accessible cysteine at residue 218 (cTPI-C218. Site directed mutagenesis of residues pdTPI-C15, cTPI-C13 and cTPI-C218 to serine substantially decreases enzymatic activity, indicating that the structural integrity of these cysteines is necessary for catalysis. AtTPIs exhibit differential responses to oxidative agents, cTPI is susceptible to oxidative agents such as diamide and H2O2, whereas pdTPI is resistant to inhibition. Incubation of AtTPIs with the sulfhydryl conjugating reagents methylmethane thiosulfonate (MMTS and glutathione inhibits enzymatic activity. However, the concentration necessary to inhibit pdTPI is at least two orders of magnitude higher than the concentration needed to inhibit cTPI. Western-blot analysis indicates that residues cTPI-C13, cTPI-C218, and pdTPI-C15 conjugate with glutathione. In summary, our data indicate that AtTPIs could be redox regulated by the derivatization of specific AtTPI cysteines (cTPI-C13 and pdTPI-C15 and cTPI-C218. Since AtTPIs have evolved by gene duplication, the higher resistance of pdTPI to redox agents may be an adaptive consequence to

  3. A single and two step isomerization process for d-tagatose and l-ribose bioproduction using l-arabinose isomerase and d-lyxose isomerase.

    Science.gov (United States)

    Patel, Manisha J; Akhani, Rekha C; Patel, Arti T; Dedania, Samir R; Patel, Darshan H

    2017-02-01

    l-ribose and d-tagatose are biochemically synthesized using sugar isomerases. The l-arabinose isomerase gene from Shigella flexneri (Sf-AI) was cloned and expressed in Escherichia coli BL-21. Sf-AI was applied for the bioproduction of d-tagatose from d-galactose. l-ribose synthesis was performed by two step isomerization using Sf-AI and d-lyxose/ribose isomerase from Cohnella laevoribosii. The overall 22.3% and 25% conversion rate were observed for d-tagatose and l-ribose production from d-galactose and l-arabinose respectively. In the present manuscript, synthesis of rare sugars from naturally available sugars is discussed along with the biochemical characterization of Sf-AI and its efficiency. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Uranium from phosphate ores

    International Nuclear Information System (INIS)

    Hurst, F.J.

    1983-01-01

    The following topics are described briefly: the way phosphate fertilizers are made; how uranium is recovered in the phosphate industry; and how to detect covert uranium recovery operations in a phsophate plant

  5. Glucose-6-phosphate dehydrogenase

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003671.htm Glucose-6-phosphate dehydrogenase test To use the sharing features on this page, please enable JavaScript. Glucose-6-phosphate dehydrogenase (G6PD) is a protein that ...

  6. Conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate : new insights from structural and biochemical studies on human RPE.

    Energy Technology Data Exchange (ETDEWEB)

    Liang, W.; Ouyang, S.; Shaw, N.; Joachimiak, A.; Zhang, R.; Liu, Z.; Biosciences Division; Chinese Academy of Sciences

    2011-02-01

    The pentose phosphate pathway (PPP) confers protection against oxidative stress by supplying NADPH necessary for the regeneration of glutathione, which detoxifies H{sub 2}O{sub 2} into H{sub 2}O and O{sub 2}. RPE functions in the PPP, catalyzing the reversible conversion of D-ribulose 5-phosphate to D-xylulose 5-phosphate and is an important enzyme for cellular response against oxidative stress. Here, using structural, biochemical, and functional studies, we show that human D-ribulose 5-phosphate 3-epimerase (hRPE) uses Fe{sup 2+} for catalysis. Structures of the binary complexes of hRPE with D-ribulose 5-phosphate and D-xylulose 5-phosphate provide the first detailed molecular insights into the binding mode of physiological ligands and reveal an octahedrally coordinated Fe{sup 2+} ion buried deep inside the active site. Human RPE folds into a typical ({beta}/{alpha}){sub 8} triosephosphate isomerase (TIM) barrel with a loop regulating access to the active site. Two aspartic acids are well positioned to carry out the proton transfers in an acid-base type of reaction mechanism. Interestingly, mutating Ser-10 to alanine almost abolished the enzymatic activity, while L12A and M72A mutations resulted in an almost 50% decrease in the activity. The binary complexes of hRPE reported here will aid in the design of small molecules for modulating the activity of the enzyme and altering flux through the PPP.

  7. Glucose isomerization in simulated moving bed reactor by Glucose isomerase

    Directory of Open Access Journals (Sweden)

    Eduardo Alberto Borges da Silva

    2006-05-01

    Full Text Available Studies were carried out on the production of high-fructose syrup by Simulated Moving Bed (SMB technology. A mathematical model and numerical methodology were used to predict the behavior and performance of the simulated moving bed reactors and to verify some important aspects for application of this technology in the isomerization process. The developed algorithm used the strategy that considered equivalences between simulated moving bed reactors and true moving bed reactors. The kinetic parameters of the enzymatic reaction were obtained experimentally using discontinuous reactors by the Lineweaver-Burk technique. Mass transfer effects in the reaction conversion using the immobilized enzyme glucose isomerase were investigated. In the SMB reactive system, the operational variable flow rate of feed stream was evaluated to determine its influence on system performance. Results showed that there were some flow rate values at which greater purities could be obtained.Neste trabalho a tecnologia de Leito Móvel Simulado (LMS reativo é aplicada no processo de isomerização da glicose visando à produção de xarope concentrado de frutose. É apresentada a modelagem matemática e uma metodologia numérica para predizer o comportamento e o desempenho de unidades reativas de leito móvel simulado para verificar alguns aspectos importantes para o emprego desta tecnologia no processo de isomerização. O algoritmo desenvolvido utiliza a abordagem que considera as equivalências entre as unidades reativas de leito móvel simulado e leito móvel verdadeiro. Parâmetros cinéticos da reação enzimática são obtidos experimentalmente usando reatores em batelada pela técnica Lineweaver-Burk. Efeitos da transferência de massa na conversão de reação usando a enzima imobilizada glicose isomerase são verificados. No sistema reativo de LMS, a variável operacional vazão da corrente de alimentação é avaliada para conhecer o efeito de sua influência no

  8. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.

    Science.gov (United States)

    Wasylenko, Thomas M; Stephanopoulos, Gregory

    2015-03-01

    Over the past two decades, significant progress has been made in the engineering of xylose-consuming Saccharomyces cerevisiae strains for production of lignocellulosic biofuels. However, the ethanol productivities achieved on xylose are still significantly lower than those observed on glucose for reasons that are not well understood. We have undertaken an analysis of central carbon metabolite pool sizes and metabolic fluxes on glucose and on xylose under aerobic and anaerobic conditions in a strain capable of rapid xylose assimilation via xylose isomerase in order to investigate factors that may limit the rate of xylose fermentation. We find that during xylose utilization the flux through the non-oxidative Pentose Phosphate Pathway (PPP) is high but the flux through the oxidative PPP is low, highlighting an advantage of the strain employed in this study. Furthermore, xylose fails to elicit the full carbon catabolite repression response that is characteristic of glucose fermentation in S. cerevisiae. We present indirect evidence that the incomplete activation of the fermentation program on xylose results in a bottleneck in lower glycolysis, leading to inefficient re-oxidation of NADH produced in glycolysis. © 2014 Wiley Periodicals, Inc.

  9. Genetic Evidence for the Physiological Significance of the d-Tagatose 6-Phosphate Pathway of Lactose and d-Galactose Degradation in Staphylococcus aureus1

    Science.gov (United States)

    Bissett, Donald L.; Anderson, Richard L.

    1974-01-01

    Mutants of Staphylococcus aureus were isolated which were unable to utilize d-galactose or lactose, but which were able to utilize all other carbohydrates tested. Growth of the mutants on a peptone-containing medium was inhibited by d-galactose. Of those mutants selected for further study, one (tagI2) was missing d-galactose 6-phosphate isomerase, one (tagK3) was missing d-tagatose 6-phosphate kinase, and one (tagA4) was missing d-tagatose 1, 6-diphosphate aldolase. Each of these mutants accumulated the substrate of the missing enzyme intracellularly. Spontaneous revertants of each of the mutants simultaneously regained their ability to utilize d-galactose and lactose, lost their sensitivity to d-galactose, regained the missing enzymatic activities, and no longer accumulated intermediates of the d-tagatose 6-phosphate pathway. These data support our previous contention that the physiologically significant route for the metabolism of d-galactose and the d-galactosyl moiety of lactose in S. aureus is the d-tagatose 6-phosphate pathway. Furthermore, a mutant constitutive for all three enzymes of this pathway was isolated, indicating that the products of the tagI, tagK, and tagA genes are under common genetic control. This conclusion was supported by the demonstration that d-galactose 6-phosphate isomerase, d-tagatose 6-phosphate kinase, and d-tagatose 1, 6-diphosphate aldolase are coordinately induced in the parental strain. PMID:4277494

  10. Solubility and crystallization of xylose isomerase from Streptomyces rubiginosus

    Science.gov (United States)

    Vuolanto, Antti; Uotila, Sinikka; Leisola, Matti; Visuri, Kalevi

    2003-10-01

    We have studied the crystallization and crystal solubility of xylose isomerase (XI) from Streptomyces rubiginosus. In this paper, we show a rational approach for developing a large-scale crystallization process for XI. Firstly, we measured the crystal solubility in salt solutions with respect to salt concentration, temperature and pH. In ammonium sulfate the solubility of XI decreased logarithmically when increasing the salt concentration. Surprisingly, the XI crystals had a solubility minimum at low concentration of magnesium sulfate. The solubility of XI in 0.17 M magnesium sulfate was less than 0.5 g l -1. The solubility of XI increased logarithmically when increasing the temperature. We also found a solubility minimum around pH 7. This is far from the isoelectric point of XI (pH 3.95). Secondly, based on the solubility study, we developed a large-scale crystallization process for XI. In a simple and economical cooling crystallization of XI from 0.17 M magnesium sulfate solution, the recovery of crystalline active enzyme was over 95%. Moreover, we developed a process for production of uniform crystals and produced homogenous crystals with average crystal sizes between 12 and 360 μm.

  11. Protein Disulfide Isomerase and Host-Pathogen Interaction

    Directory of Open Access Journals (Sweden)

    Beatriz S. Stolf

    2011-01-01

    Full Text Available Reactive oxygen species (ROS production by immunological cells is known to cause damage to pathogens. Increasing evidence accumulated in the last decade has shown, however, that ROS (and redox signals functionally regulate different cellular pathways in the host-pathogen interaction. These especially affect (i pathogen entry through protein redox switches and redox modification (i.e., intra- and interdisulfide and cysteine oxidation and (ii phagocytic ROS production via Nox family NADPH oxidase enzyme and the control of phagolysosome function with key implications for antigen processing. The protein disulfide isomerase (PDI family of redox chaperones is closely involved in both processes and is also implicated in protein unfolding and trafficking across the endoplasmic reticulum (ER and towards the cytosol, a thiol-based redox locus for antigen processing. Here, we summarise examples of the cellular association of host PDI with different pathogens and explore the possible roles of pathogen PDIs in infection. A better understanding of these complex regulatory steps will provide insightful information on the redox role and coevolutional biological process, and assist the development of more specific therapeutic strategies in pathogen-mediated infections.

  12. Roles of Prolyl Isomerases in RNA-Mediated Gene Expression

    Directory of Open Access Journals (Sweden)

    Roopa Thapar

    2015-05-01

    Full Text Available The peptidyl-prolyl cis-trans isomerases (PPIases that include immunophilins (cyclophilins and FKBPs and parvulins (Pin1, Par14, Par17 participate in cell signaling, transcription, pre-mRNA processing and mRNA decay. The human genome encodes 19 cyclophilins, 18 FKBPs and three parvulins. Immunophilins are receptors for the immunosuppressive drugs cyclosporin A, FK506, and rapamycin that are used in organ transplantation. Pin1 has also been targeted in the treatment of Alzheimer’s disease, asthma, and a number of cancers. While these PPIases are characterized as molecular chaperones, they also act in a nonchaperone manner to promote protein-protein interactions using surfaces outside their active sites. The immunosuppressive drugs act by a gain-of-function mechanism by promoting protein-protein interactions in vivo. Several immunophilins have been identified as components of the spliceosome and are essential for alternative splicing. Pin1 plays roles in transcription and RNA processing by catalyzing conformational changes in the RNA Pol II C-terminal domain. Pin1 also binds several RNA binding proteins such as AUF1, KSRP, HuR, and SLBP that regulate mRNA decay by remodeling mRNP complexes. The functions of ribonucleoprotein associated PPIases are largely unknown. This review highlights PPIases that play roles in RNA-mediated gene expression, providing insight into their structures, functions and mechanisms of action in mRNP remodeling in vivo.

  13. Purification and Partial Characterization of Trypanosoma cruzi Triosephosphate Isomerase

    Directory of Open Access Journals (Sweden)

    Bourguignon SC

    1998-01-01

    Full Text Available The enzyme triosephosphate isomerase (TPI, EC 5.3.1.1 was purified from extracts of epimastigote forms of Trypanosoma cruzi. The purification steps included: hydrophobic interaction chromatography on phenyl-Sepharose, CM-Sepharose, and high performance liquid gel filtration chromatography. The CM-Sepharose material contained two bands (27 and 25 kDa with similar isoelectric points (pI 9.3-9.5 which could be separated by gel filtration in high performance liquid chromatography. Polyclonal antibodies raised against the porcine TPI detected one single polypeptide on western blot with a molecular weight (27 kDa identical to that purified from T. cruzi. These antibodies also recognized only one band of identical molecular weight in western blots of several other trypanosomatids (Blastocrithidia culicis, Crithidia desouzai, Phytomonas serpens, Herpertomonas samuelpessoai. The presence of only one enzymatic form of TPI in T. cruzi epimastigotes was confirmed by agarose gel activity assay and its localization was established by immunocytochemical analysis. The T. cruzi purified TPI (as well as other trypanosomatid' TPIs is a dimeric protein, composed of two identical subunits with an approximate mw of 27,000 and it is resolved on two dimensional gel electrophoresis with a pI of 9.3. Sequence analysis of the N-terminal portion of the 27 kDa protein revealed a high homology to Leishmania mexicana and T. brucei proteins

  14. Crystal Structure of Triosephosphate Isomerase from Trypanosoma cruzi in Hexane

    Science.gov (United States)

    Gao, Xiu-Gong; Maldonado, Ernesto; Perez-Montfort, Ruy; Garza-Ramos, Georgina; Tuena de Gomez-Puyou, Marietta; Gomez-Puyou, Armando; Rodriguez-Romero, Adela

    1999-08-01

    To gain insight into the mechanisms of enzyme catalysis in organic solvents, the x-ray structure of some monomeric enzymes in organic solvents was determined. However, it remained to be explored whether the structure of oligomeric proteins is also amenable to such analysis. The field acquired new perspectives when it was proposed that the x-ray structure of enzymes in nonaqueous media could reveal binding sites for organic solvents that in principle could represent the starting point for drug design. Here, a crystal of the dimeric enzyme triosephosphate isomerase from the pathogenic parasite Trypanosoma cruzi was soaked and diffracted in hexane and its structure solved at 2- angstrom resolution. Its overall structure and the dimer interface were not altered by hexane. However, there were differences in the orientation of the side chains of several amino acids, including that of the catalytic Glu-168 in one of the monomers. No hexane molecules were detected in the active site or in the dimer interface. However, three hexane molecules were identified on the surface of the protein at sites, which in the native crystal did not have water molecules. The number of water molecules in the hexane structure was higher than in the native crystal. Two hexanes localized at <4 angstrom from residues that form the dimer interface; they were in close proximity to a site that has been considered a potential target for drug design.

  15. Immobilization of Recombinant Glucose Isomerase for Efficient Production of High Fructose Corn Syrup.

    Science.gov (United States)

    Jin, Li-Qun; Xu, Qi; Liu, Zhi-Qiang; Jia, Dong-Xu; Liao, Cheng-Jun; Chen, De-Shui; Zheng, Yu-Guo

    2017-09-01

    Glucose isomerase is the important enzyme for the production of high fructose corn syrup (HFCS). One-step production of HFCS containing more than 55% fructose (HFCS-55) is receiving much attention for its industrial applications. In this work, the Escherichia coli harboring glucose isomerase mutant TEGI-W139F/V186T was immobilized for efficient production of HFCS-55. The immobilization conditions were optimized, and the maximum enzyme activity recovery of 92% was obtained. The immobilized glucose isomerase showed higher pH, temperature, and operational stabilities with a K m value of 272 mM and maximum reaction rate of 23.8 mM min -1 . The fructose concentration still retained above 55% after the immobilized glucose isomerase was reused for 10 cycles, and more than 85% of its initial activity was reserved even after 15 recycles of usage at temperature of 90 °C. The results highlighted the immobilized glucose isomerase as a potential biocatalyst for HFCS-55 production.

  16. High production of D-tagatose, a potential sugar substitute, using immobilized L-arabinose isomerase.

    Science.gov (United States)

    Kim, P; Yoon, S H; Roh, H J; Choi, J H

    2001-01-01

    An L-arabinose isomerase of Escherichia coli was immobilized using covalent binding to agarose to produce D-tagatose, a bulking sweetener that can be economically used as a sugar substitute. The immobilized L-arabinose isomerase stably produced an average of 7.5 g-tagatose/L.day for 7 days with a productivity exceeding that of the free enzyme (0.47 vs 0.30 mg/U.day). Using a scaled-up immobilized enzyme system, 99.9 g-tagatose/L was produced from galactose with 20% equilibrium in 48 h. The process was repeated two more times with production of 104.1 and 103.5 g-tagatose/L. D-Tagatose production using an immobilized L-arabinose isomerase has a high potential for commercial application.

  17. Involvement of alanine 103 residue in kinetic and physicochemical properties of glucose isomerases from Streptomyces species.

    Science.gov (United States)

    Borgi, Mohamed Ali; Rhimi, Moez; Bejar, Samir

    2007-02-01

    The Ala103 to Gly mutation, introduced within the glucose isomerase from Streptomyces sp. SK (SKGI) decreased its catalytic efficiency (k(cat)/K(m)) toward D-glucose from 7.1 to 3 mM(-1) min(-1). The reverse counterpart replacement Gly103Ala introduced into the glucose isomerase of Streptomyces olivochromogenes (SOGI) considerably improved its catalytic efficiency to be 6.7 instead of 3.2 mM(-1) min(-1). This later mutation also increased the half-life time of the enzyme from 70 to 95 min at 80 degrees C and mainly modified its pH profile. These results provide evidence that the residue Ala103 plays an essential role in the kinetic and physicochemical properties of glucose isomerases from Streptomyces species.

  18. Zinc phosphate conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, Toshifumi (Wading River, NY)

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  19. Zinc phosphate conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sugama, T.

    1997-02-18

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate {alpha}-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal. 33 figs.

  20. Discussion about magnesium phosphating

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-07-01

    Full Text Available The paper describes results from recently published research focused on production of non-conventional magnesium phosphate Mg3(PO42・4H2O – bobierrite, or MgHPO4・3H2O – newberyite coating for both magnesium alloys and/or mild steel. This new kind of coating is categorized in the context of current state of phosphating technology and its potential advantages and crystal structure is discussed. At the same time, the suitable comparison techniques for magnesium phosphate coating and conventional zinc phosphate coating are discussed.

  1. Phosphorus, phosphorous, and phosphate.

    Science.gov (United States)

    Iheagwara, O Susan; Ing, Todd S; Kjellstrand, Carl M; Lew, Susie Q

    2013-10-01

    This article distinguishes the terms "phosphorus, phosphorous, and phosphate" which are frequently used interchangeably. We point out the difference between phosphorus and phosphate, with an emphasis on the unit of measure. Expressing a value without the proper name or unit of measure may lead to misunderstanding and erroneous conclusions. We indicate why phosphate must be expressed as milligrams per deciliter or millimoles per liter and not as milliequivalents per liter. Therefore, we elucidate the distinction among the terms "phosphorus, phosphorous, and phosphate" and the importance of saying precisely what one really means. © 2012 The Authors. Hemodialysis International © 2012 International Society for Hemodialysis.

  2. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  3. Xylose isomerase improves growth and ethanol production rates from biomass sugars for both Saccharomyces pastorianus and Saccharomyces cerevisiae.

    Science.gov (United States)

    Miller, Kristen P; Gowtham, Yogender Kumar; Henson, J Michael; Harcum, Sarah W

    2012-01-01

    The demand for biofuel ethanol made from clean, renewable nonfood sources is growing. Cellulosic biomass, such as switch grass (Panicum virgatum L.), is an alternative feedstock for ethanol production; however, cellulosic feedstock hydrolysates contain high levels of xylose, which needs to be converted to ethanol to meet economic feasibility. In this study, the effects of xylose isomerase on cell growth and ethanol production from biomass sugars representative of switch grass were investigated using low cell density cultures. The lager yeast species Saccharomyces pastorianus was grown with immobilized xylose isomerase in the fermentation step to determine the impact of the glucose and xylose concentrations on the ethanol production rates. Ethanol production rates were improved due to xylose isomerase; however, the positive effect was not due solely to the conversion of xylose to xylulose. Xylose isomerase also has glucose isomerase activity, so to better understand the impact of the xylose isomerase on S. pastorianus, growth and ethanol production were examined in cultures provided fructose as the sole carbon. It was observed that growth and ethanol production rates were higher for the fructose cultures with xylose isomerase even in the absence of xylose. To determine whether the positive effects of xylose isomerase extended to other yeast species, a side-by-side comparison of S. pastorianus and Saccharomyces cerevisiae was conducted. These comparisons demonstrated that the xylose isomerase increased ethanol productivity for both the yeast species by increasing the glucose consumption rate. These results suggest that xylose isomerase can contribute to improved ethanol productivity, even without significant xylose conversion. Copyright © 2012 American Institute of Chemical Engineers (AIChE).

  4. Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae.

    Science.gov (United States)

    Brat, Dawid; Boles, Eckhard; Wiedemann, Beate

    2009-04-01

    In industrial fermentation processes, the yeast Saccharomyces cerevisiae is commonly used for ethanol production. However, it lacks the ability to ferment pentose sugars like d-xylose and l-arabinose. Heterologous expression of a xylose isomerase (XI) would enable yeast cells to metabolize xylose. However, many attempts to express a prokaryotic XI with high activity in S. cerevisiae have failed so far. We have screened nucleic acid databases for sequences encoding putative XIs and finally were able to clone and successfully express a highly active new kind of XI from the anaerobic bacterium Clostridium phytofermentans in S. cerevisiae. Heterologous expression of this enzyme confers on the yeast cells the ability to metabolize d-xylose and to use it as the sole carbon and energy source. The new enzyme has low sequence similarities to the XIs from Piromyces sp. strain E2 and Thermus thermophilus, which were the only two XIs previously functionally expressed in S. cerevisiae. The activity and kinetic parameters of the new enzyme are comparable to those of the Piromyces XI. Importantly, the new enzyme is far less inhibited by xylitol, which accrues as a side product during xylose fermentation. Furthermore, expression of the gene could be improved by adapting its codon usage to that of the highly expressed glycolytic genes of S. cerevisiae. Expression of the bacterial XI in an industrially employed yeast strain enabled it to grow on xylose and to ferment xylose to ethanol. Thus, our findings provide an excellent starting point for further improvement of xylose fermentation in industrial yeast strains.

  5. Molecular characterization of the glucose isomerase from the thermophilic bacterium Fervidobacterium gondwanense.

    Science.gov (United States)

    Kluskens, L D; Zeilstra, J; Geerling, A C M; de Vos, W M; van der Oost, J

    2010-09-01

    The gene coding for xylose isomerase from the thermophilic bacterium Fervidobacterium gondwanense was cloned and overexpressed in Escherichia coli. The produced xylose isomerase (XylA), which closely resembles counterparts from Thermotoga maritima and T. neapolitana, was purified and characterized. It is optimally active at 70 degrees C, pH 7.3, with a specific activity of 15.0 U/mg for the interconversion of glucose to fructose. When compared with T. maritima XylA at 85 degrees C, a higher catalytic efficiency was observed. Divalent metal ions Co2+ and Mg2+ were found to enhance the thermostability.

  6. Domain architecture of protein-disulfide isomerase facilitates its dual role as an oxidase and an isomerase in Ero1p-mediated disulfide formation

    DEFF Research Database (Denmark)

    Kulp, M. S.; Frickel, E. M.; Ellgaard, Lars

    2006-01-01

    catalytic (A) domain. The specific order of thioredoxin domains in PDI is important in establishing the asymmetry in the rate of oxidation of the two active sites thus allowing A and A', two thioredoxin domains that are similar in sequence and structure, to serve opposing functional roles as a disulfide...... isomerase and disulfide oxidase, respectively. These findings reveal how native disulfide folding is accomplished in the endoplasmic reticulum and provide a context for understanding the proliferation of PDI homologs with combinatorial arrangements of thioredoxin domains.......Native disulfide bond formation in eukaryotes is dependent on protein-disulfide isomerase (PDI) and its homologs, which contain varying combinations of catalytically active and inactive thioredoxin domains. However, the specific contribution of PDI to the formation of new disulfides versus...

  7. Phosphate acquisition efficiency and phosphate starvation tolerance ...

    Indian Academy of Sciences (India)

    2011 Developing rice with high yield under phosphorus deficiency: Pup1 sequence to application. Plant Physiol. 156, 1202–1216. Ciereszko I., Gniazdowska A., Mikulska M. and Rychter A. M.. 1996 Assimilate translocation in bean plants (Phaseolus vulgaris. L.) during phosphate deficiency. J. Plant Physiol. 149, 343–. 348.

  8. Phosphate acquisition efficiency and phosphate starvation tolerance ...

    Indian Academy of Sciences (India)

    Here, we have reported the presence as well as the expression of a previously characterized rice gene, phosphate starvation tolerance ... from a cross between Gobindabhog and Satabdi, also did not show any linkage with P-deficiency tolerance ability. Thus, ... vated in P-limiting conditions which work in a cascade and.

  9. Radioactivity of phosphate mineral products

    OpenAIRE

    Mitrović Branislava; Vitorović Gordana; Stojanović Mirjana; Vitorović Duško

    2011-01-01

    The phosphate industry is one of the biggest polluters of the environment with uranium. Different products are derived after processing phosphoric ore, such as mineral and phosphate fertilizers and phosphate mineral supplements (dicalcium-and monocalcium phosphate) for animal feeding. Phosphate mineral additives used in animal food may contain a high activity of uranium. Research in this study should provide an answer to the extent in which phosphate minera...

  10. Radioactivity of phosphate mineral products

    Directory of Open Access Journals (Sweden)

    Mitrović Branislava

    2011-01-01

    Full Text Available The phosphate industry is one of the biggest polluters of the environment with uranium. Different products are derived after processing phosphoric ore, such as mineral and phosphate fertilizers and phosphate mineral supplements (dicalcium-and monocalcium phosphate for animal feeding. Phosphate mineral additives used in animal food may contain a high activity of uranium. Research in this study should provide an answer to the extent in which phosphate mineral products (phosphate fertilizer and phosphate mineral feed additives contribute to the contamination of soil, plants and animals.

  11. Phosphate Management: FY2010 Results Of Phosphate Precipitation Tests

    International Nuclear Information System (INIS)

    Hay, M.; King, W.

    2011-01-01

    The Phosphate Management program seeks to develop treatment options for caustic phosphate solutions resulting from the caustic leaching of the bismuth phosphate sludge. The SRNL subtask investigated the precipitation of phosphate salts from caustic solutions through addition of fluoride and by crystallization. The scoping tests examined the: precipitation of phosphate by the addition of sodium fluoride to form the sodium fluorophosphate double salt, Na 7 F(PO 4 ) 2 · 19H 2 O, crystallization of phosphate by reducing the temperature of saturated phosphate solutions, and combinations of precipitation and crystallization. A simplified leachate simulant was used in the study produced by dissolving sodium phosphate in 1 M to 3.5 M sodium hydroxide solutions. The results show that all three processes; precipitation with sodium fluoride, crystallization, and combined precipitation/crystallization can be effective for removing large amounts of phosphate from solution. The combined process of precipitation/crystallization showed >90% removal of phosphate at all hydroxide concentrations when cooling a non-saturated phosphate solution from 65 C to 25 C. Based on the measured solubility of sodium phosphate, pH adjustment/caustic addition will also remove large amounts of phosphate from solution (>80%). For all three processes, the phosphate concentration in the caustic solution must be managed to keep the phosphate from becoming too concentrated and thereby potentially forming a solid mass of sodium phosphate after an effective phosphate removal process.

  12. Screening and selection of wild strains for L-arabinose isomerase production

    Directory of Open Access Journals (Sweden)

    R. M. Manzo

    2013-12-01

    Full Text Available The majority of L-arabinose isomerases have been isolated by recombinant techniques, but this methodology implies a reduced technological application. For this reason, 29 bacterial strains, some of them previously characterized as L-arabinose isomerase producers, were assayed as L-arabinose fermenting strains by employing conveniently designed culture media with 0.5% (w/v L-arabinose as main carbon source. From all evaluated bacterial strains, Enterococcus faecium DBFIQ ID: E36, Enterococcus faecium DBFIQ ID: ETW4 and Pediococcus acidilactici ATCC ID: 8042 were, in this order, the best L-arabinose fermenting strains. Afterwards, to assay L-arabinose metabolization and L-arabinose isomerase activity, cell-free extract and saline precipitated cell-free extract of the three bacterial cultures were obtained and the production of ketoses was determined by the cysteine carbazole sulfuric acid method. Results showed that the greater the L-arabinose metabolization ability, the higher the enzymatic activity achieved, so Enterococcus faecium DBFIQ ID: E36 was selected to continue with production, purification and characterization studies. This work thus describes a simple microbiological method for the selection of L-arabinose fermenting bacteria for the potential production of the enzyme L-arabinose isomerase.

  13. Effect of gamma irradiation on whole-cell glucose isomerase. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, S.; Gebicka, L.

    1984-06-01

    Several properties of Actinoplanes missouriensis and Streptomyces olivaceus glucose isomerase have been studied after irradiation of the enzyme of the dose of 10 kGy in dry state. The temperature at which the Actinoplanes missouriensis cells show the highest activity decreased by at least five centigrades. Other investigated enzymatic properties have been found to show no significant differences after irradiation.

  14. Evidence supporting a cis-enediol-based mechanism for Pyrococcus furiosus phosphoglucose isomerase

    NARCIS (Netherlands)

    Berrisford, J.M.; Hounslow, A.M.; Akerboom, A.P.; Hagen, W.R.; Brouns, S.J.J.; Oost, van der J.; Murray, I.A.; Blackburn, G.M.; Waltho, J.P.; Rice, D.W.; Baker, P.J.

    2006-01-01

    The enzymatic aldose ketose isomerisation of glucose and fructose sugars involves the transfer of a hydrogen between their C1 and C2 carbon atoms and, in principle, can proceed through either a direct hydride shift or via a cis-enediol intermediate. Pyrococcus furiosus phosphoglucose isomerase

  15. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids

    NARCIS (Netherlands)

    van Weeghel, Michel; te Brinke, Heleen; van Lenthe, Henk; Kulik, Wim; Minkler, Paul E.; Stoll, Maria S. K.; Sass, Jörn Oliver; Janssen, Uwe; Stoffel, Wilhelm; Schwab, K. Otfried; Wanders, Ronald J. A.; Hoppel, Charles L.; Houten, Sander M.

    2012-01-01

    Mitochondrial enoyl-CoA isomerase (ECI1) is an auxiliary enzyme involved in unsaturated fatty acid oxidation. In contrast to most of the other enzymes involved in fatty acid oxidation, a deficiency of ECI1 has yet to be identified in humans. We used wild-type (WT) and Eci1-deficient knockout (KO)

  16. Protein disulfide isomerase of Toxoplasma gondii is targeted by mucosal IgA antibodies in humans

    NARCIS (Netherlands)

    Meek, Bob; Back, Jaap Willem; Klaren, Vincent N. A.; Speijer, Dave; Peek, Ron

    2002-01-01

    Mass spectrometric analysis identified a 49 kDa antigen from Toxoplasma gondii as protein disulfide isomerase (PDI). This antigen is generally recognized by IgA in tears of healthy humans. We determined the complete open reading frame and expressed PDI recombinantly. Recombinant PDI was recognized

  17. Comparing the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways in arabinose and xylose fermenting Saccharomyces cerevisiae strains

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2008-10-01

    Full Text Available Abstract Background Ethanolic fermentation of lignocellulosic biomass is a sustainable option for the production of bioethanol. This process would greatly benefit from recombinant Saccharomyces cerevisiae strains also able to ferment, besides the hexose sugar fraction, the pentose sugars, arabinose and xylose. Different pathways can be introduced in S. cerevisiae to provide arabinose and xylose utilisation. In this study, the bacterial arabinose isomerase pathway was combined with two different xylose utilisation pathways: the xylose reductase/xylitol dehydrogenase and xylose isomerase pathways, respectively, in genetically identical strains. The strains were compared with respect to aerobic growth in arabinose and xylose batch culture and in anaerobic batch fermentation of a mixture of glucose, arabinose and xylose. Results The specific aerobic arabinose growth rate was identical, 0.03 h-1, for the xylose reductase/xylitol dehydrogenase and xylose isomerase strain. The xylose reductase/xylitol dehydrogenase strain displayed higher aerobic growth rate on xylose, 0.14 h-1, and higher specific xylose consumption rate in anaerobic batch fermentation, 0.09 g (g cells-1 h-1 than the xylose isomerase strain, which only reached 0.03 h-1 and 0.02 g (g cells-1h-1, respectively. Whereas the xylose reductase/xylitol dehydrogenase strain produced higher ethanol yield on total sugars, 0.23 g g-1 compared with 0.18 g g-1 for the xylose isomerase strain, the xylose isomerase strain achieved higher ethanol yield on consumed sugars, 0.41 g g-1 compared with 0.32 g g-1 for the xylose reductase/xylitol dehydrogenase strain. Anaerobic fermentation of a mixture of glucose, arabinose and xylose resulted in higher final ethanol concentration, 14.7 g l-1 for the xylose reductase/xylitol dehydrogenase strain compared with 11.8 g l-1 for the xylose isomerase strain, and in higher specific ethanol productivity, 0.024 g (g cells-1 h-1 compared with 0.01 g (g cells-1 h-1

  18. Discussion about magnesium phosphating

    OpenAIRE

    Pokorny, P.; Tej, P.; Szelag, P.

    2016-01-01

    The paper describes results from recently published research focused on production of non-conventional magnesium phosphate Mg3(PO4)2・4H2O – bobierrite, or MgHPO4・3H2O – newberyite) coating for both magnesium alloys and/or mild steel. This new kind of coating is categorized in the context of current state of phosphating technology and its potential advantages and crystal structure is discussed. At the same time, the suitable comparison techniques for magnesium phosphate coating and convention...

  19. Structural and Biochemical Characterization of the Human Cyclophilin Family of Peptidyl-Prolyl Isomerases

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tara L.; Walker, John R.; Campagna-Slater, Valérie; Finerty, Jr., Patrick J.; Paramanathan, Ragika; Bernstein, Galina; MacKenzie, Farrell; Tempel, Wolfram; Ouyang, Hui; Lee, Wen Hwa; Eisenmesser, Elan Z.; Dhe-Paganon, Sirano (Toronto); (Colorado)

    2011-12-14

    Peptidyl-prolyl isomerases catalyze the conversion between cis and trans isomers of proline. The cyclophilin family of peptidyl-prolyl isomerases is well known for being the target of the immunosuppressive drug cyclosporin, used to combat organ transplant rejection. There is great interest in both the substrate specificity of these enzymes and the design of isoform-selective ligands for them. However, the dearth of available data for individual family members inhibits attempts to design drug specificity; additionally, in order to define physiological functions for the cyclophilins, definitive isoform characterization is required. In the current study, enzymatic activity was assayed for 15 of the 17 human cyclophilin isomerase domains, and binding to the cyclosporin scaffold was tested. In order to rationalize the observed isoform diversity, the high-resolution crystallographic structures of seven cyclophilin domains were determined. These models, combined with seven previously solved cyclophilin isoforms, provide the basis for a family-wide structure:function analysis. Detailed structural analysis of the human cyclophilin isomerase explains why cyclophilin activity against short peptides is correlated with an ability to ligate cyclosporin and why certain isoforms are not competent for either activity. In addition, we find that regions of the isomerase domain outside the proline-binding surface impart isoform specificity for both in vivo substrates and drug design. We hypothesize that there is a well-defined molecular surface corresponding to the substrate-binding S2 position that is a site of diversity in the cyclophilin family. Computational simulations of substrate binding in this region support our observations. Our data indicate that unique isoform determinants exist that may be exploited for development of selective ligands and suggest that the currently available small-molecule and peptide-based ligands for this class of enzyme are insufficient for isoform

  20. Comparison of the xylose reductase-xylitol dehydrogenase and the xylose isomerase pathways for xylose fermentation by recombinant Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Hahn-Hägerdal Bärbel

    2007-02-01

    Full Text Available Abstract Background Two heterologous pathways have been used to construct recombinant xylose-fermenting Saccharomyces cerevisiae strains: i the xylose reductase (XR and xylitol dehydrogenase (XDH pathway and ii the xylose isomerase (XI pathway. In the present study, the Pichia stipitis XR-XDH pathway and the Piromyces XI pathway were compared in an isogenic strain background, using a laboratory host strain with genetic modifications known to improve xylose fermentation (overexpressed xylulokinase, overexpressed non-oxidative pentose phosphate pathway and deletion of the aldose reductase gene GRE3. The two isogenic strains and the industrial xylose-fermenting strain TMB 3400 were studied regarding their xylose fermentation capacity in defined mineral medium and in undetoxified lignocellulosic hydrolysate. Results In defined mineral medium, the xylose consumption rate, the specific ethanol productivity, and the final ethanol concentration were significantly higher in the XR- and XDH-carrying strain, whereas the highest ethanol yield was achieved with the strain carrying XI. While the laboratory strains only fermented a minor fraction of glucose in the undetoxified lignocellulose hydrolysate, the industrial strain TMB 3400 fermented nearly all the sugar available. Xylitol was formed by the XR-XDH-carrying strains only in mineral medium, whereas in lignocellulose hydrolysate no xylitol formation was detected. Conclusion Despite by-product formation, the XR-XDH xylose utilization pathway resulted in faster ethanol production than using the best presently reported XI pathway in the strain background investigated. The need for robust industrial yeast strains for fermentation of undetoxified spruce hydrolysates was also confirmed.

  1. Metal-phosphate binders

    Science.gov (United States)

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  2. Manganese phosphate-coating

    International Nuclear Information System (INIS)

    Peyre, Y.

    1999-01-01

    Manganese phosphate-coating is one of the numerous chemical surface treatment which is used industrially. Its applications are usual for improving the friction properties of a lot of mechanical parts. Used for the treatment of steels and cast steels, baths (containing phosphoric acid, manganese phosphate and different additives) lead to the formation of nonmetal coatings of a few micrometers. These manganese-iron or manganese phosphates crystals reduce the friction coefficient and retain the lubricant film in contact with the moving parts. The running noises, the wear and the seizure risks are then strongly reduced. Pure manganese phosphate-coating is currently developing because the obtained coatings are thinner and more regular. (O.M.)

  3. Successful treatment of fetal hemolytic disease due to glucose phosphate isomerase deficiency (GPI) using repeated intrauterine transfusions : a case report

    NARCIS (Netherlands)

    Adama van Scheltema, Phebe N; Zhang, Ai; Ball, Lynne M; Steggerda, Sylke J; van Wijk, Richard; Fransen van de Putte, Dietje E; van Kamp, Inge L

    2015-01-01

    Hemolytic anemia due to GPI deficiency can be severe and life threatening during fetal life. When parents decline invasive testing, ultrasound monitoring of fetuses at risk is feasible. Intrauterine transfusion can be effective for the treatment of severe fetal anemia due to GPI deficiency.

  4. Silencing of Entamoeba histolytica Glucosamine 6-Phosphate Isomerase by RNA Interference Inhibits the Formation of Cyst-Like Structures

    Directory of Open Access Journals (Sweden)

    Hugo Aguilar-Díaz

    2013-01-01

    Full Text Available Encystment is an essential process in the biological cycle of the human parasite Entamoeba histolytica. In the present study, we evaluated the participation of E. histolytica Gln6Pi in the formation of amoeba cyst-like structures by RNA interference assay. Amoeba trophozoites transfected with two Gln6Pi siRNAs reduced the expression of the enzyme in 85%, which was confirmed by western blot using an anti-Gln6Pi antibody. The E. histolytica Gln6Pi knockdown with the mix of both siRNAs resulted in the loss of its capacity to form cyst-like structures (CLSs and develop a chitin wall under hydrogen peroxide treatment, as evidenced by absence of both resistance to detergent treatment and calcofluor staining. Thus, only 5% of treated trophozoites were converted to CLS, from which only 15% were calcofluor stained. These results represent an advance in the understanding of chitin biosynthesis in E. histolytica and provide insight into the encystment process in this parasite, which could allow for the developing of new control strategies for this parasite.

  5. Genomic analysis of a xylose operon and characterization of novel xylose isomerase and xylulokinase from Bacillus coagulans NL01.

    Science.gov (United States)

    Zheng, Zhaojuan; Lin, Xi; Jiang, Ting; Ye, Weihua; Ouyang, Jia

    2016-08-01

    To investigate the xylose operon and properties of xylose isomerase and xylulokinase in Bacillus coagulans that can effectively ferment xylose to lactic acid. The xylose operon is widely present in B. coagulans. It is composed of four putative ORFs. Novel xylA and xylB from B. coagulans NL01 were cloned and expressed in Escherichia coli. Sequence of xylose isomerase was more conserved than that of xylulokinase. Both the enzymes exhibited maximum activities at pH 7-8 but with a high temperature maximum of 80-85 °C, divalent metal ion was prerequisite for their activation. Xylose isomerase and xylulokinase were most effectively activated by Ni(2+) and Co(2+), respectively. Genomic analysis of xylose operon has contributed to understanding xylose metabolism in B. coagulans and the novel xylose isomerase and xylulokinase might provide new alternatives for metabolic engineering of other strains to improve their fermentation performance on xylose.

  6. Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways.

    Science.gov (United States)

    Nikel, Pablo I; Chavarría, Max; Fuhrer, Tobias; Sauer, Uwe; de Lorenzo, Víctor

    2015-10-23

    The soil bacterium Pseudomonas putida KT2440 lacks a functional Embden-Meyerhof-Parnas (EMP) pathway, and glycolysis is known to proceed almost exclusively through the Entner-Doudoroff (ED) route. To investigate the raison d'être of this metabolic arrangement, the distribution of periplasmic and cytoplasmic carbon fluxes was studied in glucose cultures of this bacterium by using (13)C-labeled substrates, combined with quantitative physiology experiments, metabolite quantification, and in vitro enzymatic assays under both saturating and non-saturating, quasi in vivo conditions. Metabolic flux analysis demonstrated that 90% of the consumed sugar was converted into gluconate, entering central carbon metabolism as 6-phosphogluconate and further channeled into the ED pathway. Remarkably, about 10% of the triose phosphates were found to be recycled back to form hexose phosphates. This set of reactions merges activities belonging to the ED, the EMP (operating in a gluconeogenic fashion), and the pentose phosphate pathways to form an unforeseen metabolic architecture (EDEMP cycle). Determination of the NADPH balance revealed that the default metabolic state of P. putida KT2440 is characterized by a slight catabolic overproduction of reducing power. Cells growing on glucose thus run a biochemical cycle that favors NADPH formation. Because NADPH is required not only for anabolic functions but also for counteracting different types of environmental stress, such a cyclic operation may contribute to the physiological heftiness of this bacterium in its natural habitats. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Pseudomonas putida KT2440 Strain Metabolizes Glucose through a Cycle Formed by Enzymes of the Entner-Doudoroff, Embden-Meyerhof-Parnas, and Pentose Phosphate Pathways*

    Science.gov (United States)

    Nikel, Pablo I.; Chavarría, Max; Fuhrer, Tobias; Sauer, Uwe; de Lorenzo, Víctor

    2015-01-01

    The soil bacterium Pseudomonas putida KT2440 lacks a functional Embden-Meyerhof-Parnas (EMP) pathway, and glycolysis is known to proceed almost exclusively through the Entner-Doudoroff (ED) route. To investigate the raison d'être of this metabolic arrangement, the distribution of periplasmic and cytoplasmic carbon fluxes was studied in glucose cultures of this bacterium by using 13C-labeled substrates, combined with quantitative physiology experiments, metabolite quantification, and in vitro enzymatic assays under both saturating and non-saturating, quasi in vivo conditions. Metabolic flux analysis demonstrated that 90% of the consumed sugar was converted into gluconate, entering central carbon metabolism as 6-phosphogluconate and further channeled into the ED pathway. Remarkably, about 10% of the triose phosphates were found to be recycled back to form hexose phosphates. This set of reactions merges activities belonging to the ED, the EMP (operating in a gluconeogenic fashion), and the pentose phosphate pathways to form an unforeseen metabolic architecture (EDEMP cycle). Determination of the NADPH balance revealed that the default metabolic state of P. putida KT2440 is characterized by a slight catabolic overproduction of reducing power. Cells growing on glucose thus run a biochemical cycle that favors NADPH formation. Because NADPH is required not only for anabolic functions but also for counteracting different types of environmental stress, such a cyclic operation may contribute to the physiological heftiness of this bacterium in its natural habitats. PMID:26350459

  8. Linalool isomerase, a membrane-anchored enzyme in the anaerobic monoterpene degradation in Thauera linaloolentis 47Lol

    OpenAIRE

    Marmulla, Robert; ?afari?, Barbara; Markert, Stephanie; Schweder, Thomas; Harder, Jens

    2016-01-01

    Background Thauera linaloolentis 47Lol uses the tertiary monoterpene alcohol (R,S)-linalool as sole carbon and energy source under denitrifying conditions. The conversion of linalool to geraniol had been observed in carbon-excess cultures, suggesting the presence of a 3,1-hydroxyl-?1-?2-mutase (linalool isomerase) as responsible enzyme. To date, only a single enzyme catalyzing such a reaction is described: the linalool dehydratase/isomerase (Ldi) from Castellaniella defragrans 65Phen acting o...

  9. Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase that increases the production rate of D-tagatose.

    Science.gov (United States)

    Kim, H-J; Kim, J-H; Oh, H-J; Oh, D-K

    2006-07-01

    Characterization of a mutated Geobacillus stearothermophilus L-arabinose isomerase used to increase the production rate of D-tagatose. A mutated gene was obtained by an error-prone polymerase chain reaction using L-arabinose isomerase gene from G. stearothermophilus as a template and the gene was expressed in Escherichia coli. The expressed mutated L-arabinose isomerase exhibited the change of three amino acids (Met322-->Val, Ser393-->Thr, and Val408-->Ala), compared with the wild-type enzyme and was then purified to homogeneity. The mutated enzyme had a maximum galactose isomerization activity at pH 8.0, 65 degrees C, and 1.0 mM Co2+, while the wild-type enzyme had a maximum activity at pH 8.0, 60 degrees C, and 1.0-mM Mn2+. The mutated L-arabinose isomerase exhibited increases in D-galactose isomerization activity, optimum temperature, catalytic efficiency (kcat/Km) for D-galactose, and the production rate of D-tagatose from D-galactose. The mutated L-arabinose isomerase from G. stearothermophilus is valuable for the commercial production of D-tagatose. This work contributes knowledge on the characterization of a mutated L-arabinose isomerase, and allows an increased production rate for D-tagatose from D-galactose using the mutated enzyme.

  10. Phosphate control in dialysis

    Directory of Open Access Journals (Sweden)

    Cupisti A

    2013-10-01

    Full Text Available Adamasco Cupisti,1 Maurizio Gallieni,2 Maria Antonietta Rizzo,2 Stefania Caria,3 Mario Meola,4 Piergiorgio Bolasco31Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy; 2Nephrology and Dialysis Unit, San Carlo Borromeo Hospital, Milan, Italy; 3Territorial Department of Nephrology and Dialysis, ASL Cagliari, Italy; 4Sant'Anna School of Advanced Studies, University of Pisa, Pisa, ItalyAbstract: Prevention and correction of hyperphosphatemia is a major goal of chronic kidney disease–mineral and bone disorder (CKD–MBD management, achievable through avoidance of a positive phosphate balance. To this aim, optimal dialysis removal, careful use of phosphate binders, and dietary phosphate control are needed to optimize the control of phosphate balance in well-nourished patients on a standard three-times-a-week hemodialysis schedule. Using a mixed diffusive–convective hemodialysis tecniques, and increasing the number and/or the duration of dialysis tecniques are all measures able to enhance phosphorus (P mass removal through dialysis. However, dialytic removal does not equal the high P intake linked to the high dietary protein requirement of dialysis patients; hence, the use of intestinal P binders is mandatory to reduce P net intestinal absorption. Unfortunately, even a large dose of P binders is able to bind approximately 200–300 mg of P on a daily basis, so it is evident that their efficacy is limited in the case of an uncontrolled dietary P load. Hence, limitation of dietary P intake is needed to reach the goal of neutral phosphate balance in dialysis, coupled to an adequate protein intake. To this aim, patients should be informed and educated to avoid foods that are naturally rich in phosphate and also processed food with P-containing preservatives. In addition, patients should preferentially choose food with a low P-to-protein ratio. For example, patients could choose egg white or protein from a vegetable source

  11. Uranium production from phosphates

    International Nuclear Information System (INIS)

    Ketzinel, Z.; Folkman, Y.

    1979-05-01

    According to estimates of the world's uranium consumption, exploitation of most rich sources is expected by the 1980's. Forecasts show that the rate of uranium consumption will increase towards the end of the century. It is therefore desirable to exploit poor sources not yet in use. In the near future, the most reasonable source for developing uranium is phosphate rock. Uranium reserves in phosphates are estimated at a few million tons. Production of uranium from phosphates is as a by-product of phosphate rock processing and phosphoric acid production; it will then be possible to save the costs incurred in crushing and dissolving the rock when calculating uranium production costs. Estimates show that the U.S. wastes about 3,000 tons of uranium per annum in phosphoric acid based fertilisers. Studies have also been carried out in France, Yugoslavia and India. In Israel, during the 1950's, a small plant was operated in Haifa by 'Chemical and Phosphates'. Uranium processes have also been developed by linking with the extraction processes at Arad. Currently there is almost no activity on this subject because there are no large phosphoric acid plants which would enable production to take place on a reasonable scale. Discussions are taking place about the installation of a plant for phosphoric acid production utilising the 'wet process', producing 200 to 250,000 tons P 2 O 5 per annum. It is necessary to combine these facilities with uranium production plant. (author)

  12. Bacterial L-arabinose isomerases: industrial application for D-tagatose production.

    Science.gov (United States)

    Boudebbouze, Samira; Maguin, Emmanuelle; Rhimi, Moez

    2011-12-01

    D-tagatose is a natural monosaccharide with a low caloric value and has an anti-hyperglycemiant effect. This hexose has potential applications both in pharmaceutical and agro-food industries. However, the use of D-tagatose remains limited by its production cost. Many production procedures including chemical and biological processes were developed and patented. The most profitable production way is based on the use of L-arabinose isomerase which allows the manufacture of D-tagatose with an attractive rate. Future developments are focused on the generation of L-arabinose isomerases having biochemical properties satisfying the industrial applications. This report provides a brief review of the most recent patents that have been published relating to this area.

  13. Expression, purification, crystallization and preliminary X-ray diffraction analysis of Bifidobacterium adolescentis xylose isomerase.

    Science.gov (United States)

    Dos Reis, Caio Vinicius; Bernardes, Amanda; Polikarpov, Igor

    2013-05-01

    Xylose isomerase (EC 5.3.1.5) is a key enzyme in xylose metabolism which is industrially important for the transformation of glucose and xylose into fructose and xylulose, respectively. The Bifidobacterium adolescentis xylA gene (NC_008618.1) encoding xylose isomerase (XI) was cloned and the enzyme was overexpressed in Escherichia coli. Purified recombinant XI was crystallized using the sitting-drop vapour-diffusion method with polyethylene glycol 3350 as the precipitating agent. A complete native data set was collected to 1.7 Å resolution using a synchrotron-radiation source. The crystals belonged to the orthorhombic space group P21212, with unit-cell parameters a = 88.78, b = 123.98, c = 78.63 Å.

  14. Crystallization, solubility and thermodynamics of the highly thermostable glucose isomerase from Streptomyces sp. strain.

    Science.gov (United States)

    Borgi, Mohamed A; Rhimi, Moez; Kadri, Adel

    2014-01-01

    The crystallization behaviour of the highly thermostable glucose isomerase from the Streptomyces sp. strain isolated from Tunisian soil was investigated using ammonium sulfate as a precipitating agent. We established phase diagrams at different temperatures and protein concentrations. It was found that the solubility increased with increasing temperature and decreased with increasing salt concentration. The temperature-dependent solubility was used to characterize the thermodynamic parameters of crystallization such as enthalpy, entropy and free energy.

  15. Genome sequence of carboxylesterase, carboxylase and xylose isomerase producing alkaliphilic haloarchaeon Haloterrigena turkmenica WANU15

    Directory of Open Access Journals (Sweden)

    Samy Selim

    2016-03-01

    Full Text Available We report draft genome sequence of Haloterrigena turkmenica strain WANU15, isolated from Soda Lake. The draft genome size is 2,950,899 bp with a G + C content of 64% and contains 49 RNA sequence. The genome sequence can be accessed at DDBJ/EMBL/GenBank under the accession no. LKCV00000000. Keywords: Soda Lake, Haloterrigena turkmenica, Carboxylesterase, Carboxylase, Xylose isomerase, Whole genome sequencing

  16. Cloning and characterization of the l-ribose isomerase gene from Cellulomonas parahominis MB426.

    Science.gov (United States)

    Morimoto, Kenji; Terami, Yuji; Maeda, Yu-ichiro; Yoshihara, Akihide; Takata, Goro; Izumori, Ken

    2013-04-01

    A newly isolated bacterium, Cellulomonas parahominis MB426, produced l-ribose isomerase (CeLRI) on a medium containing l-ribose as a sole carbon source. A 32 kDa protein isomerizing l-ribose to l-ribulose was purified to homogeneity from this bacterium. A set of degenerated primers were synthesized based on amino acid sequences of the purified CeLRI, and a 747 bp gene encoding CeLRI was cloned, sequenced and overexpressed in Escherichia coli. This gene encoded a 249 amino acid protein with a calculated molecular mass of 27,435. The deduced amino acid sequence of this gene showed the highest identity with l-ribose isomerase from Acinetobacter calcoaceticus DL-28 (71%). The recombinant l-ribose isomerase (rCeLRI) was optimally active at pH 9.0 and 40°C, and was stable up to 40°C for 1 h and not dependent for metallic ions for its activity. The rCeLRI showed widely substrate specificity for the rare sugar which involved l-erythro form such as l-ribose, d-lyxose, d-talose, d-mannose, l-gulose, and l-allose. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Structure of the Noncatalytic Domains and Global Fold of the Protein Disulfide Isomerase ERp72

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, G.; Määttänen, P; Schrag, J; Hura, G; Gabrielli, L; Cygler, M; Thomas, D; Gehring, K

    2009-01-01

    Protein disulfide isomerases are a family of proteins that catalyze the oxidation and isomerization of disulfide bonds in newly synthesized proteins in the endoplasmic reticulum. The family includes general enzymes such as PDI that recognize unfolded proteins, and others that are selective for specific classes of proteins. Here, we report the X-ray crystal structure of central non-catalytic domains of a specific isomerase, ERp72 (also called CaBP2 and protein disulfide-isomerase A4) from Rattus norvegicus. The structure reveals strong similarity to ERp57, a PDI-family member that interacts with the lectin-like chaperones calnexin and calreticulin but, unexpectedly, ERp72 does not interact with calnexin as shown by isothermal titration calorimetry and nuclear magnetic resonance (NMR) spectroscopy. Small-angle X-ray scattering (SAXS) of ERp72 was used to develop models of the full-length protein using both rigid body refinement and ab initio simulated annealing of dummy atoms. The two methods show excellent agreement and define the relative positions of the five thioredoxin-like domains of ERp72 and potential substrate or chaperone binding sites.

  18. A preliminary time-of-flight neutron diffraction study of Streptomyces rubiginosus D-xylose isomerase.

    Science.gov (United States)

    Hanson, B Leif; Langan, Paul; Katz, Amy K; Li, Xinmin; Harp, Joel M; Glusker, Jenny P; Schoenborn, Benno P; Bunick, Gerard J

    2004-02-01

    The metalloenzyme D-xylose isomerase forms well ordered crystals that diffract X-rays to ultrahigh resolution (diffraction data has as yet been unable to differentiate between several postulated mechanisms that describe the catalytic activity of this enzyme. Neutrons, with their greater scattering sensitivity to H atoms, could help to resolve this by determining the protonation states within the active site of the enzyme. As the first step in the process of investigating the mechanism of action of D-xylose isomerase from Streptomyces rubiginosus using neutron diffraction, data to better than 2.0 A were measured from the unliganded protein at the Los Alamos Neutron Science Center Protein Crystallography Station. Measurement of these neutron diffraction data represents several milestones: this is one of the largest biological molecules (a tetramer, MW approximately 160 000 Da, with unit-cell lengths around 100 A) ever studied at high resolution using neutron diffraction. It is also one of the first proteins to be studied using time-of-flight techniques. The success of the initial diffraction experiments with D-xylose isomerase demonstrate the power of spallation neutrons for protein crystallography and should provide further impetus for neutron diffraction studies of biologically active and significant proteins. Further data will be measured from the enzyme with bound substrates and inhibitors in order to provide the specific information needed to clarify the catalytic mechanism of this enzyme.

  19. Purification and characterization of an extremely stable glucose isomerase from Geobacillus thermodenitrificans TH2.

    Science.gov (United States)

    Konak, L; Kolcuoğlu, Y; Ozbek, E; Colak, A; Ergenoglu, B

    2014-01-01

    The D-glucose/D-xylose isomerase was purified from a thermophilic bacterium, Geobacillus thermodenitrificans TH2, by precipitating with heat shock and using Q-Sepharose ion exchange column chromatography, and then characterized. The purified enzyme had a single band having molecular weight of 49 kDa on SDS-PAGE. In the presence of D-glucose as a substrate, the optimum temperature and pH of the enzyme were found to be 80 degrees C and 7.5, respectively. The purified xylose isomerase of G. thermodenitrificans TH2 was extremely stable at pH 7.5 after 96 h incubation at 4 degrees C and 50 degrees C. When the thermal stability profile was analyzed, it was determined that the purified enzyme was extremely stable during incubation periods of 4 months and 4 days at 4 degrees C and 50 degrees C, respectively. The K(m) and V(max) values of the purified xylose isomerase from G. thermodenitrificans TH2 were calculated as 32 mM and 4.68 micromol/min per mg of protein, respectively. Additionally, it was detected that some metal ions affected the enzyme activity at different ratios. The enzyme was active and stable at high temperatures and nearly neutral pHs which are desirable for the usage in the food and ethanol industry.

  20. Neutron structure of the cyclic glucose-bound xylose isomerase E186Q mutant.

    Science.gov (United States)

    Munshi, Parthapratim; Snell, Edward H; van der Woerd, Mark J; Judge, Russell A; Myles, Dean A A; Ren, Zhong; Meilleur, Flora

    2014-02-01

    Ketol-isomerases catalyze the reversible isomerization between aldoses and ketoses. D-Xylose isomerase carries out the first reaction in the catabolism of D-xylose, but is also able to convert D-glucose to D-fructose. The first step of the reaction is an enzyme-catalyzed ring opening of the cyclic substrate. The active-site amino-acid acid/base pair involved in ring opening has long been investigated and several models have been proposed. Here, the structure of the xylose isomerase E186Q mutant with cyclic glucose bound at the active site, refined against joint X-ray and neutron diffraction data, is reported. Detailed analysis of the hydrogen-bond networks at the active site of the enzyme suggests that His54, which is doubly protonated, is poised to protonate the glucose O5 position, while Lys289, which is neutral, promotes deprotonation of the glucose O1H hydroxyl group via an activated water molecule. The structure also reveals an extended hydrogen-bonding network that connects the conserved residues Lys289 and Lys183 through three structurally conserved water molecules and residue 186, which is a glutamic acid to glutamine mutation.

  1. D-Tagatose production in the presence of borate by resting Lactococcus lactis cells harboring Bifidobacterium longum L-arabinose isomerase.

    Science.gov (United States)

    Salonen, Noora; Salonen, Kalle; Leisola, Matti; Nyyssölä, Antti

    2013-04-01

    Bifidobacterium longum NRRL B-41409 L-arabinose isomerase (L-AI) was overexpressed in Lactococcus lactis using a phosphate depletion inducible expression system. The resting L. lactis cells harboring the B. longum L-AI were used for production of D-tagatose from D-galactose in the presence of borate buffer. Multivariable analysis suggested that high pH, temperature and borate concentration favoured the conversion of D-galactose to D-tagatose. Almost quantitative conversion (92 %) was achieved at 20 g L⁻¹ substrate and at 37.5 °C after 5 days. The D-tagatose production rate of 185 g L⁻¹ day ⁻¹ was obtained at 300 g L⁻¹ galactose, at 1.15 M borate, and at 41 °C during 10 days when the production medium was changed every 24 h. There was no significant loss in productivity during ten sequential 24 h batches. The initial D-tagatose production rate was 290 g L⁻¹ day⁻¹ under these conditions.

  2. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis

    Science.gov (United States)

    Verhoeven, Maarten D.; Lee, Misun; Kamoen, Lycka; van den Broek, Marcel; Janssen, Dick B.; Daran, Jean-Marc G.; van Maris, Antonius J. A.; Pronk, Jack T.

    2017-01-01

    Combined overexpression of xylulokinase, pentose-phosphate-pathway enzymes and a heterologous xylose isomerase (XI) is required but insufficient for anaerobic growth of Saccharomyces cerevisiae on d-xylose. Single-step Cas9-assisted implementation of these modifications yielded a yeast strain expressing Piromyces XI that showed fast aerobic growth on d-xylose. However, anaerobic growth required a 12-day adaptation period. Xylose-adapted cultures carried mutations in PMR1, encoding a Golgi Ca2+/Mn2+ ATPase. Deleting PMR1 in the parental XI-expressing strain enabled instantaneous anaerobic growth on d-xylose. In pmr1 strains, intracellular Mn2+ concentrations were much higher than in the parental strain. XI activity assays in cell extracts and reconstitution experiments with purified XI apoenzyme showed superior enzyme kinetics with Mn2+ relative to other divalent metal ions. This study indicates engineering of metal homeostasis as a relevant approach for optimization of metabolic pathways involving metal-dependent enzymes. Specifically, it identifies metal interactions of heterologous XIs as an underexplored aspect of engineering xylose metabolism in yeast. PMID:28401919

  3. The secreted L-arabinose isomerase displays anti-hyperglycemic effects in mice.

    Science.gov (United States)

    Rhimi, Moez; Bermudez-Humaran, Luis G; Huang, Yuan; Boudebbouze, Samira; Gaci, Nadia; Garnier, Alexandrine; Gratadoux, Jean-Jacques; Mkaouar, Héla; Langella, Philippe; Maguin, Emmanuelle

    2015-12-21

    The L-arabinose isomerase is an intracellular enzyme which converts L-arabinose into L-ribulose in living systems and D-galactose into D-tagatose in industrial processes and at industrial scales. D-tagatose is a natural ketohexose with potential uses in pharmaceutical and food industries. The D-galactose isomerization reaction is thermodynamically equilibrated, and leads to secondary subproducts at high pH. Therefore, an attractive L-arabinose isomerase should be thermoactive and acidotolerant with high catalytic efficiency. While many reports focused on the set out of a low cost process for the industrial production of D-tagatose, these procedures remain costly. When compared to intracellular enzymes, the production of extracellular ones constitutes an interesting strategy to increase the suitability of the biocatalysts. The L-arabinose isomerase (L-AI) from Lactobacillus sakei was expressed in Lactococcus lactis in fusion with the signal peptide of usp45 (SP(Usp45)). The L-AI protein and activity were detected only in the supernatant of the induced cultures of the recombinant L. lactis demonstrating the secretion in the medium of the intracellular L. sakei L-AI in an active form. Moreover, we showed an improvement in the enzyme secretion using either (1) L. lactis strains deficient for their two major proteases, ClpP and HtrA, or (2) an enhancer of protein secretion in L. lactis fused to the recombinant L-AI with the SP(Usp45). Th L-AI enzyme secreted by the recombinant L. lactis strains or produced intracellularly in E. coli, showed the same functional properties than the native enzyme. Furthermore, when mice are fed with the L. lactis strain secreting the L-AI and galactose, tagatose was produced in vivo and reduced the glycemia index. We report for the first time the secretion of the intracellular L-arabinose isomerase in the supernatant of food grade L. lactis cultures with hardly display other secreted proteins. The secreted L-AI originated from the food

  4. Plastidic phosphoglucose isomerase is an important determinant of starch accumulation in mesophyll cells, growth, photosynthetic capacity, and biosynthesis of plastidic cytokinins in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Abdellatif Bahaji

    Full Text Available Phosphoglucose isomerase (PGI catalyzes the reversible isomerization of glucose-6-phosphate and fructose-6-phosphate. It is involved in glycolysis and in the regeneration of glucose-6-P molecules in the oxidative pentose phosphate pathway (OPPP. In chloroplasts of illuminated mesophyll cells PGI also connects the Calvin-Benson cycle with the starch biosynthetic pathway. In this work we isolated pgi1-3, a mutant totally lacking pPGI activity as a consequence of aberrant intron splicing of the pPGI encoding gene, PGI1. Starch content in pgi1-3 source leaves was ca. 10-15% of that of wild type (WT leaves, which was similar to that of leaves of pgi1-2, a T-DNA insertion pPGI null mutant. Starch deficiency of pgi1 leaves could be reverted by the introduction of a sex1 null mutation impeding β-amylolytic starch breakdown. Although previous studies showed that starch granules of pgi1-2 leaves are restricted to both bundle sheath cells adjacent to the mesophyll and stomata guard cells, microscopy analyses carried out in this work revealed the presence of starch granules in the chloroplasts of pgi1-2 and pgi1-3 mesophyll cells. RT-PCR analyses showed high expression levels of plastidic and extra-plastidic β-amylase encoding genes in pgi1 leaves, which was accompanied by increased β-amylase activity. Both pgi1-2 and pgi1-3 mutants displayed slow growth and reduced photosynthetic capacity phenotypes even under continuous light conditions. Metabolic analyses revealed that the adenylate energy charge and the NAD(PH/NAD(P ratios in pgi1 leaves were lower than those of WT leaves. These analyses also revealed that the content of plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP-pathway derived cytokinins (CKs in pgi1 leaves were exceedingly lower than in WT leaves. Noteworthy, exogenous application of CKs largely reverted the low starch content phenotype of pgi1 leaves. The overall data show that pPGI is an important determinant of photosynthesis, energy

  5. Calcium phosphate coating on titanium induced by phosphating

    Energy Technology Data Exchange (ETDEWEB)

    Feng, B. [Sichuan Univ., Chengdu (China). Engineering Research Center in Biomaterials; Sichuan Inst. of Tech., Chengdu (China). Dept. of Material Science and Engineering; Chen, J.Y.; Zhang, X.D. [Sichuan Univ., Chengdu (China). Engineering Research Center in Biomaterials

    2001-07-01

    The phosphatization has been used in anti-corrosion treatment for metals for many years. In this work, the calcium phosphate ceramic coatings (Ca-P coatings) based on titanium were prepared by phosphating titanium and then soaking in a supersaturated calcium phosphate solution. The effect of phosphatization of titanium on the formation of Ca-P coating was investigated. The analysis with a scanning electron microscopy showed microporous surfaces of titanium after phosphatization. The spectra of X-ray photoelectron spectroscopy indicated that the surfaces contained PO{sub 4}{sup 3-}, HPO{sub 4}{sup 2-} and H{sub 2}PO{sup -}. The induced couple plasma atomic emission spectroscopy suggested that precipitation of P be prior to Ca during immersion in the supersaturated calcium phosphate solution. (orig.)

  6. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, Lars; Andersen, Klaus E.; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri...... triphenyl phosphate allergy in our patient....

  7. 21 CFR 184.1434 - Magnesium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Magnesium phosphate. 184.1434 Section 184.1434 Food... Specific Substances Affirmed as GRAS § 184.1434 Magnesium phosphate. (a) Magnesium phosphate includes both magnesium phosphate, dibasic, and magnesium phosphate, tribasic. Magnesium phosphate, dibasic (MgHPO4·3H2O...

  8. Renal phosphate handling: Physiology

    Directory of Open Access Journals (Sweden)

    Narayan Prasad

    2013-01-01

    Full Text Available Phosphorus is a common anion. It plays an important role in energy generation. Renal phosphate handling is regulated by three organs parathyroid, kidney and bone through feedback loops. These counter regulatory loops also regulate intestinal absorption and thus maintain serum phosphorus concentration in physiologic range. The parathyroid hormone, vitamin D, Fibrogenic growth factor 23 (FGF23 and klotho coreceptor are the key regulators of phosphorus balance in body.

  9. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    OpenAIRE

    Staudigl, Petra; Haltrich, Dietmar; Peterbauer, Clemens K.

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible la...

  10. Triphenyl phosphate allergy from spectacle frames

    DEFF Research Database (Denmark)

    Carlsen, L; Andersen, K E; Egsgaard, Helge

    1986-01-01

    A case of triphenyl phosphate allergy from spectacle frames is reported. Patch tests with analytical grade triphenyl phosphate, tri-m-cresyl phosphate, and tri-p-cresyl phosphate in the concentrations 5%, 0.5% and 0.05% pet. showed positive reactions to 0.05% triphenyl phosphate and 0.5% tri......-m-cresyl phosphate, but no reaction to tri-p-cresyl phosphate. Gas chromatography of the tricresyl phosphate 5% pet. patch test material supplied from Trolab showed that it contained a mixture of a wide range of triaryl phosphates, including 0.08% triphenyl phosphate which is above the threshold for detecting...

  11. MTH1745, a protein disulfide isomerase-like protein from thermophilic archaea, Methanothermobacter thermoautotrophicum involving in stress response.

    Science.gov (United States)

    Ding, Xia; Lv, Zhen-Mei; Zhao, Yang; Min, Hang; Yang, Wei-Jun

    2008-01-01

    MTH1745 is a putative protein disulfide isomerase characterized with 151 amino acid residues and a CPAC active-site from the anaerobic archaea Methanothermobacter thermoautotrophicum. The potential functions of MTH1745 are not clear. In the present study, we show a crucial role of MTH1745 in protecting cells against stress which may be related to its functions as a disulfide isomerase and its chaperone properties. Using real-time polymerase chain reaction analyses, the level of MTH1745 messenger RNA (mRNA) in the thermophilic archaea M. thermoautotrophicum was found to be stress-induced in that it was significantly higher under low (50 degrees C) and high (70 degrees C) growth temperatures than under the optimal growth temperature for the organism (65 degrees C). Additionally, the expression of MTH1745 mRNA was up-regulated by cold shock (4 degrees C). Furthermore, the survival of MTH1745 expressing Escherichia coli cells was markedly higher than that of control cells in response to heat shock (51.0 degrees C). These results indicated that MTH1745 plays an important role in the resistance of stress. By assay of enzyme activities in vitro, MTH1745 also exhibited a chaperone function by promoting the functional folding of citrate synthase after thermodenaturation. On the other hand, MTH1745 was also shown to function as a disulfide isomerase on the refolding of denatured and reduced ribonuclease A. On the basis of its single thioredoxin domain, function as a disulfide isomerase, and its chaperone activity, we suggest that MTH1745 may be an ancient protein disulfide isomerase. These studies may provide clues to the understanding of the function of protein disulfide isomerase in archaea.

  12. Linalool isomerase, a membrane-anchored enzyme in the anaerobic monoterpene degradation in Thauera linaloolentis 47Lol.

    Science.gov (United States)

    Marmulla, Robert; Šafarić, Barbara; Markert, Stephanie; Schweder, Thomas; Harder, Jens

    2016-03-15

    Thauera linaloolentis 47Lol uses the tertiary monoterpene alcohol (R,S)-linalool as sole carbon and energy source under denitrifying conditions. The conversion of linalool to geraniol had been observed in carbon-excess cultures, suggesting the presence of a 3,1-hydroxyl-Δ(1)-Δ(2)-mutase (linalool isomerase) as responsible enzyme. To date, only a single enzyme catalyzing such a reaction is described: the linalool dehydratase/isomerase (Ldi) from Castellaniella defragrans 65Phen acting only on (S)-linalool. The linalool isomerase activity was located in the inner membrane. It was enriched by subcellular fractionation and sucrose gradient centrifugation. MALDI-ToF MS analysis of the enriched protein identified the corresponding gene named lis that codes for the protein in the strain with the highest similarity to the Ldi. Linalool isomerase is predicted to have four transmembrane helices at the N-terminal domain and a cytosolic domain. Enzyme activity required a reductant for activation. A specific activity of 3.42 ± 0.28 nkat mg * protein(-1) and a kM value of 455 ± 124 μM were determined for the thermodynamically favored isomerization of geraniol to both linalool isomers at optimal conditions of pH 8 and 35 °C. The linalool isomerase from T. linaloolentis 47Lol represents a second member of the enzyme class 5.4.4.4, next to the linalool dehydratase/isomerase from C. defragrans 65Phen. Besides considerable amino acid sequence similarity both enzymes share common characteristics with respect to substrate affinity, pH and temperature optima, but differ in the dehydratase activity and the turnover of linalool isomers.

  13. Glucose(xylose isomerase production by Streptomyces sp. CH7 grown on agricultural residues

    Directory of Open Access Journals (Sweden)

    Kankiya Chanitnun

    2012-09-01

    Full Text Available Streptomyces sp. CH7 was found to efficiently produce glucose(xylose isomerase when grown on either xylan or agricultural residues. This strain produced a glucose(xylose isomerase activity of roughly 1.8 U/mg of protein when it was grown in medium containing 1% xylose as a carbon source. Maximal enzymatic activities of about 5 and 3 U/mg were obtained when 1% xylan and 2.5% corn husks were used, respectively. The enzyme was purified from a mycelial extract to 16-fold purity with only two consecutive column chromatography steps using Macro-prep DEAE and Sephacryl-300, respectively. The approximate molecular weight of the purified enzyme is 170 kDa, and it has four identical subunits of 43.6 kDa as estimated by SDS-PAGE. Its Km values for glucose and xylose were found to be 258.96 and 82.77 mM, respectively, and its Vmax values are 32.42 and 63.64 μM/min/mg, respectively. The purified enzyme is optimally active at 85ºC and pH 7.0. It is stable at pH 5.5-8.5 and at temperatures up to 60ºC after 30 min. These findings indicate that glucose(xylose isomerase from Streptomyces sp. CH7 has the potential for industrial applications, especially for high-fructose syrup production and bioethanol fermentation from hemicellulosic hydrolysates by Saccharomyces cerevisiae.

  14. Binding of 5-phospho-D-arabinonohydroxamate and 5-phospho-D-arabinonate inhibitors to zinc phosphomannose isomerase from Candida albicans studied by polarizable molecular mechanics and quantum mechanics.

    Science.gov (United States)

    Roux, Celine; Gresh, Nohad; Perera, Lalith E; Piquemal, Jean-Philip; Salmon, Laurent

    2007-04-15

    Type I phosphomannose isomerase (PMI) is a Zn-dependent metalloenzyme involved in the isomerization of D-fructose 6-phosphate to D-mannose 6-phosphate. One of our laboratories has recently designed and synthesized 5-phospho-D-arabinonohydroxamate (5PAH), an inhibitor endowed with a nanomolar affinity for PMI (Roux et al., Biochemistry 2004, 43, 2926). By contrast, the 5-phospho-D-arabinonate (5PAA), in which the hydroxamate moiety is replaced by a carboxylate one, is devoid of inhibitory potency. Subsequent biochemical studies showed that in its PMI complex, 5PAH binds Zn(II) through its hydroxamate moiety rather than through its phosphate. These results have stimulated the present theoretical investigation in which we resort to the SIBFA polarizable molecular mechanics procedure to unravel the structural and energetical aspects of 5PAH and 5PAA binding to a 164-residue model of PMI. Consistent with the experimental results, our theoretical studies indicate that the complexation of PMI by 5PAH is much more favorable than by 5PAA, and that in the 5PAH complex, Zn(II) ligation by hydroxamate is much more favorable than by phosphate. Validations by parallel quantum-chemical computations on model of the recognition site extracted from the PMI-inhibitor complexes, and totaling up to 140 atoms, showed the values of the SIBFA intermolecular interaction energies in such models to be able to reproduce the quantum-chemistry ones with relative errors < 3%. On the basis of the PMI-5PAH SIBFA energy-minimized structure, we report the first hypothesis of a detailed view of the active site of the zinc PMI complexed to the high-energy intermediate analogue inhibitor, which allows us to identify active site residues likely involved in the proton transfer between the two adjacent carbons of the substrates. (c) 2007 Wiley Periodicals, Inc.

  15. Characterization of an L-arabinose isomerase from Bacillus thermoglucosidasius for D-tagatose production.

    Science.gov (United States)

    Seo, Myung-Ji

    2013-01-01

    L-Arabinose isomerase from Bacillus thermoglucosidasius KCTC 1828 (BTAI) was expressed in Escherichia coli. The optimal temperature and pH for the activity of the purified BTAI were 40 °C and pH 7.0. The Mn(2+) ion was an activator of BTAI activity. The kinetic parameters of BTAI for D-galactose were a K(m) of 175 mM and a k(cat)/K(m) of 2.8 mM(-1)min(-1). The conversion ratio by BTAI to D-tagatose reached 45.6% at 40 °C.

  16. Hemolytic anemia and progressive neurologic impairment: think about triosephosphate isomerase deficiency.

    Science.gov (United States)

    Aissa, Khaoula; Kamoun, Fatma; Sfaihi, Lamia; Ghedira, Elyes Slim; Aloulou, Hajer; Kamoun, Thouraya; Pissard, Serge; Hachicha, Mongia

    2014-08-01

    We have reported the first Tunisian case of triosephosphate isomerase (TPI) deficiency in a 2-year-old girl. She was the first child of a nonconsanguineous couple. The disease included a neonatal onset of chronic hemolytic anemia, recurrent low-respiratory infections then progressive neurological involvement. The diagnosis was made after her death from the TPI values of her parents who exhibited intermediate enzyme deficiency. Molecular study of TPI genes showed that the father and the mother are heterozygous for Glu105Asp mutation. Pediatricians must be alert to the differential diagnosis in patients having hemolytic anemia and other concomitant manifestations.

  17. Effect of gamma irradiation on whole-cell glucose isomerase. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Bachman, S.; Gebicka, L.

    1984-03-01

    Gamma-rays induced inactivation of Actinoplanes missouriensis and Streptomyces olivaceus glucose isomerase has been studied. This enzyme exhibits high resistance against ionizing radiation. The D/sub 37/ value was found to be equal to 131 kGy for Actinoplanes missouriensis cells and 88 kGy for Streptomyces olivaceus cells when irradiated in the dry state in the presence of air. Mg/sup 2 +/ ions do not affect the radiosensitivity of the enzyme in cells, while the addition of Co/sup 2 +/ ions to the cell suspension increases its stability against ionizing radiation.

  18. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    DEFF Research Database (Denmark)

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most...... diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed...

  19. Integrated assessment of the phosphate industry

    International Nuclear Information System (INIS)

    Ryan, M.T.; Cotter, S.J.

    1980-05-01

    The phosphate industry in the United States includes three major activities, namely, mining and milling of phosphate rock, phosphate product manufacture, and phosphate product use. Phosphatic materials contain uranium, thorium, and their decay products in greater than background amounts. This assessment of the radiological impacts associated with the redistribution of radioactive components of phosphate materials may provide insight into the effects of uranium extraction from phosphate materials for use in the nuclear fuel cycle

  20. Pyridoxal phosphate-dependent neonatal epileptic encephalopathy

    OpenAIRE

    Bagci, S; Zschocke, J; Hoffmann, G F; Bast, T; Klepper, J; Müller, A; Heep, A; Bartmann, P; Franz, A R

    2009-01-01

    Pyridox(am)ine-5′-phosphate oxidase converts pyridoxine phosphate and pyridoxamine phosphate to pyridoxal phosphate, a cofactor in many metabolic reactions, including neurotransmitter synthesis. A family with a mutation in the pyridox(am)ine-5′-phosphate oxidase gene presenting with neonatal seizures unresponsive to pyridoxine and anticonvulsant treatment but responsive to pyridoxal phosphate is described. Pyridoxal phosphate should be considered in neonatal epileptic encephalopathy unrespons...

  1. Enzyme architecture: the effect of replacement and deletion mutations of loop 6 on catalysis by triosephosphate isomerase.

    Science.gov (United States)

    Zhai, Xiang; Go, Maybelle K; O'Donoghue, AnnMarie C; Amyes, Tina L; Pegan, Scott D; Wang, Yan; Loria, J Patrick; Mesecar, Andrew D; Richard, John P

    2014-06-03

    Two mutations of the phosphodianion gripper loop in chicken muscle triosephosphate isomerase (cTIM) were examined: (1) the loop deletion mutant (LDM) formed by removal of residues 170-173 [Pompliano, D. L., et al. (1990) Biochemistry 29, 3186-3194] and (2) the loop 6 replacement mutant (L6RM), in which the N-terminal hinge sequence of TIM from eukaryotes, 166-PXW-168 (X = L or V), is replaced by the sequence from archaea, 166-PPE-168. The X-ray crystal structure of the L6RM shows a large displacement of the side chain of E168 from that for W168 in wild-type cTIM. Solution nuclear magnetic resonance data show that the L6RM results in significant chemical shift changes in loop 6 and surrounding regions, and that the binding of glycerol 3-phosphate (G3P) results in chemical shift changes for nuclei at the active site of the L6RM that are smaller than those of wild-type cTIM. Interactions with loop 6 of the L6RM stabilize the enediolate intermediate toward the elimination reaction catalyzed by the LDM. The LDM and L6RM result in 800000- and 23000-fold decreases, respectively, in kcat/Km for isomerization of GAP. Saturation of the LDM, but not the L6RM, by substrate and inhibitor phosphoglycolate is detected by steady-state kinetic analyses. We propose, on the basis of a comparison of X-ray crystal structures for wild-type TIM and the L6RM, that ligands bind weakly to the L6RM because a large fraction of the ligand binding energy is utilized to overcome destabilizing electrostatic interactions between the side chains of E168 and E129 that are predicted to develop in the loop-closed enzyme. Similar normalized yields of DHAP, d-DHAP, and d-GAP are formed in LDM- and L6RM-catalyzed reactions of GAP in D2O. The smaller normalized 12-13% yield of DHAP and d-DHAP observed for the mutant cTIM-catalyzed reactions compared with the 79% yield of these products for wild-type cTIM suggests that these mutations impair the transfer of a proton from O-2 to O-1 at the initial

  2. Laser Sintered Calcium Phosphate Bone

    National Research Council Canada - National Science Library

    Vail, Neil

    1999-01-01

    ...) technology selective laser sintering (SLS). BME has successfully implemented a pilot facility to fabricate calcium phosphate implants using anatomical data coupled with the selective laser sintering process...

  3. Analysis of bacterial xylose isomerase gene diversity using gene-targeted metagenomics.

    Science.gov (United States)

    Nurdiani, Dini; Ito, Michihiro; Maruyama, Toru; Terahara, Takeshi; Mori, Tetsushi; Ugawa, Shin; Takeyama, Haruko

    2015-08-01

    Bacterial xylose isomerases (XI) are promising resources for efficient biofuel production from xylose in lignocellulosic biomass. Here, we investigated xylose isomerase gene (xylA) diversity in three soil metagenomes differing in plant vegetation and geographical location, using an amplicon pyrosequencing approach and two newly-designed primer sets. A total of 158,555 reads from three metagenomic DNA replicates for each soil sample were classified into 1127 phylotypes, detected in triplicate and defined by 90% amino acid identity. The phylotype coverage was estimated to be within the range of 84.0-92.7%. The xylA gene phylotypes obtained were phylogenetically distributed across the two known xylA groups. They shared 49-100% identities with their closest-related XI sequences in GenBank. Phylotypes demonstrating soil sample were significantly smaller than they were between different soils based on a UniFrac distance analysis, suggesting soil-specific xylA genotypes and taxonomic compositions. The differences among xylA members and their compositions in the soil were strongly correlated with 16S rRNA variation between soil samples, also assessed by amplicon pyrosequencing. This is the first report of xylA diversity in environmental samples assessed by amplicon pyrosequencing. Our data provide information regarding xylA diversity in nature, and can be a basis for the screening of novel xylA genotypes for practical applications. Copyright © 2015. Published by Elsevier B.V.

  4. Bioconversion of D-galactose into D-tagatose by expression of L-arabinose isomerase.

    Science.gov (United States)

    Roh, H J; Kim, P; Park, Y C; Choi, J H

    2000-02-01

    D-Tagatose is a potential bulking agent in food as a non-calorific sweetener. To produce D-tagatose from cheaper resources, plasmids harbouring the L-arabinose isomerase gene (araA) from Escherichia coli, Bacillus subtilis and Salmonella typhimurium were constructed because L-arabinose isomerase was suggested previously as an enzyme that mediates the bioconversion of galactose into tagatose as well as that of arabinose to ribulose. The constructed plasmids were named pTC101, pTC105 and pTC106, containing araA from E. coli, B. subtilis and S. typhimurium respectively. In the cultures of recombinant E. coli with pTC101, pTC105 and pTC106, tagatose was produced from galactose in 9.9, 7.1 and 6.9% yields respectively. The enzyme extract of E. coli with the plasmid pTC101 also converted galactose into tagatose with a 96.4% yield.

  5. A mutation in the rice chalcone isomerase gene causes the golden hull and internode 1 phenotype.

    Science.gov (United States)

    Hong, Lilan; Qian, Qian; Tang, Ding; Wang, Kejian; Li, Ming; Cheng, Zhukuan

    2012-07-01

    The biosynthesis of flavonoids, important secondary plant metabolites, has been investigated extensively, but few mutants of genes in this pathway have been identified in rice (Oryza sativa). The rice gold hull and internode (gh) mutants exhibit a reddish-brown pigmentation in the hull and internode and their phenotype has long been used as a morphological marker trait for breeding and genetic study. Here, we characterized that the gh1 mutant was a mutant of the rice chalcone isomerase gene (OsCHI). The result showed that gh1 had a Dasheng retrotransposon inserted in the 5′ UTR of the OsCHI gene, which resulted in the complete loss of OsCHI expression. gh1 exhibited golden pigmentation in hulls and internodes once the panicles were exposed to light. The total flavonoid content in gh1 hulls was increased threefold compared to wild type. Consistent with the gh1 phenotype, OsCHI transcripts were expressed in most tissues of rice and most abundantly in internodes. It was also expressed at high levels in panicles before heading, distributed mainly in lemmas and paleae, but its expression decreased substantially after the panicles emerged from the sheath. OsCHI encodes a protein functionally and structurally conserved to chalcone isomerases in other species. Our findings demonstrated that the OsCHI gene was indispensable for flux of the flavonoid pathway in rice.

  6. Induction and Repression of l-Arabinose Isomerase in Salmonella typhimurium

    Science.gov (United States)

    Bhattacharya, A. K.; Chakravorty, M.

    1971-01-01

    As with other inducible enzymes, the induced synthesis of l-arabinose isomerase (l-arabinose ketol isomerase, EC 5.3.1.4) in Salmonella typhimurium is subject to catabolite repression. Of the three catabolite repressors tested, glucose produces maximum repression. Analogues of catabolite repressors like 2-deoxy-d-glucose and d-fucose also inhibit the synthesis of the enzyme. The catabolite repression is completely reversed in the presence of 1.5 × 10−3m cyclic 3′,5′-adenosine monophosphate (AMP). The maximum repression is produced in glucose-grown cells in glucose-containing induction medium. Cyclic 3′,5-AMP reverses this repression provided that the cells are treated with ethylenediaminetetraacetic acid (EDTA). In normal cells, cyclic 3′,5′-AMP has no effect on the induction but in EDTA-treated cells the cyclic nucleotide enhances synthesis of the enzyme. The inhibition produced by d-fucose cannot be reversed by cyclic 3′,5′-AMP. d-Fucose competes with the inducer l-arabinose in some step(s) involved in the process of induction. PMID:4323960

  7. Ethanol production from lignocellulosic hydrolysates using engineered Saccharomyces cerevisiae harboring xylose isomerase-based pathway.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Woo, Han Min; Kim, Kyoung Heon; Lee, Sun-Mi

    2016-06-01

    The efficient co-fermentation of glucose and xylose is necessary for the economically feasible bioethanol production from lignocellulosic biomass. Even with xylose utilizing Saccharomyces cerevisiae, the efficiency of the lignocellulosic ethanol production remains suboptimal mainly due to the low conversion yield of xylose to ethanol. In this study, we evaluated the co-fermentation performances of SXA-R2P-E, a recently engineered isomerase-based xylose utilizing strain, in mixed sugars and in lignocellulosic hydrolysates. In a high-sugar fermentation with 70g/L of glucose and 40g/L of xylose, SXA-R2P-E produced 50g/L of ethanol with an yield of 0.43gethanol/gsugars at 72h. From dilute acid-pretreated hydrolysates of rice straw and hardwood (oak), the strain produced 18-21g/L of ethanol with among the highest yield of 0.43-0.46gethanol/gsugars ever reported. This study shows a highly promising potential of a xylose isomerase-expressing strain as an industrially relevant ethanol producer from lignocellulosic hydrolysates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Colorimetric determination of fructose for the high-throughput microtiter plate assay of glucose isomerase.

    Science.gov (United States)

    Katano, Hajime; Takakuwa, Masahiro; Itoh, Takafumi; Hibi, Takao

    2015-01-01

    A colorimetric method for the reducing monosaccharide determination is optimized for the assay of glucose isomerase, which converts glucose (Glc) to fructose (Fru). Test solution was mixed with 20-fold volume of the 50 mM Na2SiO3, 600 mM Na2MoO4, and 0.95 M HCl aqueous solution (pH 4.5), in which a yellow molybdosilicate species was formed. The mixture was kept at 70 °C for 30 min. Test solution containing 10 mM level Fru gave a remarkable blue reaction mixture, in which the Mo(VI) species was reduced by Fru to form a blue molybdosilicate species. The blueness increased with the Fru concentration. Glc cannot render the reaction mixture blue as strong as Fru. Thus, the colorimetric method can be used advantageously for the determination of 10 mM level Fru in the Glc isomerase reaction mixture, even in the presence of 100 mM level Glc, and has been applied successfully to the microtiter plate assay of the enzyme.

  9. Overexpression, purification, crystallization and preliminary diffraction studies of the Protaminobacter rubrum sucrose isomerase SmuA

    International Nuclear Information System (INIS)

    Ravaud, Stéphanie; Watzlawick, Hildegard; Haser, Richard; Mattes, Ralf; Aghajari, Nushin

    2005-01-01

    The P. rubrum sucrose isomerase SmuA, a key enzyme in the industrial production of isomaltulose, was crystallized and diffraction data were collected to 1.95 Å resolution. Palatinose (isomaltulose, α-d-glucosylpyranosyl-1,6-d-fructofuranose), a nutritional and acariogenic reducing sugar, is industrially obtained from sucrose by using immobilized cells of Protaminobacter rubrum that produce the sucrose isomerase SmuA. The isomerization of sucrose catalyzed by this enzyme also results in the formation of trehalulose (α-d-glucosylpyranosyl-1,1-d-fructofuranose) in smaller amounts and glucose, fructose and eventually isomaltose as by-products, which lower the yield of the reaction and complicate the recovery of palatinose. The determination of the three-dimensional structure of SmuA will provide a basis for rational protein-engineering studies in order to optimize the industrial production of palatinose. A recombinant form of the 67.3 kDa SmuA enzyme has been crystallized in the native state by the vapour-diffusion method. Crystals belong to the orthorhombic space group P2 1 2 1 2 1 , with unit-cell parameters a = 61.6, b = 81.4, c = 135.6 Å, and diffract to 1.95 Å resolution on a synchrotron-radiation source

  10. Structural insights from a novel invertebrate triosephosphate isomerase from Litopenaeus vannamei

    Science.gov (United States)

    Lopez-Zavala, Alonso A.; Carrasco-Miranda, Jesus S.; Ramirez-Aguirre, Claudia D.; López-Hidalgo, Marisol; Benitez-Cardoza, Claudia G.; Ochoa-Leyva, Adrian; Cardona-Felix, Cesar S.; Diaz-Quezada, Corina; Rudiño-Piñera, Enrique; Sotelo-Mundo, Rogerio R.; Brieba, Luis G.

    2016-01-01

    Triosephosphate isomerase (TIM; EC 5.3.1.1) is a key enzyme involved in glycolysis and gluconeogenesis. Glycolysis is one of the most regulated metabolic pathways, however little is known about the structural mechanisms for its regulation in non-model organisms, like crustaceans. To understand the structure and function of this enzyme in invertebrates, we obtained the crystal structure of triosephosphate isomerase from the marine Pacific whiteleg shrimp (Litopenaeus vannamei, LvTIM) in complex with its inhibitor 2-phosphogyceric acid (2-PG) at 1.7 Å resolution. LvTIM assembles as a homodimer with residues 166-176 covering the active site and residue Glu166 interacting with the inhibitor. We found that LvTIM is the least stable TIM characterized to date, with the lowest range of melting temperatures, and with the lowest activation enthalpy associated with the thermal unfolding process reported. In TIMs dimer stabilization is maintained by an interaction of loop 3 by a set of hydrophobic contacts between subunits. Within these contacts, the side chain of a hydrophobic residue of one subunit fits into a cavity created by a set of hydrophobic residues in the neighboring subunit, via a "ball and socket" interaction. LvTIM presents a Cys47 at the "ball" inter-subunit contact indicating that the character of this residue is responsible for the decrease in dimer stability. Mutational studies show that this residue plays a role in dimer stability but is not a solely determinant for dimer formation. PMID:27614148

  11. Phosphate Recovery From Sewage Sludge Containing Iron Phosphate

    NARCIS (Netherlands)

    Wilfert, P.K.

    2018-01-01

    The scope of this thesis was to lay the basis for a phosphate recovery technology that can be applied on sewage sludge containing iron phosphate. Such a technology should come with minimal changes to the existing sludge treatment configuration while keeping the use of chemicals or energy as small as

  12. The Use of Rock Phosphate and Phosphate Solubilising Fungi ...

    African Journals Online (AJOL)

    User

    Department of Soil Science, University of Ghana, Legon. *Corresponding author; Email: sbrempong@yahoo.com. Abstract. Field experiment was conducted to study the effect of rock phosphate (RP) and phosphate solubilizing fungi application on upland rice yield intercropped with pigeon pea from 2009 to 2011 at the ...

  13. 21 CFR 137.175 - Phosphated flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Phosphated flour. 137.175 Section 137.175 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Related Products § 137.175 Phosphated flour. Phosphated flour, phosphated white flour, and phosphated...

  14. Proteomic and biochemical basis for enhanced growth yield of Enterobacter sp. LCR1 on insoluble phosphate medium.

    Science.gov (United States)

    Kumar, Arvind; Rai, Lal Chand

    2015-01-01

    Proteomics and biochemical analyses were used to unravel the basis for higher growth yield of Enterobacter sp. LCR1 on insoluble phosphate medium compared to soluble. Proteomic analysis using 2-DE, MALDI-TOF/MS and LC-MS revealed the involvement of nine proteins. Down-regulation of fructose bisphosphate aldolase with decreased concentrations of glucose-6-phosphate and fructose-6-phosphate indicated diminished glycolysis. However, up-regulation of phosphoglycerate mutase, increase in the activities of 6-phosphogluconate dehydratase, 2-keto-3-deoxy-6-phosphogluconate aldolase and 6-phosphogluconate dehydrogenase suggested induction of Entner-Doudoroff and pentose phosphate pathways. These pathways generate sufficient energy from gluconic acid, which is also used for biosynthesis as indicated by up-regulation of elongation factor Tu, elongation factor G and protein disulfide isomerase. Increased reactive oxygen species (ROS) formation resulting from organic acid oxidation leads to overexpressed manganese superoxide dismutase and increased activities of catalase and ascorbate peroxidase. Thus the organism uses gluconate instead of glucose for energy, while alleviating extra ROS formation by oxidative defense enzymes. Copyright © 2014 Elsevier GmbH. All rights reserved.

  15. Enhanced pest resistance and increased phenolic production in maize callus transgenically expressing a maize chalcone isomerase -3 like gene

    Science.gov (United States)

    Significant losses in maize production are due to damage by insects and ear rot fungi. A gene designated as chalcone-isomerase-like, located in a quantitative trait locus for resistance to Fusarium ear rot fungi, was cloned from a Fusarium ear rot resistant inbred and transgenically expressed in mai...

  16. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations

    Directory of Open Access Journals (Sweden)

    Yusuke Nakatsu

    2016-09-01

    Full Text Available Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14. Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer’s disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  17. Physiological and Pathogenic Roles of Prolyl Isomerase Pin1 in Metabolic Regulations via Multiple Signal Transduction Pathway Modulations.

    Science.gov (United States)

    Nakatsu, Yusuke; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mori, Keiichi; Sakoda, Hideyuki; Fujishiro, Midori; Ono, Hiraku; Kushiyama, Akifumi; Asano, Tomoichiro

    2016-09-07

    Prolyl isomerases are divided into three groups, the FKBP family, Cyclophilin and the Parvulin family (Pin1 and Par14). Among these isomerases, Pin1 is a unique prolyl isomerase binding to the motif including pSer/pThr-Pro that is phosphorylated by kinases. Once bound, Pin1 modulates the enzymatic activity, protein stability or subcellular localization of target proteins by changing the cis- and trans-formations of proline. Several studies have examined the roles of Pin1 in the pathogenesis of cancers and Alzheimer's disease. On the other hand, recent studies have newly demonstrated Pin1 to be involved in regulating glucose and lipid metabolism. Interestingly, while Pin1 expression is markedly increased by high-fat diet feeding, Pin1 KO mice are resistant to diet-induced obesity, non-alcoholic steatohepatitis and diabetic vascular dysfunction. These phenomena result from the binding of Pin1 to several key factors regulating metabolic functions, which include insulin receptor substrate-1, AMPK, Crtc2 and NF-κB p65. In this review, we focus on recent advances in elucidating the physiological roles of Pin1 as well as the pathogenesis of disorders involving this isomerase, from the viewpoint of the relationships between signal transductions and metabolic functions.

  18. Phosphate glasses, containing nitrogen

    International Nuclear Information System (INIS)

    Lisitsyna, E.A.; Khalilev, V.D.; Koryavin, A.A.; Goncharova, L.N.

    1987-01-01

    Possibilities of nitrogen-containing glass synthesis by the introduction into the charge of ammonium salts, as well as aluminium nitride, are studied. Zinc alumoyttrium phosphate glass (mol. %) Zn(PO 3 ) 2 - 4O, Al(PO 3 ) 3 - 3O, Y(PO 3 ) 3 -3O is suggested as a matrix. It is shown that the effect of amide and imide groups on the properties of the glass is less noticeable than the effect of nitride groups. Direct introduction of nitride constituent was realized using AlN, but aluminium introduction was taken into account so that the oxide was subtracted. The attempt to introduce more than 2.5 mass % of nitrogen into initial matrix by aluminium nitride has failed due to repeated restoration of glass with amorphous phosphorus isolation

  19. Light weight phosphate cements

    Science.gov (United States)

    Wagh, Arun S.; Natarajan, Ramkumar,; Kahn, David

    2010-03-09

    A sealant having a specific gravity in the range of from about 0.7 to about 1.6 for heavy oil and/or coal bed methane fields is disclosed. The sealant has a binder including an oxide or hydroxide of Al or of Fe and a phosphoric acid solution. The binder may have MgO or an oxide of Fe and/or an acid phosphate. The binder is present from about 20 to about 50% by weight of the sealant with a lightweight additive present in the range of from about 1 to about 10% by weight of said sealant, a filler, and water sufficient to provide chemically bound water present in the range of from about 9 to about 36% by weight of the sealant when set. A porous ceramic is also disclosed.

  20. Copper scandium zirconium phosphate

    DEFF Research Database (Denmark)

    Bond, Andrew David; Warner, Terence Edwin

    2013-01-01

    The title compound, with nominal formula Cu(2)ScZr(PO(4))(3), has a beige coloration and displays fast Cu(+) cation conduction at elevated temperatures. It adopts a NASICON-type structure in the space group R3c. The examined crystal was an obverse-reverse twin with approximately equal twin...... components. The [Sc(III)Zr(IV)(PO(4))(3)](2-) framework is composed of corner-sharing Sc/ZrO(6) octahedra and PO(4) tetrahedra. The Sc and Zr atoms are disordered on one atomic site on a crystallographic threefold axis. The P atom of the phosphate group lies on a crystallographic twofold axis. Nonframework...... Cu(+) cations occupy three positions. Two of the Cu(+) positions generate an approximately circular distribution around a site of 3 symmetry, referred to as the M1 site in the NASICON-type structure. The other Cu(+) position is situated close to the twofold symmetric M2 site, displaced...

  1. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process.

    Science.gov (United States)

    De Bari, Isabella; Cuna, Daniela; Di Matteo, Vincenzo; Liuzzi, Federico

    2014-03-25

    Agricultural by-products such as corn stover are considered strategic raw materials for the production of second-generation bioethanol from renewable and non-food sources. This paper describes the conversion of steam-pretreated corn stover to ethanol utilising a multi-step process including enzymatic hydrolysis, isomerisation, and fermentation of mixed hydrolysates with native Saccharomyces cerevisiae. An immobilised isomerase enzyme was used for the xylose isomerisation along with high concentrations of S. cerevisiae. The objective was to assess the extent of simultaneity of the various conversion steps, through a detailed analysis of process time courses, and to test this process scheme for the conversion of lignocellulosic hydrolysates containing several inhibitors of the isomerase enzyme (e.g. metal ions, xylitol and glycerol). The process was tested on two types of hydrolysate after acid-catalysed steam pretreatment: (a) the water soluble fraction (WSF) in which xylose was the largest carbon source and (b) the entire slurry, containing both cellulose and hemicellulose carbohydrates, in which glucose predominated. The results indicated that the ethanol concentration rose when the inoculum concentration was increased in the range 10-75 g/L. However, when xylose was the largest carbon source, the metabolic yields were higher than 0.51g(ethanol)/g(consumed) sugars probably due to the use of yeast internal cellular resources. This phenomenon was not observed in the fermentation of mixed hydrolysates obtained from the entire pretreated product and in which glucose was the largest carbon source. The ethanol yield from biomass suspensions with dry matter (DM) concentrations of 11-12% (w/v) was 70% based on total sugars (glucose, xylose, galactose). The results suggest that xylulose uptake was more effective in mixed hydrolysates containing glucose levels similar to, or higher than, xylose. Analysis of the factors that limit isomerase activity in lignocellulosic

  2. Electrochemical Reduction of Zinc Phosphate

    International Nuclear Information System (INIS)

    Kim, Chang Hwan; Lee, Jung Hyun; Shin, Woon Sup

    2010-01-01

    We demonstrated first that the electrochemical reduction of zinc phosphate in neutral phosphate buffer is possible and potentially applicable to bio-compatible rechargeable battery. The actual redox component is Zn(s)/Zn phosphate(s) and the future research about the control of crystal formation for the better cyclability is required. In lead-acid battery, the electrochemical redox reaction of Pb (s) /PbSO 4(s) is used by reducing Pb(II) and oxidizing Pb(0) in sulfate rich solution. Since both reduced form and oxidized form are insoluble, they cannot diffuse to the opposite electrodes and react. It is a very common strategy to make a stable battery electrode that a metal element is reduced and oxidized in solution containing an abundance of anion readily precipitating with the metal ion. For the application of this strategy to construction of rechargeable battery using bio-compatible electrode materials and electrolytes, the use of phosphate ion can be considered as anion readily precipitating with metal ions. If phosphate buffer with neutral pH is used as electrolyte, the better bio-compatibility will be achieved than most of rechargeable battery using strong acid, strong base or organic solvent as electrolyte solution. There are many metal ions readily precipitating with phos-phate ion, and zinc is one of them

  3. Mechanisms of Neuroprotection by Protein Disulphide Isomerase in Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Adam K. Walker

    2011-01-01

    Full Text Available Amyotrophic lateral sclerosis (ALS is a devastating neurodegenerative disease characterised by the progressive loss of motor neurons, leading to paralysis and death within several years of onset. Although protein misfolding is a key feature of ALS, the upstream triggers of disease remain elusive. Recently, endoplasmic reticulum (ER stress was identified as an early and central feature in ALS disease models as well as in human patient tissues, indicating that ER stress could be an important process in disease pathogenesis. One important chaperone induced by ER stress is protein disulphide isomerase (PDI, which is both upregulated and posttranslationally inhibited by S-nitrosylation in ALS. In this paper, we present evidence from studies of genetics, model organisms, and patient tissues which indicate an active role for PDI and ER stress in ALS disease processes.

  4. Silencing of xylose isomerase and cellulose synthase by siRNA inhibits encystation in Acanthamoeba castellanii.

    Science.gov (United States)

    Aqeel, Yousuf; Siddiqui, Ruqaiyyah; Khan, Naveed Ahmed

    2013-03-01

    A key challenge in the successful treatment of Acanthamoeba infections is its ability to transform into a dormant cyst form that is resistant to physiological conditions and pharmacological therapies, resulting in recurrent infections. The carbohydrate linkage analysis of cyst walls of Acanthamoeba castellanii showed variously linked sugar residues, including xylofuranose/xylopyranose, glucopyranose, mannopyranose, and galactopyranose. Here, it is shown that exogenous xylose significantly reduced A. castellanii differentiation in encystation assays (P castellanii. Inhibition of both enzymes using siRNA against xylose isomerase and cellulose synthase but not scrambled siRNA attenuated A. castellanii metamorphosis, as demonstrated by the arrest of encystation of A. castellanii. Neither inhibitor nor siRNA probes had any effect on the viability and extracellular proteolytic activities of A. castellanii.

  5. In silico cloning and B/T cell epitope prediction of triosephosphate isomerase from Echinococcus granulosus.

    Science.gov (United States)

    Wang, Fen; Ye, Bin

    2016-10-01

    Cystic echinococcosis is a worldwide zoonosis caused by Echinococcus granulosus. Because the methods of diagnosis and treatment for cystic echinococcosis were limited, it is still necessary to screen target proteins for the development of new anti-hydatidosis vaccine. In this study, the triosephosphate isomerase gene of E. granulosus was in silico cloned. The B cell and T cell epitopes were predicted by bioinformatics methods. The cDNA sequence of EgTIM was composition of 1094 base pairs, with an open reading frame of 753 base pairs. The deduced amino acid sequences were composed of 250 amino acids. Five cross-reactive epitopes, locating on 21aa-35aa, 43aa-57aa, 94aa-107aa, 115-129aa, and 164aa-183aa, could be expected to serve as candidate epitopes in the development of vaccine against E. granulosus. These results could provide bases for gene cloning, recombinant expression, and the designation of anti-hydatidosis vaccine.

  6. Effects of peptidyl-prolyl isomerase 1 depletion in animal models of prion diseases.

    Science.gov (United States)

    Legname, Giuseppe; Virgilio, Tommaso; Bistaffa, Edoardo; De Luca, Chiara Maria Giulia; Catania, Marcella; Zago, Paola; Isopi, Elisa; Campagnani, Ilaria; Tagliavini, Fabrizio; Giaccone, Giorgio; Moda, Fabio

    2018-04-20

    Pin1 is a peptidyl-prolyl isomerase that induces the cis-trans conversion of specific Ser/Thr-Pro peptide bonds in phosphorylated proteins, leading to conformational changes through which Pin1 regulates protein stability and activity. Since down-regulation of Pin1 has been described in several neurodegenerative disorders, including Alzheimer's Disease (AD), Parkinson's Disease (PD) and Huntington's Disease (HD), we investigated its potential role in prion diseases. Animals generated on wild-type (Pin1 +/+ ), hemizygous (Pin1 +/- ) or knock-out (Pin1 -/- ) background for Pin1 were experimentally infected with RML prions. The study indicates that, neither the total depletion nor reduced levels of Pin1 significantly altered the clinical and neuropathological features of the disease.

  7. Role of α-phosphoglucomutase and phosphoglucose isomerase activities at the branching point between sugar catabolism and anabolism in Lactobacillus casei.

    Science.gov (United States)

    Sanfélix-Haywood, N; Coll-Marqués, J M; Yebra, M J

    2011-08-01

    To evaluate the role of α-phosphoglucomutase (α-Pgm) and phosphoglucose isomerase (Pgi) activities in growth rate, sugar-phosphates, UDP-sugars and lactate biosynthesis in Lactobacillus casei. The pgm and pgi genes coding for α-Pgm and Pgi activities in L. casei BL23, respectively, were identified, cloned and shown to be functional by homologous overexpression. In MRS fermentation medium with glucose, overexpression of pgm gene in L. casei resulted in a growth rate reduced to 75% and glucose-6P levels reduced to 47%. By contrast, with lactose, the growth rate was raised to 119%. An increment of α-Pgm activity had no significant effect on UDP-sugar levels. Remarkably, Pgi overexpression in L. casei grown in lactose or galactose resulted in almost a double growth rate with respect to the control strain. The increased Pgi activity also resulted in glucose-6P levels reduced to 25 and 59% of control strain cultured in glucose and lactose, respectively, and the fructose-6P levels were increased to 128% on glucose. UDP-glucose and UDP-galactose levels were reduced to 66 and 55%, respectively, of control strain levels cultured in galactose. In addition, the lactate yield increased to 115% in the strain overproducing Pgi grown in galactose. The physiological amount of α-Pgm and Pgi activities is limited for L. casei growth on lactose, and lactose and galactose, respectively, and that limitation was overcome by pgm and pgi gene overexpression. The increment of α-Pgm and Pgi activities, respectively, resulted in modified levels of sugar-phosphates, sugar-nucleotides and lactate showing the modulation capacity of the carbon fluxes in L. casei at the level of the glycolytic intermediate glucose-6P. Knowledge of the role of key enzymes in metabolic fluxes at the branching point between anabolic and catabolic pathways would allow a rational design of engineering strategies in L. casei. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied

  8. The effects of disruption of phosphoglucose isomerase gene on carbon utilisation and cellulase production in Trichoderma reesei Rut-C30

    Directory of Open Access Journals (Sweden)

    Pakula Tiina

    2011-05-01

    Full Text Available Abstract Background Cellulase and hemicellulase genes in the fungus Trichoderma reesei are repressed by glucose and induced by lactose. Regulation of the cellulase genes is mediated by the repressor CRE1 and the activator XYR1. T. reesei strain Rut-C30 is a hypercellulolytic mutant, obtained from the natural strain QM6a, that has a truncated version of the catabolite repressor gene, cre1. It has been previously shown that bacterial mutants lacking phosphoglucose isomerase (PGI produce more nucleotide precursors and amino acids. PGI catalyzes the second step of glycolysis, the formation of fructose-6-P from glucose-6-P. Results We deleted the gene pgi1, encoding PGI, in the T. reesei strain Rut-C30 and we introduced the cre1 gene in a Δpgi1 mutant. Both Δpgi1 and cre1+Δpgi1 mutants showed a pellet-like and growth as well as morphological alterations compared with Rut-C30. None of the mutants grew in media with fructose, galactose, xylose, glycerol or lactose but they grew in media with glucose, with fructose and glucose, with galactose and fructose or with lactose and fructose. No growth was observed in media with xylose and glucose. On glucose, Δpgi1 and cre1+Δpgi1 mutants showed higher cellulase activity than Rut-C30 and QM6a, respectively. But in media with lactose, none of the mutants improved the production of the reference strains. The increase in the activity did not correlate with the expression of mRNA of the xylanase regulator gene, xyr1. Δpgi1 mutants were also affected in the extracellular β-galactosidase activity. Levels of mRNA of the glucose 6-phosphate dehydrogenase did not increase in Δpgi1 during growth on glucose. Conclusions The ability to grow in media with glucose as the sole carbon source indicated that Trichoderma Δpgi1 mutants were able to use the pentose phosphate pathway. But, they did not increase the expression of gpdh. Morphological characteristics were the result of the pgi1 deletion. Deletion of pgi1 in

  9. Mannose supplements induce embryonic lethality and blindness in phosphomannose isomerase hypomorphic mice

    Science.gov (United States)

    Sharma, Vandana; Nayak, Jonamani; DeRossi, Charles; Charbono, Adriana; Ichikawa, Mie; Ng, Bobby G.; Grajales-Esquivel, Erika; Srivastava, Anand; Wang, Ling; He, Ping; Scott, David A.; Russell, Joseph; Contreras, Emily; Guess, Cherise M.; Krajewski, Stan; Del Rio-Tsonis, Katia; Freeze, Hudson H.

    2014-01-01

    Patients with congenital disorder of glycosylation (CDG), type Ib (MPI-CDG or CDG-Ib) have mutations in phosphomannose isomerase (MPI) that impair glycosylation and lead to stunted growth, liver dysfunction, coagulopathy, hypoglycemia, and intestinal abnormalities. Mannose supplements correct hypoglycosylation and most symptoms by providing mannose-6-P (Man-6-P) via hexokinase. We generated viable Mpi hypomorphic mice with residual enzymatic activity comparable to that of patients, but surprisingly, these mice appeared completely normal except for modest (∼15%) embryonic lethality. To overcome this lethality, pregnant dams were provided 1–2% mannose in their drinking water. However, mannose further reduced litter size and survival to weaning by 40 and 66%, respectively. Moreover, ∼50% of survivors developed eye defects beginning around midgestation. Mannose started at birth also led to eye defects but had no effect when started after eye development was complete. Man-6-P and related metabolites accumulated in the affected adult eye and in developing embryos and placentas. Our results demonstrate that disturbing mannose metabolic flux in mice, especially during embryonic development, induces a highly specific, unanticipated pathological state. It is unknown whether mannose is harmful to human fetuses during gestation; however, mothers who are at risk for having MPI-CDG children and who consume mannose during pregnancy hoping to benefit an affected fetus in utero should be cautious.—Sharma, V., Nayak, J., DeRossi, C., Charbono, A., Ichikawa, M., Ng, B. G., Grajales-Esquivel, E., Srivastava, A., Wang, L., He, P., Scott, D. A., Russell, J., Contreras, E., Guess, C. M., Krajewski, S., Del Rio-Tsonis, K., Freeze, H. H. Mannose supplements induce embryonic lethality and blindness in phosphomannose isomerase hypomorphic mice. PMID:24421398

  10. Substrate specificity of platypus venom L-to-D-peptide isomerase.

    Science.gov (United States)

    Bansal, Paramjit S; Torres, Allan M; Crossett, Ben; Wong, Karen K Y; Koh, Jennifer M S; Geraghty, Dominic P; Vandenberg, Jamie I; Kuchel, Philip W

    2008-04-04

    The L-to-D-peptide isomerase from the venom of the platypus (Ornithorhyncus anatinus) is the first such enzyme to be reported for a mammal. In delineating its catalytic mechanism and broader roles in the animal, its substrate specificity was explored. We used N-terminal segments of defensin-like peptides DLP-2 and DLP-4 and natriuretic peptide OvCNP from the venom as substrates. The DLP analogues IMFsrs and ImFsrs (srs is a solubilizing chain; lowercase letters denote D-amino acid) were effective substrates for the isomerase; it appears to recognize the N-terminal tripeptide sequence Ile-Xaa-Phe-. A suite of 26 mutants of these hexapeptides was synthesized by replacing the second residue (Met) with another amino acid, viz. Ala, alpha-aminobutyric acid, Ile, Leu, Lys, norleucine, Phe, Tyr, and Val. It was shown that mutant peptides incorporating norleucine and Phe are substrates and exhibit L- or D-amino acid isomerization, but mutant peptides that contain residues with shorter, beta-branched or long side chains with polar terminal groups, viz. Ala, alpha-aminobutyric acid, Ile, Val, Leu, Lys, and Tyr, respectively, are not substrates. It was demonstrated that at least three N-terminal amino acid residues are absolutely essential for L-to-D-isomerization; furthermore, the third amino acid must be a Phe residue. None of the hexapeptides based on LLH, the first three residues of OvCNP, were substrates. A consistent 2-base mechanism is proposed for the isomerization; abstraction of a proton by 1 base is concomitant with delivery of a proton by the conjugate acid of a second base.

  11. Improved xylose fermentation of Kluyveromyces marxianus at elevated temperature through construction of a xylose isomerase pathway.

    Science.gov (United States)

    Wang, Rongliang; Li, Lulu; Zhang, Biao; Gao, Xiaolian; Wang, Dongmei; Hong, Jiong

    2013-08-01

    To improve the xylose fermentation ability of Kluyveromyces marxianus, a xylose assimilation pathway through xylose isomerase was constructed. The genes encoding xylose reductase (KmXyl1) and xylitol dehydrogenase (KmXyl2) were disrupted in K. marxianus YHJ010 and the resultant strain was named YRL002. A codon-optimized xylose isomerase gene from Orpinomyces was transformed into K. marxianus YRL002 and expressed under GAPDH promoter. The transformant was adapted in the SD medium containing 1 % casamino acid with 2 % xylose as sole carbon source. After 32 times of trans-inoculation, a strain named YRL005, which can grow at a specific growth rate of 0.137/h with xylose as carbon source, was obtained. K. marxianus YRL005 could ferment 30.15 g/l of xylose and produce 11.52 g/l ethanol with a yield of 0.38 g/g, production rate of 0.069 g/l/h at 42 °C, and also could ferment 16.60 g/l xylose to produce 5.21 g/l ethanol with a yield of 0.31 g/g, and production rate of 0.054 g/l h at 45 °C. Co-fermentation with 2 % glucose could not improve the amount and yield of ethanol fermented from xylose obviously, but it could improve the production rate. Furthermore, K. marxianus YRL005 can ferment with the corn cob hydrolysate, which contained 20.04 g/l xylose to produce 8.25 g/l ethanol. It is a good platform to construct thermo-tolerant xylose fermentation yeast.

  12. Cloning, expression and characterization of xylose isomerase from the marine bacterium Fulvimarina pelagi in Escherichia coli.

    Science.gov (United States)

    Lajoie, Curtis A; Kitner, Joshua B; Potochnik, Stephen J; Townsend, Jakob M; Beatty, Christopher C; Kelly, Christine J

    2016-09-01

    Production of a xylose isomerase (XI) with high tolerance to the inhibitors xylitol and calcium, and high activity at the low pH and temperature conditions characteristic of yeast fermentations, is desirable for a simultaneous isomerization/fermentation process for cellulosic ethanol production. A putative XI gene (xylA) from the marine bacterium Fulvimarina pelagi was identified by sequence analysis of the F. pelagi genome, and was PCR amplified, cloned, and expressed in Escherichia coli. The rXI was produced in shake flask and fed-batch fermentations using glucose as the growth substrate. The optimum pH for rXI was approximately 7, although activity was evident at pH as low as 5.5. The purified rXI had a molecular weight in 160 kDA, a V max of 0.142 U/mg purified rXI, and a K M for xylose in the range of 1.75-4.17 mM/L at pH 6.5 and a temperature of 35°C. The estimated calcium and xylitol K I values for rXI in cell-free extracts were 2,500 mg/L and >50 mM, respectively. The low K M of the F. pelagi xylose isomerase is consistent with the low nutrient conditions of the pelagic environment. These results indicate that Ca 2+ and xylitol are not likely to be inhibitory in applications employing the rXI from F. pelagi to convert xylose to xylulose in fermentations of complex biomass hydrolysates. A higher V max at low pH (<6) and temperature (30°C) would be preferable for use in biofuels production. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1230-1237, 2016. © 2016 American Institute of Chemical Engineers.

  13. Immobilization of glucose isomerase onto radiation synthesized P(AA-co-AMPS hydrogel and its application

    Directory of Open Access Journals (Sweden)

    H. Kamal

    2014-04-01

    Full Text Available Isomerization of glucose to fructose was carried out using Glucose isomerase (GI that immobilized by entrapment into Poly(acrylic acid P(AA and Poly(acrylic acid-co-2-Acrylamido 2-methyl Propane sulfonic acid P(AA-co-AMPS polymer networks, the enzyme carriers were prepared by radiation induced copolymerization in the presence of (Methylene-bisacrylamide (MBAA as a crosslinking agent. The maximum gel fraction of pure P(AA and P(AA-co-AMPS hydrogel was found to be 95.2% and 89.6% for P(AA and P(AA-co-AMPS, respectively at a total dose of 20 kGy. Effects of immobilization conditions such as radiation dose, MBAA concentration, comonomer composition and amount of GI were investigated. The influence of reaction conditions on the activity of immobilized GI were studied, the optimum pH value of the reaction solution is 7.5 and reaction temperature is 65 °C. The immobilized GI into P(AA-co-AMPS and P(AA polymer networks retained 81% and 69%, respectively of its initial activity after recycled for 15 times while it retained 87% and 71%, respectively of its initial activity after stored at 4 °C for 48 days. The Km values of free and immobilized GI onto P(AA-co-AMPS and onto P(AA matrices were found to be 34, 29.2 and 14.5 mg/mL, respectively while the Vmax Values calculated to be 3.87, 1.6 and 0.79 mg/mL min, respectively. GI entrapped into P(AA-co-AMPS hydrogel show promising behavior that may be useful as the newly glucose isomerase reactor in biomedical applications.

  14. Calcium phosphates for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Canillas, M.; Pena, P.; Aza, A.H. de; Rodriguez, M.A.

    2017-07-01

    The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies. (Author)

  15. Calcium phosphates for biomedical applications

    Directory of Open Access Journals (Sweden)

    Maria Canillas

    2017-05-01

    Full Text Available The history of calcium phosphates in the medicine field starts in 1769 when the first evidence of its existence in the bone tissue is discovered. Since then, the interest for calcium phosphates has increased among the scientific community. Their study has been developed in parallel with new advances in materials sciences, medicine or tissue engineering areas. Bone tissue engineering is the field where calcium phosphates have had a great importance. While the first bioceramics are selected according to bioinert, biocompatibility and mechanical properties with the aim to replace bone tissue damaged, calcium phosphates open the way to the bone tissue regeneration challenge. Nowadays, they are present in the majority of commercial products directed to repair or regenerate damaged bone tissue. Finally, in the last few decades, they have been suggested and studied as drug delivering devices and as vehicles of DNA and RNA for the future generation therapies.

  16. Ambient Volatility of Triethyl Phosphate

    Science.gov (United States)

    2017-08-01

    AMBIENT VOLATILITY OF TRIETHYL PHOSPHATE ECBC-TR-1476 James H. Buchanan John J. Mahle RESEARCH AND...2017 2. REPORT TYPE Final 3. DATES COVERED (From - To) Oct 2016 – Jan 2017 4. TITLE: Ambient Volatility of Triethyl Phosphate 5a. CONTRACT...humidity on TEPO volatility is nearly as predicted by Raoult’s law, that is, vapor pressure suppression is proportional to ambient relative humidity. An

  17. short communication agronomic effectiveness of novel phosphate

    African Journals Online (AJOL)

    A review of literature shows that work on non-conventional phosphate fertilisers has been done exclusively on sedimentary phosphate rocks. The potential of using novel phosphate fertiliser materials derived from unreactive igneous Dorowa (Zimbabwe) phosphate rock was investigated in a greenhouse experiment.

  18. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    Phosphate solubilizing efficiencies of the strains were analyzed using different insoluble phosphorus sources and the results show that most isolates released a substantial amount of soluble phosphate from tricalcium phosphate, rock phosphate and bone meal. Screening for multiple plant growth promoting attributes ...

  19. 21 CFR 573.320 - Diammonium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Diammonium phosphate. 573.320 Section 573.320 Food... Additive Listing § 573.320 Diammonium phosphate. The food additive diammonium phosphate may be safely used... crude protein from diammonium phosphate, adequate directions for use and a prominent statement, “Warning...

  20. Electrical properties of phosphate glasses

    International Nuclear Information System (INIS)

    Mogus-Milankovic, A; Santic, A; Reis, S T; Day, D E

    2009-01-01

    Investigation of the electrical properties of phosphate glasses where transition metal oxide such as iron oxide is the network former and network modifier is presented. Phosphate glasses containing iron are electronically conducting glasses where the polaronic conduction is due to the electron hopping from low to high iron valence state. The identification of structural defects caused by ion/polaron migration, the analysis of dipolar states and electrical conductivity in iron phosphate glasses containing various alkali and mixed alkali ions was performed on the basis of the impedance spectroscopy (IS). The changes in electrical conductivity from as-quenched phosphate glass to fully crystallized glass (glass-ceramics) by IS are analyzed. A change in the characteristic features of IS follows the changes in glass and crystallized glass network. Using IS, the contribution of glass matrix, crystallized grains and grain boundary to the total electrical conductivity for iron phosphate glasses was analyzed. It was shown that decrease in conductivity is caused by discontinuities in the conduction pathways as a result of the disruption of crystalline network where two or more crystalline phases are formed. Also, phosphate-based glasses offer a unique range of biomaterials, as they form direct chemical bonding with hard/soft tissue. The surface charges of bioactive glasses are recognized to be the most important factors in determining biological responses. The improved bioactivity of the bioactive glasses as a result of the effects of the surface charges generated by electrical polarization is discussed.

  1. Rational design of Bacillus stearothermophilus US100 L-arabinose isomerase: potential applications for D-tagatose production.

    Science.gov (United States)

    Rhimi, Moez; Aghajari, Nushin; Juy, Michel; Chouayekh, Hichem; Maguin, Emmanuelle; Haser, Richard; Bejar, Samir

    2009-05-01

    L-arabinose isomerases catalyze the bioconversion of D-galactose into D-tagatose. With the aim of producing an enzyme optimized for D-tagatose production, three Bacillus stearothermophilus US100 L-arabinose isomerase mutants were constructed, purified and characterized. Our results indicate that mutant Q268K was significantly more acidotolerant and more stable at acidic pH than the wild-type enzyme. The N175H mutant has a broad optimal temperature range from 50 to 65 degrees C. With the aim of constructing an acidotolerant mutant working at relatively low temperatures we generated the Q268K/N175H construct. This double mutant displays an optimal pH in the range 6.0-7.0 and an optimal activity around 50-65 degrees C, temperatures at which the enzyme was stable without addition of metal ions.

  2. Overexpression, crystallization and preliminary X-ray crystallographic analysis of a putative xylose isomerase from Bacteroides thetaiotaomicron.

    Science.gov (United States)

    Cho, Jea-Won; Han, Byeong-Gu; Park, Sang Youn; Kim, Seung Jun; Kim, Myoung-Dong; Lee, Byung Il

    2013-10-01

    Bacteroides thetaiotaomicron BT0793, a putative xylose isomerase, was overexpressed in Escherichia coli, purified and crystallized using polyethylene glycol monomethyl ether 550 as the precipitant. X-ray diffraction data were collected to 2.10 Å resolution at 100 K using synchrotron X-rays. The crystal was found to belong to space group P1, with unit-cell parameters a=96.3, b=101.7, c=108.3 Å, α=82.8, β=68.2, γ=83.0°. The asymmetric unit contained eight subunits of xylose isomerase with a crystal volume per protein weight (VM) of 2.38 Å3 Da(-1) and a solvent content of 48.3%.

  3. [Immobilization of a recombinant strain producing glucose isomerase on SiO2-xerogel and properties of prepared biocatalysts].

    Science.gov (United States)

    Kovalenko, G A; Perminova, L V; Chuenko, T V; Sapunova, L I; Shliakhotko, E A; Lobanok, A G

    2011-01-01

    An original method of immobilization of nongrowing microorganism cells on xerogel of silicon dioxide containing insoluble hydroxyl compounds of cobalt(III) has been developed. A recombinant strain producing glucose isomerase has been constructed on the basis of Escherichia coli with the use of a gene of Arthrobacter nicotianae. It was revealed that glucose isomerase activity and stability of biocatalysts prepared on the basis of the recombinant E. coli strain was 3-5 times greater compared with the biocatalysts prepared with the use of the donor strain A. nicotianae. Under conditions of continuous hydrolysis of 3 M fructose at 62-65 degrees C in a fixed bed reactor, time of half-inactivation of the biocatalysts prepared from the recombinant strain and A. nicotianae was -60 and -25 days, respectively.

  4. Metabolic engineering of the pentose phosphate pathway for enhanced limonene production in the cyanobacterium Synechocysti s sp. PCC 6803.

    Science.gov (United States)

    Lin, Po-Cheng; Saha, Rajib; Zhang, Fuzhong; Pakrasi, Himadri B

    2017-12-13

    Isoprenoids are diverse natural compounds, which have various applications as pharmaceuticals, fragrances, and solvents. The low yield of isoprenoids in plants makes them difficult for cost-effective production, and chemical synthesis of complex isoprenoids is impractical. Microbial production of isoprenoids has been considered as a promising approach to increase the yield. In this study, we engineered the model cyanobacterium Synechocystis sp. PCC 6803 for sustainable production of a commercially valuable isoprenoid, limonene. Limonene synthases from the plants Mentha spicata and Citrus limon were expressed in cyanobacteria for limonene production. Production of limonene was two-fold higher with limonene synthase from M. spicata than that from C. limon. To enhance isoprenoid production, computational strain design was conducted by applying the OptForce strain design algorithm on Synechocystis 6803. Based on the metabolic interventions suggested by this algorithm, genes (ribose 5-phosphate isomerase and ribulose 5-phosphate 3-epimerase) in the pentose phosphate pathway were overexpressed, and a geranyl diphosphate synthase from the plant Abies grandis was expressed to optimize the limonene biosynthetic pathway. The optimized strain produced 6.7 mg/L of limonene, a 2.3-fold improvement in productivity. Thus, this study presents a feasible strategy to engineer cyanobacteria for photosynthetic production of isoprenoids.

  5. Genetic and Biochemical Studies on Mannose-Negative Mutants That Are Deficient in Phosphomannose Isomerase in Escherichia coli K-12

    Science.gov (United States)

    Markovitz, Alvin; Sydiskis, Robert J.; Lieberman, Michael M.

    1967-01-01

    Two mannose-negative mutants of Escherichia coli K-12 have been isolated. These mutants are deficient in the ability to synthesize phosphomannose isomerase and capsular polysaccharide when grown on glucose-containing media. Interrupted mating experiments to determine the kinetics of genetic transfer show that the two mannose-negative mutations map together between the histidine and tryptophan regions of the E. coli chromosome. PMID:4862193

  6. Optimization of Fermentation Medium for the Production of Glucose Isomerase Using Streptomyces sp. SB-P1

    OpenAIRE

    Bhasin, Sheetal; Modi, H. A.

    2012-01-01

    The combination of medium ingredients has a profound influence on the metabolic pathways running in the microorganism which regulates the production of numerous metabolites. Glucose isomerase (GI), an enzyme with huge potential in the market, can isomerise glucose into fructose. GI is used widely for the production of High-Fructose Corn Syrup (HFCS). HFCS is used as a sweetener in food and pharmaceutical industries. Streptomyces are well-known producers of numerous enzymes including glucose i...

  7. Non-phosphate degradation products of tributyl phosphate

    International Nuclear Information System (INIS)

    Tashiro, Y.; Kodama, R.; Sugai, H.

    1995-01-01

    Tributyl phosphate(TBP) was compulsively degraded with nitric acid and/or uranium nitrate at elevated temperature around 105 degrees C. Experimental results indicates major non-phosphate degradation products are butyl nitrate (C 4 H 9 NO 3 ), propionic acid (C 2 H 5 COOH), acetic acid (CH 3 COOH), butyric acid (C 3 H 7 COOH) and butyl alcohol (C 4 H 9 OH) in ascending order of quantity. Degrading rate in uranium free system is less than that in uranium coexisting system. Carboxylic acids were not produced in uranium free system, and only acetic acid was identified in case of without supplying nitric acid from aqueous phase. Moreover, from the experimental study on the reactivity of each non-phosphate product with nitric acid, carboxylic acids were identified as byproducts of butyl alcohol and butyl nitrate, and each carboxylic acid was stable in these degrading conditions. Finally, butyl alcohol is considered as one of intermediate products to butyl nitrate and carboxylic acids. From this study, the non-phosphate degradation products of TBP is identified and the degrading reaction pass is proposed. Extraction behavior of each non-phosphate product and reactivity of degraded TBP are also elucidated

  8. Biochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetener.

    Science.gov (United States)

    Nguyen, Tien-Kieu; Hong, Moon-Gi; Chang, Pahn-Shick; Lee, Byung-Hoo; Yoo, Sang-Ho

    2018-01-01

    d-Tagatose has gained substantial interest due to its potential functionalities as a sucrose substitute. In this study, the gene araA, encoding l-arabinose isomerase (l-AI) from Clostridium hylemonae (DSM 15053), was cloned and expressed in Escherichia coli BL21 (DE3). This gene consists of 1,506 nucleotides and encodes a protein of 501 amino acid residues with a calculated molecular mass of 56,554 Da. Since l-AI was expressed as an intracellular inclusion body, this enzyme was solubilized with guanidine hydrochloride, refolded, and activated with a descending concentration gradient of urea. The purified enzyme exhibited the greatest activity at 50°C, pH 7-7.5, and required 1 mM of Mg2+ as a cofactor. Notably, the catalytic efficiency (3.69 mM-1sec-1) of l-AI from C. hylemonae on galactose was significantly greater than that of other previously reported enzymes. The bioconversion yield of d-tagatose using the C. hylemonae l-arabinose isomerase at 60°C reached approximately 46% from 10 mM of d-galactose after 2 h. From these results, it is suggested that the l-arabinose isomerase from C. hylemonae could be utilized as a potential enzyme for d-tagatose production due to its high conversion yield at an industrially competitive temperature.

  9. Metal Dependence of the Xylose Isomerase from Piromyces sp. E2 Explored by Activity Profiling and Protein Crystallography.

    Science.gov (United States)

    Lee, Misun; Rozeboom, Henriëtte J; de Waal, Paul P; de Jong, Rene M; Dudek, Hanna M; Janssen, Dick B

    2017-11-14

    Xylose isomerase from Piromyces sp. E2 (PirXI) can be used to equip Saccharomyces cerevisiae with the capacity to ferment xylose to ethanol. The biochemical properties and structure of the enzyme have not been described even though its metal content, catalytic parameters, and expression level are critical for rapid xylose utilization. We have isolated the enzyme after high-level expression in Escherichia coli, analyzed the metal dependence of its catalytic properties, and determined 12 crystal structures in the presence of different metals, substrates, and substrate analogues. The activity assays revealed that various bivalent metals can activate PirXI for xylose isomerization. Among these metals, Mn 2+ is the most favorable for catalytic activity. Furthermore, the enzyme shows the highest affinity for Mn 2+ , which was established by measuring the activation constants (K act ) for different metals. Metal analysis of the purified enzyme showed that in vivo the enzyme binds a mixture of metals that is determined by metal availability as well as affinity, indicating that the native metal composition can influence activity. The crystal structures show the presence of an active site similar to that of other xylose isomerases, with a d-xylose binding site containing two tryptophans and a catalytic histidine, as well as two metal binding sites that are formed by carboxylate groups of conserved aspartates and glutamates. The binding positions and conformations of the metal-coordinating residues varied slightly for different metals, which is hypothesized to contribute to the observed metal dependence of the isomerase activity.

  10. Revisiting the mechanistic basis of the French Paradox: Red wine inhibits the activity of protein disulfide isomerase in vitro.

    Science.gov (United States)

    Galinski, Christine N; Zwicker, Jeffrey I; Kennedy, Daniel R

    2016-01-01

    Although epidemiologic evidence points to cardioprotective activity of red wine, the mechanistic basis for antithrombotic activity has not been established. Quercetin and related flavonoids are present in high concentrations in red but not white wine. Quercetin-glycosides were recently shown to prevent thrombosis in animal models through the inhibition of extracellular protein disulfide isomerase (PDI). We evaluated whether red or white wine inhibited PDI activity in vitro. Quercetin levels in red and white wines were measured by HPLC analysis. Inhibition of PDI activity by red and white wines was assessed by an insulin reduction turbidity assay at various concentrations of wine. PDI inhibition was confirmed using a reduced peptide that contained a disulfide containing peptide as a substrate. The inhibition of PDI related thiol isomerases ERp5 and ERp57 was also assessed. We observed a dose-dependent decrease of PDI activity for a variety of red but not white wines. Red wine diluted to 3% final concentration resulted in over 80% inhibition of PDI activity by insulin reductase assay for all varieties tested. This inhibition was also observed in the peptide based assay. Red grape juice yielded similar results but ethanol alone did not affect PDI activity. Interestingly, red wine also inhibited the PDI related thiol isomerases ERp5 and ERp57, albeit to a lesser degree than PDI. PDI activity is inhibited by red wine and grape juice, identifying a potentially novel mechanism underlying the cardiovascular benefits attributed to wine consumption. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Optimization of Fermentation Medium for the Production of Glucose Isomerase Using Streptomyces sp. SB-P1

    Directory of Open Access Journals (Sweden)

    Sheetal Bhasin

    2012-01-01

    Full Text Available The combination of medium ingredients has a profound influence on the metabolic pathways running in the microorganism which regulates the production of numerous metabolites. Glucose isomerase (GI, an enzyme with huge potential in the market, can isomerise glucose into fructose. GI is used widely for the production of High-Fructose Corn Syrup (HFCS. HFCS is used as a sweetener in food and pharmaceutical industries. Streptomyces are well-known producers of numerous enzymes including glucose isomerase. An array of 75 isolates was screened for the production of glucose isomerase. The isolate Streptomyces sp. SB-P1 was found to produce maximum amount of extracellular GI. Sucrose and raffinose among pure carbon sources and corn cob and wheat husk among crude agro residues were found to yield high enzyme titers. Potassium nitrate among pure nitrogen sources and soy residues among crude sources gave maximum production. Quantitative effect of carbon, nitrogen, and inducer on GI was also determined. Plackett-Burman design was used to study the effect of different medium ingredients. Sucrose and xylose as carbon sources and peptone and soy residues as nitrogen sources proved to be beneficial for GI production.

  12. Optimization of Fermentation Medium for the Production of Glucose Isomerase Using Streptomyces sp. SB-P1.

    Science.gov (United States)

    Bhasin, Sheetal; Modi, H A

    2012-01-01

    The combination of medium ingredients has a profound influence on the metabolic pathways running in the microorganism which regulates the production of numerous metabolites. Glucose isomerase (GI), an enzyme with huge potential in the market, can isomerise glucose into fructose. GI is used widely for the production of High-Fructose Corn Syrup (HFCS). HFCS is used as a sweetener in food and pharmaceutical industries. Streptomyces are well-known producers of numerous enzymes including glucose isomerase. An array of 75 isolates was screened for the production of glucose isomerase. The isolate Streptomyces sp. SB-P1 was found to produce maximum amount of extracellular GI. Sucrose and raffinose among pure carbon sources and corn cob and wheat husk among crude agro residues were found to yield high enzyme titers. Potassium nitrate among pure nitrogen sources and soy residues among crude sources gave maximum production. Quantitative effect of carbon, nitrogen, and inducer on GI was also determined. Plackett-Burman design was used to study the effect of different medium ingredients. Sucrose and xylose as carbon sources and peptone and soy residues as nitrogen sources proved to be beneficial for GI production.

  13. Polyether esters of zirconium phosphate

    International Nuclear Information System (INIS)

    Ortiz-Avila, C.Y.

    1984-01-01

    The reaction of ethylene oxide with α-zirconium phosphate, α-Zr(HPO 4 ) 2 .2H 2 O was investigated. γ-Zirconium phosphate, Zr(HPO 4 ) 2 .2H 2 O, with a 12.2A interlayer spacing is known to react with ethylene oxide solutions to esterify the monohydrogen phosphate groups. It has been shown that α-zirconium phosphate with a smaller interlayer distance, 7.6 A, also behaves similarly. With highly crystalline samples of α-zirconium phosphate, reaction takes place only at the surface. However, if the interlayer distance is first increased (by means of amine, alcohol, or glycol intercalates, or by use of the more hydrated theta-phase, with a 10.4 A of interlayer spacing) so that ethylene oxide can diffuse into the interior, complete reaction occurs. Less crystalline samples were found to react directly with ethylene oxide, either gaseous or as a solution. Attempts to form long chains by direct reaction with ethylene oxide were unsuccessful

  14. Cloning, purification, and characterization of xylose isomerase from Thermotoga naphthophila RKU-10.

    Science.gov (United States)

    Fatima, Bilqees; Aftab, Muhammad Nauman; Haq, Ikram-Ul

    2016-09-01

    A 1.3 kb xyl-A gene encoding xylose isomerase from a hyperthermophilic eubacterium Thermotoga naphthophila RKU-10 (TnapXI) was cloned and over-expressed in Escherichia coli to produce the enzyme in mesophilic conditions that work at high temperature. The enzyme was concentrated by lyophilization and purified by heat treatment, fractional precipitation, and UNOsphere Q anion-exchange column chromatography to homogeneity level. The apparent molecular mass was estimated by SDS-PAGE to be 49.5 kDa. The active enzyme showed a clear zone on Native-PAGE when stained with 2, 3, 5-triphenyltetrazolium chloride. The optimum temperature and pH for D-glucose to D-fructose isomerization were 98 °C and 7.0, respectively. Xylose isomerase retains 85% of its activity at 50 °C (t1/2 1732 min) for 4 h and 32.5% at 90 °C (t1/2 58 min) for 2 h. It retains 90-95% of its activity at pH 6.5-7.5 for 30 min. The enzyme was highly activated (350%) with the addition of 0.5 mM Co(2+) and to a lesser extent about 180 and 80% with the addition of 5 and 10 mM Mn(2+) and Mg(2+) , respectively but it was inhibited (54-90%) in the presence of 0.5-10 mM Ca(2+) with respect to apo-enzyme. D-glucose isomerization product was also analyzed by Thin Layer Chromatography (Rf 0.65). The enzyme was very stable at neutral pH and sufficiently high temperature and required only a trace amount of Co(2+) for its optimal activity and stability. Overall, 52.2% conversion of D-glucose to D-fructose was achieved by TnapXI. Thus, it has a great potential for industrial applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Uranium endowments in phosphate rock

    Energy Technology Data Exchange (ETDEWEB)

    Ulrich, Andrea E., E-mail: andrea.ulrich@env.ethz.ch [Institute for Environmental Decisions (IED), Natural and Social Science Interface, ETH Zurich Universitässtrasse 22, 8092 Zurich (Switzerland); Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland); Schnug, Ewald, E-mail: e.schnug@tu-braunschweig.de [Department of Life Sciences, Technical University of Braunschweig, Pockelsstraße 14, D-38106 Braunschweig (Germany); Prasser, Horst-Michael, E-mail: prasser@lke.mavt.ethz.ch [Institute of Energy Technology, Laboratory of Nuclear Energy Systems, ETH Zurich, Sonneggstrasse 3, 8092 Zurich (Switzerland); Frossard, Emmanuel, E-mail: emmanuel.frossard@usys.ethz.ch [Institute for Agricultural Sciences, Plant Nutrition, ETH Zurich, Eschikon 33, 8315 Lindau (Switzerland)

    2014-04-01

    This study seeks to identify and specify the components that make up the prospects of U recovery from phosphate rock. A systems approach is taken. The assessment includes i) reviewing past recovery experience and lessons learned; ii) identifying factors that determine recovery; and iii) establishing a contemporary evaluation of U endowments in phosphate rock reserves, as well as the available and recoverable amounts from phosphate rock and phosphoric acid production. We find that in the past, recovery did not fulfill its potential and that the breakup of the Soviet Union worsened then-favorable recovery market conditions in the 1990s. We find that an estimated 5.7 million tU may be recoverable from phosphate rock reserves. In 2010, the recoverable tU from phosphate rock and phosphoric acid production may have been 15,000 tU and 11,000 tU, respectively. This could have filled the world U supply-demand gap for nuclear energy production. The results suggest that the U.S., Morocco, Tunisia, and Russia would be particularly well-suited to recover U, taking infrastructural considerations into account. We demonstrate future research needs, as well as sustainability orientations. We conclude that in order to promote investment and production, it seems necessary to establish long-term contracts at guaranteed prices, ensuring profitability for phosphoric acid producers. - Highlights: • We identify components that underlie the recovery of uranium from phosphate rock. • We estimate that 11,000 tU may have been recoverable from phosphoric acid in 2010. • Recovery is a resource conservation and environmental pollution control strategy. • To ensure investment in recovery technology, profitability needs to be secured.

  16. Changes in cod muscle proteins during frozen storage revealed by proteome analysis and multivariate data analysis

    DEFF Research Database (Denmark)

    Kjærsgård, Inger Vibeke Holst; Nørrelykke, M.R.; Jessen, Flemming

    2006-01-01

    Multivariate data analysis has been combined with proteomics to enhance the recovery of information from 2-DE of cod muscle proteins during different storage conditions. Proteins were extracted according to 11 different storage conditions and samples were resolved by 2-DE. Data generated by 2-DE...... was subjected to principal component analysis (PCA) and discriminant partial least squares regression (DPLSR). Applying PCA to 2-DE data revealed the samples to form groups according to frozen storage time, whereas differences due to different storage temperatures or chilled storage in modified atmosphere...... light chain 1, 2 and 3, triose-phosphate isomerase, glyceraldehyde-3-phosphate dehydrogenase, aldolase A and two ?-actin fragments, and a nuclease diphosphate kinase B fragment to change in concentration, during frozen storage. Application of proteomics, multivariate data analysis and MS/MS to analyse...

  17. Peptidyl Prolyl Isomerase PIN1 Directly Binds to and Stabilizes Hypoxia-Inducible Factor-1α.

    Directory of Open Access Journals (Sweden)

    Hyeong-Jun Han

    Full Text Available Peptidyl prolyl isomerase (PIN1 regulates the functional activity of a subset of phosphoproteins through binding to phosphorylated Ser/Thr-Pro motifs and subsequently isomerization of the phosphorylated bonds. Interestingly, PIN1 is overexpressed in many types of malignancies including breast, prostate, lung and colon cancers. However, its oncogenic functions have not been fully elucidated. Here, we report that PIN1 directly interacts with hypoxia-inducible factor (HIF-1α in human colon cancer (HCT116 cells. PIN1 binding to HIF-1α occurred in a phosphorylation-dependent manner. We also found that PIN1 interacted with HIF-1α at both exogenous and endogenous levels. Notably, PIN1 binding stabilized the HIF-1α protein, given that their levels were significantly increased under hypoxic conditions. The stabilization of HIF-1α resulted in increased transcriptional activity, consequently upregulating expression of vascular endothelial growth factor, a major contributor to angiogenesis. Silencing of PIN1 or pharmacologic inhibition of its activity abrogated the angiogenesis. By utilizing a bioluminescence imaging technique, we were able to demonstrate that PIN1 inhibition dramatically reduced the tumor volume in a subcutaneous mouse xenograft model and angiogenesis as well as hypoxia-induced transcriptional activity of HIF-1α. These results suggest that PIN1 interacting with HIF-1α is a potential cancer chemopreventive and therapeutic target.

  18. Crystal structure and enzymatic properties of chalcone isomerase from the Antarctic vascular plant Deschampsia antarctica Desv.

    Directory of Open Access Journals (Sweden)

    Sun-Ha Park

    Full Text Available Chalcone isomerase (CHI is an important enzyme for flavonoid biosynthesis that catalyzes the intramolecular cyclization of chalcones into (S-flavanones. CHIs have been classified into two types based on their substrate specificity. Type I CHIs use naringenin chalcone as a substrate and are found in most of plants besides legumes, whereas type II CHIs in leguminous plants can also utilize isoliquiritigenin. In this study, we found that the CHI from the Antarctic plant Deschampsia antarctica (DaCHI1 is of type I based on sequence homology but can use type II CHI substrates. To clarify the enzymatic mechanism of DaCHI1 at the molecular level, the crystal structures of unliganded DaCHI1 and isoliquiritigenin-bound DaCHI1 were determined at 2.7 and 2.1 Å resolutions, respectively. The structures revealed that isoliquiritigenin binds to the active site of DaCHI1 and induces conformational changes. Additionally, the activity assay showed that while DaCHI1 exhibits substrate preference for naringenin chalcone, it can also utilize isoliquiritigenin although the catalytic activity was relatively low. Based on these results, we propose that DaCHI1 uses various substrates to produce antioxidant flavonoids as an adaptation to oxidative stresses associated with harsh environmental conditions.

  19. Mapping Soluble Guanylyl Cyclase and Protein Disulfide Isomerase Regions of Interaction.

    Directory of Open Access Journals (Sweden)

    Erin J Heckler

    Full Text Available Soluble guanylyl cyclase (sGC is a heterodimeric nitric oxide (NO receptor that produces cyclic GMP. This signaling mechanism is a key component in the cardiovascular system. NO binds to heme in the β subunit and stimulates the catalytic conversion of GTP to cGMP several hundred fold. Several endogenous factors have been identified that modulate sGC function in vitro and in vivo. In previous work, we determined that protein disulfide isomerase (PDI interacts with sGC in a redox-dependent manner in vitro and that PDI inhibited NO-stimulated activity in cells. To our knowledge, this was the first report of a physical interaction between sGC and a thiol-redox protein. To characterize this interaction between sGC and PDI, we first identified peptide linkages between sGC and PDI, using a lysine cross-linking reagent and recently developed mass spectrometry analysis. Together with Flag-immunoprecipitation using sGC domain deletions, wild-type (WT and mutated PDI, regions of sGC involved in this interaction were identified. The observed data were further explored with computational modeling to gain insight into the interaction mechanism between sGC and oxidized PDI. Our results indicate that PDI interacts preferentially with the catalytic domain of sGC, thus providing a mechanism for PDI inhibition of sGC. A model in which PDI interacts with either the α or the β catalytic domain is proposed.

  20. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2017-12-01

    Full Text Available l-Arabinose isomerase (EC 5.3.1.4 (l-AI from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N-His-l-AI and C-His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C-His-l-AI was preferentially hexameric in solution, whereas N-His-l-AI was mainly monomeric. The specific activity of the N-His-l-AI at acidic pH was higher than that of C-His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg−1, respectively. However, C-His-l-AI was more active and stable at alkaline pH than N-His-l-AI. N-His-l-AI follows a Michaelis-Menten kinetic, whereas C-His-l-AI fitted to a sigmoidal saturation curve.

  1. Engineering the l-Arabinose Isomerase from Enterococcus Faecium for d-Tagatose Synthesis.

    Science.gov (United States)

    de Sousa, Marylane; Manzo, Ricardo M; García, José L; Mammarella, Enrique J; Gonçalves, Luciana R B; Pessela, Benevides C

    2017-12-06

    l-Arabinose isomerase (EC 5.3.1.4) (l-AI) from Enterococcus faecium DBFIQ E36 was overproduced in Escherichia coli by designing a codon-optimized synthetic araA gene. Using this optimized gene, two N- and C-terminal His-tagged-l-AI proteins were produced. The cloning of the two chimeric genes into regulated expression vectors resulted in the production of high amounts of recombinant N -His-l-AI and C -His-l-AI in soluble and active forms. Both His-tagged enzymes were purified in a single step through metal-affinity chromatography and showed different kinetic and structural characteristics. Analytical ultracentrifugation revealed that C -His-l-AI was preferentially hexameric in solution, whereas N -His-l-AI was mainly monomeric. The specific activity of the N -His-l-AI at acidic pH was higher than that of C -His-l-AI and showed a maximum bioconversion yield of 26% at 50 °C for d-tagatose biosynthesis, with Km and Vmax parameters of 252 mM and 0.092 U mg -1 , respectively. However, C -His-l-AI was more active and stable at alkaline pH than N -His-l-AI. N -His-l-AI follows a Michaelis-Menten kinetic, whereas C -His-l-AI fitted to a sigmoidal saturation curve.

  2. Species-Specific Inactivation of Triosephosphate Isomerase from Trypanosoma brucei: Kinetic and Molecular Dynamics Studies

    Directory of Open Access Journals (Sweden)

    Alejandra Vázquez-Raygoza

    2017-11-01

    Full Text Available Human African Trypanosomiasis (HAT, a disease that provokes 2184 new cases a year in Sub-Saharan Africa, is caused by Trypanosoma brucei. Current treatments are limited, highly toxic, and parasite strains resistant to them are emerging. Therefore, there is an urgency to find new drugs against HAT. In this context, T. brucei depends on glycolysis as the unique source for ATP supply; therefore, the enzyme triosephosphate isomerase (TIM is an attractive target for drug design. In the present work, three new benzimidazole derivatives were found as TbTIM inactivators (compounds 1, 2 and 3 with an I50 value of 84, 82 and 73 µM, respectively. Kinetic analyses indicated that the three molecules were selective when tested against human TIM (HsTIM activity. Additionally, to study their binding mode in TbTIM, we performed a 100 ns molecular dynamics simulation of TbTIM-inactivator complexes. Simulations showed that the binding of compounds disturbs the structure of the protein, affecting the conformations of important domains such as loop 6 and loop 8. In addition, the physicochemical and drug-like parameters showed by the three compounds suggest a good oral absorption. In conclusion, these molecules will serve as a guide to design more potent inactivators that could be used to obtain new drugs against HAT.

  3. The unfolded protein response and the role of protein disulphide isomerase in neurodegeneration.

    Directory of Open Access Journals (Sweden)

    Emma ePerri

    2016-01-01

    Full Text Available The maintenance and regulation of proteostasis is a critical function for post-mitotic neurons and dysregulation of proteostasis is increasingly implicated in neurodegenerative diseases. Despite having different clinical manifestations, these disorders share similar pathology; an accumulation of misfolded proteins in neurons and subsequent disruption to cellular proteostasis. The endoplasmic reticulum (ER is an important component of proteostasis, and when the accumulation of misfolded proteins occurs within the ER, this disturbs ER homeostasis, giving rise to ER stress. This triggers the unfolded protein response (UPR, distinct signalling pathways that whilst initially protective, are pro-apoptotic if ER stress is prolonged. ER stress is increasingly implicated in neurodegenerative diseases, and emerging evidence highlights the complexity of the UPR in these disorders, with both protective and detrimental components being described. Protein Disulphide Isomerase (PDI is an ER chaperone induced during ER stress that is responsible for the formation of disulphide bonds in proteins. Whilst initially considered to be protective, recent studies have revealed unconventional roles for PDI in neurodegenerative diseases, distinct from its normal function in the UPR and the ER, although these mechanisms remain poorly defined. However specific aspects of PDI function may offer the potential to be exploited therapeutically in the future. This review will focus on the evidence linking ER stress and the UPR to neurodegenerative diseases, with particular emphasis on the emerging functions ascribed to PDI in these conditions.

  4. Functional Role of the Disulfide Isomerase ERp57 in Axonal Regeneration.

    Directory of Open Access Journals (Sweden)

    Valentina Castillo

    Full Text Available ERp57 (also known as grp58 and PDIA3 is a protein disulfide isomerase that catalyzes disulfide bonds formation of glycoproteins as part of the calnexin and calreticulin cycle. ERp57 is markedly upregulated in most common neurodegenerative diseases downstream of the endoplasmic reticulum (ER stress response. Despite accumulating correlative evidence supporting a neuroprotective role of ERp57, the contribution of this foldase to the physiology of the nervous system remains unknown. Here we developed a transgenic mouse model that overexpresses ERp57 in the nervous system under the control of the prion promoter. We analyzed the susceptibility of ERp57 transgenic mice to undergo neurodegeneration. Unexpectedly, ERp57 overexpression did not affect dopaminergic neuron loss and striatal denervation after injection of a Parkinson's disease-inducing neurotoxin. In sharp contrast, ERp57 transgenic animals presented enhanced locomotor recovery after mechanical injury to the sciatic nerve. These protective effects were associated with enhanced myelin removal, macrophage infiltration and axonal regeneration. Our results suggest that ERp57 specifically contributes to peripheral nerve regeneration, whereas its activity is dispensable for the survival of a specific neuronal population of the central nervous system. These results demonstrate for the first time a functional role of a component of the ER proteostasis network in peripheral nerve regeneration.

  5. The disulfide isomerase ERp57 mediates platelet aggregation, hemostasis, and thrombosis

    Science.gov (United States)

    Wu, Yi; Ahmad, Syed S.; Zhou, Junsong; Wang, Lu; Cully, Matthew P.

    2012-01-01

    A close homologue to protein disulfide isomerase (PDI) called ERp57 forms disulfide bonds in glycoproteins in the endoplasmic reticulum and is expressed on the platelet surface. We generated 2 rabbit Abs to ERp57. One Ab strongly inhibited ERp57 in a functional assay and strongly inhibited platelet aggregation. There was minimal cross-reactivity of this Ab with PDI by Western blot or in the functional assay. This Ab substantially inhibited activation of the αIIbβ3 fibrinogen receptor and P-selectin expression. Furthermore, adding ERp57 to platelets potentiated aggregation. In contrast, adding a catalytically inactive ERp57 inhibited platelet aggregation. When infused into mice the inactive ERp57 prolonged the tail bleeding times. We generated 2 IgG2a mAbs that reacted with ERp57 by immunoblot. One of these Abs inhibited both ERp57 activity and platelet aggregation. The other Ab did not inhibit ERp57 activity or platelet aggregation. The inhibitory Ab inhibited activation of αIIbβ3 and P-selectin expression, prolonged tail bleeding times, and inhibited FeCl3-induced thrombosis in mice. Finally, we found that a commonly used mAb to PDI also inhibited ERp57 activity. We conclude that a glycoprotein-specific member of the PDI family, ERp57, is required for platelet aggregation, hemostasis, and thrombosis. PMID:22207737

  6. Comparison between serum levels of carcinoembryonic antigen, sialic acid and phosphohexose isomerase in lung cancer

    International Nuclear Information System (INIS)

    Patel, P.S.; Raval, G.N.; Rawal, R.M.; Balar, D.B.; Patel, G.H.; Shah, P.M.; Patel, D.D.

    1995-01-01

    The identification and application of quantifiable tumor markers as adjuncts to clinical care is a story of both success and failure. The present study compared serum levels of carcinoembryogenic antigen (CEA) with total sialic acid/total protein (TSA/TP) ration and phosphohexose isomerase (PHI) in 192 untreated lung cancer patients as well as 80 age and sex matched controls (44 non-smokers). CEA values were significantly raised (p < 0.001) in smokers as compared to the non-smokers; whereas, TSA/TP and PHI values were comparable between the groups of the groups of the controls. All the bio-markers were significantly elevated (p < 0.00.1) in untreated lung cancer patients as compared to the controls. Receiver operating characteristic curve analysis revealed higher sensitivities of TSA/TP and PHI as compared to CEA at different specificity levels between 60% and 95%. Mean values of CEA, TSA/TP and PHI were higher in non-responders compared to the responders. The results indicate that TSA/TP and PHI are superior tumor markers than CEA for lung cancer patients. (author)

  7. Functional characterization of the sucrose isomerase responsible for trehalulose production in plant-associated Pectobacterium species.

    Science.gov (United States)

    Nam, Cheon-Hyeon; Seo, Dong-Ho; Jung, Jong-Hyun; Koh, Young-Jin; Jung, Jae-Sung; Heu, Sunggi; Oh, Chang-Sik; Park, Cheon-Seok

    2014-02-05

    Fifty-three plant-associated microorganisms were investigated for their ability to convert sucrose to its isomers. These microorganisms included one Dickeya zeae isolate and 7 Enterobacter, 3 Pantoea, and 43 Pectobacterium species. Eleven out of the 53 strains (21%) showed the ability to transform sucrose to isomaltulose and trehalulose. Among those, Pectobacterium carotovorum KKH 3-1 showed the highest bioconversion yield (97.4%) from sucrose to its isomers. In this strain, the addition of up to 14% sucrose in the medium enhanced sucrose isomerase (SIase) production. The SIase activity at 14% sucrose (47.6 U/mg dcw) was about 3.6-fold higher than that of the negative control (13.3 U/mg dcw at 0% sucrose). The gene encoding SIase, which is comprised a 1776 bp open reading frame (ORF) encoding 591 amino acids, was cloned from P. carotovorum KKH 3-1 and expressed in Escherichia coli. The recombinant SIase (PCSI) was shown to have optimum activity at pH 6.0 and 40 °C. The reaction temperature significantly affected the ratio of sucrose isomers produced by PCSI. The amount of trehalulose increased from 47.5% to 79.1% as temperature was lowered from 50 °C to 30 °C, implying that SIase activity can be controlled by reaction temperature. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Identification of triosephosphate isomerase as a novel allergen in Octopus fangsiao.

    Science.gov (United States)

    Yang, Yang; Chen, Zhong-Wei; Hurlburt, Barry K; Li, Gui-Ling; Zhang, Yong-Xia; Fei, Dan-Xia; Shen, Hai-Wang; Cao, Min-Jie; Liu, Guang-Ming

    2017-05-01

    Octopus is an important mollusk in human dietary for its nutritional value, however it also causes allergic reactions in humans. Major allergens from octopus have been identified, while the knowledge of novel allergens remains poor. In the present study, a novel allergen with molecular weight of 28kDa protein was purified from octopus (Octopus fangsiao) and identified as triosephosphate isomerase (TIM) by mass spectrometry. TIM aggregated beyond 45°C, and its IgE-binding activity was affected under extreme pH conditions due to the altered secondary structure. In simulated gastric fluid digestion, TIM can be degraded into small fragments, while retaining over 80% of the IgE-binding activity. The full-length cDNA of O. fangsiao TIM (1140bp) was cloned, which encodes 247 amino acid residues, and the entire recombinant TIM was successfully expressed in Escherichia coli BL21, which showed similar immunoreactivity to the native TIM. Different intensity of cross-reactivity among TIM from related species revealed the complexity of its epitopes. Eight linear epitopes of TIM were predicted following bioinformatic analysis. Furthermore, a conformational epitope (A 71 G 74 S 69 D 75 T 73 F 72 V 67 ) was confirmed by the phage display technology. The results revealed the physicochemical and immunological characteristics of TIM, which is significant in the development of hyposensitivity food and allergy diagnosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Protein disulfide-isomerase interacts with a substrate protein at all stages along its folding pathway.

    Directory of Open Access Journals (Sweden)

    Alistair G Irvine

    Full Text Available In contrast to molecular chaperones that couple protein folding to ATP hydrolysis, protein disulfide-isomerase (PDI catalyzes protein folding coupled to formation of disulfide bonds (oxidative folding. However, we do not know how PDI distinguishes folded, partly-folded and unfolded protein substrates. As a model intermediate in an oxidative folding pathway, we prepared a two-disulfide mutant of basic pancreatic trypsin inhibitor (BPTI and showed by NMR that it is partly-folded and highly dynamic. NMR studies show that it binds to PDI at the same site that binds peptide ligands, with rapid binding and dissociation kinetics; surface plasmon resonance shows its interaction with PDI has a Kd of ca. 10(-5 M. For comparison, we characterized the interactions of PDI with native BPTI and fully-unfolded BPTI. Interestingly, PDI does bind native BPTI, but binding is quantitatively weaker than with partly-folded and unfolded BPTI. Hence PDI recognizes and binds substrates via permanently or transiently unfolded regions. This is the first study of PDI's interaction with a partly-folded protein, and the first to analyze this folding catalyst's changing interactions with substrates along an oxidative folding pathway. We have identified key features that make PDI an effective catalyst of oxidative protein folding - differential affinity, rapid ligand exchange and conformational flexibility.

  10. Protective role for the disulfide isomerase PDIA3 in methamphetamine neurotoxicity.

    Directory of Open Access Journals (Sweden)

    Gurudutt Pendyala

    Full Text Available Methamphetamine abuse continues to be a worldwide problem, damaging the individual user as well as society. Only minimal information exists on molecular changes in the brain that result from methamphetamine administered in patterns typical of human abusers. In order to investigate such changes, we examined the effect of methamphetamine on the transcriptional profile in brains of monkeys. Gene expression profiling of caudate and hippocampus identified protein disulfide isomerase family member A3 (PDIA3 to be significantly up-regulated in the animals treated with methamphetamine as compared to saline treated control monkeys. Methamphetamine treatment of mice also increased striatal PDIA3 expression. Treatment of primary striatal neurons with methamphetamine revealed an up-regulation of PDIA3, showing a direct effect of methamphetamine on neurons to increase PDIA3. In vitro studies using a neuroblastoma cell line demonstrated that PDIA3 expression protects against methamphetamine-induced cell toxicity and methamphetamine-induced intracellular reactive oxygen species production, revealing a neuroprotective role for PDIA3. The current study implicates PDIA3 to be an important cellular neuroprotective mechanism against a toxic drug, and as a potential target for therapeutic investigations.

  11. Protein disulfide isomerase ameliorates β-cell dysfunction in pancreatic islets overexpressing human islet amyloid polypeptide.

    Science.gov (United States)

    Montane, Joel; de Pablo, Sara; Obach, Mercè; Cadavez, Lisa; Castaño, Carlos; Alcarraz-Vizán, Gema; Visa, Montserrat; Rodríguez-Comas, Júlia; Parrizas, Marcelina; Servitja, Joan Marc; Novials, Anna

    2016-01-15

    Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits in islets of type 2 diabetic patients. hIAPP misfolding and aggregation is one of the factors that may lead to β-cell dysfunction and death. Endogenous chaperones are described to be important for the folding and functioning of proteins. Here, we examine the effect of the endoplasmic reticulum chaperone protein disulfide isomerase (PDI) on β-cell dysfunction. Among other chaperones, PDI was found to interact with hIAPP in human islet lysates. Furthermore, intrinsically recovered PDI levels were able to restore the effect of high glucose- and palmitate-induced β-cell dysfunction by increasing 3.9-fold the glucose-stimulated insulin secretion levels and restoring insulin content up to basal control values. Additionally, PDI transduction decreased induced apoptosis by glucolipotoxic conditions. This approach could reveal a new therapeutic target and aid in the development of strategies to improve β-cell dysfunction in type 2 diabetic patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Heterologous expression and biochemical characterization of glucose isomerase from Thermobifida fusca.

    Science.gov (United States)

    Deng, Hui; Chen, Sheng; Wu, Dan; Chen, Jian; Wu, Jing

    2014-06-01

    Glucose isomerase (GIase) catalyzes the isomerization of D-glucose to D-fructose. The GIase from Thermobifida fusca WSH03-11 was expressed in Escherichia coli BL21(DE3), and the purified enzyme took the form of a tetramer in solution and displayed a pI value of 5.05. The temperature optimum of GIase was 80 °C and its half life was about 2 h at 80 °C or 15 h at 70 °C. The pH optimum of GIase was 10 and the enzyme retained 95 % activity over the pH range of 5-10 after incubating at 4 °C for 24 h. Kinetic studies showed that the K m and K cat values of the enzyme are 197 mM and 1,688 min(-1), respectively. The maximum conversion yield of glucose (45 %, w/v) to fructose of the enzyme was 53 % at pH 7.5 and 70 °C. The present study provides the basis for the industrial application of recombinant T. fusca GIase in the production of high fructose syrup.

  13. Functional redundancy of mitochondrial enoyl-CoA isomerases in the oxidation of unsaturated fatty acids.

    Science.gov (United States)

    van Weeghel, Michel; te Brinke, Heleen; van Lenthe, Henk; Kulik, Wim; Minkler, Paul E; Stoll, Maria S K; Sass, Jörn Oliver; Janssen, Uwe; Stoffel, Wilhelm; Schwab, K Otfried; Wanders, Ronald J A; Hoppel, Charles L; Houten, Sander M

    2012-10-01

    Mitochondrial enoyl-CoA isomerase (ECI1) is an auxiliary enzyme involved in unsaturated fatty acid oxidation. In contrast to most of the other enzymes involved in fatty acid oxidation, a deficiency of ECI1 has yet to be identified in humans. We used wild-type (WT) and Eci1-deficient knockout (KO) mice to explore a potential presentation of human ECI1 deficiency. Upon food withdrawal, Eci1-deficient mice displayed normal blood β-hydroxybutyrate levels (WT 1.09 mM vs. KO 1.10 mM), a trend to lower blood glucose levels (WT 4.58 mM vs. KO 3.87 mM, P=0.09) and elevated blood levels of unsaturated acylcarnitines, in particular C12:1 acylcarnitine (WT 0.03 μM vs. KO 0.09 μM, Pisomerase (Eci2) in mitochondria. Knockdown of Eci2 in Eci1-deficient fibroblasts caused a more pronounced accumulation of C12:1 acylcarnitine on incubation with unsaturated fatty acids (12-fold, P<0.05). We conclude that Eci2 compensates for Eci1 deficiency explaining the mild phenotype of Eci1-deficient mice. Hypoglycemia and accumulation of C12:1 acylcarnitine might be diagnostic markers to identify ECI1 deficiency in humans.

  14. Protein disulfide isomerases: Impact of thapsigargin treatment on their expression in melanoma cell lines.

    Science.gov (United States)

    Silva, Zélia; Veríssimo, Teresa; Videira, Paula A; Novo, Carlos

    2015-08-01

    Anti-cancer treatments usually elevate the content of unfolded or misfolded proteins in the endoplasmic reticulum (ER). Here we aimed to get insights into the relation between sensitivity of melanoma cell lines to the ER stress inducer thapsigargin (THG) and the genetic expression of protein disulfide isomerase family members (PDIs). The expression of PDIs was analysed by flow cytometry and real-time PCR. The results showed that SK-MEL-30, the less THG sensitive cell line, displays higher basal PDIs' expression levels and the sensitivity is increased by the PDIs inhibitor bacitracin. While SK-MEL-30 PDIs' expression is not THG dose-dependent, an increase in glucose related protein 78 (GRP78), PDIA5, PDIA6, and thioredoxin-related-transmembrane proteins' (TMX3 and TMX4) expression, in response to higher drug concentrations, was observed in MNT-1. The differences in PDIs' gene expression in MNT-1 suggest a different response to ER stress compared to the other cell lines and highlight the importance of understanding the diversity among cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Looking for combination of benznidazole and Trypanosoma cruzi-triosephosphate isomerase inhibitors for Chagas disease treatment

    Directory of Open Access Journals (Sweden)

    Elena Aguilera

    Full Text Available BACKGROUND The current chemotherapy for Chagas disease is based on monopharmacology with low efficacy and drug tolerance. Polypharmacology is one of the strategies to overcome these limitations. OBJECTIVES Study the anti-Trypanosoma cruzi activity of associations of benznidazole (Bnz with three new synthetic T. cruzi-triosephosphate isomerase inhibitors, 2, 3, and 4, in order to potentiate their actions. METHODS The in vitro effect of the drug combinations were determined constructing the corresponding isobolograms. In vivo activities were assessed using an acute murine model of Chagas disease evaluating parasitaemias, mortalities and IgG anti-T. cruzi antibodies. FINDINGS The effect of Bnz combined with each of these compounds, on the growth of epimastigotes, indicated an additive action or a synergic action, when combining it with 2 or 3, respectively, and an antagonic action when combining it with 4. In vivo studies, for the two chosen combinations, 2 or 3 plus one fifth equivalent of Bnz, showed that Bnz can also potentiate the in vivo therapeutic effects. For both combinations a decrease in the number of trypomastigote and lower levels of anti-T. cruzi IgG-antibodies were detected, as well clear protection against death. MAIN CONCLUSIONS These results suggest the studied combinations could be used in the treatment of Chagas disease.

  16. Mannose supplements induce embryonic lethality and blindness in phosphomannose isomerase hypomorphic mice.

    Science.gov (United States)

    Sharma, Vandana; Nayak, Jonamani; DeRossi, Charles; Charbono, Adriana; Ichikawa, Mie; Ng, Bobby G; Grajales-Esquivel, Erika; Srivastava, Anand; Wang, Ling; He, Ping; Scott, David A; Russell, Joseph; Contreras, Emily; Guess, Cherise M; Krajewski, Stan; Del Rio-Tsonis, Katia; Freeze, Hudson H

    2014-04-01

    Patients with congenital disorder of glycosylation (CDG), type Ib (MPI-CDG or CDG-Ib) have mutations in phosphomannose isomerase (MPI) that impair glycosylation and lead to stunted growth, liver dysfunction, coagulopathy, hypoglycemia, and intestinal abnormalities. Mannose supplements correct hypoglycosylation and most symptoms by providing mannose-6-P (Man-6-P) via hexokinase. We generated viable Mpi hypomorphic mice with residual enzymatic activity comparable to that of patients, but surprisingly, these mice appeared completely normal except for modest (~15%) embryonic lethality. To overcome this lethality, pregnant dams were provided 1-2% mannose in their drinking water. However, mannose further reduced litter size and survival to weaning by 40 and 66%, respectively. Moreover, ~50% of survivors developed eye defects beginning around midgestation. Mannose started at birth also led to eye defects but had no effect when started after eye development was complete. Man-6-P and related metabolites accumulated in the affected adult eye and in developing embryos and placentas. Our results demonstrate that disturbing mannose metabolic flux in mice, especially during embryonic development, induces a highly specific, unanticipated pathological state. It is unknown whether mannose is harmful to human fetuses during gestation; however, mothers who are at risk for having MPI-CDG children and who consume mannose during pregnancy hoping to benefit an affected fetus in utero should be cautious.

  17. Cryptococcal phosphoglucose isomerase is required for virulence factor production, cell wall integrity and stress resistance.

    Science.gov (United States)

    Zhang, Ping; Wei, Dongsheng; Li, Zhongming; Sun, Zhixiong; Pan, Jiao; Zhu, Xudong

    2015-11-01

    Regulation of virulence factor production in the pathogen Cryptococcus neoformans remains to be fully illustrated. We present here a finding that a gene, encoding the glycolysis enzyme phosphoglucose isomerase (Pgi1), is critical for the biosynthesis of melanin and capsule, cell wall integrity and resistance to stress conditions. A leaky mutant of the yeast, LZM19, resulted from an insertion of T-DNA in the PGI1 promoter region, expressed PGI1 at a level only 1.9% of the wild type. LZM19 could synthesize the pigment melanin in the presence of 2% glucose, suggesting a status of LAC1 derepression. Phenotypically, capsule biosynthesis in LZM19 was remarkably reduced. Integrity of the cell wall and plasma membrane of LZM19 were impaired based on its sensitivity to Congo red and SDS. Also, LZM19 exhibited hypersensitivity to osmotic stress generated by 2 M NaCl or 1 M KCl, indicating possible impairment in the HOG signaling pathway. Furthermore, LZM19 failed to utilize mannose and fructose, suggesting a possible involvement of Pgi1 in the breakdown of these two sugars. Our results revealed a crucial role of PGI1 in coordination of the production of virulence factors, cell wall integrity and stress response in C. neoformans. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Phosphorus release from phosphate rock and iron phosphate by low-molecular-weight organic acids.

    Science.gov (United States)

    Xu, Ren-kou; Zhu, Yong-guan; Chittleborough, David

    2004-01-01

    Low-molecular-weight(LMW) organic acids widely exist in soils, particularly in the rhizosphere. A series of batch experiments were carried out to investigate the phosphorus release from rock phosphate and iron phosphate by low-molecular-weight organic acids. Results showed that citric acid had the highest capacity to solubilize P from both rock and iron phosphate. P solubilization from rock phosphate and iron phosphate resulted in net proton consumption. P release from rock phosphate was positively correlated with the pKa values. P release from iron phosphate was positively correlated with Fe-organic acid stability constants except for aromatic acids, but was notcorrelated with pKa. Increase in the concentrations of organic acids enhanced P solubilization from both rock and iron phosphate almost linearly. Addition of phenolic compounds further increased the P release from iron phosphate. Initial solution pH had much more substantial effect on P release from rock phosphate than from iron phosphate.

  19. Phosphate Recognition in Structural Biology

    NARCIS (Netherlands)

    Hirsch, Anna K.H.; Fischer, Felix R.; Diederich, François

    2007-01-01

    Drug-discovery research in the past decade has seen an increased selection of targets with phosphate recognition sites, such as protein kinases and phosphatases, in the past decade. This review attempts, with the help of database-mining tools, to give an overview of the most important principles in

  20. 21 CFR 182.8217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  1. 21 CFR 182.8778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Nutrients § 182.8778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  2. Contribution of Pentose Catabolism to Molecular Hydrogen Formation by Targeted Disruption of Arabinose Isomerase (araA) in the Hyperthermophilic Bacterium Thermotoga maritima

    Science.gov (United States)

    White, Derrick; Singh, Raghuveer; Rudrappa, Deepak; Mateo, Jackie; Kramer, Levi; Freese, Laura

    2016-01-01

    ABSTRACT Thermotoga maritima ferments a broad range of sugars to form acetate, carbon dioxide, traces of lactate, and near theoretic yields of molecular hydrogen (H2). In this organism, the catabolism of pentose sugars such as arabinose depends on the interaction of the pentose phosphate pathway with the Embden-Myerhoff and Entner-Doudoroff pathways. Although the values for H2 yield have been determined using pentose-supplemented complex medium and predicted by metabolic pathway reconstruction, the actual effect of pathway elimination on hydrogen production has not been reported due to the lack of a genetic method for the creation of targeted mutations. Here, a spontaneous and genetically stable pyrE deletion mutant was isolated and used as a recipient to refine transformation methods for its repair by homologous recombination. To verify the occurrence of recombination and to assess the frequency of crossover events flanking the deleted region, a synthetic pyrE allele, encoding synonymous nucleotide substitutions, was used. Targeted inactivation of araA (encoding arabinose isomerase) in the pyrE mutant was accomplished using a divergent, codon-optimized Thermosipho africanus pyrE allele fused to the T. maritima groES promoter as a genetic marker. Mutants lacking araA were unable to catabolize arabinose in a defined medium. The araA mutation was then repaired using targeted recombination. Levels of synthesis of H2 using arabinose-supplemented complex medium by wild-type and araA mutant cell lines were compared. The difference between strains provided a direct measurement of H2 production that was dependent on arabinose consumption. Development of a targeted recombination system for genetic manipulation of T. maritima provides a new strategy to explore H2 formation and life at an extremely high temperature in the bacterial domain. IMPORTANCE We describe here the development of a genetic system for manipulation of Thermotoga maritima. T. maritima is a

  3. Uranium abundance in some sudanese phosphate ores

    International Nuclear Information System (INIS)

    Adam, A.A.; Eltayeb, M.A.H.

    2009-01-01

    This work was carried out mainly to analysis of some Sudanese phosphate ores, for their uranium abundance and total phosphorus content measured as P 2 O 5 %. For this purpose, 30 samples of two types of phosphate ore from Eastern Nuba Mountains, in Sudan namely, Kurun and Uro areas were examined. In addition, the relationship between uranium and major, and trace elements were obtained, also, the natural radioactivity of the phosphate samples was measured, in order to characterize and differentiate between the two types of phosphate ores. The uranium abundance in Uro phosphate with 20.3% P 2 O 5 is five time higher than in Kurun phosphate with 26.7% P 2 O 5 . The average of uranium content was found to be 56.6 and 310 mg/kg for Kurun and Uro phosphate ore, respectively. The main elements in Kurun and Uro phosphate ore are silicon, aluminum, and phosphorus, while the most abundant trace elements in these two ores are titanium, strontium and barium. Pearson correlation coefficient revealed that uranium in Kurun phosphate shows strong positive correlation with P 2 O 5 , and its distribution is essentially controlled by the variations of P2O5 concentration, whereas uranium in Uro phosphate shows strong positive correlation with strontium, and its distribution is controlled by the variations of Sr concentration. Uranium behaves in different ways in Kurun phosphate and in Uro phosphate. Uro phosphate shows higher concentrations of all the estimated radionuclides than Kurun phosphate. According to the obtained results, it can be concluded that Uro phosphate is consider as secondary uranium source, and is more suitable for uranium recovery, because it has high uranium abundance and low P 2 O 5 %, than Kurun phosphate. (authors) [es

  4. 21 CFR 184.1301 - Ferric phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Ferric phosphate. 184.1301 Section 184.1301 Food... Specific Substances Affirmed as GRAS § 184.1301 Ferric phosphate. (a) Ferric phosphate (ferric orthophosphate, iron (III) phosphate, FePO4·xH2O, CAS Reg. No. 10045-86-0) is an odorless, yellowish-white to...

  5. Control analysis of the role of triosephosphate isomerase in glucose metabolism in Lactococcus lactis

    DEFF Research Database (Denmark)

    Solem, Christian; Købmann, Brian Jensen; Jensen, Peter Ruhdal

    2008-01-01

    metabolites glucose-6-phosphate, fructose-1,6-bisphosphate and DHAP in the IL1403 derivatives were essentially unchanged for TPI activities from 26% to 225%. At a TPI activity of 3%, the level of DHAP increased four times. The finding that an increased level of DHAP coincides with an increase in formate...

  6. Methods for Removing of Phosphates from Wastewater

    OpenAIRE

    Ruzhitskaya Olga; Gogina Elena

    2017-01-01

    The paper offers update information on wastewater removal from phosphates. The writers describe the most commonly used efficient methods to remove phosphates from wastewater based on principles of biology, chemistry, physical chemistry and biological chemistry. The paper presents the results of research on phosphate-removing wastewater treatment methods using iron-bearing reinforced charge material.

  7. Occurrence and functioning of phosphate solubilizing ...

    African Journals Online (AJOL)

    Occurrence and functioning of phosphate solubilizing microorganisms from oil palm tree ( Elaeis guineensis ) rhizosphere in Cameroon. ... While the use of soluble mineral phosphate fertilizers is the obvious best means to combat phosphate ... in order to improve agricultural production, using low inputs technology. Isolates ...

  8. 21 CFR 582.1141 - Ammonium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ammonium phosphate. 582.1141 Section 582.1141 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1141 Ammonium phosphate. (a) Product. Ammonium phosphate (mono- and dibasic). (b) Conditions...

  9. 21 CFR 582.6285 - Dipotassium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dipotassium phosphate. 582.6285 Section 582.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  10. 21 CFR 582.6290 - Disodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Disodium phosphate. 582.6290 Section 582.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Disodium phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally...

  11. 40 CFR 721.5995 - Polyalkyl phosphate.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Polyalkyl phosphate. 721.5995 Section... Substances § 721.5995 Polyalkyl phosphate. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a polyalkyl phosphate (PMN P-95-1772) is...

  12. 21 CFR 582.5217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.5217 Section 582.5217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  13. 21 CFR 182.6285 - Dipotassium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Dipotassium phosphate. 182.6285 Section 182.6285 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD... Dipotassium phosphate. (a) Product. Dipotassium phosphate. (b) Conditions of use. This substance is generally...

  14. 21 CFR 582.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Calcium phosphate. 582.1217 Section 582.1217 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b...

  15. 21 CFR 582.5434 - Magnesium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Magnesium phosphate. 582.5434 Section 582.5434 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5434 Magnesium phosphate. (a) Product. Magnesium phosphate (di- and tribasic). (b...

  16. 21 CFR 582.5778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.5778 Section 582.5778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  17. 21 CFR 582.5301 - Ferric phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ferric phosphate. 582.5301 Section 582.5301 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Supplements 1 § 582.5301 Ferric phosphate. (a) Product. Ferric phosphate. (b) Conditions of use. This...

  18. 21 CFR 582.1778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.1778 Section 582.1778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Additives § 582.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b...

  19. 21 CFR 182.6290 - Disodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Disodium phosphate. 182.6290 Section 182.6290 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Disodium phosphate. (b) Conditions of use. This substance is generally recognized as...

  20. 21 CFR 582.6778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Sodium phosphate. 582.6778 Section 582.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This...

  1. 21 CFR 182.6778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Sodium phosphate. 182.6778 Section 182.6778 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR... phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance...

  2. Mineral resource of the month: Phosphate rock

    Science.gov (United States)

    Jasinski, Stephen M.

    2013-01-01

    As a mineral resource, “phosphate rock” is defined as unprocessed ore and processed concentrates that contain some form of apatite, a group of calcium phosphate minerals that is the primary source for phosphorus in phosphate fertilizers, which are vital to agriculture.

  3. Biodiversity of the phosphate solubilizing microorganisms (PSMs ...

    African Journals Online (AJOL)

    The plant rhizosphere microorganisms having the phosphate solubilizing capacity can convert the insoluble soil organic and inorganic phosphates into a soluble form and make the phosphorus (P) available to the plant. With the objective of evaluating the phosphate solubilizing microorganism populations under the rice ...

  4. Phosphate solubilization and multiple plant growth promoting ...

    African Journals Online (AJOL)

    mulissa

    2016-08-31

    Aug 31, 2016 ... 3Department of Biology, College of Natural and Computational Sciences, Wollega University, Ethiopia. 4Current ... rock phosphate and bone meal. Screening ...... TCP and rock phosphate solubilization efficiency of PSB isolates from chickpea rhizosphere. Isolate. Ca3(PO4)2. Rock phosphate. Bone meal.

  5. Cell surface protein disulfide isomerase regulates natriuretic peptide generation of cyclic guanosine monophosphate.

    Directory of Open Access Journals (Sweden)

    Shuchong Pan

    Full Text Available The family of natriuretic peptides (NPs, including atrial natriuretic peptide (ANP, B-type natriuretic peptide (BNP, and C-type natriuretic peptide (CNP, exert important and diverse actions for cardiovascular and renal homeostasis. The autocrine and paracrine functions of the NPs are primarily mediated through the cellular membrane bound guanylyl cyclase-linked receptors GC-A (NPR-A and GC-B (NPR-B. As the ligands and receptors each contain disulfide bonds, a regulatory role for the cell surface protein disulfide isomerase (PDI was investigated.We utilized complementary in vitro and in vivo models to determine the potential role of PDI in regulating the ability of the NPs to generate its second messenger, cyclic guanosine monophosphate.Inhibition of PDI attenuated the ability of ANP, BNP and CNP to generate cGMP in human mesangial cells (HMCs, human umbilical vein endothelial cells (HUVECs, and human aortic smooth muscle cells (HASMCs, each of which were shown to express PDI. In LLC-PK1 cells, where PDI expression was undetectable by immunoblotting, PDI inhibition had a minimal effect on cGMP generation. Addition of PDI to cultured LLC-PK1 cells increased intracellular cGMP generation mediated by ANP. Inhibition of PDI in vivo attenuated NP-mediated generation of cGMP by ANP. Surface Plasmon Resonance demonstrated modest and differential binding of the natriuretic peptides with immobilized PDI in a cell free system. However, PDI was shown to co-localize on the surface of cells with GC-A and GC-B by co-immunoprecpitation and immunohistochemistry.These data demonstrate for the first time that cell surface PDI expression and function regulate the capacity of natriuretic peptides to generate cGMP through interaction with their receptors.

  6. Non-Catalytic Participation of the Pin1 Peptidyl-Prolyl Isomerase Domain in Target Binding

    Directory of Open Access Journals (Sweden)

    Brendan Tooke Innes

    2013-02-01

    Full Text Available Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase that has the potential to add an additional level of regulation within protein kinase mediated signaling pathways. Furthermore, there is a mounting body of evidence implicating Pin1 in the emergence of pathological phenotypes in neurodegeneration and cancer through the isomerization of a wide variety of substrates at peptidyl-prolyl bonds where the residue preceding proline is a phosphorylated serine or threonine residue (ie. pS/T-P motifs. A key step in this regulatory process is the interaction of Pin-1 with its substrates. This is a complex process since Pin1 is composed of two domains, the catalytic PPIase domain, and a type IV WW domain, both of which recognize pS/T-P motifs. The observation that the WW domain exhibits considerably higher binding affinity for pS/T-P motifs has led to predictions that the two domains may have distinct roles in mediating the actions of Pin1 on its substrates. To evaluate the participation of its individual domains in target binding, we performed GST pulldowns to monitor interactions between various forms of Pin1 and mitotic phospho-proteins that revealed two classes of Pin-1 interacting proteins, differing in their requirement for residues within the PPIase domain. From these observations, we consider models for Pin1-substrate interactions and the potential functions of the different classes of Pin1 interacting proteins. We also compare sequences that are recognized by Pin1 within its individual interaction partners to investigate the underlying basis for its different types of interactions.

  7. Disulfiram as a novel inactivator of Giardia lamblia triosephosphate isomerase with antigiardial potential

    Directory of Open Access Journals (Sweden)

    Adriana Castillo-Villanueva

    2017-12-01

    Full Text Available Giardiasis, the infestation of the intestinal tract by Giardia lamblia, is one of the most prevalent parasitosis worldwide. Even though effective therapies exist for it, the problems associated with its use indicate that new therapeutic options are needed. It has been shown that disulfiram eradicates trophozoites in vitro and is effective in vivo in a murine model of giardiasis; disulfiram inactivation of carbamate kinase by chemical modification of an active site cysteine has been proposed as the drug mechanism of action. The triosephosphate isomerase from G. lamblia (GlTIM has been proposed as a plausible target for the development of novel antigiardial pharmacotherapies, and chemical modification of its cysteine 222 (C222 by thiol-reactive compounds is evidenced to inactivate the enzyme. Since disulfiram is a cysteine modifying agent and GlTIM can be inactivated by modification of C222, in this work we tested the effect of disulfiram over the recombinant and trophozoite-endogenous GlTIM. The results show that disulfiram inactivates GlTIM by modification of its C222. The inactivation is species-specific since disulfiram does not affect the human homologue enzyme. Disulfiram inactivation induces only minor conformational changes in the enzyme, but substantially decreases its stability. Recombinant and endogenous GlTIM inactivates similarly, indicating that the recombinant protein resembles the natural enzyme. Disulfiram induces loss of trophozoites viability and inactivation of intracellular GlTIM at similar rates, suggesting that both processes may be related. It is plausible that the giardicidal effect of disulfiram involves the inactivation of more than a single enzyme, thus increasing its potential for repurposing it as an antigiardial drug. Keywords: Giardiasis, Drug repurposing, Neglected disease, Recombinant protein, Enzyme inactivation

  8. Post-streptococcal auto-antibodies inhibit protein disulfide isomerase and are associated with insulin resistance.

    Directory of Open Access Journals (Sweden)

    Adi Aran

    2010-09-01

    Full Text Available Post-streptococcal autoimmunity affects millions worldwide, targeting multiple organs including the heart, brain, and kidneys. To explore the post-streptococcal autoimmunity spectrum, we used western blot analyses, to screen 310 sera from healthy subjects with (33% and without (67% markers of recent streptococcal infections [anti-Streptolysin O (ASLO or anti-DNAse B (ADB]. A 58 KDa protein, reacting strongly with post-streptococcal sera, was identified as Protein Disulfide Isomerase (PDI, an abundant protein with pleiotropic metabolic, immunologic, and thrombotic effects. Anti-PDI autoantibodies, purified from human sera, targeted similar epitopes in Streptolysin O (SLO, P51-61 and PDI (P328-338. The correlation between post-streptococcal status and anti-human PDI auto-immunity was further confirmed in a total of 2987 samples (13.6% in 530 ASLO positive versus 5.6% in 2457 ASLO negative samples, p<0.0001. Finally, anti-PDI auto-antibodies inhibited PDI-mediated insulin degradation in vitro (n = 90, p<0.001, and correlated with higher serum insulin (14.1 iu/ml vs. 12.2 iu/ml, n = 1215, p = 0.039 and insulin resistance (Homeostatic Model Assessment (HOMA 4.1 vs. 3.1, n = 1215, p = 0.004, in a population-based cohort. These results identify PDI as a major target of post-streptococcal autoimmunity, and establish a new link between infection, autoimmunity, and metabolic disturbances.

  9. Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Vanesa Olivares-Illana

    2007-10-01

    Full Text Available Chagas disease affects around 18 million people in the American continent. Unfortunately, there is no satisfactory treatment for the disease. The drugs currently used are not specific and exert serious toxic effects. Thus, there is an urgent need for drugs that are effective. Looking for molecules to eliminate the parasite, we have targeted a central enzyme of the glycolytic pathway: triosephosphate isomerase (TIM. The homodimeric enzyme is catalytically active only as a dimer. Because there are significant differences in the interface of the enzymes from the parasite and humans, we searched for small molecules that specifically disrupt contact between the two subunits of the enzyme from Trypanosoma cruzi but not those of TIM from Homo sapiens (HTIM, and tested if they kill the parasite.Dithiodianiline (DTDA at nanomolar concentrations completely inactivates recombinant TIM of T. cruzi (TcTIM. It also inactivated HTIM, but at concentrations around 400 times higher. DTDA was also tested on four TcTIM mutants with each of its four cysteines replaced with either valine or alanine. The sensitivity of the mutants to DTDA was markedly similar to that of the wild type. The crystal structure of the TcTIM soaked in DTDA at 2.15 A resolution, and the data on the mutants showed that inactivation resulted from alterations of the dimer interface. DTDA also prevented the growth of Escherichia coli cells transformed with TcTIM, had no effect on normal E. coli, and also killed T. cruzi epimastigotes in culture.By targeting on the dimer interface of oligomeric enzymes from parasites, it is possible to discover small molecules that selectively thwart the life of the parasite. Also, the conformational changes that DTDA induces in the dimer interface of the trypanosomal enzyme are unique and identify a region of the interface that could be targeted for drug discovery.

  10. Carotenoid isomerase is key determinant of petal color of Calendula officinalis.

    Science.gov (United States)

    Kishimoto, Sanae; Ohmiya, Akemi

    2012-01-02

    Orange petals of calendula (Calendula officinalis) accumulate red carotenoids with the cis-configuration at the C-5 or C-5' position (5-cis-carotenoids). We speculated that the orange-flowered calendula is a carotenoid isomerase (crtiso) loss-of-function mutant that impairs the cis-to-trans conversion of 5-cis-carotenoids. We compared the sequences and enzyme activities of CRTISO from orange- and yellow-flowered calendulas. Four types of CRTISO were expressed in calendula petals. The deduced amino acid sequence of one of these genes (CoCRTISO1) was different between orange- and yellow-flowered calendulas, whereas the sequences of the other three CRTISOs were identical between these plants. Analysis of the enzymatic activities of the CoCRTISO homologs showed that CoCRTISO1-Y, which was expressed in yellow petals, converted carotenoids from the cis-to-trans-configuration, whereas both CoCRTISO1-ORa and 1-ORb, which were expressed in orange petals, showed no activity with any of the cis-carotenoids we tested. Moreover, the CoCRTISO1 genotypes of the F2 progeny obtained by crossing orange and yellow lines linked closely to petal color. These data indicate that CoCRTISO1 is a key regulator of the accumulation of 5-cis-carotenoids in calendula petals. Site-directed mutagenesis showed that the deletion of Cys-His-His at positions 462-464 in CoCRTISO1-ORa and a Gly-to-Glu amino acid substitution at position 450 in CoCRTISO1-ORb abolished enzyme activity completely, indicating that these amino acid residues are important for the enzymatic activity of CRTISO.

  11. Carotenoid Isomerase Is Key Determinant of Petal Color of Calendula officinalis*

    Science.gov (United States)

    Kishimoto, Sanae; Ohmiya, Akemi

    2012-01-01

    Orange petals of calendula (Calendula officinalis) accumulate red carotenoids with the cis-configuration at the C-5 or C-5′ position (5-cis-carotenoids). We speculated that the orange-flowered calendula is a carotenoid isomerase (crtiso) loss-of-function mutant that impairs the cis-to-trans conversion of 5-cis-carotenoids. We compared the sequences and enzyme activities of CRTISO from orange- and yellow-flowered calendulas. Four types of CRTISO were expressed in calendula petals. The deduced amino acid sequence of one of these genes (CoCRTISO1) was different between orange- and yellow-flowered calendulas, whereas the sequences of the other three CRTISOs were identical between these plants. Analysis of the enzymatic activities of the CoCRTISO homologs showed that CoCRTISO1-Y, which was expressed in yellow petals, converted carotenoids from the cis-to-trans-configuration, whereas both CoCRTISO1-ORa and 1-ORb, which were expressed in orange petals, showed no activity with any of the cis-carotenoids we tested. Moreover, the CoCRTISO1 genotypes of the F2 progeny obtained by crossing orange and yellow lines linked closely to petal color. These data indicate that CoCRTISO1 is a key regulator of the accumulation of 5-cis-carotenoids in calendula petals. Site-directed mutagenesis showed that the deletion of Cys-His-His at positions 462–464 in CoCRTISO1-ORa and a Gly-to-Glu amino acid substitution at position 450 in CoCRTISO1-ORb abolished enzyme activity completely, indicating that these amino acid residues are important for the enzymatic activity of CRTISO. PMID:22069331

  12. Heterologous expression and characterization of Bacillus coagulans L-arabinose isomerase.

    Science.gov (United States)

    Zhou, Xingding; Wu, Jin Chuan

    2012-05-01

    Bacillus coagulans has been of great commercial interest over the past decade owing to its strong ability of producing optical pure L: -lactic acid from both hexose and pentose sugars including L: -arabinose with high yield, titer and productivity under thermophilic conditions. The L: -arabinose isomerase (L-AI) from Bacillus coagulans was heterologously over-expressed in Escherichia coli. The open reading frame of the L-AI has 1,422 nucleotides encoding a protein with 474 amino acid residues. The recombinant L-AI was purified to homogeneity by one-step His-tag affinity chromatography. The molecular mass of the enzyme was estimated to be 56 kDa by SDS-PAGE. The enzyme was most active at 70°C and pH 7.0. The metal ion Mn(2+) was shown to be the best activator for enzymatic activity and thermostability. The enzyme showed higher activity at acidic pH than at alkaline pH. The kinetic studies showed that the K (m), V (max) and k (cat)/K (m) for the conversion of L: -arabinose were 106 mM, 84 U/mg and 34.5 mM(-1)min(-1), respectively. The equilibrium ratio of L: -arabinose to L: -ribulose was 78:22 under optimal conditions. L: -ribulose (97 g/L) was obtained from 500 g/l of L: -arabinose catalyzed by the enzyme (8.3 U/mL) under the optimal conditions within 1.5 h, giving at a substrate conversion of 19.4% and a production rate of 65 g L(-1) h(-1).

  13. The role of carotenoid isomerase in maintenance of photosynthetic oxygen evolution in rice plant.

    Science.gov (United States)

    Wei, Jiali; Xu, Min; Zhang, Dabing; Mi, Hualing

    2010-07-01

    Carotenoid isomerase (CRTISO) has been suggested to protect photosystem II (PS II) from photodamage, probably through its product lutein. However, the mechanism of the photoprotection still remains to be further elucidated. In this work, we cloned a point mutated gene reported to encode a CRTISO which is responsible for the accumulation of lutein in rice mutant zel1 by a map-based cloning approach. The mutant phenotype was rescued by transformation with the corresponding gene of the wild type (WT). The activity of photosynthetic oxygen evolution was evidently suppressed in zel1. The amount of the core protein of PS II CP47 was much lower in all the PS II complexes especially in the LHCII-PS II supercomplexes and CP43-free PS II of zel1 than that of WT. On the other hand, the amount of another core protein of PS II CP43 of zel1 was decreased in the higher supercomplexes, whereas it was increased in the lower ones and PS II monomer. The immunodetection displayed that CP43, CP47, and the oxygen-evolving extrinsic proteins PsbO and PsbP were reduced, but the amount of reaction center protein D1 did not show significant change in zel1. Northern blot analysis showed that the transcriptional level of CP43 was down-regulated but not that of CP47 or D1 in zel1. In addition, the plastoquinone (PQ) Q(A) was in a reduced state in zel1. On the basis of the results, we suggest that CRTISO might function in regulating the transcription of CP43 and the translation of CP47 by affecting the redox state of the PQ to stabilize the extrinsic proteins of oxygen evolution complexes in the rice plant.

  14. Identification of critical residues for the activity and thermostability of Streptomyces sp. SK glucose isomerase.

    Science.gov (United States)

    Ben Hlima, Hajer; Bejar, Samir; Riguet, Jonas; Haser, Richard; Aghajari, Nushin

    2013-11-01

    The role of residue 219 in the physicochemical properties of D-glucose isomerase from Streptomyces sp. SK strain (SKGI) was investigated by site-directed mutagenesis and structural studies. Mutants G219A, G219N, and G219F were generated and characterized. Comparative studies of their physicochemical properties with those of the wild-type enzyme highlighted that mutant G219A displayed increased specific activity and thermal stability compared to that of the wild-type enzyme, while for G219N and G219F, these properties were considerably decreased. A double mutant, SKGI F53L/G219A, displayed a higher optimal temperature and a higher catalytic efficiency than both the G219A mutant and the wild-type enzyme and showed a half-life time of about 150 min at 85 °C as compared to 50 min for wild-type SKGI. Crystal structures of SKGI wild-type and G219A enzymes were solved to 1.73 and 2.15 Å, respectively, and showed that the polypeptide chain folds into two structural domains. The larger domain consists of a (β/α)8 unit, and the smaller domain forms a loop of α helices. Detailed analyses of the three-dimensional structures highlighted minor but important changes in the active site region as compared to that of the wild-type enzyme leading to a displacement of both metal ions, and in particular that in site M2. The structural analyses moreover revealed how the substitution of G219 by an alanine plays a crucial role in improving the thermostability of the mutant enzyme.

  15. Trichinella spiralis: genome database searches for the presence and immunolocalization of protein disulphide isomerase family members.

    Science.gov (United States)

    Freitas, C P; Clemente, I; Mendes, T; Novo, C

    2016-01-01

    The formation of nurse cells in host muscle cells during Trichinella spiralis infection is a key step in the infective mechanism. Collagen trimerization is set up via disulphide bond formation, catalysed by protein disulphide isomerase (PDI). In T. spiralis, some PDI family members have been identified but no localization is described and no antibodies specific for T. spiralis PDIs are available. In this work, computational approaches were used to search for non-described PDIs in the T. spiralis genome database and to check the cross-reactivity of commercial anti-human antibodies with T. spiralis orthologues. In addition to a previously described PDI (PDIA2), endoplasmic reticulum protein (ERp57/PDIA3), ERp72/PDIA4, and the molecular chaperones calreticulin (CRT), calnexin (CNX) and immunoglobulin-binding protein/glucose-regulated protein (BIP/GRP78), we identified orthologues of the human thioredoxin-related-transmembrane proteins (TMX1, TMX2 and TMX3) in the genome protein database, as well as ERp44 (PDIA10) and endoplasmic reticulum disulphide reductase (ERdj5/PDIA19). Immunocytochemical staining of paraffin sections of muscle infected by T. spiralis enabled us to localize some orthologues of the human PDIs (PDIA3 and TMX1) and the chaperone GRP78. A theoretical three-dimensional model for T. spiralis PDIA3 was constructed. The localization and characteristics of the predicted linear B-cell epitopes and amino acid sequence of the immunogens used for commercial production of anti-human PDIA3 antibodies validated the use of these antibodies for the immunolocalization of T. spiralis PDIA3 orthologues. These results suggest that further study of the role of the PDIs and chaperones during nurse cell formation is desirable.

  16. The C-terminal CGHC motif of protein disulfide isomerase supports thrombosis

    Science.gov (United States)

    Zhou, Junsong; Wu, Yi; Wang, Lu; Rauova, Lubica; Hayes, Vincent M.; Poncz, Mortimer; Essex, David W.

    2015-01-01

    Protein disulfide isomerase (PDI) has two distinct CGHC redox-active sites; however, the contribution of these sites during different physiologic reactions, including thrombosis, is unknown. Here, we evaluated the role of PDI and redox-active sites of PDI in thrombosis by generating mice with blood cells and vessel wall cells lacking PDI (Mx1-Cre Pdifl/fl mice) and transgenic mice harboring PDI that lacks a functional C-terminal CGHC motif [PDI(ss-oo) mice]. Both mouse models showed decreased fibrin deposition and platelet accumulation in laser-induced cremaster arteriole injury, and PDI(ss-oo) mice had attenuated platelet accumulation in FeCl3-induced mesenteric arterial injury. These defects were rescued by infusion of recombinant PDI containing only a functional C-terminal CGHC motif [PDI(oo-ss)]. PDI infusion restored fibrin formation, but not platelet accumulation, in eptifibatide-treated wild-type mice, suggesting a direct role of PDI in coagulation. In vitro aggregation of platelets from PDI(ss-oo) mice and PDI-null platelets was reduced; however, this defect was rescued by recombinant PDI(oo-ss). In human platelets, recombinant PDI(ss-oo) inhibited aggregation, while recombinant PDI(oo-ss) potentiated aggregation. Platelet secretion assays demonstrated that the C-terminal CGHC motif of PDI is important for P-selectin expression and ATP secretion through a non-αIIbβ3 substrate. In summary, our results indicate that the C-terminal CGHC motif of PDI is important for platelet function and coagulation. PMID:26529254

  17. A chalcone isomerase-like protein enhances flavonoid production and flower pigmentation.

    Science.gov (United States)

    Morita, Yasumasa; Takagi, Kyoko; Fukuchi-Mizutani, Masako; Ishiguro, Kanako; Tanaka, Yoshikazu; Nitasaka, Eiji; Nakayama, Masayoshi; Saito, Norio; Kagami, Takashi; Hoshino, Atsushi; Iida, Shigeru

    2014-04-01

    Flavonoids are major pigments in plants, and their biosynthetic pathway is one of the best-studied metabolic pathways. Here we have identified three mutations within a gene that result in pale-colored flowers in the Japanese morning glory (Ipomoea nil). As the mutations lead to a reduction of the colorless flavonoid compound flavonol as well as of anthocyanins in the flower petal, the identified gene was designated enhancer of flavonoid production (EFP). EFP encodes a chalcone isomerase (CHI)-related protein classified as a type IV CHI protein. CHI is the second committed enzyme of the flavonoid biosynthetic pathway, but type IV CHI proteins are thought to lack CHI enzymatic activity, and their functions remain unknown. The spatio-temporal expression of EFP and structural genes encoding enzymes that produce flavonoids is very similar. Expression of both EFP and the structural genes is coordinately promoted by genes encoding R2R3-MYB and WD40 family proteins. The EFP gene is widely distributed in land plants, and RNAi knockdown mutants of the EFP homologs in petunia (Petunia hybrida) and torenia (Torenia hybrida) had pale-colored flowers and low amounts of anthocyanins. The flavonol and flavone contents in the knockdown petunia and torenia flowers, respectively, were also significantly decreased, suggesting that the EFP protein contributes in early step(s) of the flavonoid biosynthetic pathway to ensure production of flavonoid compounds. From these results, we conclude that EFP is an enhancer of flavonoid production and flower pigmentation, and its function is conserved among diverse land plant species. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  18. Structural effects of protein aging: terminal marking by deamidation in human triosephosphate isomerase.

    Directory of Open Access Journals (Sweden)

    Ignacio de la Mora-de la Mora

    Full Text Available Deamidation, the loss of the ammonium group of asparagine and glutamine to form aspartic and glutamic acid, is one of the most commonly occurring post-translational modifications in proteins. Since deamidation rates are encoded in the protein structure, it has been proposed that they can serve as molecular clocks for the timing of biological processes such as protein turnover, development and aging. Despite the importance of this process, there is a lack of detailed structural information explaining the effects of deamidation on the structure of proteins. Here, we studied the effects of deamidation on human triosephosphate isomerase (HsTIM, an enzyme for which deamidation of N15 and N71 has been long recognized as the signal for terminal marking of the protein. Deamidation was mimicked by site directed mutagenesis; thus, three mutants of HsTIM (N15D, N71D and N15D/N71D were characterized. The results show that the N71D mutant resembles, structurally and functionally, the wild type enzyme. In contrast, the N15D mutant displays all the detrimental effects related to deamidation. The N15D/N71D mutant shows only minor additional effects when compared with the N15D mutation, supporting that deamidation of N71 induces negligible effects. The crystal structures show that, in contrast to the N71D mutant, where minimal alterations are observed, the N15D mutation forms new interactions that perturb the structure of loop 1 and loop 3, both critical components of the catalytic site and the interface of HsTIM. Based on a phylogenetic analysis of TIM sequences, we propose the conservation of this mechanism for mammalian TIMs.

  19. The prolyl isomerase Pin1 increases β-cell proliferation and enhances insulin secretion.

    Science.gov (United States)

    Nakatsu, Yusuke; Mori, Keiichi; Matsunaga, Yasuka; Yamamotoya, Takeshi; Ueda, Koji; Inoue, Yuki; Mitsuzaki-Miyoshi, Keiko; Sakoda, Hideyuki; Fujishiro, Midori; Yamaguchi, Suguru; Kushiyama, Akifumi; Ono, Hiraku; Ishihara, Hisamitsu; Asano, Tomoichiro

    2017-07-14

    The prolyl isomerase Pin1 binds to the phosphorylated Ser/Thr-Pro motif of target proteins and enhances their cis-trans conversion. This report is the first to show that Pin1 expression in pancreatic β cells is markedly elevated by high-fat diet feeding and in ob/ob mice. To elucidate the role of Pin1 in pancreatic β cells, we generated β-cell-specific Pin1 KO (βPin1 KO) mice. These mutant mice showed exacerbation of glucose intolerance but had normal insulin sensitivity. We identified two independent factors underlying impaired insulin secretion in the βPin1 KO mice. Pin1 enhanced pancreatic β-cell proliferation, as indicated by a reduced β-cell mass in βPin1 KO mice compared with control mice. Moreover, a diet high in fat and sucrose failed to increase pancreatic β-cell growth in the βPin1 KO mice, an observation to which up-regulation of the cell cycle protein cyclin D appeared to contribute. The other role of Pin1 was to activate the insulin-secretory step: Pin1 KO β cells showed impairments in glucose- and KCl-induced elevation of the intracellular Ca 2+ concentration and insulin secretion. We also identified salt-inducible kinase 2 (SIK2) as a Pin1-binding protein that affected the regulation of Ca 2+ influx and found Pin1 to enhance SIK2 kinase activity, resulting in a decrease in p35 protein, a negative regulator of Ca 2+ influx. Taken together, our observations demonstrate critical roles of Pin1 in pancreatic β cells and that Pin1 both promotes β-cell proliferation and activates insulin secretion. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Contribution of a low-barrier hydrogen bond to catalysis is not significant in ketosteroid isomerase.

    Science.gov (United States)

    Jang, Do Soo; Choi, Gildon; Cha, Hyung Jin; Shin, Sejeong; Hong, Bee Hak; Lee, Hyeong Ju; Lee, Hee Cheon; Choi, Kwan Yong

    2015-05-01

    Low-barrier hydrogen bonds (LBHBs) have been proposed to have important influences on the enormous reaction rate increases achieved by many enzymes. Δ(5)-3-ketosteroid isomerase (KSI) catalyzes the allylic isomerization of Δ(5)-3-ketosteroid to its conjugated Δ(4)-isomers at a rate that approaches the diffusion limit. Tyr14, a catalytic residue of KSI, has been hypothesized to form an LBHB with the oxyanion of a dienolate steroid intermediate generated during the catalysis. The unusual chemical shift of a proton at 16.8 ppm in the nuclear magnetic resonance spectrum has been attributed to an LBHB between Tyr14 Oη and C3-O of equilenin, an intermediate analogue, in the active site of D38N KSI. This shift in the spectrum was not observed in Y30F/Y55F/D38N and Y30F/Y55F/Y115F/D38N mutant KSIs when each mutant was complexed with equilenin, suggesting that Tyr14 could not form LBHB with the intermediate analogue in these mutant KSIs. The crystal structure of Y30F/Y55F/Y115F/D38N-equilenin complex revealed that the distance between Tyr14 Oη and C3-O of the bound steroid was within a direct hydrogen bond. The conversion of LBHB to an ordinary hydrogen bond in the mutant KSI reduced the binding affinity for the steroid inhibitors by a factor of 8.1-11. In addition, the absence of LBHB reduced the catalytic activity by only a factor of 1.7-2. These results suggest that the amount of stabilization energy of the reaction intermediate provided by LBHB is small compared with that provided by an ordinary hydrogen bond in KSI.

  1. Substrate-Induced Dimerization of Engineered Monomeric Variants of Triosephosphate Isomerase from Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Samuel Lara-Gonzalez

    Full Text Available The dimeric nature of triosephosphate isomerases (TIMs is maintained by an extensive surface area interface of more than 1600 Å2. TIMs from Trichomonas vaginalis (TvTIM are held in their dimeric state by two mechanisms: a ball and socket interaction of residue 45 of one subunit that fits into the hydrophobic pocket of the complementary subunit and by swapping of loop 3 between subunits. TvTIMs differ from other TIMs in their unfolding energetics. In TvTIMs the energy necessary to unfold a monomer is greater than the energy necessary to dissociate the dimer. Herein we found that the character of residue I45 controls the dimer-monomer equilibrium in TvTIMs. Unfolding experiments employing monomeric and dimeric mutants led us to conclude that dimeric TvTIMs unfold following a four state model denaturation process whereas monomeric TvTIMs follow a three state model. In contrast to other monomeric TIMs, monomeric variants of TvTIM1 are stable and unexpectedly one of them (I45A is only 29-fold less active than wild-type TvTIM1. The high enzymatic activity of monomeric TvTIMs contrast with the marginal catalytic activity of diverse monomeric TIMs variants. The stability of the monomeric variants of TvTIM1 and the use of cross-linking and analytical ultracentrifugation experiments permit us to understand the differences between the catalytic activities of TvTIMs and other marginally active monomeric TIMs. As TvTIMs do not unfold upon dimer dissociation, herein we found that the high enzymatic activity of monomeric TvTIM variants is explained by the formation of catalytic dimeric competent species assisted by substrate binding.

  2. Crystal structure of glucose isomerase in complex with xylitol inhibitor in one metal binding mode.

    Science.gov (United States)

    Bae, Ji-Eun; Kim, In Jung; Nam, Ki Hyun

    2017-11-04

    Glucose isomerase (GI) is an intramolecular oxidoreductase that interconverts aldoses and ketoses. These characteristics are widely used in the food, detergent, and pharmaceutical industries. In order to obtain an efficient GI, identification of novel GI genes and substrate binding/inhibition have been studied. Xylitol is a well-known inhibitor of GI. In Streptomyces rubiginosus, two crystal structures have been reported for GI in complex with xylitol inhibitor. However, a structural comparison showed that xylitol can have variable conformation at the substrate binding site, e.g., a nonspecific binding mode. In this study, we report the crystal structure of S. rubiginosus GI in a complex with xylitol and glycerol. Our crystal structure showed one metal binding mode in GI, which we presumed to represent the inactive form of the GI. The metal ion was found only at the M1 site, which was involved in substrate binding, and was not present at the M2 site, which was involved in catalytic function. The O 2 and O 4 atoms of xylitol molecules contributed to the stable octahedral coordination of the metal in M1. Although there was no metal at the M2 site, no large conformational change was observed for the conserved residues coordinating M2. Our structural analysis showed that the metal at the M2 site was not important when a xylitol inhibitor was bound to the M1 site in GI. Thus, these findings provided important information for elucidation or engineering of GI functions. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Patagonfibrase modifies protein expression of tissue factor and protein disulfide isomerase in rat skin.

    Science.gov (United States)

    Peichoto, María Elisa; Santoro, Marcelo Larami

    2016-09-01

    Patagonfibrase is a hemorrhagic metalloproteinase isolated from the venom of the South American rear-fanged snake Philodryas patagoniensis, and is an important contributor to local lesions inflicted by this species. The tissue factor (TF)-factor VIIa complex, besides triggering the coagulation cascade, has been demonstrated to be involved in inflammatory events. Our aim was to determine whether patagonfibrase affects the expression of TF and protein disulfide isomerase (PDI), an enzyme that controls TF biological activity, at the site of patagonfibrase injection, and thus if they may play a role in hemostatic and inflammatory events induced by snake venoms. Patagonfibrase (60 μg/kg) was administered s.c. to rats, and after 3 h blood was collected to evaluate hemostasis parameters, and skin fragments close to the site of injection were taken to assess TF and PDI expression. Patagonfibrase did not alter blood cell counts, plasma fibrinogen levels, or levels of TF activity in plasma. However, by semiquantitative Western blotting, patagonfibrase increased TF expression by 2-fold, and decreased PDI expression by 3-fold in skin samples. In agreement, by immunohistochemical analyses, prominent TF expression was observed in the subcutaneous tissue. Thus, patagonfibrase affects the local expression of TF and PDI without inducing any systemic hemostatic disturbance, although that they may be involved in the local inflammatory events induced by hemorrhagic metalloproteinases. Once antivenom therapy is not totally effective to treat the local injury induced by snake venoms, modulation of the activity and expression of TF and/or PDI might become a strategy for treating snake envenomation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Isolation of xylose isomerases by sequence- and function-based screening from a soil metagenomic library

    Directory of Open Access Journals (Sweden)

    Parachin Nádia

    2011-05-01

    Full Text Available Abstract Background Xylose isomerase (XI catalyses the isomerisation of xylose to xylulose in bacteria and some fungi. Currently, only a limited number of XI genes have been functionally expressed in Saccharomyces cerevisiae, the microorganism of choice for lignocellulosic ethanol production. The objective of the present study was to search for novel XI genes in the vastly diverse microbial habitat present in soil. As the exploitation of microbial diversity is impaired by the ability to cultivate soil microorganisms under standard laboratory conditions, a metagenomic approach, consisting of total DNA extraction from a given environment followed by cloning of DNA into suitable vectors, was undertaken. Results A soil metagenomic library was constructed and two screening methods based on protein sequence similarity and enzyme activity were investigated to isolate novel XI encoding genes. These two screening approaches identified the xym1 and xym2 genes, respectively. Sequence and phylogenetic analyses revealed that the genes shared 67% similarity and belonged to different bacterial groups. When xym1 and xym2 were overexpressed in a xylA-deficient Escherichia coli strain, similar growth rates to those in which the Piromyces XI gene was expressed were obtained. However, expression in S. cerevisiae resulted in only one-fourth the growth rate of that obtained for the strain expressing the Piromyces XI gene. Conclusions For the first time, the screening of a soil metagenomic library in E. coli resulted in the successful isolation of two active XIs. However, the discrepancy between XI enzyme performance in E. coli and S. cerevisiae suggests that future screening for XI activity from soil should be pursued directly using yeast as a host.

  5. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    OpenAIRE

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-01-01

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequ...

  6. Increase in D-tagatose production rate by site-directed mutagenesis of L-arabinose isomerase from Geobacillus thermodenitrificans.

    Science.gov (United States)

    Oh, Hyo-Jung; Kim, Hye-Jung; Oh, Deok-Kun

    2006-02-01

    Among single-site mutations of L-arabinose isomerase derived from Geobacillus thermodenitrificans, two mutants were produced having the lowest and highest activities of D-tagatose production. Site-directed mutagenesis at these sites showed that the aromatic ring at amino acid 164 and the size of amino acid 475 were important for D-tagatose production. Among double-site mutations, one mutant converted D-galactose into D-tagatose with a yield of 58% whereas the wild type gave 46% D-tagatose conversion after 300 min at 65 degrees C.

  7. Display of Clostridium cellulovorans xylose isomerase on the cell surface of Saccharomyces cerevisiae and its direct application to xylose fermentation.

    Science.gov (United States)

    Ota, Miki; Sakuragi, Hiroshi; Morisaka, Hironobu; Kuroda, Kouichi; Miyake, Hideo; Tamaru, Yutaka; Ueda, Mitsuyoshi

    2013-01-01

    Xylose isomerase (XI) is a key enzyme in the conversion of D-xylose, which is a major component of lignocellulosic biomass, to D-xylulose. Genomic analysis of the bacterium Clostridium cellulovorans revealed the presence of XI-related genes. In this study, XI derived from C. cellulovorans was produced and displayed using the yeast cell-surface display system, and the xylose assimilation and fermentation properties of this XI-displaying yeast were examined. XI-displaying yeast grew well in medium containing xylose as the sole carbon source and directly produced ethanol from xylose under anaerobic conditions. Copyright © 2013 American Institute of Chemical Engineers.

  8. Functional properties of the two redox-active sites in yeast protein disulphide isomerase in vitro and in vivo

    DEFF Research Database (Denmark)

    Westphal, V; Darby, N J; Winther, Jakob R.

    1999-01-01

    Protein folding catalysed by protein disulphide isomerase (PDI) has been studied both in vivo and in vitro using different assays. PDI contains a CGHC active site in each of its two catalytic domains (a and a'). The relative importance of each active site in PDI from Saccharomyces cerevisiae (y...... substrate, procarboxypeptidase Y. In this assay, however, the a' domain active site also appeared to be much more potent than the a-site. These results were unexpected, not only because of the difference with human PDI, but also because analysis of folding of procarboxypeptidase Y in vivo had shown the a...

  9. Characterization of tin phosphate coatings by CEMS

    International Nuclear Information System (INIS)

    Nomura, Kiyoshi; Ujihira, Yusuke; Takai, Osamu; Kojima, Ryuji

    1992-01-01

    The structure and chemical state of tin in converted tin phosphate coatings, obtained by a treatment of Zn and Mn phosphate in SnCl 2 solution, were characterized by CEMS. Converted Sn(II) phosphate and adsorbed SnO 2 species were main products in the ∝1/3 top layers of Mn and Zn phosphate coatings, and metallic tin was occasionally recognized in deeper layers. Tin phosphate layers, coated directly on a steel substrate by RF sputtering of Ar ions, were composed of two kinds of Sn(IV) species. (orig.)

  10. l-Arabinose Isomerase and d-Xylose Isomerase from Lactobacillus reuteri: Characterization, Coexpression in the Food Grade Host Lactobacillus plantarum, and Application in the Conversion of d-Galactose and d-Glucose

    Science.gov (United States)

    2014-01-01

    The l-arabinose isomerase (l-AI) and the d-xylose isomerase (d-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. l-AI displayed maximum activity at 65 °C and pH 6.0, whereas d-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the l-AI- and d-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum. The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified l-AI converted d-galactose to d-tagatose with a maximum conversion rate of 35%, and the d-XI isomerized d-glucose to d-fructose with a maximum conversion rate of 48% at 60 °C. PMID:24443973

  11. Direct production of D-arabinose from D-xylose by a coupling reaction using D-xylose isomerase, D-tagatose 3-epimerase and D-arabinose isomerase.

    Science.gov (United States)

    Sultana, Ishrat; Mizanur, Rahman Md; Takeshita, Kei; Takada, Goro; Izumori, Ken

    2003-01-01

    Klebsiella pneumoniae 40bXX, a mutant strain that constitutively produces D-arabinose isomerase (D-AI), was isolated through a series of repeated subcultures from the parent strain on a mineral salt medium supplemented with L-Xylose as the sole carbon source. D-AI could be efficiently immobilized on chitopearl beads. The optimum temperature for the activity of the immobilized enzyme was 40 degrees C and the enzyme was stable up to 50 degrees C. The D-Al was active at pH 10.0 and was stable in the range of pH 6.0-11.0. The enzyme required manganese ions for maximum activity. Three immobilized enzymes, D-xylose isomerase (D-XI), D-tagatose 3-epimerase (D-TE and D-AI were used for the preparation of D-arabinose from D-xylose in a coupling reaction. After completion of the reaction, degradation of D-xylulose was carried out by Saccharomyces cerevisiae. The reaction mixture containing D-Xylose, D-ribulose and the product was then separated by ion exchange column chromatography. After crystallization, the product was checked by HPLC, IR spectroscopy, NMR spectroscopy and optical rotation measurements. Finally, 2.0 g of D-arabinose could be obtained from 5 g of the substrate.

  12. L-Arabinose isomerase and D-xylose isomerase from Lactobacillus reuteri: characterization, coexpression in the food grade host Lactobacillus plantarum, and application in the conversion of D-galactose and D-glucose.

    Science.gov (United States)

    Staudigl, Petra; Haltrich, Dietmar; Peterbauer, Clemens K

    2014-02-19

    The L-arabinose isomerase (L-AI) and the D-xylose isomerase (D-XI) encoding genes from Lactobacillus reuteri (DSMZ 17509) were cloned and overexpressed in Escherichia coli BL21 (DE3). The proteins were purified to homogeneity by one-step affinity chromatography and characterized biochemically. L-AI displayed maximum activity at 65 °C and pH 6.0, whereas D-XI showed maximum activity at 65 °C and pH 5.0. Both enzymes require divalent metal ions. The genes were also ligated into the inducible lactobacillal expression vectors pSIP409 and pSIP609, the latter containing a food grade auxotrophy marker instead of an antibiotic resistance marker, and the L-AI- and D-XI-encoding sequences/genes were coexpressed in the food grade host Lactobacillus plantarum . The recombinant enzymes were tested for applications in carbohydrate conversion reactions of industrial relevance. The purified L-AI converted D-galactose to D-tagatose with a maximum conversion rate of 35%, and the D-XI isomerized D-glucose to D-fructose with a maximum conversion rate of 48% at 60 °C.

  13. Inorganic Phosphate (Pi) Enhancement of Dark Respiration in the Pi-Limited Green Alga Selenastrum minutum (Interactions between H+/Pi Cotransport, the Plasmalemma H+-ATPase, and Dark Respiratory Carbon Flow).

    Science.gov (United States)

    Gauthier, D. A.; Turpin, D. H.

    1994-02-01

    Inorganic phosphate (Pi) enrichment of the Pi-limited green alga Selenastrum minutum in the dark caused a 2.5-fold increase in the rate of O2 consumption. Alkalization of the media during Pi assimilation was consistent with a H+/Pi cotransport mechanism with a stoichiometry of at least 2 H+ cotransported per Pi. Dark O2 consumption remained enhanced beyond the period of Pi assimilation and did not recover until the medium was reacidified. This result, coupled with an immediate decrease in adenylate energy charge following Pi enrichment, suggested that respiration is regulated by the ATP requirements of a plasmalemma H+-ATPase that is activated to maintain intracellular pH and provide proton motive force to power Pi uptake. Concentrations of tricarboxylic acid cycle intermediates decreased following Pi enrichment and respiratory CO2 efflux increased, indicating that the tricarboxylic acid cycle was activated to supply reductant to the mitochondrial electron transport chain. These results are consistent with direct inhibition of electron transport by ADP limitation. Enhanced rates of starch breakdown and increases in glycolytic metabolites indicated that respiratory carbon flow was activated to supply reductant to the electron transport chain and to rapidly assimilate Pi into metabolic intermediates. The mechanism that initiates glycolytic carbon flow could not be clearly identified by product:substrate ratios due to the complex nature of Pi assimilation. High levels of triose-P and low levels of phosphoenolpyruvate were the primary regulators of pyruvate kinase and phosphofructokinase, respectively.

  14. Tempo-phosphate as an ESR tool to study phosphate transport.

    Science.gov (United States)

    Sadowska-Bartosz, Izabela; Stefaniuk, Ireneusz; Cieniek, Bogumił; Bartosz, Grzegorz

    2017-11-27

    TEMPO-phosphate has been introduced as a phosphate analogue to study phosphate transport in erythrocytes. The nitroxide is reduced intracellularly upon entering the cells, the membrane transport being the rate-limiting step of the loss of ESR signal. The use of TEMPO-phosphate is convenient and avoids the hazard of radioactivity. We studied the inhibition of TEMPO-phosphate transport to human erythrocytes by various compounds. DIDS and SITS, inhibitors of Band 3, inhibited the TEMPO-phosphate transport. 1-cyano-4-hydroxycinnamic acid, inhibitor of monocarboxylate transporters, did not affect the permeation of TEMPO-phosphate. The transport of TEMPO-phosphate was inhibited by various polyphenols, especially curcumin, naringin, quercetin, luteolin and kaempferol. Interestingly, 3-bromopyruvic acid, an alkylating agent and potential anticancer agent, induced an apparent enhancement of TEMPO-phosphate transport into erythrocytes.

  15. The pentose phosphate pathway in Trypanosoma cruzi: a potential target for the chemotherapy of Chagas disease

    Directory of Open Access Journals (Sweden)

    Mariana Igoillo-Esteve

    2007-12-01

    Full Text Available Trypanosoma cruzi is highly sensitive to oxidative stress caused by reactive oxygen species. Trypanothione, the parasite's major protection against oxidative stress, is kept reduced by trypanothione reductase, using NADPH; the major source of the reduced coenzyme seems to be the pentose phosphate pathway. Its seven enzymes are present in the four major stages in the parasite's biological cycle; we have cloned and expressed them in Escherichia coli as active proteins. Glucose 6-phosphate dehydrogenase, which controls glucose flux through the pathway by its response to the NADP/NADPH ratio, is encoded by a number of genes per haploid genome, and is induced up to 46-fold by hydrogen peroxide in metacyclic trypomastigotes. The genes encoding 6-phosphogluconolactonase, 6-phosphogluconate dehydrogenase, transaldolase and transketolase are present in the CL Brener clone as a single copy per haploid genome. 6-phosphogluconate dehydrogenase is very unstable, but was stabilized introducing two salt bridges by site-directed mutagenesis. Ribose-5-phosphate isomerase belongs to Type B; genes encoding Type A enzymes, present in mammals, are absent. Ribulose-5-phosphate epimerase is encoded by two genes. The enzymes of the pathway have a major cytosolic component, although several of them have a secondary glycosomal localization, and also minor localizations in other organelles.Trypanosoma cruzi é altamente sensível ao estresse oxidativo causado por espécies reativas do oxigênio. Tripanotiona, o principal protetor do parasita contra o estresse oxidativo, é mantido reduzido pela tripanotiona redutase, pela presença deNADPH; a principal fonte da coenzima reduzida parece ser a via da pentose fosfato. As sete enzimas dessa via estão presentes nos quatro principais estágios do ciclo biológico do parasita; nós clonamos e expressamos as enzimas em Escherichia coli como proteínas ativas. Glucose 6-fosfato desidrogenase, que controla o fluxo da glucose da

  16. Crystal Structure of Escherichia coli L-Arabinose Isomerase (ECAI), The Putative Target of Biological Tagatose Production

    Energy Technology Data Exchange (ETDEWEB)

    Manjasetty,B.; Chance, M.

    2006-01-01

    Escherichia coli L-arabinose isomerase (ECAI; EC 5.3.1.4) catalyzes the isomerization of L-arabinose to L-ribulose in vivo. This enzyme is also of commercial interest as it catalyzes the conversion of D-galactose to D-tagatose in vitro. The crystal structure of ECAI was solved and refined at 2.6 Angstroms resolution. The subunit structure of ECAI is organized into three domains: an N-terminal, a central and a C-terminal domain. It forms a crystallographic trimeric architecture in the asymmetric unit. Packing within the crystal suggests the idea that ECAI can form a hexameric assembly. Previous electron microscopic and biochemical studies supports that ECAI is hexameric in solution. A comparison with other known structures reveals that ECAI adopts a protein fold most similar to E. coli fucose isomerase (ECFI) despite very low sequence identity 9.7%. The structural similarity between ECAI and ECFI with regard to number of domains, overall fold, biological assembly, and active site architecture strongly suggests that the enzymes have functional similarities. Further, the crystal structure of ECAI forms a basis for identifying molecular determinants responsible for isomerization of arabinose to ribulose in vivo and galactose to tagatose in vitro.

  17. Production of D-tagatose, a low caloric sweetener during milk fermentation using L-arabinose isomerase.

    Science.gov (United States)

    Rhimi, Moez; Chouayekh, Hichem; Gouillouard, Isabelle; Maguin, Emmanuelle; Bejar, Samir

    2011-02-01

    Lactobacillusdelbrueckii subsp. bulgaricus and Streptococcus thermophilus are used for the biotransformation of milk in yoghurt. During milk fermentation, these lactic acid bacteria (LAB) hydrolyze lactose producing a glucose moiety that is further metabolized and a galactose moiety that they are enable to metabolize. We investigated the ability of L. bulgaricus and S. thermophilus strains expressing a heterologous L-arabinose isomerase to convert residual D-galactose to D-tagatose. The Bacillus stearothermophilus US100l-arabinose isomerase (US100l-AI) was expressed in both LAB, using a new shuttle vector where the araA US100 gene is under the control of the strong and constitutive promoter of the L. bulgaricus ATCC 11842 hlbA gene. The production of L-AI by these LAB allowed the bioconversion of D-galactose to D-tagatose during fermentation in laboratory media and milk. We also established that the addition of L-AI to milk also allowed the conversion of D-galactose into D-tagatose during the fermentation process. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Identification and characterization of a novel L-arabinose isomerase from Anoxybacillus flavithermus useful in D-tagatose production.

    Science.gov (United States)

    Li, Yanjun; Zhu, Yueming; Liu, Anjun; Sun, Yuanxia

    2011-05-01

    D-Tagatose is a highly functional rare ketohexose and many attempts have been made to convert D-galactose into the valuable D-tagatose using L-arabinose isomerase (L-AI). In this study, a thermophilic strain possessing L-AI gene was isolated from hot spring sludge and identified as Anoxybacillus flavithermus based on its physio-biochemical characterization and phylogenetic analysis of its 16s rRNA gene. Furthermore, the gene encoding L-AI from A. flavithermus (AFAI) was cloned and expressed at a high level in E. coli BL21(DE3). L-AI had a molecular weight of 55,876 Da, an optimum pH of 10.5 and temperature of 95°C. The results showed that the conversion equilibrium shifted to more D-tagatose from D-galactose by raising the reaction temperatures and adding borate. A 60% conversion of D-galactose to D-tagatose was observed at an isomerization temperature of 95°C with borate. The catalytic efficiency (k (cat) /K (m)) for D-galactose with borate was 9.47 mM(-1) min(-1), twice as much as that without borate. Our results indicate that AFAI is a novel hyperthermophilic and alkaliphilic isomerase with a higher catalytic efficiency for D-galactose, suggesting its great potential for producing D-tagatose.

  19. Structure-Based Annotation of a Novel Sugar Isomerase from the Pathogenic E. coli O157:H7

    Energy Technology Data Exchange (ETDEWEB)

    van Staalduinen, L.; Park, C; Yeom, S; Adams-Cioaba, M; Oh, D; Jia, C

    2010-01-01

    Prokaryotes can use a variety of sugars as carbon sources in order to provide a selective survival advantage. The gene z5688 found in the pathogenic Escherichia coli O157:H7 encodes a 'hypothetical' protein of unknown function. Sequence analysis identified the gene product as a putative member of the cupin superfamily of proteins, but no other functional information was known. We have determined the crystal structure of the Z5688 protein at 1.6 {angstrom} resolution and identified the protein as a novel E. coli sugar isomerase (EcSI) through overall fold analysis and secondary-structure matching. Extensive substrate screening revealed that EcSI is capable of acting on D-lyxose and D-mannose. The complex structure of EcSI with fructose allowed the identification of key active-site residues, and mutagenesis confirmed their importance. The structure of EcSI also suggested a novel mechanism for substrate binding and product release in a cupin sugar isomerase. Supplementation of a nonpathogenic E. coli strain with EcSI enabled cell growth on the rare pentose d-lyxose.

  20. [Catalytical properties of Arthrobacter nicotianae cells, a producer of glucose isomerase, immobilized in xerogel of silicium dioxide].

    Science.gov (United States)

    Perminova, L V; Kovalenko, G A; Rudina, N A; Sapunova, L I; Tamkovich, I O; Lobanok, A G

    2009-01-01

    Arthrobacter nicotinanae cells, producers of glucose isomerase, were immobilized in xerogel of silicium dioxide, and properties of the resulted heterogeneous biocatalysts were investigated in the process of isomerization of monosaccharide (glucose and fructose). The glucose isomerase activity of the resulted biocatalysts was shown to be 10 U/g, on average, taking into account the loss of the activity upon the immobilization, which amounted to 50% of the cell activity in suspension. The rate of the fructose isomerization increased linearly in the range of 55-80 degrees C with the temperature coefficient 1.3. The biocatalysts were stable in this range; they were rapidly inactivated, however, at increasing temperature. The half-inactivation time was six to seven h and five min or less at 80 degrees C and 85 degrees C, respectively. The half-inactivation time of heterogeneous biocatalysts was 50-90 h in the periodic process of isomerization of 2 M monosaccharides at 60 degrees C in the presence of the immobilized Arthrobacter nicotinanae cells.

  1. Human cyclophilin B: A second cyclophilin gene encodes a peptidyl-prolyl isomerase with a signal sequence

    International Nuclear Information System (INIS)

    Price, E.R.; Zydowsky, L.D.; Jin, Mingjie; Baker, C.H.; McKeon, F.D.; Walsh, C.T.

    1991-01-01

    The authors report the cloning and characterization of a cDNA encoding a second human cyclosporin A-binding protein (hCyPB). Homology analyses reveal that hCyPB is a member of the cyclophilin B (CyPB) family, which includes yeast CyPB, Drosophila nina A, and rat cyclophilin-like protein. This family is distinguished from the cyclophilin A (CyPA) family by the presence of endoplasmic reticulum (ER)-directed signal sequences. hCyPB has a hydrophobic leader sequence not found in hCyPA, and its first 25 amino acids are removed upon expression in Escherichia coli. Moreover, they show that hCyPB is a peptidyl-prolyl cis-trans isomerase which can be inhibited by cyclosporin A. These observations suggest that other members of the CyPB family will have similar enzymatic properties. Sequence comparisons of the CyPB proteins show a central, 165-amino acid peptidyl-prolyl isomerase and cyclosprorin A-binding domain, flanked by variable N-terminal and C-terminal domains. These two variable regions may impart compartmental specificity and regulation to this family of cyclophilin proteins containing the conserved core domain. Northern blot analyses show that hCyPB mRNA is expressed in the Jurkat T-cell line, consistent with its possible target role in cyclosporin A-mediated immunosuppression

  2. Effect of manganese ions on ethanol fermentation by xylose isomerase expressing Saccharomyces cerevisiae under acetic acid stress.

    Science.gov (United States)

    Ko, Ja Kyong; Um, Youngsoon; Lee, Sun-Mi

    2016-12-01

    The efficient fermentation of lignocellulosic hydrolysates in the presence of inhibitors is highly desirable for bioethanol production. Among the inhibitors, acetic acid released during the pretreatment of lignocellulose negatively affects the fermentation performance of biofuel producing organisms. In this study, we evaluated the inhibitory effects of acetic acid on glucose and xylose fermentation by a high performance engineered strain of xylose utilizing Saccharomyces cerevisiae, SXA-R2P-E, harboring a xylose isomerase based pathway. The presence of acetic acid severely decreased the xylose fermentation performance of this strain. However, the acetic acid stress was alleviated by metal ion supplementation resulting in a 52% increased ethanol production rate under 2g/L of acetic acid stress. This study shows the inhibitory effect of acetic acid on an engineered isomerase-based xylose utilizing strain and suggests a simple but effective method to improve the co-fermentation performance under acetic acid stress for efficient bioethanol production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Phosphate: are we squandering a scarce commodity?

    Science.gov (United States)

    Ferro, Charles J; Ritz, Eberhard; Townend, Jonathan N

    2015-02-01

    Phosphorus is an essential element for life but is a rare element in the universe. On Earth, it occurs mostly in the form of phosphates that are widespread but predominantly at very low concentration. This relative rarity has resulted in a survival advantage, in evolutionary terms, to organisms that conserve phosphate. When phosphate is made available in excess it becomes a cause for disease, perhaps best recognized as a potential cardiovascular and renal risk factor. As a reaction to the emerging public health issue caused by phosphate additives to food items, there have been calls for a public education programme and regulation to bring about a reduction of phosphate additives to food. During the Paleoproterzoic era, an increase in the bioavailability of phosphate is thought to have contributed significantly to the oxygenation of our atmosphere and a dramatic increase in the evolution of new species. Currently, phosphate is used poorly and often wasted with phosphate fertilizers washing this scarce commodity into water bodies causing eutrophication and algal blooms. Ironically, this is leading to the extinction of hundreds of species. The unchecked exploitation of phosphate rock, which is an increasingly rare natural resource, and our dependence on it for agriculture may lead to a strange situation in which phosphate might become a commodity to be fought over whilst at the same time, health and environmental experts are likely to recommend reductions in its use. © The Author 2014. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  4. The Use of Rock Phosphate and Phosphate Solubilising Fungi ...

    African Journals Online (AJOL)

    0 kg/ha P2O5, 40 kg/ha P2O5 RP, 80 kg/ha P2O5 RP, 120 kg/ha P2O5 RP and 45 kg/ha P2O5-triple super phosphate (TSP), while the planting dates of pigeon pea was set up as subplot (40 DAS –pigeon pea planted 40 days after sowing rice seed and 80 DAS- pigeon pea planted 80 days after sowing rice). In the second ...

  5. Mycoepoxydiene suppresses HeLa cell growth by inhibiting glycolysis and the pentose phosphate pathway.

    Science.gov (United States)

    Jin, Kehua; Li, Li; Sun, Xihuan; Xu, Qingyan; Song, Siyang; Shen, Yuemao; Deng, Xianming

    2017-05-01

    Upregulation of glycolysis and the pentose phosphate pathway (PPP) is a major characteristic of the metabolic reprogramming of cancer and provides cancer cells with energy and vital metabolites to support their rapid proliferation. Targeting glycolysis and the PPP has emerged as a promising antitumor therapeutic strategy. Marine natural products are attractive sources for anticancer therapeutics, as evidenced by the antitumor drug Yondelis. Mycoepoxydiene (MED) is a natural product isolated from a marine fungus that has shown promising inhibitory efficacy against HeLa cells in vitro. We used a proteomic approach with two-dimensional gel electrophoresis (2-DE) coupled with mass spectrometry to explore the cellular targets of MED and to unravel the molecular mechanisms underlying the antitumor activity of MED in HeLa cells. Our proteomic data showed that triosephosphate isomerase (TPI) and 6-phosphogluconolactonase (PGLS), which participate in glycolysis and the PPP, respectively, were significantly downregulated by MED treatment. Functional studies revealed that the expression levels of several other enzymes involved in glycolysis and the PPP, including hexokinase 2 (HK2), phosphofructokinase 1 (PFKM), aldolase A (ALDOA), enolase 1 (ENO1), lactate dehydrogenase A (LDHA), and glucose-6-phosphate dehydrogenase (G6PD), were also reduced in a dose-dependent manner. Moreover, the LDHA and G6PD enzymatic activities in HeLa cells were inhibited by MED, and overexpression of these downregulated enzymes rescued HeLa cells from the growth inhibition induced by MED. Our data suggest that MED suppresses HeLa cell growth by inhibiting glycolysis and the PPP, which provides a mechanistic basis for the development of new therapeutics against cervical cancer.

  6. Carbohydrate metabolism of Xylella fastidiosa: Detection of glycolytic and pentose phosphate pathway enzymes and cloning and expression of the enolase gene

    Directory of Open Access Journals (Sweden)

    Facincani Agda Paula

    2003-01-01

    Full Text Available The objective of this work was to assess the functionality of the glycolytic pathways in the bacterium Xylella fastidiosa. To this effect, the enzymes phosphoglucose isomerase, aldolase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase of the glycolytic pathway, and glucose 6-phosphate dehydrogenase of the Entner-Doudoroff pathway were studied, followed by cloning and expression studies of the enolase gene and determination of its activity. These studies showed that X. fastidiosa does not use the glycolytic pathway to metabolize carbohydrates, which explains the increased duplication time of this phytopatogen. Recombinant enolase was expressed as inclusion bodies and solubilized with urea (most efficient extractor, Triton X-100, and TCA. Enolase extracted from X. fastidiosa and from chicken muscle and liver is irreversibly inactivated by urea. The purification of enolase was partial and resulted in a low yield. No enzymatic activity was detected for either recombinant and native enolases, aldolase, and glyceraldehyde-3-phosphate dehydrogenase, suggesting that X. fastidiosa uses the Entner-Doudoroff pathway to produce pyruvate. Evidence is presented supporting the idea that the regulation of genes and the presence of isoforms with regulation patterns might make it difficult to understand the metabolism of carbohydrates in X. fastidiosa.

  7. Protein disulfide isomerase interacts with tau protein and inhibits its fibrillization.

    Directory of Open Access Journals (Sweden)

    Li-Rong Xu

    Full Text Available BACKGROUND: Tau protein is implicated in the pathogenesis of neurodegenerative disorders such as tauopathies including Alzheimer disease, and Tau fibrillization is thought to be related to neuronal toxicity. Physiological inhibitors of Tau fibrillization hold promise for developing new strategies for treatment of Alzheimer disease. Because protein disulfide isomerase (PDI is both an enzyme and a chaperone, and implicated in neuroprotection against Alzheimer disease, we want to know whether PDI can prevent Tau fibrillization. In this study, we have investigated the interaction between PDI and Tau protein and the effect of PDI on Tau fibrillization. METHODOLOGY/PRINCIPAL FINDINGS: As evidenced by co-immunoprecipitation and confocal laser scanning microscopy, human PDI interacts and co-locates with some endogenous human Tau on the endoplasmic reticulum of undifferentiated SH-SY5Y neuroblastoma cells. The results from isothermal titration calorimetry show that one full-length human PDI binds to one full-length human Tau (or human Tau fragment Tau244-372 monomer with moderate, micromolar affinity at physiological pH and near physiological ionic strength. As revealed by thioflavin T binding assays, Sarkosyl-insoluble SDS-PAGE, and transmission electron microscopy, full-length human PDI remarkably inhibits both steps of nucleation and elongation of Tau244-372 fibrillization in a concentration-dependent manner. Furthermore, we find that two molecules of the a-domain of human PDI interact with one Tau244-372 molecule with sub-micromolar affinity, and inhibit both steps of nucleation and elongation of Tau244-372 fibrillization more strongly than full-length human PDI. CONCLUSIONS/SIGNIFICANCE: We demonstrate for the first time that human PDI binds to Tau protein mainly through its thioredoxin-like catalytic domain a, forming a 1∶1 complex and preventing Tau misfolding. Our findings suggest that PDI could act as a physiological inhibitor of Tau

  8. Identification and comparative analysis of sixteen fungal peptidyl-prolyl cis/trans isomerase repertoires

    Directory of Open Access Journals (Sweden)

    Pemberton Trevor J

    2006-09-01

    Full Text Available Abstract Background The peptidyl-prolyl cis/trans isomerase (PPIase class of proteins is present in all known eukaryotes, prokaryotes, and archaea, and it is comprised of three member families that share the ability to catalyze the cis/trans isomerisation of a prolyl bond. Some fungi have been used as model systems to investigate the role of PPIases within the cell, however how representative these repertoires are of other fungi or humans has not been fully investigated. Results PPIase numbers within these fungal repertoires appears associated with genome size and orthology between repertoires was found to be low. Phylogenetic analysis showed the single-domain FKBPs to evolve prior to the multi-domain FKBPs, whereas the multi-domain cyclophilins appear to evolve throughout cyclophilin evolution. A comparison of their known functions has identified, besides a common role within protein folding, multiple roles for the cyclophilins within pre-mRNA splicing and cellular signalling, and within transcription and cell cycle regulation for the parvulins. However, no such commonality was found with the FKBPs. Twelve of the 17 human cyclophilins and both human parvulins, but only one of the 13 human FKBPs, identified orthologues within these fungi. hPar14 orthologues were restricted to the Pezizomycotina fungi, and R. oryzae is unique in the known fungi in possessing an hCyp33 orthologue and a TPR-containing FKBP. The repertoires of Cryptococcus neoformans, Aspergillus fumigatus, and Aspergillus nidulans were found to exhibit the highest orthology to the human repertoire, and Saccharomyces cerevisiae one of the lowest. Conclusion Given this data, we would hypothesize that: (i the evolution of the fungal PPIases is driven, at least in part, by the size of the proteome, (ii evolutionary pressures differ both between the different PPIase families and the different fungi, and (iii whilst the cyclophilins and parvulins have evolved to perform conserved

  9. Molecular epidemiology of giardiasis among Orang Asli in Malaysia: application of the triosephosphate isomerase gene.

    Science.gov (United States)

    Anuar, Tengku Shahrul; Azreen, Siti Nor; Salleh, Fatmah Md; Moktar, Norhayati

    2014-02-12

    Giardia duodenalis is a flagellate parasite which has been considered the most common protozoa infecting human worldwide. Molecular characterization of G. duodenalis isolates have revealed the existence of eight groups (Assemblage A to H) which differ in their host distribution. Assemblages A and B are found in humans and in many other mammals. This cross-sectional study was conducted to identify assemblage's related risk factors of G. duodenalis among Orang Asli in Malaysia. Stool samples were collected from 611 individuals aged between 2 and 74 years old of whom 266 were males and 345 were females. Socioeconomic data were collected through a pre-tested questionnaire. All stool samples were processed with formalin-ether sedimentation and Wheatley's trichrome staining techniques for the primary identification of G. duodenalis. Molecular identification was carried out by the amplification of a triosephosphate isomerase gene using nested-PCR assay. Sixty-two samples (10.2%) were identified as assemblage A and 36 (5.9%) were assemblage B. Risk analysis based on the detected assemblages using univariate and logistic regression analyses identified subjects who have close contact with household pets i.e. dogs and cats (OR = 2.60; 95% CI = 1.42, 4.78; P = 0.002) was found to be significant predictor for assemblage A. On the other hand, there were three significant risk factors caused by assemblage B: (i) children ≤15 years old (OR = 2.33; 95% CI = 1.11, 4.87; P = 0.025), (ii) consuming raw vegetables (OR = 2.82; 95% CI = 1.27, 6.26; P = 0.011) and (iii) the presence of other family members infected with giardiasis (OR = 6.31; 95% CI = 2.99, 13.31; P Orang Asli was caused by both assemblages with significant high prevalence of assemblage A. Therefore, taking precaution after having contact with household pets and their stool, screening and treating infected individuals, awareness on the importance of good health practices

  10. Enzymatic conversion of D-galactose to D-tagatose: heterologous expression and characterisation of a thermostable L-arabinose isomerase from Thermoanaerobacter mathranii.

    Science.gov (United States)

    Jørgensen, F; Hansen, O C; Stougaard, P

    2004-06-01

    The ability to convert D-galactose into D-tagatose was compared among a number of bacterial L-arabinose isomerases ( araA). One of the most efficient enzymes, from the anaerobic thermophilic bacterium Thermoanaerobacter mathranii, was produced heterologously in Escherichia coli and characterised. Amino acid sequence comparisons indicated that this enzyme is only distantly related to the group of previously known araA sequences in which the sequence similarity is evident. The substrate specificity and the Michaelis-Menten constants of the enzyme determined with L-arabinose, D-galactose and D-fucose also indicated that this enzyme is an unusual, versatile L-arabinose isomerase which is able to isomerise structurally related sugars. The enzyme was immobilised and used for production of D-tagatose at 65 degrees C. Starting from a 30% solution of D-galactose, the yield of D-tagatose was 42% and no sugars other than D-tagatose and D-galactose were detected. Direct conversion of lactose to D-tagatose in a single reactor was demonstrated using a thermostable beta-galactosidase together with the thermostable L-arabinose isomerase. The two enzymes were also successfully combined with a commercially available glucose isomerase for conversion of lactose into a sweetening mixture comprising lactose, glucose, galactose, fructose and tagatose.

  11. The small subunit 1 of the Arabidopsis isopropylmalate isomerase is required for normal growth and development and the early stages of glucosinolate formation.

    Science.gov (United States)

    Imhof, Janet; Huber, Florian; Reichelt, Michael; Gershenzon, Jonathan; Wiegreffe, Christoph; Lächler, Kurt; Binder, Stefan

    2014-01-01

    In Arabidopsis thaliana the evolutionary and functional relationship between Leu biosynthesis and the Met chain elongation pathway, the first part of glucosinolate formation, is well documented. Nevertheless the exact functions of some pathway components are still unclear. Isopropylmalate isomerase (IPMI), an enzyme usually involved in Leu biosynthesis, is a heterodimer consisting of a large and a small subunit. While the large protein is encoded by a single gene (isopropylmalate isomerase large subunit1), three genes encode small subunits (isopropylmalate isomerase small subunit1 to 3). We have now analyzed small subunit 1 (isopropylmalate isomerase small subunit1) employing artificial microRNA for a targeted knockdown of the encoding gene. Strong reduction of corresponding mRNA levels to less than 5% of wild-type levels resulted in a severe phenotype with stunted growth, narrow pale leaf blades with green vasculature and abnormal adaxial-abaxial patterning as well as anomalous flower morphology. Supplementation of the knockdown plants with leucine could only partially compensate for the morphological and developmental abnormalities. Detailed metabolite profiling of the knockdown plants revealed changes in the steady state levels of isopropylmalate and glucosinolates as well as their intermediates demonstrating a function of IPMI SSU1 in both leucine biosynthesis and the first cycle of Met chain elongation. Surprisingly the levels of free leucine slightly increased suggesting an imbalanced distribution of leucine within cells and/or within plant tissues.

  12. In vivo reduction-oxidation state of protein disulfide isomerase: the two active sites independently occur in the reduced and oxidized forms

    DEFF Research Database (Denmark)

    Appenzeller-Herzog, Christian; Ellgaard, Lars

    2008-01-01

    Thiol-disulfide oxidoreductases of the human protein disulfide isomerase (PDI) family promote protein folding in the endoplasmic reticulum (ER), while also assisting the retrotranslocation of toxins and misfolded ER proteins to the cytosol. The redox activity of PDI-like proteins is determined by...

  13. STRUCTURE OF THE COMPLEX BETWEEN TRYPANOSOMAL TRIOSEPHOSPHATE ISOMERASE AND N-HYDROXY-4-PHOSPHONO-BUTANAMIDE - BINDING AT THE ACTIVE-SITE DESPITE AN OPEN FLEXIBLE LOOP CONFORMATION

    NARCIS (Netherlands)

    VERLINDE, CLMJ; WITMANS, CJ; PIJNING, T; KALK, KH; HOL, WGJ; CALLENS, M; OPPERDOES, FR

    1992-01-01

    The structure of triosephosphate isomerase from Trypanosoma brucei complexed with the competitive inhibitor N-hydroxy-4-phosphono-butanamide was determined by X-ray crystallography to a resolution of 2.84 angstrom. Full occupancy binding of the inhibitor is observed only at one of the active sites

  14. The peptidyl prolyl cis/trans isomerase Pin1/Ess1 inhibits phosphorylation and toxicity of tau in a yeast model for Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Ann De Vos

    2015-04-01

    Full Text Available Since hyperphosphorylation of protein tau is a crucial event in Alzheimer’s disease, additional mechanisms besides the interplay of kinase and phosphatase activities are investigated, such as the effect of the peptidyl prolyl cis/trans isomerase Pin1. This isomerase was shown to bind and isomerize phosphorylated protein tau, thereby restoring the microtubule associated protein function of tau as well as promoting the dephosphorylation of the protein by the trans-dependent phosphatase PP2A. In this study we used models based on Saccharomyces cerevisiae to further elucidate the influence of Pin1 and its yeast ortholog Ess1 on tau phosphorylation and self-assembly. We could demonstrate that in yeast, a lack of Pin1 isomerase activity leads to an increase in phosphorylation of tau at Thr231, comparable to AD brain and consistent with earlier findings in other model organisms. However, we could also distinguish an effect by Pin1 on other residues of tau, i.e. Ser235 and Ser198/199/202. Furthermore, depletion of Pin1 isomerase activity results in reduced growth of the yeast cells, which is enhanced upon expression of tau. This suggests that the accumulation of hyperphosphorylated and aggregation-prone tau causes cytotoxicity in yeast. This study introduces yeast as a valuable model organism to characterize in detail the effect of Pin1 on the biochemical characteristics of protein tau, more specifically its phosphorylation and aggregation.

  15. phosphates

    Indian Academy of Sciences (India)

    Administrator

    mesoporous aluminophosphates (20–500 Å pore diameter) and related compounds. 18. We have been investigating the use of UV-visible light for the degradation of organics in the presence of a suitable catalyst. 19–21. The degradation of organ- ics is important, especially in the treatment of wastewater from industries.

  16. Application of Calcium Phosphate Materials in Dentistry

    Directory of Open Access Journals (Sweden)

    Jabr S. Al-Sanabani

    2013-01-01

    Full Text Available Calcium phosphate materials are similar to bone in composition and in having bioactive and osteoconductive properties. Calcium phosphate materials in different forms, as cements, composites, and coatings, are used in many medical and dental applications. This paper reviews the applications of these materials in dentistry. It presents a brief history, dental applications, and methods for improving their mechanical properties. Notable research is highlighted regarding (1 application of calcium phosphate into various fields in dentistry; (2 improving mechanical properties of calcium phosphate; (3 biomimetic process and functionally graded materials. This paper deals with most common types of the calcium phosphate materials such as hydroxyapatite and tricalcium phosphate which are currently used in dental and medical fields.

  17. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  18. Jhamarkotra phosphate ore processing plant

    OpenAIRE

    Sekhar Dmr; C.L Jain

    2009-01-01

    ABSTRACT: Low grade phosphate ore of Jhamarkotra that analyzes 16.5% P~2~O~5~ is upgraded to 34% P~2~O~5~ by a two stage flotation process after size reducing the ore to 90% passing through 200mesh using conventional equipment such as jaw and cone crushers followed by ball mills. Re-engineering the flotation circuit reduced the power consumption from 55 kWh per metric ton of ore treated to 50 kWh. Incorporation of roller press in the grinding circuit resulted into further reduction of power c...

  19. Phosphate accumulation in farm dam sediments

    International Nuclear Information System (INIS)

    Ruan, H.D.; Gilkes, R.J.

    1998-01-01

    Full text: Large amounts of phosphate are applied to agricultural regions in Australia each year. Phosphate is incorporated into organic materials, sorbed onto the surface of clay minerals, carbonates, iron oxides/hydroxides and other colloids or dissolved in soil solution. Phosphate in soil solution may leach into dam, or absorbed and particulate phosphate may be washed into dams during soil erosion and eventually accumulate in sediments. Variable and sometimes high concentrations of phosphate in water and sediments occur in farm dams in the York area of Western Australia. Phosphate accumulation in farm dam sediments (O to about 2 cm) was investigated using chemical analysis and X-ray diffraction. Concentrations of phosphorus up to 5 ppm in water and 1100 ppm in sediment were observed. The results of this study indicate that the amounts of total, organic and inorganic phosphate in sediment are approximately equal and are linearly related the dissolved phosphate concentration in dam water. High concentrations of nitrogen also exit in sediments and are closely related to the phosphate content of sediment presumably reflecting the high content of organic matter in sediments, ranging from 3 to 7% C. The concentration of phosphate in sediments is closely related to the organic matter concentration measured by LECO CHN analyser. X-ray diffraction patterns show that clay minerals in sediments consist of minor to large amounts of smectite and kaolinite, minor to moderate amounts of illite, mica and feldspars. Minor amounts of calcite and iron oxides were present only in a few samples. Clay minerals and iron oxides have moderate to high phosphate sorption capacities because the reactive sites on crystal surfaces and their high surface area. Thus colloidal minerals, organic materials and organo-mineral complexes may provide reactive sites for phosphate sorption

  20. Radiological impact of use of phosphate fertilizers

    International Nuclear Information System (INIS)

    Shukla, V.K.; Chinnaesakki, S.; Sartandel, S.J.; Shanbhag, A.A.; Puranik, V.D.

    2003-01-01

    The paper describes the results of gamma spectrometric measurements of 238 U, 233 Th, 226 Ra and 40 K in rock phosphates and various types of phosphate fertilizers and by-products. The increase in soil natural radioactivity has been assessed for major Indian crops. No significant increase in soil natural radioactivity is expected due to the application of phosphate fertilizers for agricultural productions. (author)

  1. Aquatic Toxicity Assessment of Phosphate Compounds

    OpenAIRE

    Kim, Eunju; Yoo, Sunkyoung; Ro, Hee-Young; Han, Hye-Jin; Baek, Yong-Wook; Eom, Ig-Chun; Kim, Hyun-Mi; Kim, Pilje; Choi, Kyunghee

    2013-01-01

    Objectives Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate co...

  2. Preparation of porous lanthanum phosphate with templates

    Energy Technology Data Exchange (ETDEWEB)

    Onoda, Hiroaki, E-mail: onoda@kpu.ac.jp [Department of Informatics and Environmental Sciences, Faculty of Life and Environmental Sciences, Kyoto Prefectural University, 1-5, Shimogamo Nakaragi-cyo, Sakyo-ku, Kyoto 606-8522 (Japan); Ishima, Yuya [Department of Applied Chemistry, Faculty of Life Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Takenaka, Atsushi [Department of Materials Science, Yonago National College of Technology, 4448, Hikona-cho, Yonago, Tottori 683-8502 (Japan); Tanaka, Isao [Department of Materials Science and Engineering, Faculty of Engineering, Kyoto University, Yoshida-Honmachi, Sakyo-ku, Kyoto 606-8501 (Japan)

    2009-08-05

    Malonic acid, propionic acid, glycine, n-butylamine, and urea were added to the preparation of lanthanum phosphate from lanthanum nitrate and phosphoric acid solutions. All additives were taken into lanthanum phosphate particles. The additives that have a basic site were easy to contain in precipitates. The addition of templates improved the specific surface area of lanthanum phosphate. The amount of pore, with radius smaller than 4 nm, increased with the addition of templates. The remained additives had influence on the acidic properties of lanthanum phosphate.

  3. Mineral induced formation of sugar phosphates

    Science.gov (United States)

    Pitsch, S.; Eschenmoser, A.; Gedulin, B.; Hui, S.; Arrhenius, G.

    1995-01-01

    Glycolaldehyde phosphate, sorbed from highly dilute, weakly alkaline solution into the interlayer of common expanding sheet structure metal hydroxide minerals, condenses extensively to racemic aldotetrose-2, 4-diphophates, and aldohexose-2, 4, 6-triphosphates. The reaction proceeds mainly through racemic erythrose-2, 4-phosphate, and terminates with a large fraction of racemic altrose-2, 4, 6-phosphate. In the absence of an inductive mineral phase, no detectable homogeneous reaction takes place in the concentration- and pH range used. The reactant glycolaldehyde phosphate is practically completely sorbed within an hour from solutions with concentrations as low as 50 micron; the half-time for conversion to hexose phosphates is of the order of two days at room temperature and pH 9.5. Total production of sugar phosphates in the mineral interlayer is largely independent of the glycolaldehyde phosphate concentration in the external solution, but is determined by the total amount of GAP offered for sorption up to the capacity of the mineral. In the presence of equimolar amounts of rac-glyceraldehyde-2-phosphate, but under otherwise similar conditions, aldopentose-2, 4, -diphosphates also form, but only as a small fraction of the hexose-2, 4, 6-phosphates.

  4. Biosynthesis and characterization of layered iron phosphate

    International Nuclear Information System (INIS)

    Zhou Weijia; He Wen; Wang Meiting; Zhang Xudong; Yan Shunpu; Tian Xiuying; Sun Xianan; Han Xiuxiu; Li Peng

    2008-01-01

    Layered iron phosphate with uniform morphology has been synthesized by a precipitation method with yeast cells as a biosurfactant. The yeast cells are used to regulate the nucleation and growth of layered iron phosphate. The uniform layered structure is characterized by small-angle x-ray diffraction (SAXD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) analyses. Fourier transform infrared spectroscopy (FT-IR) is used to analyze the chemical bond linkages in organic–inorganic hybrid iron phosphate. The likely synthetic mechanism of nucleation and oriented growth is discussed. The electrical conductivity of hybrid iron phosphate heat-treated at different temperatures is presented

  5. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.

    Science.gov (United States)

    Ha, Suk-Jin; Kim, Soo Rin; Choi, Jin-Ho; Park, Myeong Soo; Jin, Yong-Su

    2011-10-01

    Efficient fermentation of xylose, which is abundant in hydrolysates of lignocellulosic biomass, is essential for producing cellulosic biofuels economically. While heterologous expression of xylose isomerase in Saccharomyces cerevisiae has been proposed as a strategy to engineer this yeast for xylose fermentation, only a few xylose isomerase genes from fungi and bacteria have been functionally expressed in S. cerevisiae. We cloned two bacterial xylose isomerase genes from anaerobic bacteria (Bacteroides stercoris HJ-15 and Bifidobacterium longum MG1) and introduced them into S. cerevisiae. While the transformant with xylA from B. longum could not assimilate xylose, the transformant with xylA from B. stercoris was able to grow on xylose. This result suggests that the xylose isomerase (BsXI) from B. stercoris is functionally expressed in S. cerevisiae. The engineered S. cerevisiae strain with BsXI consumed xylose and produced ethanol with a good yield (0.31 g/g) under anaerobic conditions. Interestingly, significant amounts of xylitol (0.23 g xylitol/g xylose) were still accumulated during xylose fermentation even though the introduced BsXI might not cause redox imbalance. We investigated the potential inhibitory effects of the accumulated xylitol on xylose fermentation. Although xylitol inhibited in vitro BsXI activity significantly (K(I) = 5.1 ± 1.15 mM), only small decreases (less than 10%) in xylose consumption and ethanol production rates were observed when xylitol was added into the fermentation medium. These results suggest that xylitol accumulation does not inhibit xylose fermentation by engineered S. cerevisiae expressing xylA as severely as it inhibits the xylose isomerase reaction in vitro.

  6. Study of Viability of Phosphate Solubilizing Bacteria in Phosphate granules

    Directory of Open Access Journals (Sweden)

    hajar rajabi

    2017-06-01

    Full Text Available Introduction: sustainable development and the environment are interconnected. Sustainable agriculture is continuous utilization of a farm with respect to various aspects of environmental conditions by using fewer inputs (other than Bio-fertilizers. Phosphorus is one of the essential elements for the plants. Management of soil is possible by using biological fertilizers pillar of sustainable agriculture and providing some of the phosphorus needed by plants via bio-fertilizers. Phosphorus deficiency is extremely effective on the plant growth and productivity. The application of phosphorus fertilizers is expensive and dangerous. In addition, phosphorus in the soilmay become insoluble and will be unavailable to the plants. Studies showed that phosphate solubilizing bacteria in the soil rhizosphere are active and by root exudates solve insoluble phosphates such as tricalcium phosphate, and form absorbable P for plant. Consequently, the use of microbial fertilizers could reduce excessive use of chemical fertilizers and lead to decrease their harmful effects and protect the environment and conservation of available resources. The biological phosphate fertilizer industry uses sugar beet molasses as a binder and drying granules at high temperatures. Therefore, it is important to evaluate the durability of the bacteria in molasses at high temperature. Materials and Methods: This study was designed as completely randomized design in a factorial arrangement.10 isolates were selected and the ratios of 50%, 25%, 15% and 10% of the apatite, organic matter, sulfur and soluble granule (ratio 1: 1 and 2: 1 bacteria and molasses, respectively, for each isolate was prepared. The final product was dried at 28 and 40 °C and remained for 4 months and population counted at first day and 10, 20, 30, 60, 90 and 120 days after the preparing. The population was counted by the serial dilution technique and cultured at Sperber media. Results and Discussion:Comparing the

  7. Investigation on the Metabolic Regulation of pgi gene knockout Escherichia coli by Enzyme Activities and Intracellular Metabolite Concentrations

    Directory of Open Access Journals (Sweden)

    Nor ‘Aini, A. R.

    2006-01-01

    Full Text Available An integrated analysis of the cell growth characteristics, enzyme activities, intracellular metabolite concentrations was made to investigate the metabolic regulation of pgi gene knockout Escherichia coli based on batch culture and continuous culture which was performed at the dilution rate of 0.2h-1. The enzymatic study identified that pathways of pentose phosphate, ED pathway and glyoxylate shunt were all active in pgi mutant. The glycolysis enzymes i.e glyceraldehyde-3-phosphate dehydrogenase, fructose diphosphatase, pyruvate kinase, triose phosphate isomerase were down regulated implying that the inactivation of pgi gene reduced the carbon flux through glycolytic pathway. Meanwhile, the pentose phosphate pathway was active as a major route for intermediary carbohydrate metabolism instead of glycolysis. The pentose phosphate pathway generates most of the major reducing co-factor NADPH as shown by the increased of NADPH/NADP+ ratio in the mutant when compared with the parent strain. The fermentative enzymes such as acetate kinase and lactate dehydrogenase were down regulated in the mutant. Knockout of pgi gene results in the significant increase in the intracellular concentration of glucose-6-phosphate and decrease in the concentration of oxaloacetate. The slow growth rate of the mutant was assumed to be affected by the accumulation of glucose-6-phosphate and imbalance of NADPH reoxidation.

  8. Bio-treatment of phosphate from synthetic wastewater using ...

    African Journals Online (AJOL)

    In this study, the efficient phosphate utilizing isolates were used to remove phosphate from synthetic phosphate wastewater was tested using batch scale process. Hence the objective of the present study was to examine the efficiency of bacterial species individually for the removal of phosphate from synthetic phosphate ...

  9. The multidrug resistance IncA/C transferable plasmid encodes a novel domain-swapped dimeric protein-disulfide isomerase.

    Science.gov (United States)

    Premkumar, Lakshmanane; Kurth, Fabian; Neyer, Simon; Schembri, Mark A; Martin, Jennifer L

    2014-01-31

    The multidrug resistance-encoding IncA/C conjugative plasmids disseminate antibiotic resistance genes among clinically relevant enteric bacteria. A plasmid-encoded disulfide isomerase is associated with conjugation. Sequence analysis of several IncA/C plasmids and IncA/C-related integrative and conjugative elements (ICE) from commensal and pathogenic bacteria identified a conserved DsbC/DsbG homolog (DsbP). The crystal structure of DsbP reveals an N-terminal domain, a linker region, and a C-terminal catalytic domain. A DsbP homodimer is formed through domain swapping of two DsbP N-terminal domains. The catalytic domain incorporates a thioredoxin-fold with characteristic CXXC and cis-Pro motifs. Overall, the structure and redox properties of DsbP diverge from the Escherichia coli DsbC and DsbG disulfide isomerases. Specifically, the V-shaped dimer of DsbP is inverted compared with EcDsbC and EcDsbG. In addition, the redox potential of DsbP (-161 mV) is more reducing than EcDsbC (-130 mV) and EcDsbG (-126 mV). Other catalytic properties of DsbP more closely resemble those of EcDsbG than EcDsbC. These catalytic differences are in part a consequence of the unusual active site motif of DsbP (CAVC); substitution to the EcDsbC-like (CGYC) motif converts the catalytic properties to those of EcDsbC. Structural comparison of the 12 independent subunit structures of DsbP that we determined revealed that conformational changes in the linker region contribute to mobility of the catalytic domain, providing mechanistic insight into DsbP function. In summary, our data reveal that the conserved plasmid-encoded DsbP protein is a bona fide disulfide isomerase and suggest that a dedicated oxidative folding enzyme is important for conjugative plasmid transfer.

  10. Genetic hitchhiking associated with life history divergence and colonization of North America in the European corn borer moth.

    Science.gov (United States)

    Dopman, Erik B

    2011-05-01

    A primary goal for evolutionary biology is to reveal the genetic basis for adaptive evolution and reproductive isolation. Using Z and E pheromone strains the European corn borer (ECB) moth, I address this problem through multilocus analyses of DNA polymorphism. I find that the locus Triose phosphate isomerase (Tpi) is a statistically significant outlier in coalescent simulations of demographic histories of population divergence, including strict allopatric isolation, restricted migration, secondary contact, and population growth or decline. This result corroborates a previous QTL study that identified the Tpi chromosomal region as a repository for gene(s) contributing to divergence in life history. Patterns of nucleotide polymorphism at Tpi suggest a recent selective sweep and genetic hitchhiking associated with colonization of North America from Europe ~200 generations ago. These results indicate that gene genealogies initially diverge during speciation because of selective sweeps, but differential introgression may play a role in the maintenance of differentiation for sympatric populations.

  11. Giardia duodenalis genetic assemblages and hosts

    Directory of Open Access Journals (Sweden)

    Heyworth Martin F.

    2016-01-01

    Full Text Available Techniques for sub-classifying morphologically identical Giardia duodenalis trophozoites have included comparisons of the electrophoretic mobility of enzymes and of chromosomes, and sequencing of genes encoding β-giardin, triose phosphate isomerase, the small subunit of ribosomal RNA and glutamate dehydrogenase. To date, G. duodenalis organisms have been sub-classified into eight genetic assemblages (designated A–H. Genotyping of G. duodenalis organisms isolated from various hosts has shown that assemblages A and B infect the largest range of host species, and appear to be the main (or possibly only G. duodenalis assemblages that undeniably infect human subjects. In at least some cases of assemblage A or B infection in wild mammals, there is suggestive evidence that the infection had resulted from environmental contamination by G. duodenalis cysts of human origin.

  12. Changes in protein expression profiles between a low phytic acid rice ( Oryza sativa L. Ssp. japonica) line and its parental line: a proteomic and bioinformatic approach.

    Science.gov (United States)

    Emami, Kaveh; Morris, Nicholas J; Cockell, Simon J; Golebiowska, Gabriela; Shu, Qing-Yao; Gatehouse, Angharad M R

    2010-06-09

    The seed proteome of a low phytic acid (lpa) rice line (Os-lpa-XS110-1), developed as a novel food source, was compared to that of its parental line, Xiushui 110 (XS-110). Analysis by surfaced enhanced laser desorption ionization-time-of-flight mass spectrometry (SELDI-TOF MS) and two-dimensional gel electrophoresis (2-DE) allowed the detection of a potential low molecular weight biomarker and identification of 23 differentially expressed proteins that include stress-related proteins, storage proteins, and potential allergens. Bioinformatic analyses revealed that triose phosphate isomerase (TPI) and fructose bisphosphatealdolase (FBA), two major differentially expressed proteins, are involved in myo-inositol metabolism. Accumulation of globulin was also significantly decreased in the lpa line. This study demonstrates the potential of proteomic and bioinformatic profiling techniques for safety assessment of novel foods. Furthermore, these techniques provide powerful tools for studying functional genomics due to the possibility of identifying genes related to the mutated traits.

  13. Low risk for transmission of zoonotic Giardia duodenalis from dogs to humans in rural Cambodia

    DEFF Research Database (Denmark)

    Inpankaew, Tawin; Schär, Fabian; Odermatt, Peter

    2014-01-01

    BACKGROUND: A number of epidemiological studies have demonstrated Giardia as prevalent in both humans and dogs worldwide and have postulated the occurrence of anthroponotic, zoonotic and animal-specific cycles of transmission, which may be geographically and regionally unique in its epidemiology....... The aim of this study was to utilise molecular tools to determine the prevalence and compare genotypes of Giardia duodenalis infecting humans and dogs living in a previously identified Giardia-endemic village in rural Cambodia in order to ascertain zoonotic transmission risk. FINDINGS: The prevalence of G....... duodenalis in humans and dogs was 18.3% (40/218) and 10.6% (10/94) by PCR, respectively. Molecular characterisation of the small subunit of ribosomal RNA (SSU rRNA) gene, triose phosphate isomerase (TPI) gene and sub-assemblage characterisation of the glutamate dehydrogenase (gdh) gene placed 27.5% (11...

  14. Counterdiffusion protein crystallisation in microgravity and its observation with PromISS (protein microscope for the international space station)

    Science.gov (United States)

    Zegers, Ingrid; Carotenuto, Luigi; Evrard, Christine; Garcia-Ruiz, JuanMa; De Gieter, Philippe; Gonzales-Ramires, Luis; Istasse, Eric; Legros, Jean-Claude; Martial, Joseph; Minetti, Christophe; Otalora, Fermin; Queeckers, Patrick; Schockaert, Cedric; VandeWeerdt, Cecile; Willaert, Ronnie; Wyns, Lode; Yourassowsky, Catherine; Dubois, Frank

    2006-09-01

    The crystallisation by counterdiffusion is a very efficient technique for obtaining high-quality protein crystals. A prerequisite for the use of counterdiffusion techniques is that mass transport must be controlled by diffusion alone. Sedimentation and convection can be avoided by either working in gelled systems, working in systems of small dimensions, or in the absence of gravity. We present the results from experiments performed on the ISS using the Protein Microscope for the International Space Station (PromISS), using digital holography to visualise crystal growth processes. We extensively characterised three model proteins for these experiments (cablys3*lysozyme, triose phosphate isomerase, and parvalbumin) and used these to assess the ISS as an environment for crystallisation by counterdiffusion. The possibility to visualise growth and movement of crystals in different types of experiments (capillary counterdiffusion and batch-type) is important, as movement of crystals is clearly not negligible.

  15. Removal of phosphate from solution by adsorption and precipitation of calcium phosphate onto monohydrocalcite.

    Science.gov (United States)

    Yagi, Shintaro; Fukushi, Keisuke

    2012-10-15

    The sorption behavior and mechanism of phosphate on monohydrocalcite (CaCO(3)·H(2)O: MHC) were examined using batch sorption experiments as a function of phosphate concentrations, ionic strengths, temperatures, and reaction times. The mode of PO(4) sorption is divisible into three processes depending on the phosphate loading. At low phosphate concentrations, phosphate is removed by coprecipitation of phosphate during the transformation of MHC to calcite. The sorption mode at the low-to-moderate phosphate concentrations is most likely an adsorption process because the sorption isotherm at the conditions can be fitted reasonably with the Langmuir equation. The rapid sorption kinetics at the conditions is also consistent with the adsorption reaction. The adsorption of phosphate on MHC depends strongly on ionic strength, but slightly on temperature. The maximum adsorption capacities of MHC obtained from the regression of the experimental data to the Langmuir equation are higher than those reported for stable calcium carbonate (calcite or aragonite) in any conditions. At high phosphate concentrations, the amount of sorption deviates from the Langmuir isotherm, which can fit the low-to-moderate phosphate concentrations. Speciation-saturation analyses of the reacted solutions at the conditions indicated that the solution compositions which deviate from the Langmuir equation are supersaturated with respect to a certain calcium phosphate. The obtained calcium phosphate is most likely amorphous calcium phosphate (Ca(3)(PO(4))(2)·xH(2)O). The formation of the calcium phosphate depends strongly on ionic strength, temperature, and reaction times. The solubility of MHC is higher than calcite and aragonite because of its metastability. Therefore, the higher solubility of MHC facilitates the formation of the calcium phosphates more than with calcite and aragonite. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. 21 CFR 520.823 - Erythromycin phosphate.

    Science.gov (United States)

    2010-04-01

    .... (a) Specifications. Erythromycin phosphate is the phosphate salt of the antibiotic substance produced... eggs for human consumption; to assure effectiveness, treated birds must consume enough medicated water...; do not use in chickens producing eggs for human consumption; to assure effectiveness, treated birds...

  17. Thermal stability of phosphate coatings on steel

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2015-07-01

    Full Text Available The work was validated thermal stability of zinc, manganese and tri-cations phosphate coatings on steel, made from commercial phosphating bath type Pragofos. Thermogravimetric data dehydration of scholzite, phosphophylite and hureaulite coatings in the temperature range 160 °C – 400 °C define the conditions for applying paints with higher firing temperature or thermal spraying ceramic coatings.

  18. Serum Calcium, Inorganic Phosphates and some Haematological ...

    African Journals Online (AJOL)

    Serum calcium level was determined by EDTA titration, inorganic phosphate by spectrophotometric method of Goldberg and the Haematological parameters by Bain method. Results: The age range of both test subjects and controls was 3 to 26 years. There were no significant differences in calcium and inorganic phosphate ...

  19. Electrochemical phosphate recovery from nanofiltration concentrates

    NARCIS (Netherlands)

    Kappel, C.; Yasadi, K.; Temmink, H.; Metz, S.J.; Kemperman, Antonius J.B.; Nijmeijer, Dorothea C.; Zwijnenburg, A.; Witkamp, G.J.; Rijnaarts, H.H.M.

    2013-01-01

    The high total phosphorus content of raw domestic wastewater with its significant eutrophication potential offers an excellent possibility for phosphate recovery. Continuous recirculation of NF concentrate to an MBR and simultaneous phosphate recovery from the NF concentrate can be applied to

  20. Phosphate recycling in the phosphorus industry

    NARCIS (Netherlands)

    Schipper, W.J.; Klapwijk, A.; Potjer, B.; Rulkens, W.H.; Temmink, B.G.; Kiestra, F.D.G.; Lijmbach, A.C.M.

    2004-01-01

    The article describes the potential and limitations for recovery of phosphate from secondary materials in the production process for white phosphorus. This thermal process involves the feeding of phosphate rock, cokes and pebbles to a furnace. The reducing conditions in the furnace promote the

  1. 21 CFR 182.1217 - Calcium phosphate.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1217 Calcium phosphate. (a) Product. Calcium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good...

  2. 21 CFR 182.1778 - Sodium phosphate.

    Science.gov (United States)

    2010-04-01

    ... HUMAN CONSUMPTION (CONTINUED) SUBSTANCES GENERALLY RECOGNIZED AS SAFE Multiple Purpose GRAS Food Substances § 182.1778 Sodium phosphate. (a) Product. Sodium phosphate (mono-, di-, and tribasic). (b) Conditions of use. This substance is generally recognized as safe when used in accordance with good...

  3. BIOPHYSICS. Response to Comments on "Extreme electric fields power catalysis in the active site of ketosteroid isomerase".

    Science.gov (United States)

    Fried, Stephen D; Boxer, Steven G

    2015-08-28

    Natarajan et al. and Chen and Savidge comment that comparing the electric field in ketosteroid isomerase's (KSI's) active site to zero overestimates the catalytic effect of KSI's electric field because the reference reaction occurs in water, which itself exerts a sizable electrostatic field. To compensate, Natarajan et al. argue that additional catalytic weight arises from positioning of the general base, whereas Chen and Savidge propose a separate contribution from desolvation of the general base. We note that the former claim is not well supported by published results, and the latter claim is intriguing but lacks experimental basis. We also take the opportunity to clarify some of the more conceptually subtle aspects of electrostatic catalysis. Copyright © 2015, American Association for the Advancement of Science.

  4. Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor.

    Science.gov (United States)

    Ryu, Se-Ah; Kim, Chang Sup; Kim, Hye-Jung; Baek, Dae Heoun; Oh, Deok-Kun

    2003-01-01

    D-Tagatose was continuously produced using thermostable L-arabinose isomerase immobilized in alginate with D-galactose solution in a packed-bed bioreactor. Bead size, L/D (length/diameter) of reactor, dilution rate, total loaded enzyme amount, and substrate concentration were found to be optimal at 0.8 mm, 520/7 mm, 0.375 h(-1), 5.65 units, and 300 g/L, respectively. Under these conditions, the bioreactor produced about 145 g/L tagatose with an average productivity of 54 g tagatose/L x h and an average conversion yield of 48% (w/w). Operational stability of the immobilized enzyme was demonstrated, with a tagatose production half-life of 24 days.

  5. [Glucose isomerase activity in suspension of Arthrobacter nicotianae cells and adsorption immobilization of the microorganisms on inorganic carriers].

    Science.gov (United States)

    Kovalenko, G A; Perminova, L V; Terent'eva, T G; Sapunova, L I; Lobanok, A G; Chuenko, T V; Rudina, N A; Cherniak, E I

    2008-01-01

    Kinetics of monosaccharide isomerization has been studied in suspensions of intact, non-growing Arthrobacter nicotianae cells. Under the conditions of the study, glucose and fructose were isomerized at the same maximum rate of 700 micromol/min per 1 g dried cells, which increased with temperature (the dependence was linear at 60-80 degrees C). The proposed means of adsorption immobilization of A. nicotianae cells involve inorganic carriers differing in macrostructure, chemical nature, and surface characteristics. Biocatalysts obtained by adsorbing the cells of A. nicotianae on carbon-containing foam ceramics in the coarse of submerged cultivation were relatively stable and retained original activity (catalysis of monosaccharide isomerization) throughout 14 h of use at 70 degrees C. Maximum glucose isomerase activity (2 micromol/min per 1 g) was observed with biocatalysts prepared by adsorption of non-growing A. nicotianae cells to the macroporous carbon-mineral carrier Sapropel and subsequent drying of the cell suspension together with the carrier.

  6. Inhibition of enzyme activity of Rhipicephalus (Boophilus) microplus triosephosphate isomerase and BME26 cell growth by monoclonal antibodies.

    Science.gov (United States)

    Saramago, Luiz; Franceschi, Mariana; Logullo, Carlos; Masuda, Aoi; Vaz, Itabajara da Silva; Farias, Sandra Estrazulas; Moraes, Jorge

    2012-10-12

    In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38) and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus) microplus (RmTIM). These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26) was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  7. Inhibition of Enzyme Activity of Rhipicephalus (Boophilus microplus Triosephosphate Isomerase and BME26 Cell Growth by Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Jorge Moraes

    2012-10-01

    Full Text Available In the present work, we produced two monoclonal antibodies (BrBm37 and BrBm38 and tested their action against the triosephosphate isomerase of Rhipicephalus (Boophilus microplus (RmTIM. These antibodies recognize epitopes on both the native and recombinant forms of the protein. rRmTIM inhibition  by BrBm37 was up to 85% whereas that of BrBrm38 was 98%, depending on the antibody-enzyme ratio. RmTIM activity was lower in ovarian, gut, and fat body tissue extracts treated with BrBm37 or BrBm38 mAbs. The proliferation of the embryonic tick cell line (BME26 was inhibited by BrBm37 and BrBm38 mAbs. In summary, the results reveal that it is possible to interfere with the RmTIM function using antibodies, even in intact cells.

  8. ER Stress and Unfolded Protein Response in Amyotrophic Lateral Sclerosis – A Controversial Role of Protein Disulphide Isomerase

    Directory of Open Access Journals (Sweden)

    Merja eJaronen

    2014-12-01

    Full Text Available Accumulation of proteins in aberrant conformation occurs in many neurodegenerative diseases. Furthermore, dysfunctions in protein handling in endoplasmic reticulum (ER and the following ER stress have been implicated in a vast number of diseases, such as amyotrophic lateral sclerosis (ALS. During excessive ER stress unfolded protein response (UPR is activated to return ER to its normal physiological balance. The exact mechanisms of protein misfolding, accumulation and the following ER stress could lead to neurodegeneration and the question whether UPR is a beneficial compensatory mechanism slowing down the neurodegenerative processes are of interest. Protein disulphide isomerase (PDI is a disulfide bond-modulating ER chaperone, which can also facilitate the ER-associated degradation (ERAD of misfolded proteins. In this review we discuss the recent findings of ER stress, UPR and especially the role of PDI in ALS.

  9. GRP78 protects a disintegrin and metalloprotease 17 against protein-disulfide isomerase A6 catalyzed inactivation.

    Science.gov (United States)

    Schäfer, Miriam; Granato, Daniela C; Krossa, Sebastian; Bartels, Anne-Kathrin; Yokoo, Sami; Düsterhöft, Stefan; Koudelka, Tomas; Scheidig, Axel J; Tholey, Andreas; Paes Leme, Adriana F; Grötzinger, Joachim; Lorenzen, Inken

    2017-11-01

    The shedding of ectodomains is a crucial mechanism in many physiological and pathological events. A disintegrin and metalloprotease-17 (ADAM17) is a key sheddase involved in essential processes, such as development, regeneration, and immune defense. ADAM17 exists in two conformations which differ in their disulfide connection in the membrane-proximal domain (MPD). Protein-disulfide isomerases (PDIs) on the cell surface convert the open MPD into a rigid closed form, which corresponds to inactive ADAM17. ADAM17 is expressed in its open activatable form in the endoplasmic reticulum (ER) and consequently must be protected against ER-resident PDI activity. Here, we show that the chaperone 78-kDa glucose-regulated protein (GRP78) protects the MPD against PDI-dependent disulfide-bond isomerization by binding to this domain and, thereby, preventing ADAM17 inhibition. © 2017 Federation of European Biochemical Societies.

  10. The Unfolding and Refolding Reactions of Triosephosphate Isomerase from Trypanosoma Cruzi Follow Similar Pathways. Guanidinium Hydrochloride Studies

    Science.gov (United States)

    Vázquez-Contreras, Edgar; Pérez Hernández, Gerardo; Sánchez-Rebollar, Brenda Guadalupe; Chánez-Cárdenas, María Elena

    2005-04-01

    The unfolding and refolding reactions of Trypanosoma cruzi triosephosphate isomerase (TcTIM) was studied under equilibrium conditions at increasing guanidinium hydrochloride concentrations. The changes in activity intrinsic fluorescence and far-ultraviolet circular dichroism as a function of denaturant were used as a quaternary, tertiary and secondary structural probes respectively. The change in extrinsic ANS fluorescence intensity was also investigated. The results show that the transition between the homodimeric native enzyme to the unfolded monomers (unfolding), and its inverse reaction (refolding) are described by similar pathways and two equilibrium intermediates were detected in both reactions. The mild denaturant concentrations intermediate is active and contains significant amount of secondary and tertiary structures. The medium denaturant concentrations intermediate is inactive and able to bind the fluorescent dye. This intermediates are maybe related with those observed in the denaturation pattern of TIMs from other species; the results are discussed in this context.

  11. Automated Yeast Transformation Protocol to Engineer S. cerevisiae Strains for Cellulosic Ethanol Production with Open Reading Frames that Express Proteins Binding to Xylose Isomerase Identified using Robotic Two-hybrid Screen

    Science.gov (United States)

    Commercialization of fuel ethanol production from lignocellulosic biomass has focused on engineering the glucose-fermenting industrial yeast Saccharomyces cerevisiae to utilize pentose sugars. Since S. cerevisiae naturally metabolizes xylulose, one approach involves introducing xylose isomerase (XI...

  12. The isotopic cycle of oceanic phosphate. I

    International Nuclear Information System (INIS)

    Longinelli, A.; Bartelloni, M.; Cortecci, G.

    1976-01-01

    Steady-state conditions seem to exist in the Atlantic and Pacific Oceans in the case of the 18 O content of dissolved phosphate. The measured delta 18 O(PO 4 3- ) values are fairly constant at all latitudes and depths. A constant difference of about 1% exists between average Atlantic and Pacific results. Oxygen isotope measurements carried out on phosphate in the organic matter of fish, showed an average difference of about 3% when compared with dissolved oceanic phosphate. Such a difference can be attributed to biological fractionation effects in the metabolism of phosphate. However, the equilibrium fractionation factors in the phosphate-water system are poorly known and consequently it is not known whether this difference represents an approach to, or a deviation from, isotopic equilibrium conditions. (Auth.)

  13. Root architecture responses: in search of phosphate.

    Science.gov (United States)

    Péret, Benjamin; Desnos, Thierry; Jost, Ricarda; Kanno, Satomi; Berkowitz, Oliver; Nussaume, Laurent

    2014-12-01

    Soil phosphate represents the only source of phosphorus for plants and, consequently, is its entry into the trophic chain. This major component of nucleic acids, phospholipids, and energy currency of the cell (ATP) can limit plant growth because of its low mobility in soil. As a result, root responses to low phosphate favor the exploration of the shallower part of the soil, where phosphate tends to be more abundant, a strategy described as topsoil foraging. We will review the diverse developmental strategies that can be observed among plants by detailing the effect of phosphate deficiency on primary and lateral roots. We also discuss the formation of cluster roots: an advanced adaptive strategy to cope with low phosphate availability observed in a limited number of species. Finally, we will put this work into perspective for future research directions. © 2014 American Society of Plant Biologists. All Rights Reserved.

  14. Co-expression of sulphydryl oxidase and protein disulphide isomerase in Escherichia coli allows for production of soluble CRM197.

    Science.gov (United States)

    Roth, R; van Zyl, P; Tsekoa, T; Stoychev, S; Mamputha, S; Buthelezi, S; Crampton, M

    2017-05-01

    To investigate the production of soluble cross-reacting material 197 (CRM 197 ) in Escherichia coli, a safe and effective T-cell-dependent protein carrier for polysaccharides used in the manufacture and application of multivalent conjugate vaccines. The use of co-expression of a sulphydryl oxidase (SOX) and protein disulphide isomerase for the production of soluble CRM 197 in E. coli is described. CRM 197 contains two disulphide bonds, which are normally unable to form in the reducing environment of the E. coli cytoplasm. It was found that co-expression yielded soluble CRM 197 , at a production rate ~10% of the production of insoluble CRM 197 , in equivalent small-scale cultures. Structural analysis of the purified CRM 197 compared to CRM 197 commercially produced in cultures of recombinant Pseudomonas fluorescens indicated that the E. coli soluble protein compares favourably on all structural levels. SOX and protein disulphide isomerase are enzymes involved in the formation of intra-protein disulphide bonds, and can influence the tertiary structure of the protein being produced, resulting in increased solubility due to the correct folding of the protein. Their use enabled the production of soluble untagged CRM 197 in E. coli, which was previously unachievable. Previous literature reports have shown that CRM 197 can be expressed in E. coli, though only in an insoluble form, or in soluble form as a fusion protein. It is currently commercially produced in cultures of recombinant P. fluorescens. The use of a widely used, well-characterized expression host such as E. coli, rather than P. fluorescens broadens the applicability of the production technology, and the production system described here is worthy of further investigation for scaled up manufacture of CRM 197 . © 2017 The Society for Applied Microbiology.

  15. Identification and characterization of GmPDIL7, a soybean ER membrane-bound protein disulfide isomerase family protein.

    Science.gov (United States)

    Okuda, Aya; Matsusaki, Motonori; Masuda, Taro; Urade, Reiko

    2017-02-01

    Most proteins synthesized in the endoplasmic reticulum (ER) possess intramolecular and intermolecular disulfide bonds, which play an important role in the conformational stability and function of proteins. Hence, eukaryotic cells contain protein disulfide bond formation pathways such as the protein disulfide isomerase (PDI)-ER oxidoreductin 1 (Ero1) system in the ER lumen. In this study, we identified soybean PDIL7 (GmPDIL7), a novel soybean ER membrane-bound PDI family protein, and determined its enzymatic properties. GmPDIL7 has a putative N-terminal signal sequence, a thioredoxin domain with an active center motif (CGHC), and a putative C-terminal transmembrane region. Likewise, we demonstrated that GmPDIL7 is ubiquitously expressed in soybean tissues and is localized in the ER membrane. Furthermore, GmPDIL7 associated with other soybean PDI family proteins in vivo and GmPDIL7 mRNA was slightly upregulated under ER stress. The redox potential of recombinant GmPDIL7 expressed in Escherichia coli was -187 mV, indicating that GmPDIL7 could oxidize unfolded proteins. GmPDIL7 exhibited a dithiol oxidase activity level that was similar to other soybean PDI family proteins. However, the oxidative refolding activity of GmPDIL7 was lower than other soybean PDI family proteins. GmPDIL7 was well oxidized by GmERO1. Taken together, our results indicated that GmPDIL7 primarily plays a role as a supplier of disulfide bonds in nascent proteins for oxidative folding on the ER membrane. The nucleotide sequence data for the GmPDIL7 cDNA are available in the DNA Data Bank of Japan (DDBJ) databases under the accession numbers LC158001. Protein disulfide isomerase: EC 5.3.4.1. © 2016 Federation of European Biochemical Societies.

  16. Acid-denatured Green Fluorescent Protein (GFP) as model substrate to study the chaperone activity of protein disulfide isomerase.

    Science.gov (United States)

    Mares, Rosa E; Meléndez-López, Samuel G; Ramos, Marco A

    2011-01-01

    Green fluorescent protein (GFP) has been widely used in several molecular and cellular biology applications, since it is remarkably stable in vitro and in vivo. Interestingly, native GFP is resistant to the most common chemical denaturants; however, a low fluorescence signal has been observed after acid-induced denaturation. Furthermore, this acid-denatured GFP has been used as substrate in studies of the folding activity of some bacterial chaperones and other chaperone-like molecules. Protein disulfide isomerase enzymes, a family of eukaryotic oxidoreductases that catalyze the oxidation and isomerization of disulfide bonds in nascent polypeptides, play a key role in protein folding and it could display chaperone activity. However, contrasting results have been reported using different proteins as model substrates. Here, we report the further application of GFP as a model substrate to study the chaperone activity of protein disulfide isomerase (PDI) enzymes. Since refolding of acid-denatured GFP can be easily and directly monitored, a simple micro-assay was used to study the effect of the molecular participants in protein refolding assisted by PDI. Additionally, the effect of a well-known inhibitor of PDI chaperone activity was also analyzed. Because of the diversity their functional activities, PDI enzymes are potentially interesting drug targets. Since PDI may be implicated in the protection of cells against ER stress, including cancer cells, inhibitors of PDI might be able to enhance the efficacy of cancer chemotherapy; furthermore, it has been demonstrated that blocking the reductive cleavage of disulfide bonds of proteins associated with the cell surface markedly reduces the infectivity of the human immunodeficiency virus. Although several high-throughput screening (HTS) assays to test PDI reductase activity have been described, we report here a novel and simple micro-assay to test the chaperone activity of PDI enzymes, which is amenable for HTS of PDI

  17. Role of cysteine-protease CGHC motifs of ER-60, a protein disulfide isomerase, in hepatic apolipoprotein B100 degradation.

    Science.gov (United States)

    Rutledge, Angela C; Qiu, Wei; Zhang, Rianna; Urade, Reiko; Adeli, Khosrow

    2013-09-01

    Apolipoprotein B100 (apoB), the structural component of very low density lipoproteins (VLDL), is susceptible to misfolding and subsequent degradation by several intracellular pathways. ER-60, which has been implicated in apoB degradation, is a protein disulfide isomerase (PDI) that forms or rearranges disulfide bonds in substrate proteins and also possesses cysteine protease activity. To determine which ER-60 function is important for apoB degradation, adenoviruses encoding wild-type human ER-60 or a mutant form of human ER-60 (C60A, C409A) that lacked cysteine protease activity were overexpressed in HepG2 cells. Overexpression of wild-type ER-60 in HepG2 cells promoted apoB degradation and impaired apoB secretion, but mutant ER-60 overexpression did not. In McArdle RH-7777 cells, VLDL secretion was markedly inhibited following overexpression of wild-type but not mutant ER-60, an effect that could be blocked by oleate treatment. Mutant ER-60 was not trapped on apoB as it was with the control substrate tapasin, suggesting that ER-60's role in apoB degradation is likely unrelated to its protein disulfide isomerase activity. Thus, ER-60 may participate in apoB degradation by acting as a cysteine protease. We postulate that apoB cleavage by ER-60 within the ER lumen could facilitate proteasomal degradation of the C-terminus of translocationally-arrested apoB. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Inhibition of d-xylose isomerase by polyols: atomic details by joint X-ray/neutron crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Kovalevsky, Andrey, E-mail: ayk@lanl.gov [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Hanson, B. Leif [University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Mason, Sax A. [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Forsyth, V. Trevor [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Keele University, Staffordshire (United Kingdom); Fisher, Zoe [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Mustyakimov, Marat [Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States); Oak Ridge National Laboratory, PO Box 2008, MS 6475, Oak Ridge, TN 37831 (United States); Blakeley, Matthew P. [Institut Laue–Langevin, 6 Rue Jules Horowitz, 38042 Grenoble (France); Keen, David A. [Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Langan, Paul [Oak Ridge National Laboratory, PO Box 2008, MS 6475, Oak Ridge, TN 37831 (United States); Los Alamos National Laboratory, PO Box 1663, MS M888, Los Alamos, NM 87545 (United States)

    2012-09-01

    A joint X-ray/neutron structure of d-xylose isomerase in complex with the inhibitor sorbitol was determined at room temperature at an acidic pH of 5.9. Protonation of the O5 O atom of the sugar was directly observed in the nuclear density maps. Under acidic conditions sorbitol gains a water-mediated interaction with the enzyme active site, which may explain the increased potency of the inhibitor at low pH. d-Xylose isomerase (XI) converts the aldo-sugars xylose and glucose to their keto analogs xylulose and fructose, but is strongly inhibited by the polyols xylitol and sorbitol, especially at acidic pH. In order to understand the atomic details of polyol binding to the XI active site, a 2.0 Å resolution room-temperature joint X-ray/neutron structure of XI in complex with Ni{sup 2+} cofactors and sorbitol inhibitor at pH 5.9 and a room-temperature X-ray structure of XI containing Mg{sup 2+} ions and xylitol at the physiological pH of 7.7 were obtained. The protonation of oxygen O5 of the inhibitor, which was found to be deprotonated and negatively charged in previous structures of XI complexed with linear glucose and xylulose, was directly observed. The Ni{sup 2+} ions occupying the catalytic metal site (M2) were found at two locations, while Mg{sup 2+} in M2 is very mobile and has a high B factor. Under acidic conditions sorbitol gains a water-mediated interaction that connects its O1 hydroxyl to Asp257. This contact is not found in structures at basic pH. The new interaction that is formed may improve the binding of the inhibitor, providing an explanation for the increased affinity of the polyols for XI at low pH.

  19. Phosphate Biomineralization of Cambrian Microorganisms

    Science.gov (United States)

    McKay, David S.; Rozanov, Alexei Yu.; Hoover, Richard B.; Westall, Frances

    1998-01-01

    As part of a long term study of biological markers (biomarkers), we are documenting a variety of features which reflect the previous presence of living organisms. As we study meteorites and samples returned from Mars, our main clue to recognizing possible microbial material may be the presence of biomarkers rather than the organisms themselves. One class of biomarkers consists of biominerals which have either been precipitated directly by microorganisms, or whose precipitation has been influenced by the organisms. Such microbe-mediated mineral formation may include important clues to the size, shape, and environment of the microorganisms. The process of fossilization or mineralization can cause major changes in morphologies and textures of the original organisms. The study of fossilized terrestrial organisms can help provide insight into the interpretation of mineral biomarkers. This paper describes the results of investigations of microfossils in Cambrian phosphate-rich rocks (phosphorites) that were found in Khubsugul, Northern Mongolia.

  20. Iron Phosphate Glass-ceramics

    Directory of Open Access Journals (Sweden)

    Andrea Moguš-Milanković

    2015-12-01

    Full Text Available The crystallization of 40Fe2O3-60P2O5, 10ZnO-30Fe2O3-60P2O5 and (43.3−xPbO–(13.7+xFe2O3–43P2O5, (0 x < 30, glasses and glass-ceramic have been investigated. The structural evolution of glasses during heat treatment at various temperatures and the tendency for crystallization for series of glasses with modified composition are characterized by a dendrite-like phase separation in the early stage of crystallization. Such a behavior leads to the formation of randomly dispersed agglomerates which contain the anhedrally shaped crystallites embedded in glass matrix. Therefore, regardless of the type of crystallization, controlled or spontaneous, the formation of crystalline phases in these phosphate glasses and glass-ceramics is attributed to the disordered interfaces between crystalline grains and glassy matrix.

  1. Genetics Home Reference: pyridoxal 5'-phosphate-dependent epilepsy

    Science.gov (United States)

    ... 5'-phosphate-dependent epilepsy Pyridoxal 5'-phosphate-dependent epilepsy Printable PDF Open All Close All Enable Javascript ... expand/collapse boxes. Description Pyridoxal 5'-phosphate-dependent epilepsy is a condition that involves seizures beginning soon ...

  2. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis.

    OpenAIRE

    Thiel, T

    1988-01-01

    Cells of the cyanobacterium Anabaena variabilis starved for phosphate for 3 days took up phosphate at about 100 times the rate of unstarved cells. Kinetic data suggested that a new transport system had been induced by starvation for phosphate. The inducible phosphate transport system was quickly repressed by addition of Pi. Phosphate-starved cells were more sensitive to the toxic effects of arsenate than were unstarved cells, but phosphate could alleviate some of the toxicity. Arsenate was a ...

  3. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures.

    Science.gov (United States)

    Rhimi, Moez; Bajic, Goran; Ilhammami, Rimeh; Boudebbouze, Samira; Maguin, Emmanuelle; Haser, Richard; Aghajari, Nushin

    2011-11-10

    L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Here we reported the purification and the biochemical characterization of

  4. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Science.gov (United States)

    2011-01-01

    Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we reported the purification and the

  5. The acid-tolerant L-arabinose isomerase from the mesophilic Shewanella sp. ANA-3 is highly active at low temperatures

    Directory of Open Access Journals (Sweden)

    Rhimi Moez

    2011-11-01

    Full Text Available Abstract Background L-arabinose isomerases catalyse the isomerization of L-arabinose into L-ribulose at insight biological systems. At industrial scale of this enzyme is used for the bioconversion of D-galactose into D-tagatose which has many applications in pharmaceutical and agro-food industries. The isomerization reaction is thermodynamically equilibrated, and therefore the bioconversion rates is shifted towards tagatose when the temperature is increased. Moreover, to prevent secondary reactions it will be of interest to operate at low pH. The profitability of this D-tagatose production process is mainly related to the use of lactose as cheaper raw material. In many dairy products it will be interesting to produce D-tagatose during storage. This requires an efficient L-arabinose isomerase acting at low temperature and pH values. Results The gene encoding the L-arabinose isomerase from Shewanella sp. ANA-3 was cloned and overexpressed in Escherichia coli. The purified protein has a tetrameric arrangement composed by four identical 55 kDa subunits. The biochemical characterization of this enzyme showed that it was distinguishable by its maximal activity at low temperatures comprised between 15-35°C. Interestingly, this biocatalyst preserves more than 85% of its activity in a broad range of temperatures from 4.0 to 45°C. Shewanella sp. ANA-3 L-arabinose isomerase was also optimally active at pH 5.5-6.5 and maintained over 80% of its activity at large pH values from 4.0 to 8.5. Furthermore, this enzyme exhibited a weak requirement for metallic ions for its activity evaluated at 0.6 mM Mn2+. Stability studies showed that this protein is highly stable mainly at low temperature and pH values. Remarkably, T268K mutation clearly enhances the enzyme stability at low pH values. Use of this L-arabinose isomerase for D-tagatose production allows the achievement of attractive bioconversion rates of 16% at 4°C and 34% at 35°C. Conclusions Here we

  6. Sonochemical precipitation of amorphous uranium phosphates from trialkyl phosphate solutions and their thermal conversion to UP2O7

    Czech Academy of Sciences Publication Activity Database

    Doroshenko, I.; Žurková, J.; Moravec, Z.; Bezdička, Petr; Pinkas, J.

    2015-01-01

    Roč. 26, SEP (2015), s. 157-162 ISSN 1350-4177 Institutional support: RVO:61388980 Keywords : Uranium * Phosphates * Sonochemistry * Nuclear waste * Trimethyl phosphate * Triethyl phosphate Subject RIV: CA - Inorganic Chemistry Impact factor: 4.556, year: 2015

  7. Comparative evaluation of the efficacy of tricalcium phosphate ...

    African Journals Online (AJOL)

    Comparative evaluation of the efficacy of tricalcium phosphate, calcium sodium phosphosilicate, and casein phosphopeptide – amorphous calcium phosphate in reducing Streptococcus mutans levels in saliva.

  8. Remnants of an Ancient Metabolism without Phosphate.

    Science.gov (United States)

    Goldford, Joshua E; Hartman, Hyman; Smith, Temple F; Segrè, Daniel

    2017-03-09

    Phosphate is essential for all living systems, serving as a building block of genetic and metabolic machinery. However, it is unclear how phosphate could have assumed these central roles on primordial Earth, given its poor geochemical accessibility. We used systems biology approaches to explore the alternative hypothesis that a protometabolism could have emerged prior to the incorporation of phosphate. Surprisingly, we identified a cryptic phosphate-independent core metabolism producible from simple prebiotic compounds. This network is predicted to support the biosynthesis of a broad category of key biomolecules. Its enrichment for enzymes utilizing iron-sulfur clusters, and the fact that thermodynamic bottlenecks are more readily overcome by thioester rather than phosphate couplings, suggest that this network may constitute a "metabolic fossil" of an early phosphate-free nonenzymatic biochemistry. Our results corroborate and expand previous proposals that a putative thioester-based metabolism could have predated the incorporation of phosphate and an RNA-based genetic system. PAPERCLIP. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Aquatic toxicity assessment of phosphate compounds.

    Science.gov (United States)

    Kim, Eunju; Yoo, Sunkyoung; Ro, Hee-Young; Han, Hye-Jin; Baek, Yong-Wook; Eom, Ig-Chun; Kim, Hyun-Mi; Kim, Pilje; Choi, Kyunghee

    2013-01-01

    Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. THE RESULTS OF THE ECOTOXICITY TESTS OF TRICALCIUM PHOSPHATE AND CALCIUM HYDROGENORTHOPHOSPHATE ARE AS FOLLOWS: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration (LC(50)) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration (EC(50)) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr EC(50) was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, L(E)C(50) was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth.

  10. Uranium and heavy metals in phosphate fertilizers

    International Nuclear Information System (INIS)

    Khater, A.E.M.

    2008-01-01

    Agricultural applications of chemical fertilizers are a worldwide practice. The specific activity of uranium-238 and heavy metals in phosphate fertilizers depends on the phosphate ore from which the fertilizer produced and on the chemical processing of the ore. Composite phosphate fertilizers samples where collected and the uranium-238 specific activity, in Bq/kg, and As, Cd, Cu, Pb, Se concentration, in ppm, were measured. The annual addition of these elements in soil due to fertilization were calculated and discussed. (author)(tk)

  11. Titrimetric determination of uranium in tributyl phosphate

    International Nuclear Information System (INIS)

    Sobkowska, A.

    1978-01-01

    The titrimetric method involving the reduction of U(VI) to uranium(IV) by iron(II) in phosphoric acid, selective oxidation of the excess of iron(II) and potentiometric titration with dichromate was directly used for the determination of uranium in tributyl phosphate mixtures. The procedure was applied to solutions containing more than 2 mg of uranium in the sample but the highest precision and accuracy were obtained in the range from 20 to 200 mg of uranium. Dibutyl phosphate and monobutyl phosphate as well as the other radiolysis products of TBP had no influence on the results of determinations. (author)

  12. BISMUTH PHOSPHATE CARRIER PROCESS FOR Pu RECOVERY

    Science.gov (United States)

    Finzel, T.G.

    1959-02-01

    An improvement in the bismuth phosphate carrier precipitation process for recovering plutonium is described. It has been found that a more granular and more easily filterable carrier precipitiite is formed if the addition of the bismuth and phosphate ions is effected by first adding 9/10 of the bismuth ions necessary, then slowly adding all of the source of the phosphate ions to be incorporated in the precipitate, while digesting at 75 C and afterwards incorporating the remainder of the total bismuth ions necessary

  13. Inhibition of Recombinant Aldose-6-Phosphate Reductase from Peach Leaves by Hexose-Phosphates, Inorganic Phosphate and Oxidants.

    Science.gov (United States)

    Hartman, Matías D; Figueroa, Carlos M; Arias, Diego G; Iglesias, Alberto A

    2017-01-01

    Glucitol, also known as sorbitol, is a major photosynthetic product in plants from the Rosaceae family. This sugar alcohol is synthesized from glucose-6-phosphate by the combined activities of aldose-6-phosphate reductase (Ald6PRase) and glucitol-6-phosphatase. In this work we show the purification and characterization of recombinant Ald6PRase from peach leaves. The recombinant enzyme was inhibited by glucose-1-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate and orthophosphate. Oxidizing agents irreversibly inhibited the enzyme and produced protein precipitation. Enzyme thiolation with oxidized glutathione protected the enzyme from insolubilization caused by diamide, while incubation with NADP+ (one of the substrates) completely prevented enzyme precipitation. Our results suggest that Ald6PRase is finely regulated to control carbon partitioning in peach leaves. © The Author 2016. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  14. Production of D-tagatose at high temperatures using immobilized Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana.

    Science.gov (United States)

    Hong, Young-Ho; Lee, Dong-Woo; Lee, Sang-Jae; Choe, Eun-Ah; Kim, Seong-Bo; Lee, Yoon-Hee; Cheigh, Chan-Ick; Pyun, Yu-Ryang

    2007-04-01

    Escherichia coli cells expressing L-arabinose isomerase from Thermotoga neapolitana (TNAI) were immobilized in calcium alginate beads. The resulting cell reactor (2.4 U, t (1/2) = 43 days at 70 degrees C) in a continuous recycling mode at 70 degrees C produced 49 and 38 g D-tagatose/l from 180 and 90 g D-galactose/l, respectively, within 12 h.

  15. Sphingosine 1-phosphate and cancer.

    Science.gov (United States)

    Pyne, Nigel J; El Buri, Ashref; Adams, David R; Pyne, Susan

    2017-09-15

    The bioactive lipid, sphingosine 1-phosphate (S1P) is produced by phosphorylation of sphingosine and this is catalysed by two sphingosine kinase isoforms (SK1 and SK2). Here we discuss structural functional aspects of SK1 (which is a dimeric quaternary enzyme) that relate to coordinated coupling of membrane association with phosphorylation of Ser225 in the 'so-called' R-loop, catalytic activity and protein-protein interactions (e.g. TRAF2, PP2A and G q ). S1P formed by SK1 at the plasma-membrane is released from cells via S1P transporters to act on S1P receptors to promote tumorigenesis. We discuss here an additional novel mechanism that can operate between cancer cells and fibroblasts and which involves the release of the S1P receptor, S1P 2 in exosomes from breast cancer cells that regulates ERK-1/2 signalling in fibroblasts. This novel mechanism of signalling might provide an explanation for the role of S1P 2 in promoting metastasis of cancer cells and which is dependent on the micro-environmental niche. Copyright © 2017. Published by Elsevier Ltd.

  16. Hemodialysis for near-fatal sodium phosphate toxicity in a child receiving sodium phosphate enemas.

    Science.gov (United States)

    Becknell, Brian; Smoyer, William E; O'Brien, Nicole F

    2014-11-01

    This study aimed to demonstrate the importance of considering hemodialysis as a treatment option in the management of sodium phosphate toxicity. This is a case report of a 4-year-old who presented to the emergency department with shock, decreased mental status, seizures, and tetany due to sodium phosphate toxicity from sodium phosphate enemas. Traditional management of hyperphosphatemia with aggressive hydration and diuretics was insufficient to reverse the hemodynamic and neurological abnormalities in this child. This is the first report of the use of hemodialysis in a child without preexisting renal failure for the successful management of near-fatal sodium phosphate toxicity. Hemodialysis can safely be used as an adjunctive therapy in sodium phosphate toxicity to rapidly reduce serum phosphate levels and increase serum calcium levels in children not responding to conventional management.

  17. Phospho-carboxyl-terminal domain binding and the role of a prolyl isomerase in pre-mRNA 3'-End formation.

    Science.gov (United States)

    Morris, D P; Phatnani, H P; Greenleaf, A L

    1999-10-29

    A phospho-carboxyl-terminal domain (CTD) affinity column created with yeast CTD kinase I and the CTD of RNA polymerase II was used to identify Ess1/Pin1 as a phospho-CTD-binding protein. Ess1/Pin1 is a peptidyl prolyl isomerase involved in both mitotic regulation and pre-mRNA 3'-end formation. Like native Ess1, a GSTEss1 fusion protein associates specifically with the phosphorylated but not with the unphosphorylated CTD. Further, hyperphosphorylated RNA polymerase II appears to be the dominant Ess1 binding protein in total yeast extracts. We demonstrate that phospho-CTD binding is mediated by the small WW domain of Ess1 rather than the isomerase domain. These findings suggest a mechanism in which the WW domain binds the phosphorylated CTD of elongating RNA polymerase II and the isomerase domain reconfigures the CTD though isomerization of proline residues perhaps by a processive mechanism. This process may be linked to a variety of pre-mRNA maturation events that use the phosphorylated CTD, including the coupled processes of pre-mRNA 3'-end formation and transcription termination.

  18. Probing the role of helix α1 in the acid-tolerance and thermal stability of the Streptomyces sp. SK Glucose Isomerase by site-directed mutagenesis.

    Science.gov (United States)

    Hajer, Ben Hlima; Dorra, Zouari Ayadi; Monia, Mezghani; Samir, Bejar; Nushin, Aghajari

    2014-03-10

    In order to investigate the role of helix α1 in the different biochemical properties between class I and class II Glucose Isomerases, a histidine and a phenylalanine residue were inserted at position 17 and 19 of Streptomyces sp. SK Glucose Isomerase (SKGI). In addition, W16 was substituted by a histidine. The H17/F19 insertion displaced the optimal pH of SKGI from 6.5 to 7-8 and slightly decreased the thermostability. As for the W16H mutant, a shift in optimal pH of SKGI from 6.5 to 6 was observed along with a decrease in the enzyme thermostability at 85°C with a half-life time reduced twice compared to the wild-type enzyme. Three-dimensional structure analysis suggested that the insertion of a histidine at position 17 results in the formation of new hydrogen bond with D287, thereby preventing it from deprotonating the O2 hydroxyl of the sugar at low pH, while the substitution W16H induced opposite effect by preventing hydrogen bond formation between D287 and W16 and thereby probably facilitating the hydrogen transfer during the isomerization reaction. The findings highlight the essential role of helix α1, which bears the three introduced mutations, in the acid-tolerance and the thermostability of SKGI and of glucose isomerases in general. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. New Role of Flavin as a General Acid-Base Catalyst with No Redox Function in Type 2 Isopentenyl-diphosphate Isomerase*S⃞

    Science.gov (United States)

    Unno, Hideaki; Yamashita, Satoshi; Ikeda, Yosuke; Sekiguchi, Shin-ya; Yoshida, Norie; Yoshimura, Tohru; Kusunoki, Masami; Nakayama, Toru; Nishino, Tokuzo; Hemmi, Hisashi

    2009-01-01

    Using FMN and a reducing agent such as NAD(P)H, type 2 isopentenyl-diphosphate isomerase catalyzes isomerization between isopentenyl diphosphate and dimethylallyl diphosphate, both of which are elemental units for the biosynthesis of highly diverse isoprenoid compounds. Although the flavin cofactor is expected to be integrally involved in catalysis, its exact role remains controversial. Here we report the crystal structures of the substrate-free and complex forms of type 2 isopentenyl-diphosphate isomerase from the thermoacidophilic archaeon Sulfolobus shibatae, not only in the oxidized state but also in the reduced state. Based on the active-site structures of the reduced FMN-substrate-enzyme ternary complexes, which are in the active state, and on the data from site-directed mutagenesis at highly conserved charged or polar amino acid residues around the active site, we demonstrate that only reduced FMN, not amino acid residues, can catalyze proton addition/elimination required for the isomerase reaction. This discovery is the first evidence for this long suspected, but previously unobserved, role of flavins just as a general acid-base catalyst without playing any redox roles, and thereby expands the known functions of these versatile coenzymes. PMID:19158086

  20. Calcium Phosphates as Delivery Systems for Bisphosphonates

    Directory of Open Access Journals (Sweden)

    Adriana Bigi

    2018-01-01

    Full Text Available Bisphosphonates (BPs are the most utilized drugs for the treatment of osteoporosis, and are usefully employed also for other pathologies characterized by abnormally high bone resorption, including bone metastases. Due to the great affinity of these drugs for calcium ions, calcium phosphates are ideal delivery systems for local administration of BPs to bone, which is aimed to avoid/limit the undesirable side effects of their prolonged systemic use. Direct synthesis in aqueous medium and chemisorptions from solution are the two main routes proposed to synthesize BP functionalized calcium phosphates. The present review overviews the information acquired through the studies on the interaction between bisphosphonate molecules and calcium phosphates. Moreover, particular attention is addressed to some important recent achievements on the applications of BP functionalized calcium phosphates as biomaterials for bone substitution/repair.

  1. Phosphate coating on stainless steel 304 sensitized

    International Nuclear Information System (INIS)

    Cruz V, J. P.; Vite T, J.; Castillo S, M.; Vite T, M.

    2009-01-01

    The stainless steel 304 can be sensitized when welding processes are applied, that causes the precipitation of chromium carbide in the grain limits, being promoted in this way the formation of galvanic cells and consequently the corrosion process. Using a phosphate coating is possible to retard the physiochemical damages that can to happen in the corrosion process. The stainless steel 304 substrate sensitized it is phosphate to base of Zn-Mn, in a immersion cell very hot. During the process was considered optimization values, for the characterization equipment of X-rays diffraction and scanning electron microscopy was used. The XRD technique confirmed the presence of the phases of manganese phosphate, zinc phosphate, as well as the phase of the stainless steel 304. When increasing the temperature from 60 to 90 C in the immersion process a homogeneous coating is obtained. (Author)

  2. Geochemistry and mineralogy of Ogun phosphate rock

    African Journals Online (AJOL)

    user

    708 ... 2Department of Soil Science and Land Management, University of Agriculture, Abeokuta Ogun State, Nigeria. 3School of ... Suitability of direct application of phosphate rock as low cost phosphorus fertilizer for crop production must be ...

  3. Issues of natural radioactivity in phosphates

    International Nuclear Information System (INIS)

    Schnug, E.; Haneklaus, S.; Schnier, C.; Scholten, L.C.

    1996-01-01

    The fertilization of phosphorus (P) fertilizers is essential in agricultural production, but phosphates contain in dependence on their origin different amounts of trace elements. The problem of cadmium (Cd) loads and other heavy metals is well known. However, only a limited number of investigations examined the contamination of phosphates with the two heaviest metals, uranium (U) and thorium (Th), which are radioactive. Also potassium (K) is lightly radioactive. Measurements are done n the radioactivity content of phosphates, P fertilizers and soils. The radiation doses to workers and public as well as possible contamination of soils from phosphate rock or fertilizer caused by these elements or their daughter products is of interest with regard to radiation protection. The use of P fertilizers is necessary for a sustainable agriculture, but it involves radioactive contamination of soils. The consequences of the use of P fertilizers is discussed, also with regard to existing and proposed legislation. 11 refs., 2 figs., 7 tabs

  4. A role for glucose-6-phosphate dehydrogenase

    African Journals Online (AJOL)

    STORAGESEVER

    2009-01-19

    -phosphate dehydrogenase activity in male rats. Twelve (12) male rats were divided into two groups of six (6) rats each. Group 1 rats were control rats which received normal saline while group 2 rats were treated with.

  5. Optimization of Porous Pellets for Phosphate Recovery

    Science.gov (United States)

    The poster presents the preliminary adsorption experiment showing that phosphate concentration is decreasing over time as well as presenting the kinetics models that best fit the data collected over 25 days.

  6. Electrodeposition of dicalcium phosphate dihydrate coatings on ...

    Indian Academy of Sciences (India)

    /fulltext/boms/036/03/0475-0481. Keywords. Electrodeposition; orientation; DCPD; hydroxyapatite. Abstract. Cathodic reduction of an aqueous solution containing dissolved calcium and phosphate ions results in the deposition of micrometer ...

  7. Uranium recovery from phosphate rocks concentrated

    International Nuclear Information System (INIS)

    Azevedo, M.F. de.

    1986-01-01

    The reserves, geological data, chemical data and technical flowsheet from COPEBRAS and Goiasfertil ores are described, including the process of mining ore concentration. Samples of Goiasfertil ores are analysed by gravimetric analysis, for phosphate, and spectrofluorimetry for uranium. (author)

  8. Thermal stability of phosphate coatings on steel

    Czech Academy of Sciences Publication Activity Database

    Pokorný, P.; Szelag, P.; Novák, M.; Mastný, L.; Brožek, Vlastimil

    2015-01-01

    Roč. 54, č. 3 (2015), s. 489-492 ISSN 0543-5846 Institutional support: RVO:61389021 Keywords : Steel * phosphates * coatings * structure Subject RIV: CA - Inorganic Chemistry Impact factor: 0.959, year: 2014

  9. Synthesis and characterization of porous calcium phosphate

    International Nuclear Information System (INIS)

    Granados C, F.; Serrano G, J.; Bonifacio M, J.

    2007-01-01

    The porous calcium phosphate was prepared by the continuous precipitation method using Ca(NO 3 ) 2 .4H 2 O and NH 4 H 2 PO 4 salts. The synthesized material was structurally and superficially characterized using the XRD, BET, IR TGA and SEM techniques. The obtained inorganic material was identified as calcium phosphate that presents a great specific area for what can be efficiently used as adsorbent material for adsorption studies in the radioactive wastes treatment present in aqueous solution. (Author)

  10. Isolation of phosphate-solubilizing fungus and its application in solubilization of rock phosphates.

    Science.gov (United States)

    Wu, Yingben; He, Yuelin; Yin, Hongmei; Chen, Wei; Wang, Zhen; Xu, Lijuan; Zhang, Aiqun

    2012-12-01

    Microorganisms have been obtained to improve the agronomic value of rock phosphates (RPs), but the phosphorus solubilizing rate by these approaches is very slow. It is important to explore a high-efficient phosphate-solubilizing approach with a kind of microorganisms. This study aimed to isolate a high-efficient level of phosphate-solubilizing fungus from rhizosphere soil samples phosphate mines (Liuyang County, Hunan province, China) and apply it in solubilization of RPs. The experiments were carried out by the conventional methodology for morphological and biochemical fungus characterization and the analysis of 18s rRNA sequence. Then the effects of time, temperature, initial pH, phosphorus (P) sources, RPs concentration, shaking speed and silver ion on the content of soluble P released by this isolate were investigated. The results showed this isolate was identified as Galactomyces geotrichum P14 (P14) in GeneBank and the maximum amount of soluble P was 1252.13 mg L(-1) within 40 h in a modified phosphate growth agar's medium (without agar) where contained tricalcium phosphate (TCP) as sole phosphate source. At the same time, it could release phosphate and solubilize various rock phosphates. The isolated fungus can convert RPs from insoluble form into plant available form and therefore it hold great potential for biofertilizers to enhance soil fertility and promote plant growth.

  11. Effect of phosphating time and temperature on microstructure and corrosion behavior of magnesium phosphate coating

    International Nuclear Information System (INIS)

    Fouladi, M.; Amadeh, A.

    2013-01-01

    Highlights: • A novel phosphate coating “magnesium phosphate” was applied on carbon steel. • Effect of phosphating temperature on morphological and corrosion behavior of the coating was studied. • Effect of phosphating time on morphological and corrosion behavior of the coating was studied. • Optimum condition for application of the coating was achieved. -- Abstract: In this study a novel phosphate coating, magnesium phosphate, was developed on steel surface. The formation of the coating was confirmed by X-ray diffraction method. Morphological evolution of the coating, as a function of phosphating time and temperature, was examined by scanning electron microscope. Magnetic thickness gauge was used to determine the thickness of the coating and the bath sludge weight was specified to determine the bath efficiency. Corrosion behavior of the samples was studied using potentiodynamic polarization curves. The results indicated that increasing the phosphating temperature facilitated the precipitation of coating and increased its thickness. Furthermore the best corrosion behavior was observed at 80 °C. Also increasing the phosphating time, enhanced both thickness and uniformity of the coating. The best results were observed after 20 min of phosphating

  12. Synthesis of phosphono analogues of dihydroxyacetone phosphate and glyceraldehyde 3-phosphate.

    Science.gov (United States)

    Page, P; Blonski, C; Périé, J

    1999-07-01

    The present paper describes the synthetic routes of six phosphono analogues of dihydroxyacetone phosphate and five phosphono analogues of glyceraldehyde 3-phosphate through alpha-, beta- and gamma-hydroxyphosphonate esters precursors containing a protected carbonyl group. In some situations, depending on the sequence used for the deprotection of the phosphonate and carbonyl groups, the aldol/ketol rearrangement allowed the synthesis of either dihydroxyacetone phosphate or glyceraldehyde 3-phosphate analogues from the same precursors. All these analogues are of interest both as active-site probes and as potential substrates for glycolytic enzymes such as fructose 1,6-diphosphate aldolases (EC 4.1.2.13).

  13. Using phosphate supplementation to reverse hypophosphatemia and phosphate depletion in neurological disease and disturbance.

    Science.gov (United States)

    Håglin, Lena

    2016-06-01

    Hypophosphatemia (HP) with or without intracellular depletion of inorganic phosphate (Pi) and adenosine triphosphate has been associated with central and peripheral nervous system complications and can be observed in various diseases and conditions related to respiratory alkalosis, alcoholism (alcohol withdrawal), diabetic ketoacidosis, malnutrition, obesity, and parenteral and enteral nutrition. In addition, HP may explain serious muscular, neurological, and haematological disorders and may cause peripheral neuropathy with paresthesias and metabolic encephalopathy, resulting in confusion and seizures. The neuropathy may be improved quickly after proper phosphate replacement. Phosphate depletion has been corrected using potassium-phosphate infusion, a treatment that can restore consciousness. In severe ataxia and tetra paresis, complete recovery can occur after adequate replacement of phosphate. Patients with multiple risk factors, often with a chronic disease and severe HP that contribute to phosphate depletion, are at risk for neurologic alterations. To predict both risk and optimal phosphate replenishment requires assessing the nutritional status and risk for re-feeding hypophosphatemia. The strategy for correcting HP depends on the severity of the underlying disease and the goal for re-establishing a phosphate balance to limit the consequences of phosphate depletion.

  14. Synthesis of Nano-sized Boehmites for Optimum Phosphate Sorption

    DEFF Research Database (Denmark)

    Watanabe, Yujiro; Kasama, Takeshi; Fukushi, Keisuke

    2011-01-01

    the highest amount of phosphate sorption (1.73 mmol g-1 at pH 3.3) compared with Al-bearing materials. The reaction mechanism during phosphate sorption was described by the anion exchange reaction between phosphate ions in sodium phosphate solution and hydroxide ions on boehmite surfaces. Therefore...

  15. Effects of rock phosphate amended with poultry manure on soil ...

    African Journals Online (AJOL)

    The effect of rock phosphate (Sokoto and Ogun rock phosphates) amended with poultry manure on soil available phosphate (P) and yield of maize and cowpea grown sequentially was evaluated for four cropping seasons. The results obtained showed superiority of single super phosphate (SSP) application over either ...

  16. Phosphate uptake and growth characteristics of transgenic rice with ...

    African Journals Online (AJOL)

    Yomi

    2012-04-03

    Apr 3, 2012 ... Tiller number and phosphate content per dry weight of wild-type plants increased following high levels of phosphate application, but did ... eutrophication due to the continuous and increasing losses of soil phosphorus by ..... thaliana is induced by phosphate starvation and by some other types of phosphate ...

  17. Characterization of phosphate films on aluminum surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, B.; Ramamurthy, S.; McIntyre, N.S. [Univ. of Western Ontario, London, Ontario (Canada)

    1997-08-01

    A thin layer of phosphate conversion coating was formed on pure aluminum in a commercial zinc-manganese phosphating bath. A number of surface analytical techniques were used to characterize the phosphate thin films formed after immersion times ranging from 30 s to 10 min. The coating contained mainly a crystalline structure with dispersed micrometer-scale cavities. The major constituents of the phosphate film were zinc, phosphorus, and oxygen; a small amount of manganese was also detected. Based on these results, a three-stage mechanism was proposed for the formation and the growth of phosphate conversion coatings on aluminum. Electrochemical impedance spectroscopy was used to evaluate the corrosion performance of phosphated and uncoated aluminum samples in 0.50 M Na{sub 2}SO{sub 4} and 0.10 M H{sub 2}SO{sub 4} solutions. Both types of samples exhibited a passive state in the neutral solution and general corrosion behavior in the acid solution.

  18. Capturing phosphates with iron enhanced sand filtration.

    Science.gov (United States)

    Erickson, Andrew J; Gulliver, John S; Weiss, Peter T

    2012-06-01

    Most treatment practices for urban runoff capture pollutants such as phosphorus by either settling or filtration while dissolved phosphorus, typically as phosphates, is untreated. Dissolved phosphorus, however, represents an average 45% of total phosphorus in stormwater runoff and can be more than 95%. In this study, a new stormwater treatment technology to capture phosphate, called the Minnesota Filter, is introduced. The filter comprises iron filings mixed with sand and is tested for phosphate removal from synthetic stormwater. Results indicate that sand mixed with 5% iron filings captures an average of 88% phosphate for at least 200 m of treated depth, which is significantly greater than a sand filter without iron filings. Neither incorporation of iron filings into a sand filter nor capture of phosphates onto iron filings in column experiments had a significant effect on the hydraulic conductivity of the filter at mixtures of 5% or less iron by weight. Field applications with up to 10.7% iron were operated over 1 year without detrimental effects upon hydraulic conductivity. A model is applied and fit to column studies to predict the field performance of iron-enhanced sand filters. The model predictions are verified through the predicted performance of the filters in removing phosphates in field applications. Practical applications of the technology, both existing and proposed, are presented so stormwater managers can begin implementation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Essentiality of tetramer formation of Cellulomonas parahominis L-ribose isomerase involved in novel L-ribose metabolic pathway.

    Science.gov (United States)

    Terami, Yuji; Yoshida, Hiromi; Uechi, Keiko; Morimoto, Kenji; Takata, Goro; Kamitori, Shigehiro

    2015-08-01

    L-Ribose isomerase from Cellulomonas parahominis MB426 (CpL-RI) can catalyze the isomerization between L-ribose and L-ribulose, which are non-abundant in nature and called rare sugars. CpL-RI has a broad substrate specificity and can catalyze the isomerization between D-lyxose and D-xylulose, D-talose and D-tagatose, L-allose and L-psicose, L-gulose and L-sorbose, and D-mannose and D-fructose. To elucidate the molecular basis underlying the substrate recognition mechanism of CpL-RI, the crystal structures of CpL-RI alone and in complexes with L-ribose, L-allose, and L-psicose were determined. The structure of CpL-RI was very similar to that of L-ribose isomerase from Acinetobacter sp. strain DL-28, previously determined by us. CpL-RI had a cupin-type β-barrel structure, and the catalytic site was detected between two large β-sheets with a bound metal ion. The bound substrates coordinated to the metal ion, and Glu113 and Glu204 were shown to act as acid/base catalysts in the catalytic reaction via a cis-enediol intermediate. Glu211 and Arg243 were found to be responsible for the recognition of substrates with various configurations at 4- and 5-positions of sugar. CpL-RI formed a homo-tetramer in crystals, and the catalytic site independently consisted of residues within a subunit, suggesting that the catalytic site acted independently. Crystal structure and site-direct mutagenesis analyses showed that the tetramer structure is essential for the enzyme activity and that each subunit of CpL-RI could be structurally stabilized by intermolecular contacts with other subunits. The results of growth complementation assays suggest that CpL-RI is involved in a novel metabolic pathway using L-ribose as a carbon source.

  20. Antimicrobial and Antioxidant Properties of Phosphates Used in Meat Products

    Directory of Open Access Journals (Sweden)

    Azim Şimşek

    2017-04-01

    Full Text Available Phosphates are widely used as food additives in meat products to increase the water-holding capacity, reduce the cooking loss and improve the textural properties. Furthermore, phosphates protect aroma and accelerate the formation of cured meat color as well as having antioxidant and antimicrobial effects. Many research about using phosphates in meat products showed that increasing chain length of phosphates improves antioxidant and antimicrobial effects. It has been stated that vacuum or modified atmosphere packaging, the use of phosphates with natural antioxidants and encapsulation of phosphates are useful approaches to enhance the antioxidant effects of phosphates. It has been reported that irradiation, vacuum or modified atmosphere packaging, storage at low temperature and the use of the salt provide strong synergistic effect on the antimicrobial properties of phosphates. In this review, researches about antioxidant and antimicrobial properties of phosphates and suggestions for the meat industry about industrial applications of phosphates are presented.

  1. Formation of xylitol and xylitol-5-phosphate and its impact on growth of d-xylose-utilizing Corynebacterium glutamicum strains.

    Science.gov (United States)

    Radek, Andreas; Müller, Moritz-Fabian; Gätgens, Jochem; Eggeling, Lothar; Krumbach, Karin; Marienhagen, Jan; Noack, Stephan

    2016-08-10

    Wild-type Corynebacterium glutamicum has no endogenous metabolic activity for utilizing the lignocellulosic pentose d-xylose for cell growth. Therefore, two different engineering approaches have been pursued resulting in platform strains harbouring a functional version of either the Isomerase (ISO) or the Weimberg (WMB) pathway for d-xylose assimilation. In a previous study we found for C. glutamicum WMB by-product formation of xylitol during growth on d-xylose and speculated that the observed lower growth rates are due to the growth inhibiting effect of this compound. Based on a detailed phenotyping of the ISO, WMB and the wild-type strain of C. glutamicum, we here show that this organism has a natural capability to synthesize xylitol from d-xylose under aerobic cultivation conditions. We furthermore observed the intracellular accumulation of xylitol-5-phosphate as a result of the intracellular phosphorylation of xylitol, which was particularly pronounced in the C. glutamicum ISO strain. Interestingly, low amounts of supplemented xylitol strongly inhibit growth of this strain on d-xylose, d-glucose and d-arabitol. These findings demonstrate that xylitol is a suitable substrate of the endogenous xylulokinase (XK, encoded by xylB) and its overexpression in the ISO strain leads to a significant phosphorylation of xylitol in C. glutamicum. Therefore, in order to circumvent cytotoxicity by xylitol-5-phosphate, the WMB pathway represents an interesting alternative route for engineering C. glutamicum towards efficient d-xylose utilization. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Phosphate signaling through alternate conformations of the PstSCAB phosphate transporter.

    Science.gov (United States)

    Vuppada, Ramesh K; Hansen, Colby R; Strickland, Kirsta A P; Kelly, Keilen M; McCleary, William R

    2018-01-19

    Phosphate is an essential compound for life. Escherichia coli employs a signal transduction pathway that controls the expression of genes that are required for the high-affinity acquisition of phosphate and the utilization of alternate sources of phosphorous. These genes are only expressed when environmental phosphate is limiting. The seven genes for this signaling pathway encode the two-component regulatory proteins PhoB and PhoR, as well as the high-affinity phosphate transporter PstSCAB and an auxiliary protein called PhoU. As the sensor kinase PhoR has no periplasmic sensory domain, the mechanism by which these cells sense environmental phosphate is not known. This paper explores the hypothesis that it is the alternating conformations of the PstSCAB transporter which are formed as part of the normal phosphate transport cycle that signal phosphate sufficiency or phosphate limitation. We tested two variants of PstB that are predicted to lock the protein in either of two conformations for their signaling output. We observed that the pstBQ160K mutant, predicted to reside in an inward-facing, open conformation signaled phosphate sufficiency whereas the pstBE179Q mutant, predicted to reside in an outward-facing, closed conformation signaled phosphate starvation. Neither mutant showed phosphate transport. These results support the hypothesis that the alternating conformations of the PstSCAB transporter are sensed by PhoR and PhoU. This sensory mechanism thus controls the alternate autokinase and phospho-PhoB phosphatase activities of PhoR, which ultimately control the signaling state of the response regulator PhoB.

  3. Kinetics of chlorination of phosphates of actinides and fission elements in chloride melts. II. Zirconium phosphates

    International Nuclear Information System (INIS)

    Kryukova, A.I.; Skiba, O.V.; Artem'eva, G.Yu.; Burnaeva, A.A.; Korshunov, I.A.

    1987-01-01

    The kinetics of the reaction of zirconium phosphates with carbon tetrachloride in sodium and potassium chloride melt as well as the effect of temperature, gas flow, solubility and weight of the solid phase of the phosphate, and stirring of the melt on the chlorination rate has been studied. The kinetic parameters of the reaction (rate constants, activation energy, etc.) have been calculated

  4. Simulation of phosphate leaching in catchments with phosphate-saturated soils in the Netherlands

    NARCIS (Netherlands)

    Groenenberg, J.E.; Reinds, G.J.; Breeuwsma, A.

    1996-01-01

    The effects on phosphate leaching to surface waters of two scenarios for net phosphate input to sandy agricultural soils were estimated. WATBAL and ANIMO simulations for manure surplus areas in the Netherlands were used. The methodology and models were verified by comparing model results with

  5. Translocation of metal phosphate via the phosphate inorganic transport system of Escherichia coli

    NARCIS (Netherlands)

    van Veen, H.W; Abee, T.; Kortstee, G.J J; Konings, W.N; Zehnder, A.J B

    1994-01-01

    P-i transport via the phosphate inorganic transport system (Pit) of Escherichia coil was studied in natural and artificial membranes. P-i uptake via Pit is dependent on the presence of divalent cations, like Mg2+, Ca2+, Co2+, or Mn2+, which form a soluble, neutral metal phosphate (MeHPO(4)) complex.

  6. The Expression of Millettia pinnata Chalcone Isomerase in Saccharomyces cerevisiae Salt-Sensitive Mutants Enhances Salt-Tolerance

    Directory of Open Access Journals (Sweden)

    Baiqu Huang

    2013-04-01

    Full Text Available The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR analyses. Its full length cDNA (666 bp was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE. The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%–86%. Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa, whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1 showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  7. The expression of Millettia pinnata chalcone isomerase in Saccharomyces cerevisiae salt-sensitive mutants enhances salt-tolerance.

    Science.gov (United States)

    Wang, Hui; Hu, Tangjin; Huang, Jianzi; Lu, Xiang; Huang, Baiqu; Zheng, Yizhi

    2013-04-24

    The present study demonstrates a new Millettia pinnata chalcone isomerase (MpCHI) whose transcription level in leaf was confirmed to be enhanced after being treated by seawater or NaCl (500 mM) via transcriptome sequencing and Real-Time Quantitative Reverse Transcription PCR (QRT-PCR) analyses. Its full length cDNA (666 bp) was obtained by 3'-end and 5'-end Rapid Amplification of cDNA Ends (RACE). The analysis via NCBI BLAST indicates that both aminoacid sequence and nucleotide sequence of the MpCHI clone share high homology with other leguminous CHIs (73%-86%). Evolutionarily, the phylogenic analysis further revealed that the MpCHI is a close relative of leguminous CHIs. The MpCHI protein consists of 221 aminoacid (23.64 KDa), whose peptide length, amino acid residues of substrate-binding site and reactive site are very similar to other leguminous CHIs reported previously. Two pYES2-MpCHI transformed salt-sensitive Saccharomyces cerevisiae mutants (Δnha1 and Δnhx1) showed improved salt-tolerance significantly compared to pYES2-vector transformed yeast mutants, suggesting the MpCHI or the flavonoid biosynthesis pathway could regulate the resistance to salt stress in M. pinnata.

  8. [Cloning and functional characterization of a cDNA encoding isopentenyl diphosphate isomerase involved in taxol biosynthesis in Taxus media].

    Science.gov (United States)

    Shen, Tian; Qiu, Fei; Chen, Min; Lan, Xiao-zhong; Liao, Zhi-hua

    2015-05-01

    Taxol is one of the most potent anti-cancer agents, which is extracted from the plants of Taxus species. Isopentenyl diphosphate isomerase (IPI) catalyzes the reversible transformation between IPP and DMAPP, both of which are the general 5-carbon precursors for taxol biosynthesis. In the present study, a new gene encoding IPI was cloned from Taxus media (namely TmIPI with the GenBank Accession Number KP970677) for the first time. The full-length cDNA of TmIPI was 1 232 bps encoding a polypeptide with 233 amino acids, in which the conserved domain Nudix was found. Bioinformatic analysis indicated that the sequence of TmIPI was highly similar to those of other plant IPI proteins, and the phylogenetic analysis showed that there were two clades of plant IPI proteins, including IPIs of angiosperm plants and IPIs of gymnosperm plants. TmIPI belonged to the clade of gymnosperm plant IPIs, and this was consistent with the fact that Taxus media is a plant species of gymnosperm. Southern blotting analysis demonstrated that there was a gene family of IPI in Taxus media. Finally, functional verification was applied to identify the function of TmIPI. The results showed that biosynthesis of β-carotenoid was enhanced by overexpressing TmIPI in the engineered E. coli strain, and this suggested that TmIPI might be a key gene involved in isoprenoid/terpenoid biosynthesis.

  9. Role of protein disulfide isomerase and other thiol-reactive proteins in HIV-1 envelope protein-mediated fusion

    International Nuclear Information System (INIS)

    Ou Wu; Silver, Jonathan

    2006-01-01

    Cell-surface protein disulfide isomerase (PDI) has been proposed to promote disulfide bond rearrangements in HIV-1 envelope protein (Env) that accompany Env-mediated fusion. We evaluated the role of PDI in ways that have not been previously tested by downregulating PDI with siRNA and by overexpressing wild-type or variant forms of PDI in transiently and stably transfected cells. These manipulations, as well as treatment with anti-PDI antibodies, had only small effects on infection or cell fusion mediated by NL4-3 or AD8 strains of HIV-1. However, the cell-surface thiol-reactive reagent 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB) had a much stronger inhibitory effect in our system, suggesting that cell-surface thiol-containing molecules other than PDI, acting alone or in concert, have a greater effect than PDI on HIV-1 Env-mediated fusion. We evaluated one such candidate, thioredoxin, a PDI family member reported to reduce a labile disulfide bond in CD4. We found that the ability of thioredoxin to reduce the disulfide bond in CD4 is enhanced in the presence of HIV-1 Env gp120 and that thioredoxin also reduces disulfide bonds in gp120 directly in the absence of CD4. We discuss the implications of these observations for identification of molecules involved in disulfide rearrangements in Env during fusion

  10. Quality properties and expression profiling of protein disulfide isomerase genes during grain development of three spring wheat near isogenic lines

    Directory of Open Access Journals (Sweden)

    Dong Liwei

    2016-01-01

    Full Text Available Three wheat glutenin near isogenic lines (NILs CB037A, CB037B and CB037C were used to investigate their quality properties and the transcriptional expression profiles of PDI gene family during grain development. Our purpose is to understand the relationships between the dynamic expression of different PDI genes and glutenin allelic compositions related to gluten quality. The results showed that glutenin allelic variations had no significant effects on main agronomic traits and yield performance, but resulted in clear gluten quality changes. CB037B with 5+10 subunits had higher glutenin macropolymer (GMP content and better breadmaking quality than CB037A with 2+12 while the lack of Glu-B3h encoding one abundant B-subunit in CB037C significantly reduced GMP content, dough strength and breadmaking quality. The dynamic expression patterns of eight protein disulfide isomerase (PDI genes during grain development detected by quantitative real-time polymerase chain reaction (qRT-PCR showed the close correlations between higher expression levels of PDI3-1, PDI5-1 and PDI8-1 and the presence of 5+10 subunits. Meanwhile, Glu-B3h silence resulted in significant decrease of expression levels of five PDI genes (PDI3-1, PDI5-1, PDI6-1, PDI7-2 and PDI8-1, suggesting the vital roles of certain PDI genes in glutenin and GMP synthesis and gluten quality formation.

  11. Metabolomic and 13C-Metabolic Flux Analysis of a Xylose-Consuming Saccharomyces cerevisiae Strain Expressing Xylose Isomerase

    Science.gov (United States)

    Wasylenko, Thomas M.; Stephanopoulos, Gregory

    2016-01-01

    Over the past two decades significant progress has been made in the engineering of xylose-consuming Saccharomyces cerevisiae strains for production of lignocellulosic biofuels. However, the ethanol productivities achieved on xylose are still significantly lower than those observed on glucose for reasons that are not well understood. We have undertaken an analysis of central carbon metabolite pool sizes and metabolic fluxes on glucose and on xylose under aerobic and anaerobic conditions in a strain capable of rapid xylose assimilation via xylose isomerase in order to investigate factors that may limit the rate of xylose fermentation. We find that during xylose utilization the flux through the non-oxidative PPP is high but the flux through the oxidative PPP is low, highlighting an advantage of the strain employed in this study. Furthermore, xylose fails to elicit the full carbon catabolite repression response that is characteristic of glucose fermentation in S. cerevisiae. We present indirect evidence that the incomplete activation of the fermentation program on xylose results in a bottleneck in lower glycolysis, leading to inefficient re-oxidation of NADH produced in glycolysis. PMID:25311863

  12. Thermostable L-arabinose isomerase from Bacillus stearothermophilus IAM 11001 for D-tagatose production: gene cloning, purification and characterisation.

    Science.gov (United States)

    Cheng, Lifang; Mu, Wanmeng; Jiang, Bo

    2010-06-01

    D-Tagatose, as one of the rare sugars, has been found to be a natural and safe low-calorie sweetener in food products and is classified as a GRAS substance. L-Arabinose isomerase (L-AI, EC 5.3.1.4), catalysing the isomerisations of L-arabinose and D-galactose to L-ribulose and D-tagatose respectively, is considered to be the most promising enzyme for the production of D-tagatose. The araA gene encoding an L-AI from Bacillus stearothermophilus IAM 11001 was cloned, sequenced and overexpressed in Escherichia coli. The gene is composed of 1491 bp nucleotides and codes for a protein of 496 amino acid residues. The recombinant L-AI was purified to electrophoretical homogeneity by affinity chromatography. The purified enzyme was optimally active at 65 degrees C and pH 7.5 and had an absolute requirement for the divalent metal ion Mn(2+) for both catalytic activity and thermostability. The enzyme was relatively active and stable at acidic pH of 6. The bioconversion yield of D-galactose to D-tagatose by the purified L-AI after 12 h at 65 degrees C reached 36%. The purified L-AI from B. stearothermophilus IAM 11001 was characterised and shown to be a good candidate for potential application in D-tagatose production. Copyright (c) 2010 Society of Chemical Industry.

  13. Brown Algae Polyphenol, a Prolyl Isomerase Pin1 Inhibitor, Prevents Obesity by Inhibiting the Differentiation of Stem Cells into Adipocytes.

    Science.gov (United States)

    Suzuki, Atsuko; Saeki, Toshiyuki; Ikuji, Hiroko; Uchida, Chiyoko; Uchida, Takafumi

    2016-01-01

    While screening for an inhibitor of the peptidyl prolyl cis/trans isomerase, Pin1, we came across a brown algae polyphenol that blocks the differentiation of fibroblasts into adipocytes. However, its effectiveness on the accumulation of fat in the body has never been studied. Oral administration of brown algae polyphenol to mice fed with a high fat diet, suppressed the increase in fat volume to a level observed in mice fed with a normal diet. We speculate that Pin1 might be required for the differentiation of stem cell to adipocytes. We established wild type (WT) and Pin1-/- (Pin1-KO) adipose-derived mesenchymal stem cell (ASC) lines and found that WT ASCs differentiate to adipocytes but Pin1-KO ASCs do not. Oral administration of brown algae polyphenol, a Pin1 inhibitor, reduced fat buildup in mice. We showed that Pin1 is required for the differentiation of stem cells into adipocytes. We propose that oral intake of brown algae polyphenol is useful for the treatment of obesity.

  14. Brown Algae Polyphenol, a Prolyl Isomerase Pin1 Inhibitor, Prevents Obesity by Inhibiting the Differentiation of Stem Cells into Adipocytes.

    Directory of Open Access Journals (Sweden)

    Atsuko Suzuki

    Full Text Available While screening for an inhibitor of the peptidyl prolyl cis/trans isomerase, Pin1, we came across a brown algae polyphenol that blocks the differentiation of fibroblasts into adipocytes. However, its effectiveness on the accumulation of fat in the body has never been studied.Oral administration of brown algae polyphenol to mice fed with a high fat diet, suppressed the increase in fat volume to a level observed in mice fed with a normal diet. We speculate that Pin1 might be required for the differentiation of stem cell to adipocytes. We established wild type (WT and Pin1-/- (Pin1-KO adipose-derived mesenchymal stem cell (ASC lines and found that WT ASCs differentiate to adipocytes but Pin1-KO ASCs do not.Oral administration of brown algae polyphenol, a Pin1 inhibitor, reduced fat buildup in mice. We showed that Pin1 is required for the differentiation of stem cells into adipocytes. We propose that oral intake of brown algae polyphenol is useful for the treatment of obesity.

  15. The use of phosphomannose isomerase selection system for Agrobacterium-mediated transformation of tobacco and flax aimed for phytoremediation.

    Science.gov (United States)

    Hilgert, Jitka; Sura-De Jong, Martina; Fišer, Jiří; Tupá, Kateřina; Vrbová, Miroslava; Griga, Miroslav; Macek, Tomáš; Žiarovská, Jana

    2017-05-04

    A plant selection system based on the phosphomannose isomerase gene (pmi) as a selectable marker is often used to avoid selection using antibiotic resistance. Nevertheless, pmi gene is endogenous in several plant species and therefore difficult to use in such cases. Here we evaluated and compared Agrobacterium-mediated transformation of Linum usitatissimum breeding line AGT-952 (without endogenous pmi gene) and Nicotiana tabacum var. WSC-38 (with endogenous pmi gene). Transformation was evaluated for vectors bearing transgenes that have the potential to be involved in improved phytoremediation of contaminated environment. Tobacco regenerants selection resulted in 6.8% transformation efficiency when using a medium supplemented with 30 g/L mannose with stepwise decrease of the sucrose concentration. Similar transformation efficiency (5.3%) was achieved in transformation of flax. Relatively low selection efficiency was achieved (12.5% and 34.8%, respectively). The final detection of efficient pmi selection was conducted using PCR and the non-endogenous genes; pmi transgene for flax and todC2 transgene for tobacco plants.

  16. Adaptation to Blue Light in MarineSynechococcusRequires MpeU, an Enzyme with Similarity to Phycoerythrobilin Lyase Isomerases.

    Science.gov (United States)

    Mahmoud, Rania M; Sanfilippo, Joseph E; Nguyen, Adam A; Strnat, Johann A; Partensky, Frédéric; Garczarek, Laurence; Abo El Kassem, Nabil; Kehoe, David M; Schluchter, Wendy M

    2017-01-01

    Marine Synechococcus has successfully adapted to environments with different light colors, which likely contributes to this genus being the second most abundant group of microorganisms worldwide. Populations of Synechococcus that grow in deep, blue ocean waters contain large amounts of the blue-light absorbing chromophore phycourobilin (PUB) in their light harvesting complexes (phycobilisomes). Here, we show that all Synechococcus strains adapted to blue light possess a gene called mpeU . MpeU is structurally similar to phycobilin lyases, enzymes that ligate chromophores to phycobiliproteins. Interruption of mpeU caused a reduction in PUB content, impaired phycobilisome assembly and reduced growth rate more strongly in blue than green light. When mpeU was reintroduced in the mpeU mutant background, the mpeU- less phenotype was complemented in terms of PUB content and phycobilisome content. Fluorescence spectra of mpeU mutant cells and purified phycobilisomes revealed red-shifted phycoerythrin emission peaks, likely indicating a defect in chromophore ligation to phycoerythrin-I (PE-I) or phycoerythrin-II (PE-II). Our results suggest that MpeU is a lyase-isomerase that attaches a phycoerythrobilin to a PEI or PEII subunit and isomerizes it to PUB. MpeU is therefore an important determinant in adaptation of Synechococcus spp. to capture photons in blue light environments throughout the world's oceans.

  17. Ethylene responses in rice roots and coleoptiles are differentially regulated by a carotenoid isomerase-mediated abscisic acid pathway.

    Science.gov (United States)

    Yin, Cui-Cui; Ma, Biao; Collinge, Derek Phillip; Pogson, Barry James; He, Si-Jie; Xiong, Qing; Duan, Kai-Xuan; Chen, Hui; Yang, Chao; Lu, Xiang; Wang, Yi-Qin; Zhang, Wan-Ke; Chu, Cheng-Cai; Sun, Xiao-Hong; Fang, Shuang; Chu, Jin-Fang; Lu, Tie-Gang; Chen, Shou-Yi; Zhang, Jin-Song

    2015-04-01

    Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice. © 2015 American Society of Plant Biologists. All rights reserved.

  18. Determination of kinetics and the crystal structure of a novel type 2 isopentenyl diphosphate: dimethylallyl diphosphate isomerase from Streptococcus pneumoniae.

    Science.gov (United States)

    de Ruyck, Jerome; Janczak, Matthew W; Neti, Syam Sundar; Rothman, Steven C; Schubert, Heidi L; Cornish, Rita M; Matagne, Andre; Wouters, Johan; Poulter, C Dale

    2014-07-07

    Isopentenyl diphosphate isomerase (IDI) is a key enzyme in the isoprenoid biosynthetic pathway and is required for all organisms that synthesize isoprenoid metabolites from mevalonate. Type 1 IDI (IDI-1) is a metalloprotein that is found in eukaryotes, whereas the type 2 isoform (IDI-2) is a flavoenzyme found in bacteria that is completely absent from human. IDI-2 from the pathogenic bacterium Streptococcus pneumoniae was recombinantly expressed in Escherichia coli. Steady-state kinetic studies of the enzyme indicated that FMNH2 (KM =0.3 μM) bound before isopentenyl diphosphate (KM =40 μM) in an ordered binding mechanism. An X-ray crystal structure at 1.4 Å resolution was obtained for the holoenzyme in the closed conformation with a reduced flavin cofactor and two sulfate ions in the active site. These results helped to further approach the enzymatic mechanism of IDI-2 and, thus, open new possibilities for the rational design of antibacterial compounds against sequence-similar and structure-related pathogens such as Enterococcus faecalis or Staphylococcus aureus. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Effect of pharmaceutical potential endocrine disruptor compounds on protein disulfide isomerase reductase activity using di-eosin-oxidized-glutathione.

    Directory of Open Access Journals (Sweden)

    Danièle Klett

    Full Text Available BACKGROUND: Protein Disulfide Isomerase (PDI in the endoplasmic reticulum of all cells catalyzes the rearrangement of disulfide bridges during folding of membrane and secreted proteins. As PDI is also known to bind various molecules including hormones such as estradiol and thyroxin, we considered the hypothesis that adverse effects of endocrine-disrupter compounds (EDC could be mediated through their interaction with PDI leading to defects in membrane or secreted proteins. METHODOLOGY/PRINCIPAL FINDINGS: Taking advantage of the recent description of the fluorescence self quenched substrate di-eosin-oxidized-glutathione (DiE-GSSG, we determined kinetically the effects of various potential pharmaceutical EDCs on the in-vitro reductase activity of bovine liver PDI by measuring the fluorescence of the reaction product (E-GSH. Our data show that estrogens (ethynylestradiol and bisphenol-A as well as indomethacin exert an inhibition whereas medroxyprogesteroneacetate and nortestosterone exert a potentiation of bovine PDI reductase activity. CONCLUSIONS: The present data indicate that the tested EDCs could not only affect endocrine target cells through nuclear receptors as previously shown, but could also affect these and all other cells by positively or negatively affecting PDI activity. The substrate DiE-GSSG has been demonstrated to be a convenient substrate to measure PDI reductase activity in the presence of various potential EDCs. It will certainly be usefull for the screening of potential effect of all kinds of chemicals on PDI reductase activity.

  20. Display of disulfide-rich proteins by complementary DNA display and disulfide shuffling assisted by protein disulfide isomerase.

    Science.gov (United States)

    Naimuddin, Mohammed; Kubo, Tai

    2011-12-01

    We report an efficient system to produce and display properly folded disulfide-rich proteins facilitated by coupled complementary DNA (cDNA) display and protein disulfide isomerase-assisted folding. The results show that a neurotoxin protein containing four disulfide linkages can be displayed in the folded state. Furthermore, it can be refolded on a solid support that binds efficiently to its natural acetylcholine receptor. Probing the efficiency of the display proteins prepared by these methods provided up to 8-fold higher enrichment by the selective enrichment method compared with cDNA display alone, more than 10-fold higher binding to its receptor by the binding assays, and more than 10-fold higher affinities by affinity measurements. Cotranslational folding was found to have better efficiency than posttranslational refolding between the two investigated methods. We discuss the utilities of efficient display of such proteins in the preparation of superior quality proteins and protein libraries for directed evolution leading to ligand discovery. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Negative Regulation of the Stability and Tumor Suppressor Function of Fbw7 by the Pin1 Prolyl Isomerase

    Science.gov (United States)

    Min, Sang-Hyun; Lau, Alan W.; Lee, Tae Ho; Inuzuka, Hiroyuki; Wei, Shuo; Huang, Pengyu; Shaik, Shavali; Lee, Daniel Yenhong; Finn, Greg; Balastik, Martin; Chen, Chun-Hau; Luo, Manli; Tron, Adriana E.; DeCaprio, James A.; Zhou, Xiao Zhen; Wei, Wenyi; Lu, Kun Ping

    2012-01-01

    SUMMARY Fbw7 is the substrate recognition component of the SCF (Skp1-Cullin-F-box)-type E3 ligase complex and a well-characterized tumor suppressor that targets numerous oncoproteins for destruction. Genomic deletion or mutation of FBW7 has been frequently found in various types of human cancers, however, little is known about the upstream signaling pathway(s) governing Fbw7 stability and cellular functions. Here we report that Fbw7 protein destruction and tumor suppressor function are negatively regulated by the prolyl isomerase Pin1. Pin1 interacts with Fbw7 in a phoshorylation-dependent manner and promotes Fbw7 self-ubiquitination and protein degradation by disrupting Fbw7 dimerization. Consequently, over-expressing Pin1 reduces Fbw7 abundance and suppresses Fbw7’s ability to inhibit proliferation and transformation. By contrast, depletion of Pin1 in cancer cells leads to elevated Fbw7 expression, which subsequently reduces Mcl-1 abundance, sensitizing cancer cells to Taxol. Thus, Pin1-mediated inhibition of Fbw7 contributes to oncogenesis and Pin1 may be a promising drug target for anti-cancer therapy. PMID:22608923

  2. Quantitative metabolomics of a xylose-utilizing Saccharomyces cerevisiae strain expressing the Bacteroides thetaiotaomicron xylose isomerase on glucose and xylose.

    Science.gov (United States)

    Mert, M J; Rose, S H; la Grange, D C; Bamba, T; Hasunuma, T; Kondo, A; van Zyl, W H

    2017-10-01

    The yeast Saccharomyces cerevisiae cannot utilize xylose, but the introduction of a xylose isomerase that functions well in yeast will help overcome the limitations of the fungal oxido-reductive pathway. In this study, a diploid S. cerevisiae S288c[2n YMX12] strain was constructed expressing the Bacteroides thetaiotaomicron xylA (XI) and the Scheffersomyces stipitis xyl3 (XK) and the changes in the metabolite pools monitored over time. Cultivation on xylose generally resulted in gradual changes in metabolite pool size over time, whereas more dramatic fluctuations were observed with cultivation on glucose due to the diauxic growth pattern. The low G6P and F1,6P levels observed with cultivation on xylose resulted in the incomplete activation of the Crabtree effect, whereas the high PEP levels is indicative of carbon starvation. The high UDP-D-glucose levels with cultivation on xylose indicated that the carbon was channeled toward biomass production. The adenylate and guanylate energy charges were tightly regulated by the cultures, while the catabolic and anabolic reduction charges fluctuated between metabolic states. This study helped elucidate the metabolite distribution that takes place under Crabtree-positive and Crabtree-negative conditions when cultivating S. cerevisiae on glucose and xylose, respectively.

  3. Functional expression of Burkholderia cenocepacia xylose isomerase in yeast increases ethanol production from a glucose-xylose blend.

    Science.gov (United States)

    de Figueiredo Vilela, Leonardo; de Mello, Vinicius Mattos; Reis, Viviane Castelo Branco; Bon, Elba Pinto da Silva; Gonçalves Torres, Fernando Araripe; Neves, Bianca Cruz; Eleutherio, Elis Cristina Araújo

    2013-01-01

    This study presents results regarding the successful cloning of the bacterial xylose isomerase gene (xylA) of Burkholderia cenocepacia and its functional expression in Saccharomyces cerevisiae. The recombinant yeast showed to be competent to efficiently produce ethanol from both glucose and xylose, which are the main sugars in lignocellulosic hydrolysates. The heterologous expression of the gene xylA enabled a laboratorial yeast strain to ferment xylose anaerobically, improving ethanol production from a fermentation medium containing a glucose-xylose blend similar to that found in sugar cane bagasse hydrolysates. The insertion of xylA caused a 5-fold increase in xylose consumption, and over a 1.5-fold increase in ethanol production and yield, in comparison to that showed by the WT strain, in 24h fermentations, where it was not detected accumulation of xylitol. These findings are encouraging for further studies concerning the expression of B. cenocepacia xylA in an industrial yeast strain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Site-Specific Measurement of Water Dynamics in the Substrate Pocket of Ketosteroid Isomerase Using Time-Resolved Vibrational Spectroscopy

    Science.gov (United States)

    Jha, Santosh Kumar; Ji, Minbiao; Gaffney, Kelly J.; Boxer, Steven G.

    2012-01-01

    Little is known about the reorganization capacity of water molecules at the active sites of enzymes and how this couples to the catalytic reaction. Here, we study the dynamics of water molecules at the active site of a highly proficient enzyme, Δ5-3-ketosteroid isomerase (KSI), during a light-activated mimic of its catalytic cycle. Photo-excitation of a nitrile containing photo-acid, coumarin183 (C183), mimics the change in charge density that occurs at the active site of KSI during the first step of the catalytic reaction. The nitrile of C183 is exposed to water when bound to the KSI active site, and we used time-resolved vibrational spectroscopy as a site-specific probe to study the solvation dynamics of water molecules in the vicinity of the nitrile. We observed that water molecules at the active site of KSI are highly rigid, during the light-activated catalytic cycle, compared to the solvation dynamics observed in bulk water. Based upon this result we hypothesize that rigid water dipoles at the active site might help in the maintenance of the pre-organized electrostatic environment required for efficient catalysis. The results also demonstrate the utility of nitrile probes in measuring the dynamics of local (H-bonded) water molecules in contrast to the commonly used fluorescence methods which measure the average behavior of primary and subsequent spheres of solvation. PMID:22931297

  5. Structural and Genetic Studies Demonstrate Neurologic Dysfunction in Triosephosphate Isomerase Deficiency Is Associated with Impaired Synaptic Vesicle Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Roland, Bartholomew P.; Zeccola, Alison M.; Larsen, Samantha B.; Amrich, Christopher G.; Talsma, Aaron D.; Stuchul, Kimberly A.; Heroux, Annie; Levitan, Edwin S.; VanDemark, Andrew P.; Palladino, Michael J.; Pallanck, Leo J.

    2016-03-31

    Triosephosphate isomerase (TPI) deficiency is a poorly understood disease characterized by hemolytic anemia, cardiomyopathy, neurologic dysfunction, and early death. TPI deficiency is one of a group of diseases known as glycolytic enzymopathies, but is unique for its severe patient neuropathology and early mortality. The disease is caused by missense mutations and dysfunction in the glycolytic enzyme, TPI. Previous studies have detailed structural and catalytic changes elicited by disease-associated TPI substitutions, and samples of patient erythrocytes have yielded insight into patient hemolytic anemia; however, the neuropathophysiology of this disease remains a mystery. This study combines structural, biochemical, and genetic approaches to demonstrate that perturbations of the TPI dimer interface are sufficient to elicit TPI deficiency neuropathogenesis. The present study demonstrates that neurologic dysfunction resulting from TPI deficiency is characterized by synaptic vesicle dysfunction, and can be attenuated with catalytically inactive TPI. Collectively, our findings are the first to identify, to our knowledge, a functional synaptic defect in TPI deficiency derived from molecular changes in the TPI dimer interface.

  6. The Role of S-Nitrosylation and S-Glutathionylation of Protein Disulphide Isomerase in Protein Misfolding and Neurodegeneration

    Directory of Open Access Journals (Sweden)

    M. Halloran

    2013-01-01

    Full Text Available Neurodegenerative diseases involve the progressive loss of neurons, and a pathological hallmark is the presence of abnormal inclusions containing misfolded proteins. Although the precise molecular mechanisms triggering neurodegeneration remain unclear, endoplasmic reticulum (ER stress, elevated oxidative and nitrosative stress, and protein misfolding are important features in pathogenesis. Protein disulphide isomerase (PDI is the prototype of a family of molecular chaperones and foldases upregulated during ER stress that are increasingly implicated in neurodegenerative diseases. PDI catalyzes the rearrangement and formation of disulphide bonds, thus facilitating protein folding, and in neurodegeneration may act to ameliorate the burden of protein misfolding. However, an aberrant posttranslational modification of PDI, S-nitrosylation, inhibits its protective function in these conditions. S-nitrosylation is a redox-mediated modification that regulates protein function by covalent addition of nitric oxide- (NO- containing groups to cysteine residues. Here, we discuss the evidence for abnormal S-nitrosylation of PDI (SNO-PDI in neurodegeneration and how this may be linked to another aberrant modification of PDI, S-glutathionylation. Understanding the role of aberrant S-nitrosylation/S-glutathionylation of PDI in the pathogenesis of neurodegenerative diseases may provide insights into novel therapeutic interventions in the future.

  7. Crystallization and preliminary X-ray diffraction analysis of the peptidylprolyl isomerase Par27 of Bordetella pertussis

    International Nuclear Information System (INIS)

    Wohlkönig, Alexandre; Hodak, Hélène; Clantin, Bernard; Sénéchal, Magalie; Bompard, Coralie; Jacob-Dubuisson, Françoise; Villeret, Vincent

    2008-01-01

    Par27 from B. pertussis, the prototype of a new group of parvulins has been crystallized in two different crystal forms. Proteins with both peptidylprolyl isomerase (PPIase) and chaperone activities play a crucial role in protein folding in the periplasm of Gram-negative bacteria. Few such proteins have been structurally characterized and to date only the crystal structure of SurA from Escherichia coli has been reported. Par27, the prototype of a new group of parvulins, has recently been identified. Par27 exhibits both chaperone and PPIase activities in vitro and is the first identified parvulin protein that forms dimers in solution. Par27 has been expressed in E. coli. The protein was purified using affinity and gel-filtration chromatographic techniques and crystallized in two different crystal forms. Form A, which belongs to space group P2 (unit-cell parameters a = 42.2, b = 142.8, c = 56.0 Å, β = 95.1°), diffracts to 2.8 Å resolution, while form B, which belongs to space group C222 (unit-cell parameters a = 54.6, b = 214.1, c = 57.8 Å), diffracts to 2.2 Å resolution. Preliminary diffraction data analysis agreed with the presence of one monomer in the asymmetric unit of the orthorhombic crystal form and two in the monoclinic form

  8. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Bellissimi, Eleonora; van Dijken, Johannes P; Pronk, Jack T; van Maris, Antonius J A

    2009-05-01

    Acetic acid, an inhibitor released during hydrolysis of lignocellulosic feedstocks, has previously been shown to negatively affect the kinetics and stoichiometry of sugar fermentation by (engineered) Saccharomyces cerevisiae strains. This study investigates the effects of acetic acid on S. cerevisiae RWB 218, an engineered xylose-fermenting strain based on the Piromyces XylA (xylose isomerase) gene. Anaerobic batch cultures on synthetic medium supplemented with glucose-xylose mixtures were grown at pH 5 and 3.5, with and without addition of 3 g L(-1) acetic acid. In these cultures, consumption of the sugar mixtures followed a diauxic pattern. At pH 5, acetic acid addition caused increased glucose consumption rates, whereas specific xylose consumption rates were not significantly affected. In contrast, at pH 3.5 acetic acid had a strong and specific negative impact on xylose consumption rates, which, after glucose depletion, slowed down dramatically, leaving 50% of the xylose unused after 48 h of fermentation. Xylitol production was absent (fermentation in acetic -acid-stressed cultures at pH 3.5 could be restored by applying a continuous, limiting glucose feed, consistent with a key role of ATP regeneration in acetic acid tolerance.

  9. The potato sucrose transporter StSUT1 interacts with a DRM-associated protein disulfide isomerase.

    Science.gov (United States)

    Krügel, Undine; He, Hong-Xia; Gier, Konstanze; Reins, Jana; Chincinska, Izabela; Grimm, Bernhard; Schulze, Waltraud X; Kühn, Christina

    2012-01-01

    Organization of proteins into complexes is crucial for many cellular functions. Recently, the SUT1 protein was shown to form homodimeric complexes, to be associated with lipid raft-like microdomains in yeast as well as in plants and to undergo endocytosis in response to brefeldin A. We therefore aimed to identify SUT1-interacting proteins that might be involved in dimerization, endocytosis, or targeting of SUT1 to raft-like microdomains. Therefore, we identified potato membrane proteins, which are associated with the detergent-resistant membrane (DRM) fraction. Among the proteins identified, we clearly confirmed StSUT1 as part of DRM in potato source leaves. We used the yeast two-hybrid split ubiquitin system (SUS) to systematically screen for interaction between the sucrose transporter StSUT1 and other membrane-associated or soluble proteins in vivo. The SUS screen was followed by immunoprecipitation using affinity-purified StSUT1-specific peptide antibodies and mass spectrometric analysis of co-precipitated proteins. A large overlap was observed between the StSUT1-interacting proteins identified in the co-immunoprecipitation and the detergent-resistant membrane fraction. One of the SUT1-interacting proteins, a protein disulfide isomerase (PDI), interacts also with other sucrose transporter proteins. A potential role of the PDI as escort protein is discussed.

  10. An optimised system for refolding of human glucose 6-phosphate dehydrogenase

    Directory of Open Access Journals (Sweden)

    Engel Paul C

    2009-03-01

    Full Text Available Abstract Background Human glucose 6-phosphate dehydrogenase (G6PD, active in both dimer and tetramer forms, is the key entry enzyme in the pentose phosphate pathway (PPP, providing NADPH for biosynthesis and various other purposes, including protection against oxidative stress in erythrocytes. Accordingly haemolytic disease is a major consequence of G6PD deficiency mutations in man, and many severe disease phenotypes are attributed to G6PD folding problems. Therefore, a robust refolding method with high recovery yield and reproducibility is of particular importance to study those clinical mutant enzymes as well as to shed light generally on the refolding process of large multi-domain proteins. Results The effects of different chemical and physical variables on the refolding of human recombinant G6PD have been extensively investigated. L-Arg, NADP+ and DTT are all major positive influences on refolding, and temperature, protein concentration, salt types and other additives also have significant impacts. With the method described here, ~70% enzyme activity could be regained, with good reproducibility, after denaturation with Gdn-HCl, by rapid dilution of the protein, and the refolded enzyme displays kinetic and CD properties indistinguishable from those of the native protein. Refolding under these conditions is relatively slow, taking about 7 days to complete at room temperature even in the presence of cyclophilin A, a peptidylprolyl isomerase reported to increase refolding rates. The refolded protein intermediates shift from dominant monomer to dimer during this process, the gradual emergence of dimer correlating well with the regain of enzyme activity. Conclusion L-Arg is the key player in the refolding of human G6PD, preventing the aggregation of folding intermediate, and NADP+ is essential for the folding intermediate to adopt native structure. The refolding protocol can be applied to produce high recovery yield of folded protein with

  11. Reexamination of uranium (IV) phosphate chemistry

    International Nuclear Information System (INIS)

    During the past 40 years, few papers concerning uranium (IV) phosphate chemistry have been cited as references in usual textbooks and nobody, up to now, has questioned their veracity. In recent studies on uranium (IV) phosphates, the author's found that some of them, like U 3 (PO 4 ) 4 , do not exist or, like (U 2 O 3 )P 2 O 7 , were wrongly identified. Thus, the reinvestigation of uranium(IV) phosphates was decided to be necessary. Some new compounds were prepared and identified. From previously published results, this paper draws up a balance sheet of the scope concerning the complete understanding of the chemistry of tetravalent uranium phosphates. This new approach is given in terms of a survey of the literature errors to set the facts in their true light. Two synoptic schemes are given to bring forward evidence of new compounds, U(UO 2 )(PO 4 ) 2 and U 2 O(PO 4 ) 2 , which appear to be significant in the chemistry of uranium (IV) phosphates

  12. Removal mechanism of phosphate from aqueous solution by fly ash.

    Science.gov (United States)

    Lu, S G; Bai, S Q; Zhu, L; Shan, H D

    2009-01-15

    This work studied the effectiveness of fly ash in removing phosphate from aqueous solution and its related removal mechanism. The adsorption and precipitation of phosphate by fly ash were investigated separately in order to evaluate their role in the removal of phosphate. Results showed that the removal of phosphate by fly ash was rapid. The removal percentage of phosphate in the first 5min reached 68-96% of the maximum removal of phosphate by fly ash. The removal processes of phosphate by fly ash included a fast and large removal representing precipitation, then a slower and longer removal due to adsorption. The adsorption of phosphate on fly ash could be described well by Freundlich isotherm equation. The pH and Ca2+ concentration of fly ash suspension were decreased with the addition of phosphate, which suggests that calcium phosphate precipitation is a major mechanism of the phosphate removal. Comparison of the relative contribution of the adsorption and precipitation to the total removal of phosphate by fly ash showed that the adsorption accounted for 30-34% of the total removal of phosphate, depending on the content of CaO in fly ash. XRD patterns of the fly ash before and after phosphate adsorption revealed that phosphate salt (CaHPO4 x 2H2O) was formed in the adsorption process. Therefore, the removal of phosphate by fly ash can be attributed to the formation of phosphate precipitation as a brushite and the adsorption on hydroxylated oxides. The results suggested that the use of fly ash could be a promising solution to the removal of phosphate in the wastewater treatment and pollution control.

  13. Radionuclide containment in soil by phosphate treatment

    International Nuclear Information System (INIS)

    Lee, S.Y.; Francis, C.W.; Timpson, M.E.; Elless, M.P.

    1995-01-01

    Radionuclide transport from a contaminant source to groundwater and surface water is a common problem faced by most US Department of Energy (DOE) facilities. Containment of the radionuclide plume, including strontium-90 and uranium, is possible using phosphate treatment as a chemical stabilizer. Such a chemical process occurs in soils under natural environmental conditions. Therefore, the concept of phosphate amendment for radiostrontium and uranium immobilization is already a proven principle. In this presentation, results of bench-scale experiments and the concept of a field-scale demonstration are discussed. The phosphate treatment is possible at the source or near the advancing contaminant plume. Cleanup is still the ideal concept; however, containment through stabilization is a more practical and costeffective concept that should be examined by DOE Environmental Restoration programs

  14. Structural basis for phosphatidylinositol-phosphate biosynthesis

    Science.gov (United States)

    Clarke, Oliver B.; Tomasek, David; Jorge, Carla D.; Dufrisne, Meagan Belcher; Kim, Minah; Banerjee, Surajit; Rajashankar, Kanagalaghatta R.; Shapiro, Lawrence; Hendrickson, Wayne A.; Santos, Helena; Mancia, Filippo

    2015-10-01

    Phosphatidylinositol is critical for intracellular signalling and anchoring of carbohydrates and proteins to outer cellular membranes. The defining step in phosphatidylinositol biosynthesis is catalysed by CDP-alcohol phosphotransferases, transmembrane enzymes that use CDP-diacylglycerol as donor substrate for this reaction, and either inositol in eukaryotes or inositol phosphate in prokaryotes as the acceptor alcohol. Here we report the structures of a related enzyme, the phosphatidylinositol-phosphate synthase from Renibacterium salmoninarum, with and without bound CDP-diacylglycerol to 3.6 and 2.5 Å resolution, respectively. These structures reveal the location of the acceptor site, and the molecular determinants of substrate specificity and catalysis. Functional characterization of the 40%-identical ortholog from Mycobacterium tuberculosis, a potential target for the development of novel anti-tuberculosis drugs, supports the proposed mechanism of substrate binding and catalysis. This work therefore provides a structural and functional framework to understand the mechanism of phosphatidylinositol-phosphate biosynthesis.

  15. Phosphate Phosphors for Solid-State Lighting

    CERN Document Server

    Shinde, Kartik N; Swart, H C; Park, Kyeongsoon

    2012-01-01

    The idea for this book arose out of the realization that, although excellent surveys and a phosphor handbook are available, there is no single source covering the area of phosphate based phosphors especially for lamp industry. Moreover, as this field gets only limited attention in most general books on luminescence, there is a clear need for a book in which attention is specifically directed toward this rapidly growing field of solid state lighting and its many applications. This book is aimed at providing a sound introduction to the synthesis and optical characterization of phosphate phosphor for undergraduate and graduate students as well as teachers and researchers. The book provides guidance through the multidisciplinary field of solid state lighting specially phosphate phosphors for beginners, scientists and engineers from universities, research organizations, and especially industry. In order to make it useful for a wide audience, both fundamentals and applications are discussed, together.

  16. Cytosolic NADPH Homeostasis in Glucose-starved Procyclic Trypanosoma brucei Relies on Malic Enzyme and the Pentose Phosphate Pathway Fed by Gluconeogenic Flux*

    Science.gov (United States)

    Allmann, Stefan; Morand, Pauline; Ebikeme, Charles; Gales, Lara; Biran, Marc; Hubert, Jane; Brennand, Ana; Mazet, Muriel; Franconi, Jean-Michel; Michels, Paul A. M.; Portais, Jean-Charles; Boshart, Michael; Bringaud, Frédéric

    2013-01-01

    All living organisms depend on NADPH production to feed essential biosyntheses and for oxidative stress defense. Protozoan parasites such as the sleeping sickness pathogen Trypanosoma brucei adapt to different host environments, carbon sources, and oxidative stresses during their infectious life cycle. The procyclic stage develops in the midgut of the tsetse insect vector, where they rely on proline as carbon source, although they prefer glucose when grown in rich media. Here, we investigate the flexible and carbon source-dependent use of NADPH synthesis pathways in the cytosol of the procyclic stage. The T. brucei genome encodes two cytosolic NADPH-producing pathways, the pentose phosphate pathway (PPP) and the NADP-dependent malic enzyme (MEc). Reverse genetic blocking of those pathways and a specific inhibitor (dehydroepiandrosterone) of glucose-6-phosphate dehydrogenase together established redundancy with respect to H2O2 stress management and parasite growth. Blocking both pathways resulted in ∼10-fold increase of susceptibility to H2O2 stress and cell death. Unexpectedly, the same pathway redundancy was observed in glucose-rich and glucose-depleted conditions, suggesting that gluconeogenesis can feed the PPP to provide NADPH. This was confirmed by (i) a lethal phenotype of RNAi-mediated depletion of glucose-6-phosphate isomerase (PGI) in the glucose-depleted Δmec/Δmec null background, (ii) an ∼10-fold increase of susceptibility to H2O2 stress observed for the Δmec/Δmec/RNAiPGI double mutant when compared with the single mutants, and (iii) the 13C enrichment of glycolytic and PPP intermediates from cells incubated with [U-13C]proline, in the absence of glucose. Gluconeogenesis-supported NADPH supply may also be important for nucleotide and glycoconjugate syntheses in the insect host. PMID:23665470

  17. Phosphate Solubilization and Gene Expression of Phosphate-Solubilizing BacteriumBurkholderia multivoransWS-FJ9 under Different Levels of Soluble Phosphate.

    Science.gov (United States)

    Zeng, Qingwei; Wu, Xiaoqin; Wang, Jiangchuan; Ding, Xiaolei

    2017-04-28

    Phosphate-solubilizing bacteria (PSB) have the ability to dissolve insoluble phosphate and enhance soil fertility. However, the growth and mineral phosphate solubilization of PSB could be affected by exogenous soluble phosphate and the mechanism has not been fully understood. In the present study, the growth and mineral phosphate-solubilizing characteristics of PSB strain Burkholderia multivorans WS-FJ9 were investigated at six levels of exogenous soluble phosphate (0, 0.5, 1, 5, 10, and 20 mM). The WS-FJ9 strain showed better growth at high levels of soluble phosphate. The phosphate-solubilizing activity of WS-FJ9 was reduced as the soluble phosphate concentration increased, as well as the production of pyruvic acid. Transcriptome profiling of WS-FJ9 at three levels of exogenous soluble phosphate (0, 5, and 20 mM) identified 446 differentially expressed genes, among which 44 genes were continuously up-regulated when soluble phosphate concentration was increased and 81 genes were continuously down-regulated. Some genes related to cell growth were continuously up-regulated, which would account for the better growth of WS-FJ9 at high levels of soluble phosphate. Genes involved in glucose metabolism, including glycerate kinase, 2-oxoglutarate dehydrogenase, and sugar ABC-type transporter, were continuously down-regulated, which indicates that metabolic channeling of glucose towards the phosphorylative pathway was negatively regulated by soluble phosphate. These findings represent an important first step in understanding the molecular mechanisms of soluble phosphate effects on the growth and mineral phosphate solubilization of PSB.

  18. Automated back titration method to measure phosphate

    International Nuclear Information System (INIS)

    Comer, J.; Tehrani, M.; Avdeef, A.; Ross, J. Jr.

    1987-01-01

    Phosphate was measured in soda drinks and as an additive in flour, by a back titration method in which phosphate was precipitated with lanthanum, and the excess lanthanum was titrated with fluoride. All measurements were performed using the Orion fluoride electrode and the Orion 960 Autochemistry System. In most commercial automatic titrators, the inflection point of the titration curve, calculated from the first derivative of the curve, is used to find the equivalence polar of the titration. The inflection technique is compared with a technique based on Gran functions, which uses data collected after the end point and predicts the equivalence point accordingly

  19. Calcium phosphate ceramics in drug delivery

    Science.gov (United States)

    Bose, Susmita; Tarafder, Solaiman; Edgington, Joe; Bandyopadhyay, Amit

    2011-04-01

    Calcium phosphate (CaP) particulates, cements and scaffolds have attracted significant interest as drug delivery vehicles. CaP systems, including both hydroxyapaptite and tricalcium phosphates, possess variable stoichiometry, functionality and dissolution properties which make them suitable for cellular delivery. Their chemical similarity to bone and thus biocompatibility, as well as variable surface charge density contribute to their controlled release properties. Among specific research areas, nanoparticle size, morphology, surface area due to porosity, and chemistry controlled release kinetics are the most active. This article discusses CaP systems in their particulate, cements, and scaffold forms for drug, protein, and growth factor delivery toward orthopedic and dental applications.

  20. Potentially Prebiotic Syntheses of Condensed Phosphates

    Science.gov (United States)

    Keefe, Anthony D.; Miller, Stanley L.

    1996-01-01

    In view of the importance of a prebiotic source of high energy phosphates, we have investigated a number of potentially prebiotic processes to produce condensed phosphates from orthophosphate and cyclic trimetaphosphate from tripolyphosphate. The reagents investigated include polymerizing nitriles, acid anhydrides, lactones, hexamethylene tetramine and carbon suboxide. A number of these processes give substantial yields of pyrophosphate from orthophosphate and trimetaphosphate from tripolyphosphate. Although these reactions may have been applicable in local areas, they are not sufficiently robust to have been of importance in the prebiotic open ocean.