WorldWideScience

Sample records for tree species classification

  1. Optimizing tree-species classification in hyperspectal images

    CSIR Research Space (South Africa)

    Barnard, E

    2010-11-01

    Full Text Available The authors investigate the classification of eight prominent savanna tree species, based on hyperspectral reflectance data. Although two principal components account for 95% of the variance of the data, up to 20 components are found to be useful...

  2. Tree Species Classification By Multiseasonal High Resolution Satellite Data

    Science.gov (United States)

    Elatawneh, Alata; Wallner, Adelheid; Straub, Christoph; Schneider, Thomas; Knoke, Thomas

    2013-12-01

    Accurate forest tree species mapping is a fundamental issue for sustainable forest management and planning. Forest tree species mapping with the means of remote sensing data is still a topic to be investigated. The Bavaria state institute of forestry is investigating the potential of using digital aerial images for forest management purposes. However, using aerial images is still cost- and time-consuming, in addition to their acquisition restrictions. The new space-born sensor generations such as, RapidEye, with a very high temporal resolution, offering multiseasonal data have the potential to improve the forest tree species mapping. In this study, we investigated the potential of multiseasonal RapidEye data for mapping tree species in a Mid European forest in Southern Germany. The RapidEye data of level A3 were collected on ten different dates in the years 2009, 2010 and 2011. For data analysis, a model was developed, which combines the Spectral Angle Mapper technique with a 10-fold- cross-validation. The analysis succeeded to differentiate four tree species; Norway spruce (Picea abies L.), Silver Fir (Abies alba Mill.), European beech (Fagus sylvatica) and Maple (Acer pseudoplatanus). The model success was evaluated using digital aerial images acquired in the year 2009 and inventory point records from 2008/09 inventory. Model results of the multiseasonal RapidEye data analysis achieved an overall accuracy of 76%. However, the success of the model was evaluated only for all the identified species and not for the individual.

  3. Lidar-based individual tree species classification using convolutional neural network

    Science.gov (United States)

    Mizoguchi, Tomohiro; Ishii, Akira; Nakamura, Hiroyuki; Inoue, Tsuyoshi; Takamatsu, Hisashi

    2017-06-01

    Terrestrial lidar is commonly used for detailed documentation in the field of forest inventory investigation. Recent improvements of point cloud processing techniques enabled efficient and precise computation of an individual tree shape parameters, such as breast-height diameter, height, and volume. However, tree species are manually specified by skilled workers to date. Previous works for automatic tree species classification mainly focused on aerial or satellite images, and few works have been reported for classification techniques using ground-based sensor data. Several candidate sensors can be considered for classification, such as RGB or multi/hyper spectral cameras. Above all candidates, we use terrestrial lidar because it can obtain high resolution point cloud in the dark forest. We selected bark texture for the classification criteria, since they clearly represent unique characteristics of each tree and do not change their appearance under seasonable variation and aged deterioration. In this paper, we propose a new method for automatic individual tree species classification based on terrestrial lidar using Convolutional Neural Network (CNN). The key component is the creation step of a depth image which well describe the characteristics of each species from a point cloud. We focus on Japanese cedar and cypress which cover the large part of domestic forest. Our experimental results demonstrate the effectiveness of our proposed method.

  4. Effects of sample survey design on the accuracy of classification tree models in species distribution models

    Science.gov (United States)

    Thomas C. Edwards; D. Richard Cutler; Niklaus E. Zimmermann; Linda Geiser; Gretchen G. Moisen

    2006-01-01

    We evaluated the effects of probabilistic (hereafter DESIGN) and non-probabilistic (PURPOSIVE) sample surveys on resultant classification tree models for predicting the presence of four lichen species in the Pacific Northwest, USA. Models derived from both survey forms were assessed using an independent data set (EVALUATION). Measures of accuracy as gauged by...

  5. Exploiting machine learning algorithms for tree species classification in a semiarid woodland using RapidEye image

    CSIR Research Space (South Africa)

    Adelabu, S

    2013-11-01

    Full Text Available Classification of different tree species in semiarid areas can be challenging as a result of the change in leaf structure and orientation due to soil moisture constraints. Tree species mapping is, however, a key parameter for forest management...

  6. Tree species classification using within crown localization of waveform LiDAR attributes

    Science.gov (United States)

    Blomley, Rosmarie; Hovi, Aarne; Weinmann, Martin; Hinz, Stefan; Korpela, Ilkka; Jutzi, Boris

    2017-11-01

    Since forest planning is increasingly taking an ecological, diversity-oriented perspective into account, remote sensing technologies are becoming ever more important in assessing existing resources with reduced manual effort. While the light detection and ranging (LiDAR) technology provides a good basis for predictions of tree height and biomass, tree species identification based on this type of data is particularly challenging in structurally heterogeneous forests. In this paper, we analyse existing approaches with respect to the geometrical scale of feature extraction (whole tree, within crown partitions or within laser footprint) and conclude that currently features are always extracted separately from the different scales. Since multi-scale approaches however have proven successful in other applications, we aim to utilize the within-tree-crown distribution of within-footprint signal characteristics as additional features. To do so, a spin image algorithm, originally devised for the extraction of 3D surface features in object recognition, is adapted. This algorithm relies on spinning an image plane around a defined axis, e.g. the tree stem, collecting the number of LiDAR returns or mean values of returns attributes per pixel as respective values. Based on this representation, spin image features are extracted that comprise only those components of highest variability among a given set of library trees. The relative performance and the combined improvement of these spin image features with respect to non-spatial statistical metrics of the waveform (WF) attributes are evaluated for the tree species classification of Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies (L.) Karst.) and Silver/Downy birch (Betula pendula Roth/Betula pubescens Ehrh.) in a boreal forest environment. This evaluation is performed for two WF LiDAR datasets that differ in footprint size, pulse density at ground, laser wavelength and pulse width. Furthermore, we evaluate the

  7. Classification and regression trees

    CERN Document Server

    Breiman, Leo; Olshen, Richard A; Stone, Charles J

    1984-01-01

    The methodology used to construct tree structured rules is the focus of this monograph. Unlike many other statistical procedures, which moved from pencil and paper to calculators, this text's use of trees was unthinkable before computers. Both the practical and theoretical sides have been developed in the authors' study of tree methods. Classification and Regression Trees reflects these two sides, covering the use of trees as a data analysis method, and in a more mathematical framework, proving some of their fundamental properties.

  8. Tree Species Abundance Predictions in a Tropical Agricultural Landscape with a Supervised Classification Model and Imbalanced Data

    Directory of Open Access Journals (Sweden)

    Sarah J. Graves

    2016-02-01

    Full Text Available Mapping species through classification of imaging spectroscopy data is facilitating research to understand tree species distributions at increasingly greater spatial scales. Classification requires a dataset of field observations matched to the image, which will often reflect natural species distributions, resulting in an imbalanced dataset with many samples for common species and few samples for less common species. Despite the high prevalence of imbalanced datasets in multiclass species predictions, the effect on species prediction accuracy and landscape species abundance has not yet been quantified. First, we trained and assessed the accuracy of a support vector machine (SVM model with a highly imbalanced dataset of 20 tropical species and one mixed-species class of 24 species identified in a hyperspectral image mosaic (350–2500 nm of Panamanian farmland and secondary forest fragments. The model, with an overall accuracy of 62% ± 2.3% and F-score of 59% ± 2.7%, was applied to the full image mosaic (23,000 ha at a 2-m resolution to produce a species prediction map, which suggested that this tropical agricultural landscape is more diverse than what has been presented in field-based studies. Second, we quantified the effect of class imbalance on model accuracy. Model assessment showed a trend where species with more samples were consistently over predicted while species with fewer samples were under predicted. Standardizing sample size reduced model accuracy, but also reduced the level of species over- and under-prediction. This study advances operational species mapping of diverse tropical landscapes by detailing the effect of imbalanced data on classification accuracy and providing estimates of tree species abundance in an agricultural landscape. Species maps using data and methods presented here can be used in landscape analyses of species distributions to understand human or environmental effects, in addition to focusing conservation

  9. TREE SPECIES CLASSIFICATION OF BROADLEAVED FORESTS IN NAGANO, CENTRAL JAPAN, USING AIRBORNE LASER DATA AND MULTISPECTRAL IMAGES

    Directory of Open Access Journals (Sweden)

    S. Deng

    2017-10-01

    Full Text Available This study attempted to classify three coniferous and ten broadleaved tree species by combining airborne laser scanning (ALS data and multispectral images. The study area, located in Nagano, central Japan, is within the broadleaved forests of the Afan Woodland area. A total of 235 trees were surveyed in 2016, and we recorded the species, DBH, and tree height. The geographical position of each tree was collected using a Global Navigation Satellite System (GNSS device. Tree crowns were manually detected using GNSS position data, field photographs, true-color orthoimages with three bands (red-green-blue, RGB, 3D point clouds, and a canopy height model derived from ALS data. Then a total of 69 features, including 27 image-based and 42 point-based features, were extracted from the RGB images and the ALS data to classify tree species. Finally, the detected tree crowns were classified into two classes for the first level (coniferous and broadleaved trees, four classes for the second level (Pinus densiflora, Larix kaempferi, Cryptomeria japonica, and broadleaved trees, and 13 classes for the third level (three coniferous and ten broadleaved species, using the 27 image-based features, 42 point-based features, all 69 features, and the best combination of features identified using a neighborhood component analysis algorithm, respectively. The overall classification accuracies reached 90 % at the first and second levels but less than 60 % at the third level. The classifications using the best combinations of features had higher accuracies than those using the image-based and point-based features and the combination of all of the 69 features.

  10. Bayesian and Classical Machine Learning Methods: A Comparison for Tree Species Classification with LiDAR Waveform Signatures

    Directory of Open Access Journals (Sweden)

    Tan Zhou

    2017-12-01

    Full Text Available A plethora of information contained in full-waveform (FW Light Detection and Ranging (LiDAR data offers prospects for characterizing vegetation structures. This study aims to investigate the capacity of FW LiDAR data alone for tree species identification through the integration of waveform metrics with machine learning methods and Bayesian inference. Specifically, we first conducted automatic tree segmentation based on the waveform-based canopy height model (CHM using three approaches including TreeVaW, watershed algorithms and the combination of TreeVaW and watershed (TW algorithms. Subsequently, the Random forests (RF and Conditional inference forests (CF models were employed to identify important tree-level waveform metrics derived from three distinct sources, such as raw waveforms, composite waveforms, the waveform-based point cloud and the combined variables from these three sources. Further, we discriminated tree (gray pine, blue oak, interior live oak and shrub species through the RF, CF and Bayesian multinomial logistic regression (BMLR using important waveform metrics identified in this study. Results of the tree segmentation demonstrated that the TW algorithms outperformed other algorithms for delineating individual tree crowns. The CF model overcomes waveform metrics selection bias caused by the RF model which favors correlated metrics and enhances the accuracy of subsequent classification. We also found that composite waveforms are more informative than raw waveforms and waveform-based point cloud for characterizing tree species in our study area. Both classical machine learning methods (the RF and CF and the BMLR generated satisfactory average overall accuracy (74% for the RF, 77% for the CF and 81% for the BMLR and the BMLR slightly outperformed the other two methods. However, these three methods suffered from low individual classification accuracy for the blue oak which is prone to being misclassified as the interior live oak due

  11. Classification of tree species based on longwave hyperspectral data from leaves, a case study for a tropical dry forest

    Science.gov (United States)

    Harrison, D.; Rivard, B.; Sánchez-Azofeifa, A.

    2018-04-01

    Remote sensing of the environment has utilized the visible, near and short-wave infrared (IR) regions of the electromagnetic (EM) spectrum to characterize vegetation health, vigor and distribution. However, relatively little research has focused on the use of the longwave infrared (LWIR, 8.0-12.5 μm) region for studies of vegetation. In this study LWIR leaf reflectance spectra were collected in the wet seasons (May through December) of 2013 and 2014 from twenty-six tree species located in a high species diversity environment, a tropical dry forest in Costa Rica. A continuous wavelet transformation (CWT) was applied to all spectra to minimize noise and broad amplitude variations attributable to non-compositional effects. Species discrimination was then explored with Random Forest classification and accuracy improved was observed with preprocessing of reflectance spectra with continuous wavelet transformation. Species were found to share common spectral features that formed the basis for five spectral types that were corroborated with linear discriminate analysis. The source of most of the observed spectral features is attributed to cell wall or cuticle compounds (cellulose, cutin, matrix glycan, silica and oleanolic acid). Spectral types could be advantageous for the analysis of airborne hyperspectral data because cavity effects will lower the spectral contrast thus increasing the reliance of classification efforts on dominant spectral features. Spectral types specifically derived from leaf level data are expected to support the labeling of spectral classes derived from imagery. The results of this study and that of Ribeiro Da Luz (2006), Ribeiro Da Luz and Crowley (2007, 2010), Ullah et al. (2012) and Rock et al. (2016) have now illustrated success in tree species discrimination across a range of ecosystems using leaf-level spectral observations. With advances in LWIR sensors and concurrent improvements in their signal to noise, applications to large-scale species

  12. Seasonal Effect on Tree Species Classification in an Urban Environment Using Hyperspectral Data, LiDAR, and an Object- Oriented Approach.

    Science.gov (United States)

    Voss, Matthew; Sugumaran, Ramanathan

    2008-05-06

    The objective of the current study was to analyze the seasonal effect on differentiating tree species in an urban environment using multi-temporal hyperspectral data, Light Detection And Ranging (LiDAR) data, and a tree species database collected from the field. Two Airborne Imaging Spectrometer for Applications (AISA) hyperspectral images were collected, covering the Summer and Fall seasons. In order to make both datasets spatially and spectrally compatible, several preprocessing steps, including band reduction and a spatial degradation, were performed. An object-oriented classification was performed on both images using training data collected randomly from the tree species database. The seven dominant tree species (Gleditsia triacanthos, Acer saccharum, Tilia Americana, Quercus palustris, Pinus strobus and Picea glauca) were used in the classification. The results from this analysis did not show any major difference in overall accuracy between the two seasons. Overall accuracy was approximately 57% for the Summer dataset and 56% for the Fall dataset. However, the Fall dataset provided more consistent results for all tree species while the Summer dataset had a few higher individual class accuracies. Further, adding LiDAR into the classification improved the results by 19% for both fall and summer. This is mainly due to the removal of shadow effect and the addition of elevation data to separate low and high vegetation.

  13. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment

    Science.gov (United States)

    Naidoo, L.; Cho, M. A.; Mathieu, R.; Asner, G.

    2012-04-01

    The accurate classification and mapping of individual trees at species level in the savanna ecosystem can provide numerous benefits for the managerial authorities. Such benefits include the mapping of economically useful tree species, which are a key source of food production and fuel wood for the local communities, and of problematic alien invasive and bush encroaching species, which can threaten the integrity of the environment and livelihoods of the local communities. Species level mapping is particularly challenging in African savannas which are complex, heterogeneous, and open environments with high intra-species spectral variability due to differences in geology, topography, rainfall, herbivory and human impacts within relatively short distances. Savanna vegetation are also highly irregular in canopy and crown shape, height and other structural dimensions with a combination of open grassland patches and dense woody thicket - a stark contrast to the more homogeneous forest vegetation. This study classified eight common savanna tree species in the Greater Kruger National Park region, South Africa, using a combination of hyperspectral and Light Detection and Ranging (LiDAR)-derived structural parameters, in the form of seven predictor datasets, in an automated Random Forest modelling approach. The most important predictors, which were found to play an important role in the different classification models and contributed to the success of the hybrid dataset model when combined, were species tree height; NDVI; the chlorophyll b wavelength (466 nm) and a selection of raw, continuum removed and Spectral Angle Mapper (SAM) bands. It was also concluded that the hybrid predictor dataset Random Forest model yielded the highest classification accuracy and prediction success for the eight savanna tree species with an overall classification accuracy of 87.68% and KHAT value of 0.843.

  14. Aerial Images from AN Uav System: 3d Modeling and Tree Species Classification in a Park Area

    Science.gov (United States)

    Gini, R.; Passoni, D.; Pinto, L.; Sona, G.

    2012-07-01

    The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs) is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment): it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes). Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs) were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS) and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  15. AERIAL IMAGES FROM AN UAV SYSTEM: 3D MODELING AND TREE SPECIES CLASSIFICATION IN A PARK AREA

    Directory of Open Access Journals (Sweden)

    R. Gini

    2012-07-01

    Full Text Available The use of aerial imagery acquired by Unmanned Aerial Vehicles (UAVs is scheduled within the FoGLIE project (Fruition of Goods Landscape in Interactive Environment: it starts from the need to enhance the natural, artistic and cultural heritage, to produce a better usability of it by employing audiovisual movable systems of 3D reconstruction and to improve monitoring procedures, by using new media for integrating the fruition phase with the preservation ones. The pilot project focus on a test area, Parco Adda Nord, which encloses various goods' types (small buildings, agricultural fields and different tree species and bushes. Multispectral high resolution images were taken by two digital compact cameras: a Pentax Optio A40 for RGB photos and a Sigma DP1 modified to acquire the NIR band. Then, some tests were performed in order to analyze the UAV images' quality with both photogrammetric and photo-interpretation purposes, to validate the vector-sensor system, the image block geometry and to study the feasibility of tree species classification. Many pre-signalized Control Points were surveyed through GPS to allow accuracy analysis. Aerial Triangulations (ATs were carried out with photogrammetric commercial software, Leica Photogrammetry Suite (LPS and PhotoModeler, with manual or automatic selection of Tie Points, to pick out pros and cons of each package in managing non conventional aerial imagery as well as the differences in the modeling approach. Further analysis were done on the differences between the EO parameters and the corresponding data coming from the on board UAV navigation system.

  16. Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data

    Science.gov (United States)

    Puttonen, Eetu; Jaakkola, Anttoni; Litkey, Paula; Hyyppä, Juha

    2011-01-01

    Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin. PMID:22163894

  17. Estimating species trees from unrooted gene trees.

    Science.gov (United States)

    Liu, Liang; Yu, Lili

    2011-10-01

    In this study, we develop a distance method for inferring unrooted species trees from a collection of unrooted gene trees. The species tree is estimated by the neighbor joining (NJ) tree built from a distance matrix in which the distance between two species is defined as the average number of internodes between two species across gene trees, that is, average gene-tree internode distance. The distance method is named NJ(st) to distinguish it from the original NJ method. Under the coalescent model, we show that if gene trees are known or estimated correctly, the NJ(st) method is statistically consistent in estimating unrooted species trees. The simulation results suggest that NJ(st) and STAR (another coalescence-based method for inferring species trees) perform almost equally well in estimating topologies of species trees, whereas the Bayesian coalescence-based method, BEST, outperforms both NJ(st) and STAR. Unlike BEST and STAR, the NJ(st) method can take unrooted gene trees to infer species trees without using an outgroup. In addition, the NJ(st) method can handle missing data and is thus useful in phylogenomic studies in which data sets often contain missing loci for some individuals.

  18. Investigating the limitations of tree species classification using the Combined Cluster and Discriminant Analysis method for low density ALS data from a dense forest region in Aggtelek (Hungary)

    Science.gov (United States)

    Koma, Zsófia; Deák, Márton; Kovács, József; Székely, Balázs; Kelemen, Kristóf; Standovár, Tibor

    2016-04-01

    Airborne Laser Scanning (ALS) is a widely used technology for forestry classification applications. However, single tree detection and species classification from low density ALS point cloud is limited in a dense forest region. In this study we investigate the division of a forest into homogenous groups at stand level. The study area is located in the Aggtelek karst region (Northeast Hungary) with a complex relief topography. The ALS dataset contained only 4 discrete echoes (at 2-4 pt/m2 density) from the study area during leaf-on season. Ground-truth measurements about canopy closure and proportion of tree species cover are available for every 70 meter in 500 square meter circular plots. In the first step, ALS data were processed and geometrical and intensity based features were calculated into a 5×5 meter raster based grid. The derived features contained: basic statistics of relative height, canopy RMS, echo ratio, openness, pulse penetration ratio, basic statistics of radiometric feature. In the second step the data were investigated using Combined Cluster and Discriminant Analysis (CCDA, Kovács et al., 2014). The CCDA method first determines a basic grouping for the multiple circle shaped sampling locations using hierarchical clustering and then for the arising grouping possibilities a core cycle is executed comparing the goodness of the investigated groupings with random ones. Out of these comparisons difference values arise, yielding information about the optimal grouping out of the investigated ones. If sub-groups are then further investigated, one might even find homogeneous groups. We found that low density ALS data classification into homogeneous groups are highly dependent on canopy closure, and the proportion of the dominant tree species. The presented results show high potential using CCDA for determination of homogenous separable groups in LiDAR based tree species classification. Aggtelek Karst/Slovakian Karst Caves" (HUSK/1101/221/0180, Aggtelek NP

  19. The decision tree approach to classification

    Science.gov (United States)

    Wu, C.; Landgrebe, D. A.; Swain, P. H.

    1975-01-01

    A class of multistage decision tree classifiers is proposed and studied relative to the classification of multispectral remotely sensed data. The decision tree classifiers are shown to have the potential for improving both the classification accuracy and the computation efficiency. Dimensionality in pattern recognition is discussed and two theorems on the lower bound of logic computation for multiclass classification are derived. The automatic or optimization approach is emphasized. Experimental results on real data are reported, which clearly demonstrate the usefulness of decision tree classifiers.

  20. Improving classification accuracy of spectrally similar tree species: a complex case study in the Kruger National Park

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available dominant absorption feature (1900 and 1400 nm) identified by the algorithm. Compared with the healthy lodgepole pine, the stressed tree shows ITC Journal 1998-1Imaging spectrometry for monitoring tree damage 3 Transformed SpectrumHull 0.60 0.80 1.... This paper presents a practical application of imaging spectrometry for vegetation survey in the Long Valley caldera in the Sierra Nevada, California. This area suffers from vol- canic activity, which causes significant damage to the pine and fir...

  1. Mapping Savanna Tree Species at Ecosystem Scales Using Support Vector Machine Classification and BRDF Correction on Airborne Hyperspectral and LiDAR Data

    Directory of Open Access Journals (Sweden)

    Gregory P. Asner

    2012-11-01

    Full Text Available Mapping the spatial distribution of plant species in savannas provides insight into the roles of competition, fire, herbivory, soils and climate in maintaining the biodiversity of these ecosystems. This study focuses on the challenges facing large-scale species mapping using a fusion of Light Detection and Ranging (LiDAR and hyperspectral imagery. Here we build upon previous work on airborne species detection by using a two-stage support vector machine (SVM classifier to first predict species from hyperspectral data at the pixel scale. Tree crowns are segmented from the lidar imagery such that crown-level information, such as maximum tree height, can then be combined with the pixel-level species probabilities to predict the species of each tree. An overall prediction accuracy of 76% was achieved for 15 species. We also show that bidirectional reflectance distribution (BRDF effects caused by anisotropic scattering properties of savanna vegetation can result in flight line artifacts evident in species probability maps, yet these can be largely mitigated by applying a semi-empirical BRDF model to the hyperspectral data. We find that confronting these three challenges—reflectance anisotropy, integration of pixel- and crown-level data, and crown delineation over large areas—enables species mapping at ecosystem scales for monitoring biodiversity and ecosystem function.

  2. Fast Image Texture Classification Using Decision Trees

    Science.gov (United States)

    Thompson, David R.

    2011-01-01

    Texture analysis would permit improved autonomous, onboard science data interpretation for adaptive navigation, sampling, and downlink decisions. These analyses would assist with terrain analysis and instrument placement in both macroscopic and microscopic image data products. Unfortunately, most state-of-the-art texture analysis demands computationally expensive convolutions of filters involving many floating-point operations. This makes them infeasible for radiation- hardened computers and spaceflight hardware. A new method approximates traditional texture classification of each image pixel with a fast decision-tree classifier. The classifier uses image features derived from simple filtering operations involving integer arithmetic. The texture analysis method is therefore amenable to implementation on FPGA (field-programmable gate array) hardware. Image features based on the "integral image" transform produce descriptive and efficient texture descriptors. Training the decision tree on a set of training data yields a classification scheme that produces reasonable approximations of optimal "texton" analysis at a fraction of the computational cost. A decision-tree learning algorithm employing the traditional k-means criterion of inter-cluster variance is used to learn tree structure from training data. The result is an efficient and accurate summary of surface morphology in images. This work is an evolutionary advance that unites several previous algorithms (k-means clustering, integral images, decision trees) and applies them to a new problem domain (morphology analysis for autonomous science during remote exploration). Advantages include order-of-magnitude improvements in runtime, feasibility for FPGA hardware, and significant improvements in texture classification accuracy.

  3. storey and canopy tree species

    African Journals Online (AJOL)

    different tree species. The data presented here would therefore help in the planning and management of tropical forest reserves and development of management inteiventions to enhance forest productivity and ecological balance. Materials and methods. Study site. Kalinzu Forest Reserve is a tropical rain forest locate<.! in.

  4. Knowledge base image classification using P-trees

    Science.gov (United States)

    Seetha, M.; Ravi, G.

    2010-02-01

    Image Classification is the process of assigning classes to the pixels in remote sensed images and important for GIS applications, since the classified image is much easier to incorporate than the original unclassified image. To resolve misclassification in traditional parametric classifier like Maximum Likelihood Classifier, the neural network classifier is implemented using back propagation algorithm. The extra spectral and spatial knowledge acquired from the ancillary information is required to improve the accuracy and remove the spectral confusion. To build knowledge base automatically, this paper explores a non-parametric decision tree classifier to extract knowledge from the spatial data in the form of classification rules. A new method is proposed using a data structure called Peano Count Tree (P-tree) for decision tree classification. The Peano Count Tree is a spatial data organization that provides a lossless compressed representation of a spatial data set and facilitates efficient classification than other data mining techniques. The accuracy is assessed using the parameters overall accuracy, User's accuracy and Producer's accuracy for image classification methods of Maximum Likelihood Classification, neural network classification using back propagation, Knowledge Base Classification, Post classification and P-tree Classifier. The results reveal that the knowledge extracted from decision tree classifier and P-tree data structure from proposed approach remove the problem of spectral confusion to a greater extent. It is ascertained that the P-tree classifier surpasses the other classification techniques.

  5. Demography of threatened tree species in Vietnam

    NARCIS (Netherlands)

    Chien, P.D.

    2006-01-01

    Demography of threatened tree species in Vietnam (Summary for the library) Effective conservation of threatened tree species requires information on natural dynamics and future prospects of populations of these species. Such information can be obtained from demographic studies. We investigated the

  6. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment...... between the branch feature vectors representing those trees. Hereby, localized information in the branches is collectively used in classification and variations in feature values across the tree are taken into account. An approximate anatomical correspondence between matched branches can be achieved...... by including anatomical features in the branch feature vectors. The proposed approach is applied to classify airway trees in computed tomography images of subjects with and without chronic obstructive pulmonary disease (COPD). Using the wall area percentage (WA%), a common measure of airway abnormality in COPD...

  7. [Automatic classification method of star spectrum data based on classification pattern tree].

    Science.gov (United States)

    Zhao, Xu-Jun; Cai, Jiang-Hui; Zhang, Ji-Fu; Yang, Hai-Feng; Ma, Yang

    2013-10-01

    Frequent pattern, frequently appearing in the data set, plays an important role in data mining. For the stellar spectrum classification tasks, a classification rule mining method based on classification pattern tree is presented on the basis of frequent pattern. The procedures can be shown as follows. Firstly, a new tree structure, i. e., classification pattern tree, is introduced based on the different frequencies of stellar spectral attributes in data base and its different importance used for classification. The related concepts and the construction method of classification pattern tree are also described in this paper. Then, the characteristics of the stellar spectrum are mapped to the classification pattern tree. Two modes of top-to-down and bottom-to-up are used to traverse the classification pattern tree and extract the classification rules. Meanwhile, the concept of pattern capability is introduced to adjust the number of classification rules and improve the construction efficiency of the classification pattern tree. Finally, the SDSS (the Sloan Digital Sky Survey) stellar spectral data provided by the National Astronomical Observatory are used to verify the accuracy of the method. The results show that a higher classification accuracy has been got.

  8. Big data of tree species distributions

    DEFF Research Database (Denmark)

    Serra-Diaz, Josep M.; Enquist, Brian J.; Maitner, Brian

    2018-01-01

    are currently available in big databases, several challenges hamper their use, notably geolocation problems and taxonomic uncertainty. Further, we lack a complete picture of the data coverage and quality assessment for open/public databases of tree occurrences. Methods: We combined data from five major......Background: Trees play crucial roles in the biosphere and societies worldwide, with a total of 60,065 tree species currently identified. Increasingly, a large amount of data on tree species occurrences is being generated worldwide: from inventories to pressed plants. While many of these data...... aggregators of occurrence data (e.g. Global Biodiversity Information Facility, Botanical Information and Ecological Network v.3, DRYFLOR, RAINBIO and Atlas of Living Australia) by creating a workflow to integrate, assess and control data quality of tree species occurrences for species distribution modeling...

  9. Removing other Tree Species does not benefit the Timber Species ...

    African Journals Online (AJOL)

    The endemic canopy tree Cephalosphaera usambarensis is a valuable timber species in montane rainforest of Tanzania. Here we evaluate an experiment in which mature trees of species other than C. usambarensis were removed from an area in the East Usambara Mountains. We compared stage/size structure of the ...

  10. Decision tree approach for classification of remotely sensed satellite ...

    Indian Academy of Sciences (India)

    DTC) algorithm for classification of remotely sensed satellite data (Landsat TM) using open source support. The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using. WEKA, open source ...

  11. Decision tree approach for classification of remotely sensed satellite

    Indian Academy of Sciences (India)

    DTC) algorithm for classification of remotely sensed satellite data (Landsat TM) using open source support. The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using WEKA, open source ...

  12. Tree structural and species diversities in Okwangwo Forest, Cross ...

    African Journals Online (AJOL)

    Tree species were grouped into abundance classes. A total of 125 tree species belonging to 36 families and 96 genera were recorded in the area with Margaleffs index of species richness of 2.2754. Most (99) of the tree species encountered were threatened/endangered, 23 species were rare with only 3 tree species ...

  13. Reconciliation of Gene and Species Trees

    Directory of Open Access Journals (Sweden)

    L. Y. Rusin

    2014-01-01

    Full Text Available The first part of the paper briefly overviews the problem of gene and species trees reconciliation with the focus on defining and algorithmic construction of the evolutionary scenario. Basic ideas are discussed for the aspects of mapping definitions, costs of the mapping and evolutionary scenario, imposing time scales on a scenario, incorporating horizontal gene transfers, binarization and reconciliation of polytomous trees, and construction of species trees and scenarios. The review does not intend to cover the vast diversity of literature published on these subjects. Instead, the authors strived to overview the problem of the evolutionary scenario as a central concept in many areas of evolutionary research. The second part provides detailed mathematical proofs for the solutions of two problems: (i inferring a gene evolution along a species tree accounting for various types of evolutionary events and (ii trees reconciliation into a single species tree when only gene duplications and losses are allowed. All proposed algorithms have a cubic time complexity and are mathematically proved to find exact solutions. Solving algorithms for problem (ii can be naturally extended to incorporate horizontal transfers, other evolutionary events, and time scales on the species tree.

  14. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    between the branch feature vectors representing those trees. Hereby, localized information in the branches is collectively used in classification and variations in feature values across the tree are taken into account. An approximate anatomical correspondence between matched branches can be achieved...

  15. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species

    CSIR Research Space (South Africa)

    Madonsela, Sabelo

    2017-06-01

    Full Text Available in Southern African savannah and ii) if multiple-images acquired at key points of the typical phenological development of savannahs (peak productivity, transition to senescence) improve on tree species classifications. We first assessed the discriminatory...

  16. Species tree inference by minimizing deep coalescences.

    Science.gov (United States)

    Than, Cuong; Nakhleh, Luay

    2009-09-01

    In a 1997 seminal paper, W. Maddison proposed minimizing deep coalescences, or MDC, as an optimization criterion for inferring the species tree from a set of incongruent gene trees, assuming the incongruence is exclusively due to lineage sorting. In a subsequent paper, Maddison and Knowles provided and implemented a search heuristic for optimizing the MDC criterion, given a set of gene trees. However, the heuristic is not guaranteed to compute optimal solutions, and its hill-climbing search makes it slow in practice. In this paper, we provide two exact solutions to the problem of inferring the species tree from a set of gene trees under the MDC criterion. In other words, our solutions are guaranteed to find the tree that minimizes the total number of deep coalescences from a set of gene trees. One solution is based on a novel integer linear programming (ILP) formulation, and another is based on a simple dynamic programming (DP) approach. Powerful ILP solvers, such as CPLEX, make the first solution appealing, particularly for very large-scale instances of the problem, whereas the DP-based solution eliminates dependence on proprietary tools, and its simplicity makes it easy to integrate with other genomic events that may cause gene tree incongruence. Using the exact solutions, we analyze a data set of 106 loci from eight yeast species, a data set of 268 loci from eight Apicomplexan species, and several simulated data sets. We show that the MDC criterion provides very accurate estimates of the species tree topologies, and that our solutions are very fast, thus allowing for the accurate analysis of genome-scale data sets. Further, the efficiency of the solutions allow for quick exploration of sub-optimal solutions, which is important for a parsimony-based criterion such as MDC, as we show. We show that searching for the species tree in the compatibility graph of the clusters induced by the gene trees may be sufficient in practice, a finding that helps ameliorate the

  17. Species tree inference by minimizing deep coalescences.

    Directory of Open Access Journals (Sweden)

    Cuong Than

    2009-09-01

    Full Text Available In a 1997 seminal paper, W. Maddison proposed minimizing deep coalescences, or MDC, as an optimization criterion for inferring the species tree from a set of incongruent gene trees, assuming the incongruence is exclusively due to lineage sorting. In a subsequent paper, Maddison and Knowles provided and implemented a search heuristic for optimizing the MDC criterion, given a set of gene trees. However, the heuristic is not guaranteed to compute optimal solutions, and its hill-climbing search makes it slow in practice. In this paper, we provide two exact solutions to the problem of inferring the species tree from a set of gene trees under the MDC criterion. In other words, our solutions are guaranteed to find the tree that minimizes the total number of deep coalescences from a set of gene trees. One solution is based on a novel integer linear programming (ILP formulation, and another is based on a simple dynamic programming (DP approach. Powerful ILP solvers, such as CPLEX, make the first solution appealing, particularly for very large-scale instances of the problem, whereas the DP-based solution eliminates dependence on proprietary tools, and its simplicity makes it easy to integrate with other genomic events that may cause gene tree incongruence. Using the exact solutions, we analyze a data set of 106 loci from eight yeast species, a data set of 268 loci from eight Apicomplexan species, and several simulated data sets. We show that the MDC criterion provides very accurate estimates of the species tree topologies, and that our solutions are very fast, thus allowing for the accurate analysis of genome-scale data sets. Further, the efficiency of the solutions allow for quick exploration of sub-optimal solutions, which is important for a parsimony-based criterion such as MDC, as we show. We show that searching for the species tree in the compatibility graph of the clusters induced by the gene trees may be sufficient in practice, a finding that helps

  18. Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a random forest data mining environment

    CSIR Research Space (South Africa)

    Naidoo, L

    2012-04-01

    Full Text Available are highly dynamic and are in a constant state of flux in which cyclical successions between the dominance of woody and grassy vegetation are evident (according to patch dynamics theory in Meyer et al., 2007). The accurate mapping of individual trees... from genetic patrimony and various environmental and physical factors (weather, seasonality, geology and edaphic conditions; such as the influence of gabbro versus granite substrates on savanna vegetation; and natural phenological changes...

  19. Isoprene emission from tropical tree species.

    Science.gov (United States)

    Padhy, P K; Varshney, C K

    2005-05-01

    Foliar emission of isoprene was measured in nine commonly growing tree species of Delhi, India. Dynamic flow enclosure technique was used and gas samples were collected onto Tenax-GC/Carboseive cartridges, which were then attached to the sample injection system in the gas chromatograph (GC). Eluting compounds were analysed using a flame ionisation detector (FID). Out of the nine tree species, isoprene emission was found in six species (Eucalyptus sp., Ficus benghalensis, Ficus religiosa, Mangifera indica, Melia azedarach, and Syzygium jambolanum), whereas, in the remaining three tree species (Alstonia scholaris, Azadirachta indica, and Cassia fistula) no isoprene emission was detected or the levels of emission were negligible or below the detection limit (BDL). Among six tree species, the highest hourly emission (10.2 +/- 6.8 microg g(-1) leaf dry weight, average of five seasons) was observed in Ficus religiosa, while minimum emission was from Melia azedarach (2.2 +/- 4.9 microg g(-1) leaf dry weight, average of five seasons). Isoprene emission (average of six species), over five seasons, was found to vary between 3.9 and 8.5 microg g(-1) leaf dry weight during the rainy season. In addition, significant diurnal variation in isoprene emission was observed in each species. The preliminary estimate made in this study on the annual biogenic VOC emission from India may probably be the first of its kind from this part of the world.

  20. Pushing the pace of tree species migration.

    Directory of Open Access Journals (Sweden)

    Eli D Lazarus

    Full Text Available Plants and animals have responded to past climate changes by migrating with habitable environments, sometimes shifting the boundaries of their geographic ranges by tens of kilometers per year or more. Species migrating in response to present climate conditions, however, must contend with landscapes fragmented by anthropogenic disturbance. We consider this problem in the context of wind-dispersed tree species. Mechanisms of long-distance seed dispersal make these species capable of rapid migration rates. Models of species-front migration suggest that even tree species with the capacity for long-distance dispersal will be unable to keep pace with future spatial changes in temperature gradients, exclusive of habitat fragmentation effects. Here we present a numerical model that captures the salient dynamics of migration by long-distance dispersal for a generic tree species. We then use the model to explore the possible effects of assisted colonization within a fragmented landscape under a simulated tree-planting scheme. Our results suggest that an assisted-colonization program could accelerate species-front migration rates enough to match the speed of climate change, but such a program would involve an environmental-sustainability intervention at a massive scale.

  1. Decision tree methods: applications for classification and prediction.

    Science.gov (United States)

    Song, Yan-Yan; Lu, Ying

    2015-04-25

    Decision tree methodology is a commonly used data mining method for establishing classification systems based on multiple covariates or for developing prediction algorithms for a target variable. This method classifies a population into branch-like segments that construct an inverted tree with a root node, internal nodes, and leaf nodes. The algorithm is non-parametric and can efficiently deal with large, complicated datasets without imposing a complicated parametric structure. When the sample size is large enough, study data can be divided into training and validation datasets. Using the training dataset to build a decision tree model and a validation dataset to decide on the appropriate tree size needed to achieve the optimal final model. This paper introduces frequently used algorithms used to develop decision trees (including CART, C4.5, CHAID, and QUEST) and describes the SPSS and SAS programs that can be used to visualize tree structure.

  2. Isoprene emission from tropical tree species

    Energy Technology Data Exchange (ETDEWEB)

    Padhy, P.K. [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)]. E-mail: padhypk2003@yahoo.com; Varshney, C.K. [School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110 067 (India)

    2005-05-01

    Foliar emission of isoprene was measured in nine commonly growing tree species of Delhi, India. Dynamic flow enclosure technique was used and gas samples were collected onto Tenax-GC/Carboseive cartridges, which were then attached to the sample injection system in the gas chromatograph (GC). Eluting compounds were analysed using a flame ionisation detector (FID). Out of the nine tree species, isoprene emission was found in six species (Eucalyptus sp., Ficus benghalensis, Ficus religiosa, Mangifera indica, Melia azedarach, and Syzygium jambolanum), whereas, in the remaining three tree species (Alstonia scholaris, Azadirachta indica, and Cassia fistula) no isoprene emission was detected or the levels of emission were negligible or below the detection limit (BDL). Among six tree species, the highest hourly emission (10.2{+-}6.8 {mu}g g{sup -1} leaf dry weight, average of five seasons) was observed in Ficus religiosa, while minimum emission was from Melia azedarach (2.2{+-}4.9 {mu}g g{sup -1} leaf dry weight, average of five seasons). Isoprene emission (average of six species), over five seasons, was found to vary between 3.9 and 8.5 {mu}g g{sup -1} leaf dry weight during the rainy season. In addition, significant diurnal variation in isoprene emission was observed in each species. The preliminary estimate made in this study on the annual biogenic VOC emission from India may probably be the first of its kind from this part of the world. - Isoprene flux (diurnal and seasonal) from some tropical tree species was estimated and a regional comparison was made.

  3. Isoprene emission from tropical tree species

    International Nuclear Information System (INIS)

    Padhy, P.K.; Varshney, C.K.

    2005-01-01

    Foliar emission of isoprene was measured in nine commonly growing tree species of Delhi, India. Dynamic flow enclosure technique was used and gas samples were collected onto Tenax-GC/Carboseive cartridges, which were then attached to the sample injection system in the gas chromatograph (GC). Eluting compounds were analysed using a flame ionisation detector (FID). Out of the nine tree species, isoprene emission was found in six species (Eucalyptus sp., Ficus benghalensis, Ficus religiosa, Mangifera indica, Melia azedarach, and Syzygium jambolanum), whereas, in the remaining three tree species (Alstonia scholaris, Azadirachta indica, and Cassia fistula) no isoprene emission was detected or the levels of emission were negligible or below the detection limit (BDL). Among six tree species, the highest hourly emission (10.2±6.8 μg g -1 leaf dry weight, average of five seasons) was observed in Ficus religiosa, while minimum emission was from Melia azedarach (2.2±4.9 μg g -1 leaf dry weight, average of five seasons). Isoprene emission (average of six species), over five seasons, was found to vary between 3.9 and 8.5 μg g -1 leaf dry weight during the rainy season. In addition, significant diurnal variation in isoprene emission was observed in each species. The preliminary estimate made in this study on the annual biogenic VOC emission from India may probably be the first of its kind from this part of the world. - Isoprene flux (diurnal and seasonal) from some tropical tree species was estimated and a regional comparison was made

  4. Watershed Merge Tree Classification for Electron Microscopy Image Segmentation

    OpenAIRE

    Liu, Ting; Jurrus, Elizabeth; Seyedhosseini, Mojtaba; Ellisman, Mark; Tasdizen, Tolga

    2012-01-01

    Automated segmentation of electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that utilizes a hierarchical structure and boundary classification for 2D neuron segmentation. With a membrane detection probability map, a watershed merge tree is built for the representation of hierarchical region merging from the watershed algorithm. A boundary classifier is learned with non-local image features to predict each potential merge in the tree, upon which...

  5. Tree species richness of upper Amazonian forests

    OpenAIRE

    Gentry, Alwyn H.

    1988-01-01

    Upper Amazonian data for tree species richness in 1-hectare plots are reported. All plants ≥10 cm diameter were censused and identified in six plots in Amazonian Peru and one on the Venezuela-Brazil border. The two plots from the everwet forests near Iquitos, Peru, are the most species-rich in the world, with ≈300 species ≥10 cm diameter in single hectares; all of the Peruvian plots are among the most species-rich ever reported. Contrary to accepted opinion, upper Amazonian forest, and perhap...

  6. Tree Species Identity Shapes Earthworm Communities

    DEFF Research Database (Denmark)

    Schelfhout, Stephanie; Mertens, Jan; Verheyen, Kris

    2017-01-01

    Earthworms are key organisms in forest ecosystems because they incorporate organic material into the soil and affect the activity of other soil organisms. Here, we investigated how tree species affect earthworm communities via litter and soil characteristics. In a 36-year old common garden...... of soil and foliar litter, and determined the forest floor turnover rate and the density and biomass of the earthworm species occurring in the stands. Tree species significantly affected earthworm communities via leaf litter and/or soil characteristics. Anecic earthworms were abundant under Fraxinus, Acer...... and Tilia, which is related to calcium-rich litter and low soil acidification. Epigeic earthworms were indifferent to calcium content in leaf litter and were shown to be mainly related to soil moisture content and litter C:P ratios. Almost no earthworms were found in Picea stands, likely because...

  7. Quasar Identification and Classification with Decision Trees

    Science.gov (United States)

    Spinka, T.; Carpenter, T.; Brunner, R. J.; Aydt, R.; Auvil, L.; Redman, T.; Tcheng, D.

    2003-12-01

    The massive amounts of data flooding into the astronomy field hold many answers to important problems in contemporary astrophysics. The biggest problem is sifting through massive amounts of data to uncover these secrets. In this presentation, we identify an approach in which we apply data-mining techniques to the problem of photometric quasar identification. We employ decision trees to quickly and robustly identify potential quasars to a high degree of accuracy. We emphasize computational scalability due to the high volume of data and complexity of the data-mining algorithms.

  8. Decision tree approach for classification of remotely sensed satellite ...

    Indian Academy of Sciences (India)

    The decision tree is constructed by recursively partitioning the spectral distribution of the training dataset using WEKA, open source data mining software. The classified image is compared with the image classified using classical ISODATA clustering and Maximum Likelihood Classifier (MLC) algorithms. Classification result ...

  9. Tree Species Identity Shapes Earthworm Communities

    Directory of Open Access Journals (Sweden)

    Stephanie Schelfhout

    2017-03-01

    Full Text Available Earthworms are key organisms in forest ecosystems because they incorporate organic material into the soil and affect the activity of other soil organisms. Here, we investigated how tree species affect earthworm communities via litter and soil characteristics. In a 36-year old common garden experiment, replicated six times over Denmark, six tree species were planted in blocks: sycamore maple (Acer pseudoplatanus, beech (Fagus sylvatica, ash (Fraxinus excelsior, Norway spruce (Picea abies, pedunculate oak (Quercus robur and lime (Tilia cordata. We studied the chemical characteristics of soil and foliar litter, and determined the forest floor turnover rate and the density and biomass of the earthworm species occurring in the stands. Tree species significantly affected earthworm communities via leaf litter and/or soil characteristics. Anecic earthworms were abundant under Fraxinus, Acer and Tilia, which is related to calcium-rich litter and low soil acidification. Epigeic earthworms were indifferent to calcium content in leaf litter and were shown to be mainly related to soil moisture content and litter C:P ratios. Almost no earthworms were found in Picea stands, likely because of the combined effects of recalcitrant litter, low pH and low soil moisture content.

  10. Survey Of Indigenous Tree Species In Osun Sacred Grove, Osun ...

    African Journals Online (AJOL)

    A botanical survey of indigenous tree species present in core regions of the Osun sacred grove, Osun state, Nigeria,was conducted. A total of eighty (80) tree species belonging to sixty-six (66) genera and twenty seven (27) families were identified and recorded. The family Fabaceae had the largest number of tree species ...

  11. An estimate of the number of tropical tree species

    Science.gov (United States)

    J. W. Ferry Slik; Victor Arroyo-Rodriguez; Shin-Ichiro and others. Aiba

    2015-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fishers alpha and an approximate pantropical stem...

  12. Forest tree species discrimination in western Himalaya using EO-1 Hyperion

    Science.gov (United States)

    George, Rajee; Padalia, Hitendra; Kushwaha, S. P. S.

    2014-05-01

    The information acquired in the narrow bands of hyperspectral remote sensing data has potential to capture plant species spectral variability, thereby improving forest tree species mapping. This study assessed the utility of spaceborne EO-1 Hyperion data in discrimination and classification of broadleaved evergreen and conifer forest tree species in western Himalaya. The pre-processing of 242 bands of Hyperion data resulted into 160 noise-free and vertical stripe corrected reflectance bands. Of these, 29 bands were selected through step-wise exclusion of bands (Wilk's Lambda). Spectral Angle Mapper (SAM) and Support Vector Machine (SVM) algorithms were applied to the selected bands to assess their effectiveness in classification. SVM was also applied to broadband data (Landsat TM) to compare the variation in classification accuracy. All commonly occurring six gregarious tree species, viz., white oak, brown oak, chir pine, blue pine, cedar and fir in western Himalaya could be effectively discriminated. SVM produced a better species classification (overall accuracy 82.27%, kappa statistic 0.79) than SAM (overall accuracy 74.68%, kappa statistic 0.70). It was noticed that classification accuracy achieved with Hyperion bands was significantly higher than Landsat TM bands (overall accuracy 69.62%, kappa statistic 0.65). Study demonstrated the potential utility of narrow spectral bands of Hyperion data in discriminating tree species in a hilly terrain.

  13. Classification tree for the assessment of sedentary lifestyle among hypertensive

    Directory of Open Access Journals (Sweden)

    Larissa Castelo Guedes Martins

    Full Text Available Objective.To develop a classification tree of clinical indicators for the correct prediction of the nursing diagnosis "Sedentary lifestyle" (SL in people with high blood pressure (HTN. Methods. A cross-sectional study conducted in an outpatient care center specializing in high blood pressure and Mellitus diabetes located in northeastern Brazil. The sample consisted of 285 people between 19 and 59 years old diagnosed with high blood pressure and was applied an interview and physical examination, obtaining socio-demographic information, related factors and signs and symptoms that made the defining characteristics for the diagnosis under study. The tree was generated using the CHAID algorithm (Chi-square Automatic Interaction Detection. Results. The construction of the decision tree allowed establishing the interactions between clinical indicators that facilitate a probabilistic analysis of multiple situations allowing quantify the probability of an individual presenting a sedentary lifestyle. The tree included the clinical indicator Choose daily routine without exercise as the first node. People with this indicator showed a probability of 0.88 of presenting the SL. The second node was composed of the indicator Does not perform physical activity during leisure, with 0.99 probability of presenting the SL with these two indicators. The predictive capacity of the tree was established at 69.5%. Conclusion. Decision trees help nurses who care HTN people in decision-making in assessing the characteristics that increase the probability of SL nursing diagnosis, optimizing the time for diagnostic inference.

  14. Quality-based Multimodal Classification Using Tree-Structured Sparsity

    Science.gov (United States)

    2014-03-08

    ASI Series F, Computer and Systems Sciences, 163:446–456, 1999. 5 [7] D. Hall and J. Llinas. An introduction to multisensor data fusion . Proceedings of...advantages of in- formation fusion based on sparsity models for multi- modal classification. Among several sparsity models, tree- structured sparsity provides...rithm is proposed to solve the optimization problem, which is an efficient tool for feature-level fusion among either ho- mogeneous or heterogeneous

  15. Estimating population extinction thresholds with categorical classification trees for Louisiana black bears.

    Directory of Open Access Journals (Sweden)

    Jared S Laufenberg

    Full Text Available Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years ([Formula: see text] was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when [Formula: see text], suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.

  16. Estimating population extinction thresholds with categorical classification trees for Louisiana black bears.

    Science.gov (United States)

    Laufenberg, Jared S; Clark, Joseph D; Chandler, Richard B

    2018-01-01

    Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years ([Formula: see text]) was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when [Formula: see text], suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.

  17. Estimating population extinction thresholds with categorical classification trees for Louisiana black bears

    Science.gov (United States)

    Laufenberg, Jared S.; Clark, Joseph D.; Chandler, Richard B.

    2018-01-01

    Monitoring vulnerable species is critical for their conservation. Thresholds or tipping points are commonly used to indicate when populations become vulnerable to extinction and to trigger changes in conservation actions. However, quantitative methods to determine such thresholds have not been well explored. The Louisiana black bear (Ursus americanus luteolus) was removed from the list of threatened and endangered species under the U.S. Endangered Species Act in 2016 and our objectives were to determine the most appropriate parameters and thresholds for monitoring and management action. Capture mark recapture (CMR) data from 2006 to 2012 were used to estimate population parameters and variances. We used stochastic population simulations and conditional classification trees to identify demographic rates for monitoring that would be most indicative of heighted extinction risk. We then identified thresholds that would be reliable predictors of population viability. Conditional classification trees indicated that annual apparent survival rates for adult females averaged over 5 years () was the best predictor of population persistence. Specifically, population persistence was estimated to be ≥95% over 100 years when , suggesting that this statistic can be used as threshold to trigger management intervention. Our evaluation produced monitoring protocols that reliably predicted population persistence and was cost-effective. We conclude that population projections and conditional classification trees can be valuable tools for identifying extinction thresholds used in monitoring programs.

  18. Inferring rooted species trees from unrooted gene trees using approximate Bayesian computation.

    Science.gov (United States)

    Alanzi, Ayed R A; Degnan, James H

    2017-11-01

    Methods for inferring species trees from gene trees motivated by incomplete lineage sorting typically use either rooted gene trees to infer a rooted species tree, or use unrooted gene trees to infer an unrooted species tree, which is then typically rooted using one or more outgroups. Theoretically, however, it has been known since 2011 that it is possible to consistently infer the root of the species tree directly from unrooted gene trees without assuming an outgroup. Here, we use approximate Bayesian computation to infer the root of the species tree from unrooted gene trees assuming the multispecies coalescent model. It is hoped that this approach will be useful in cases where an appropriate outgroup is difficult to find and gene trees do not follow a molecular clock. We use approximate Bayesian computation to infer the root of the species tree from unrooted gene trees. This approach could also be useful when there is prior information that makes a small number of root locations plausible in an unrooted species tree. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Mapping forest tree species over large areas with partially cloudy Landsat imagery

    Science.gov (United States)

    Turlej, K.; Radeloff, V.

    2017-12-01

    Forests provide numerous services to natural systems and humankind, but which services forest provide depends greatly on their tree species composition. That makes it important to track not only changes in forest extent, something that remote sensing excels in, but also to map tree species. The main goal of our work was to map tree species with Landsat imagery, and to identify how to maximize mapping accuracy by including partially cloudy imagery. Our study area covered one Landsat footprint (26/28) in Northern Wisconsin, USA, with temperate and boreal forests. We selected this area because it contains numerous tree species and variable forest composition providing an ideal study area to test the limits of Landsat data. We quantified how species-level classification accuracy was affected by a) the number of acquisitions, b) the seasonal distribution of observations, and c) the amount of cloud contamination. We classified a single year stack of Landsat-7, and -8 images data with a decision tree algorithm to generate a map of dominant tree species at the pixel- and stand-level. We obtained three important results. First, we achieved producer's accuracies in the range 70-80% and user's accuracies in range 80-90% for the most abundant tree species in our study area. Second, classification accuracy improved with more acquisitions, when observations were available from all seasons, and is the best when images with up to 40% cloud cover are included. Finally, classifications for pure stands were 10 to 30 percentage points better than those for mixed stands. We conclude that including partially cloudy Landsat imagery allows to map forest tree species with accuracies that were previously only possible for rare years with many cloud-free observations. Our approach thus provides important information for both forest management and science.

  20. Farmers' preferences for tree species on Agroforestry System in ...

    African Journals Online (AJOL)

    Farmers' preferences for tree species on Agroforestry System in Ijebu North Local Government Area, Ogun State, Nigeria. RI Mustapha, SO Jimoh. Abstract. This study was conducted to generate information on tree species farmers are willing to retain or plant on their farms; the benefits they derive from the trees and the ...

  1. Distribution characteristics of mineral elements in tree Species from ...

    African Journals Online (AJOL)

    Tree species populations were 44 in Akyaakrom (AS), 29 in Dopiri (DS), and families were 18 in AS and 16 in DS. Tree densities were 121 and 99 in AS and DS, respectively, in 0.57 ha. In terms of tree species population, diversity and density, AS was superior to DS. The distribution of major mineral elements in the leaves ...

  2. An estimate of the number of tropical tree species

    DEFF Research Database (Denmark)

    Slik, J. W Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin Ichiro

    2015-01-01

    to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological...

  3. Isoprene emission capacity for US tree species

    Science.gov (United States)

    Geron, Chris; Harley, Peter; Guenther, Alex

    -1 during hot summer conditions. We also find that intermediate isoprene emission rates previously suggested for some tree species may not represent their true emission capacities, and that broadleaf plant species may have either low (<1.0 μg C g -1 h -1) or very high (˜100 μg C g -1 h -1) genetic capacity to emit isoprene when mature foliage is exposed to a high ambient temperature and light environment.

  4. Hierarchical classification with a competitive evolutionary neural tree.

    Science.gov (United States)

    Adams, R G.; Butchart, K; Davey, N

    1999-04-01

    A new, dynamic, tree structured network, the Competitive Evolutionary Neural Tree (CENT) is introduced. The network is able to provide a hierarchical classification of unlabelled data sets. The main advantage that the CENT offers over other hierarchical competitive networks is its ability to self determine the number, and structure, of the competitive nodes in the network, without the need for externally set parameters. The network produces stable classificatory structures by halting its growth using locally calculated heuristics. The results of network simulations are presented over a range of data sets, including Anderson's IRIS data set. The CENT network demonstrates its ability to produce a representative hierarchical structure to classify a broad range of data sets.

  5. Bayesian classification and regression trees for predicting incidence of cryptosporidiosis.

    Directory of Open Access Journals (Sweden)

    Wenbiao Hu

    Full Text Available BACKGROUND: Classification and regression tree (CART models are tree-based exploratory data analysis methods which have been shown to be very useful in identifying and estimating complex hierarchical relationships in ecological and medical contexts. In this paper, a Bayesian CART model is described and applied to the problem of modelling the cryptosporidiosis infection in Queensland, Australia. METHODOLOGY/PRINCIPAL FINDINGS: We compared the results of a Bayesian CART model with those obtained using a Bayesian spatial conditional autoregressive (CAR model. Overall, the analyses indicated that the nature and magnitude of the effect estimates were similar for the two methods in this study, but the CART model more easily accommodated higher order interaction effects. CONCLUSIONS/SIGNIFICANCE: A Bayesian CART model for identification and estimation of the spatial distribution of disease risk is useful in monitoring and assessment of infectious diseases prevention and control.

  6. Watershed Merge Tree Classification for Electron Microscopy Image Segmentation.

    Science.gov (United States)

    Liu, Ting; Jurrus, Elizabeth; Seyedhosseini, Mojtaba; Ellisman, Mark; Tasdizen, Tolga

    2012-11-01

    Automated segmentation of electron microscopy (EM) images is a challenging problem. In this paper, we present a novel method that utilizes a hierarchical structure and boundary classification for 2D neuron segmentation. With a membrane detection probability map, a watershed merge tree is built for the representation of hierarchical region merging from the watershed algorithm. A boundary classifier is learned with non-local image features to predict each potential merge in the tree, upon which merge decisions are made with consistency constraints to acquire the final segmentation. Independent of classifiers and decision strategies, our approach proposes a general framework for efficient hierarchical segmentation with statistical learning. We demonstrate that our method leads to a substantial improvement in segmentation accuracy.

  7. Modeled distributions of 12 tree species in New York

    Science.gov (United States)

    Rachel I. Riemann; Barry T. Wilson; Andrew J. Lister; Oren Cook; Sierra. Crane-Murdoch

    2014-01-01

    These maps depict the distribution of 12 tree species across the state of New York. The maps show where these trees do not occur (gray), occasionally occur (pale green), are a minor component (medium green), are a major component (dark green), or are the dominant species (black) in the forest, as determined by that species' total basal area. Basal area is the area...

  8. An Estimate Of The Number Of Tropical Tree Species.

    OpenAIRE

    Slik, J W Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L; Bellingham, Peter J; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal

    2016-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between similar to 40,000 and similar to 53,000...

  9. Mapping and Characterizing Selected Canopy Tree Species at the Angkor World Heritage Site in Cambodia Using Aerial Data

    Science.gov (United States)

    Singh, Minerva; Evans, Damian; Tan, Boun Suy; Nin, Chan Samean

    2015-01-01

    At present, there is very limited information on the ecology, distribution, and structure of Cambodia’s tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width) of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA) was used (using multiresolution segmentation) to delineate individual tree crowns from very-high-resolution (VHR) aerial imagery and light detection and ranging (LiDAR) data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman’s rho 0.782 and 0.589, respectively). Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%), whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM) and maximum likelihood (ML) classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation) and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables. PMID:25902148

  10. Mapping and characterizing selected canopy tree species at the Angkor World Heritage site in Cambodia using aerial data.

    Directory of Open Access Journals (Sweden)

    Minerva Singh

    Full Text Available At present, there is very limited information on the ecology, distribution, and structure of Cambodia's tree species to warrant suitable conservation measures. The aim of this study was to assess various methods of analysis of aerial imagery for characterization of the forest mensuration variables (i.e., tree height and crown width of selected tree species found in the forested region around the temples of Angkor Thom, Cambodia. Object-based image analysis (OBIA was used (using multiresolution segmentation to delineate individual tree crowns from very-high-resolution (VHR aerial imagery and light detection and ranging (LiDAR data. Crown width and tree height values that were extracted using multiresolution segmentation showed a high level of congruence with field-measured values of the trees (Spearman's rho 0.782 and 0.589, respectively. Individual tree crowns that were delineated from aerial imagery using multiresolution segmentation had a high level of segmentation accuracy (69.22%, whereas tree crowns delineated using watershed segmentation underestimated the field-measured tree crown widths. Both spectral angle mapper (SAM and maximum likelihood (ML classifications were applied to the aerial imagery for mapping of selected tree species. The latter was found to be more suitable for tree species classification. Individual tree species were identified with high accuracy. Inclusion of textural information further improved species identification, albeit marginally. Our findings suggest that VHR aerial imagery, in conjunction with OBIA-based segmentation methods (such as multiresolution segmentation and supervised classification techniques are useful for tree species mapping and for studies of the forest mensuration variables.

  11. Moose?tree interactions: rebrowsing is common across tree species

    OpenAIRE

    Mathisen, Karen Marie; Milner, Jos M.; Skarpe, Christina

    2017-01-01

    Background Plant strategies to resist herbivory include tolerance and avoidance. Tolerance strategies, such as rapid regrowth which increases the palatability of new shoots, can lead to positive feedback loops between plants and herbivores. An example of such a positive feedback occurs when moose (Alces alces) browse trees in boreal forests. We described the degree of change in tree morphology that accumulated over time in response to repeated browsing by moose, using an index of accumulated ...

  12. An estimate of the number of tropical tree species

    Science.gov (United States)

    Slik, J. W. Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F.; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L.; Bellingham, Peter J.; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal; Bongers, Frans; Boyle, Brad; Bradford, Matt; Brearley, Francis Q.; Breuer-Ndoundou Hockemba, Mireille; Bunyavejchewin, Sarayudh; Calderado Leal Matos, Darley; Castillo-Santiago, Miguel; Catharino, Eduardo L. M.; Chai, Shauna-Lee; Chen, Yukai; Colwell, Robert K.; Chazdon, Robin L.; Clark, Connie; Clark, David B.; Clark, Deborah A.; Culmsee, Heike; Damas, Kipiro; Dattaraja, Handanakere S.; Dauby, Gilles; Davidar, Priya; DeWalt, Saara J.; Doucet, Jean-Louis; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl A. O.; Eisenlohr, Pedro V.; Eler, Eduardo; Ewango, Corneille; Farwig, Nina; Feeley, Kenneth J.; Ferreira, Leandro; Field, Richard; de Oliveira Filho, Ary T.; Fletcher, Christine; Forshed, Olle; Franco, Geraldo; Fredriksson, Gabriella; Gillespie, Thomas; Gillet, Jean-François; Amarnath, Giriraj; Griffith, Daniel M.; Grogan, James; Gunatilleke, Nimal; Harris, David; Harrison, Rhett; Hector, Andy; Homeier, Jürgen; Imai, Nobuo; Itoh, Akira; Jansen, Patrick A.; Joly, Carlos A.; de Jong, Bernardus H. J.; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L.; Kenfack, David; Kessler, Michael; Kitayama, Kanehiro; Kooyman, Robert; Larney, Eileen; Laumonier, Yves; Laurance, Susan; Laurance, William F.; Lawes, Michael J.; do Amaral, Ieda Leao; Letcher, Susan G.; Lindsell, Jeremy; Lu, Xinghui; Mansor, Asyraf; Marjokorpi, Antti; Martin, Emanuel H.; Meilby, Henrik; Melo, Felipe P. L.; Metcalfe, Daniel J.; Medjibe, Vincent P.; Metzger, Jean Paul; Millet, Jerome; Mohandass, D.; Montero, Juan C.; de Morisson Valeriano, Márcio; Mugerwa, Badru; Nagamasu, Hidetoshi; Nilus, Reuben; Ochoa-Gaona, Susana; Onrizal; Page, Navendu; Parolin, Pia; Parren, Marc; Parthasarathy, Narayanaswamy; Paudel, Ekananda; Permana, Andrea; Piedade, Maria T. F.; Pitman, Nigel C. A.; Poorter, Lourens; Poulsen, Axel D.; Poulsen, John; Powers, Jennifer; Prasad, Rama C.; Puyravaud, Jean-Philippe; Razafimahaimodison, Jean-Claude; Reitsma, Jan; dos Santos, João Roberto; Roberto Spironello, Wilson; Romero-Saltos, Hugo; Rovero, Francesco; Rozak, Andes Hamuraby; Ruokolainen, Kalle; Rutishauser, Ervan; Saiter, Felipe; Saner, Philippe; Santos, Braulio A.; Santos, Fernanda; Sarker, Swapan K.; Satdichanh, Manichanh; Schmitt, Christine B.; Schöngart, Jochen; Schulze, Mark; Suganuma, Marcio S.; Sheil, Douglas; da Silva Pinheiro, Eduardo; Sist, Plinio; Stevart, Tariq; Sukumar, Raman; Sun, I.-Fang; Sunderland, Terry; Suresh, H. S.; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jangwei; Targhetta, Natália; Theilade, Ida; Thomas, Duncan W.; Tchouto, Peguy; Hurtado, Johanna; Valencia, Renato; van Valkenburg, Johan L. C. H.; Van Do, Tran; Vasquez, Rodolfo; Verbeeck, Hans; Adekunle, Victor; Vieira, Simone A.; Webb, Campbell O.; Whitfeld, Timothy; Wich, Serge A.; Williams, John; Wittmann, Florian; Wöll, Hannsjoerg; Yang, Xiaobo; Adou Yao, C. Yves; Yap, Sandra L.; Yoneda, Tsuyoshi; Zahawi, Rakan A.; Zakaria, Rahmad; Zang, Runguo; de Assis, Rafael L.; Garcia Luize, Bruno; Venticinque, Eduardo M.

    2015-01-01

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher’s alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼40,000 and ∼53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼19,000–25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼4,500–6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa. PMID:26034279

  13. An estimate of the number of tropical tree species.

    Science.gov (United States)

    Slik, J W Ferry; Arroyo-Rodríguez, Víctor; Aiba, Shin-Ichiro; Alvarez-Loayza, Patricia; Alves, Luciana F; Ashton, Peter; Balvanera, Patricia; Bastian, Meredith L; Bellingham, Peter J; van den Berg, Eduardo; Bernacci, Luis; da Conceição Bispo, Polyanna; Blanc, Lilian; Böhning-Gaese, Katrin; Boeckx, Pascal; Bongers, Frans; Boyle, Brad; Bradford, Matt; Brearley, Francis Q; Breuer-Ndoundou Hockemba, Mireille; Bunyavejchewin, Sarayudh; Calderado Leal Matos, Darley; Castillo-Santiago, Miguel; Catharino, Eduardo L M; Chai, Shauna-Lee; Chen, Yukai; Colwell, Robert K; Chazdon, Robin L; Robin, Chazdon L; Clark, Connie; Clark, David B; Clark, Deborah A; Culmsee, Heike; Damas, Kipiro; Dattaraja, Handanakere S; Dauby, Gilles; Davidar, Priya; DeWalt, Saara J; Doucet, Jean-Louis; Duque, Alvaro; Durigan, Giselda; Eichhorn, Karl A O; Eisenlohr, Pedro V; Eler, Eduardo; Ewango, Corneille; Farwig, Nina; Feeley, Kenneth J; Ferreira, Leandro; Field, Richard; de Oliveira Filho, Ary T; Fletcher, Christine; Forshed, Olle; Franco, Geraldo; Fredriksson, Gabriella; Gillespie, Thomas; Gillet, Jean-François; Amarnath, Giriraj; Griffith, Daniel M; Grogan, James; Gunatilleke, Nimal; Harris, David; Harrison, Rhett; Hector, Andy; Homeier, Jürgen; Imai, Nobuo; Itoh, Akira; Jansen, Patrick A; Joly, Carlos A; de Jong, Bernardus H J; Kartawinata, Kuswata; Kearsley, Elizabeth; Kelly, Daniel L; Kenfack, David; Kessler, Michael; Kitayama, Kanehiro; Kooyman, Robert; Larney, Eileen; Laumonier, Yves; Laurance, Susan; Laurance, William F; Lawes, Michael J; Amaral, Ieda Leao do; Letcher, Susan G; Lindsell, Jeremy; Lu, Xinghui; Mansor, Asyraf; Marjokorpi, Antti; Martin, Emanuel H; Meilby, Henrik; Melo, Felipe P L; Metcalfe, Daniel J; Medjibe, Vincent P; Metzger, Jean Paul; Millet, Jerome; Mohandass, D; Montero, Juan C; de Morisson Valeriano, Márcio; Mugerwa, Badru; Nagamasu, Hidetoshi; Nilus, Reuben; Ochoa-Gaona, Susana; Onrizal; Page, Navendu; Parolin, Pia; Parren, Marc; Parthasarathy, Narayanaswamy; Paudel, Ekananda; Permana, Andrea; Piedade, Maria T F; Pitman, Nigel C A; Poorter, Lourens; Poulsen, Axel D; Poulsen, John; Powers, Jennifer; Prasad, Rama C; Puyravaud, Jean-Philippe; Razafimahaimodison, Jean-Claude; Reitsma, Jan; Dos Santos, João Roberto; Roberto Spironello, Wilson; Romero-Saltos, Hugo; Rovero, Francesco; Rozak, Andes Hamuraby; Ruokolainen, Kalle; Rutishauser, Ervan; Saiter, Felipe; Saner, Philippe; Santos, Braulio A; Santos, Fernanda; Sarker, Swapan K; Satdichanh, Manichanh; Schmitt, Christine B; Schöngart, Jochen; Schulze, Mark; Suganuma, Marcio S; Sheil, Douglas; da Silva Pinheiro, Eduardo; Sist, Plinio; Stevart, Tariq; Sukumar, Raman; Sun, I-Fang; Sunderland, Terry; Sunderand, Terry; Suresh, H S; Suzuki, Eizi; Tabarelli, Marcelo; Tang, Jangwei; Targhetta, Natália; Theilade, Ida; Thomas, Duncan W; Tchouto, Peguy; Hurtado, Johanna; Valencia, Renato; van Valkenburg, Johan L C H; Van Do, Tran; Vasquez, Rodolfo; Verbeeck, Hans; Adekunle, Victor; Vieira, Simone A; Webb, Campbell O; Whitfeld, Timothy; Wich, Serge A; Williams, John; Wittmann, Florian; Wöll, Hannsjoerg; Yang, Xiaobo; Adou Yao, C Yves; Yap, Sandra L; Yoneda, Tsuyoshi; Zahawi, Rakan A; Zakaria, Rahmad; Zang, Runguo; de Assis, Rafael L; Garcia Luize, Bruno; Venticinque, Eduardo M

    2015-06-16

    The high species richness of tropical forests has long been recognized, yet there remains substantial uncertainty regarding the actual number of tropical tree species. Using a pantropical tree inventory database from closed canopy forests, consisting of 657,630 trees belonging to 11,371 species, we use a fitted value of Fisher's alpha and an approximate pantropical stem total to estimate the minimum number of tropical forest tree species to fall between ∼ 40,000 and ∼ 53,000, i.e., at the high end of previous estimates. Contrary to common assumption, the Indo-Pacific region was found to be as species-rich as the Neotropics, with both regions having a minimum of ∼ 19,000-25,000 tree species. Continental Africa is relatively depauperate with a minimum of ∼ 4,500-6,000 tree species. Very few species are shared among the African, American, and the Indo-Pacific regions. We provide a methodological framework for estimating species richness in trees that may help refine species richness estimates of tree-dependent taxa.

  14. Important LiDAR metrics for discriminating forest tree species in Central Europe

    Science.gov (United States)

    Shi, Yifang; Wang, Tiejun; Skidmore, Andrew K.; Heurich, Marco

    2018-03-01

    Numerous airborne LiDAR-derived metrics have been proposed for classifying tree species. Yet an in-depth ecological and biological understanding of the significance of these metrics for tree species mapping remains largely unexplored. In this paper, we evaluated the performance of 37 frequently used LiDAR metrics derived under leaf-on and leaf-off conditions, respectively, for discriminating six different tree species in a natural forest in Germany. We firstly assessed the correlation between these metrics. Then we applied a Random Forest algorithm to classify the tree species and evaluated the importance of the LiDAR metrics. Finally, we identified the most important LiDAR metrics and tested their robustness and transferability. Our results indicated that about 60% of LiDAR metrics were highly correlated to each other (|r| > 0.7). There was no statistically significant difference in tree species mapping accuracy between the use of leaf-on and leaf-off LiDAR metrics. However, combining leaf-on and leaf-off LiDAR metrics significantly increased the overall accuracy from 58.2% (leaf-on) and 62.0% (leaf-off) to 66.5% as well as the kappa coefficient from 0.47 (leaf-on) and 0.51 (leaf-off) to 0.58. Radiometric features, especially intensity related metrics, provided more consistent and significant contributions than geometric features for tree species discrimination. Specifically, the mean intensity of first-or-single returns as well as the mean value of echo width were identified as the most robust LiDAR metrics for tree species discrimination. These results indicate that metrics derived from airborne LiDAR data, especially radiometric metrics, can aid in discriminating tree species in a mixed temperate forest, and represent candidate metrics for tree species classification and monitoring in Central Europe.

  15. INDIGENOUS WOODLAND TREE SPECIES OF ETHIOPIA

    African Journals Online (AJOL)

    area, Abijata Shalla and Awash National Parks. At each site a total of 15 study trees were selected from 50 x 50 m releves. From each tree, data on tree height, diameter at breast height (DBH), canopy depth and canopy diameter were collected. Effect of treeson undercanopy vegetation diversity was assessed by estimating ...

  16. Tree architecture and life-history strategies across 200 co-occurring tropical tree species

    NARCIS (Netherlands)

    Iida, Y.; Kohyama, T.S.; Kubo, T.; Kassim, A.R.; Poorter, L.; Sterck, F.J.; Potts, M.D.

    2011-01-01

    1. Tree architecture is thought to allow species to partition horizontal and vertical light gradients in the forest canopy. Tree architecture is closely related to light capture, carbon gain and the efficiency with which trees reach the canopy. Previous studies that investigated how light gradients

  17. Quantifying tree mortality in a mixed species woodland using multitemporal high spatial resolution satellite imagery

    Science.gov (United States)

    Garrity, Steven R.; Allen, Craig D.; Brumby, Steven P.; Gangodagamage, Chandana; McDowell, Nate G.; Cai, D. Michael

    2013-01-01

    Widespread tree mortality events have recently been observed in several biomes. To effectively quantify the severity and extent of these events, tools that allow for rapid assessment at the landscape scale are required. Past studies using high spatial resolution satellite imagery have primarily focused on detecting green, red, and gray tree canopies during and shortly after tree damage or mortality has occurred. However, detecting trees in various stages of death is not always possible due to limited availability of archived satellite imagery. Here we assess the capability of high spatial resolution satellite imagery for tree mortality detection in a southwestern U.S. mixed species woodland using archived satellite images acquired prior to mortality and well after dead trees had dropped their leaves. We developed a multistep classification approach that uses: supervised masking of non-tree image elements; bi-temporal (pre- and post-mortality) differencing of normalized difference vegetation index (NDVI) and red:green ratio (RGI); and unsupervised multivariate clustering of pixels into live and dead tree classes using a Gaussian mixture model. Classification accuracies were improved in a final step by tuning the rules of pixel classification using the posterior probabilities of class membership obtained from the Gaussian mixture model. Classifications were produced for two images acquired post-mortality with overall accuracies of 97.9% and 98.5%, respectively. Classified images were combined with land cover data to characterize the spatiotemporal characteristics of tree mortality across areas with differences in tree species composition. We found that 38% of tree crown area was lost during the drought period between 2002 and 2006. The majority of tree mortality during this period was concentrated in piñon-juniper (Pinus edulis-Juniperus monosperma) woodlands. An additional 20% of the tree canopy died or was removed between 2006 and 2011, primarily in areas

  18. Tree Height and DBH Growth Model Establishment of Main Tree Species in Wuling Mountain Small Watershed

    Science.gov (United States)

    Luo, Jia; Zhang, Min; Zhou, Xiaoling; Chen, Jianhua; Tian, Yuxin

    2018-01-01

    Taken 4 main tree species in the Wuling mountain small watershed as research objects, 57 typical sample plots were set up according to the stand type, site conditions and community structure. 311 goal diameter-class sample trees were selected according to diameter-class groups of different tree-height grades, and the optimal fitting models of tree height and DBH growth of main tree species were obtained by stem analysis using Richard, Logistic, Korf, Mitscherlich, Schumacher, Weibull theoretical growth equations, and the correlation coefficient of all optimal fitting models reached above 0.9. Through the evaluation and test, the optimal fitting models possessed rather good fitting precision and forecast dependability.

  19. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    In both nurseries, Glomus species dominated in all tree species followed by Sclerocystic, Gigaspora, Acaulospora, Scutellospora and Entrophospora. Interestingly, Azadirachta indica and Terminalia catappa have shown maximum and minimum infection respectively in both nurseries. Certainly, mycorrhizae could contribute ...

  20. Logistic Regression-Based Trichotomous Classification Tree and Its Application in Medical Diagnosis.

    Science.gov (United States)

    Zhu, Yanke; Fang, Jiqian

    2016-11-01

    The classification tree is a valuable methodology for predictive modeling and data mining. However, the current existing classification trees ignore the fact that there might be a subset of individuals who cannot be well classified based on the information of the given set of predictor variables and who might be classified with a higher error rate; most of the current existing classification trees do not use the combination of variables in each step. An algorithm of a logistic regression-based trichotomous classification tree (LRTCT) is proposed that employs the trichotomous tree structure and the linear combination of predictor variables in the recursive partitioning process. Compared with the widely used classification and regression tree through the applications on a series of simulated data and 2 real data sets, the LRTCT performed better in several aspects and does not require excessive complicated calculations. © The Author(s) 2016.

  1. Tree species composition within Kano State University of science ...

    African Journals Online (AJOL)

    The study accessed the tree species composition within the Kano State University of Science and Technology Wudil, Kano State, Nigeria with the view of providing information that will help in the management and conservation of tree species within the campus. The study area was stratified into four (4) sections from which ...

  2. Seasonal drought limits tree species across the Neotropics

    NARCIS (Netherlands)

    Esquivel-Muelbert, Adriane; Baker, Timothy R.; Dexter, Kyle G.; Lewis, Simon L.; Steege, ter Hans; Lopez-Gonzalez, Gabriela; Monteagudo Mendoza, Abel; Brienen, Roel; Feldpausch, Ted R.; Pitman, Nigel; Alonso, Alfonso; Heijden, van der Geertje; Peña-Claros, Marielos; Ahuite, Manuel; Alexiaides, Miguel; Álvarez Dávila, Esteban; Murakami, Alejandro Araujo; Arroyo, Luzmila; Aulestia, Milton; Balslev, Henrik; Barroso, Jorcely; Boot, Rene; Cano, Angela; Chama Moscoso, Victor; Comiskey, James A.; Cornejo, Fernando; Dallmeier, Francisco; Daly, Douglas C.; Dávila, Nallarett; Duivenvoorden, Joost F.; Duque Montoya, Alvaro Javier; Erwin, Terry; Fiore, Di Anthony; Fredericksen, Todd; Fuentes, Alfredo; García-Villacorta, Roosevelt; Gonzales, Therany; Guevara Andino, Juan Ernesto; Honorio Coronado, Euridice N.; Huamantupa-Chuquimaco, Isau; Killeen, Timothy J.; Malhi, Yadvinder; Mendoza, Casimiro; Mogollón, Hugo; Jørgensen, Peter Møller; Montero, Juan Carlos; Mostacedo, Bonifacio; Nauray, William; Neill, David; Vargas, Percy Núñez; Palacios, Sonia; Palacios Cuenca, Walter; Pallqui Camacho, Nadir Carolina; Peacock, Julie; Phillips, Juan Fernando; Pickavance, Georgia; Quesada, Carlos Alberto; Ramírez-Angulo, Hirma; Restrepo, Zorayda; Reynel Rodriguez, Carlos; Paredes, Marcos Ríos; Sierra, Rodrigo; Silveira, Marcos; Stevenson, Pablo; Stropp, Juliana; Terborgh, John; Tirado, Milton; Toledo, Marisol; Torres-Lezama, Armando; Umaña, María Natalia; Urrego, Ligia Estela; Vasquez Martinez, Rodolfo; Gamarra, Luis Valenzuela; Vela, César I.A.; Vilanova Torre, Emilio; Vos, Vincent; Hildebrand, von Patricio; Vriesendorp, Corine; Wang, Ophelia; Young, Kenneth R.; Zartman, Charles Eugene; Phillips, Oliver L.

    2017-01-01

    Within the tropics, the species richness of tree communities is strongly and positively associated with precipitation. Previous research has suggested that this macroecological pattern is driven by the negative effect of water-stress on the physiological processes of most tree species. This implies

  3. Chromosome numbers of some indigenous tree species of Ethiopia ...

    African Journals Online (AJOL)

    The present investigation was aimed at carrying out mitotic chromosome studies on some important indigenous tree species of Ethiopia. Somatic chromosome counts were carried out on somatic cells from root tips. In this study, chromosome numbers for the following twelve tree species from ten genera of seven families are ...

  4. Minimum variance rooting of phylogenetic trees and implications for species tree reconstruction.

    Science.gov (United States)

    Mai, Uyen; Sayyari, Erfan; Mirarab, Siavash

    2017-01-01

    Phylogenetic trees inferred using commonly-used models of sequence evolution are unrooted, but the root position matters both for interpretation and downstream applications. This issue has been long recognized; however, whether the potential for discordance between the species tree and gene trees impacts methods of rooting a phylogenetic tree has not been extensively studied. In this paper, we introduce a new method of rooting a tree based on its branch length distribution; our method, which minimizes the variance of root to tip distances, is inspired by the traditional midpoint rerooting and is justified when deviations from the strict molecular clock are random. Like midpoint rerooting, the method can be implemented in a linear time algorithm. In extensive simulations that consider discordance between gene trees and the species tree, we show that the new method is more accurate than midpoint rerooting, but its relative accuracy compared to using outgroups to root gene trees depends on the size of the dataset and levels of deviations from the strict clock. We show high levels of error for all methods of rooting estimated gene trees due to factors that include effects of gene tree discordance, deviations from the clock, and gene tree estimation error. Our simulations, however, did not reveal significant differences between two equivalent methods for species tree estimation that use rooted and unrooted input, namely, STAR and NJst. Nevertheless, our results point to limitations of existing scalable rooting methods.

  5. Superiority of Classification Tree versus Cluster, Fuzzy and Discriminant Models in a Heartbeat Classification System.

    Directory of Open Access Journals (Sweden)

    Vessela Krasteva

    Full Text Available This study presents a 2-stage heartbeat classifier of supraventricular (SVB and ventricular (VB beats. Stage 1 makes computationally-efficient classification of SVB-beats, using simple correlation threshold criterion for finding close match with a predominant normal (reference beat template. The non-matched beats are next subjected to measurement of 20 basic features, tracking the beat and reference template morphology and RR-variability for subsequent refined classification in SVB or VB-class by Stage 2. Four linear classifiers are compared: cluster, fuzzy, linear discriminant analysis (LDA and classification tree (CT, all subjected to iterative training for selection of the optimal feature space among extended 210-sized set, embodying interactive second-order effects between 20 independent features. The optimization process minimizes at equal weight the false positives in SVB-class and false negatives in VB-class. The training with European ST-T, AHA, MIT-BIH Supraventricular Arrhythmia databases found the best performance settings of all classification models: Cluster (30 features, Fuzzy (72 features, LDA (142 coefficients, CT (221 decision nodes with top-3 best scored features: normalized current RR-interval, higher/lower frequency content ratio, beat-to-template correlation. Unbiased test-validation with MIT-BIH Arrhythmia database rates the classifiers in descending order of their specificity for SVB-class: CT (99.9%, LDA (99.6%, Cluster (99.5%, Fuzzy (99.4%; sensitivity for ventricular ectopic beats as part from VB-class (commonly reported in published beat-classification studies: CT (96.7%, Fuzzy (94.4%, LDA (94.2%, Cluster (92.4%; positive predictivity: CT (99.2%, Cluster (93.6%, LDA (93.0%, Fuzzy (92.4%. CT has superior accuracy by 0.3-6.8% points, with the advantage for easy model complexity configuration by pruning the tree consisted of easy interpretable 'if-then' rules.

  6. Superiority of Classification Tree versus Cluster, Fuzzy and Discriminant Models in a Heartbeat Classification System.

    Science.gov (United States)

    Krasteva, Vessela; Jekova, Irena; Leber, Remo; Schmid, Ramun; Abächerli, Roger

    2015-01-01

    This study presents a 2-stage heartbeat classifier of supraventricular (SVB) and ventricular (VB) beats. Stage 1 makes computationally-efficient classification of SVB-beats, using simple correlation threshold criterion for finding close match with a predominant normal (reference) beat template. The non-matched beats are next subjected to measurement of 20 basic features, tracking the beat and reference template morphology and RR-variability for subsequent refined classification in SVB or VB-class by Stage 2. Four linear classifiers are compared: cluster, fuzzy, linear discriminant analysis (LDA) and classification tree (CT), all subjected to iterative training for selection of the optimal feature space among extended 210-sized set, embodying interactive second-order effects between 20 independent features. The optimization process minimizes at equal weight the false positives in SVB-class and false negatives in VB-class. The training with European ST-T, AHA, MIT-BIH Supraventricular Arrhythmia databases found the best performance settings of all classification models: Cluster (30 features), Fuzzy (72 features), LDA (142 coefficients), CT (221 decision nodes) with top-3 best scored features: normalized current RR-interval, higher/lower frequency content ratio, beat-to-template correlation. Unbiased test-validation with MIT-BIH Arrhythmia database rates the classifiers in descending order of their specificity for SVB-class: CT (99.9%), LDA (99.6%), Cluster (99.5%), Fuzzy (99.4%); sensitivity for ventricular ectopic beats as part from VB-class (commonly reported in published beat-classification studies): CT (96.7%), Fuzzy (94.4%), LDA (94.2%), Cluster (92.4%); positive predictivity: CT (99.2%), Cluster (93.6%), LDA (93.0%), Fuzzy (92.4%). CT has superior accuracy by 0.3-6.8% points, with the advantage for easy model complexity configuration by pruning the tree consisted of easy interpretable 'if-then' rules.

  7. The ghosts of trees past: savanna trees create enduring legacies in plant species composition.

    Science.gov (United States)

    Stahlheber, Karen A; Crispin, Kimberly L; Anton, Cassidy; D'Antonio, Carla M

    2015-09-01

    Isolated trees in savannas worldwide are known to modify their local environment and interact directly with neighboring plants. Less is known about how related tree species differ in their impacts on surrounding communities, how the effects of trees vary between years, and how composition might change following loss of the tree. To address these knowledge gaps, we explored the following questions: How do savanna trees influence the surrounding composition of herbaceous plants? Is the influence of trees consistent across different species and years? How does this change following the death of the tree? We surveyed herbaceous species composition and environmental attributes surrounding living and dead evergreen and deciduous Quercus trees in California (USA) savannas across several years that differed in their total precipitation. Oak trees of all species created distinct, homogenous understory communities dominated by exotic grasses across several sites. The composition of the low-diversity understory communities showed less interannual variation than open grassland, despite a two-fold difference in precipitation between the driest and wettest year. Vegetation composition was correlated with variation in soil properties, which were strongly affected by trees. Oaks also influenced the communities beyond the edge of the crown, but this depended on site and oak species. Low-diversity understory communities persisted up to 43 years following the death of the tree. A gradual decline in the effect of trees on the physical, environment following death did not result in vegetation becoming more similar to open grassland over time. The presence of long-lasting legacies of past tree crowns highlights the difficulty of assigning control of the current distribution of herbaceous species in grassland to their contemporary environment.

  8. Statistical analysis of texture in trunk images for biometric identification of tree species.

    Science.gov (United States)

    Bressane, Adriano; Roveda, José A F; Martins, Antônio C G

    2015-04-01

    The identification of tree species is a key step for sustainable management plans of forest resources, as well as for several other applications that are based on such surveys. However, the present available techniques are dependent on the presence of tree structures, such as flowers, fruits, and leaves, limiting the identification process to certain periods of the year. Therefore, this article introduces a study on the application of statistical parameters for texture classification of tree trunk images. For that, 540 samples from five Brazilian native deciduous species were acquired and measures of entropy, uniformity, smoothness, asymmetry (third moment), mean, and standard deviation were obtained from the presented textures. Using a decision tree, a biometric species identification system was constructed and resulted to a 0.84 average precision rate for species classification with 0.83accuracy and 0.79 agreement. Thus, it can be considered that the use of texture presented in trunk images can represent an important advance in tree identification, since the limitations of the current techniques can be overcome.

  9. Evidence of tree species' range shifts in a complex landscape.

    Directory of Open Access Journals (Sweden)

    Vicente J Monleon

    Full Text Available Climate change is expected to change the distribution of species. For long-lived, sessile species such as trees, tracking the warming climate depends on seedling colonization of newly favorable areas. We compare the distribution of seedlings and mature trees for all but the rarest tree species in California, Oregon and Washington, United States of America, a large, environmentally diverse region. Across 46 species, the mean annual temperature of the range of seedlings was 0.120°C colder than that of the range of trees (95% confidence interval from 0.096 to 0.144°C. The extremes of the seedling distributions also shifted towards colder temperature than those of mature trees, but the change was less pronounced. Although the mean elevation and mean latitude of the range of seedlings was higher than and north of those of the range of mature trees, elevational and latitudinal shifts run in opposite directions for the majority of the species, reflecting the lack of a direct biological relationship between species' distributions and those variables. The broad scale, environmental diversity and variety of disturbance regimes and land uses of the study area, the large number and exhaustive sampling of tree species, and the direct causal relationship between the temperature response and a warming climate, provide strong evidence to attribute the observed shifts to climate change.

  10. The process and utility of classification and regression tree methodology in nursing research

    OpenAIRE

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2013-01-01

    Aim This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Background Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Design Discussion paper. Data sources English language literature was sourced fr...

  11. Species Tree Inference from Gene Splits by Unrooted STAR Methods.

    Science.gov (United States)

    Allman, Elizabeth S; Degnan, James H; Rhodes, John A

    2018-01-01

    The method was proposed by Liu and Yu to infer a species tree topology from unrooted topological gene trees. While its statistical consistency under the multispecies coalescent model was established only for a four-taxon tree, simulations demonstrated its good performance on gene trees inferred from sequences for many taxa. Here, we prove the statistical consistency of the method for an arbitrarily large species tree. Our approach connects to a generalization of the STAR method of Liu, Pearl, and Edwards, and a previous theoretical analysis of it. We further show utilizes only the distribution of splits in the gene trees, and not their individual topologies. Finally, we discuss how multiple samples per taxon per gene should be handled for statistical consistency.

  12. Global variation in woodpecker species richness shaped by tree availability

    DEFF Research Database (Denmark)

    Ilsøe, Sigrid Kistrup; Kissling, W. Daniel; Fjeldså, Jon

    2017-01-01

    heterogeneity and biogeographical region. We further used structural equation models to test for direct and indirect effects of predictor variables. Results: There was a strong positive relationship between woodpecker species richness and current tree cover and annual precipitation, respectively. Precipitation...... a negative indirect effect on woodpecker species richness. Main conclusions: Global species richness of woodpeckers is primarily shaped by current tree cover and precipitation, reflecting a strong biotic association between woodpeckers and trees. Human influence can have a negative effect on woodpecker...... diversity when humans reduce tree availability. Hence, woodpeckers exemplify how broad-scale diversity patterns are predominantly shaped by a biotic factor, and how climate and human influence can have indirect effects on animal biodiversity via the effects on tree availability and forest cover....

  13. Challenges in Species Tree Estimation Under the Multispecies Coalescent Model.

    Science.gov (United States)

    Xu, Bo; Yang, Ziheng

    2016-12-01

    The multispecies coalescent (MSC) model has emerged as a powerful framework for inferring species phylogenies while accounting for ancestral polymorphism and gene tree-species tree conflict. A number of methods have been developed in the past few years to estimate the species tree under the MSC. The full likelihood methods (including maximum likelihood and Bayesian inference) average over the unknown gene trees and accommodate their uncertainties properly but involve intensive computation. The approximate or summary coalescent methods are computationally fast and are applicable to genomic datasets with thousands of loci, but do not make an efficient use of information in the multilocus data. Most of them take the two-step approach of reconstructing the gene trees for multiple loci by phylogenetic methods and then treating the estimated gene trees as observed data, without accounting for their uncertainties appropriately. In this article we review the statistical nature of the species tree estimation problem under the MSC, and explore the conceptual issues and challenges of species tree estimation by focusing mainly on simple cases of three or four closely related species. We use mathematical analysis and computer simulation to demonstrate that large differences in statistical performance may exist between the two classes of methods. We illustrate that several counterintuitive behaviors may occur with the summary methods but they are due to inefficient use of information in the data by summary methods and vanish when the data are analyzed using full-likelihood methods. These include (i) unidentifiability of parameters in the model, (ii) inconsistency in the so-called anomaly zone, (iii) singularity on the likelihood surface, and (iv) deterioration of performance upon addition of more data. We discuss the challenges and strategies of species tree inference for distantly related species when the molecular clock is violated, and highlight the need for improving the

  14. Status of Indigenous Tree Species in Girei Forest Reserve of ...

    African Journals Online (AJOL)

    ... sampled plot (p > 0.05). At this point of endangerment of the indigenous tree species, there is therefore a need for conservation strategies for future use of these indigenous trees and to reduce the effect of global warming on the earth surface. Keywords: Quantitative assessment, Global warming, Indigenous, Conservation, ...

  15. Optimal tree-stem bucking of northeastern species of China

    Science.gov (United States)

    Jingxin Wang; Chris B. LeDoux; Joseph McNeel

    2004-01-01

    An application of optimal tree-stem bucking to the northeastern tree species of China is reported. The bucking procedures used in this region are summarized, which are the basic guidelines for the optimal bucking design. The directed graph approach was adopted to generate the bucking patterns by using the network analysis labeling algorithm. A computer-based bucking...

  16. Tree species diversity under pastoral and farming systems in Kilosa ...

    African Journals Online (AJOL)

    Loss of tree diversity through improper land use practices such as overgrazing and poor farming practices in tropical areas and other natural ecosystems is one of today's most worrying environmental problems. This study was conducted to assess the impact of farming and pastoralism on tree species diversity in two forests ...

  17. Composition and distribution of economic tree species in Nagi ...

    African Journals Online (AJOL)

    The inventory of economic trees in Nagi Natural Forest Reserve, Benue state was carried out to determine the status and dominance tree species. A total area of 0.4ha was sampled representing twenty percent of the reserve. Ten (10) sample plots of equal size (20 m x 20m) were randomly selected using simple random ...

  18. Combining decision trees and stochastic curtailment for assessment length reduction of test batteries used for classification.

    NARCIS (Netherlands)

    Fokkema, M.; Smits, N.; Kelderman, H.; Carlier, I.V.E.; van Hemert, A.M.

    2014-01-01

    For classification problems in psychology (e.g., clinical diagnosis), batteries of tests are often administered. However, not every test or item may be necessary for accurate classification. In the current article, a combination of classification and regression trees (CART) and stochastic

  19. Herbs versus Trees: Influences on Teenagers' Knowledge of Plant Species

    Science.gov (United States)

    Lückmann, Katrin; Menzel, Susanne

    2014-01-01

    The study reports on species knowledge among German adolescents (n = 507) as: (1) self-assessed evaluation of one's species knowledge; and (2) factual knowledge about popular local herbs and trees. Besides assessing species knowledge, we were interested in whether selected demographic factors, environmental attitude (as measured through the New…

  20. Rainfall and temperature affect tree species distributions in Ghana

    NARCIS (Netherlands)

    Amissah, L.; Mohren, G.M.J.; Bongers, F.; Hawthorne, W.D.; Poorter, L.

    2014-01-01

    We evaluated the relative importance of annual rainfall, temperature and their seasonality to tree species distribution in Ghana. We used species presence/absence data from 2505 1-ha plots systematically distributed over Ghana's forests. Logistic regression was used to determine species responses to

  1. Determination of horizontal and vertical distribution of tree species in ...

    African Journals Online (AJOL)

    Determination of horizontal and vertical distribution of tree species in Turkey via Shuttle Radar Topography Mission (SRTM) satellite data and geographic information system: the case of Crimean pine ( Pinus nigra )

  2. Nutritional composition of five food trees species products used in ...

    African Journals Online (AJOL)

    Nutritional composition of five food trees species products used in human diet during food shortage period in Burkina Faso. Thiombiano Daniabla Natacha Edwige, Parkouda Charles, Lamien Nieyidouba, Sere Aminata, Castro-Euler Ana Margarida, Boussim Issaka Joseph ...

  3. Vegetative propagation of twelve fodder tree species indigenous to ...

    African Journals Online (AJOL)

    Vegetative propagation of twelve fodder tree species indigenous to the Sahel, West Africa. Catherine Ky-Dembele, Jules Bayala, Antoine Kalinganire, Fatoumata Tata Traoré, Bréhima Koné, Alain Olivier ...

  4. Support-vector-machine tree-based domain knowledge learning toward automated sports video classification

    Science.gov (United States)

    Xiao, Guoqiang; Jiang, Yang; Song, Gang; Jiang, Jianmin

    2010-12-01

    We propose a support-vector-machine (SVM) tree to hierarchically learn from domain knowledge represented by low-level features toward automatic classification of sports videos. The proposed SVM tree adopts a binary tree structure to exploit the nature of SVM's binary classification, where each internal node is a single SVM learning unit, and each external node represents the classified output type. Such a SVM tree presents a number of advantages, which include: 1. low computing cost; 2. integrated learning and classification while preserving individual SVM's learning strength; and 3. flexibility in both structure and learning modules, where different numbers of nodes and features can be added to address specific learning requirements, and various learning models can be added as individual nodes, such as neural networks, AdaBoost, hidden Markov models, dynamic Bayesian networks, etc. Experiments support that the proposed SVM tree achieves good performances in sports video classifications.

  5. Nutrition facts and limits for micronutrients in tree species used in urban forestry

    Directory of Open Access Journals (Sweden)

    FLÁVIA G.K. BRUN

    2017-08-01

    Full Text Available ABSTRACT There is a huge lack of researches that evaluate the nutritional limits in tree species used in urban forestry, especially in terms of micronutrients. This study aimed to establish limits and range of micronutrients levels for the proper development of tree species utilized in urban forestry. The study was conducted in the city of Santa Maria-RS-Brazil. Through forest inventory, 23 forest species present in urban forest were selected, and 05 vegetative branches of each tree were collected, in which the contents of B, Cu, Fe, Mn and Zn were analyzed. Ranges of micronutrients’ contents were developed for class limits criteria. Nutritional problems were detected for B, Cu and Zn in G. robusta and S. cumini, indicating a need of fertilization and management of these trees. The levels of Mn were within an adequate range only for the species C. illinoensis and H. chrysotrichus. The contents of B were higher than the level considered adequate for H. chrysotrichusand M. nigra. The rates of Fe showed high levels for E. japonica, H. chrysotrichusand S. babylonica. The estimated nutritional limits enable a greater control in the classification of the results for each tree species utilized in urban forestry.

  6. Evaluating the Potential of WorldView-2 Data to Classify Tree Species and Different Levels of Ash Mortality

    Directory of Open Access Journals (Sweden)

    Lars T. Waser

    2014-05-01

    Full Text Available Forest disturbances in central Europe caused by fungal pests may result in widespread tree mortality. To assess the state of health and to detect disturbances of entire forest ecosystems, up-to-date knowledge of the tree species diversity is essential. The German state Mecklenburg–Vorpommern is severely affected by ash (Fraxinus excelsior dieback caused by the fungal pathogen Hymenoscyphus pseudoalbidus. In this study, species diversity and the magnitude of ash mortality was assessed by classifying seven different tree species and multiple levels of damaged ash. The study is based on a multispectral WorldView-2 (WV-2 scene and uses object-based supervised classification methods based on multinomial logistic regressions. Besides the original multispectral image, a set of remote sensing indices (RSI was derived, which significantly improved the accuracies of classifying different levels of damaged ash but only slightly improved tree species classification. The large number of features was reduced by three approaches, of which the linear discriminant analysis (LDA clearly outperformed the more commonly used principal component analysis (PCA and a stepwise selection method. Promising overall accuracies (83% for classifying seven tree species and (73% for classifying four different levels of damaged ash were obtained. Detailed tree damage and tree species maps were visually inspected using aerial images. The results are of high relevance for forest managers to plan appropriate cutting and reforestation measures to decrease ash dieback over entire regions.

  7. Traditional uses of indigenous tree species

    African Journals Online (AJOL)

    Mo

    certain trees and shrubs known to be of high value are being wantonly harvested without replacement and are now threatened with extinction. It is thus .... Data Analysis. Qualitative data analysis was done manually by coding, extracting, and relating information gathered on the major themes of the study. Quantitative ...

  8. Classification of Defoliated Trees Using Tree-Level Airborne Laser Scanning Data Combined with Aerial Images

    Directory of Open Access Journals (Sweden)

    Juha Hyyppa

    2010-11-01

    Full Text Available Climate change and rising temperatures have been observed to be related to the increase of forest insect damage in the boreal zone. The common pine sawfly (Diprion pini L. (Hymenoptera, Diprionidae is regarded as a significant threat to boreal pine forests. Defoliation by D. pini can cause severe growth loss and tree mortality in Scots pine (Pinus sylvestris L. (Pinaceae. In this study, logistic LASSO regression, Random Forest (RF and Most Similar Neighbor method (MSN were investigated for predicting the defoliation level of individual Scots pines using the features derived from airborne laser scanning (ALS data and aerial images. Classification accuracies from 83.7% (kappa 0.67 to 88.1% (kappa 0.76 were obtained depending on the method. The most accurate result was produced using RF with a combination of data from the two sensors, while the accuracies when using ALS and image features separately were 80.7% and 87.4%, respectively. Evidently, the combination of ALS and aerial images in detecting needle losses is capable of providing satisfactory estimates for individual trees.

  9. FOREST TREE SPECIES DISTRIBUTION MAPPING USING LANDSAT SATELLITE IMAGERY AND TOPOGRAPHIC VARIABLES WITH THE MAXIMUM ENTROPY METHOD IN MONGOLIA

    Directory of Open Access Journals (Sweden)

    S. H. Chiang

    2016-06-01

    Full Text Available Forest is a very important ecosystem and natural resource for living things. Based on forest inventories, government is able to make decisions to converse, improve and manage forests in a sustainable way. Field work for forestry investigation is difficult and time consuming, because it needs intensive physical labor and the costs are high, especially surveying in remote mountainous regions. A reliable forest inventory can give us a more accurate and timely information to develop new and efficient approaches of forest management. The remote sensing technology has been recently used for forest investigation at a large scale. To produce an informative forest inventory, forest attributes, including tree species are unavoidably required to be considered. In this study the aim is to classify forest tree species in Erdenebulgan County, Huwsgul province in Mongolia, using Maximum Entropy method. The study area is covered by a dense forest which is almost 70% of total territorial extension of Erdenebulgan County and is located in a high mountain region in northern Mongolia. For this study, Landsat satellite imagery and a Digital Elevation Model (DEM were acquired to perform tree species mapping. The forest tree species inventory map was collected from the Forest Division of the Mongolian Ministry of Nature and Environment as training data and also used as ground truth to perform the accuracy assessment of the tree species classification. Landsat images and DEM were processed for maximum entropy modeling, and this study applied the model with two experiments. The first one is to use Landsat surface reflectance for tree species classification; and the second experiment incorporates terrain variables in addition to the Landsat surface reflectance to perform the tree species classification. All experimental results were compared with the tree species inventory to assess the classification accuracy. Results show that the second one which uses Landsat surface

  10. Genetic improvement of forest tree species

    Directory of Open Access Journals (Sweden)

    Teotônio Francisco Assis

    2011-01-01

    Full Text Available Brazilian forestry sector is considered one of the most developed in the world, being the base for important industrialsegments which use wood as raw material. Tree breeding has played an important role on improving the competitiveness ofBrazilian forestry-based companies, especially for its positive reflexes on increasing adaptation, forestry productivity and woodquality. In spite of the importance of other forest trees for the economy, such as Schizolobium, Araucaria, Populus and Hevea, themain genera under genetic improvement in the country are Eucalyptus, Pinus, Acacia and Tectona. They are used by industries likepulp and paper, siderurgy, tannin, chips for exportation and lumber, constituting an important source of revenues for the Brazilian’seconomy, besides their positive social and environmental impacts. This paper presents a generic approach to genetic improvementaspects of these four major genera currently undergoing breeding in Brazil.

  11. The process and utility of classification and regression tree methodology in nursing research.

    Science.gov (United States)

    Kuhn, Lisa; Page, Karen; Ward, John; Worrall-Carter, Linda

    2014-06-01

    This paper presents a discussion of classification and regression tree analysis and its utility in nursing research. Classification and regression tree analysis is an exploratory research method used to illustrate associations between variables not suited to traditional regression analysis. Complex interactions are demonstrated between covariates and variables of interest in inverted tree diagrams. Discussion paper. English language literature was sourced from eBooks, Medline Complete and CINAHL Plus databases, Google and Google Scholar, hard copy research texts and retrieved reference lists for terms including classification and regression tree* and derivatives and recursive partitioning from 1984-2013. Classification and regression tree analysis is an important method used to identify previously unknown patterns amongst data. Whilst there are several reasons to embrace this method as a means of exploratory quantitative research, issues regarding quality of data as well as the usefulness and validity of the findings should be considered. Classification and regression tree analysis is a valuable tool to guide nurses to reduce gaps in the application of evidence to practice. With the ever-expanding availability of data, it is important that nurses understand the utility and limitations of the research method. Classification and regression tree analysis is an easily interpreted method for modelling interactions between health-related variables that would otherwise remain obscured. Knowledge is presented graphically, providing insightful understanding of complex and hierarchical relationships in an accessible and useful way to nursing and other health professions. © 2013 The Authors. Journal of Advanced Nursing Published by John Wiley & Sons Ltd.

  12. Mapping Regional Distribution of a Single Tree Species: Whitebark Pine in the Greater Yellowstone Ecosystem

    Directory of Open Access Journals (Sweden)

    Charles C. Schwartz

    2008-08-01

    Full Text Available Moderate resolution satellite imagery traditionally has been thought to be inadequate for mapping vegetation at the species level. This has made comprehensive mapping of regional distributions of sensitive species, such as whitebark pine, either impractical or extremely time consuming. We sought to determine whether using a combination of moderate resolution satellite imagery (Landsat Enhanced Thematic Mapper Plus, extensive stand data collected by land management agencies for other purposes, and modern statistical classification techniques (boosted classification trees could result in successful mapping of whitebark pine. Overall classification accuracies exceeded 90%, with similar individual class accuracies. Accuracies on a localized basis varied based on elevation. Accuracies also varied among administrative units, although we were not able to determine whether these differences related to inherent spatial variations or differences in the quality of available reference data.

  13. The species velocity of trees in Alaska

    Science.gov (United States)

    Morrison, B. D.; Napier, J.; de Lafontaine, G.; Heath, K.; Li, B.; Hu, F.; Greenberg, J. A.

    2017-12-01

    Anthropogenic climate change has motivated interest in the paleo record to enhance our knowledge about past vegetation responses to climate change and help understand potential responses in the future. Additionally, polar regions currently experience the most rapid rates of climate change globally, prompting concern over changes in the ecological composition of high latitude ecosystems. Recent analyses have attempted to construct methods to estimate a species' ability to track climate change by computing climate velocity; a measure of the rate of climate displacement across a landscape which may indicate the speed an organism must migrate to keep pace with climate change. However, a challenge to using climate velocity in understanding range shifts is a lack of species-specificity in the velocity calculations: climate velocity does not actually use any species data in its analysis. To solve the shortcomings of climate velocity in estimating species displacement rates, we computed the "species velocity" of white spruce, green and grey alder populations across the state of Alaska from the Last Glacial Maximum (LGM) to today. Species velocity represents the rate and direction a species is required to migrate to keep pace with a changing climate following the LGM. We used a species distribution model to determine past and present white spruce and alder distributions using statistically downscaled climate data at 60m. Species velocity was then derived from the change in species distribution per year by the change in distribution over Alaska (km/yr). High velocities indicate locations where the species environmental envelope is changing drastically and must disperse rapidly to survive climate change. As a result, high velocity regions are more vulnerable to distribution shifts and higher risk of local extinction. Conversely, low species velocities indicate locations where the local climate envelope is shifting relatively slowly, reducing the stress to disperse quickly

  14. The growth performance of exotic and indigenous tree species in ...

    African Journals Online (AJOL)

    The saplings were monitored for survival rates one year after transplanting and growth performances by measuring root collar diameters and heights. There was no significant difference among the species in survival. The mean height increment of the exotics significantly surpassed indigenous tree species. E. grandis ...

  15. Invasive plant species in hardwood tree plantations

    Science.gov (United States)

    Rochelle R. Beasley; Paula M. Pijut

    2010-01-01

    Invasive plants are species that can grow and spread aggressively, mature quickly, and invade an ecosystem causing economic and environmental damage. Invasive plants usually invade disturbed areas, but can also colonize small areas quickly, and may spread and dominate large areas in a few short years. Invasive plant species displace native or desirable forest...

  16. ( Dialium guineense willd), a multipurpose tree species

    African Journals Online (AJOL)

    The velvet tamarind (Dialium guineense Willd) is one of the key species for domestication in Sub-Saharan Africa. In order to help the sustainable management and conservation of this species, its structural characteristics and ethnobotanical traits were studied in the 4 vegetation types (typical dense forest, degraded dense ...

  17. Geographical range and local abundance of tree species in China.

    Directory of Open Access Journals (Sweden)

    Haibao Ren

    Full Text Available Most studies on the geographical distribution of species have utilized a few well-known taxa in Europe and North America, with little research in China and its wide range of climate and forest types. We assembled large datasets to quantify the geographic ranges of tree species in China and to test several biogeographic hypotheses: 1 whether locally abundant species tend to be geographically widespread; 2 whether species are more abundant towards their range-centers; and 3 how abundances are correlated between sites. Local abundances of 651 species were derived from four tree plots of 20-25 ha where all individuals ≥1 cm in stem diameter were mapped and identified taxonomically. Range sizes of these species across China were then estimated from over 460,000 geo-referenced records; a Bayesian approach was used, allowing careful measures of error of each range estimate. The log-transformed range sizes had a bell-shaped distribution with a median of 703,000 km(2, and >90% of 651 species had ranges >10(5 km(2. There was no relationship between local abundance and range size, and no evidence for species being more abundant towards their range-centers. Finally, species' abundances were positively correlated between sites. The widespread nature of most tree species in China suggests few are vulnerable to global extinction, and there is no indication of the double-peril that would result if rare species also had narrow ranges.

  18. Real-Time Speech/Music Classification With a Hierarchical Oblique Decision Tree

    Science.gov (United States)

    2008-04-01

    REAL-TIME SPEECH/ MUSIC CLASSIFICATION WITH A HIERARCHICAL OBLIQUE DECISION TREE Jun Wang, Qiong Wu, Haojiang Deng, Qin Yan Institute of Acoustics...time speech/ music classification with a hierarchical oblique decision tree. A set of discrimination features in frequency domain are selected...handle signals without discrimination and can not work properly in the existence of multimedia signals. This paper proposes a real-time speech/ music

  19. Predictive mapping of soil organic carbon in wet cultivated lands using classification-tree based models

    DEFF Research Database (Denmark)

    Kheir, Rania Bou; Greve, Mogens Humlekrog; Bøcher, Peder Klith

    2010-01-01

    ) selected pairs of parameters, (vi) soil type, parent material and landscape type only, and (vii) the parameters having a high impact on SOC distribution in built pruned trees. The best constructed classification tree models (in the number of three) with the lowest misclassification error (ME......) and the lowest number of nodes (N) as well are: (i) the tree (T1) combining all of the parameters (ME ¼ 29.5%; N¼ 54); (ii) the tree (T2) based on the parent material, soil type and landscape type (ME¼ 31.5%; N ¼ 14); and (iii) the tree (T3) constructed using parent material, soil type, landscape type, elevation...

  20. Germplasm characterization of three jabuticaba tree species

    Directory of Open Access Journals (Sweden)

    Moeses Andrigo Danner

    2011-09-01

    Full Text Available The purpose of this study was to characterize cultivated genotypes of three jabuticaba species (Plinia cauliflora, P. trunciflora, and P. jaboticaba. Phenology and fruit growth, as well as leaf, flower and fruit traits were evaluated. Variability in all traits was observed among genotypes of the three jabuticaba species. The trait peduncle size is indicated for differentiation of the three species under study. The leaf and fruit sizes of the genotypes P. trunciflora 3, P. trunciflora 4, P. trunciflora 5 and P. jaboticaba 1 differ from those described in the literature for these species, indicating the formation of ecotypes. Jabuticaba fruit skin contains high anthocyanin and flavonoid concentrations, with potential use in food and pharmaceutical industries.

  1. Multi-phenology WorldView-2 imagery improves remote sensing of savannah tree species

    Science.gov (United States)

    Madonsela, Sabelo; Cho, Moses Azong; Mathieu, Renaud; Mutanga, Onisimo; Ramoelo, Abel; Kaszta, Żaneta; Kerchove, Ruben Van De; Wolff, Eléonore

    2017-06-01

    Biodiversity mapping in African savannah is important for monitoring changes and ensuring sustainable use of ecosystem resources. Biodiversity mapping can benefit from multi-spectral instruments such as WorldView-2 with very high spatial resolution and a spectral configuration encompassing important spectral regions not previously available for vegetation mapping. This study investigated i) the benefits of the eight-band WorldView-2 (WV-2) spectral configuration for discriminating tree species in Southern African savannah and ii) if multiple-images acquired at key points of the typical phenological development of savannahs (peak productivity, transition to senescence) improve on tree species classifications. We first assessed the discriminatory power of WV-2 bands using interspecies-Spectral Angle Mapper (SAM) via Band Add-On procedure and tested the spectral capability of WorldView-2 against simulated IKONOS for tree species classification. The results from interspecies-SAM procedure identified the yellow and red bands as the most statistically significant bands (p = 0.000251 and p = 0.000039 respectively) in the discriminatory power of WV-2 during the transition from wet to dry season (April). Using Random Forest classifier, the classification scenarios investigated showed that i) the 8-bands of the WV-2 sensor achieved higher classification accuracy for the April date (transition from wet to dry season, senescence) compared to the March date (peak productivity season) ii) the WV-2 spectral configuration systematically outperformed the IKONOS sensor spectral configuration and iii) the multi-temporal approach (March and April combined) improved the discrimination of tress species and produced the highest overall accuracy results at 80.4%. Consistent with the interspecies-SAM procedure, the yellow (605 nm) band also showed a statistically significant contribution in the improved classification accuracy from WV-2. These results highlight the mapping opportunities

  2. Wall-to-wall tree type classification using airborne lidar data and CIR images

    DEFF Research Database (Denmark)

    Schumacher, Johannes; Nord-Larsen, Thomas

    2014-01-01

    analysed at the individual tree level (object-based). However, due to computational challenges, most object-based studies cover only smaller areas and experience of larger areas is lacking. We present an approach for an object-based, unsupervised classification of trees into broadleaf or conifer using...... lie in the costs associated with data collection and the data processing time....

  3. Diagnostics of Tree Diseases Caused by Phytophthora austrocedri Species.

    Science.gov (United States)

    Mulholland, Vincent; Elliot, Matthew; Green, Sarah

    2015-01-01

    We present methods for the detection and quantification of four Phytophthora species which are pathogenic on trees; Phytophthora ramorum, Phytophthora kernoviae, Phytophthora lateralis, and Phytophthora austrocedri. Nucleic acid extraction methods are presented for phloem tissue from trees, soil, and pure cultures on agar plates. Real-time PCR methods are presented and include primer and probe sets for each species, general advice on real-time PCR setup and data analysis. A method for sequence-based identification, useful for pure cultures, is also included.

  4. Vlsi implementation of flexible architecture for decision tree classification in data mining

    Science.gov (United States)

    Sharma, K. Venkatesh; Shewandagn, Behailu; Bhukya, Shankar Nayak

    2017-07-01

    The Data mining algorithms have become vital to researchers in science, engineering, medicine, business, search and security domains. In recent years, there has been a terrific raise in the size of the data being collected and analyzed. Classification is the main difficulty faced in data mining. In a number of the solutions developed for this problem, most accepted one is Decision Tree Classification (DTC) that gives high precision while handling very large amount of data. This paper presents VLSI implementation of flexible architecture for Decision Tree classification in data mining using c4.5 algorithm.

  5. Ensemble of randomized soft decision trees for robust classification

    Indian Academy of Sciences (India)

    It is found that an ensembleof randomized soft decision trees has outperformed the related existing soft decision tree. Robustness against the presence of noise is shown by injecting various levels of noise into the training set and a comparison is drawnwith other related methods which favors the proposed method.

  6. Building classification trees to explain the radioactive contamination levels of the plants

    International Nuclear Information System (INIS)

    Briand, B.

    2008-04-01

    The objective of this thesis is the development of a method allowing the identification of factors leading to various radioactive contamination levels of the plants. The methodology suggested is based on the use of a radioecological transfer model of the radionuclides through the environment (A.S.T.R.A.L. computer code) and a classification-tree method. Particularly, to avoid the instability problems of classification trees and to preserve the tree structure, a node level stabilizing technique is used. Empirical comparisons are carried out between classification trees built by this method (called R.E.N. method) and those obtained by the C.A.R.T. method. A similarity measure is defined to compare the structure of two classification trees. This measure is used to study the stabilizing performance of the R.E.N. method. The methodology suggested is applied to a simplified contamination scenario. By the results obtained, we can identify the main variables responsible of the various radioactive contamination levels of four leafy-vegetables (lettuce, cabbage, spinach and leek). Some extracted rules from these classification trees can be usable in a post-accidental context. (author)

  7. PCA based feature reduction to improve the accuracy of decision tree c4.5 classification

    Science.gov (United States)

    Nasution, M. Z. F.; Sitompul, O. S.; Ramli, M.

    2018-03-01

    Splitting attribute is a major process in Decision Tree C4.5 classification. However, this process does not give a significant impact on the establishment of the decision tree in terms of removing irrelevant features. It is a major problem in decision tree classification process called over-fitting resulting from noisy data and irrelevant features. In turns, over-fitting creates misclassification and data imbalance. Many algorithms have been proposed to overcome misclassification and overfitting on classifications Decision Tree C4.5. Feature reduction is one of important issues in classification model which is intended to remove irrelevant data in order to improve accuracy. The feature reduction framework is used to simplify high dimensional data to low dimensional data with non-correlated attributes. In this research, we proposed a framework for selecting relevant and non-correlated feature subsets. We consider principal component analysis (PCA) for feature reduction to perform non-correlated feature selection and Decision Tree C4.5 algorithm for the classification. From the experiments conducted using available data sets from UCI Cervical cancer data set repository with 858 instances and 36 attributes, we evaluated the performance of our framework based on accuracy, specificity and precision. Experimental results show that our proposed framework is robust to enhance classification accuracy with 90.70% accuracy rates.

  8. Maximizing the Diversity of Ensemble Random Forests for Tree Genera Classification Using High Density LiDAR Data

    Directory of Open Access Journals (Sweden)

    Connie Ko

    2016-08-01

    Full Text Available Recent research into improving the effectiveness of forest inventory management using airborne LiDAR data has focused on developing advanced theories in data analytics. Furthermore, supervised learning as a predictive model for classifying tree genera (and species, where possible has been gaining popularity in order to minimize this labor-intensive task. However, bottlenecks remain that hinder the immediate adoption of supervised learning methods. With supervised classification, training samples are required for learning the parameters that govern the performance of a classifier, yet the selection of training data is often subjective and the quality of such samples is critically important. For LiDAR scanning in forest environments, the quantification of data quality is somewhat abstract, normally referring to some metric related to the completeness of individual tree crowns; however, this is not an issue that has received much attention in the literature. Intuitively the choice of training samples having varying quality will affect classification accuracy. In this paper a Diversity Index (DI is proposed that characterizes the diversity of data quality (Qi among selected training samples required for constructing a classification model of tree genera. The training sample is diversified in terms of data quality as opposed to the number of samples per class. The diversified training sample allows the classifier to better learn the positive and negative instances and; therefore; has a higher classification accuracy in discriminating the “unknown” class samples from the “known” samples. Our algorithm is implemented within the Random Forests base classifiers with six derived geometric features from LiDAR data. The training sample contains three tree genera (pine; poplar; and maple and the validation samples contains four labels (pine; poplar; maple; and “unknown”. Classification accuracy improved from 72.8%; when training samples were

  9. Nitrogen addition enhances drought sensitivity of young deciduous tree species

    Directory of Open Access Journals (Sweden)

    Christoph Dziedek

    2016-07-01

    Full Text Available Understanding how trees respond to global change drivers is central to predict changes in forest structure and functions. Although there is evidence on the mode of nitrogen (N and drought (D effects on tree growth, our understanding of the interplay of these factors is still limited. Simultaneously, as mixtures are expected to be less sensitive to global change as compared to monocultures, we aimed to investigate the combined effects of N addition and D on the productivity of three tree species (Fagus sylvatica, Quercus petraea, Pseudotsuga menziesii in relation to functional diverse species mixtures using data from a four-year field experiment in Northwest Germany. Here we show that species mixing can mitigate the negative effects of combined N fertilization and D events, but the community response is mainly driven by the combination of certain traits rather than the tree species richness of a community. For beech, we found that negative effects of D on growth rates were amplified by N fertilization (i.e. combined treatment effects were non-additive, while for oak and fir, the simultaneous effects of N and D were additive. Beech and oak were identified as most sensitive to combined N+D effects with a strong size-dependency observed for beech, suggesting that the negative impact of N+D becomes stronger with time as beech grows larger. As a consequence, the net biodiversity effect declined at the community level, which can be mainly assigned to a distinct loss of complementarity in beech-oak mixtures. This pattern, however, was not evident in the other species-mixtures, indicating that neighborhood composition (i.e. trait combination, but not tree species richness mediated the relationship between tree diversity and treatment effects on tree growth. Our findings point to the importance of the qualitative role (‘trait portfolio’ that biodiversity play in determining resistance of diverse tree communities to environmental changes. As such, they

  10. Classification in mathematics, discrete metric spaces, and approximation by trees

    NARCIS (Netherlands)

    M. Hazewinkel (Michiel)

    1995-01-01

    textabstractThis is partly an introductory survey paper to clustering and classification problems with particular emphasis on the classification of lists of key words and phrases from a given scientific domain such as mathematics. In addition the paper contains a number of new concepts and results;

  11. Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment.

    Directory of Open Access Journals (Sweden)

    Annika Wein

    Full Text Available Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m2. The species pool consists of six congeneric species pairs of European and North American origin (12 species in total planted in monocultures and mixtures (1, 2, 4, 6 species. We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores.

  12. Tree Species Richness Promotes Invertebrate Herbivory on Congeneric Native and Exotic Tree Saplings in a Young Diversity Experiment.

    Science.gov (United States)

    Wein, Annika; Bauhus, Jürgen; Bilodeau-Gauthier, Simon; Scherer-Lorenzen, Michael; Nock, Charles; Staab, Michael

    2016-01-01

    Tree diversity in forests is an important driver of ecological processes including herbivory. Empirical evidence suggests both negative and positive effects of tree diversity on herbivory, which can be, respectively, attributed to associational resistance or associational susceptibility. Tree diversity experiments allow testing for associational effects, but evidence regarding which pattern predominates is mixed. Furthermore, it is unknown if herbivory on tree species of native vs. exotic origin is influenced by changing tree diversity in a similar way, or if exotic tree species escape natural enemies, resulting in lower damage that is unrelated to tree diversity. To address these questions, we established a young tree diversity experiment in temperate southwestern Germany that uses high planting density (49 trees per plot; plot size 13 m2). The species pool consists of six congeneric species pairs of European and North American origin (12 species in total) planted in monocultures and mixtures (1, 2, 4, 6 species). We assessed leaf damage by leaf-chewing insects on more than 5,000 saplings of six broadleaved tree species. Plot-level tree species richness increased leaf damage, which more than doubled from monocultures to six-species mixtures, strongly supporting associational susceptibility. However, leaf damage among congeneric native and exotic species pairs was similar. There were marked differences in patterns of leaf damage across tree genera, and only the genera likely having a predominately generalist herbivore community showed associational susceptibility, irrespective of the geographical origin of a tree species. In conclusion, an increase in tree species richness in young temperate forests may result in associational susceptibility to feeding by generalist herbivores.

  13. Tolerance of Four Tropical Tree Species to Heavy Petroleum Contamination

    NARCIS (Netherlands)

    Perez-Hernandez, I.; Ochoa-Gaona, S.; Schroeder, R.H.A.; Rivera-Cruz, M.C.; Geissen, V.

    2013-01-01

    Four species of trees were selected to evaluate the tolerance to heavy crude oil contamination by means of a tolerance index integrating germination, height, biomass and survival as variables. Fresh seeds to Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia

  14. Tree species composition, structure and utilisation in Maruzi Hills ...

    African Journals Online (AJOL)

    The study investigated the tree species composition, vegetation structure and harvesting pattern to guide management of the Maruzi Hills Forest Reserve. Stratified random sampling was used to site six (100 m × 100 m) permanent sample plots in the woodland, bushland and grassland vegetation types identified in the ...

  15. Mycorrhizal association of some agroforestry tree species in two ...

    African Journals Online (AJOL)

    Administrator

    2011-05-05

    May 5, 2011 ... Mycorrhizal colonization of different agroforestry tree species in two social forestry nurseries was investigated. Percentage of Arbuscular ... collected from two social forestry nurseries of Mahabubnagar district (A.P), and brought to the .... main regression line is shown in red. Spores of the lower infection ...

  16. Biomass models to estimate carbon stocks for hardwood tree species

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Peinado, R.; Montero, G.; Rio, M. del

    2012-11-01

    To estimate forest carbon pools from forest inventories it is necessary to have biomass models or biomass expansion factors. In this study, tree biomass models were developed for the main hardwood forest species in Spain: Alnus glutinosa, Castanea sativa, Ceratonia siliqua, Eucalyptus globulus, Fagus sylvatica, Fraxinus angustifolia, Olea europaea var. sylvestris, Populus x euramericana, Quercus canariensis, Quercus faginea, Quercus ilex, Quercus pyrenaica and Quercus suber. Different tree biomass components were considered: stem with bark, branches of different sizes, above and belowground biomass. For each species, a system of equations was fitted using seemingly unrelated regression, fulfilling the additivity property between biomass components. Diameter and total height were explored as independent variables. All models included tree diameter whereas for the majority of species, total height was only considered in the stem biomass models and in some of the branch models. The comparison of the new biomass models with previous models fitted separately for each tree component indicated an improvement in the accuracy of the models. A mean reduction of 20% in the root mean square error and a mean increase in the model efficiency of 7% in comparison with recently published models. So, the fitted models allow estimating more accurately the biomass stock in hardwood species from the Spanish National Forest Inventory data. (Author) 45 refs.

  17. Regional Assessment of Ozone Sensitive Tree Species Using Bioindicator Plants

    Science.gov (United States)

    John W. Coulston; Gretchen C. Smith; William D. Smith

    2003-01-01

    Tropospheric ozone occurs at phytotoxic levels in the northeastern and mid-Atlantic regions of the United States. Quantifying possible regional-scale impacts of ambient ozone on forest tree species is difficult and is confounded by other factors, such as moisture and light, which influence the uptake of ozone by plants. Biomonitoring provides an approach to document...

  18. Regeneration Of Some Fuelwood Tree Species Of Humid Savanna ...

    African Journals Online (AJOL)

    Six most widely used tree species of fuelwood (Daniellia oliveri, Entada africana, Hymenocardia acida, Lophira lanceolata, Piliostigma thonningii and Terminalia macroptera) were studied in three suburban localities of Ngaoundere (Bini, Borongo and Dang), for two seasons (rainy and dry seasons). Four cutting levels (0, 20 ...

  19. Assessment of tree species diversity in the University of Lagos ...

    African Journals Online (AJOL)

    This study was aimed at assessing and providing management options for tree species growing on Akoka Campus of University of Lagos, Southern-Western Nigeria by collecting data from four (4) randomly selected 50m x 50m plots in the study area. The assessment was carried out through extensive field survey with the ...

  20. Evaluation of three indigenous Multi-purpose tree species for ...

    African Journals Online (AJOL)

    Agronomic evaluation of three indigenous Multi-purpose tree species (MPTS) namely Pterocarpus santalinoides (PS), Grewia pubescens (GP) and Enterolobium cyclocarpum (EC) and one exotic Leucaena leucocephala (LL) which acted as the control were investigated to determine their growth performance and biomass ...

  1. Updated generalized biomass equations for North American tree species

    Science.gov (United States)

    David C. Chojnacky; Linda S. Heath; Jennifer C. Jenkins

    2014-01-01

    Historically, tree biomass at large scales has been estimated by applying dimensional analysis techniques and field measurements such as diameter at breast height (dbh) in allometric regression equations. Equations often have been developed using differing methods and applied only to certain species or isolated areas. We previously had compiled and combined (in meta-...

  2. Carving out indigenous tree species to sustain rural livelihood ...

    African Journals Online (AJOL)

    and Holarrhena floribunda out of the 14 tree species identified were frequently used. The study also showed that current supply of wood resources is unsustainable and there are no attempts by people in the business to establish plantations. This was attributed to difficulty in land acquisition, lack of access to credit, apathy ...

  3. Antimicrobial Screening of Some Exotic Tree Species of Rajasthan Desert

    OpenAIRE

    B.B.S. Kapoor* and Shelja Pandita

    2013-01-01

    Antimicrobial screening of ethyl ether and alcoholic extracts of leaves of four selected exotic tree species growing inRajasthan Desert was carried out. Colophospermum mopane, Holoptelea integrifolia, Kigelia pinnata andPutranjiva roxburghii showed positive reactions against bacterial pathogens i.e. Staphylococcus aureus, Escherichiacoli and a fungal pathogen Candida albicans.

  4. Biomass equations for major tree species of the Northeast

    Science.gov (United States)

    Louise M. Tritton; James W. Hornbeck

    1982-01-01

    Regression equations are used in both forestry and ecosystem studies to estimate tree biomass from field measurements of dbh (diameter at breast height) or a combination of dbh and height. Literature on biomass is reviewed, and 178 sets of publish equation for 25 species common to the Northeastern Unites States are listed. On the basis of these equations, estimates of...

  5. Tree species Diversity in the Department of Forest Resources ...

    African Journals Online (AJOL)

    An inventory of trees (>10cm diameter at breast height (dbh)) growing within the premises (~1.2ha) of the Department of Forest Resources Management (DFRM), University of Ibadan, Nigeria, was conducted as a case study of the species quality (richness and diversity) and quantity (volume) found on the University campus.

  6. Evaluation of some tree species for heavy metal biomonitoring and ...

    African Journals Online (AJOL)

    ajl yemi

    It is well established that trees help to reduce air pollution, and there is a growing impetus for green belt expansion in urban areas. For greenbelt development, it is necessary to select plants that tolerant air pollution. In this study, the air pollution tolerance index (APTI) of plant species was evaluated by analyzing some ...

  7. Anatomical studies of selected tree species of the Moraceae family ...

    African Journals Online (AJOL)

    The internode, bark and wood anatomy of seven tree species of the Family Moraceae, grown in Nigeria were studied to determine their characteristic tissue distribution and unique ergastic substances which could be of immense value in taxonomic work as well as of great economic and medicinal values. Direct microscopic ...

  8. Towards a natural classification and backbone tree for Sordariomycete

    Digital Repository Service at National Institute of Oceanography (India)

    Maharachchikumbura, S.S.N.; Hyde, K.D.; Jones, E.B.G.; McKenzie, E.H.C.; Huang, S.-K.; Abdel-Wahab, M.A.; Daranagama, D.A.; Dayarathne, M.; D'souza, M.J.; Goonasekara, I.D.; Hongsanan, S.; Jayawardena, R.S.; Kirk, P.M.; Konta, S.; Liu, J.-K.; Liu, Z.-Y.; Norphanphoun, C.; Pang, K.-L.; Perera, R.H.; Senanayake, I.C.; Shang, Q.; Shenoy, B.D.; Xiao, Y.; Bahkali, A.H.; Kang, J.; Somrothipol, S.; Suetrong, S.; Wen, T.; Xu, J.

    , lichenized or lichenicolous taxa The class includes freshwater, marine and terrestrial taxa and has a worldwide distribution This paper provides an updated outline of the Sordariomycetes and a backbone tree incorporating asexual and sexual genera in the class...

  9. Woodland Mapping at Single-Tree Levels Using Object-Oriented Classification of Unmanned Aerial Vehicle (uav) Images

    Science.gov (United States)

    Chenari, A.; Erfanifard, Y.; Dehghani, M.; Pourghasemi, H. R.

    2017-09-01

    Remotely sensed datasets offer a reliable means to precisely estimate biophysical characteristics of individual species sparsely distributed in open woodlands. Moreover, object-oriented classification has exhibited significant advantages over different classification methods for delineation of tree crowns and recognition of species in various types of ecosystems. However, it still is unclear if this widely-used classification method can have its advantages on unmanned aerial vehicle (UAV) digital images for mapping vegetation cover at single-tree levels. In this study, UAV orthoimagery was classified using object-oriented classification method for mapping a part of wild pistachio nature reserve in Zagros open woodlands, Fars Province, Iran. This research focused on recognizing two main species of the study area (i.e., wild pistachio and wild almond) and estimating their mean crown area. The orthoimage of study area was consisted of 1,076 images with spatial resolution of 3.47 cm which was georeferenced using 12 ground control points (RMSE=8 cm) gathered by real-time kinematic (RTK) method. The results showed that the UAV orthoimagery classified by object-oriented method efficiently estimated mean crown area of wild pistachios (52.09±24.67 m2) and wild almonds (3.97±1.69 m2) with no significant difference with their observed values (α=0.05). In addition, the results showed that wild pistachios (accuracy of 0.90 and precision of 0.92) and wild almonds (accuracy of 0.90 and precision of 0.89) were well recognized by image segmentation. In general, we concluded that UAV orthoimagery can efficiently produce precise biophysical data of vegetation stands at single-tree levels, which therefore is suitable for assessment and monitoring open woodlands.

  10. Relating FIA data to habitat classifications via tree-based models of canopy cover

    Science.gov (United States)

    Mark D. Nelson; Brian G. Tavernia; Chris Toney; Brian F. Walters

    2012-01-01

    Wildlife species-habitat matrices are used to relate lists of species with abundance of their habitats. The Forest Inventory and Analysis Program provides data on forest composition and structure, but these attributes may not correspond directly with definitions of wildlife habitats. We used FIA tree data and tree crown diameter models to estimate canopy cover, from...

  11. Object-Based Mangrove Species Classification Using Unmanned Aerial Vehicle Hyperspectral Images and Digital Surface Models

    Directory of Open Access Journals (Sweden)

    Jingjing Cao

    2018-01-01

    Full Text Available Mangroves are one of the most important coastal wetland ecosystems, and the compositions and distributions of mangrove species are essential for conservation and restoration efforts. Many studies have explored this topic using remote sensing images that were obtained by satellite-borne and airborne sensors, which are known to be efficient for monitoring the mangrove ecosystem. With improvements in carrier platforms and sensor technology, unmanned aerial vehicles (UAVs with high-resolution hyperspectral images in both spectral and spatial domains have been used to monitor crops, forests, and other landscapes of interest. This study aims to classify mangrove species on Qi’ao Island using object-based image analysis techniques based on UAV hyperspectral images obtained from a commercial hyperspectral imaging sensor (UHD 185 onboard a UAV platform. First, the image objects were obtained by segmenting the UAV hyperspectral image and the UAV-derived digital surface model (DSM data. Second, spectral features, textural features, and vegetation indices (VIs were extracted from the UAV hyperspectral image, and the UAV-derived DSM data were used to extract height information. Third, the classification and regression tree (CART method was used to selection bands, and the correlation-based feature selection (CFS algorithm was employed for feature reduction. Finally, the objects were classified into different mangrove species and other land covers based on their spectral and spatial characteristic differences. The classification results showed that when considering the three features (spectral features, textural features, and hyperspectral VIs, the overall classification accuracies of the two classifiers used in this paper, i.e., k-nearest neighbor (KNN and support vector machine (SVM, were 76.12% (Kappa = 0.73 and 82.39% (Kappa = 0.801, respectively. After incorporating tree height into the classification features, the accuracy of species classification

  12. Aneurysmal subarachnoid hemorrhage prognostic decision-making algorithm using classification and regression tree analysis.

    Science.gov (United States)

    Lo, Benjamin W Y; Fukuda, Hitoshi; Angle, Mark; Teitelbaum, Jeanne; Macdonald, R Loch; Farrokhyar, Forough; Thabane, Lehana; Levine, Mitchell A H

    2016-01-01

    Classification and regression tree analysis involves the creation of a decision tree by recursive partitioning of a dataset into more homogeneous subgroups. Thus far, there is scarce literature on using this technique to create clinical prediction tools for aneurysmal subarachnoid hemorrhage (SAH). The classification and regression tree analysis technique was applied to the multicenter Tirilazad database (3551 patients) in order to create the decision-making algorithm. In order to elucidate prognostic subgroups in aneurysmal SAH, neurologic, systemic, and demographic factors were taken into account. The dependent variable used for analysis was the dichotomized Glasgow Outcome Score at 3 months. Classification and regression tree analysis revealed seven prognostic subgroups. Neurological grade, occurrence of post-admission stroke, occurrence of post-admission fever, and age represented the explanatory nodes of this decision tree. Split sample validation revealed classification accuracy of 79% for the training dataset and 77% for the testing dataset. In addition, the occurrence of fever at 1-week post-aneurysmal SAH is associated with increased odds of post-admission stroke (odds ratio: 1.83, 95% confidence interval: 1.56-2.45, P tree was generated, which serves as a prediction tool to guide bedside prognostication and clinical treatment decision making. This prognostic decision-making algorithm also shed light on the complex interactions between a number of risk factors in determining outcome after aneurysmal SAH.

  13. Improving Land Use/Land Cover Classification by Integrating Pixel Unmixing and Decision Tree Methods

    Directory of Open Access Journals (Sweden)

    Chao Yang

    2017-11-01

    Full Text Available Decision tree classification is one of the most efficient methods for obtaining land use/land cover (LULC information from remotely sensed imageries. However, traditional decision tree classification methods cannot effectively eliminate the influence of mixed pixels. This study aimed to integrate pixel unmixing and decision tree to improve LULC classification by removing mixed pixel influence. The abundance and minimum noise fraction (MNF results that were obtained from mixed pixel decomposition were added to decision tree multi-features using a three-dimensional (3D Terrain model, which was created using an image fusion digital elevation model (DEM, to select training samples (ROIs, and improve ROI separability. A Landsat-8 OLI image of the Yunlong Reservoir Basin in Kunming was used to test this proposed method. Study results showed that the Kappa coefficient and the overall accuracy of integrated pixel unmixing and decision tree method increased by 0.093% and 10%, respectively, as compared with the original decision tree method. This proposed method could effectively eliminate the influence of mixed pixels and improve the accuracy in complex LULC classifications.

  14. Capturing characteristics of beryllium-7 in selected tree species

    International Nuclear Information System (INIS)

    Narazaki, Yukinori; Karube, Yoshiharu.

    1997-01-01

    With regard to 7 Be, a natural radioactive nuclide, the botanical capturing characteristics were compared between eight species of those trees which grow in a local district. The mechanism of such botanical capture by their leaves was discussed. The amounts of captured 7 Be were different by tree species. Higher radioactivities were found in the coniferous trees than in the broadleaf trees. The seasonal change of 7 Be radioactivity in leaves was significantly higher in winter and spring and lower in summer. Since airborne or fallout 7 Be particles stay on the upper face of leaves, the deposited amount depended on the surface area per weight of leaves particularly for evergreen trees. Because the 7 Be amount in leaves depended on the fallout capturing ability of leafs superficial skin as well as the cleaning effect of rain and the like, the radioactivity on the surface can change depending on the surface condition of leaves even in the case the levels of 7 Be fallout stayed the same. (author)

  15. The relationship between tree growth patterns and likelihood of mortality: A study of two tree species in the Sierra Nevada

    Science.gov (United States)

    Das, A.J.; Battles, J.J.; Stephenson, N.L.; van Mantgem, P.J.

    2007-01-01

    We examined mortality of Abies concolor (Gord. & Glend.) Lindl. (white fir) and Pinus lambertiana Dougl. (sugar pine) by developing logistic models using three growth indices obtained from tree rings: average growth, growth trend, and count of abrupt growth declines. For P. lambertiana, models with average growth, growth trend, and count of abrupt declines improved overall prediction (78.6% dead trees correctly classified, 83.7% live trees correctly classified) compared with a model with average recent growth alone (69.6% dead trees correctly classified, 67.3% live trees correctly classified). For A. concolor, counts of abrupt declines and longer time intervals improved overall classification (trees with DBH ???20 cm: 78.9% dead trees correctly classified and 76.7% live trees correctly classified vs. 64.9% dead trees correctly classified and 77.9% live trees correctly classified; trees with DBH <20 cm: 71.6% dead trees correctly classified and 71.0% live trees correctly classified vs. 67.2% dead trees correctly classified and 66.7% live trees correctly classified). In general, count of abrupt declines improved live-tree classification. External validation of A. concolor models showed that they functioned well at stands not used in model development, and the development of size-specific models demonstrated important differences in mortality risk between understory and canopy trees. Population-level mortality-risk models were developed for A. concolor and generated realistic mortality rates at two sites. Our results support the contention that a more comprehensive use of the growth record yields a more robust assessment of mortality risk. ?? 2007 NRC.

  16. BAYESIAN WAVELET-BASED CURVE CLASSIFICATION VIA DISCRIMINANT ANALYSIS WITH MARKOV RANDOM TREE PRIORS

    Science.gov (United States)

    Stingo, Francesco C.; Vannucci, Marina; Downey, Gerard

    2014-01-01

    Discriminant analysis is an effective tool for the classification of experimental units into groups. When the number of variables is much larger than the number of observations it is necessary to include a dimension reduction procedure into the inferential process. Here we present a typical example from chemometrics that deals with the classification of different types of food into species via near infrared spectroscopy. We take a nonparametric approach by modeling the functional predictors via wavelet transforms and then apply discriminant analysis in the wavelet domain. We consider a Bayesian conjugate normal discriminant model, either linear or quadratic, that avoids independence assumptions among the wavelet coefficients. We introduce latent binary indicators for the selection of the discriminatory wavelet coefficients and propose prior formulations that use Markov random tree (MRT) priors to map scale-location connections among wavelets coefficients. We conduct posterior inference via MCMC methods, we show performances on our case study on food authenticity and compare results to several other procedures.. PMID:24761126

  17. Architecture of Iberian canopy tree species in relation to wood density, shade tolerance and climate

    NARCIS (Netherlands)

    Poorter, L.; Lianes, E.; Moreno-de las Heras, M.; Zavala, M.A.

    2012-01-01

    Tree architecture has important consequences for tree performance as it determines resource capture, mechanical stability and dominance over competitors. We analyzed architectural relationships between stem and crown dimensions for 13 dominant Iberian canopy tree species belonging to the Pinaceae

  18. Comparison of Naive Bayes and Decision Tree on Feature Selection Using Genetic Algorithm for Classification Problem

    Science.gov (United States)

    Rahmadani, S.; Dongoran, A.; Zarlis, M.; Zakarias

    2018-03-01

    This paper discusses the problem of feature selection using genetic algorithms on a dataset for classification problems. The classification model used is the decicion tree (DT), and Naive Bayes. In this paper we will discuss how the Naive Bayes and Decision Tree models to overcome the classification problem in the dataset, where the dataset feature is selectively selected using GA. Then both models compared their performance, whether there is an increase in accuracy or not. From the results obtained shows an increase in accuracy if the feature selection using GA. The proposed model is referred to as GADT (GA-Decision Tree) and GANB (GA-Naive Bayes). The data sets tested in this paper are taken from the UCI Machine Learning repository.

  19. A modified decision tree algorithm based on genetic algorithm for mobile user classification problem.

    Science.gov (United States)

    Liu, Dong-sheng; Fan, Shu-jiang

    2014-01-01

    In order to offer mobile customers better service, we should classify the mobile user firstly. Aimed at the limitations of previous classification methods, this paper puts forward a modified decision tree algorithm for mobile user classification, which introduced genetic algorithm to optimize the results of the decision tree algorithm. We also take the context information as a classification attributes for the mobile user and we classify the context into public context and private context classes. Then we analyze the processes and operators of the algorithm. At last, we make an experiment on the mobile user with the algorithm, we can classify the mobile user into Basic service user, E-service user, Plus service user, and Total service user classes and we can also get some rules about the mobile user. Compared to C4.5 decision tree algorithm and SVM algorithm, the algorithm we proposed in this paper has higher accuracy and more simplicity.

  20. Mapping Species Composition of Forests and Tree Plantations in Northeastern Costa Rica with an Integration of Hyperspectral and Multitemporal Landsat Imagery

    Science.gov (United States)

    Fagan, Matthew E.; Defries, Ruth S.; Sesnie, Steven E.; Arroyo-Mora, J. Pablo; Soto, Carlomagno; Singh, Aditya; Townsend, Philip A.; Chazdon, Robin L.

    2015-01-01

    An efficient means to map tree plantations is needed to detect tropical land use change and evaluate reforestation projects. To analyze recent tree plantation expansion in northeastern Costa Rica, we examined the potential of combining moderate-resolution hyperspectral imagery (2005 HyMap mosaic) with multitemporal, multispectral data (Landsat) to accurately classify (1) general forest types and (2) tree plantations by species composition. Following a linear discriminant analysis to reduce data dimensionality, we compared four Random Forest classification models: hyperspectral data (HD) alone; HD plus interannual spectral metrics; HD plus a multitemporal forest regrowth classification; and all three models combined. The fourth, combined model achieved overall accuracy of 88.5%. Adding multitemporal data significantly improved classification accuracy (p less than 0.0001) of all forest types, although the effect on tree plantation accuracy was modest. The hyperspectral data alone classified six species of tree plantations with 75% to 93% producer's accuracy; adding multitemporal spectral data increased accuracy only for two species with dense canopies. Non-native tree species had higher classification accuracy overall and made up the majority of tree plantations in this landscape. Our results indicate that combining occasionally acquired hyperspectral data with widely available multitemporal satellite imagery enhances mapping and monitoring of reforestation in tropical landscapes.

  1. Method for estimating potential tree-grade distributions for northeastern forest species

    Science.gov (United States)

    Daniel A. Yaussy; Daniel A. Yaussy

    1993-01-01

    Generalized logistic regression was used to distribute trees into four potential tree grades for 20 northeastern species groups. The potential tree grade is defined as the tree grade based on the length and amount of clear cuttings and defects only, disregarding minimum grading diameter. The algorithms described use site index and tree diameter as the predictive...

  2. Nitrogen fixation in four dryland tree species in central Chile

    International Nuclear Information System (INIS)

    Ovalle, C.; Arredondo, S.; Aronson, J.; Longeri, L.; Avendano, J.

    1998-01-01

    Results are presented from a 5-year experiment using 15 N-enriched fertilizer to determine N 2 fixation in four tree species on degraded soils in a Mediterranean-climate region of central Chile in which there are 5 months of drought. Species tested included three slow-growing but long-lived savannah trees native to southers South America, (acacia caven, Prosopic alba and P. chilensis; Mimosoideae), and Tagasaste (Chamaecytisus proliferus ssp. palmensis; Papilonoideae), a fast-growing but medium-lived tree from the Canary Islands. Tagasaste produced four- to twenty-fold more biomass than the other species, but showed declining N 2 fixation and biomass accumulation during the 5th year, corresponding to the juvenile-to-adult developmental transition. Nitrogen content was significantly higher in Tagasaste and Acacia caven than in the other species. The data revealed inter-specific differences in resource allocation and phenology of N 2 fixation rarely detailed for woody plants in dryland regions. (author)

  3. EVALUATION OF DECISION TREE CLASSIFICATION ACCURACY TO MAP LAND COVER IN CAPIXABA, ACRE

    Directory of Open Access Journals (Sweden)

    Symone Maria de Melo Figueiredo

    2006-03-01

    Full Text Available This study evaluated the accuracy of mapping land cover in Capixaba, state of Acre, Brazil, using decision trees. Elevenattributes were used to build the decision trees: TM Landsat datafrom bands 1, 2, 3, 4, 5, and 7; fraction images derived from linearspectral unmixing; and the normalized difference vegetation index (NDVI. The Kappa values were greater than 0,83, producingexcellent classification results and demonstrating that the technique is promising for mapping land cover in the study area.

  4. Impact of gene family evolutionary histories on phylogenetic species tree inference by gene tree parsimony.

    Science.gov (United States)

    Shi, Tao

    2016-03-01

    Complicated history of gene duplication and loss brings challenge to molecular phylogenetic inference, especially in deep phylogenies. However, phylogenomic approaches, such as gene tree parsimony (GTP), show advantage over some other approaches in its ability to use gene families with duplications. GTP searches the 'optimal' species tree by minimizing the total cost of biological events such as duplications, but accuracy of GTP and phylogenetic signal in the context of different gene families with distinct histories of duplication and loss are unclear. To evaluate how different evolutionary properties of different gene families can impact on species tree inference, 3900 gene families from seven angiosperms encompassing a wide range of gene content, lineage-specific expansions and contractions were analyzed. It was found that the gene content and total duplication number in a gene family strongly influence species tree inference accuracy, with the highest accuracy achieved at either very low or very high gene content (or duplication number) and lowest accuracy centered in intermediate gene content (or duplication number), as the relationship can fit a binomial regression. Besides, for gene families of similar level of average gene content, those with relatively higher lineage-specific expansion or duplication rates tend to show lower accuracy. Additional correlation tests support that high accuracy for those gene families with large gene content may rely on abundant ancestral copies to provide many subtrees to resolve conflicts, whereas high accuracy for single or low copy gene families are just subject to sequence substitution per se. Very low accuracy reached by gene families of intermediate gene content or duplication number can be due to insufficient subtrees to resolve the conflicts from loss of alternative copies. As these evolutionary properties can significantly influence species tree accuracy, I discussed the potential weighting of the duplication cost by

  5. Widespread Discordance of Gene Trees with Species Tree inDrosophila: Evidence for Incomplete Lineage Sorting

    Energy Technology Data Exchange (ETDEWEB)

    Pollard, Daniel A.; Iyer, Venky N.; Moses, Alan M.; Eisen,Michael B.

    2006-08-28

    The phylogenetic relationship of the now fully sequencedspecies Drosophila erecta and D. yakuba with respect to the D.melanogaster species complex has been a subject of controversy. All threepossible groupings of the species have been reported in the past, thoughrecent multi-gene studies suggest that D. erecta and D. yakuba are sisterspecies. Using the whole genomes of each of these species as well as thefour other fully sequenced species in the subgenus Sophophora, we set outto investigate the placement of D. erecta and D. yakuba in the D.melanogaster species group and to understand the cause of the pastincongruence. Though we find that the phylogeny grouping D. erecta and D.yakuba together is the best supported, we also find widespreadincongruence in nucleotide and amino acid substitutions, insertions anddeletions, and gene trees. The time inferred to span the two keyspeciation events is short enough that under the coalescent model, theincongruence could be the result of incomplete lineage sorting.Consistent with the lineage-sorting hypothesis, substitutions supportingthe same tree were spatially clustered. Support for the different treeswas found to be linked to recombination such that adjacent genes supportthe same tree most often in regions of low recombination andsubstitutions supporting the same tree are most enriched roughly on thesame scale as linkage disequilibrium, also consistent with lineagesorting. The incongruence was found to be statistically significant androbust to model and species choice. No systematic biases were found. Weconclude that phylogenetic incongruence in the D. melanogaster speciescomplex is the result, at least in part, of incomplete lineage sorting.Incomplete lineage sorting will likely cause phylogenetic incongruence inmany comparative genomics datasets. Methods to infer the correct speciestree, the history of every base in the genome, and comparative methodsthat control for and/or utilize this information will be

  6. Ensemble of randomized soft decision trees for robust classification

    Indian Academy of Sciences (India)

    G KISHOR KUMAR

    large volumes of data by applying data analysis and discov- ery algorithms [1, 2]. Classification, a major data mining functionality, is a supervised learning method where the example set called the training set is used to classify the given query data item into one of the predefined classes, where a classifier derived from the ...

  7. Transferability of decision trees for land cover classification in a ...

    African Journals Online (AJOL)

    GChandler

    heterogeneous, as geographical complexity can have a negative effect on the spectral separability of .... environment. The 30m resolution imagery was pansharpened to 15m, while the two thermal bands .... Slope gradient and aspect values were calculated and incorporated into the classification as additional features. 4.

  8. Iqpc 2015 Track: Tree Separation and Classification in Mobile Mapping LIDAR Data

    Science.gov (United States)

    Gorte, B.; Oude Elberink, S.; Sirmacek, B.; Wang, J.

    2015-08-01

    The European FP7 project IQmulus yearly organizes several processing contests, where submissions are requested for novel algorithms for point cloud and other big geodata processing. This paper describes the set-up and execution of a contest having the purpose to evaluate state-of-the-art algorithms for Mobile Mapping System point clouds, in order to detect and identify (individual) trees. By the nature of MMS these are trees in the vicinity of the road network (rather than in forests). Therefore, part of the challenge is distinguishing between trees and other objects, such as buildings, street furniture, cars etc. Three submitted segmentation and classification algorithms are thus evaluated.

  9. Methodology to evaluate the insecticide potential of forest tree species

    International Nuclear Information System (INIS)

    Morales Soto, Leon; Garcia P, Carlos Mario

    2000-01-01

    The flora diversity of Colombia has an enormous potential in the rational use of its forest resources. Trees with biocidal effects to control pests and diseases need to be investigated. The objective of this research was to develop a methodology with low costs, easy application and quick results. The methodology employed was as follows: selection of tree species based on bibliography, ancestral reports and personal observations. The process was as follows: field collection of plants, preparation of plants extracts and test with Artemia salina Leach to detect biological activity of the extracts using LC50. Bioassays with those extract more promising (LC50 less than 1000 ppm) Determination of active compounds. The methodology was employed with 5 forest tree species: guarea guidonia (L) Sleumer and trichia hirta L. (Meliaceae), Machaerium Moritzianum Benth. (Fabaceae), Swinglea glutinosa Merrill (rutaceae) and Mammea americana L. (Clusiaceae). Using Artemia salina Leach as indicator of biocidal potential, two species were selected as the most promising, those were: Swinglea glutinosa Merril and Machaerium moritzianum Benth. In addition bioassays were made to evaluate fagoinhibition on Atta cephalotes (L.) (Hym: Formicidae) and control of Alconeura. This methodology is recommended for this kind of research

  10. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux.

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with ( Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora , and Eucalyptus grandis × urophylla ) and without ( Castanopsis fissa, Schima superba , and Acacia auriculiformis ) photosynthetic stems, and the sap flux ( J s ) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the F v / F m (Maximum photochemical quantum yield of PSII) and Φ PSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that J s,d (daytime sap flux) and J s,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (Slope SMA = 2.680) than in non-photosynthetic stems species (Slope SMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  11. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Science.gov (United States)

    Chen, Xia; Gao, Jianguo; Zhao, Ping; McCarthy, Heather R.; Zhu, Liwei; Ni, Guangyan; Ouyang, Lei

    2018-01-01

    An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla) and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis) photosynthetic stems, and the sap flux (Js) and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII) and ΦPSII (effective photochemical quantum yield of PSII) values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux) and Js,n (nighttime sap flux) of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680) than in non-photosynthetic stems species (SlopeSMA = 1.943). These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis. PMID:29416547

  12. Tree Species with Photosynthetic Stems Have Greater Nighttime Sap Flux

    Directory of Open Access Journals (Sweden)

    Xia Chen

    2018-01-01

    Full Text Available An increasing body of evidence has shown that nighttime sap flux occurs in most plants, but the physiological implications and regulatory mechanism are poorly known. The significance of corticular photosynthesis has received much attention during the last decade, however, the knowledge of the relationship between corticular photosynthesis and nocturnal stem sap flow is limited at present. In this study, we divided seven tree species into two groups according to different photosynthetic capabilities: trees of species with (Castanopsis hystrix, Michelia macclurei, Eucalyptus citriodora, and Eucalyptus grandis × urophylla and without (Castanopsis fissa, Schima superba, and Acacia auriculiformis photosynthetic stems, and the sap flux (Js and chlorophyll fluorescence parameters for these species were measured. One-way ANOVA analysis showed that the Fv/Fm (Maximum photochemical quantum yield of PSII and ΦPSII (effective photochemical quantum yield of PSII values were lower in non-photosynthetic stem species compared to photosynthetic stem species. The linear regression analysis showed that Js,d (daytime sap flux and Js,n (nighttime sap flux of non-photosynthetic stem species was 87.7 and 60.9% of the stem photosynthetic species. Furthermore, for a given daytime transpiration water loss, total nighttime sap flux was higher in species with photosynthetic stems (SlopeSMA = 2.680 than in non-photosynthetic stems species (SlopeSMA = 1.943. These results mean that stem corticular photosynthesis has a possible effect on the nighttime water flow, highlighting the important eco-physiological relationship between nighttime sap flux and corticular photosynthesis.

  13. ON THE USE OF SHORTWAVE INFRARED FOR TREE SPECIES DISCRIMINATION IN TROPICAL SEMIDECIDUOUS FOREST

    Directory of Open Access Journals (Sweden)

    M. P. Ferreira

    2015-08-01

    Full Text Available Tree species mapping in tropical forests provides valuable insights for forest managers. Keystone species can be located for collection of seeds for forest restoration, reducing fieldwork costs. However, mapping of tree species in tropical forests using remote sensing data is a challenge due to high floristic and spectral diversity. Little is known about the use of different spectral regions as most of studies performed so far used visible/near-infrared (390-1000 nm features. In this paper we show the contribution of shortwave infrared (SWIR, 1045-2395 nm for tree species discrimination in a tropical semideciduous forest. Using high-resolution hyperspectral data we also simulated WorldView-3 (WV-3 multispectral bands for classification purposes. Three machine learning methods were tested to discriminate species at the pixel-level: Linear Discriminant Analysis (LDA, Support Vector Machines with Linear (L-SVM and Radial Basis Function (RBF-SVM kernels, and Random Forest (RF. Experiments were performed using all and selected features from the VNIR individually and combined with SWIR. Feature selection was applied to evaluate the effects of dimensionality reduction and identify potential wavelengths that may optimize species discrimination. Using VNIR hyperspectral bands, RBF-SVM achieved the highest average accuracy (77.4%. Inclusion of the SWIR increased accuracy to 85% with LDA. The same pattern was also observed when WV-3 simulated channels were used to classify the species. The VNIR bands provided and accuracy of 64.2% for LDA, which was increased to 79.8 % using the new SWIR bands that are operationally available in this platform. Results show that incorporating SWIR bands increased significantly average accuracy for both the hyperspectral data and WorldView-3 simulated bands.

  14. On the Use of Shortwave Infrared for Tree Species Discrimination in Tropical Semideciduous Forest

    Science.gov (United States)

    Ferreira, M. P.; Zortea, M.; Zanotta, D. C.; Féret, J. B.; Shimabukuro, Y. E.; Souza Filho, C. R.

    2015-08-01

    Tree species mapping in tropical forests provides valuable insights for forest managers. Keystone species can be located for collection of seeds for forest restoration, reducing fieldwork costs. However, mapping of tree species in tropical forests using remote sensing data is a challenge due to high floristic and spectral diversity. Little is known about the use of different spectral regions as most of studies performed so far used visible/near-infrared (390-1000 nm) features. In this paper we show the contribution of shortwave infrared (SWIR, 1045-2395 nm) for tree species discrimination in a tropical semideciduous forest. Using high-resolution hyperspectral data we also simulated WorldView-3 (WV-3) multispectral bands for classification purposes. Three machine learning methods were tested to discriminate species at the pixel-level: Linear Discriminant Analysis (LDA), Support Vector Machines with Linear (L-SVM) and Radial Basis Function (RBF-SVM) kernels, and Random Forest (RF). Experiments were performed using all and selected features from the VNIR individually and combined with SWIR. Feature selection was applied to evaluate the effects of dimensionality reduction and identify potential wavelengths that may optimize species discrimination. Using VNIR hyperspectral bands, RBF-SVM achieved the highest average accuracy (77.4%). Inclusion of the SWIR increased accuracy to 85% with LDA. The same pattern was also observed when WV-3 simulated channels were used to classify the species. The VNIR bands provided and accuracy of 64.2% for LDA, which was increased to 79.8 % using the new SWIR bands that are operationally available in this platform. Results show that incorporating SWIR bands increased significantly average accuracy for both the hyperspectral data and WorldView-3 simulated bands.

  15. Management and conservation of tree squirrels: the importance of endemism, species richness, and forest condition

    Science.gov (United States)

    John L. Koprowski

    2005-01-01

    Tree squirrels are excellent indicators of forest health yet the taxon is understudied. Most tree squirrels in the Holarctic Region are imperiled with some level of legal protection. The Madrean Archipelago is the epicenter for tree squirrel diversity in North America with 5 endemic species and 2 introduced species. Most species of the region are poorly studied in...

  16. Tree species migration studies in the White Mountains of New Hampshire

    Science.gov (United States)

    William B. Leak; Mariko. Yamasaki

    2012-01-01

    The movement of tree species in either latitude or elevation has attracted increased recent attention due to growing national/international concerns over climate change. However, studies on tree species movements began in the early 1970s in the White Mountains of New Hampshire, mostly due to ecological interests in the episodic behavior of upper-elevation tree species...

  17. Nitrous oxide fluxes from forest floor, tree stems and canopies of boreal tree species during spring

    Science.gov (United States)

    Haikarainen, Iikka; Halmeenmäki, Elisa; Machacova, Katerina; Pihlatie, Mari

    2017-04-01

    Boreal forests are considered as small sources of atmospheric nitrous oxide (N2O) due to microbial N2O production in the soils. Recent evidence shows that trees may play an important role in N2O exchange of forest ecosystems by offering pathways for soil produced N2O to the atmosphere. To confirm magnitude, variability and the origin of the tree mediated N2O emissions more research is needed, especially in boreal forests which have been in a minority in such investigation. We measured forest floor, tree stem and shoot N2O exchange of three boreal tree species at the beginning of the growing season (13.4.-13.6.2015) at SMEAR II station in Hyytiälä, located in Southern Finland (61˚ 51´N, 24˚ 17´E, 181 a.s.l.). The fluxes were measured in silver birch (Betula pendula), downy birch (B. pubescens) and Norway spruce (Picea abies) on two sites with differing soil type and characteristics (paludified and mineral soil), vegetation cover and forest structure. The aim was to study the vertical profile of N2O fluxes at stem level and to observe temporal changes in N2O fluxes over the beginning of the growing season. The N2O exchange was determined using the static chamber technique and gas chromatographic analyses. Scaffold towers were used for measurements at multiple stem heights and at the canopy level. Overall, the N2O fluxes from the forest floor and trees at both sites were very small and close to the detection limit. The measured trees mainly emitted N2O from their stems and shoots, while the forest floor acted as a sink of N2O at the paludified site and as a small source of N2O at the mineral soil site. Stem emissions from all the trees at both sites were on average below 0.5 μg N2O m-2 of stem area h-1, and the shoot emissions varied between 0.2 and 0.5 ng N2O m-2 g-1 dry biomass. When the N2O fluxes were scaled up to the whole forest ecosystem, based on the tree biomass and stand density, the N2O emissions from birch and spruce trees at the paludified site

  18. VEGETATIVE MORPHOLOGY FOR SPECIES IDENTIFICATION OF TROPICAL TREES: FAMILY DISTRIBUTION

    Directory of Open Access Journals (Sweden)

    Peter Hargreaves

    2006-03-01

    Full Text Available Tree specimens from the ESAL herbarium of the Universidade Federal de Lavras, Minas Gerais, Brazil, were describedby vegetative characteristics using CARipé, a Microsoft Access database application specially developed for this study. Only onespecimen per species was usually described. Thus, 2 observers described 567 herbarium species as a base to test methods ofidentification as part of a larger study. The present work formed part of that study and provides information on the distribution of22 vegetative characters among 16 families having 10 or more species described. The characters are discussed. The study foundmarked differences, even discontinuities, of distributions of characters between those families. Therefore it should be possible toincorporate phylogenetic relationships into the identification process.

  19. BIOMASS ALLOMETRY FOR TREE SPECIES OF NORTHWESTERN MEXICO

    Directory of Open Access Journals (Sweden)

    Jose de Jesus Navar Chaidez

    2010-02-01

    Full Text Available Tree biomass plays a key role in sustainable forest management since it is the basis for estimating stocks and fluxes of several biogeochemical elements, the amount of energy stored in biomass, and other conventional goods and services. The most common mathematical model takes the form of the logarithmic equation where biomass is estimated as a function of diameter at breast height with the scaling coefficients a and B. In this study, I answered the following questions related with the allometric model: a Is it important to develop biomass equations at the species scale or at the site-specific scale?; b What is the least number of data required for fitting an allometric equation?; and c Is it possible to develop allometric equations with few or null biomass data without loosing accuracy in biomass estimation? I employed a biomass data source collected in northwestern Mexico for nine different forest species, collected in six different sites from southern Chihuahua to southern Durango, Mexico to answer these questions. Results showed that by fitting site-specific biomass equations there is a net gain of 5% and close to 20% in the coefficient of determination and the standard error, respectively in contrast to fitting an equation at the species level. The minimum number of observations needed is 60 harvested trees to calculate parameters with the least variance and with high consistency. I present two alternate restrictive methods of biomass estimation: a restricting the number of harvested trees to three to fit equations available in the scientific literature and b a non-destructive model to fit equations with the same level of accuracy that display conventional allometric models. Both methods estimate biomass within the confidence bounds imposed on the B coefficient of the conventional allometric model.

  20. Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate

    OpenAIRE

    FORRESTER DAVID; TACHAUER ELOISE; ANNIGHOEFER PETER; BARBEITO IGNACIO; PRETZSCH HANS; RUIZ-PEINADO RICARDO; STARK HENDRIK; VACCHIANO GIORGIO; ZLATANOV TZVETAN; CHAKRABORTY TAMALIKA; SAHA SOMID; SILESHI GUDETA W.

    2017-01-01

    Biomass and leaf area equations are often required to assess or model forest productivity, carbon stocks and other ecosystem services. These factors are influenced by climate, age and stand structural attributes including stand density and tree species diversity or species composition. However, such covariates are rarely included in biomass and leaf area equations. We reviewed the literature and built a database of biomass and leaf area equations for 24 European tree species and 3 introduced ...

  1. Multi-test decision tree and its application to microarray data classification.

    Science.gov (United States)

    Czajkowski, Marcin; Grześ, Marek; Kretowski, Marek

    2014-05-01

    The desirable property of tools used to investigate biological data is easy to understand models and predictive decisions. Decision trees are particularly promising in this regard due to their comprehensible nature that resembles the hierarchical process of human decision making. However, existing algorithms for learning decision trees have tendency to underfit gene expression data. The main aim of this work is to improve the performance and stability of decision trees with only a small increase in their complexity. We propose a multi-test decision tree (MTDT); our main contribution is the application of several univariate tests in each non-terminal node of the decision tree. We also search for alternative, lower-ranked features in order to obtain more stable and reliable predictions. Experimental validation was performed on several real-life gene expression datasets. Comparison results with eight classifiers show that MTDT has a statistically significantly higher accuracy than popular decision tree classifiers, and it was highly competitive with ensemble learning algorithms. The proposed solution managed to outperform its baseline algorithm on 14 datasets by an average 6%. A study performed on one of the datasets showed that the discovered genes used in the MTDT classification model are supported by biological evidence in the literature. This paper introduces a new type of decision tree which is more suitable for solving biological problems. MTDTs are relatively easy to analyze and much more powerful in modeling high dimensional microarray data than their popular counterparts. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Resprouting from roots in four Brazilian tree species.

    Science.gov (United States)

    Hayashi, Adriana Hissae; Appezzato-da-Glória, Beatriz

    2009-09-01

    Previous studies pointed out that species richness and high density values within the Leguminosae in Brazilian forest fragments affected by fire could be due, at least partially, to the high incidence of root sprouting in this family. However, there are few studies of the factors that induce root sprouting in woody plants after disturbance. We investigated the bud formation on root cuttings, and considered a man-made disturbance that isolates the root from the shoot apical dominance of three Leguminosae (Bauhinia forficata Link., Centrolobium tomentosum Guill. ex Benth, and Inga laurina (Sw.) Willd) and one Rutaceae (Esenbeckia febrifuga (St. Hil.) Juss. ex Mart.). All these species resprout frequently after fire. We also attempted to induce bud formation on root systems by removing the main trunk, girdling or sectioning the shallow lateral roots from forest tree species Esenbeckia febrifuga and Hymenaea courbaril L. We identified the origin of shoot primordia and their early development by fixing the samples in Karnovsky solution, dehydrating in ethyl alcohol series and embedding in plastic resin. Serial sections were cut on a rotary microtome and stained with toluidine blue O. Permanent slides were mounted in synthetic resin. We observed different modes of bud origin on root cuttings: close to the vascular cambium (C. tomentosum), from the callus (B. forficata and E. febrifuga) and from the phloematic parenchyma proliferation (I. laurina). Fragments of B. forficata root bark were also capable of forming reparative buds from healing phellogen formed in callus in the bark's inner side. In the attempt of bud induction on root systems, Hymenaea courbaril did not respond to any of the induction tests, probably because of plant age. However, Esenbeckia febrifuga roots formed suckers when the main trunk was removed or their roots were sectioned and isolated from the original plant. We experimentally demonstrated the ability of four tree species to resprout from roots

  3. Prospective identification of adolescent suicide ideation using classification tree analysis: Models for community-based screening.

    Science.gov (United States)

    Hill, Ryan M; Oosterhoff, Benjamin; Kaplow, Julie B

    2017-07-01

    Although a large number of risk markers for suicide ideation have been identified, little guidance has been provided to prospectively identify adolescents at risk for suicide ideation within community settings. The current study addressed this gap in the literature by utilizing classification tree analysis (CTA) to provide a decision-making model for screening adolescents at risk for suicide ideation. Participants were N = 4,799 youth (Mage = 16.15 years, SD = 1.63) who completed both Waves 1 and 2 of the National Longitudinal Study of Adolescent to Adult Health. CTA was used to generate a series of decision rules for identifying adolescents at risk for reporting suicide ideation at Wave 2. Findings revealed 3 distinct solutions with varying sensitivity and specificity for identifying adolescents who reported suicide ideation. Sensitivity of the classification trees ranged from 44.6% to 77.6%. The tree with greatest specificity and lowest sensitivity was based on a history of suicide ideation. The tree with moderate sensitivity and high specificity was based on depressive symptoms, suicide attempts or suicide among family and friends, and social support. The most sensitive but least specific tree utilized these factors and gender, ethnicity, hours of sleep, school-related factors, and future orientation. These classification trees offer community organizations options for instituting large-scale screenings for suicide ideation risk depending on the available resources and modality of services to be provided. This study provides a theoretically and empirically driven model for prospectively identifying adolescents at risk for suicide ideation and has implications for preventive interventions among at-risk youth. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  4. Architecture of 53 rain forest tree species differing in adult stature and shade tolerance

    NARCIS (Netherlands)

    Poorter, L.; Bongers, F.J.J.M.; Sterck, F.J.; Wöll, H.

    2003-01-01

    Tree architecture determines a tree's light capture, stability, and efficiency of crown growth. The hypothesis that light demand and adult stature of tree species within a community, independently of each other, determine species' architectural traits was tested by comparing 53 Liberian rain forest

  5. SVDquest: Improving SVDquartets species tree estimation using exact optimization within a constrained search space.

    Science.gov (United States)

    Vachaspati, Pranjal; Warnow, Tandy

    2018-07-01

    Species tree estimation from multi-locus datasets is complicated by processes such as incomplete lineage sorting (ILS) that result in different loci having different trees. Summary methods, which estimate species trees by combining gene trees, are popular but their accuracy is impaired by gene tree estimation error. Other approaches have been developed that only use the site patterns to estimate the species tree, and so are not impacted by gene tree estimation issues. In particular, PAUP ∗ provides a method in which SVDquartets is used to compute a set Q of quartet trees (i.e., trees on four leaves), and then a heuristic search is used to combine the quartet trees into a species tree T, seeking to maximize the number of quartet trees in Q that agree with T. The PAUP ∗ method based on SVDquartets (henceforth referred to as SVDquartets + PAUP ∗ ) is increasingly used in phylogenomic studies due to its ability to reconstruct species trees without needing to estimate accurate gene trees. We present SVDquest ∗ , a new method for constructing species trees using site patterns that is guaranteed to produce species trees that satisfy at least as many quartet trees as SVDquartets + PAUP ∗ . We show that SVDquest ∗ is competitive with ASTRAL and ASTRID (two leading summary methods) in terms of topological accuracy, and tends to be more accurate than ASTRAL and ASTRID under conditions with relatively high gene tree estimation error. SVDquest ∗ is available in open source form at https://github.com/pranjalv123/SVDquest. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. GENERATION OF 2D LAND COVER MAPS FOR URBAN AREAS USING DECISION TREE CLASSIFICATION

    DEFF Research Database (Denmark)

    Höhle, Joachim

    2014-01-01

    image analysis techniques. The proposed methodology is described step by step. The classification, assessment, and refinement is carried out by the open source software “R”; the generation of the dense and accurate digital surface model by the “Match-T DSM” program of the Trimble Company. A practical...... like buildings, roads, grassland, trees, hedges, and walls from such an ‘intelligent’ point cloud. The decision tree is derived from training areas which borders are digitized on top of a false-colour orthoimage. The produced 2D land cover map with six classes is then subsequently refined by using...

  7. Neogene origins and implied warmth tolerance of Amazon tree species.

    Science.gov (United States)

    Dick, Christopher W; Lewis, Simon L; Maslin, Mark; Bermingham, Eldredge

    2012-01-01

    Tropical rain forest has been a persistent feature in South America for at least 55 million years. The future of the contemporary Amazon forest is uncertain, however, as the region is entering conditions with no past analogue, combining rapidly increasing air temperatures, high atmospheric carbon dioxide concentrations, possible extreme droughts, and extensive removal and modification by humans. Given the long-term Cenozoic cooling trend, it is unknown whether Amazon forests can tolerate air temperature increases, with suggestions that lowland forests lack warm-adapted taxa, leading to inevitable species losses. In response to this uncertainty, we posit a simple hypothesis: the older the age of a species prior to the Pleistocene, the warmer the climate it has previously survived, with Pliocene (2.6-5 Ma) and late-Miocene (8-10 Ma) air temperature across Amazonia being similar to 2100 temperature projections under low and high carbon emission scenarios, respectively. Using comparative phylogeographic analyses, we show that 9 of 12 widespread Amazon tree species have Pliocene or earlier lineages (>2.6 Ma), with seven dating from the Miocene (>5.6 Ma) and three >8 Ma. The remarkably old age of these species suggest that Amazon forests passed through warmth similar to 2100 levels and that, in the absence of other major environmental changes, near-term high temperature-induced mass species extinction is unlikely.

  8. Occurrence of Rare Tree and Shrub Species in Hungary

    Directory of Open Access Journals (Sweden)

    BARTHA, Dénes

    2005-01-01

    Full Text Available The Department of Botany has been focusing on investigating rare taxa of theHungarian dendroflora since 1989. The research dealt with nearly 50 species regarding conditions of occurrence, habitat preference, reproduction and possible conservational management up to 2003. In the investigation of species, chorology was of primary importance. Since 1993 occurrence data have been systematically collected. As a first result, CEU grid-maps of 142 species, including all the rare dendrotaxa in Hungary, were published (Bartha – Mátyás 1995 using grid squares of 10' long. × 6' lat. equalling approx. 12 × 11 km. With organizational and methodological experience, focuses have moved to processing, correction and mapping of reference, herbaria and new field records. A detailed evaluation of the distribution of 34 rare species in Hungary was made and published (Bartha et al 1999. The Department of Botany at the University of West Hungary has been project coordinator of ‘Floristic Mapping of Hungary’ since 2001. The present study describes actual distribution maps of 20 rare tree- and shrub species with short analyses of their conditions in Hungary.

  9. Seed storage behavior of forest tree species seeds

    Directory of Open Access Journals (Sweden)

    Marcela Carlota Nery

    2014-09-01

    Full Text Available Seeds of five forest species were classified according to their physiological storage behavior. Seeds of Casearia sylvestris Swart (Salicaceae, Qualea grandiflora Mart. (Vochysiaceae, Guarea kunthiana A. Juss. (Meliaceae, Eremanthus incanus Less. (Asteraceae, Protium heptaphyllum March. (Burseraceae were collected and taken to the laboratory, where they were processed and submitted to both rapid and slow drying, storage and assayed for viability. After physiological classification regarding storage behavior, it was observed that seeds of C. sylvestris and E. incanus presented orthodox behavior. Seeds of G. kunthiana and P. heptaphyllum were classified as recalcitrant and Q. grandiflora as an intermediate, which did not tolerate low moisture content.

  10. Flowering phenology of selected wind pollinated allergenic deciduous tree species

    Directory of Open Access Journals (Sweden)

    Magdalena Kluza-Wieloch

    2012-12-01

    Full Text Available Systematic phenological observations have been carried out in the Dendrological Garden of August Cieszkowski Agricultural University, Park Sołacki, Lasek Golęciński, Przybyszewskiego Street, for two years (2003, 2004. The selected species of deciduous trees, as Betula pendula, Corylus avellana, Platanus x hispanica. There was interdependence between the course of flowering process and weather conditions. Long and frosty winter at the turn of 2002/2003 and subzero mean temperatures in the first quarter of 2003 delayed vegetation. Rapid coming of early spring in the year 2004 accelerate the development of generative organs. Each year spring ground frost during flowering did not inhibit this process. All the investigated tree species are anemophilous and produce large amounts of allergenic pollen grain. They cause allergic reactions throughout the whole period of pollen discharge. Male inflorescences in Corylus avellana, blooming very early, are one of the first plants causing allergic reactions. Betula pendula is the next to bloom, followed by Platanus x hispanica. Observations of phenological phases may provide useful information forecasting the beginning of the period of increased pollen concentration in air.

  11. The complex biogeographic history of a widespread tropical tree species.

    Science.gov (United States)

    Dick, Christopher W; Heuertz, Myriam

    2008-11-01

    Many tropical forest tree species have broad geographic ranges, and fossil records indicate that population disjunctions in some species were established millions of years ago. Here we relate biogeographic history to patterns of population differentiation, mutational and demographic processes in the widespread rainforest tree Symphonia globulifera using ribosomal (ITS) and chloroplast DNA sequences and nuclear microsatellite (nSSR) loci. Fossil records document sweepstakes dispersal origins of Neotropical S. globulifera populations from Africa during the Miocene. Despite historical long-distance gene flow, nSSR differentiation across 13 populations from Costa Rica, Panama, Ecuador (east and west of Andes) and French Guiana was pronounced (F(ST)= 0.14, R(ST)= 0.39, P F(ST)) to the divergences between cis- and trans-Andean populations. Both DNA sequence and nSSR data reflect contrasting demographic histories in lower Mesoamerica and Amazonia. Amazon populations show weak phylogeographic structure and deviation from drift-mutation equilibrium indicating recent population expansion. In Mesoamerica, genetic drift was strong and contributed to marked differentiation among populations. The genetic structure of S. globulifera contains fingerprints of drift-dispersal processes and phylogeographic footprints of geological uplifts and sweepstakes dispersal.

  12. Boron toxicity characteristics of four northern California endemic tree species

    Energy Technology Data Exchange (ETDEWEB)

    Glaubig, B.A.; Bingham, F.T.

    A greenhouse study was undertaken to determine the characteristics of soil B toxicity for four tree species endemic to The Geysers area in northern California: digger pine (Pinus sabiniana Dougl. ex D. Don), California laurel (or, California bay) (Umbellularia californica (Hoo. and Arn. Nutt.)), madrone (Arbutus menziesii Pursh), and bigleaf maple (Acer macrophyllum Pursh). Significant exponential relationships were found between soil B concentration and relative growth, and between tissue B concentration and relative growth for the four species. Significant linear relationships were found between both soil and tissue B concentration and foliar damage for the four species. Foliar damages over 25% of the leaf or needle area on digger pine, California laurel, madrone, and bigleaf maple, respectively, occurred at saturated soil extract concentrations (mmol B/L) of 1.2, 0.4, 0.5, and 0.08. Twenty-five percent foliar damage was associated with leaf or needle tissue concentrations (mmol B/kg) of 115, 100, 50, and 30 for the digger pine, California laurel, madrone, and bigleaf maple, respectively. Growth decrements of 25% occurred at saturated soil extract concentrations (mmol B/L) of 1.6, 0.3, 0.2, 0.5 for the digger pine, California laurel, madrone, and bigleaf maple, respectively. Twenty-five percent growth decrements were associated with leaf or needle tissue concentrations (mmol B/kg) of 140, 100, 20, and 7 for the digger pine, California laurel, madrone, and bigleaf maple, respectively. By comparison with two agronomic crops - cotton (Gossypium hirsutum L.) and cowpea (Vigna unguiculata L.) - the four tree species were placed into one of six B tolerance classes.

  13. Consistency and inconsistency of consensus methods for inferring species trees from gene trees in the presence of ancestral population structure

    Science.gov (United States)

    DeGiorgio, Michael; Rosenberg, Noah A.

    2016-01-01

    In the last few years, several statistically consistent consensus methods for species tree inference have been devised that are robust to the gene tree discordance caused by incomplete lineage sorting in unstructured ancestral populations. One source of gene tree discordance that has only recently been identified as a potential obstacle for phylogenetic inference is ancestral population structure. In this article, we describe a general model of ancestral population structure, and by relying on a single carefully constructed example scenario, we show that the consensus methods Democratic Vote, STEAC, STAR, R* Consensus, Rooted Triple Consensus, Minimize Deep Coalescences, and Majority-Rule Consensus are statistically inconsistent under the model. We find that among the consensus methods evaluated, the only method that is statistically consistent in the presence of ancestral population structure is GLASS/Maximum Tree. We use simulations to evaluate the behavior of the various consensus methods in a model with ancestral population structure, showing that as the number of gene trees increases, estimates on the basis of GLASS/Maximum Tree approach the true species tree topology irrespective of the level of population structure, whereas estimates based on the remaining methods only approach the true species tree topology if the level of structure is low. However, through simulations using species trees both with and without ancestral population structure, we show that GLASS/Maximum Tree performs unusually poorly on gene trees inferred from alignments with little information. This practical limitation of GLASS/Maximum Tree together with the inconsistency of other methods prompts the need for both further testing of additional existing methods and development of novel methods under conditions that incorporate ancestral population structure. PMID:27086043

  14. Potential of tree-ring analysis in a wet tropical forest: A case study on 22 commercial tree species in Central Africa

    NARCIS (Netherlands)

    Groenendijk, P.; Sass, U.G.W.; Bongers, F.; Zuidema, P.A.

    2014-01-01

    Implementing sustainable forest management requires basic information on growth, ages, reproduction and survival of exploited tree species. This information is generally derived from permanent sample plots where individual trees are monitored. Accurately estimating growth rates and especially tree

  15. The natural abundance of 15N in litter and soil profiles under six temperate tree species: N cycling depends on tree species traits and site fertility

    DEFF Research Database (Denmark)

    Callesen, Ingeborg; Nilsson, Lars Ola; Schmidt, Inger Kappel

    2013-01-01

    for these N variables and for the litter δ15N and enrichment factor. Litter from ash and sycamore maple with high N status and low fungal mycelia activity was enriched in 15N (+0.9 delta units) relative to other tree species (European beech, pedunculate oak, lime and Norway spruce) even though the latter...... species leached more nitrate.The δ15N pattern reflected tree species related traits affecting the N cycling as well as site fertility and former land use, and possibly differences in N leaching. The tree species δ15N patterns reflected fractionation caused by uptake of N through mycorrhiza rather than due...

  16. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes

    Science.gov (United States)

    2013-01-01

    Background The extant squamates (>9400 known species of lizards and snakes) are one of the most diverse and conspicuous radiations of terrestrial vertebrates, but no studies have attempted to reconstruct a phylogeny for the group with large-scale taxon sampling. Such an estimate is invaluable for comparative evolutionary studies, and to address their classification. Here, we present the first large-scale phylogenetic estimate for Squamata. Results The estimated phylogeny contains 4161 species, representing all currently recognized families and subfamilies. The analysis is based on up to 12896 base pairs of sequence data per species (average = 2497 bp) from 12 genes, including seven nuclear loci (BDNF, c-mos, NT3, PDC, R35, RAG-1, and RAG-2), and five mitochondrial genes (12S, 16S, cytochrome b, ND2, and ND4). The tree provides important confirmation for recent estimates of higher-level squamate phylogeny based on molecular data (but with more limited taxon sampling), estimates that are very different from previous morphology-based hypotheses. The tree also includes many relationships that differ from previous molecular estimates and many that differ from traditional taxonomy. Conclusions We present a new large-scale phylogeny of squamate reptiles that should be a valuable resource for future comparative studies. We also present a revised classification of squamates at the family and subfamily level to bring the taxonomy more in line with the new phylogenetic hypothesis. This classification includes new, resurrected, and modified subfamilies within gymnophthalmid and scincid lizards, and boid, colubrid, and lamprophiid snakes. PMID:23627680

  17. Modeling time-to-event (survival) data using classification tree analysis.

    Science.gov (United States)

    Linden, Ariel; Yarnold, Paul R

    2017-12-01

    Time to the occurrence of an event is often studied in health research. Survival analysis differs from other designs in that follow-up times for individuals who do not experience the event by the end of the study (called censored) are accounted for in the analysis. Cox regression is the standard method for analysing censored data, but the assumptions required of these models are easily violated. In this paper, we introduce classification tree analysis (CTA) as a flexible alternative for modelling censored data. Classification tree analysis is a "decision-tree"-like classification model that provides parsimonious, transparent (ie, easy to visually display and interpret) decision rules that maximize predictive accuracy, derives exact P values via permutation tests, and evaluates model cross-generalizability. Using empirical data, we identify all statistically valid, reproducible, longitudinally consistent, and cross-generalizable CTA survival models and then compare their predictive accuracy to estimates derived via Cox regression and an unadjusted naïve model. Model performance is assessed using integrated Brier scores and a comparison between estimated survival curves. The Cox regression model best predicts average incidence of the outcome over time, whereas CTA survival models best predict either relatively high, or low, incidence of the outcome over time. Classification tree analysis survival models offer many advantages over Cox regression, such as explicit maximization of predictive accuracy, parsimony, statistical robustness, and transparency. Therefore, researchers interested in accurate prognoses and clear decision rules should consider developing models using the CTA-survival framework. © 2017 John Wiley & Sons, Ltd.

  18. Development of prognostic indicators using Classification And Regression Trees (CART) for survival

    OpenAIRE

    Nunn, Martha E.; Fan, Juanjuan; Su, Xiaogang; McGuire, Michael K.

    2012-01-01

    The development of an accurate prognosis is an integral component of treatment planning in the practice of periodontics. Prior work has evaluated the validity of using various clinical measured parameters for assigning periodontal prognosis as well as for predicting tooth survival and change in clinical conditions over time. We critically review the application of multivariate Classification And Regression Trees (CART) for survival in developing evidence-based periodontal prognostic indicator...

  19. LEAF RESIDUE DECOMPOSITION OF SELECTED ATLANTIC FOREST TREE SPECIES

    Directory of Open Access Journals (Sweden)

    Helga Dias Arato

    2018-02-01

    Full Text Available ABSTRACT Biogeochemical cycling is essential to establish and maintain plant and animal communities. Litter is one of main compartments of this cycle, and the kinetics of leaf decomposition in forest litter depend on the chemical composition and environmental conditions. This study evaluated the effect of leaf composition and environmental conditions on leaf decomposition of native Atlantic Forest trees. The following species were analyzed: Mabea fistulifera Mart., Bauhinia forficata Link., Aegiphila sellowiana Cham., Zeyheria tuberculosa (Vell, Luehea grandiflora Mart. et. Zucc., Croton floribundus Spreng., Trema micrantha (L Blume, Cassia ferruginea (Schrad Schrad ex DC, Senna macranthera (DC ex Collad. H. S. Irwin and Barney and Schinus terebinthifolius Raddi (Anacardiaceae. For each species, litter bags were distributed on and fixed to the soil surface of soil-filled pots (in a greenhouse, or directly to the surface of the same soil type in a natural forest (field. Every 30 days, the dry weight and soil basal respiration in both environments were determined. The cumulative decomposition of leaves varied according to the species, leaf nutrient content and environment. In general, the decomposition rate was lowest for Aegiphila sellowiana and fastest for Bauhinia forficate and Schinus terebinthifolius. This trend was similar under the controlled conditions of a greenhouse and in the field. The selection of species with a differentiated decomposition pattern, suited for different stages of the recovery process, can help improve soil restoration.

  20. Plant species classification using deep convolutional neural network

    DEFF Research Database (Denmark)

    Dyrmann, Mads; Karstoft, Henrik; Midtiby, Henrik Skov

    2016-01-01

    Information on which weed species are present within agricultural fields is important for site specific weed management. This paper presents a method that is capable of recognising plant species in colour images by using a convolutional neural network. The network is built from scratch trained...... and tested on a total of 10,413 images containing 22 weed and crop species at early growth stages. These images originate from six different data sets, which have variations with respect to lighting, resolution, and soil type. This includes images taken under controlled conditions with regard to camera...... stabilisation and illumination, and images shot with hand-held mobile phones in fields with changing lighting conditions and different soil types. For these 22 species, the network is able to achieve a classification accuracy of 86.2%....

  1. A study on crown interception with four dominant tree species: a direct measurement

    Science.gov (United States)

    Xiang Li; Jianzhi Niu; Linus Zhang; Qingfu Xiao; Gregory E. McPherson; Natalie van Doorn; Xinxiao Yu; Baoyuan Xie; Salli Dymond; Jiao Li; Chen Meng; Ziteng Luo

    2016-01-01

    An experiment was conducted to concentrate on the rainfall interception process of individual trees for four common species in Beijing, China, which included needle species (Platycladus orientalis and Pinus tabulaeformis) and broadleaf species (Quercus variabilis and Acer truncatum)....

  2. The hydrological vulnerability of western North American boreal tree species based on ground-based observations of tree mortality

    Science.gov (United States)

    Hember, R. A.; Kurz, W. A.; Coops, N. C.

    2017-12-01

    Several studies indicate that climate change has increased rates of tree mortality, adversely affecting timber supply and carbon storage in western North American boreal forests. Statistical models of tree mortality can play a complimentary role in detecting and diagnosing forest change. Yet, such models struggle to address real-world complexity, including expectations that hydrological vulnerability arises from both drought stress and excess-water stress, and that these effects vary by species, tree size, and competitive status. Here, we describe models that predict annual probability of tree mortality (Pm) of common boreal tree species based on tree height (H), biomass of larger trees (BLT), soil water content (W), reference evapotranspiration (E), and two-way interactions. We show that interactions among H and hydrological variables are consistently significant. Vulnerability to extreme droughts consistently increases as H approaches maximum observed values of each species, while some species additionally show increasing vulnerability at low H. Some species additionally show increasing vulnerability to low W under high BLT, or increasing drought vulnerability under low BLT. These results suggest that vulnerability of trees to increasingly severe droughts depends on the hydraulic efficiency, competitive status, and microclimate of individual trees. Static simulations of Pm across a 1-km grid (i.e., with time-independent inputs of H, BLT, and species composition) indicate complex spatial patterns in the time trends during 1965-2014 and a mean change in Pm of 42 %. Lastly, we discuss how the size-dependence of hydrological vulnerability, in concert with increasingly severe drought events, may shape future responses of stand-level biomass production to continued warming and increasing carbon dioxide concentration in the region.

  3. Plot - level stem volume estimation and tree species discrimination with CASI remote sensing

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Johan; Wallerman, J.; Olsson, Haakan

    1999-10-01

    Spectral data from the Compact Airborne Spectrographic Imager (CASI), with four bands (460-495 nm, 550-580 nm, 660-682 nm, 740-762 nm) acquired from a forest test area (Lat. 60 deg 00` N, Long. 17 deg 18` E), the Kaettboele estate near Uppsala, was analysed together with forest data from a number of field plots. Data from two flight lines, one towards and the other perpendicular to the sun was used. Information about stem volume and species composition from plots with 10-m radius, 138 in the first and 120 in the second flight line, was available. There was a positive correlation (R{sup 2} 0.51-0.53) between stem volume and the inverted radiance for all four bands on plot level. The strong correlation between stem volume and a shadow density measure indicates that shadows explain much of the correlation. For the flight line perpendicular to the sun, the correlation was stronger for the side towards the sun compared to the side away from the sun. In the first flight line, plots with a stem volume > 120 m{sup 3}ha{sup -1} were classified according to the tree species composition (pine, spruce, deciduous trees). Groups were formed based on the classification, and the hypothesis that there was no difference in spectral radiance between these groups was tested. It was possible to separate pine dominated plots from spruce dominated plots. It was also possible to separate spruce dominated plots from spruce dominated plots with a minor portion of pine, but not pine dominated plots from pine dominated plots with a minor portion of spruce. The near-infrared band was the best band for discrimination of tree species 16 refs, 2 figs, 8 tabs

  4. Carbon and nitrogen in forest floor and mineral soil under six common European tree species

    DEFF Research Database (Denmark)

    Vesterdal, Lars; Schmidt, Inger K.; Callesen, Ingeborg

    2007-01-01

    The knowledge of tree species effects on soil C and N pools is scarce, particularly for European deciduous tree species. We studied forest floor and mineral soil carbon and nitrogen under six common European tree species in a common garden design replicated at six sites in Denmark. Three decades...... after planting the six tree species had different profiles in terms of litterfall, forest floor and mineral soil C and N attributes. Three groups were identified: (1) ash, maple and lime, (2) beech and oak, and (3) spruce. There were significant differences in forest floor and soil C and N contents...... and C/N ratios, also among the five deciduous tree species. The influence of tree species was most pronounced in the forest floor, where C and N contents increased in the order ash = lime = maple soil only in some of the sampled soil layers within 30...

  5. Sentiment classification of Roman-Urdu opinions using Naïve Bayesian, Decision Tree and KNN classification techniques

    Directory of Open Access Journals (Sweden)

    Muhammad Bilal

    2016-07-01

    Full Text Available Sentiment mining is a field of text mining to determine the attitude of people about a particular product, topic, politician in newsgroup posts, review sites, comments on facebook posts twitter, etc. There are many issues involved in opinion mining. One important issue is that opinions could be in different languages (English, Urdu, Arabic, etc.. To tackle each language according to its orientation is a challenging task. Most of the research work in sentiment mining has been done in English language. Currently, limited research is being carried out on sentiment classification of other languages like Arabic, Italian, Urdu and Hindi. In this paper, three classification models are used for text classification using Waikato Environment for Knowledge Analysis (WEKA. Opinions written in Roman-Urdu and English are extracted from a blog. These extracted opinions are documented in text files to prepare a training dataset containing 150 positive and 150 negative opinions, as labeled examples. Testing data set is supplied to three different models and the results in each case are analyzed. The results show that Naïve Bayesian outperformed Decision Tree and KNN in terms of more accuracy, precision, recall and F-measure.

  6. Effect of liquid nitrogen storage on seed germination of 51 tree species

    Science.gov (United States)

    Jill R. Barbour; Bernard R. Parresol

    2003-01-01

    Two liquid nitrogen storage experiments were performed on 51 tree species. In experiment 1, seeds of 9western tree species were placed in a liquid nitrogen tank for 3 time periods: 24 hours, 4 weeks, and 222 days. A corresponding control sample accompanied each treatment. For three species,Calocedrus decurrens, Pinus jefferyi, and ...

  7. In vitro propagation of tropical hardwood tree species — A review (2001-2011)

    Science.gov (United States)

    Paula M. Pijut; Rochelle R. Beasley; Shaneka S. Lawson; Kaitlin J. Palla; Micah E. Stevens; Ying. Wang

    2012-01-01

    Tropical hardwood tree species are important economically and ecologically, and play a significant role in the biodiversity of plant and animal species within an ecosystem. There are over 600 species of tropical timbers in the world, many of which are commercially valuable in the international trade of plywood, roundwood, sawnwood, and veneer. Many of these tree...

  8. Status of non-cocoa tree species in cocoa multistrata systems of ...

    African Journals Online (AJOL)

    Investigations to assess the status of non-cocoa tree species in the cocoa systems of southern Cameroon were carried out in four contrasting locations, distinguished by ecology, population density and land use intensity. One set of ... farms where they were found showed that most species were fairly rare. Tree species ...

  9. Effects of tree species on soil properties in a forest of the Northeastern United States

    NARCIS (Netherlands)

    Dijkstra, F.A.

    2001-01-01

    Large differences in soil pH and available Ca in the surface soil exist among tree species growing in a mixed hardwood forest in northwestern Connecticut. The observed association between tree species and specific soil chemical properties within mixed-species stands implies that changes in

  10. Branch-and-bound approach for parsimonious inference of a species tree from a set of gene family trees.

    Science.gov (United States)

    Doyon, Jean-Philippe; Chauve, Cedric

    2011-01-01

    We describe a Branch-and-Bound algorithm for computing a parsimonious species tree, given a set of gene family trees. Our algorithm can consider three cost measures: number of gene duplications, number of gene losses, and both combined. Moreover, to cope with intrinsic limitations of Branch-and-Bound algorithms for species trees inference regarding the number of taxa that can be considered, our algorithm can naturally take into account predefined relationships between sets of taxa. We test our algorithm on a dataset of eukaryotic gene families spanning 29 taxa.

  11. SECTION-BASED TREE SPECIES IDENTIFICATION USING AIRBORNE LIDAR POINT CLOUD

    Directory of Open Access Journals (Sweden)

    C. Yao

    2017-09-01

    Full Text Available The application of LiDAR data in forestry initially focused on mapping forest community, particularly and primarily intended for largescale forest management and planning. Then with the smaller footprint and higher sampling density LiDAR data available, detecting individual tree overstory, estimating crowns parameters and identifying tree species are demonstrated practicable. This paper proposes a section-based protocol of tree species identification taking palm tree as an example. Section-based method is to detect objects through certain profile among different direction, basically along X-axis or Y-axis. And this method improve the utilization of spatial information to generate accurate results. Firstly, separate the tree points from manmade-object points by decision-tree-based rules, and create Crown Height Mode (CHM by subtracting the Digital Terrain Model (DTM from the digital surface model (DSM. Then calculate and extract key points to locate individual trees, thus estimate specific tree parameters related to species information, such as crown height, crown radius, and cross point etc. Finally, with parameters we are able to identify certain tree species. Comparing to species information measured on ground, the portion correctly identified trees on all plots could reach up to 90.65 %. The identification result in this research demonstrate the ability to distinguish palm tree using LiDAR point cloud. Furthermore, with more prior knowledge, section-based method enable the process to classify trees into different classes.

  12. Section-Based Tree Species Identification Using Airborne LIDAR Point Cloud

    Science.gov (United States)

    Yao, C.; Zhang, X.; Liu, H.

    2017-09-01

    The application of LiDAR data in forestry initially focused on mapping forest community, particularly and primarily intended for largescale forest management and planning. Then with the smaller footprint and higher sampling density LiDAR data available, detecting individual tree overstory, estimating crowns parameters and identifying tree species are demonstrated practicable. This paper proposes a section-based protocol of tree species identification taking palm tree as an example. Section-based method is to detect objects through certain profile among different direction, basically along X-axis or Y-axis. And this method improve the utilization of spatial information to generate accurate results. Firstly, separate the tree points from manmade-object points by decision-tree-based rules, and create Crown Height Mode (CHM) by subtracting the Digital Terrain Model (DTM) from the digital surface model (DSM). Then calculate and extract key points to locate individual trees, thus estimate specific tree parameters related to species information, such as crown height, crown radius, and cross point etc. Finally, with parameters we are able to identify certain tree species. Comparing to species information measured on ground, the portion correctly identified trees on all plots could reach up to 90.65 %. The identification result in this research demonstrate the ability to distinguish palm tree using LiDAR point cloud. Furthermore, with more prior knowledge, section-based method enable the process to classify trees into different classes.

  13. Tree species and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    Science.gov (United States)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2016-01-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale run-off plots was conducted to investigate the influence of tree species and tree species richness as well as functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 Mg ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion differently, while tree species richness did not affect interrill erosion in young forest stands. Thus, different tree morphologies have to be considered, when assessing soil erosion under forest. High crown cover and leaf area index reduced interrill erosion in initial forest ecosystems, whereas rising tree height increased it. Even if a leaf litter cover was not present, the remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on interrill erosion. Long-term monitoring of soil erosion under closing tree canopies is necessary, and a wide range of functional tree traits should be considered in future research.

  14. Iodine uptake and distribution in horticultural and fruit tree species

    Directory of Open Access Journals (Sweden)

    Alessandra Caffagni

    2012-07-01

    Full Text Available Iodine is an essential microelement for humans and iodine deficiency disorder (IDD is one of the most widespread nutrient-deficiency diseases in the world. Iodine biofortification of plants provides an attractive opportunity to increase iodine intake in humans and to prevent and control IDD. This study was conducted to investigate the iodine uptake and accumulation in edible portion of two fruit trees: plum and nectarine, and two horticultural crops: tomato and potato. Two type of iodine treatments (soil and foliar spray application, and, for fresh market tomato, two production systems (open field and greenhouse hydroponic culture were tested. The distribution of iodine in potato stem and leaves, and in plum tree fruits, leaves, and branches was investigated. Iodine content of potato tubers after postharvest storage and processing (cooking, and iodine content of nectarine fruits after postharvest storage and processing (peeling were also determined. Differences in iodine accumulation were observed among the four crops, between applications, and between production systems. In open field, the maximum iodine content ranged from 9.5 and 14.3 μg 100 g−1 for plum and nectarine fruit, to 89.4 and 144.0 μg 100 g−1 for potato tuber and tomato fruit, respectively. These results showed that nectarine and plum tree accumulated significantly lower amounts of iodine in their edible tissues, in comparison with potato and tomato. The experiments also indicated hydroponic culture as the most efficient system for iodine uptake in tomato, since its fresh fruits accumulated up to 2423 μg 100 g−1 of iodine. Iodine was stored mainly in the leaves, in all species investigated. Only a small portion of iodine was moved to plum tree branches and fruits, and to potato stems and tubers. No differences in iodine content after fruit peeling was observed. A significant increase in iodine content of potato was observed after baking, whereas a significant decrease was

  15. Household Tree Planting in Tigrai, Northern Ethiopia: Tree Species, Purposes, and Determinants

    OpenAIRE

    Gebreegziabher, Zenebe; Mekonnen, Alemu; Kassie, Menale; Köhlin, Gunnar

    2010-01-01

    Trees have multiple purposes in rural Ethiopia, providing significant economic and ecological benefits. Planting trees supplies rural households with wood products for their own consumption, as well for sale, and decreases soil degradation. We used cross-sectional household-level data to analyze the determinants of household tree planting and explored the most important tree attributes or purpose(s) that enhance the propensity to plant trees. We set up a sample selection framework that simult...

  16. Classification tree methods for development of decision rules for botulism and cyanide poisoning.

    Science.gov (United States)

    Sasser, Howell; Nussbaum, Marcy; Beuhler, Michael; Ford, Marsha

    2008-06-01

    Identification of predictors of potential mass poisonings may increase the speed and accuracy with which patients are recognized, potentially reducing the number ultimately exposed and the degree to which they are affected. This analysis used a decision-tree method to sort such potential predictors. Data from the Toxic Exposure Surveillance System were used to select cyanide and botulism cases from 1993 to 2005 for analysis. Cases of other poisonings from a single poison center were used as controls. After duplication was omitted and removal of cases from the control sample was completed, there remained 1,122 cyanide cases, 262 botulism cases, and 70,804 controls available for both analyses. Classification trees for each poisoning type were constructed, using 131 standardized clinical effects. These decision rules were compared with the current case surveillance definitions of one active poison center and the American Association of Poison Control Centers (AAPCC). The botulism analysis produced a 4-item decision rule with sensitivity (Se) of 68% and specificity (Sp) of 90%. Use of the single poison center and AAPCC definitions produced Se of 19.5% and 16.8%, and Sp of 99.5% and 83.2%, respectively. The cyanide analysis produced a 9-item decision rule with Se of 74% and Sp of 77%. The single poison center and AAPCC case definitions produced Se of 10.2% and 8.6%, and Sp of 99.8% and 99.8%, respectively. These results suggest the possibility of improved poisoning case surveillance sensitivity using classification trees. This method produced substantially higher sensitivities, but not specificities, for both cyanide and botulism. Despite limitations, these results show the potential of a classification-tree approach in the detection of poisoning events.

  17. Classification of Needle Loss of Individual Scots Pine Trees by Means of Airborne Laser Scanning

    Directory of Open Access Journals (Sweden)

    Tuula Kantola

    2013-06-01

    Full Text Available Forest disturbances caused by pest insects are threatening ecosystem stability, sustainable forest management and economic return in boreal forests. Climate change and increased extreme weather patterns can magnify the intensity of forest disturbances, particularly at higher latitudes. Due to rapid responses to elevating temperatures, forest insect pests can flexibly change their survival, dispersal and geographic distributions. The outbreak pattern of forest pests in Finland has evidently changed during the last decade. Projection of shifts in distributions of insect-caused forest damages has become a critical issue in the field of forest research. The Common pine sawfly (Diprion pini L. (Hymenoptera, Diprionidae is regarded as a significant threat to boreal pine forests. Defoliation by D. pini has resulted in severe growth loss and mortality of Scots pine (Pinus sylvestris L. (Pinaceae in eastern Finland. In this study, tree-wise defoliation was estimated for five different needle loss category classification schemes and for 10 different simulated airborne laser scanning (ALS pulse densities. The nearest neighbor (NN approach, a nonparametric estimation method, was used for estimating needle loss of 701 Scots pines, using the means of individual tree features derived from ALS data. The Random Forest (RF method was applied in NN-search. For the full dense data (~20 pulses/m2, the overall estimation accuracies for tree-wise defoliation level varied between 71.0% and 86.5% (kappa-values of 0.56 and 0.57, respectively, depending on the classification scheme. The overall classification accuracies for two class estimation with different ALS pulse densities varied between 82.8% and 83.7% (kappa-values of 0.62 and 0.67, respectively. We conclude that ALS-based estimation of needle losses may be of acceptable accuracy for individual trees. Our method did not appear sensitive to the applied pulse densities.

  18. Effects of tree species, water and nitrogen on mycorrhizal C flux

    Science.gov (United States)

    Menyailo, O.; Matvienko, A.

    2012-12-01

    Mycorrhiza plays an important role in global carbon cycle, especially, in forest soils, yet the effect of tree species on the amount and timing of C transfer through roots to myccorhiza is largely unknown. We studied the C transport to mycorrhiza under 6 most commonly dominant in boreal forests tree species using the mesh collars installed at the Siberian afforestation experiment. The CO2 flux from mycorrhizal and non-mycorrhizal mesh collars indicated the mycorrhizal C flux. Tree species strongly differed in C flux to mycorrhiza: more C was transferred by deciduous species than by conifers. The mycorrhizal CO2 flux was not linked to soil temperature but rather to trees phenology and to photosynthetic activity. All tree species transfered more carbon to mycorrhiza during the second half of summer and in September, this is because all the carbon photosynthesized earlier is used for building the tree biomass. Seasonal variation in C transfer to mycorrhiza was much larger than hourly variation (within a day). Nitrogen application (50 kg/ha) increased mycorrhizal C flux only under Scots pine, but not under larch, thus the effect of N application is tree species dependent. We found under most tree species that more C was transferred by trees to mycorrhiza in root-free collars, where the soil moisture was higher than in collars with roots. This suggests that trees preferentially support those parts of mycorrhiza, which can gain extra-resources.

  19. Prospect of Milicia excelsa (Welw. C. Berg for Multi-Tree Species Agroforestry

    Directory of Open Access Journals (Sweden)

    Alfred Ossai Onefeli

    2015-11-01

    Full Text Available Background and Purpose: The population of most of our economically indigenous tree species in Nigeria is declining. Human activities and agricultural practices have been the ultimate contributors to this decrease. In order to ameliorate the conflict between agriculture and forestry, agroforestry was introduced. However, most of the practiced agroforestry is based on single tree species. Agroforestry practiced using single tree species have been reported to be ecologically staggered and therefore it is pertinent that phytosociology of trees with agroforestry potential is studied in order to improve the sustainability of human livelihood. Materials and Methods: This study was carried out in the University of Ibadan’s campus forest. The data were collected on Milicia excelsa (Welw. C. Berg by enumerating the tree species and also by identifying and enumerating the tree species associated with the subject tree (Milicia excelsa. Statistical analysis was done using percentages, Chi-square and charts. Results: A total of 49 individual Milicia excelsa were encountered in the study area. The results show 31 woody tree species associated with Milicia excelsa. Of all the associates Azadirachta indica A.Juss. happened to be the best one, having an average distance of 5.4 m to the subject tree. The sex ratio of Milicia excelsa was discovered to be approximately 1:1. Conclusions: Based on the obtained results of this research it may be concluded that Milicia excelsa has the prospect of being used in agroforestry in multi-tree species systems.

  20. Tree species identity and functional traits but not species richness affect interrill erosion processes in young subtropical forests

    Science.gov (United States)

    Seitz, S.; Goebes, P.; Song, Z.; Bruelheide, H.; Härdtle, W.; Kühn, P.; Li, Y.; Scholten, T.

    2015-06-01

    Soil erosion is seriously threatening ecosystem functioning in many parts of the world. In this context, it is assumed that tree species richness and functional diversity of tree communities can play a critical role in improving ecosystem services such as erosion control. An experiment with 170 micro-scale runoff plots was conducted to investigate the influence of tree species richness and identity as well as tree functional traits on interrill erosion in a young forest ecosystem. An interrill erosion rate of 47.5 t ha-1 a-1 was calculated. This study provided evidence that different tree species affect interrill erosion, but higher tree species richness did not mitigate soil losses in young forest stands. Thus, different tree morphologies have to be considered, when assessing erosion under forest. High crown cover and leaf area index reduced soil losses in initial forest ecosystems, whereas rising tree height increased them. Even if a leaf litter cover was not present, remaining soil surface cover by stones and biological soil crusts was the most important driver for soil erosion control. Furthermore, soil organic matter had a decreasing influence on soil loss. Long-term monitoring of soil erosion under closing tree canopies is necessary and a wide range of functional tree traits should be taken into consideration in future research.

  1. Tree species composition affects the abundance of rowan (Sorbus aucuparia L.) in urban forests in Finland.

    Science.gov (United States)

    Hamberg, Leena; Lehvävirta, Susanna; Kotze, D Johan; Heikkinen, Juha

    2015-03-15

    Recent studies have shown a considerable increase in the abundance of rowan (Sorbus aucuparia) saplings in urban forests in Finland, yet the reasons for this increase are not well understood. Here we investigated whether canopy cover or tree species composition, i.e., the basal areas of different tree species in Norway spruce dominated urban forests, affects the abundances of rowan seedlings, saplings and trees. Altogether 24 urban forest patches were investigated. We sampled the number of rowan and other saplings, and calculated the basal areas of trees. We showed that rowan abundance was affected by tree species composition. The basal area of rowan trees (≥ 5 cm in diameter at breast height, dbh) decreased with increasing basal area of Norway spruce, while the cover of rowan seedlings increased with an increase in Norway spruce basal area. However, a decrease in the abundance of birch (Betula pendula) and an increase in the broad-leaved tree group (Acer platanoides, Alnus glutinosa, Alnus incana, Amelanchier spicata, Prunus padus, Quercus robur, Rhamnus frangula and Salix caprea) coincided with a decreasing number of rowans. Furthermore, rowan saplings were scarce in the vicinity of mature rowan trees. Although it seems that tree species composition has an effect on rowan, the relationship between rowan saplings and mature trees is complex, and therefore we conclude that regulating tree species composition is not an easy way to keep rowan thickets under control in urban forests in Finland. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Comparing Methodologies for Developing an Early Warning System: Classification and Regression Tree Model versus Logistic Regression. REL 2015-077

    Science.gov (United States)

    Koon, Sharon; Petscher, Yaacov

    2015-01-01

    The purpose of this report was to explicate the use of logistic regression and classification and regression tree (CART) analysis in the development of early warning systems. It was motivated by state education leaders' interest in maintaining high classification accuracy while simultaneously improving practitioner understanding of the rules by…

  3. ARABIC TEXT CLASSIFICATION USING NEW STEMMER FOR FEATURE SELECTION AND DECISION TREES

    Directory of Open Access Journals (Sweden)

    SAID BAHASSINE

    2017-06-01

    Full Text Available Text classification is the process of assignment of unclassified text to appropriate classes based on their content. The most prevalent representation for text classification is the bag of words vector. In this representation, the words that appear in documents often have multiple morphological structures, grammatical forms. In most cases, this morphological variant of words belongs to the same category. In the first part of this paper, anew stemming algorithm was developed in which each term of a given document is represented by its root. In the second part, a comparative study is conducted of the impact of two stemming algorithms namely Khoja’s stemmer and our new stemmer (referred to hereafter by origin-stemmer on Arabic text classification. This investigation was carried out using chi-square as a feature of selection to reduce the dimensionality of the feature space and decision tree classifier. In order to evaluate the performance of the classifier, this study used a corpus that consists of 5070 documents independently classified into six categories: sport, entertainment, business, Middle East, switch and world on WEKA toolkit. The recall, f-measure and precision measures are used to compare the performance of the obtained models. The experimental results show that text classification using rout stemmer outperforms classification using Khoja’s stemmer. The f-measure was 92.9% in sport category and 89.1% in business category.

  4. Classification and Optimization of Decision Trees for Inconsistent Decision Tables Represented as MVD Tables

    KAUST Repository

    Azad, Mohammad

    2015-10-11

    Decision tree is a widely used technique to discover patterns from consistent data set. But if the data set is inconsistent, where there are groups of examples (objects) with equal values of conditional attributes but different decisions (values of the decision attribute), then to discover the essential patterns or knowledge from the data set is challenging. We consider three approaches (generalized, most common and many-valued decision) to handle such inconsistency. We created different greedy algorithms using various types of impurity and uncertainty measures to construct decision trees. We compared the three approaches based on the decision tree properties of the depth, average depth and number of nodes. Based on the result of the comparison, we choose to work with the many-valued decision approach. Now to determine which greedy algorithms are efficient, we compared them based on the optimization and classification results. It was found that some greedy algorithms Mult\\\\_ws\\\\_entSort, and Mult\\\\_ws\\\\_entML are good for both optimization and classification.

  5. Prediction of survival to discharge following cardiopulmonary resuscitation using classification and regression trees.

    Science.gov (United States)

    Ebell, Mark H; Afonso, Anna M; Geocadin, Romergryko G

    2013-12-01

    To predict the likelihood that an inpatient who experiences cardiopulmonary arrest and undergoes cardiopulmonary resuscitation survives to discharge with good neurologic function or with mild deficits (Cerebral Performance Category score = 1). Classification and Regression Trees were used to develop branching algorithms that optimize the ability of a series of tests to correctly classify patients into two or more groups. Data from 2007 to 2008 (n = 38,092) were used to develop candidate Classification and Regression Trees models to predict the outcome of inpatient cardiopulmonary resuscitation episodes and data from 2009 (n = 14,435) to evaluate the accuracy of the models and judge the degree of over fitting. Both supervised and unsupervised approaches to model development were used. 366 hospitals participating in the Get With the Guidelines-Resuscitation registry. Adult inpatients experiencing an index episode of cardiopulmonary arrest and undergoing cardiopulmonary resuscitation in the hospital. The five candidate models had between 8 and 21 nodes and an area under the receiver operating characteristic curve from 0.718 to 0.766 in the derivation group and from 0.683 to 0.746 in the validation group. One of the supervised models had 14 nodes and classified 27.9% of patients as very unlikely to survive neurologically intact or with mild deficits (Tree models that predict survival to discharge with good neurologic function or with mild deficits following in-hospital cardiopulmonary arrest. Models like this can assist physicians and patients who are considering do-not-resuscitate orders.

  6. The mycorrhizal status and colonization of 26 tree species growing in urban and rural environments.

    Science.gov (United States)

    Bainard, Luke D; Klironomos, John N; Gordon, Andrew M

    2011-02-01

    Urban environments are highly disturbed and fragmented ecosystems that commonly have lower mycorrhizal fungal species richness and diversity compared to rural or natural ecosystems. In this study, we assessed whether the mycorrhizal status and colonization of trees are influenced by the overall environment (rural vs. urban) they are growing in. Soil cores were collected from the rhizosphere of trees growing in urban and rural environments around southern Ontario. Roots were extracted from the soil cores to determine whether the trees were colonized by arbuscular mycorrhizal fungi, ectomycorrhizal fungi, or both, and to quantify the percent colonization of each type of mycorrhizal fungi. All 26 tree species were colonized by arbuscular mycorrhizal fungi, and seven tree species were dually colonized by arbuscular mycorrhizal and ectomycorrhizal fungi. Overall, arbuscular mycorrhizal and ectomycorrhizal fungal colonization was significantly (p mycorrhizal fungal colonization; more research is needed to determine whether inoculating urban trees with mycorrhizal fungi would increase colonization levels and growth of the trees.

  7. Improved classification of soil salinity by decision tree on remotely sensed images

    Science.gov (United States)

    Rao, Ping; Chen, Shengbo; Sun, Ke

    2006-01-01

    Soil Salinity, caused by natural or human-induced processes, is not only a major cause of soil degradation but also a major environmental hazard all over the world. This results in increasing impact on crop yields and agricultural production in both dry and irrigated areas due to poor land and water management. Multi-temporal optical and microwave remote sensing can significantly contribute to detecting spatial-temporal changes of salt-related surface features. The study area is located in the west of Jilin Province, Northeast China, which is one of most important saline-alkalized areas in semi-arid and arid area in North China. Decision tree classifiers are used to improve the classification of soil salinity on Landsat Thematic Mapper (TM) images in later autumn of 1996. The Kauth-Thomas (K-T) transformation was performed after TM image preprocessing including image registration, mosaic and resizing for the study area. Then the first component of KT transformation, TM 6 imagery (thermal infrared imagery), and NDVI (Normalized Difference Vegetation Index) from TM 4 and TM 3 images, were density-sliced respectively to establish suitable feature classes of soil salinity as the decision nodes. Thus, the classification of soil salinity was improved using decision trees based on these feature classes. Compared with the conventional maximum likelihood classification, this method is more effective to distinguish soil salinity from mixed residential and sand areas in the west of Jilin Province, China.

  8. A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction.

    Science.gov (United States)

    De Oliveira Martins, Leonardo; Mallo, Diego; Posada, David

    2016-05-01

    Current phylogenomic data sets highlight the need for species tree methods able to deal with several sources of gene tree/species tree incongruence. At the same time, we need to make most use of all available data. Most species tree methods deal with single processes of phylogenetic discordance, namely, gene duplication and loss, incomplete lineage sorting (ILS) or horizontal gene transfer. In this manuscript, we address the problem of species tree inference from multilocus, genome-wide data sets regardless of the presence of gene duplication and loss and ILS therefore without the need to identify orthologs or to use a single individual per species. We do this by extending the idea of Maximum Likelihood (ML) supertrees to a hierarchical Bayesian model where several sources of gene tree/species tree disagreement can be accounted for in a modular manner. We implemented this model in a computer program called guenomu whose inputs are posterior distributions of unrooted gene tree topologies for multiple gene families, and whose output is the posterior distribution of rooted species tree topologies. We conducted extensive simulations to evaluate the performance of our approach in comparison with other species tree approaches able to deal with more than one leaf from the same species. Our method ranked best under simulated data sets, in spite of ignoring branch lengths, and performed well on empirical data, as well as being fast enough to analyze relatively large data sets. Our Bayesian supertree method was also very successful in obtaining better estimates of gene trees, by reducing the uncertainty in their distributions. In addition, our results show that under complex simulation scenarios, gene tree parsimony is also a competitive approach once we consider its speed, in contrast to more sophisticated models. © The Author(s) 2014. Published by Oxford University Press on behalf of the Society of Systematic Biologists.

  9. The Reliability of Classification of Terminal Nodes in GUIDE Decision Tree to Predict the Nonalcoholic Fatty Liver Disease.

    Science.gov (United States)

    Birjandi, Mehdi; Ayatollahi, Seyyed Mohammad Taghi; Pourahmad, Saeedeh

    2016-01-01

    Tree structured modeling is a data mining technique used to recursively partition a dataset into relatively homogeneous subgroups in order to make more accurate predictions on generated classes. One of the classification tree induction algorithms, GUIDE, is a nonparametric method with suitable accuracy and low bias selection, which is used for predicting binary classes based on many predictors. In this tree, evaluating the accuracy of predicted classes (terminal nodes) is clinically of special importance. For this purpose, we used GUIDE classification tree in two statuses of equal and unequal misclassification cost in order to predict nonalcoholic fatty liver disease (NAFLD), considering 30 predictors. Then, to evaluate the accuracy of predicted classes by using bootstrap method, first the classification reliability in which individuals are assigned to a unique class and next the prediction probability reliability as support for that are considered.

  10. The Reliability of Classification of Terminal Nodes in GUIDE Decision Tree to Predict the Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Mehdi Birjandi

    2016-01-01

    Full Text Available Tree structured modeling is a data mining technique used to recursively partition a dataset into relatively homogeneous subgroups in order to make more accurate predictions on generated classes. One of the classification tree induction algorithms, GUIDE, is a nonparametric method with suitable accuracy and low bias selection, which is used for predicting binary classes based on many predictors. In this tree, evaluating the accuracy of predicted classes (terminal nodes is clinically of special importance. For this purpose, we used GUIDE classification tree in two statuses of equal and unequal misclassification cost in order to predict nonalcoholic fatty liver disease (NAFLD, considering 30 predictors. Then, to evaluate the accuracy of predicted classes by using bootstrap method, first the classification reliability in which individuals are assigned to a unique class and next the prediction probability reliability as support for that are considered.

  11. Indicator species of essential forest tree species in the Burdur district.

    Science.gov (United States)

    Negiz, Mehmet Güvenç; Eser, Yunus; Kuzugüdenll, Emre; Izkan, Kürşad

    2015-01-01

    The forests of Burdur district for long have been subjected to over grazing and individual selection. As a result of this, majority of the forest areas in the district were degraded. In the district, afforestation efforts included majority of forestry implementations. It is well known that selecting suitable species plays an important role for achieving afforestation efforts. In this context, knowing the indicator species among the target species would be used in afforestation efforts, studies on the interrelationships between environmental factors and target species distribution is vital for selecting suitable species for a given area. In this study, Anatolian Black pine (Pinus nigra), Red pine (Pinus brutia), Crimean juniper (Juniperus excelsa) and Taurus cedar (Cedrus libani), essential tree species, were considered as target species. The data taken from 100 sample plots in Burdur district was used. Interspecific correlation analysis was performed to determine the positive and negative indicator species among each of the target species. As a result of ICA, 2 positive (Berberis crataegina, Juniperus oxycedrus), 2 negative (Phillyrea latifolia, Quercus coccifera) for Crimean Juniper, I positive (Juniperus oxycedrus), 3 negative (Onopordium acanthium, Fraxinus ornus, Phillyrea latifolia) for Anatolian black pine, 3 positive (Paliurus spina-christi, Quercus coccifer, Crataegus orientalis), 2 negative (Berberis crataegina, Astragalus nanus) for Red pine and 3 positive (Berberis crataegina, Rhamnus oleoides, Astragalus prusianus) 2 negative (Paliurus spina-christi, Quercus cerris) for Taurus cedarwere defined as indicator plant species. In this way, practical information was obtained for selecting the most suitable species, among the target species, for afforestation efforts in Burdur district.

  12. Species discrimination of African savannah trees at leaf level using hyperspectral remote sensing

    CSIR Research Space (South Africa)

    Majeke, B

    2009-03-01

    Full Text Available . This study was carried out to assess the utility of hyperspectral remote sensing in discriminating the dominant species in the southern part of the park. The spectral reflectances of seven common tree species (Combretum apiculatum, Combretum hereroense...

  13. Landscape variation in tree species richness in northern Iran forests.

    Directory of Open Access Journals (Sweden)

    Charles P-A Bourque

    Full Text Available Mapping landscape variation in tree species richness (SR is essential to the long term management and conservation of forest ecosystems. The current study examines the prospect of mapping field assessments of SR in a high-elevation, deciduous forest in northern Iran as a function of 16 biophysical variables representative of the area's unique physiography, including topography and coastal placement, biophysical environment, and forests. Basic to this study is the development of moderate-resolution biophysical surfaces and associated plot-estimates for 202 permanent sampling plots. The biophysical variables include: (i three topographic variables generated directly from the area's digital terrain model; (ii four ecophysiologically-relevant variables derived from process models or from first principles; and (iii seven variables of Landsat-8-acquired surface reflectance and two, of surface radiance. With symbolic regression, it was shown that only four of the 16 variables were needed to explain 85% of observed plot-level variation in SR (i.e., wind velocity, surface reflectance of blue light, and topographic wetness indices representative of soil water content, yielding mean-absolute and root-mean-squared error of 0.50 and 0.78, respectively. Overall, localised calculations of wind velocity and surface reflectance of blue light explained about 63% of observed variation in SR, with wind velocity accounting for 51% of that variation. The remaining 22% was explained by linear combinations of soil-water-related topographic indices and associated thresholds. In general, SR and diversity tended to be greatest for plots dominated by Carpinus betulus (involving ≥ 33% of all trees in a plot, than by Fagus orientalis (median difference of one species. This study provides a significant step towards describing landscape variation in SR as a function of modelled and satellite-based information and symbolic regression. Methods in this study are sufficiently

  14. Resprouting from roots in four Brazilian tree species

    Directory of Open Access Journals (Sweden)

    Adriana Hissae Hayashi

    2009-09-01

    Full Text Available Previous studies pointed out that species richness and high density values within the Leguminosae in Brazilian forest fragments affected by fire could be due, at least partially, to the high incidence of root sprouting in this family. However, there are few studies of the factors that induce root sprouting in woody plants after disturbance. We investigated the bud formation on root cuttings, and considered a man-made disturbance that isolates the root from the shoot apical dominance of three Leguminosae (Bauhinia forficata Link., Centrolobium tomentosum Guill. ex Benth, and Inga laurina (Sw. Willd and one Rutaceae (Esenbeckia febrifuga (St. Hil. Juss. ex Mart.. All these species resprout frequently after fire. We also attempted to induce bud formation on root systems by removing the main trunk, girdling or sectioning the shallow lateral roots from forest tree species Esenbeckia febrifuga and Hymenaea courbaril L. We identified the origin of shoot primordia and their early development by fixing the samples in Karnovsky solution, dehydrating in ethyl alcohol series and embedding in plastic resin. Serial sections were cut on a rotary microtome and stained with toluidine blue O. Permanent slides were mounted in synthetic resin. We observed different modes of bud origin on root cuttings: close to the vascular cambium (C. tomentosum, from the callus (B. forficata and E. febrifuga and from the phloematic parenchyma proliferation (I. laurina. Fragments of B. forficata root bark were also capable of forming reparative buds from healing phellogen formed in callus in the bark’s inner side. In the attempt of bud induction on root systems, Hymenaea courbaril did not respond to any of the induction tests, probably because of plant age. However, Esenbeckia febrifuga roots formed suckers when the main trunk was removed or their roots were sectioned and isolated from the original plant. We experimentally demonstrated the ability of four tree species to

  15. Prognostic classification index in Iranian colorectal cancer patients: Survival tree analysis

    Directory of Open Access Journals (Sweden)

    Amal Saki Malehi

    2016-01-01

    Full Text Available Aims: The aim of this study was to determine the prognostic index for separating homogenous subgroups in colorectal cancer (CRC patients based on clinicopathological characteristics using survival tree analysis. Methods: The current study was conducted at the Research Center of Gastroenterology and Liver Disease, Shahid Beheshti Medical University in Tehran, between January 2004 and January 2009. A total of 739 patients who already have been diagnosed with CRC based on pathologic report were enrolled. The data included demographic and clinical-pathological characteristic of patients. Tree-structured survival analysis based on a recursive partitioning algorithm was implemented to evaluate prognostic factors. The probability curves were calculated according to the Kaplan-Meier method, and the hazard ratio was estimated as an interest effect size. Result: There were 526 males (71.2% of these patients. The mean survival time (from diagnosis time was 42.46± (3.4. Survival tree identified three variables as main prognostic factors and based on their four prognostic subgroups was constructed. The log-rank test showed good separation of survival curves. Patients with Stage I-IIIA and treated with surgery as the first treatment showed low risk (median = 34 months whereas patients with stage IIIB, IV, and more than 68 years have the worse survival outcome (median = 9.5 months. Conclusion: Constructing the prognostic classification index via survival tree can aid the researchers to assess interaction between clinical variables and determining the cumulative effect of these variables on survival outcome.

  16. Malignancy Risk Assessment in Patients with Thyroid Nodules Using Classification and Regression Trees

    Directory of Open Access Journals (Sweden)

    Shokouh Taghipour Zahir

    2013-01-01

    Full Text Available Purpose. We sought to investigate the utility of classification and regression trees (CART classifier to differentiate benign from malignant nodules in patients referred for thyroid surgery. Methods. Clinical and demographic data of 271 patients referred to the Sadoughi Hospital during 2006–2011 were collected. In a two-step approach, a CART classifier was employed to differentiate patients with a high versus low risk of thyroid malignancy. The first step served as the screening procedure and was tailored to produce as few false negatives as possible. The second step identified those with the lowest risk of malignancy, chosen from a high risk population. Sensitivity, specificity, positive and negative predictive values (PPV and NPV of the optimal tree were calculated. Results. In the first step, age, sex, and nodule size contributed to the optimal tree. Ultrasonographic features were employed in the second step with hypoechogenicity and/or microcalcifications yielding the highest discriminatory ability. The combined tree produced a sensitivity and specificity of 80.0% (95% CI: 29.9–98.9 and 94.1% (95% CI: 78.9–99.0, respectively. NPV and PPV were 66.7% (41.1–85.6 and 97.0% (82.5–99.8, respectively. Conclusion. CART classifier reliably identifies patients with a low risk of malignancy who can avoid unnecessary surgery.

  17. A Novel Method for the Separation of Overlapping Pollen Species for Automated Detection and Classification.

    Science.gov (United States)

    Tello-Mijares, Santiago; Flores, Francisco

    2016-01-01

    The identification of pollen in an automated way will accelerate different tasks and applications of palynology to aid in, among others, climate change studies, medical allergies calendar, and forensic science. The aim of this paper is to develop a system that automatically captures a hundred microscopic images of pollen and classifies them into the 12 different species from Lagunera Region, Mexico. Many times, the pollen is overlapping on the microscopic images, which increases the difficulty for its automated identification and classification. This paper focuses on a method to segment the overlapping pollen. First, the proposed method segments the overlapping pollen. Second, the method separates the pollen based on the mean shift process (100% segmentation) and erosion by H-minima based on the Fibonacci series. Thus, pollen is characterized by its shape, color, and texture for training and evaluating the performance of three classification techniques: random tree forest, multilayer perceptron, and Bayes net. Using the newly developed system, we obtained segmentation results of 100% and classification on top of 96.2% and 96.1% in recall and precision using multilayer perceptron in twofold cross validation.

  18. The Hybrid of Classification Tree and Extreme Learning Machine for Permeability Prediction in Oil Reservoir

    KAUST Repository

    Prasetyo Utomo, Chandra

    2011-06-01

    Permeability is an important parameter connected with oil reservoir. Predicting the permeability could save millions of dollars. Unfortunately, petroleum engineers have faced numerous challenges arriving at cost-efficient predictions. Much work has been carried out to solve this problem. The main challenge is to handle the high range of permeability in each reservoir. For about a hundred year, mathematicians and engineers have tried to deliver best prediction models. However, none of them have produced satisfying results. In the last two decades, artificial intelligence models have been used. The current best prediction model in permeability prediction is extreme learning machine (ELM). It produces fairly good results but a clear explanation of the model is hard to come by because it is so complex. The aim of this research is to propose a way out of this complexity through the design of a hybrid intelligent model. In this proposal, the system combines classification and regression models to predict the permeability value. These are based on the well logs data. In order to handle the high range of the permeability value, a classification tree is utilized. A benefit of this innovation is that the tree represents knowledge in a clear and succinct fashion and thereby avoids the complexity of all previous models. Finally, it is important to note that the ELM is used as a final predictor. Results demonstrate that this proposed hybrid model performs better when compared with support vector machines (SVM) and ELM in term of correlation coefficient. Moreover, the classification tree model potentially leads to better communication among petroleum engineers concerning this important process and has wider implications for oil reservoir management efficiency.

  19. Ecological and economic determinants of invasive tree species on Alabama forestland

    Science.gov (United States)

    Anwar Hussain; Changyou Sun; Xiaoping Zhou; Ian A. Munn

    2008-01-01

    The spread of invasive tree species has caused increasing harm to the environment. This study was motivated by the considerations that earlier studies generally ignored the role of economic factors related to the occurrence and abundance of invasive species, and empirical analyses of invasive trees on forestland have been inadequate. We assessed the impact of...

  20. Quantitative metrics for assessing predicted climate change pressure on North American tree species

    Science.gov (United States)

    Kevin M. Potter; William W. Hargrove

    2013-01-01

    Changing climate may pose a threat to forest tree species, forcing three potential population-level responses: toleration/adaptation, movement to suitable environmental conditions, or local extirpation. Assessments that prioritize and classify tree species for management and conservation activities in the face of climate change will need to incorporate estimates of the...

  1. Basal area growth for 15 tropical trees species in Puerto Rico. Forest

    Science.gov (United States)

    B. R. Parresol

    1995-01-01

    The tabonuco forest of Puerto Rico support a diverse population of tree species valued for timber, fuel, food, wildlife food and cover, and erosion control among other use. tree basal area growth data spanning 39 years are avaible on 15 species from eigth permanent plots in Luquillo Experimental Forest. The complexity of the rain forest challeges current forest...

  2. Tradeoffs between chilling and forcing in satisfying dormancy requirements for Pacific Northwest tree species

    Science.gov (United States)

    Constance A. Harrington; Peter J. Gould

    2015-01-01

    Many temperate and boreal tree species have a chilling requirement, that is, they need to experience cold temperatures during fall and winter to burst bud normally in the spring. Results from trials with 11 Pacific Northwest tree species are consistent with the concept that plants can accumulate both chilling and forcing units simultaneously during the dormant season...

  3. Light-dependent leaf trait variation in 43 tropical dry forest tree species

    NARCIS (Netherlands)

    Markesteijn, L.; Poorter, L.; Bongers, F.J.J.M.

    2007-01-01

    Our understanding of leaf acclimation in relation to irradiance of fully grown or juvenile trees is mainly based on research involving tropical wet forest species. We studied sun¿shade plasticity of 24 leaf traits of 43 tree species in a Bolivian dry deciduous forest. Sampling was confined to small

  4. Provenance variation in subalpine fir grown as an exotic tree species in Denmark and Iceland

    DEFF Research Database (Denmark)

    Skúlason, Brynjar

    In Denmark and Iceland, there has been increasing interest in the use of subalpine fir (Abies lasiocarpa (Hook.) Nutt.) as an exotic species; in Denmark as a niche product for the Christmas tree market and in Iceland as the main Christmas tree species. A field test with 26 provenances of subalpine...

  5. Species Composition of Down Dead and Standing Live Trees: Implications for Forest Inventory Analysis

    Science.gov (United States)

    Christopher W. Woodall; Linda Nagel

    2005-01-01

    The assessment of species composition in most forest inventory analysis relies solely on standing live tree information characterized by current forest type. With the implementation of the third phase of the U.S. Department of Agriculture Forest Service's Forest Inventory and Analysis program, the species composition of down dead trees, otherwise termed coarse...

  6. Calcium weathering in forested soils and the effedt of different tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Breemen, van N.; Jongmans, A.G.; Davies, G.R.; Likens, G.E.

    2003-01-01

    Soil weathering can be an important mechanism to neutralize acidity in forest soils. Tree species may differ in their effect on or response to soil weathering. We used soil mineral data and the natural strontium isotope ratio Sr-87/Sr-86 as a tracer to identify the effect of tree species on the Ca

  7. Analysis of powered two-wheeler crashes in Italy by classification trees and rules discovery.

    Science.gov (United States)

    Montella, Alfonso; Aria, Massimo; D'Ambrosio, Antonio; Mauriello, Filomena

    2012-11-01

    Aim of the study was the analysis of powered two-wheeler (PTW) crashes in Italy in order to detect interdependence as well as dissimilarities among crash characteristics and provide insights for the development of safety improvement strategies focused on PTWs. At this aim, data mining techniques were used to analyze the data relative to the 254,575 crashes involving PTWs occurred in Italy in the period 2006-2008. Classification trees analysis and rules discovery were performed. Tree-based methods are non-linear and non-parametric data mining tools for supervised classification and regression problems. They do not require a priori probabilistic knowledge about the phenomena under studying and consider conditional interactions among input data. Rules discovery is the identification of sets of items (i.e., crash patterns) that occur together in a given event (i.e., a crash in our study) more often than they would if they were independent of each other. Thus, the method can detect interdependence among crash characteristics. Due to the large number of patterns considered, both methods suffer from an extreme risk of finding patterns that appear due to chance alone. To overcome this problem, in our study we randomly split the sample data in two data sets and used well-established statistical practices to evaluate the statistical significance of the results. Both the classification trees and the rules discovery were effective in providing meaningful insights about PTW crash characteristics and their interdependencies. Even though in several cases different crash characteristics were highlighted, the results of the two the analysis methods were never contradictory. Furthermore, most of the findings of this study were consistent with the results of previous studies which used different analytical techniques, such as probabilistic models of crash injury severity. Basing on the analysis results, engineering countermeasures and policy initiatives to reduce PTW injuries and

  8. Organic and inorganic nitrogen uptake by 21 dominant tree species in temperate and tropical forests.

    Science.gov (United States)

    Liu, Min; Li, Changcheng; Xu, Xingliang; Wanek, Wolfgang; Jiang, Ning; Wang, Huimin; Yang, Xiaodong

    2017-11-01

    Evidence shows that many tree species can take up organic nitrogen (N) in the form of free amino acids from soils, but few studies have been conducted to compare organic and inorganic N uptake patterns in temperate and tropical tree species in relation to mycorrhizal status and successional state. We labeled intact tree roots by brief 15N exposures using field hydroponic experiments in a temperate forest and a tropical forest in China. A total of 21 dominant tree species were investigated, 8 in the temperate forest and 13 in the tropical forest. All investigated tree species showed highest uptake rates for NH4+ (ammonium), followed by glycine and NO3- (nitrate). Uptake of NH4+ by temperate trees averaged 12.8 μg N g-1 dry weight (d.w.) root h-1, while those by tropical trees averaged 6.8 μg N g-1 d.w. root h-1. Glycine uptake rates averaged 3.1 μg N g-1 d.w. root h-1 for temperate trees and 2.4 μg N g-1 d.w. root h-1 for tropical trees. NO3- uptake was the lowest (averaging 0.8 μg N g-1 d.w. root h-1 for temperate trees and 1.2 μg N g-1 d.w. root h-1 for tropical trees). Uptake of NH4+ accounted for 76% of the total uptake of all three N forms in the temperate forest and 64% in the tropical forest. Temperate tree species had similar glycine uptake rates as tropical trees, with the contribution being slightly lower (20% in the temperate forest and 23% in the tropical forest). All tree species investigated in the temperate forest were ectomycorrhizal and all species but one in the tropical forest were arbuscular mycorrhizal (AM). Ectomycorrhizal trees showed significantly higher NH4+ and lower NO3- uptake rates than AM trees. Mycorrhizal colonization rates significantly affected uptake rates and contributions of NO3- or NH4+, but depended on forest types. We conclude that tree species in both temperate and tropical forests preferred to take up NH4+, with organic N as the second most important N source. These findings suggest that temperate and tropical forests

  9. Spatial Distribution Patterns in the Very Rare and Species-Rich Picea chihuahuana Tree Community (Mexico)

    Science.gov (United States)

    Wehenkel, Christian; Brazão-Protázio, João Marcelo; Carrillo-Parra, Artemio; Martínez-Guerrero, José Hugo; Crecente-Campo, Felipe

    2015-01-01

    The very rare Mexican Picea chihuahuana tree community covers an area of no more than 300 ha in the Sierra Madre Occidental. This special tree community has been the subject of several studies aimed at learning more about the genetic structure and ecology of the species and the potential effects of climate change. The spatial distribution of trees is a result of many ecological processes and can affect the degree of competition between neighbouring trees, tree density, variability in size and distribution, regeneration, survival, growth, mortality, crown formation and the biological diversity within forest communities. Numerous scale-dependent measures have been established in order to describe spatial forest structure. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. In this study, we examined the spatial distribution pattern of trees in the P. chihuahuana tree community in 12 localities, in relation to i) tree stand density, ii) diameter distribution (vertical structure), iii) tree species diversity, iv) geographical latitude and v) tree dominance at a fine scale (in 0.25 ha plots), with the aim of obtaining a better understanding of the complex ecosystem processes and biological diversity. Because of the strongly mixed nature of this tree community, which often produces low population densities of each tree species and random tree fall gaps caused by tree death, we expect aggregated patterns in individual Picea chihuahuana trees and in the P. chihuahuana tree community, repulsive Picea patterns to other tree species and repulsive patterns of young to adult trees. Each location was represented by one plot of 50 x 50 m (0.25 ha) established in the centre of the tree community. The findings demonstrate that the hypothesis of aggregated tree pattern is not applicable to the mean pattern measured by Clark-Evans index, Uniform Angle index and Mean Directional index of the uneven-aged P

  10. Species-specific responses of tree ring and leaf stable isotope signals in isohydric and anisohydric trees to drought

    Science.gov (United States)

    Oh, Y.; Welp, L.; Yi, K.; Maxwell, J. T.; Novick, K. A.

    2016-12-01

    Eastern US forests, like many globally, have experienced a significant increase in temperature and summer drought. Recently, it has been suggested to classify tree's water use strategy in response to drought along the spectrum of isohydric to anisohydric species depending on their leaf-level hydraulic regulation. The differences in water use strategy lead to differences in internal leaf CO2 concentrations (Ci). Changes in Ci from stomatal conductance (gs) response to drought and changes in carbon assimilation rates (A) contribute to the tree's intrinsic water use efficiency (iWUE), which is the ratio of A to gs. Changes in iWUE are recorded in 13C/12C (d13C) ratios of stem wood in annual tree rings. Further information from the 18O/16O ratio (d18O) of wood is hypothesized to qualitatively separate the impact of A or gs using the dual-isotope method (Scheideggar et al. 2000). However, recent studies have questioned the applicability of the dual-isotope approach in cases of severe drought. In this study, we will use 3 years (2011-2013) of bulk leaf samples and tree ring cellulose from three isohydric and two anisohydric species in Morgan-Monroe State Forest to examine how the iWUE of each tree species responds to drought in d13C and d18O. To examine dual-isotope approach applied to tree ring measurements in a mechanistic way, we will compare the temporal changes of bulk leaf isotope measurements and leaf gas exchange measurements from an infrared gas analyzer. We will further use the annual dual-isotope signals in leaves and tree rings to test the coupling between leaf and tree ring signals. We hypothesize that (1) the iWUE of isohydric species will respond more sensitively to the severe drought in 2012 than the anisohydric species, and (2) the dual-isotope approach may be more applicable for isohydric species since isotope signals are mainly controlled by the stomata, not the leaf's complicated downstream process. This study will show that oxygen and carbon isotope

  11. The relationship between species diversity and genetic structure in the rare Picea chihuahuana tree species community, Mexico.

    Science.gov (United States)

    Simental-Rodríguez, Sergio Leonel; Quiñones-Pérez, Carmen Zulema; Moya, Daniel; Hernández-Tecles, Enrique; López-Sánchez, Carlos Antonio; Wehenkel, Christian

    2014-01-01

    Species diversity and genetic diversity, the most basic elements of biodiversity, have long been treated as separate topics, although populations evolve within a community context. Recent studies on community genetics and ecology have suggested that genetic diversity is not completely independent of species diversity. The Mexican Picea chihuahuana Martínez is an endemic species listed as "Endangered" on the Red List. Forty populations of Chihuahua spruce have been identified. This species is often associated with tree species of eight genera in gallery forests. This rare Picea chihuahuana tree community covers an area no more than 300 ha and has been subject of several studies involving different topics such as ecology, genetic structure and climate change. The overall aim of these studies was to obtain a dataset for developing management tools to help decision makers implement preservation and conservation strategies. However, this unique forest tree community may also represent an excellent subject for helping us to understand the interplay between ecological and evolutionary processes in determining community structure and dynamics. The AFLP technique and species composition data were used together to test the hypothesis that species diversity is related to the adaptive genetic structure of some dominant tree species (Picea chihuahuana, Pinus strobiformis, Pseudotsuga menziesii and Populus tremuloides) of the Picea chihuahuana tree community at fourteen locations. The Hill numbers were used as a diversity measure. The results revealed a significant correlation between tree species diversity and genetic structure in Populus tremuloides. Because the relationship between the two levels of diversity was found to be positive for the putative adaptive AFLP detected, genetic and species structures of the tree community were possibly simultaneously adapted to a combination of ecological or environmental factors. The present findings indicate that interactions between

  12. Estimating tree species diversity in the savannah using NDVI and woody canopy cover

    Science.gov (United States)

    Madonsela, Sabelo; Cho, Moses Azong; Ramoelo, Abel; Mutanga, Onisimo; Naidoo, Laven

    2018-04-01

    Remote sensing applications in biodiversity research often rely on the establishment of relationships between spectral information from the image and tree species diversity measured in the field. Most studies have used normalized difference vegetation index (NDVI) to estimate tree species diversity on the basis that it is sensitive to primary productivity which defines spatial variation in plant diversity. The NDVI signal is influenced by photosynthetically active vegetation which, in the savannah, includes woody canopy foliage and grasses. The question is whether the relationship between NDVI and tree species diversity in the savanna depends on the woody cover percentage. This study explored the relationship between woody canopy cover (WCC) and tree species diversity in the savannah woodland of southern Africa and also investigated whether there is a significant interaction between seasonal NDVI and WCC in the factorial model when estimating tree species diversity. To fulfil our aim, we followed stratified random sampling approach and surveyed tree species in 68 plots of 90 m × 90 m across the study area. Within each plot, all trees with diameter at breast height of >10 cm were sampled and Shannon index - a common measure of species diversity which considers both species richness and abundance - was used to quantify tree species diversity. We then extracted WCC in each plot from existing fractional woody cover product produced from Synthetic Aperture Radar (SAR) data. Factorial regression model was used to determine the interaction effect between NDVI and WCC when estimating tree species diversity. Results from regression analysis showed that (i) WCC has a highly significant relationship with tree species diversity (r2 = 0.21; p NDVI and WCC is not significant, however, the factorial model significantly reduced the error of prediction (RMSE = 0.47, p NDVI (RMSE = 0.49) or WCC (RMSE = 0.49) model during the senescence period. The result justifies our assertion

  13. Multiple evolutionary processes drive the patterns of genetic differentiation in a forest tree species complex

    Science.gov (United States)

    Jones, Rebecca C; Steane, Dorothy A; Lavery, Martyn; Vaillancourt, René E; Potts, Brad M

    2013-01-01

    Forest trees frequently form species complexes, complicating taxonomic classification and gene pool management. This is certainly the case in Eucalyptus, and well exemplified by the Eucalyptus globulus complex. This ecologically and economically significant complex comprises four taxa (sspp. bicostata, globulus, maidenii, pseudoglobulus) that are geographically and morphologically distinct, but linked by extensive “intergrade” populations. To resolve their genetic affinities, nine microsatellites were used to genotype 1200 trees from throughout the natural range of the complex in Australia, representing 33 morphological core and intergrade populations. There was significant spatial genetic structure (FST = 0.10), but variation was continuous. High genetic diversity in southern ssp. maidenii indicates that this region is the center of origin. Genetic diversity decreases and population differentiation increases with distance from this area, suggesting that drift is a major evolutionary process. Many of the intergrade populations, along with other populations morphologically classified as ssp. pseudoglobulus or ssp. globulus, belong to a “cryptic genetic entity” that is genetically and geographically intermediate between core ssp. bicostata, ssp. maidenii, and ssp. globulus. Geography, rather than morphology, therefore, is the best predictor of overall genetic affinities within the complex and should be used to classify germplasm into management units for conservation and breeding purposes. PMID:23403692

  14. Characterizing Tropical Tree Species Growth Strategies: Learning from Inter-Individual Variability and Scale Invariance

    Science.gov (United States)

    Le Bec, Jimmy; Courbaud, Benoit; Le Moguédec, Gilles; Pélissier, Raphaël

    2015-01-01

    Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history) influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth strategies. PMID

  15. Characterizing tropical tree species growth strategies: learning from inter-individual variability and scale invariance.

    Directory of Open Access Journals (Sweden)

    Jimmy Le Bec

    Full Text Available Understanding how tropical tree species differ in their growth strategies is critical to predict forest dynamics and assess species coexistence. Although tree growth is highly variable in tropical forests, species maximum growth is often considered as a major axis synthesizing species strategies, with fast-growing pioneer and slow-growing shade tolerant species as emblematic representatives. We used a hierarchical linear mixed model and 21-years long tree diameter increment series in a monsoon forest of the Western Ghats, India, to characterize species growth strategies and question whether maximum growth summarizes these strategies. We quantified both species responses to biotic and abiotic factors and individual tree effects unexplained by these factors. Growth responses to competition and tree size appeared highly variable among species which led to reversals in performance ranking along those two gradients. However, species-specific responses largely overlapped due to large unexplained variability resulting mostly from inter-individual growth differences consistent over time. On average one-third of the variability captured by our model was explained by covariates. This emphasizes the high dimensionality of the tree growth process, i.e. the fact that trees differ in many dimensions (genetics, life history influencing their growth response to environmental gradients, some being unmeasured or unmeasurable. In addition, intraspecific variability increased as a power function of species maximum growth partly as a result of higher absolute responses of fast-growing species to competition and tree size. However, covariates explained on average the same proportion of intraspecific variability for slow- and fast-growing species, which showed the same range of relative responses to competition and tree size. These results reflect a scale invariance of the growth process, underlining that slow- and fast-growing species exhibit the same range of growth

  16. Multivariate decision tree design for the classification of multi-jet topologies in $e^{+}e^{-}$ collisions

    CERN Document Server

    Mjahed, M

    2002-01-01

    The binary decision tree method is used to separate between several multi-jet topologies in e/sup +/e/sup -/ collisions. Instead of the univariate process usually taken, a new design procedure for constructing multivariate decision trees is proposed. The segmentation is obtained by considering some features functions, where linear and nonlinear discriminant functions and a minimal distance method are used. The classification focuses on ALEPH simulated events, with multi-jet topologies. Compared to a standard univariate tree, the multivariate decision trees offer significantly better performance. (30 refs).

  17. Discriminative Hierarchical K-Means Tree for Large-Scale Image Classification.

    Science.gov (United States)

    Chen, Shizhi; Yang, Xiaodong; Tian, Yingli

    2015-09-01

    A key challenge in large-scale image classification is how to achieve efficiency in terms of both computation and memory without compromising classification accuracy. The learning-based classifiers achieve the state-of-the-art accuracies, but have been criticized for the computational complexity that grows linearly with the number of classes. The nonparametric nearest neighbor (NN)-based classifiers naturally handle large numbers of categories, but incur prohibitively expensive computation and memory costs. In this brief, we present a novel classification scheme, i.e., discriminative hierarchical K-means tree (D-HKTree), which combines the advantages of both learning-based and NN-based classifiers. The complexity of the D-HKTree only grows sublinearly with the number of categories, which is much better than the recent hierarchical support vector machines-based methods. The memory requirement is the order of magnitude less than the recent Naïve Bayesian NN-based approaches. The proposed D-HKTree classification scheme is evaluated on several challenging benchmark databases and achieves the state-of-the-art accuracies, while with significantly lower computation cost and memory requirement.

  18. Real-time classification of humans versus animals using profiling sensors and hidden Markov tree model

    Science.gov (United States)

    Hossen, Jakir; Jacobs, Eddie L.; Chari, Srikant

    2015-07-01

    Linear pyroelectric array sensors have enabled useful classifications of objects such as humans and animals to be performed with relatively low-cost hardware in border and perimeter security applications. Ongoing research has sought to improve the performance of these sensors through signal processing algorithms. In the research presented here, we introduce the use of hidden Markov tree (HMT) models for object recognition in images generated by linear pyroelectric sensors. HMTs are trained to statistically model the wavelet features of individual objects through an expectation-maximization learning process. Human versus animal classification for a test object is made by evaluating its wavelet features against the trained HMTs using the maximum-likelihood criterion. The classification performance of this approach is compared to two other techniques; a texture, shape, and spectral component features (TSSF) based classifier and a speeded-up robust feature (SURF) classifier. The evaluation indicates that among the three techniques, the wavelet-based HMT model works well, is robust, and has improved classification performance compared to a SURF-based algorithm in equivalent computation time. When compared to the TSSF-based classifier, the HMT model has a slightly degraded performance but almost an order of magnitude improvement in computation time enabling real-time implementation.

  19. Morphological and molecular identification of phytophthora species from maple trees in Serbia

    Directory of Open Access Journals (Sweden)

    Milenković Ivan

    2014-01-01

    Full Text Available The paper presents the results of the study performed with aims to determine the presence and diversity of Phytophthora species on maple trees in Serbia. Due to high aggressiveness and their multicyclic nature, presence of these pathogens is posing significant threat to forestry and biodiversity. In total, 29 samples of water, soil and tissues were taken from 10 different localities, and six different maple hosts were tested. After the isolation tests, 17 samples from five different maple hosts were positive for the presence of Phytophthora spp., and 31 isolates were obtained. After the detailed morphological and physiological classification, four distinct groups of isolates were separated. DNA was extracted from selected representative isolates and molecular identification with sequencing of ITS region was performed. Used ITS4 and ITS6 primers successfully amplified the genomic DNA of chosen isolates and morphological identification of obtained isolates was confirmed after the sequencing. Four different Phytophthora species were detected, including P. cactorum, P. gonapodyides, P. plurivora and P. lacustris. The most common isolated species was homothallic, and with very variable and semipapillate sporangia, P. plurivora with 22 obtained isolates. This is the first report of P. plurivora and P. gonapodyides on A. campestre, P. plurivora and P. lacustris on Acer heldreichii and first report of P. lacustris on A. pseudoplatanus and A. tataricum in Serbia. [Projekat Ministarstva nauke Republike Srbije, br. TR 37008

  20. Uranium mobility across annual growth rings in three deciduous tree species.

    Science.gov (United States)

    McHugh, Kelly C; Widom, Elisabeth; Spitz, Henry B; Wiles, Gregory C; Glover, Sam E

    2018-02-01

    Black walnut (Juglans nigra), slippery elm (Ulmus rubra), and white ash (Fraxinus americana) trees were evaluated as potential archives of past uranium (U) contamination. Like other metals, U mobility in annual growth rings of trees is dependent on the tree species. Uranium concentrations and isotopic compositions (masses 234, 235, 236, and 238) were analyzed by thermal ionization mass spectrometry to test the efficacy of using tree rings to retroactively monitor U pollution from the FFMPC, a U purification facility operating from 1951 to 1989. This study found non-natural U (depleted U and detectable 236 U) in growth rings of all three tree species that pre-dated the start of operations at FFMPC and compositional trends that did not correspond with known contamination events. Therefore, the annual growth rings of these tree species cannot be used to reliably monitor the chronology of U contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Potential of High-Resolution Satellite Imagery for Mapping Distribution and Evaluating Ecological Characteristics of Tree Species at the Angkor Monument, Cambodia

    Directory of Open Access Journals (Sweden)

    Tomita Mizuki

    2015-01-01

    Full Text Available Large trees play several vital roles in the Angkor monuments landscape. They protect biodiversity, enhance the tourism experience, and provide various ecosystem services to local residents. A clear understanding of forest composition and distribution of individual species, as well as timely monitoring of changes, is necessary for conservation of these trees. using traditional field work, obtaining this sort of data is time-consuming and labour-intensive. This research investigates classification of very high resolution remote sensing data as a tool for efficient analyses. QuickBird satellite imagery was used to clarify the tree species community in and around Preah Khan temple, to elucidate differences in ecological traits among the three dominant species (Dipterocarpus alatus, Lagerstroemia calyculata and Tetrameles nudiflora, and to identify crowns of the dominant species.

  2. Classification of premalignant pancreatic cancer mass-spectrometry data using decision tree ensembles

    Directory of Open Access Journals (Sweden)

    Wong G William

    2008-06-01

    Full Text Available Abstract Background Pancreatic cancer is the fourth leading cause of cancer death in the United States. Consequently, identification of clinically relevant biomarkers for the early detection of this cancer type is urgently needed. In recent years, proteomics profiling techniques combined with various data analysis methods have been successfully used to gain critical insights into processes and mechanisms underlying pathologic conditions, particularly as they relate to cancer. However, the high dimensionality of proteomics data combined with their relatively small sample sizes poses a significant challenge to current data mining methodology where many of the standard methods cannot be applied directly. Here, we propose a novel methodological framework using machine learning method, in which decision tree based classifier ensembles coupled with feature selection methods, is applied to proteomics data generated from premalignant pancreatic cancer. Results This study explores the utility of three different feature selection schemas (Student t test, Wilcoxon rank sum test and genetic algorithm to reduce the high dimensionality of a pancreatic cancer proteomic dataset. Using the top features selected from each method, we compared the prediction performances of a single decision tree algorithm C4.5 with six different decision-tree based classifier ensembles (Random forest, Stacked generalization, Bagging, Adaboost, Logitboost and Multiboost. We show that ensemble classifiers always outperform single decision tree classifier in having greater accuracies and smaller prediction errors when applied to a pancreatic cancer proteomics dataset. Conclusion In our cross validation framework, classifier ensembles generally have better classification accuracies compared to that of a single decision tree when applied to a pancreatic cancer proteomic dataset, thus suggesting its utility in future proteomics data analysis. Additionally, the use of feature selection

  3. A classification tree for the prediction of benign versus malignant disease in patients with small renal masses.

    Science.gov (United States)

    Rendon, Ricardo A; Mason, Ross J; Kirkland, Susan; Lawen, Joseph G; Abdolell, Mohamed

    2014-08-01

    To develop a classification tree for the preoperative prediction of benign versus malignant disease in patients with small renal masses. This is a retrospective study including 395 consecutive patients who underwent surgical treatment for a renal mass classification tree to predict the risk of having a benign renal mass preoperatively was developed using recursive partitioning analysis for repeated measures outcomes. Age, sex, volume on preoperative imaging, tumor location (central/peripheral), degree of endophytic component (1%-100%), and tumor axis position were used as potential predictors to develop the model. Forty-five patients (11.4%) were found to have a benign mass postoperatively. A classification tree has been developed which can predict the risk of benign disease with an accuracy of 88.9% (95% CI: 85.3 to 91.8). The significant prognostic factors in the classification tree are tumor volume, degree of endophytic component and symptoms at diagnosis. As an example of its utilization, a renal mass with a volume of classification tree to predict the risk of benign disease in small renal masses has been developed to aid the clinician when deciding on treatment strategies for small renal masses.

  4. Alien Plant Species Mountain Endemic Tree Species in Gunung Gede Pangrango National Park

    Directory of Open Access Journals (Sweden)

    Budi Utomo

    2012-09-01

    Full Text Available 800x600 Up to now, montane rain forest of Gunung Gede-Pangrango National Park, faces problem in the form of invasion of exotic plant species into the area.  Location of the area that borders with various land uses, such as Botanical Garden and agricultural land, make it very susceptible toward invasion of plant species from outside the area.  The collapse of large trees which normally constitute a mechanism of natural regeneration, was in fact stimulating the development of exotic species, particularly those which were invasive, inside the area. The objective of this research was to test the competitive ability of endemic species, which in this case was represented by Cleystocalyx operculata and Mischocarpus pentapetalus, toward exotic plant species, represented by Austroeupatoriun inulaefolium and Passiflora ligularis, during 5 months of study.  Growth rate of exotic plant species, as well as the dry weight biomass, were larger than those of endemic species.  Indirect estimation of competitive ability showed that competitive ability (β of endemic species were 4-5 times less, namely 0.0274 (for C. operculata and 0.0251 (for M. pentapetalus; as compared with those of exotic species, namely 0.125 (for P. ligularis and 0.1104 (for A. inulaefolium.  Direct test also proved that competitive ability (β of endemic species was lower than that of exotic species, as shown by relative crowding value   Estimation of future competitive ability, using diagram of input/ output ratio, showed also the disability of endemic species to compete with exotic species, where position of input/output ratio points were parallel with equilibrium line y=x. Considering those facts, there is urgent need for controlling these invasive exotic species inside the National Park area to maintain the sustainability of biodiversity and regeneration of endemic species in montane rain forest of Gunung Gede–Pangrango National Park.    Keywords: endemic, exotic, invasion

  5. Grass species composition, yield and quality under and outside tree ...

    African Journals Online (AJOL)

    A two-year study was conducted in lightly grazed areas of Matopos Research Station, Zimbabwe, to evaluate the impact of widely spaced trees on understorey grass composition, yield and quality. The study trees were Terminalia sericea and Acacia karroo. Ordination techniques using grass density and biomass as indices ...

  6. Stem biomass and volume models of selected tropical tree species ...

    African Journals Online (AJOL)

    Estimating tree volume and biomass constitutes an essential part of the forest resources assessment and the evaluation of the climate change mitigation potential of forests through biomass accumulation and carbon sequestration. This research article provides stem volume and biomass equations applicable to five tree ...

  7. Effects of nurse trees, spacing, and tree species on biomass production in mixed forest plantations

    DEFF Research Database (Denmark)

    Nord-Larsen, Thomas; Meilby, Henrik

    2016-01-01

    Growing concern about increasing concentrations of greenhouse gases in the atmosphere, and resulting global climate change, has spurred a growing demand for renewable energy. In this study, we hypothesized that a nurse tree crop may provide additional early yields of biomass for fuel, while...... was in most cases reduced due to competition. However, provided timely thinning of nurse trees, the qualitative development of the trees will allow for long-term timber production....

  8. Classification of soil respiration in areas of sugarcane renewal using decision tree

    Directory of Open Access Journals (Sweden)

    Camila Viana Vieira Farhate

    Full Text Available ABSTRACT: The use of data mining is a promising alternative to predict soil respiration from correlated variables. Our objective was to build a model using variable selection and decision tree induction to predict different levels of soil respiration, taking into account physical, chemical and microbiological variables of soil as well as precipitation in renewal of sugarcane areas. The original dataset was composed of 19 variables (18 independent variables and one dependent (or response variable. The variable-target refers to soil respiration as the target classification. Due to a large number of variables, a procedure for variable selection was conducted to remove those with low correlation with the variable-target. For that purpose, four approaches of variable selection were evaluated: no variable selection, correlation-based feature selection (CFS, chisquare method (χ2 and Wrapper. To classify soil respiration, we used the decision tree induction technique available in the Weka software package. Our results showed that data mining techniques allow the development of a model for soil respiration classification with accuracy of 81 %, resulting in a knowledge base composed of 27 rules for prediction of soil respiration. In particular, the wrapper method for variable selection identified a subset of only five variables out of 18 available in the original dataset, and they had the following order of influence in determining soil respiration: soil temperature > precipitation > macroporosity > soil moisture > potential acidity.

  9. Tree Species Composition and Regeneration Status of Shitalpur Forest Beat under Chittagong North Forest Division, Bangladesh

    Directory of Open Access Journals (Sweden)

    Asadozzaman Nur

    2016-01-01

    Full Text Available Biodiversity erosion particularly in developing countries is a matter of great concern to the global ecological community. Species composition and regeneration indicate the health of forest. This study explored tree species composition and regeneration of natural hill forest of Shitalpur under Chittagong North Forest Division through 27 sample plots of 20 m × 20 m for trees and 2 m × 2 m for regeneration. A total of 47 tree species belonging to 29 families and 17 regenerating species belonging to 15 families were recorded. The tree stem density, basal area, and wood volume were 0.49 m2/ha, 1425 stem/ha, and 189.9 m3/ha, respectively. Mean regeneration was significantly higher in bottom hill (14374 seedlings/ha compared to top hill (9671 seedlings/ha. Toona ciliata was highest (4444 seedlings/ha at the bottom hill compared to other hill positions. The result shows that only 36% of the tree species (17 out of 47 are regenerating in the study area, meaning majority of the tree species (64% are not getting favorable conditions to regenerate. This might be due to absence of mature tree species as a result of overexploitation by local people. The findings may help in monitoring the species composition changes over time and adopting specific conservation programs for Shitalpur Forest.

  10. Ecology and Conservation of the Critically Endangered Tree Species Gymnocladus assamicus in Arunachal Pradesh, India

    International Nuclear Information System (INIS)

    Choudhury, B.I.; Khan, M.L.; Arunachalam, A.; Das, A.K.

    2007-01-01

    Gymnocladus assamicus is a critically endangered leguminous tree species endemic to Northeast India. Mature pods of the trees yield soap material and are collected by local people for domestic purposes and religious activities. G. assamicus grows on hill slopes and along banks of streams. Male and hermaphrodite flowers are borne by separate individual trees. Altogether 28 mature trees were documented from nine populations. Of these, very few regenerating trees were found. This species regenerates only through seeds. The major constraints to natural regeneration are over harvesting of mature fruits, habitat destruction, grazing, predation of seeds by scatter-hoarding animals, poor percentage of seed germination due to their hard-waxy seed coats, and the lack of seed dispersal. Effective conservation initiatives should emphasize sustainable harvesting of mature pods, awareness among local people, and preservation of surviving individuals of the species. Nonetheless, reintroduction of the species to suitable ecological habitats is also recommended.

  11. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe

    Science.gov (United States)

    Jens-Christian Svenning; Matthew C. Fitzpatrick; Signe Normand; Catherine H. Graham; Peter B. Pearman; Louis R. Iverson; Flemming. Skov

    2010-01-01

    Environmental conditions and biotic interactions are generally thought to influence local species richness. However, immigration and the evolutionary and historical factors that shape regional species pools should also contribute to determining local species richness because local communities arise by assembly from regional species pools. Using the European tree flora...

  12. Gene pool of less widely spread fruit tree species

    Directory of Open Access Journals (Sweden)

    Vojtěch Řezníček

    2004-01-01

    Full Text Available Within the gene pool collected at the Department of Breeding and Propagation of Garden Plants of the Faculty of Horticulture, Mendel University of Agriculture and Forestry in Brno, in Lednice we established experimental plots with some selected less known tree species - quince (Cydonia oblonga Mill., sea buckthorn (Hippophäe rhamnoides L., Cornelian cherry (Cornus mas L. and honeysuckle (Lonicera caerulea subsp. edulis Turcy. ex Freyn.. The experimental plots were established in successive steps according to the availability of planting material and using conventional methods of cultivation. Evaluations are focused on selected growth parameters, phenology and commercial use of the fruit.The evaluations of the crown of quince showed differences in the size and shape. The variety Hemus had the largest crown volume (5.70 m3; the variety Blanár gave the highest harvest yields. The sea buckthorn varieties Polmix, Dar Katuni and Novosť Altaja produced the longest increments. The average weight of the fruit of the variety Leicora was 0.74 g. The varieties of Cornelian cherry also differed in the growth parameters; the highest shrubs were those of the variety Vyšegorodskij, which also produced the largest fruit – the average weight of the fruit was 4.85 g. The initial growth of selected varieties and genotypes of honeysuckle is different when compared to the fruit-bearing shrubs. Harvest data are in direct proportion to the size of the shrub. Fruit harvest began in mid-May and vegetation ended on 15 October.

  13. Role of Armillaria species on tree dying in Turkey oak and Hungarian oak forest in Lipovica

    Directory of Open Access Journals (Sweden)

    Keča Nenad

    2006-01-01

    Full Text Available The species and population structure of Armillaria species were studied in Turkey oak and Hungarian oak forest. Two species were observed, Armillaria gallica and A. mellea. Armillaria mellea was found on only one tree, and A. gallica was found on seven trees. Four gewets of A. gallica were observed of which two were represented only by one isolate each, while two covered the area of 5 and 9 areas respectively.

  14. Population and species differences in treeline tree species germination in response to climate change

    Science.gov (United States)

    Kueppers, L. M.; Faist, A.; Castanha, C.

    2009-12-01

    The ability of plant species to recruit within and beyond their current geographic ranges in response to climate warming may be constrained by population differences in response. A number of studies have highlighted the degree to which genotype and environment are strongly linked in forest trees (i.e., provenances), but few studies have examined whether these local adaptations are at all predictive of population or species response to change. We report the results of lab germination experiments using high and low elevation populations of both limber pine (Pinus flexilis) and Engelmann spruce (Picea engelmannii), which are important treeline species in the Rocky Mountains. Seeds collected in 2008 were germinated under two different temperature regimes (ambient and +5°C) and two different moisture regimes, and followed for 17 weeks. For both species and source elevations, warmer temperatures advanced the timing of emergence by up to 20 days, whereas the effects of moisture were less consistent. At harvest, high elevation limber pine had less root and shoot biomass, and a slightly lower root:shoot ratio, under the +5°C treatment, whereas low elevation limber pine seedling mass was not sensitive to temperature. Whether these differences persist under field conditions will be tested in a field experiment now established at Niwot Ridge, CO. The ability to accurately predict tree seedling recruitment and ultimately shifts in treeline position with climate change will improve our ability to model changes in surface albedo, water cycling and carbon cycling, all of which can generate feedbacks to regional and global climate.

  15. Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China.

    Science.gov (United States)

    He, Huaijiang; Zhang, Chunyu; Zhao, Xiuhai; Fousseni, Folega; Wang, Jinsong; Dai, Haijun; Yang, Song; Zuo, Qiang

    2018-01-01

    Understanding forest carbon budget and dynamics for sustainable resource management and ecosystem functions requires quantification of above- and below-ground biomass at individual tree species and stand levels. In this study, a total of 122 trees (9-12 per species) were destructively sampled to determine above- and below-ground biomass of 12 tree species (Acer mandshuricum, Acer mono, Betula platyphylla, Carpinus cordata, Fraxinus mandshurica, Juglans mandshurica, Maackia amurensis, P. koraiensis, Populus ussuriensis, Quercus mongolica, Tilia amurensis and Ulmus japonica) in coniferous and broadleaved mixed forests of Northeastern China, an area of the largest natural forest in the country. Biomass allocation was examined and biomass models were developed using diameter as independent variable for individual tree species and all species combined. The results showed that the largest biomass allocation of all species combined was on stems (57.1%), followed by coarse root (21.3%), branch (18.7%), and foliage (2.9%). The log-transformed model was statistically significant for all biomass components, although predicting power was higher for species-specific models than for all species combined, general biomass models, and higher for stems, roots, above-ground biomass, and total tree biomass than for branch and foliage biomass. These findings supplement the previous studies on this forest type by additional sample trees, species and locations, and support biomass research on forest carbon budget and dynamics by management activities such as thinning and harvesting in the northeastern part of China.

  16. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species.

    Science.gov (United States)

    Gu, Jiacun; Xu, Yang; Dong, Xueyun; Wang, Hongfeng; Wang, Zhengquan

    2014-04-01

    Root diameter, a critical indicator of root physiological function, varies greatly among tree species, but the underlying mechanism of this high variability is unclear. Here, we sampled 50 tree species across tropical and temperate zones in China, and measured root morphological and anatomical traits along the first five branch orders in each species. Our objectives were (i) to reveal the relationships between root diameter, cortical thickness and stele diameter among tree species in tropical and temperate forests, and (ii) to investigate the relationship of both root morphological and anatomical traits with divergence time during species radiation. The results showed that root diameter was strongly affected by cortical thickness but less by stele diameter in both tropical and temperate species. Changes in cortical thickness explained over 90% of variation in root diameter for the first order, and ∼74-87% for the second and third orders. Thicker roots displayed greater cortical thickness and more cortical cell layers than thinner roots. Phylogenetic analysis demonstrated that root diameter, cortical thickness and number of cortical cell layers significantly correlated with divergence time at the family level, showing similar variation trends in geological time. The results also suggested that trees tend to decrease their root cortical thickness rather than stele diameter during species radiation. The close linkage of variations in root morphology and anatomy to phylogeny as demonstrated by the data from the 50 tree species should provide some insights into the mechanism of root diameter variability among tree species.

  17. OmniGA: Optimized Omnivariate Decision Trees for Generalizable Classification Models

    KAUST Repository

    Magana-Mora, Arturo

    2017-06-14

    Classification problems from different domains vary in complexity, size, and imbalance of the number of samples from different classes. Although several classification models have been proposed, selecting the right model and parameters for a given classification task to achieve good performance is not trivial. Therefore, there is a constant interest in developing novel robust and efficient models suitable for a great variety of data. Here, we propose OmniGA, a framework for the optimization of omnivariate decision trees based on a parallel genetic algorithm, coupled with deep learning structure and ensemble learning methods. The performance of the OmniGA framework is evaluated on 12 different datasets taken mainly from biomedical problems and compared with the results obtained by several robust and commonly used machine-learning models with optimized parameters. The results show that OmniGA systematically outperformed these models for all the considered datasets, reducing the F score error in the range from 100% to 2.25%, compared to the best performing model. This demonstrates that OmniGA produces robust models with improved performance. OmniGA code and datasets are available at www.cbrc.kaust.edu.sa/omniga/.

  18. Estimating tree species richness from forest inventory plot data

    Science.gov (United States)

    Ronald E. McRoberts; Dacia M. Meneguzzo

    2007-01-01

    Montreal Process Criterion 1, Conservation of Biological Diversity, expresses species diversity in terms of number of forest dependent species. Species richness, defined as the total number of species present, is a common metric for analyzing species diversity. A crucial difficulty in estimating species richness from sample data obtained from sources such as inventory...

  19. Anchoring quartet-based phylogenetic distances and applications to species tree reconstruction.

    Science.gov (United States)

    Sayyari, Erfan; Mirarab, Siavash

    2016-11-11

    Inferring species trees from gene trees using the coalescent-based summary methods has been the subject of much attention, yet new scalable and accurate methods are needed. We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with running times ranging between quadratic to quartic in the number of leaves. We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and reduced running times.

  20. Tissue culture and top-fruit tree species.

    Science.gov (United States)

    Ochatt, S J; Davey, M R; Power, J B

    1990-01-01

    The commercial cultivation of rosaceous fruit trees (e.g., pear, apple, cherry, peach, plum) relies heavily upon the quality and performance of the rootstocks. This is even more the case now that self-rooted scions produce larger trees with a longer juvenile phase (1). It would, therefore, be of special interest for the fruit breeder to have general purpose rootstocks with a wide ecophysiological adaptation and high compatibility coupled with early cropping. In addition, many of the older and highly adapted scion varieties of fruit trees could benefit greatly from the introduction of stable, yet minor changes in their genome. Fruit trees are generally highly heterozygous, outbreeding, and thus are asexually propagated (see Chapter 10 , this vol.). Consequently, genetic improvement is likely to be based on protoplast technology, and achieved mainly through somatic methods, such as somaclonal variation or somatic hybridization.

  1. Interpreting species-specific variation in tree-ring oxygen isotope ratios among three temperate forest trees

    Science.gov (United States)

    Xin Song; Kenneth S. Clark; Brent R. Helliker

    2014-01-01

    Although considerable variation has been documented in tree-ring cellulose oxygen isotope ratios (δ18Ocell) among co-occurring species, the underlying causes are unknown. Here, we used a combination of field measurements and modelling to investigate the mechanisms behind variations in late-wood δ

  2. Identification and Quantification of Tree Species in Open Mixed Forests using High Resolution QuickBird Satellite Imagery

    Directory of Open Access Journals (Sweden)

    S Arockiaraj

    2015-12-01

    Full Text Available Present study deals with identification and quantification of tree species within an open mixed forest in parts of Ranchi district Jharkhand, India using high resolution QuickBird satellite data using image processing and GIS techniques. A high resolution QuickBird satellite image was used for shadow enhancement and tree crown area extraction. The First Principal Component of QuickBird satellite images was employed to enhance the shadowed area and subsequently shadow and non-shadow area were classified using ISODATA. The satellite image was used for crown area extraction with standard deviation of NDVI value and the crowns were classified into five classes using Maximum Likelihood supervised algorithm. Result shows that barring few limitation, the high resolution QuickBird image provides rapid and accurate results in terms of identification and quantification of tree species in conjugation with field verification and attained 88% of classification accuracy. It reduces the time required for obtaining inventory data in open mixed forest. Results also showed that total 5,522 trees of various species were present in the study area and dominated by Shorea robusta (80.48% followed by Ziziphus mauritiana (16.26%, unknown tree (1.81%, Ficus religiosa (0.98% and Mangifera indica (0.47%. The demography patterns of the locals mainly tribal (89.9% exhibited their direct as well as indirect dependency on mixed forests resources for their subsistence and livelihood. The study necessitate towards the effective implication of policies to raise the standard of living of tribal people in the region.

  3. Soil carbon accumulation and nitrogen retention traits of four tree species grown in common gardens

    DEFF Research Database (Denmark)

    Gurmesa, Geshere Abdisa; Schmidt, Inger Kappel; Gundersen, Per

    2013-01-01

    explored. Effects of four tree species on soil C and N stocks and soil water nitrate concentration below the root zone were evaluated in a common garden design replicated at eight sites in Denmark. The tree species were beech (Fagus sylvatica L.), oak (Quercus robur L.), larch (Larix leptolepis Kaempf......Tree species effects on soil carbon (C) accumulation are uncertain, especially with respect to the mineral soil C, and the consistency of such effects across soil types is not known. The interaction between C accumulation and nitrogen (N) retention among common tree species has also been little......), and Norway spruce (Picea abies (L) Karst.). After four decades, there were significant differences in forest floor C stocks among all four species, and C stocks increased consistently in the order oak soil texture gradient of the sites. Forest floor N stocks only...

  4. Tree species distribution along the environmental gradients in Pananjung Pangandaran Nature Reserve, West Java

    Directory of Open Access Journals (Sweden)

    AGUNG KURNIAWAN

    2008-10-01

    Full Text Available The research of tree species distribution along the environmental gradients in Lowland Tropical Rainforest Pananjung Pangandaran Nature Reserve had been conducted. The study aimed to elucidate the relationship between tree species distribution with ≥10 cm dbh and some measured environmental gradients, namely soil pH and moisture, soil depth, litter thickness, light intensity, altitude, slope, and the distance of plot from coastal line. A number of 125 of 10x10 m2 quadrats were established randomly in four transects. The results indicated that Rhodamnia cinerea was the species having the highest presence. Ordination technique using Canonical Correspondence Analysis (CCA suggested that tree species were less evenly distributed along the measured environmental factors with Eigenvalue 0,387. Altitude was the most important environmental factor affected tree species distribution, soil moisture as well as light intensity.

  5. Coordination between water transport capacity, biomass growth, metabolic scaling and species stature in co-occurring shrub and tree species.

    Science.gov (United States)

    Smith, Duncan D; Sperry, John S

    2014-12-01

    The significance of xylem function and metabolic scaling theory begins from the idea that water transport is strongly coupled to growth rate. At the same time, coordination of water transport and growth seemingly should differ between plant functional types. We evaluated the relationships between water transport, growth and species stature in six species of co-occurring trees and shrubs. Within species, a strong proportionality between plant hydraulic conductance (K), sap flow (Q) and shoot biomass growth (G) was generally supported. Across species, however, trees grew more for a given K or Q than shrubs, indicating greater growth-based water-use efficiency (WUE) in trees. Trees also showed slower decline in relative growth rate (RGR) than shrubs, equivalent to a steeper G by mass (M) scaling exponent in trees (0.77-0.98). The K and Q by M scaling exponents were common across all species (0.80, 0.82), suggesting that the steeper G scaling in trees reflects a size-dependent increase in their growth-based WUE. The common K and Q by M exponents were statistically consistent with the 0.75 of ideal scaling theory. A model based upon xylem anatomy and branching architecture consistently predicted the observed K by M scaling exponents but only when deviations from ideal symmetric branching were incorporated. © 2014 John Wiley & Sons Ltd.

  6. Multilocus species tree analyses resolve the radiation of the widespread Bufo bufo species group (Anura, Bufonidae).

    Science.gov (United States)

    Recuero, E; Canestrelli, D; Vörös, J; Szabó, K; Poyarkov, N A; Arntzen, J W; Crnobrnja-Isailovic, J; Kidov, A A; Cogălniceanu, D; Caputo, F P; Nascetti, G; Martínez-Solano, I

    2012-01-01

    New analytical methods are improving our ability to reconstruct robust species trees from multilocus datasets, despite difficulties in phylogenetic reconstruction associated with recent, rapid divergence, incomplete lineage sorting and/or introgression. In this study, we applied these methods to resolve the radiation of toads in the Bufo bufo (Anura, Bufonidae) species group, ranging from the Iberian Peninsula and North Africa to Siberia, based on sequences from two mitochondrial and four nuclear DNA regions (3490 base pairs). We obtained a fully-resolved topology, with the recently described Bufo eichwaldi from the Talysh Mountains in south Azerbaijan and Iran as the sister taxon to a clade including: (1) north African, Iberian, and most French populations, referred herein to Bufo spinosus based on the implied inclusion of populations from its type locality and (2) a second clade, sister to B. spinosus, including two sister subclades: one with all samples of Bufo verrucosissimus from the Caucasus and another one with samples of B. bufo from northern France to Russia, including the Apennine and Balkan peninsulas and most of Anatolia. Coalescent-based estimations of time to most recent common ancestors for each species and selected subclades allowed historical reconstruction of the diversification of the species group in the context of Mediterranean paleogeography and indicated a long evolutionary history in this region. Finally, we used our data to delimit the ranges of the four species, particularly the more widespread and historically confused B. spinosus and B. bufo, and identify potential contact zones, some of which show striking parallels with other co-distributed species. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. Earthworm abundance and species composition in abandoned tropical croplands: comparisons of tree plantations and secondary forests.

    Science.gov (United States)

    G. Gonzalez; X. Zou; S. Borges

    1996-01-01

    We compared patterns of earthworms abundance and species composition in tree plantation and secondary forest of Puerto Rico. Tree plantations included pine (Pinus caribea Morelet) and mahogany (Swietenia macrophylla King) established in the 1930's; 1960's; and 1970's; secondary forests were naturally regenerated in areas adjacent to these plantations. We...

  8. Species-specific effects of a 1994 ice storm on radial tree growth in Delaware

    Science.gov (United States)

    Matthew Smolnik; Amy Hessl; J. J. Colbert

    2006-01-01

    Ice storms are recurrent disturbances that alter forest succession and forest structure throughout North America. However, long-term effects of ice storms on tree growth are largely unknown. Following a 1994 ice storm in Delaware, the Delaware Forest Service established seventy-five study plots to sample four species of trees (southern red oak [Quercus falcate...

  9. An empirical, hierarchical typology of tree species assemblages for assessing forest dynamics under global change scenarios

    Science.gov (United States)

    Jennifer K. Costanza; John W. Coulston; David N. Wear

    2017-01-01

    The composition of tree species occurring in a forest is important and can be affected by global change drivers such as climate change. To inform assessment and projection of global change impacts at broad extents, we used hierarchical cluster analysis and over 120,000 recent forest inventory plots to empirically define forest tree assemblages across the U.S., and...

  10. Dominance of legume trees alters nutrient relations in mixed species forest restoration plantings within seven years

    Science.gov (United States)

    Ilyas Siddique; Vera Lex Engel; David Lamb; Gabriela B. Nardoto; Jean P.H.B. Ometto; Luiz A. Martinelli; Susanne. Schmidt

    2008-01-01

    Failures in reforestation are often attributed to nutrient limitation for tree growth. We compared tree performance and nitrogen and phosphorus relations in adjacent mixed-species plantings of contrasting composition, established for forest restoration on Ultisol soil, originally covered by tropical semi-deciduous Atlantic Forest in Southeast Brazil. Nutrient relations...

  11. Tree species composition in areas of Atlantic Forest in southeastern Brazil is consistent with a new system for classifying the vegetation of South America

    Directory of Open Access Journals (Sweden)

    Pedro Vasconcellos Eisenlohr

    2014-06-01

    Full Text Available Rigorous and well-defined criteria for the classification of vegetation constitute a prerequisite for effective biodiversity conservation strategies. In 2009, a new classification system was proposed for vegetation types in extra-Andean tropical and subtropical South America. The new system expanded upon the criteria established in the existing Brazilian Institute of Geography and Statistics classification system. Here, we attempted to determine whether the tree species composition of the formations within the Atlantic Forest Biome of Brazil is consistent with this new classification system. We compiled floristic surveys of 394 sites in southeastern Brazil (between 15º and 25ºS; and between the Atlantic coast and 55ºW. To assess the floristic consistency of the vegetation types, we performed non-metric multidimensional scaling (NMDS ordination analysis, followed by multifactorial ANOVA. The vegetation types, especially in terms of their thermal regimes, elevational belts and top-tier vegetation categories, were consistently discriminated in the first NMDS axis, and all assessed attributes showed at least one significant difference in the second axis. As was expected on the basis of the theoretical background, we found that tree species composition, in the areas of Atlantic Forest studied, was highly consistent with the new system of classification. Our findings not only help solidify the position of this new classification system but also contribute to expanding the knowledge of the patterns and underlying driving forces of the distribution of vegetation in the region.

  12. Species-Level Differences in Hyperspectral Metrics among Tropical Rainforest Trees as Determined by a Tree-Based Classifier

    Directory of Open Access Journals (Sweden)

    Dar A. Roberts

    2012-06-01

    Full Text Available This study explores a method to classify seven tropical rainforest tree species from full-range (400–2,500 nm hyperspectral data acquired at tissue (leaf and bark, pixel and crown scales using laboratory and airborne sensors. Metrics that respond to vegetation chemistry and structure were derived using narrowband indices, derivative- and absorption-based techniques, and spectral mixture analysis. We then used the Random Forests tree-based classifier to discriminate species with minimally-correlated, importance-ranked metrics. At all scales, best overall accuracies were achieved with metrics derived from all four techniques and that targeted chemical and structural properties across the visible to shortwave infrared spectrum (400–2500 nm. For tissue spectra, overall accuracies were 86.8% for leaves, 74.2% for bark, and 84.9% for leaves plus bark. Variation in tissue metrics was best explained by an axis of red absorption related to photosynthetic leaves and an axis distinguishing bark water and other chemical absorption features. Overall accuracies for individual tree crowns were 71.5% for pixel spectra, 70.6% crown-mean spectra, and 87.4% for a pixel-majority technique. At pixel and crown scales, tree structure and phenology at the time of image acquisition were important factors that determined species spectral separability.

  13. Genetic Algorithms and Classification Trees in Feature Discovery: Diabetes and the NHANES database

    Energy Technology Data Exchange (ETDEWEB)

    Heredia-Langner, Alejandro; Jarman, Kristin H.; Amidan, Brett G.; Pounds, Joel G.

    2013-09-01

    This paper presents a feature selection methodology that can be applied to datasets containing a mixture of continuous and categorical variables. Using a Genetic Algorithm (GA), this method explores a dataset and selects a small set of features relevant for the prediction of a binary (1/0) response. Binary classification trees and an objective function based on conditional probabilities are used to measure the fitness of a given subset of features. The method is applied to health data in order to find factors useful for the prediction of diabetes. Results show that our algorithm is capable of narrowing down the set of predictors to around 8 factors that can be validated using reputable medical and public health resources.

  14. New flux based dose–response relationships for ozone for European forest tree species

    International Nuclear Information System (INIS)

    Büker, P.; Feng, Z.; Uddling, J.; Briolat, A.; Alonso, R.; Braun, S.; Elvira, S.; Gerosa, G.; Karlsson, P.E.; Le Thiec, D.

    2015-01-01

    To derive O 3 dose–response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O 3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O 3 flux concept and represents a step forward in predicting O 3 damage to forests in a spatially and temporally varying climate. - Highlights: • We present new ozone flux based dose–response relationships for European trees. • The model-based study accounted for the soil water effect on stomatal flux. • Different statistically derived ozone flux thresholds were applied. • Climate region specific parameterisation often outperformed simplified parameterisation. • Findings could help redefining critical levels for ozone effects on trees. - New stomatal flux based ozone dose–response relationships for tree species are derived for the regional risk assessment of ozone effects on European forest ecosystems.

  15. Spatial distribution of seeds and seedlings of two tropical tree species: Is there correspondence between patterns?

    International Nuclear Information System (INIS)

    Parrado Rosselli, Angela

    2007-01-01

    The spatial patterns of seed and seedling distribution relative to parent trees (seed and seedling shadow, respectively) were studied for Dacryodes chimantensis (Burseraceae) and Brosimum utile (Moraceae), two common tree species of terra firme forests of Colombian Amazonia. The general objective was to assess whether the patterns imposed by seed dispersal change or persist in subsequent life stages occurring during the transition from seeds/saplings to adult stages. Seed and seedling shadows on the ground were characterized for each tree species along four 50-m radial transects from the base of the parent tree. Causes of seed and seedling predation as a function of distance to the parent tree were determined, as well as the spatial consistency between life stages. Results showed that seed density of both Dacryodes and Brosimum declined leptokurtically with distance, and it was skewed towards the parent tree. However, seed density was more skewed and leptokurtic in Dacryodes than in Brosimum. The overall trend was maintained in the seedling stage of both species and was positively correlated with the distribution patterns of seeds. Seed and seedling predation were positively correlated with density and negatively correlated with the distance from the parent tree. Factors that could be generating the high consistency between the spatial patterns of seed and seedling distribution are discussed, as well as its implications in the population structure of both species and the debate on the factors that influence the spatial distribution of plant species in tropical rain forests.

  16. Integration of Classification Tree Analyses and Spatial Metrics to Assess Changes in Supraglacial Lakes in the Karakoram Himalaya

    Science.gov (United States)

    Bulley, H. N.; Bishop, M. P.; Shroder, J. F.; Haritashya, U. K.

    2007-12-01

    Alpine glacier responses to climate chnage reveal increases in retreat with corresponding increases in production of glacier melt water and development of supraglacial lakes. The rate of occurrence and spatial extent of lakes in the Himalaya are difficult to determine because current spectral-based image analysis of glacier surfaces are limited through anisotropic reflectance and lack of high quality digital elevation models. Additionally, the limitations of multivariate classification algorithms to adequately segregate glacier features in satellite imagery have led to an increased interest in non-parametric methods, such as classification and regression trees. Our objectives are to demonstrate the utility of a semi-automated approach that integrates classification- tree-based image segmentation and object-oriented analysis to differentiate supraglacial lakes from glacier debris, ice cliffs, lateral and medial moraines. The classification-tree process involves a binary, recursive, partitioning non-parametric method that can account for non-linear relationships. We used 2002 and 2004 ASTER VNIR and SWIR imagery to assess the Baltoro Glacier in the Karakoram Himalaya. Other input variables include the normalized difference water index (NDWI), ratio images, Moran's I image, and fractal dimension. The classification tree was used to generate initial image segments and it was particularly effective in differentiating glacier features. The object-oriented analysis included the use of shape and spatial metrics to refine the classification-tree output. Classification-tree results show that NDWI is the most important single variable for characterizing the glacier-surface features, followed by NIR/IR ratio, IR band, and IR/Red ratio variables. Lake features extracted from both images show there were 142 lakes in 2002 as compared to 188 lakes in 2004. In general, there was a significant increase in planimetric area from 2002 to 2004, and we documented the formation of 46 new

  17. Propagation of Native Tree Species to Restore Subtropical Evergreen Broad-Leaved Forests in SW China

    Directory of Open Access Journals (Sweden)

    Yang Lu

    2016-01-01

    Full Text Available Subtropical evergreen broad-leaved forest (EBLF is a widespread vegetation type throughout East Asia that has suffered extensive deforestation and fragmentation. Selection and successful propagation of native tree species are important for improving ecological restoration of these forests. We carried out a series of experiments to study the propagation requirements of indigenous subtropical tree species in Southwest China. Seeds of 21 tree species collected from the natural forest were materials for the experiment. This paper examines the seed germination and seedling growth performance of these species in a nursery environment. Germination percentages ranged from 41% to 96% and were ≥50% for 19 species. The median length of germination time (MLG ranged from 24 days for Padus wilsonii to 144 days for Ilex polyneura. Fifteen species can reach the transplant size (≥15 cm in height within 12 months of seed collection. Nursery-grown seedlings for each species were planted in degraded site. Two years after planting, the seedling survival rate was >50% in 18 species and >80% in 12 species. Based on these results, 17 species were recommended as appropriate species for nursery production in forest restoration projects. Our study contributes additional knowledge regarding the propagation techniques for various native subtropical tree species in nurseries for forest restoration.

  18. Geography, topography, and history affect realized-to-potential tree species richness patterns in Europe

    DEFF Research Database (Denmark)

    Svenning, J.-C.; Fitzpatrick, Matthew C.; Normand, Signe

    2010-01-01

    by assembly from regional species pools. Using the European tree flora as our study system, we implemented a novel approach to assess the relative importance of local and regional mechanisms that control local species richness. We first identified species pools that tolerate particular local environments...

  19. Classification decision tree in CT imaging: application to the differential diagnosis of solitary pulmonary nodules

    International Nuclear Information System (INIS)

    Ma Hongxia; Guo Yulin; Wang Qiuping; Qiang Yongqian; Liu Min; Guo Xiaojuan; Guo Youmin; Chen Qihang

    2008-01-01

    Objective: To establish classification and regression tree (CART) for differentiating benign from malignant solitary pulmonary nudules (SPN). Methods: One hundred and sixteen consecutive cases with 116 solitary pulmonary nodules, which finally were pathologically proven 54 malignant nodules and 62 benign nodules, were prospectively registered in this research. Twelve clinical presentations and 22 CT findings were collected as predictors. A classification tree was established to distinguish benign SPNs from malignant ones. In the observer test, two groups (one made of junior radiologists and one of senior radiologists) were independently presented with clinical information and CT images without knowing the pathologic and machine-learning results. Performance of observers and CART were compared by receiver operating characteristic analysis. Results: Receiver operating characteristic analysis showed areas under the curve of CART, senior radiologists and junior radiologists respectively were 0.910±0.029, 0.827±0.038, 0.612±0.052. Difference between areas(DBF) between CART and junior radiologists was 0.297(P<0.01). DBF between CART and senior radiologists was 0.083 (P<0.05). DBF between senior and junior radiologists was 0.214 (P<0.01). CART showed a best diagnostic efficiency, followed by junior radiologists, and then senior radiologists. Conclusion: Our data mining techniques using CART prove a high accuracy in differentiating benign from malignant pulmonary nodules based on clinical variables and CT findings. It will be a potentially useful tool in further application of artificial intelligence in the imaging diagnosis. (authors)

  20. Using classification tree modelling to investigate drug prescription practices at health facilities in rural Tanzania

    Directory of Open Access Journals (Sweden)

    Kajungu Dan K

    2012-09-01

    Full Text Available Abstract Background Drug prescription practices depend on several factors related to the patient, health worker and health facilities. A better understanding of the factors influencing prescription patterns is essential to develop strategies to mitigate the negative consequences associated with poor practices in both the public and private sectors. Methods A cross-sectional study was conducted in rural Tanzania among patients attending health facilities, and health workers. Patients, health workers and health facilities-related factors with the potential to influence drug prescription patterns were used to build a model of key predictors. Standard data mining methodology of classification tree analysis was used to define the importance of the different factors on prescription patterns. Results This analysis included 1,470 patients and 71 health workers practicing in 30 health facilities. Patients were mostly treated in dispensaries. Twenty two variables were used to construct two classification tree models: one for polypharmacy (prescription of ≥3 drugs on a single clinic visit and one for co-prescription of artemether-lumefantrine (AL with antibiotics. The most important predictor of polypharmacy was the diagnosis of several illnesses. Polypharmacy was also associated with little or no supervision of the health workers, administration of AL and private facilities. Co-prescription of AL with antibiotics was more frequent in children under five years of age and the other important predictors were transmission season, mode of diagnosis and the location of the health facility. Conclusion Standard data mining methodology is an easy-to-implement analytical approach that can be useful for decision-making. Polypharmacy is mainly due to the diagnosis of multiple illnesses.

  1. Predicting spatial variations of tree species richness in tropical forests from high-resolution remote sensing.

    Science.gov (United States)

    Fricker, Geoffrey A; Wolf, Jeffrey A; Saatchi, Sassan S; Gillespie, Thomas W

    2015-10-01

    There is an increasing interest in identifying theories, empirical data sets, and remote-sensing metrics that can quantify tropical forest alpha diversity at a landscape scale. Quantifying patterns of tree species richness in the field is time consuming, especially in regions with over 100 tree species/ha. We examine species richness in a 50-ha plot in Barro Colorado Island in Panama and test if biophysical measurements of canopy reflectance from high-resolution satellite imagery and detailed vertical forest structure and topography from light detection and ranging (lidar) are associated with species richness across four tree size classes (>1, 1-10, >10, and >20 cm dbh) and three spatial scales (1, 0.25, and 0.04 ha). We use the 2010 tree inventory, including 204,757 individuals belonging to 301 species of freestanding woody plants or 166 ± 1.5 species/ha (mean ± SE), to compare with remote-sensing data. All remote-sensing metrics became less correlated with species richness as spatial resolution decreased from 1.0 ha to 0.04 ha and tree size increased from 1 cm to 20 cm dbh. When all stems with dbh > 1 cm in 1-ha plots were compared to remote-sensing metrics, standard deviation in canopy reflectance explained 13% of the variance in species richness. The standard deviations of canopy height and the topographic wetness index (TWI) derived from lidar were the best metrics to explain the spatial variance in species richness (15% and 24%, respectively). Using multiple regression models, we made predictions of species richness across Barro Colorado Island (BCI) at the 1-ha spatial scale for different tree size classes. We predicted variation in tree species richness among all plants (adjusted r² = 0.35) and trees with dbh > 10 cm (adjusted r² = 0.25). However, the best model results were for understory trees and shrubs (dbh 1-10 cm) (adjusted r² = 0.52) that comprise the majority of species richness in tropical forests. Our results indicate that high

  2. Mountain landscapes offer few opportunities for high-elevation tree species migration

    Science.gov (United States)

    Bell, David M.; Bradford, John B.; Lauenroth, William K.

    2014-01-01

    Climate change is anticipated to alter plant species distributions. Regional context, notably the spatial complexity of climatic gradients, may influence species migration potential. While high-elevation species may benefit from steep climate gradients in mountain regions, their persistence may be threatened by limited suitable habitat as land area decreases with elevation. To untangle these apparently contradictory predictions for mountainous regions, we evaluated the climatic suitability of four coniferous forest tree species of the western United States based on species distribution modeling (SDM) and examined changes in climatically suitable areas under predicted climate change. We used forest structural information relating to tree species dominance, productivity, and demography from an extensive forest inventory system to assess the strength of inferences made with a SDM approach. We found that tree species dominance, productivity, and recruitment were highest where climatic suitability (i.e., probability of species occurrence under certain climate conditions) was high, supporting the use of predicted climatic suitability in examining species risk to climate change. By predicting changes in climatic suitability over the next century, we found that climatic suitability will likely decline, both in areas currently occupied by each tree species and in nearby unoccupied areas to which species might migrate in the future. These trends were most dramatic for high elevation species. Climatic changes predicted over the next century will dramatically reduce climatically suitable areas for high-elevation tree species while a lower elevation species, Pinus ponderosa, will be well positioned to shift upslope across the region. Reductions in suitable area for high-elevation species imply that even unlimited migration would be insufficient to offset predicted habitat loss, underscoring the vulnerability of these high-elevation species to climatic changes.

  3. STANDING HERBAGE BIOMASS UNDER DIFFERENT TREE SPECIES DISPERSED IN PASTURES OF CATTLE FARMS

    Directory of Open Access Journals (Sweden)

    Humberto Esquivel-Mimenza

    2013-08-01

    Full Text Available The study conducted in a tropical dry ecosystem at Cañas, Guanacaste, Costa Rica (10o 11´ N and 84o15´W measure the standing herbage biomass (SHB availability and quality under six isolated tree species of different canopy architecture dispersed in active Brachiaria brizantha pastures and compare it to that growing at full sun light. Standing herbage biomass (HB harvesting and Photosynthetic active radiation (PAR readings were taken at three different periods in a paired sample scheme. Of the six tree species studied, Enterolobium cyclocarpum had the largest mean crown cover while Acrocomia aculeata had the smallest. Significant differences were observed between species (P = 0.0002 and seasons (P<0.008 for the percentage of PAR transmitted under the canopy but PAR levels obtained under all species were consistent throughout seasons since the interaction between species and season was not significantly different (P=0.98. Lower PAR readings (<50% were taken under the canopies E. cyclocarpum and Guazuma ulmifolia (21.7 and 33.7 % respectively. Standing herbage biomass (SHB harvested under the crown of isolated mature individual tree species was significantly lower (P<0.001 than in open pasture areas for all tree species except that of A. aculeate but SHB crude protein content, was higher underneath all tree canopies. It can conclude that light reduction caused by tree canopies reduces SHB availability and increases the quality underneath tree canopies compared to areas of full sun but these varies accordingly to tree species and seasons.

  4. A machine learning approach to galaxy-LSS classification - I. Imprints on halo merger trees

    Science.gov (United States)

    Hui, Jianan; Aragon, Miguel; Cui, Xinping; Flegal, James M.

    2018-04-01

    The cosmic web plays a major role in the formation and evolution of galaxies and defines, to a large extent, their properties. However, the relation between galaxies and environment is still not well understood. Here, we present a machine learning approach to study imprints of environmental effects on the mass assembly of haloes. We present a galaxy-LSS machine learning classifier based on galaxy properties sensitive to the environment. We then use the classifier to assess the relevance of each property. Correlations between galaxy properties and their cosmic environment can be used to predict galaxy membership to void/wall or filament/cluster with an accuracy of 93 per cent. Our study unveils environmental information encoded in properties of haloes not normally considered directly dependent on the cosmic environment such as merger history and complexity. Understanding the physical mechanism by which the cosmic web is imprinted in a halo can lead to significant improvements in galaxy formation models. This is accomplished by extracting features from galaxy properties and merger trees, computing feature scores for each feature and then applying support vector machine (SVM) to different feature sets. To this end, we have discovered that the shape and depth of the merger tree, formation time, and density of the galaxy are strongly associated with the cosmic environment. We describe a significant improvement in the original classification algorithm by performing LU decomposition of the distance matrix computed by the feature vectors and then using the output of the decomposition as input vectors for SVM.

  5. Tree species diversity in the Eastern Ghats of northern Andhra Pradesh, India

    Directory of Open Access Journals (Sweden)

    M. Tarakeswara Naidu

    2015-06-01

    Full Text Available The present study was conducted to analyze tree species diversity in the tropical forests of the Eastern Ghats of northern Andhra Pradesh, India.  A total of 270 species of trees (≥15cm girth at breast height pertaining to 177 genera belonging to 55 families were recorded.  Among the 270 species, 141 species were observed to be common, 78 were occasional and 51 species were rare in the study area.  Fabaceae was the dominant family with 33 species followed by Rubiaceae with 15 species and Malvaceae, Moraceae and Phyllanthaceae with 13 species each.  The genera with the highest number of species include Ficus (12 species, Diospyros (8 species, Albizia and Grewia (6 species each, Acacia and Bauhinia (5 species each.  Forty-five percent of the species were indigenous. This illustrates the diversity of the tree species in the studied area of the Eastern Ghats and also emphasizes the need for their conservation. 

  6. Tree cover and species composition effects on academic performance of primary school students.

    Science.gov (United States)

    Sivarajah, Sivajanani; Smith, Sandy M; Thomas, Sean C

    2018-01-01

    Human exposure to green space and vegetation is widely recognized to result in physical and mental health benefits; however, to date, the specific effects of tree cover, diversity, and species composition on student academic performance have not been investigated. We compiled standardized performance scores in Grades 3 and 6 for the collective student body in 387 schools across the Toronto District School Board (TDSB), and examined variation in relation to tree cover, tree diversity, and tree species composition based on comprehensive inventories of trees on school properties combined with aerial-photo-based assessments of tree cover. Analyses accounted for variation due to socioeconomic factors using the learning opportunity index (LOI), a regional composite index of external challenges to learning that incorporates income and other factors, such as students with English as a second language. As expected, LOI had the greatest influence on student academic performance; however, the proportion of tree cover, as distinct from other types of "green space" such as grass, was found to be a significant positive predictor of student performance, accounting for 13% of the variance explained in a statistical model predicting mean student performance assessments. The effects of tree cover and species composition were most pronounced in schools that showed the highest level of external challenges, suggesting the importance of urban forestry investments in these schools.

  7. Evaluation of Land Suitability for Selected Tree Species in the ...

    African Journals Online (AJOL)

    Kassa T

    This paper aimed at evaluating the potential of the different soil attributes for plantation of selected forest trees (Faidherbia albida, Eucalyptus camaldulensis and Balanitus aegiptica) dominantly grown in the ..... chemical properties. The major soil reference groups with their physical and chemical properties are shown in ...

  8. Demography of exploited tree species in the Bolivian Amazon

    NARCIS (Netherlands)

    Zuidema, P.A.

    2000-01-01

    Tropical forests are threatened world-wide. Therefore, there is a search for ways to use the forests in a sustainable way, as this could assist in the conservation of these special ecosystems. Non-timber products collected from trees in tropical forests are often mentioned as examples of

  9. Evaluation of land suitability for selected tree species in the ...

    African Journals Online (AJOL)

    This paper aimed at evaluating the potential of the different soil attributes for plantation of selected forest trees (Faidherbia albida, Eucalyptus camaldulensis and Balanitus aegiptica) dominantly grown in the northern highlands of Ethiopia. The study was conducted at Korir watershed, northern Ethiopia. The method used to ...

  10. Identification of indigenous tree and shrub fodder species in the ...

    African Journals Online (AJOL)

    Mo

    ture, August, Mukono, Uganda. Mrema, M., Wafula D., Agaba H., 2001. Livelihood strate- gies and the use of tree and forest products in the Mabira. Forest Buffer zone. AFRENA report, Kampala, Uganda. NARO, 2001. Medium Term Plan 2001-2005. Responding to Research Challenges for the Modernization of Agri- culture.

  11. Extending the dormant bud cryopreservation method to new tree species

    Science.gov (United States)

    In cryopreservation of germplasm, using dormant winter buds (DB) as source plant material is economically favorable over tissue culture options. Although the DB cryopreservation method has been known for many years, the approach is feasible only for cryopreserving a select number of temperate tree s...

  12. Performance of exotic tree species planted for poverty alleviation in ...

    African Journals Online (AJOL)

    Overall, the survival of Pinus halepensis, P. pinaster, P. radiata, Eucalyptus macarthurii and E. rubida exceeded 80%. The greatest roundwood volume of 183 m3 ha–1 was produced in a 14-year-old P. radiata stand. Wood of branches and stumps would add to the total volume if trees are grown for woodfuels. Even higher ...

  13. Modelling dimensional growth of three street tree species in the ...

    African Journals Online (AJOL)

    The results could also be used in the process of modelling energy use reduction, air pollution uptake, rainfall interception, carbon sequestration and microclimate modification of urban forests such as those found in the City of Tshwane. Keywords: allometry; regression; size relationships; tree growth; urban forests. Southern ...

  14. Growth strategies of tropical tree species: disentangling light and size effects.

    Directory of Open Access Journals (Sweden)

    Nadja Rüger

    Full Text Available An understanding of the drivers of tree growth at the species level is required to predict likely changes of carbon stocks and biodiversity when environmental conditions change. Especially in species-rich tropical forests, it is largely unknown how species differ in their response of growth to resource availability and individual size. We use a hierarchical bayesian approach to quantify the impact of light availability and tree diameter on growth of 274 woody species in a 50-ha long-term forest census plot in Barro Colorado Island, Panama. Light reaching each individual tree was estimated from yearly vertical censuses of canopy density. The hierarchical bayesian approach allowed accounting for different sources of error, such as negative growth observations, and including rare species correctly weighted by their abundance. All species grew faster at higher light. Exponents of a power function relating growth to light were mostly between 0 and 1. This indicates that nearly all species exhibit a decelerating increase of growth with light. In contrast, estimated growth rates at standardized conditions (5 cm dbh, 5% light varied over a 9-fold range and reflect strong growth-strategy differentiation between the species. As a consequence, growth rankings of the species at low (2% and high light (20% were highly correlated. Rare species tended to grow faster and showed a greater sensitivity to light than abundant species. Overall, tree size was less important for growth than light and about half the species were predicted to grow faster in diameter when bigger or smaller, respectively. Together light availability and tree diameter only explained on average 12% of the variation in growth rates. Thus, other factors such as soil characteristics, herbivory, or pathogens may contribute considerably to shaping tree growth in the tropics.

  15. Exemplifying whole-plant ozone uptake in adult forest trees of contrasting species and site conditions

    International Nuclear Information System (INIS)

    Nunn, Angela J.; Wieser, Gerhard; Metzger, Ursula; Loew, Markus; Wipfler, Philip; Haeberle, Karl-Heinz; Matyssek, Rainer

    2007-01-01

    Whole-tree O 3 uptake was exemplified for Picea abies, Fagus sylvatica and Larix decidua in stands at high and low altitude and contrasting water availability through sap flow measurement in tree trunks, intrinsically accounting for drought and boundary layer effects on O 3 flux. O 3 uptake of evergreen spruce per unit foliage area was enhanced by 100% at high relative to low elevation, whereas deciduous beech and larch showed similar uptake regardless of altitude. The responsiveness of the canopy conductance to water vapor and, as a consequence, O 3 uptake to soil moisture and air humidity did not differ between species. Unifying findings at the whole-tree level will promote cause-effect based O 3 risk assessment and modeling. - Sap flow-based assessment of whole-tree O 3 uptake reflects similar responsiveness of canopy conductance and O 3 uptake across contrasting tree species and site conditions

  16. KLASIFIKASI KARAKTERISTIK KECELAKAAN LALU LINTAS DI KOTA DENPASAR DENGAN PENDEKATAN CLASSIFICATION AND REGRESSION TREES (CART

    Directory of Open Access Journals (Sweden)

    I GEDE AGUS JIWADIANA

    2015-11-01

    Full Text Available The aim of this research is to determine the classification characteristics of traffic accidents in Denpasar city in January-July 2014 by using Classification And Regression Trees (CART. Then, for determine the explanatory variables into the main classifier of CART. The result showed that optimum CART generate three terminal node. First terminal node, there are 12 people were classified as heavy traffic accident characteritics with single accident, and second terminal nodes, there are 68 people were classified as minor traffic accident characteristics by type of traffic accident front-rear, front-front, front-side, pedestrians, side-side and location of traffic accident in district road and sub-district road. For third terminal node, there are 291 people were classified as medium traffic accident characteristics by type of traffic accident front-rear, front-front, front-side, pedestrians, side-side and location of traffic accident in municipality road and explanatory variables into the main splitter to make of CART is type of traffic accident with maximum homogeneity measure of 0.03252.

  17. Identification of Sexually Abused Female Adolescents at Risk for Suicidal Ideations: A Classification and Regression Tree Analysis

    Science.gov (United States)

    Brabant, Marie-Eve; Hebert, Martine; Chagnon, Francois

    2013-01-01

    This study explored the clinical profiles of 77 female teenager survivors of sexual abuse and examined the association of abuse-related and personal variables with suicidal ideations. Analyses revealed that 64% of participants experienced suicidal ideations. Findings from classification and regression tree analysis indicated that depression,…

  18. Do ectomycorrhizal and arbuscular mycorrhizal temperate tree species systematically differ in root order-related fine root morphology and biomass?

    OpenAIRE

    Kubisch, Petra; Hertel, Dietrich; Leuschner, Christoph

    2015-01-01

    While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal dif...

  19. Estimating root collar diameter growth for multi-stem western woodland tree species on remeasured forest inventory and analysis plots

    Science.gov (United States)

    Michael T. Thompson; Maggie. Toone

    2012-01-01

    Tree diameter growth models are widely used in many forestry applications, often to predict tree size at a future point in time. Also, there are instances where projections of past diameters are needed. An individual tree model has been developed to estimate diameter growth of multi-stem woodland tree species where the diameter is measured at root collar. The model was...

  20. Host preferences and differential contributions of deciduous tree species shape mycorrhizal species richness in a mixed Central European forest.

    Science.gov (United States)

    Lang, Christa; Seven, Jasmin; Polle, Andrea

    2011-05-01

    Mycorrhizal species richness and host ranges were investigated in mixed deciduous stands composed of Fagus sylvatica, Tilia spp., Carpinus betulus, Acer spp., and Fraxinus excelsior. Acer and Fraxinus were colonized by arbuscular mycorrhizas and contributed 5% to total stand mycorrhizal fungal species richness. Tilia hosted similar and Carpinus half the number of ectomycorrhizal (EM) fungal taxa compared with Fagus (75 putative taxa). The relative abundance of the host tree the EM fungal richness decreased in the order Fagus > Tilia > Carpinus. After correction for similar sampling intensities, EM fungal species richness of Carpinus was still about 30-40% lower than that of Fagus and Tilia. About 10% of the mycorrhizal species were shared among the EM forming trees; 29% were associated with two host tree species and 61% with only one of the hosts. The latter group consisted mainly of rare EM fungal species colonizing about 20% of the root tips and included known specialists but also putative non-host associations such as conifer or shrub mycorrhizas. Our data indicate that EM fungal species richness was associated with tree identity and suggest that Fagus secures EM fungal diversity in an ecosystem since it shared more common EM fungi with Tilia and Carpinus than the latter two among each other.

  1. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Science.gov (United States)

    Ayres, Edward; Steltzer, Heidi; Berg, Sarah; Wallenstein, Matthew D; Simmons, Breana L; Wall, Diana H

    2009-06-18

    Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N) concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid mites did not. Although some soil characteristics were

  2. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  3. A ROUGH SET DECISION TREE BASED MLP-CNN FOR VERY HIGH RESOLUTION REMOTELY SENSED IMAGE CLASSIFICATION

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-09-01

    Full Text Available Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP, which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  4. a Rough Set Decision Tree Based Mlp-Cnn for Very High Resolution Remotely Sensed Image Classification

    Science.gov (United States)

    Zhang, C.; Pan, X.; Zhang, S. Q.; Li, H. P.; Atkinson, P. M.

    2017-09-01

    Recent advances in remote sensing have witnessed a great amount of very high resolution (VHR) images acquired at sub-metre spatial resolution. These VHR remotely sensed data has post enormous challenges in processing, analysing and classifying them effectively due to the high spatial complexity and heterogeneity. Although many computer-aid classification methods that based on machine learning approaches have been developed over the past decades, most of them are developed toward pixel level spectral differentiation, e.g. Multi-Layer Perceptron (MLP), which are unable to exploit abundant spatial details within VHR images. This paper introduced a rough set model as a general framework to objectively characterize the uncertainty in CNN classification results, and further partition them into correctness and incorrectness on the map. The correct classification regions of CNN were trusted and maintained, whereas the misclassification areas were reclassified using a decision tree with both CNN and MLP. The effectiveness of the proposed rough set decision tree based MLP-CNN was tested using an urban area at Bournemouth, United Kingdom. The MLP-CNN, well capturing the complementarity between CNN and MLP through the rough set based decision tree, achieved the best classification performance both visually and numerically. Therefore, this research paves the way to achieve fully automatic and effective VHR image classification.

  5. The role of exotic tree species in Nordic forestry

    DEFF Research Database (Denmark)

    Kjær, Erik Dahl; Lobo, Albin; Myking, Tor

    2014-01-01

    the vegetation and forest history and its implications for the interest in using exotic species. We review to what extent exotic species can contribute to increased economic returns from forest plantings and the potential negative ecological effects associated with introduction of new species. Considering...... the expected climate changes, we discuss whether and how the increased use of exotic species can contribute to sustained and increased health and productivity of Nordic forests without jeopardising ecological and social values....

  6. FLOOD RUNOFF CHARACTERISTIC CHANGE OVER 50 YEARS BY TREE SPECIES CONVERSION IN UPPER DOZANGAWA RIVER BASIN

    Science.gov (United States)

    Ogawa, Ken-Ichiro; Tamura, Takao; Takigawa, Noriko; Kuwahara, Masato; Takanishi, Syunji

    This study conducted runoff analysis for the floods in Sep. 1954 and Oct. 2004 by the distributed runoff model for Yanase Dam basin in the upper Douzangawa River, where once become devastated by an operation of Besshi copper mine and recovered by afforestation and tree species conversion. Subsequently, a relationship between the tree species conversion over 50 years and changes of flood runoff characteristics, and a reduction effect of forest in peak discharge of flood were examined.As a conclusion, authors presumed approximately 20 percent improvement of the peak discharge reduction by tree species conversion. It was supposed that the difference of flood runoff characteristic were explained by parameters in relation to rainfall interception and evaporation function of forest, and in Yanase Dam basin, the change of tree density sensitively influenced on runoff characteristics.

  7. Frost hardiness of tree species is independent of phenology and ...

    Indian Academy of Sciences (India)

    The differences in timing in bud burst between species have been interpreted as an adaptation to late frost events in spring. Thus, it has been suggested that the degree of frost susceptibility of leaves is species-specific and depends on the species' phenology and geographic distribution range. To test for relationships ...

  8. Relationships among environmental variables and distribution of tree species at high elevation in the Olympic Mountains

    Science.gov (United States)

    Woodward, Andrea

    1998-01-01

    Relationships among environmental variables and occurrence of tree species were investigated at Hurricane Ridge in Olympic National Park, Washington, USA. A transect consisting of three plots was established down one north-and one south-facing slope in stands representing the typical elevational sequence of tree species. Tree species included subalpine fir (Abies lasiocarpa), Douglas-fir (Pseudotsuga menziesii), mountain hemlock (Tsuga mertensiana), and Pacific silver fir (Abies amabilis). Air and soil temperature, precipitation, and soil moisture were measured during three growing seasons. Snowmelt patterns, soil carbon and moisture release curves were also determined. The plots represented a wide range in soil water potential, a major determinant of tree species distribution (range of minimum values = -1.1 to -8.0 MPa for Pacific silver fir and Douglas-fir plots, respectively). Precipitation intercepted at plots depended on topographic location, storm direction and storm type. Differences in soil moisture among plots was related to soil properties, while annual differences at each plot were most often related to early season precipitation. Changes in climate due to a doubling of atmospheric CO2 will likely shift tree species distributions within, but not among aspects. Change will be buffered by innate tolerance of adult trees and the inertia of soil properties.

  9. Hardwood species classification with DWT based hybrid texture ...

    Indian Academy of Sciences (India)

    durability, availability and rational use of available resources. This would also help in avoiding ... have used different classifiers like MLP-BP-ANN, Pearson correlation, energy value, and SVM and achieved classification ..... best trade-off between classification accuracy and computational time. The RF classifier needs.

  10. Regional-scale directional changes in abundance of tree species along a temperature gradient in Japan.

    Science.gov (United States)

    Suzuki, Satoshi N; Ishihara, Masae I; Hidaka, Amane

    2015-09-01

    Climate changes are assumed to shift the ranges of tree species and forest biomes. Such range shifts result from changes in abundances of tree species or functional types. Owing to global warming, the abundance of a tree species or functional type is expected to increase near the colder edge of its range and decrease near the warmer edge. This study examined directional changes in abundance and demographic parameters of forest trees along a temperature gradient, as well as a successional gradient, in Japan. Changes in the relative abundance of each of four functional types (evergreen broad-leaved, deciduous broad-leaved, evergreen temperate conifer, and evergreen boreal conifer) and the demography of each species (recruitment rate, mortality, and population growth rate) were analyzed in 39 permanent forest plots across the Japanese archipelago. Directional changes in the relative abundance of functional types were detected along the temperature gradient. Relative abundance of evergreen broad-leaved trees increased near their colder range boundaries, especially in secondary forests, coinciding with the decrease in deciduous broad-leaved trees. Similarly, relative abundance of deciduous broad-leaved trees increased near their colder range boundaries, coinciding with the decrease in boreal conifers. These functional-type-level changes were mainly due to higher recruitment rates and partly to the lower mortality of individual species at colder sites. This is the first report to show that tree species abundances in temperate forests are changing directionally along a temperature gradient, which might be due to current or past climate changes as well as recovery from past disturbances. © 2015 John Wiley & Sons Ltd.

  11. Phylogeny of the cycads based on multiple single-copy nuclear genes: congruence of concatenated parsimony, likelihood and species tree inference methods.

    Science.gov (United States)

    Salas-Leiva, Dayana E; Meerow, Alan W; Calonje, Michael; Griffith, M Patrick; Francisco-Ortega, Javier; Nakamura, Kyoko; Stevenson, Dennis W; Lewis, Carl E; Namoff, Sandra

    2013-11-01

    Despite a recent new classification, a stable phylogeny for the cycads has been elusive, particularly regarding resolution of Bowenia, Stangeria and Dioon. In this study, five single-copy nuclear genes (SCNGs) are applied to the phylogeny of the order Cycadales. The specific aim is to evaluate several gene tree-species tree reconciliation approaches for developing an accurate phylogeny of the order, to contrast them with concatenated parsimony analysis and to resolve the erstwhile problematic phylogenetic position of these three genera. DNA sequences of five SCNGs were obtained for 20 cycad species representing all ten genera of Cycadales. These were analysed with parsimony, maximum likelihood (ML) and three Bayesian methods of gene tree-species tree reconciliation, using Cycas as the outgroup. A calibrated date estimation was developed with Bayesian methods, and biogeographic analysis was also conducted. Concatenated parsimony, ML and three species tree inference methods resolve exactly the same tree topology with high support at most nodes. Dioon and Bowenia are the first and second branches of Cycadales after Cycas, respectively, followed by an encephalartoid clade (Macrozamia-Lepidozamia-Encephalartos), which is sister to a zamioid clade, of which Ceratozamia is the first branch, and in which Stangeria is sister to Microcycas and Zamia. A single, well-supported phylogenetic hypothesis of the generic relationships of the Cycadales is presented. However, massive extinction events inferred from the fossil record that eliminated broader ancestral distributions within Zamiaceae compromise accurate optimization of ancestral biogeographical areas for that hypothesis. While major lineages of Cycadales are ancient, crown ages of all modern genera are no older than 12 million years, supporting a recent hypothesis of mostly Miocene radiations. This phylogeny can contribute to an accurate infrafamilial classification of Zamiaceae.

  12. Species delimitation in the lichenized fungal genus Vulpicida (Parmeliaceae, Ascomycota) using gene concatenation and coalescent-based species tree approaches.

    Science.gov (United States)

    Saag, Lauri; Mark, Kristiina; Saag, Andres; Randlane, Tiina

    2014-12-01

    Species boundaries in many organism groups are still in a state of flux, and for empirical species delimitation, finding appropriate character sets and analytical tools are among the greatest challenges. In the lichenized fungal genus Vulpicida, six morphologically circumscribed species have been distinguished, but phenotypic characters partly overlap for three of these and intermediate forms occur. We used a combination of phylogenetic strategies to delimit the species in this genus.• Five DNA loci were sequenced and analyzed. Single-locus gene trees and a five-locus concatenated phylogeny were constructed to assess current Vulpicida species. Species boundaries were inferred from molecular data using two coalescent-based species delimitation methods (BP&P and Brownie) and from species trees reconstructed with three different algorithms (*BEAST, BEST, and STEM).• The two species restricted to North America, Vulpicida canadensis and V. viridis, are clearly distinct in all analyses. The four other traditionally accepted species form two strongly supported, closely related species-level lineages within the core group of the genus. On the basis of these results, we propose four instead of the current six species in the genus: V. canadensis, V. juniperinus, V. pinastri, and V. viridis, while V. tilesii and V. tubulosus are reduced to synonymy under V. juniperinus.• Coalescent species delimitation and tree inference give consistent results for fully distinct Vulpicida species but not for diverging populations. Even the inconsistent results were informative, revealing developing isolation despite a complex history of recombination and incomplete lineage sorting. © 2014 Botanical Society of America, Inc.

  13. Dual mycorrhizal colonization of forest-dominating tropical trees and the mycorrhizal status of non-dominant tree and liana species.

    Science.gov (United States)

    McGuire, K L; Henkel, T W; Granzow de la Cerda, I; Villa, G; Edmund, F; Andrew, C

    2008-04-01

    The contribution of mycorrhizal associations to maintaining tree diversity patterns in tropical rain forests is poorly known. Many tropical monodominant trees form ectomycorrhizal (EM) associations, and there is evidence that the EM mutualism contributes to the maintenance of monodominance. It is assumed that most other tropical tree species form arbuscular mycorrhizal (AM) associations, and while many mycorrhizal surveys have been done, the mycorrhizal status of numerous tropical tree taxa remains undocumented. In this study, we tested the assumption that most tropical trees form AM associations by sampling root vouchers from tree and liana species in monodominant Dicymbe corymbosa forest and an adjacent mixed rain forest in Guyana. Roots were assessed for the presence/ absence of AM and EM structures. Of the 142 species of trees and lianas surveyed, three tree species (the mono-dominant D. corymbosa, the grove-forming D. altsonii, and the non-dominant Aldina insignis) were EM, 137 were exclusively AM, and two were non-mycorrhizal. Both EM and AM structures wer e observed in D. corymbosa and D. altsonii. These results provide empirical data supporting the assumption that most tropical trees form AM associations for this region in the Guiana Shield and provide the first report of dual EM/AM colonization in Dicymbe species. Dual colonization of the Dicymbe species should be further explored to determine if this ability contributes to the establishment and maintenance of site dominance.

  14. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    Directory of Open Access Journals (Sweden)

    Kyle Dexter

    2016-09-01

    Full Text Available Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin.

  15. Classification, evolution, and species groups within the Triatominae.

    Science.gov (United States)

    Schofield, C J; Galvão, Cleber

    2009-01-01

    Classification of the Triatominae has become a complex balance between traditional approaches and a wide variety of evolutionary interpretations. On the one hand is the need for a stable classification of practical use for those involved in vector surveillance and control. On the other is the desire to adequately reflect evolutionary theory derived from a range of molecular, cytogenetic and morphometric comparisons, with additional complications raised by current interpretations of the subfamily as a recently derived polyphyletic assemblage. Here we review key aspects of triatomine systematics and evolution, to derive a pragmatic classification that seeks to build on traditional morphological concepts within the context of current evolutionary theories.

  16. Ambrosia Beetle (Coleoptera: Scolytidae) Species, Flight, and Attack on Living Eastern Cottonwood Trees.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, D R; D.C. Booth: M.S. Wallace

    2005-12-01

    ABSTRACT In spring 2002, ambrosia beetles (Coleoptera: Scolytidae) infested an intensively managed 22-ha tree plantation on the upper coastal plain of South Carolina. Nearly 3,500 scolytids representing 28 species were captured in ethanol-baited traps from 18 June 2002 to 18 April 2004. More than 88% of total captures were exotic species. Five species [Dryoxylon onoharaensum (Murayama), Euwallacea validus (Eichhoff), Pseudopityophthorus minutissimus (Zimmermann), Xyleborus atratus Eichhoff, and Xyleborus impressus Eichhoff]) were collected in South Carolina for the first time. Of four tree species in the plantation, eastern cottonwood, Populus deltoides Bartram, was the only one attacked, with nearly 40% of the trees sustaining ambrosia beetle damage. Clone ST66 sustained more damage than clone S7C15. ST66 trees receiving fertilization were attacked more frequently than trees receiving irrigation, irrigation_fertilization, or controls, although the number of S7C15 trees attacked did not differ among treatments. The study location is near major shipping ports; our results demonstrate the necessity for intensive monitoring programs to determine the arrival, spread, ecology, and impact of exotic scolytids.

  17. Assessing tree species assemblages in highly disturbed Puerto Rican karst landscapes using forest inventory data.

    Science.gov (United States)

    Thomas James Brandeis

    2006-01-01

    Tree species assemblages described by landscape-scale forest inventory data both agreed and differed from those described by intensive, site specific studies in Puerto Rico’s highly disturbed northern karst belt. Species assemblages found on hill tops (typified by Tabebuia heterophylla or Bursera simaruba with Coccoloba diversifolia, Licaria parvifolia, and Drypetes...

  18. Comparative autecological characteristics of northwestern tree species—a literature review.

    Science.gov (United States)

    Don. Minore

    1979-01-01

    This report is a compilation of autecological information previously scattered about in several hundred publications. It includes a comparison of the tolerances, traits, and attributes of native northwestern tree species. The species are ranked with respect to 69 environmental factors, phenotypic characteristics, and physical parameters. These rankings, with the...

  19. Trees of Laos and Vietnam: a field guide to 100 economically or ecologically important species

    NARCIS (Netherlands)

    Sam, Hoang Van; Nanthavong, Khamseng; Keßler, P.J.A.

    2004-01-01

    This field guide to 100 economically or ecologically important tree species from Laos and Vietnam enables the user to identify the included taxa with user-friendly keys. It includes scientific names, botanical descriptions of families, genera, and species. Specific information on distribution,

  20. Factors influencing non-native tree species distribution in urban landscapes

    Science.gov (United States)

    Wayne C. Zipperer

    2010-01-01

    Non-native species are presumed to be pervasive across the urban landscape. Yet, we actually know very little about their actual distribution. For this study, vegetation plot data from Syracuse, NY and Baltimore, MD were used to examine non-native tree species distribution in urban landscapes. Data were collected from remnant and emergent forest patches on upland sites...

  1. Growth rings in tree species from the Tana river floodplain, Kenya ...

    African Journals Online (AJOL)

    Growth rings of 19 tree species obtained from the Tana riverine forests in Kenya were studied for potential usefulness in dendrochronology. Among the growth ring characteristics used to qualitatively evaluate the potential usefulness of each species for dendrochronology included: distinctiveness of ring boundaries, ring ...

  2. Leaf traits determine the growth-survival trade-off across rain forest tree species

    NARCIS (Netherlands)

    Sterck, F.J.; Poorter, L.; Schieving, F.

    2006-01-01

    A dominant hypothesis explaining tree species coexistence in tropical forest is that trade-offs in characters allow species to adapt to different light environments, but tests for this hypothesis are scarce. This study is the first that uses a theoretical plant growth model to link leaf trade-offs

  3. Crown area equations for 13 species of trees and shrubs in northern California and southwestern Oregon

    Science.gov (United States)

    Fabian C.C. Uzoh; Martin W. Ritchie

    1996-01-01

    The equations presented predict crown area for 13 species of trees and shrubs which may be found growing in competition with commercial conifers during early stages of stand development. The equations express crown area as a function of basal area and height. Parameters were estimated for each species individually using weighted nonlinear least square regression.

  4. Stem and leaf hydraulics of congeneric tree species from adjacent tropical savanna and forest ecosystems

    Science.gov (United States)

    Guang You Hao; William A. Hoffmann; Fabian G. Scholz; Sandra J. Bucci; Frederick C. Meinzer; Augusto C. Franco; Kun Fang Cao; Guillermo Goldstein

    2008-01-01

    Leaf and stem functional traits related to plant water relations were studied for six congeneric species pairs, each composed of one tree species typical of savanna habitats and another typical of adjacent forest habitats, to determine whether there were intrinsic differences in plant hydraulics between these two functional types. Only individuals growing in savanna...

  5. Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico

    Science.gov (United States)

    P. Bayman; D. J. Lodge; P. Angulo-Sandoval; Z. Baez-Ortiz

    1998-01-01

    Xylaria species are common endophytes in tropical plants. It is not known, however, whether transmission of Xylaria occurs horizontally or vertically, whether individual Xylaria strains have wide host ranges or are host-specific, or how they are dispersed. We compared frequency of Xylaria endophytes in leaves and seeds of two tree species in Puerto Rico, Casuarina...

  6. Wind Disturbance Produced Changes in Tree Species Assemblage in the Peruvian Amazon

    Science.gov (United States)

    Rifai, S. W.; Chambers, J. Q.; Negron Juarez, R. I.; Ramirez, F.; Tello, R.; Alegria Muñoz, W.

    2010-12-01

    Wind disturbance has been a frequently overlooked abiotic cause of mass tree mortality in the Amazon basin. In the Peruvian Amazon these wind disturbances are produced by meteorological events such as convective systems. Downbursts for example produce short term descendent wind speeds that can be in excess of 30 m s-1. These are capable of producing tree blowdowns which have been reported to be as large as 33 km2 in the Amazon basin. We used the chronosequence of Landsat Satellite imagery to find and locate where these blowdowns have occurred in the Loreto region of the Peruvian Amazon. Spectral Mixture Analysis was used to estimate the proportion landcover of green vegetation, non-photosynthetic vegetation (NPV), soil and shade in each pixel. The change in NPV was calculated by subtracting the NPV signal in the Landsat image prior to the blowdown occurrence, from the image following the disturbance. Our prior research has established a linear relationship between tree mortality and change in NPV. It is hypothesized that these mass tree mortality events result in changes in the tree species assemblage of affected forests. Here we present preliminary tree species assemblage data from two sites in the Peruvian Amazon near Iquitos, Peru. The site (ALP) at the Allpahuayo Mishana reserve (3.945 S, 73.455 W) is 30 km south of Iquitos, Peru, and hosts the remnants of a 50 ha blowdown that occurred in either 1992 or 1993. Another site (NAPO) on the Napo river about 60 km north of Iquitos, is the location of an approximately 300 ha blowdown that occurred in 1998. At each site, a 3000 m x 10 m transect encompassing non disturbed and disturbed areas was installed, and trees greater than 10 cm diameter at breast height were measured for diameter, height and were identified to the species. Stem density of trees with diameter at breast height > 10 cm, and tree height appear to be similar both inside and outside the blowdown affected areas of the forests at both sites. At the ALP

  7. Performance of some multipurpose tree species: the Forestry ...

    African Journals Online (AJOL)

    Rural afforestation in Zimbabwe has been heavily reliant on the genus Eucalyptus. Limited success has been achieved with these species in semi-arid areas. To broaden the species range and provide a wider product range, the Forestry Commission of Zimbabwe has been conducting on-station screening of African and ...

  8. Status of indigenous tree species regeneration under exotic ...

    African Journals Online (AJOL)

    The potential for regeneration of native woody species in exotic plantation stands and in the adjacent natural forest in Belete forest was studied. The objective of the study was to assess the diversity and density of the naturally regenerated woody species in plantations at Belete forest. Vegetation assessment within the ...

  9. Weighing risk factors associated with bee colony collapse disorder by classification and regression tree analysis.

    Science.gov (United States)

    VanEngelsdorp, Dennis; Speybroeck, Niko; Evans, Jay D; Nguyen, Bach Kim; Mullin, Chris; Frazier, Maryann; Frazier, Jim; Cox-Foster, Diana; Chen, Yanping; Tarpy, David R; Haubruge, Eric; Pettis, Jeffrey S; Saegerman, Claude

    2010-10-01

    Colony collapse disorder (CCD), a syndrome whose defining trait is the rapid loss of adult worker honey bees, Apis mellifera L., is thought to be responsible for a minority of the large overwintering losses experienced by U.S. beekeepers since the winter 2006-2007. Using the same data set developed to perform a monofactorial analysis (PloS ONE 4: e6481, 2009), we conducted a classification and regression tree (CART) analysis in an attempt to better understand the relative importance and interrelations among different risk variables in explaining CCD. Fifty-five exploratory variables were used to construct two CART models: one model with and one model without a cost of misclassifying a CCD-diagnosed colony as a non-CCD colony. The resulting model tree that permitted for misclassification had a sensitivity and specificity of 85 and 74%, respectively. Although factors measuring colony stress (e.g., adult bee physiological measures, such as fluctuating asymmetry or mass of head) were important discriminating values, six of the 19 variables having the greatest discriminatory value were pesticide levels in different hive matrices. Notably, coumaphos levels in brood (a miticide commonly used by beekeepers) had the highest discriminatory value and were highest in control (healthy) colonies. Our CART analysis provides evidence that CCD is probably the result of several factors acting in concert, making afflicted colonies more susceptible to disease. This analysis highlights several areas that warrant further attention, including the effect of sublethal pesticide exposure on pathogen prevalence and the role of variability in bee tolerance to pesticides on colony survivorship.

  10. Spatial distribution and interspecific associations of tree species in a tropical seasonal rain forest of China.

    Directory of Open Access Journals (Sweden)

    Guoyu Lan

    Full Text Available Studying the spatial pattern and interspecific associations of plant species may provide valuable insights into processes and mechanisms that maintain species coexistence. Point pattern analysis was used to analyze the spatial distribution patterns of twenty dominant tree species, their interspecific spatial associations and changes across life stages in a 20-ha permanent plot of seasonal tropical rainforest in Xishuangbanna, China, to test mechanisms maintaining species coexistence. Torus-translation tests were used to quantify positive or negative associations of the species to topographic habitats. The results showed: (1 fourteen of the twenty tree species were negatively (or positively associated with one or two of the topographic variables, which evidences that the niche contributes to the spatial pattern of these species. (2 Most saplings of the study species showed a significantly clumped distribution at small scales (0-10 m which was lost at larger scales (10-30 m. (3 The degree of spatial clumping deceases from saplings, to poles, to adults indicates that density-dependent mortality of the offspring is ubiquitous in species. (4 It is notable that a high number of positive small-scale interactions were found among the twenty species. For saplings, 42.6% of all combinations of species pairs showed positive associations at neighborhood scales up to five meters, but only 38.4% were negative. For poles and adults, positive associations at these distances still made up 45.5% and 29.5%, respectively. In conclusion, there is considerable evidence for the presence of positive interactions among the tree species, which suggests that species herd protection may occur in our plot. In addition, niche assembly and limited dispersal (likely contribute to the spatial patterns of tree species in the tropical seasonal rain forest in Xishuangbanna, China.

  11. Selective logging in tropical forests decreases the robustness of liana-tree interaction networks to the loss of host tree species.

    Science.gov (United States)

    Magrach, Ainhoa; Senior, Rebecca A; Rogers, Andrew; Nurdin, Deddy; Benedick, Suzan; Laurance, William F; Santamaria, Luis; Edwards, David P

    2016-03-16

    Selective logging is one of the major drivers of tropical forest degradation, causing important shifts in species composition. Whether such changes modify interactions between species and the networks in which they are embedded remain fundamental questions to assess the 'health' and ecosystem functionality of logged forests. We focus on interactions between lianas and their tree hosts within primary and selectively logged forests in the biodiversity hotspot of Malaysian Borneo. We found that lianas were more abundant, had higher species richness, and different species compositions in logged than in primary forests. Logged forests showed heavier liana loads disparately affecting slow-growing tree species, which could exacerbate the loss of timber value and carbon storage already associated with logging. Moreover, simulation scenarios of host tree local species loss indicated that logging might decrease the robustness of liana-tree interaction networks if heavily infested trees (i.e. the most connected ones) were more likely to disappear. This effect is partially mitigated in the short term by the colonization of host trees by a greater diversity of liana species within logged forests, yet this might not compensate for the loss of preferred tree hosts in the long term. As a consequence, species interaction networks may show a lagged response to disturbance, which may trigger sudden collapses in species richness and ecosystem function in response to additional disturbances, representing a new type of 'extinction debt'. © 2016 The Author(s).

  12. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions

    Science.gov (United States)

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y.

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia. In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. PMID:27402618

  13. Early establishment of trees at the alpine treeline: idiosyncratic species responses to temperature-moisture interactions.

    Science.gov (United States)

    Loranger, Hannah; Zotz, Gerhard; Bader, Maaike Y

    2016-01-01

    On a global scale, temperature is the main determinant of arctic and alpine treeline position. However on a local scale, treeline form and position vary considerably due to other climatic factors, tree species ecology and life-stage-dependent responses. For treelines to advance poleward or uphill, the first steps are germination and seedling establishment. These earliest life stages may be major bottlenecks for treeline tree populations and will depend differently on climatic conditions than adult trees. We investigated the effect of soil temperature and moisture on germination and early seedling survival in a field experiment in the French Alps near the local treeline (2100 m a.s.l.) using passive temperature manipulations and two watering regimes. Five European treeline tree species were studied: Larix decidua, Picea abies, Pinus cembra, Pinus uncinata and Sorbus aucuparia In addition, we monitored the germination response of three of these species to low temperatures under controlled conditions in growth chambers. The early establishment of these trees at the alpine treeline was limited either by temperature or by moisture, the sensitivity to one factor often depending on the intensity of the other. The results showed that the relative importance of the two factors and the direction of the effects are highly species-specific, while both factors tend to have consistent effects on both germination and early seedling survival within each species. We show that temperature and water availability are both important contributors to establishment patterns of treeline trees and hence to species-specific forms and positions of alpine treelines. The observed idiosyncratic species responses highlight the need for studies including several species and life-stages to create predictive power concerning future treeline dynamics. © The Authors 2016. Published by Oxford University Press on behalf of the Annals of Botany Company.

  14. Rhizosphere soil microbial index of tree species in a coal mining ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, S.; Masto, R.E.; Ram, L.C.; Selvi, V.A.; Srivastava, N.K.; Tripathi, R.C.; George, J. [Central Institute of Mining & Fuel Research, Dhanbad (India)

    2009-09-15

    Microbial characterization of the tree rhizosphere provides important information relating to the screening of tree species for re-vegetation of degraded land. Rhizosphere soil samples collected from a few predominant tree species growing in the coal mining ecosystem of Dhanbad, India, were analyzed for soil organic carbon (SOC), mineralizable N, microbial biomass carbon (MBC), active microbial biomass carbon (AMBC), basal soil respiration (BSR), and soil enzyme activities (dehydrogenase, urease, catalase, phenol oxidase, and peroxidase). Principal component analysis was employed to derive a rhizosphere soil microbial index (RSMI) and accordingly, dehydrogenase, BSR/MBC, MBC/SOC, EC, phenol oxidase and AMBC were found to be the most critical properties. The observed values for the above properties were converted into a unitless score (0-1.00) and the scores were integrated into RSMI. The tree species could be arranged in decreasing order of the RSMI as: A. marmelos (0.718), A. indica (0.715), Bauhinia bauhinia (0.693), B. monosperma (0.611), E. jambolana (0.601), Moringa oleifera (0.565), Dalbergia sissoo (0.498), T indica (0.488), Morus alba (0.415), F religiosa (0.291), Eucalyptus sp. (0.232) and T grandis (0.181). It was concluded that tree species in coal mining areas had diverse effects on their respective rhizosphere microbial processes, which could directly or indirectly determine the survival and performance of the planted tree species in degraded coal mining areas. Tree species with higher RSMI values could be recommended for re-vegetation of degraded coal mining area.

  15. Tree species composition influences enzyme activities and microbial biomass in the rhizosphere: a rhizobox approach.

    Science.gov (United States)

    Fang, Shengzuo; Liu, Dong; Tian, Ye; Deng, Shiping; Shang, Xulan

    2013-01-01

    Monoculture causes nutrient losses and leads to declines in soil fertility and biomass production over successive cultivation. The rhizosphere, a zone of usually high microbial activities and clearly distinct from bulk soil, is defined as the volume of soil around living roots and influenced by root activities. Here we investigated enzyme activities and microbial biomass in the rhizosphere under different tree compositions. Six treatments with poplar, willow, and alder mono- or mixed seedlings were grown in rhizoboxes. Enzyme activities associated with nitrogen cycling and microbial biomass were measured in all rhizosphere and bulk soils. Both enzyme activities and microbial biomass in the rhizosphere differed significantly tree compositions. Microbial biomass contents were more sensitive to the changes of the rhizosphere environment than enzyme activities. Tree species coexistence did not consistently increase tested enzyme activities and microbial biomass, but varied depending on the complementarities of species traits. In general, impacts of tree species and coexistence were more pronounced on microbial composition than total biomass, evidenced by differences in microbial biomass C/N ratios stratified across the rhizosphere soils. Compared to poplar clone monoculture, other tree species addition obviously increased rhizosphere urease activity, but greatly reduced rhizosphere L-asparaginase activity. Poplar growth was enhanced only when coexisted with alder. Our results suggested that a highly productive or keystone plant species in a community had greater influence over soil functions than the contribution of diversity.

  16. TimeTree2: species divergence times on the iPhone.

    Science.gov (United States)

    Kumar, Sudhir; Hedges, S Blair

    2011-07-15

    Scientists, educators and the general public often need to know times of divergence between species. But they rarely can locate that information because it is buried in the scientific literature, usually in a format that is inaccessible to text search engines. We have developed a public knowledgebase that enables data-driven access to the collection of peer-reviewed publications in molecular evolution and phylogenetics that have reported estimates of time of divergence between species. Users can query the TimeTree resource by providing two names of organisms (common or scientific) that can correspond to species or groups of species. The current TimeTree web resource (TimeTree2) contains timetrees reported from molecular clock analyses in 910 published studies and 17 341 species that span the diversity of life. TimeTree2 interprets complex and hierarchical data from these studies for each user query, which can be launched using an iPhone application, in addition to the website. Published time estimates are now readily accessible to the scientific community, K-12 and college educators, and the general public, without requiring knowledge of evolutionary nomenclature. TimeTree2 is accessible from the URL http://www.timetree.org, with an iPhone app available from iTunes (http://itunes.apple.com/us/app/timetree/id372842500?mt=8) and a YouTube tutorial (http://www.youtube.com/watch?v=CxmshZQciwo).

  17. Supplemental planting of early successional tree species during bottomland hardwood afforestation

    Science.gov (United States)

    Twedt, D.J.; Wilson, R.R.; Outcalt, Kenneth W.

    2002-01-01

    Reforestation of former bottom land hardwood forests that have been cleared for agriculture (i.e., afforestation) has historically emphasized planting heavy-seeded oaks (Quercus spp.) and pecans (Carya spp.). These species are slow to develop vertical forest structure. However, vertical forest structure is key to colonization of afforested sites by forest birds. Although early-successional tree species often enhance vertical structure, few of these species invade afforested sites that are distant from seed sources. Furthermore, many land mangers are reluctant to establish and maintain stands of fast-growing plantation trees. Therefore, on 40 afforested bottomland sites, we supplemented heavy-seeded seedlings with 8 patches of fast-growing trees: 4 patches of 12 eastern cottonwood (Populus deltoides) stem cuttings and 4 patches of 12 American sycamore (Platanus occidentalis) seedlings. To enhance survival and growth, tree patches were subjected to 4 weed control treatments: (1) physical weed barriers, (2) chemical herbicide, (3) both physical and chemical weed control, or (4) no weed control. Overall, first-year survival of cottonwood and sycamore was 25 percent and 47 percent, respectively. Second-year survival of extant trees was 52 percent for cottonwood and 77 percent for sycamore. Physical weed barriers increased survival of cottonwoods to 30 percent versus 18 percent survival with no weed control. Similarly, sycamore survival was increased from 49 percent without weed control to 64 percent with physical weed barriers. Chemical weed control adversely impacted sycamore and reduced survival to 35 percent. Tree heights did not differ between species or among weed control treatments. Girdling of trees by deer often destroyed saplings. Thus, little increase in vertical structure was detected between growing seasons. Application of fertilizer and protection via tree shelters did not improve survival or vertical development of sycamore or cottonwood.

  18. Evidence of ecotypic differentiation between populations of the tree species Parapiptadenia rigida due to flooding

    OpenAIRE

    Silva, D. C. G.; Carvalho, M. C. C. G. [UNESP; Ruas, P. M.; Ruas, C. F.; Medri, M. E.

    2010-01-01

    The tree species Parapiptadenia rigida, native to southern South America, is frequently used in reforestation of riverbanks in Brazil. This tree is also a source of gums, tannins and essential oils, and it has some medicinal uses. We investigated flooding tolerance and genetic diversity in two populations of P. rigida; one of them was naturally exposed to flooding. Plants derived from seeds collected from each population were submitted to variable periods of experimental waterlogging and subm...

  19. Species-level para- and polyphyly in DNA barcode gene trees

    DEFF Research Database (Denmark)

    Mutanen, Marko; Kivelä, Sami M.; Vos, Rutger A.

    2016-01-01

    between species and gene genealogies, as indicated by situations where conspecific individuals do not form a monophyletic cluster in a gene tree. In two previous reviews, non-monophyly has been reported as being common in mitochondrial DNA gene trees. We developed a novel web service "Monophylizer...... to their nearest neighbors or exceptionally high levels of intraspecific variability. Cases of polyphyly in COI trees arising as a result of deep intraspecific divergence are negligible, as the detected cases reflected misidentifications or methodological errors. Taking into consideration variation in sampling...

  20. How much does climate change threaten European forest tree species distributions?

    Science.gov (United States)

    Dyderski, Marcin K; Paź, Sonia; Frelich, Lee E; Jagodziński, Andrzej M

    2018-03-01

    Although numerous species distribution models have been developed, most were based on insufficient distribution data or used older climate change scenarios. We aimed to quantify changes in projected ranges and threat level by the years 2061-2080, for 12 European forest tree species under three climate change scenarios. We combined tree distribution data from the Global Biodiversity Information Facility, EUFORGEN, and forest inventories, and we developed species distribution models using MaxEnt and 19 bioclimatic variables. Models were developed for three climate change scenarios-optimistic (RCP2.6), moderate (RCP4.5), and pessimistic (RPC8.5)-using three General Circulation Models, for the period 2061-2080. Our study revealed different responses of tree species to projected climate change. The species may be divided into three groups: "winners"-mostly late-successional species: Abies alba, Fagus sylvatica, Fraxinus excelsior, Quercus robur, and Quercus petraea; "losers"-mostly pioneer species: Betula pendula, Larix decidua, Picea abies, and Pinus sylvestris; and alien species-Pseudotsuga menziesii, Quercus rubra, and Robinia pseudoacacia, which may be also considered as "winners." Assuming limited migration, most of the species studied would face a significant decrease in suitable habitat area. The threat level was highest for species that currently have the northernmost distribution centers. Ecological consequences of the projected range contractions would be serious for both forest management and nature conservation. © 2017 John Wiley & Sons Ltd.

  1. Leaf anatomical traits of non-arboreal savanna species along a gradient of tree encroachment

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Souza Pinheiro

    2017-10-01

    Full Text Available ABSTRACT In the Brazilian savanna (Cerrado of Brazil, fire suppression has transformed typical savanna formations (TS into forested savanna (FS due to the phenomenon of encroachment. Under encroachment, non-arboreal plants begin to receive less light due to greater tree density and canopy closure. Here we aim to evaluate if leaf anatomical traits of non-arboreal species differ according to the degree of tree encroachment at the Assis Ecological Station - São Paulo, Brazil. To this end, we evaluated leaf tissue thickness and specific leaf area (SLA in representative non-arboreal species occurring along a gradient of tree encroachment. Leaves of TS species showed a trend towards xeromorphism, with traits reported to facilitate survival under high luminosity, such as thick leaves, thick epidermis and mesophyll, and low SLA. In contrast, FS species exhibited mesomorphic leaves, with thin mesophyll and high SLA, which are able to capture diffuse light in denser environments. Thus, non-arboreal understory species with mesomorphic leaf traits should be favored in environments with denser vegetation in contrast to typical savanna species. The results suggest that typical non-arboreal savanna species would not survive under tree encroachment due to the low competitiveness of their leaf anatomical strategies in shady environments.

  2. Dominant tree species are at risk from exaggerated drought under climate change.

    Science.gov (United States)

    Fensham, Roderick J; Fraser, Josie; MacDermott, Harry J; Firn, Jenifer

    2015-10-01

    Predicting the consequences of climate change on forest systems is difficult because trees may display species-specific responses to exaggerated droughts that may not be reflected by the climatic envelope of their geographic range. Furthermore, few studies have examined the postdrought recovery potential of drought-susceptible tree species. This study develops a robust ranking of the drought susceptibility of 21 tree species based on their mortality after two droughts (1990s and 2000s) in the savanna of north-eastern Australia. Drought-induced mortality was positively related to species dominance, negatively related to the ratio of postdrought seedlings to adults and had no relationship to the magnitude of extreme drought within the species current geographic ranges. These results suggest that predicting the consequences of exaggerated drought on species' geographic ranges is difficult, but that dominant species like Eucalyptus with relatively slow rates of population recovery and dispersal are the most susceptible. The implications for savanna ecosystems are lower tree densities and basal area. © 2015 John Wiley & Sons Ltd.

  3. BOREAS TE-04 Gas Exchange Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains TE-04 data on gas exchange studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the MPH-1000 system.

  4. BOREAS TE-04 Gas Exchange Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains TE-04 data on gas exchange studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the MPH-1000 system.

  5. BOREAS TE-04 Branch Bag Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — Contains 1996 TE-04 data of branch bag studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the open MPH-1000 system.

  6. BOREAS TE-04 Branch Bag Data from Boreal Tree Species

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Contains 1996 TE-04 data of branch bag studies of photosynthesis, respiration and stomatal conductance of boreal forest species using the open MPH-1000...

  7. Can tree species diversity be assessed with Landsat data in a temperate forest?

    Science.gov (United States)

    Arekhi, Maliheh; Yılmaz, Osman Yalçın; Yılmaz, Hatice; Akyüz, Yaşar Feyza

    2017-10-28

    The diversity of forest trees as an indicator of ecosystem health can be assessed using the spectral characteristics of plant communities through remote sensing data. The objectives of this study were to investigate alpha and beta tree diversity using Landsat data for six dates in the Gönen dam watershed of Turkey. We used richness and the Shannon and Simpson diversity indices to calculate tree alpha diversity. We also represented the relationship between beta diversity and remotely sensed data using species composition similarity and spectral distance similarity of sampling plots via quantile regression. A total of 99 sampling units, each 20 m × 20 m, were selected using geographically stratified random sampling method. Within each plot, the tree species were identified, and all of the trees with a diameter at breast height (dbh) larger than 7 cm were measured. Presence/absence and abundance data (tree species number and tree species basal area) of tree species were used to determine the relationship between richness and the Shannon and Simpson diversity indices, which were computed with ground field data, and spectral variables derived (2 × 2 pixels and 3 × 3 pixels) from Landsat 8 OLI data. The Shannon-Weiner index had the highest correlation. For all six dates, NDVI (normalized difference vegetation index) was the spectral variable most strongly correlated with the Shannon index and the tree diversity variables. The Ratio of green to red (VI) was the spectral variable least correlated with the tree diversity variables and the Shannon basal area. In both beta diversity curves, the slope of the OLS regression was low, while in the upper quantile, it was approximately twice the lower quantiles. The Jaccard index is closed to one with little difference in both two beta diversity approaches. This result is due to increasing the similarity between the sampling plots when they are located close to each other. The intercept differences between two

  8. Estimating tree bole volume using artificial neural network models for four species in Turkey.

    Science.gov (United States)

    Ozçelik, Ramazan; Diamantopoulou, Maria J; Brooks, John R; Wiant, Harry V

    2010-01-01

    Tree bole volumes of 89 Scots pine (Pinus sylvestris L.), 96 Brutian pine (Pinus brutia Ten.), 107 Cilicica fir (Abies cilicica Carr.) and 67 Cedar of Lebanon (Cedrus libani A. Rich.) trees were estimated using Artificial Neural Network (ANN) models. Neural networks offer a number of advantages including the ability to implicitly detect complex nonlinear relationships between input and output variables, which is very helpful in tree volume modeling. Two different neural network architectures were used and produced the Back propagation (BPANN) and the Cascade Correlation (CCANN) Artificial Neural Network models. In addition, tree bole volume estimates were compared to other established tree bole volume estimation techniques including the centroid method, taper equations, and existing standard volume tables. An overview of the features of ANNs and traditional methods is presented and the advantages and limitations of each one of them are discussed. For validation purposes, actual volumes were determined by aggregating the volumes of measured short sections (average 1 meter) of the tree bole using Smalian's formula. The results reported in this research suggest that the selected cascade correlation artificial neural network (CCANN) models are reliable for estimating the tree bole volume of the four examined tree species since they gave unbiased results and were superior to almost all methods in terms of error (%) expressed as the mean of the percentage errors. 2009 Elsevier Ltd. All rights reserved.

  9. Potential tree species for use in urban areas in temperate and oceanic climates

    Directory of Open Access Journals (Sweden)

    Miklas Scholz

    2016-09-01

    Full Text Available This study aims to assess the potential of trees for integration in urban development by evaluating the damage caused by trees in relation to various tree characteristics. Tree damage to permeable pavement systems and other urban structures such as impermeable pavements, kerbs, roads, retaining walls, footpaths, walls and buildings were assessed to identify the most suitable trees for the urban environment. One hundred square sites of 100 m × 100 m were randomly selected in Greater Manchester for this representative example case study to demonstrate the assessment methodology. Among tree species in this study, Acer platanoides L. (Norway maple occurred most frequently (17%; others were Tilia spp. L. (Lime; 16%, Fraxinus excelsior L. (common ash; 12%, Acer pseudoplatanus L. (sycamore; 10% and Prunus avium L. (wild cherry; 8%. The study concludes that 44% of the damage was to impermeable pavements and 22% to permeable pavements. Other damage to structures included kerbs (19%, retaining walls (5%, footpaths (4%, roads (3% and walls (3%. Concerning the severity of damage, 66% were moderate, 21% light and 19% severe. Aesculus hippocastanum L. (horse chestnut caused the greatest damage (59% expressed in percentage as a ratio of the tree number related to damage over the corresponding tree number that was found close to structures.

  10. Unified framework for triaxial accelerometer-based fall event detection and classification using cumulants and hierarchical decision tree classifier.

    Science.gov (United States)

    Kambhampati, Satya Samyukta; Singh, Vishal; Manikandan, M Sabarimalai; Ramkumar, Barathram

    2015-08-01

    In this Letter, the authors present a unified framework for fall event detection and classification using the cumulants extracted from the acceleration (ACC) signals acquired using a single waist-mounted triaxial accelerometer. The main objective of this Letter is to find suitable representative cumulants and classifiers in effectively detecting and classifying different types of fall and non-fall events. It was discovered that the first level of the proposed hierarchical decision tree algorithm implements fall detection using fifth-order cumulants and support vector machine (SVM) classifier. In the second level, the fall event classification algorithm uses the fifth-order cumulants and SVM. Finally, human activity classification is performed using the second-order cumulants and SVM. The detection and classification results are compared with those of the decision tree, naive Bayes, multilayer perceptron and SVM classifiers with different types of time-domain features including the second-, third-, fourth- and fifth-order cumulants and the signal magnitude vector and signal magnitude area. The experimental results demonstrate that the second- and fifth-order cumulant features and SVM classifier can achieve optimal detection and classification rates of above 95%, as well as the lowest false alarm rate of 1.03%.

  11. Differential Diagnosis of Erythmato-Squamous Diseases Using Classification and Regression Tree.

    Science.gov (United States)

    Maghooli, Keivan; Langarizadeh, Mostafa; Shahmoradi, Leila; Habibi-Koolaee, Mahdi; Jebraeily, Mohamad; Bouraghi, Hamid

    2016-10-01

    Differential diagnosis of Erythmato-Squamous Diseases (ESD) is a major challenge in the field of dermatology. The ESD diseases are placed into six different classes. Data mining is the process for detection of hidden patterns. In the case of ESD, data mining help us to predict the diseases. Different algorithms were developed for this purpose. we aimed to use the Classification and Regression Tree (CART) to predict differential diagnosis of ESD. we used the Cross Industry Standard Process for Data Mining (CRISP-DM) methodology. For this purpose, the dermatology data set from machine learning repository, UCI was obtained. The Clementine 12.0 software from IBM Company was used for modelling. In order to evaluation of the model we calculate the accuracy, sensitivity and specificity of the model. The proposed model had an accuracy of 94.84% (. 24.42) in order to correct prediction of the ESD disease. Results indicated that using of this classifier could be useful. But, it would be strongly recommended that the combination of machine learning methods could be more useful in terms of prediction of ESD.

  12. Predictors of sentinel lymph node status in cutaneous melanoma: a classification and regression tree analysis.

    Science.gov (United States)

    Tejera-Vaquerizo, A; Martín-Cuevas, P; Gallego, E; Herrera-Acosta, E; Traves, V; Herrera-Ceballos, E; Nagore, E

    2015-04-01

    The main aim of this study was to identify predictors of sentinel lymph node (SN) metastasis in cutaneous melanoma. This was a retrospective cohort study of 818 patients in 2 tertiary-level hospitals. The primary outcome variable was SN involvement. Independent predictors were identified using multiple logistic regression and a classification and regression tree (CART) analysis. Ulceration, tumor thickness, and a high mitotic rate (≥6 mitoses/mm(2)) were independently associated with SN metastasis in the multiple regression analysis. The most important predictor in the CART analysis was Breslow thickness. Absence of an inflammatory infiltrate, patient age, and tumor location were predictive of SN metastasis in patients with tumors thicker than 2mm. In the case of thinner melanomas, the predictors were mitotic rate (>6 mitoses/mm(2)), presence of ulceration, and tumor thickness. Patient age, mitotic rate, and tumor thickness and location were predictive of survival. A high mitotic rate predicts a higher risk of SN involvement and worse survival. CART analysis improves the prediction of regional metastasis, resulting in better clinical management of melanoma patients. It may also help select suitable candidates for inclusion in clinical trials. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  13. Beef Quality Identification Using Thresholding Method and Decision Tree Classification Based on Android Smartphone

    Directory of Open Access Journals (Sweden)

    Kusworo Adi

    2017-01-01

    Full Text Available Beef is one of the animal food products that have high nutrition because it contains carbohydrates, proteins, fats, vitamins, and minerals. Therefore, the quality of beef should be maintained so that consumers get good beef quality. Determination of beef quality is commonly conducted visually by comparing the actual beef and reference pictures of each beef class. This process presents weaknesses, as it is subjective in nature and takes a considerable amount of time. Therefore, an automated system based on image processing that is capable of determining beef quality is required. This research aims to develop an image segmentation method by processing digital images. The system designed consists of image acquisition processes with varied distance, resolution, and angle. Image segmentation is done to separate the images of fat and meat using the Otsu thresholding method. Classification was carried out using the decision tree algorithm and the best accuracies were obtained at 90% for training and 84% for testing. Once developed, this system is then embedded into the android programming. Results show that the image processing technique is capable of proper marbling score identification.

  14. Predicting smear negative pulmonary tuberculosis with classification trees and logistic regression: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Kritski Afrânio

    2006-02-01

    Full Text Available Abstract Background Smear negative pulmonary tuberculosis (SNPT accounts for 30% of pulmonary tuberculosis cases reported yearly in Brazil. This study aimed to develop a prediction model for SNPT for outpatients in areas with scarce resources. Methods The study enrolled 551 patients with clinical-radiological suspicion of SNPT, in Rio de Janeiro, Brazil. The original data was divided into two equivalent samples for generation and validation of the prediction models. Symptoms, physical signs and chest X-rays were used for constructing logistic regression and classification and regression tree models. From the logistic regression, we generated a clinical and radiological prediction score. The area under the receiver operator characteristic curve, sensitivity, and specificity were used to evaluate the model's performance in both generation and validation samples. Results It was possible to generate predictive models for SNPT with sensitivity ranging from 64% to 71% and specificity ranging from 58% to 76%. Conclusion The results suggest that those models might be useful as screening tools for estimating the risk of SNPT, optimizing the utilization of more expensive tests, and avoiding costs of unnecessary anti-tuberculosis treatment. Those models might be cost-effective tools in a health care network with hierarchical distribution of scarce resources.

  15. Classification tree analysis of second neoplasms in survivors of childhood cancer

    International Nuclear Information System (INIS)

    Jazbec, Janez; Todorovski, Ljupčo; Jereb, Berta

    2007-01-01

    Reports on childhood cancer survivors estimated cumulative probability of developing secondary neoplasms vary from 3,3% to 25% at 25 years from diagnosis, and the risk of developing another cancer to several times greater than in the general population. In our retrospective study, we have used the classification tree multivariate method on a group of 849 first cancer survivors, to identify childhood cancer patients with the greatest risk for development of secondary neoplasms. In observed group of patients, 34 develop secondary neoplasm after treatment of primary cancer. Analysis of parameters present at the treatment of first cancer, exposed two groups of patients at the special risk for secondary neoplasm. First are female patients treated for Hodgkin's disease at the age between 10 and 15 years, whose treatment included radiotherapy. Second group at special risk were male patients with acute lymphoblastic leukemia who were treated at the age between 4,6 and 6,6 years of age. The risk groups identified in our study are similar to the results of studies that used more conventional approaches. Usefulness of our approach in study of occurrence of second neoplasms should be confirmed in larger sample study, but user friendly presentation of results makes it attractive for further studies

  16. CLASSIFICATION OF ENTREPRENEURIAL INTENTIONS BY NEURAL NETWORKS, DECISION TREES AND SUPPORT VECTOR MACHINES

    Directory of Open Access Journals (Sweden)

    Marijana Zekić-Sušac

    2010-12-01

    Full Text Available Entrepreneurial intentions of students are important to recognize during the study in order to provide those students with educational background that will support such intentions and lead them to successful entrepreneurship after the study. The paper aims to develop a model that will classify students according to their entrepreneurial intentions by benchmarking three machine learning classifiers: neural networks, decision trees, and support vector machines. A survey was conducted at a Croatian university including a sample of students at the first year of study. Input variables described students’ demographics, importance of business objectives, perception of entrepreneurial carrier, and entrepreneurial predispositions. Due to a large dimension of input space, a feature selection method was used in the pre-processing stage. For comparison reasons, all tested models were validated on the same out-of-sample dataset, and a cross-validation procedure for testing generalization ability of the models was conducted. The models were compared according to its classification accuracy, as well according to input variable importance. The results show that although the best neural network model produced the highest average hit rate, the difference in performance is not statistically significant. All three models also extract similar set of features relevant for classifying students, which can be suggested to be taken into consideration by universities while designing their academic programs.

  17. Regenerative Resilience of Tree Species in a Degraded Forest within Mt Kenya Ecosystem

    International Nuclear Information System (INIS)

    Omenda, T.O; Kariuki, J.G; Kamondo, B.M; Kiamba, J.K

    2007-01-01

    There is widespread human induced degradation of natural forest in Kenya. The major challenge to this situation is to devise cost effective rehabilitation approaches to reverse this trend. A study was conducted in Nyanza province of Kenya describing the structure and diversity of a disturbed natural forest and understanding the role so various propagules, namely seed, soil seed bank and coppices in post-disturbance recovery. The pre-disturbance forest type was a podo-Cassipourea-Teclea tropical montane forest. Four 350 m long line-plot transects were randomly located within the forest. Tree and stump data were obtained from 20*20 m plots located at 50 m intervals, while sapling, seeding and soil seed bank data were obtained from 5*5 m, 1*1 m and 0.2*0.2*0.5 subplots respectively, nested within the large plot. An 'Index of Species Resilence' that defines their continued was developed based on the tree species ability to coppice and their representation in seedling, sapling and tree stages. The forest condition was highly heterogeneous as determined through spatial distribution of basal area, height and diameter of breast height (dbh) of trees and cut stumps, the latter an indicator of disturbance. The Resilience Index indicated that, out of the 40 tree species found in the forest, only 30% had stable presence while 50% had an unstable presence characterized by in key succession stages-implying low auto-recovery potential. Results indicated that, coppicing had a more critical role in regeneration than previously thought, with 78% of all cut-tree species coppicing while only 27.5% of all the trees species regenerated from seed. The role of soil seed bank in auto-recovery was insignificant in this site. The apparent high coppicing potential presents a new opportunity for managing natural forests

  18. Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing

    Directory of Open Access Journals (Sweden)

    Weikang Zhang

    2017-03-01

    Full Text Available Leaf surface is a multifunctional interface between a plant and its environment, which affects both ecological and biological processes. Leaf surface topography directly affects microhabitat availability and ability for deposition. In this study, atomic force microscopy (AFM and the resuspended particulate matter method were applied to evaluate the adsorptive capacity of the leaf surface. Patterns of particulate‐capturing capacities in different tree species and the effect of leaf surface features on these capacities were explored. Results indicated the following: (1 more total suspended particles (TSP per unit leaf area were captured by coniferous tree species than by broad‐leaved tree species in a particular order—i.e., Pinus tabuliformis > Pinus bungeana > Salix matsudana > Acer truncatum > Ginkgo biloba > Populus tomentosa; (2 Significant seasonal variation in particulate‐capturing capacities were determined. During the observation period, the broad‐leaved tree species capturing TSP and coarse particulate matter (PM10 clearly exhibited a ∩‐shape pattern— that is, increasing initially and later on decreasing; meanwhile, the ∩‐shape pattern was not clearly shown in P. tabuliformis and P. bungeana. However, no obvious patterns in the absorption of fine particulate matter (PM2.5 were found in the tested tree species; (3 The leaf surface topography, as observed by AFM and scanning electron microscopy, revealed that the broad‐leaved tree exhibits a good correlation between micro‐roughness of leaf surfaces and density of particles settling on leaf surfaces over time. However, the main factors affecting the adsorptive capacities of the leaves in coniferous trees are the number of stomata as well as the amount of epicuticular wax and the properties of the cuticle in different seasons.

  19. Impacts of Human Activities on Tree Species Composition Along the Forest Savanna Boundary in Nigeria

    Directory of Open Access Journals (Sweden)

    Christiana Ndidi Egbinola

    2016-02-01

    Full Text Available The study investigated the tree species composition along the forest-savanna boundary in Oyo state of Nigeria with the aim of assessing the impact of human activities on the floristic composition. A transect was placed along the study area and species data was collected from quadrats placed in study plots within different study sites. Detrended Correspondence Analysis (DCA was used to determine vegetation assemblages, while both correlation and the analysis of variance (ANOVA were used to show the relationship between species in the different study sites. Results of the DCA revealed three species assemblages, an area with only forest species, another with only savanna species and a third with both forest/savanna species. ANOVA results further revealed that within the forest and savanna assemblages, species in mature and successional sites were alike. The study therefore revealed that human activities’ within the region is leading to the establishment of savanna species and an elimination of forest species.

  20. The response of European tree species to drought: a meta-analysis

    Science.gov (United States)

    Irschick, C.; Mayr, S.; Wohlfahrt, G.

    2012-04-01

    Here we provide first results of a meta-analysis of the response of European tree species to drought. A literature search was conducted in order to collect available studies of the response of the gas exchange of European tree species to either natural or imposed water shortage. The resulting publications were screened and parameters at organ (e.g. leaf or shoot), individual (i.e. tree) and ecosystem scale were transferred to a data base. Here we present preliminary results from queries of the data base aiming at identifying differences in the drought response between species that may have implications for forest productivity and composition under likely future warmer and drier conditions.

  1. THE IMPORTANCE OF USING FRUIT TREE SPECIES WITH ORNAMENTAL ROLE IN RUSTIC GARDENS LANDSCAPING

    Directory of Open Access Journals (Sweden)

    Roxana Negrea

    2012-04-01

    Full Text Available Ornamental fruit trees are suitable for rustic gardens, although "rustic" is translated to us especially by "poverty" or "obsolete", in much broader terms refers to "something else " meaning return to nature, respect, tradition and even a certain social status. It is therefore essential that in the woody vegetation campestre gardens to find rustic tree species, which by their habitus and color bring moredynamism and candor to any type of garden, especially rustic garden type. These species can be introduced into the composition either as individual parts or grups, decorating the trees in the same visualcharacter (class, habitus, foliage, flowers, also providing the desired fruit. The great advantage of these species is that in addition to their great capacity to make the area in which they are positioned beautiful, by the beauty of the flowers, leaves or even the different colors every season, offers real taste delights through the fruit they produce.

  2. REVIEW: Species Diversity of Local Fruit Trees in Kalimantan: Problems of Conservation and Its Development

    Directory of Open Access Journals (Sweden)

    MUSTAID SIREGAR

    2006-01-01

    Full Text Available The decrease in population of local fruit trees due to the forest destruction in some places in Kalimantan is a worrying trend.The genetic diversity of fruits in Kalimantan has been saved partly through indigenous agroforestry, as species cultivated from generation to generation by indigenous people have created miniature forests in the village agroecosystem. However, there is no doubt that the existence of local fruit trees has been threatened by the introduction of a superior fruit cultivars and other commercial plant species such as coconuts (Cocos nucifera, oil palm (Elaeis guinensis and rubber trees (Hevea braziliensis. An ex-situ conservation program is proposed for the maintenance of diversity amongst local fruit species.

  3. An empirical evaluation of two-stage species tree inference strategies using a multilocus dataset from North American pines

    Science.gov (United States)

    2014-01-01

    Background As it becomes increasingly possible to obtain DNA sequences of orthologous genes from diverse sets of taxa, species trees are frequently being inferred from multilocus data. However, the behavior of many methods for performing this inference has remained largely unexplored. Some methods have been proven to be consistent given certain evolutionary models, whereas others rely on criteria that, although appropriate for many parameter values, have peculiar zones of the parameter space in which they fail to converge on the correct estimate as data sets increase in size. Results Here, using North American pines, we empirically evaluate the behavior of 24 strategies for species tree inference using three alternative outgroups (72 strategies total). The data consist of 120 individuals sampled in eight ingroup species from subsection Strobus and three outgroup species from subsection Gerardianae, spanning ∼47 kilobases of sequence at 121 loci. Each “strategy” for inferring species trees consists of three features: a species tree construction method, a gene tree inference method, and a choice of outgroup. We use multivariate analysis techniques such as principal components analysis and hierarchical clustering to identify tree characteristics that are robustly observed across strategies, as well as to identify groups of strategies that produce trees with similar features. We find that strategies that construct species trees using only topological information cluster together and that strategies that use additional non-topological information (e.g., branch lengths) also cluster together. Strategies that utilize more than one individual within a species to infer gene trees tend to produce estimates of species trees that contain clades present in trees estimated by other strategies. Strategies that use the minimize-deep-coalescences criterion to construct species trees tend to produce species tree estimates that contain clades that are not present in trees

  4. Determination of incoming solar radiation in major tree species in Turkey.

    Science.gov (United States)

    Yilmaz, Osman Yalcin; Sevgi, Orhan; Koc, Ayhan

    2012-07-01

    Light requirements and spatial distribution of major forest tree species in Turkey hasn't been analyzed yet. Continuous surface solar radiation data, especially at mountainous-forested areas, are needed to put forward this relationship between forest tree species and solar radiation. To achieve this, GIS-based modeling of solar radiation is one of the methods used in rangelands to estimate continuous surface solar radiation. Therefore, mean monthly and annual total global solar radiation maps of whole Turkey were computed spatially using GRASS GIS software "r.sun" model under clear-sky (cloudless) conditions. 147498 pure forest stand point-based data were used in the study for calculating mean global solar radiation values of all the major forest tree species of Turkey. Beech had the lowest annual mean total global solar radiation value of 1654.87 kWh m(-2), whereas juniper had the highest value of 1928.89 kWh m(-2). The rank order of tree species according to the mean monthly and annual total global solar radiation values, using a confidence level of p Cedar trees ranked similarly.

  5. Floristics of mangrove tree species in Angke-Kapuk Protected Forest

    Directory of Open Access Journals (Sweden)

    RUGAYAH

    2005-01-01

    Full Text Available Angke-Kapuk Protected Forest with total area 44.76 ha is part of the Tegal Alur-Angke Kapuk mangrove forests. Therefore, this forest has important role as an interface between terrestrial and marine ecosystems, whether physical, biological or social-economic aspects, to determine mangrove ecosystem as a productive and unique ecosystem in the coastal area. However, the study of floristic of the mangrove vegetation in this forest has never to be done previously. According to the study on September to November 2003, in this forest found 8 species of mangrove trees. The tree species can be classified into two groups. The first group is true mangroves (7 species, i.e. Avicennia officinalis, Rhizophora apiculata, R. mucronata, R. stylosa, Sonneratia caseolaris (major component, Excoecaria agallocha, and Xylocarpus moluccensis (minor component. The last group is mangrove associate, i.e. Terminalia catappa. In this forest also found 7 tree species, i.e. Bruguiera gymnorrhiza, Calophyllum inophyllum, Cerbera manghas, Paraserianthes falcataria, Tamarindus indicus, Acacia mangium, and A. auriculiformis as introduced species. The growth level of B. gymnorhiza, C. inophyllum and C. manghas up to now is seedling and sapling, while the growth level of another introduced species is till in pole and tree.

  6. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species

    NARCIS (Netherlands)

    Poorter, L.; McDonald, I.; Alarcón, A.; Fichtler, E.; Licona, J.C.; Peña-Claros, M.; Sterck, F.J.; Villegas, Z.; Sass-Klaassen, U.

    2010-01-01

    • In a comparative study of 42 rainforest tree species we examined relationships amongst wood traits, diameter growth and survival of large trees in the field, and shade tolerance and adult stature of the species. • The species show two orthogonal axes of trait variation: a primary axis related to

  7. [Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China].

    Science.gov (United States)

    Zuo, Shu-di; Ren, Yin; Weng, Xian; Ding, Hong-feng; Luo, Yun-jian

    2015-02-01

    Biomass allometric equation (BAE) considered as a simple and reliable method in the estimation of forest biomass and carbon was used widely. In China, numerous studies focused on the BAEs for coniferous forest and pure broadleaved forest, and generalized BAEs were frequently used to estimate the biomass and carbon of mixed broadleaved forest, although they could induce large uncertainty in the estimates. In this study, we developed the species-specific and generalized BAEs using biomass measurement for 9 common broadleaved trees (Castanopsis fargesii, C. lamontii, C. tibetana, Lithocarpus glaber, Sloanea sinensis, Daphniphyllum oldhami, Alniphyllum fortunei, Manglietia yuyuanensis, and Engelhardtia fenzlii) of subtropical evergreen broadleaved forest, and compared differences in species-specific and generalized BAEs. The results showed that D (diameter at breast height) was a better independent variable in estimating the biomass of branch, leaf, root, aboveground section and total tree than a combined variable (D2 H) of D and H (tree height) , but D2H was better than D in estimating stem biomass. R2 (coefficient of determination) values of BAEs for 6 species decreased when adding H as the second independent variable into D- only BAEs, where R2 value for S. sinensis decreased by 5.6%. Compared with generalized D- and D2H-based BAEs, standard errors of estimate (SEE) of BAEs for 8 tree species decreased, and similar decreasing trend was observed for different components, where SEEs of the branch decreased by 13.0% and 20.3%. Therefore, the biomass carbon storage and its dynamic estimates were influenced largely by tree species and model types. In order to improve the accuracy of the estimates of biomass and carbon, we should consider the differences in tree species and model types.

  8. Growth and reproduction respond differently to climate in three Neotropical tree species.

    Science.gov (United States)

    Alfaro-Sánchez, Raquel; Muller-Landau, Helene C; Wright, S Joseph; Camarero, J Julio

    2017-06-01

    The response of tropical forests to anthropogenic climate change is critically important to future global carbon budgets, yet remains highly uncertain. Here, we investigate how precipitation, temperature, solar radiation and dry- and wet-season lengths are related to annual tree growth, flower production, and fruit production in three moist tropical forest tree species using long-term datasets from tree rings and litter traps in central Panama. We also evaluated how growth, flower, and fruit production were interrelated. We found that growth was positively correlated with wet-season precipitation in all three species: Jacaranda copaia (r = 0.63), Tetragastris panamensis (r = 0.39) and Trichilia tuberculata (r = 0.39). Flowering and fruiting in Jacaranda were negatively related to current-year dry-season rainfall and positively related to prior-year dry-season rainfall. Flowering in Tetragastris was negatively related to current-year annual mean temperature while Trichilia showed no significant relationships of reproduction with climate. Growth was significantly related to reproduction only in Tetragastris, where it was positively related to previous year fruiting. Our results suggest that tree growth in moist tropical forest tree species is generally reduced by drought events such as those associated with strong El Niño events. In contrast, interannual variation in reproduction is not generally associated with growth and has distinct and species-specific climate responses, with positive effects of El Niño events in some species. Understanding these contrasting climate effects on tree growth and reproduction is critical to predicting changes in tropical forest dynamics and species composition under climate change.

  9. Novel Phaeoacremonium species associated with necrotic wood of Prunus trees

    NARCIS (Netherlands)

    Damm, U.; Mostert, L.; Crous, P.W.; Fourie, P.H.

    2008-01-01

    The genus Phaeoacremonium is associated with opportunistic human infections, as well as stunted growth and die-back of various woody hosts, especially grapevines. In this study, Phaeoacremonium species were isolated from necrotic woody tissue of Prunus spp. (plum, peach, nectarine and apricot) from

  10. Rubisco activity and gene expression of tropical tree species under ...

    African Journals Online (AJOL)

    Tropical rain forests contain an ecologically and physiologically diverse range of vegetation and habitats. Sun-acclimated plants can be divided into two groups, shade-tolerant and shade-intolerant, according to the plant's physiological and genetic responses. Some tropical species have potential capacity for light damage ...

  11. Important Hawaiian tree species in need of genetic conservation

    Science.gov (United States)

    Robert D. Hauff

    2017-01-01

    Resource managers in Hawaii face unique forest conservation challenges. Invasive species continue to inundate the remote island archipelago, directly threatening its forest resources. Hawaii has the largest number (> 400) of endangered plants in the United States, and managers use genetic approaches to preserve these small populations which are often island...

  12. Guild of Frugivores on three Fruit-Producing Tree Species ...

    African Journals Online (AJOL)

    While many birds depend on fruits for food for at least part of the year (Howe, 1984) they have evolved to survive on a mixed diet of less nutritious fruit species supplemented by seeds and/or insects. A similar scenario has evolved in frugivorous animals (Snow 1981). This strategy leads to efficient dispersal, with fruit being ...

  13. Complementary models of tree species-soil relationships in old-growth temperate forests

    Science.gov (United States)

    Cross, Alison; Perakis, Steven S.

    2011-01-01

    Ecosystem level studies identify plant soil feed backs as important controls on soil nutrient availability,particularly for nitrogen and phosphorus. Although site and species specific studies of tree species soil relationships are relatively common,comparatively fewer studies consider multiple coexisting speciesin old-growth forests across a range of sites that vary underlying soil fertility. We characterized patterns in forest floor and mineral soil nutrients associated with four common tree species across eight undisturbed old-growth forests in Oregon, USA, and used two complementary conceptual models to assess tree species soil relationships. Plant soil feedbacks that could reinforce sitelevel differences in nutrient availability were assessed using the context dependent relationships model, where by relative species based differences in each soil nutrient divergedorconvergedas nutrient status changed across sites. Tree species soil relationships that did not reflect strong feedbacks were evaluated using a site independent relationships model, where by forest floor and surface mineral soil nutrient tools differed consistently by tree species across sites,without variation in deeper mineral soils. We found that theorganically cycled elements carbon, nitrogen, and phosphorus exhibited context-dependent differences among species in both forest floor and mineral soil, and most of ten followed adivergence model,where by species differences were greatest at high-nutrient sites. These patterns are consistent with the oryemphasizing biotic control of these elements through plant soil feedback mechanisms. Site independent species differences were strongest for pool so if the weather able cations calcium, magnesium, potassium,as well as phosphorus, in mineral soils. Site independent species differences in forest floor nutrients we reattributable too nespecies that displayed significant greater forest floor mass accumulation. Our finding confirmed that site-independent and

  14. The rubber tree genome reveals new insights into rubber production and species adaptation

    OpenAIRE

    Tang, Chaorong; Yang, Meng; Fang, Yongjun; Luo, Yingfeng; Gao, Shenghan; Xiao, Xiaohu; An, Zewei; Zhou, Binhui; Zhang, Bing; Tan, Xinyu; Yeang, Hoong Yeet; Qin, Yunxia; Yang, Jianghua; Lin, Qiang; Mei, Hailiang

    2016-01-01

    The Para rubber tree (Hevea brasiliensis) is an economically important tropical tree species that produces natural rubber, an essential industrial raw material. Here we present a high-quality genome assembly of this species (1.37 Gb, scaffold N50 = 1.28 Mb) that covers 93.8% of the genome (1.47 Gb) and harbours 43,792 predicted protein-coding genes. A striking expansion of the REF/SRPP (rubber elongation factor/small rubber particle protein) gene family and its divergence into several laticif...

  15. Association of dominated tree species in lowland tropical forest of Tangkoko Nature Reserve, Bitung, North Sulawesi

    Directory of Open Access Journals (Sweden)

    AGUNG KURNIAWAN

    2008-07-01

    Full Text Available The study aimed to gain information about tree species domination and association was conducted in lowland tropical forest of Tangkoko Nature Reserve. The tree with ≥10 cm dbh censused with quarter method. The result showed that Palaquium sp. having the highest domination species with Index Importance Value 21.05, as well as Cananga odorata Hook.f. & Thoms. and Dracontomelon dao (Blanco Merril & Rolfe. There was one couple species that had positive association among seven main species composition in area study, that was C. odorata with kayu kapur. Generally, the other couples species had negative association, so there was no tolerance to exist in the same area and no mutualism interrelationship especially in habitat grouping.

  16. Residential Knowledge of Native Tree Species: A Case Study of Residents in Four Southern Ontario Municipalities

    Science.gov (United States)

    Almas, Andrew D.; Conway, Tenley M.

    2017-01-01

    In the past decade, municipalities across North America have increased investment in their urban forests in an effort to maintain and enhance the numerous benefits provided by them. Some municipalities have now drafted long-term urban forest management plans that emphasize the planting of native trees, to improve ecological integrity, and participation of residents, since the majority of urban trees are typically located on residential property. Yet it is unclear if residents are familiar with native trees or municipalities' urban forest management goals. Through a case study of southern Ontario municipalities, we administered a survey exploring residents' ability to correctly label common tree species as native or non-native, as well as their knowledge of urban forest management plans to test four hypotheses: 1) residents in municipalities with an urban forest management plans will be more knowledgeable about the native status of common street trees; 2) residents who have lived in the area longer will have greater knowledge; 3) knowledge level will be correlated with education level, ethnicity, and income; and 4) residents' knowledge will be related to having planted trees on their property. Our results indicate that residents are better able to identify common native trees than correctly determine which trees are non-native, although knowledge levels are generally low. Knowledge was significantly related to length of residency and tree planting experience, supporting hypotheses 2 and 4. These results highlight the importance of experience and local knowledge acquisition in relation to basic knowledge about urban trees, and also point to the failures of resident outreach within the case study municipalities.

  17. A framework for mapping tree species combining hyperspectral and LiDAR data: Role of selected classifiers and sensor across three spatial scales

    Science.gov (United States)

    Ghosh, Aniruddha; Fassnacht, Fabian Ewald; Joshi, P. K.; Koch, Barbara

    2014-02-01

    Knowledge of tree species distribution is important worldwide for sustainable forest management and resource evaluation. The accuracy and information content of species maps produced using remote sensing images vary with scale, sensor (optical, microwave, LiDAR), classification algorithm, verification design and natural conditions like tree age, forest structure and density. Imaging spectroscopy reduces the inaccuracies making use of the detailed spectral response. However, the scale effect still has a strong influence and cannot be neglected. This study aims to bridge the knowledge gap in understanding the scale effect in imaging spectroscopy when moving from 4 to 30 m pixel size for tree species mapping, keeping in mind that most current and future hyperspectral satellite based sensors work with spatial resolution around 30 m or more. Two airborne (HyMAP) and one spaceborne (Hyperion) imaging spectroscopy dataset with pixel sizes of 4, 8 and 30 m, respectively were available to examine the effect of scale over a central European forest. The forest under examination is a typical managed forest with relatively homogenous stands featuring mostly two canopy layers. Normalized digital surface model (nDSM) derived from LiDAR data was used additionally to examine the effect of height information in tree species mapping. Six different sets of predictor variables (reflectance value of all bands, selected components of a Minimum Noise Fraction (MNF), Vegetation Indices (VI) and each of these sets combined with LiDAR derived height) were explored at each scale. Supervised kernel based (Support Vector Machines) and ensemble based (Random Forest) machine learning algorithms were applied on the dataset to investigate the effect of the classifier. Iterative bootstrap-validation with 100 iterations was performed for classification model building and testing for all the trials. For scale, analysis of overall classification accuracy and kappa values indicated that 8 m spatial

  18. The Right Tree for the Job? Perceptions of Species Suitability for the Provision of Ecosystem Services

    Science.gov (United States)

    Smaill, Simeon J.; Bayne, Karen M.; Coker, Graham W. R.; Paul, Thomas S. H.; Clinton, Peter W.

    2014-04-01

    Stakeholders in plantation forestry are increasingly aware of the importance of the ecosystem services and non-market values associated with forests. In New Zealand, there is significant interest in establishing species other than Pinus radiata D. Don (the dominant plantation species) in the belief that alternative species are better suited to deliver these services. Significant risk is associated with this position as there is little objective data to support these views. To identify which species were likely to be planted to deliver ecosystem services, a survey was distributed to examine stakeholder perceptions. Stakeholders were asked which of 15 tree attributes contributed to the provision of five ecosystem services (amenity value, bioenergy production, carbon capture, the diversity of native habitat, and erosion control/water quality) and to identify which of 22 candidate tree species possessed those attributes. These data were combined to identify the species perceived most suitable for the delivery of each ecosystem service. Sequoia sempervirens (D.Don) Endl. closely matched the stakeholder derived ideotypes associated with all five ecosystem services. Comparisons to data from growth, physiological and ecological studies demonstrated that many of the opinions held by stakeholders were inaccurate, leading to erroneous assumptions regarding the suitability of most candidate species. Stakeholder perceptions substantially influence tree species selection, and plantations established on the basis of inaccurate opinions are unlikely to deliver the desired outcomes. Attitudinal surveys associated with engagement campaigns are essential to improve stakeholder knowledge, advancing the development of fit-for-purpose forest management that provides the required ecosystem services.

  19. Effects of Drought and Rewetting on Growth and Gas Exchange of Minor European Broadleaved Tree Species

    Directory of Open Access Journals (Sweden)

    Jörg Kunz

    2016-10-01

    Full Text Available Widespread and economically important European tree species such as Norway spruce, Scots pine, and European beech are projected to be negatively affected by the increasing intensity and frequency of dry and hot conditions in a future climate. Hence, there is an increasing need to investigate the suitability of presumably more drought tolerant species to ensure future ecological stability, biodiversity, and productivity of forests. Based on their distribution patterns and climatic envelopes, the rare, minor broadleaved tree species Sorbus torminalis ((L. CRANTZ, S. domestica (L., Acer campestre (L., and A. platanoides (L. are assumed to be drought tolerant, however, there is only limited experimental basis to support that notion. This study aimed at quantifying growth and gas exchange of seedlings of these species during drought conditions, and their capacity to recover following drought. For that purpose, they were compared to the common companion species Quercus petraea ((MATTUSCHKA LIEBL. and Fagus sylvatica (L.. Here, potted seedlings of these species were exposed to water limitation followed by rewetting cycles in a greenhouse experiment. Photosynthesis and transpiration rates, stomatal conductance as well as root and shoot growth rates indicated a high drought resistance of A. campestre and A. platanoides. Sorbus domestica showed a marked ability to recover after drought stress. Therefore, we conclude that these minor tree species have the potential to enrich forests on drought-prone sites. Results from this pot experiment need to be complemented by field studies, in which the drought response of the species is not influenced by restrictions to root development.

  20. The right tree for the job? perceptions of species suitability for the provision of ecosystem services.

    Science.gov (United States)

    Smaill, Simeon J; Bayne, Karen M; Coker, Graham W R; Paul, Thomas S H; Clinton, Peter W

    2014-04-01

    Stakeholders in plantation forestry are increasingly aware of the importance of the ecosystem services and non-market values associated with forests. In New Zealand, there is significant interest in establishing species other than Pinus radiata D. Don (the dominant plantation species) in the belief that alternative species are better suited to deliver these services. Significant risk is associated with this position as there is little objective data to support these views. To identify which species were likely to be planted to deliver ecosystem services, a survey was distributed to examine stakeholder perceptions. Stakeholders were asked which of 15 tree attributes contributed to the provision of five ecosystem services (amenity value, bioenergy production, carbon capture, the diversity of native habitat, and erosion control/water quality) and to identify which of 22 candidate tree species possessed those attributes. These data were combined to identify the species perceived most suitable for the delivery of each ecosystem service. Sequoia sempervirens (D.Don) Endl. closely matched the stakeholder derived ideotypes associated with all five ecosystem services. Comparisons to data from growth, physiological and ecological studies demonstrated that many of the opinions held by stakeholders were inaccurate, leading to erroneous assumptions regarding the suitability of most candidate species. Stakeholder perceptions substantially influence tree species selection, and plantations established on the basis of inaccurate opinions are unlikely to deliver the desired outcomes. Attitudinal surveys associated with engagement campaigns are essential to improve stakeholder knowledge, advancing the development of fit-for-purpose forest management that provides the required ecosystem services.

  1. Dynamic species classification of microorganisms across time, abiotic and biotic environments-A sliding window approach.

    Directory of Open Access Journals (Sweden)

    Frank Pennekamp

    Full Text Available The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML algorithms into meaningful ecological information. ML uses user defined classes (e.g. species, derived from a subset (i.e. training data of video-observed quantitative features (e.g. phenotypic variation, to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our

  2. Dynamic species classification of microorganisms across time, abiotic and biotic environments-A sliding window approach.

    Science.gov (United States)

    Pennekamp, Frank; Griffiths, Jason I; Fronhofer, Emanuel A; Garnier, Aurélie; Seymour, Mathew; Altermatt, Florian; Petchey, Owen L

    2017-01-01

    The development of video-based monitoring methods allows for rapid, dynamic and accurate monitoring of individuals or communities, compared to slower traditional methods, with far reaching ecological and evolutionary applications. Large amounts of data are generated using video-based methods, which can be effectively processed using machine learning (ML) algorithms into meaningful ecological information. ML uses user defined classes (e.g. species), derived from a subset (i.e. training data) of video-observed quantitative features (e.g. phenotypic variation), to infer classes in subsequent observations. However, phenotypic variation often changes due to environmental conditions, which may lead to poor classification, if environmentally induced variation in phenotypes is not accounted for. Here we describe a framework for classifying species under changing environmental conditions based on the random forest classification. A sliding window approach was developed that restricts temporal and environmentally conditions to improve the classification. We tested our approach by applying the classification framework to experimental data. The experiment used a set of six ciliate species to monitor changes in community structure and behavior over hundreds of generations, in dozens of species combinations and across a temperature gradient. Differences in biotic and abiotic conditions caused simplistic classification approaches to be unsuccessful. In contrast, the sliding window approach allowed classification to be highly successful, as phenotypic differences driven by environmental change, could be captured by the classifier. Importantly, classification using the random forest algorithm showed comparable success when validated against traditional, slower, manual identification. Our framework allows for reliable classification in dynamic environments, and may help to improve strategies for long-term monitoring of species in changing environments. Our classification pipeline

  3. Foliage biomass qualitative indices of selected forest forming tree species in Ukrainian Steppe

    Directory of Open Access Journals (Sweden)

    Sytnyk Svitlana

    2017-06-01

    Full Text Available Our study objective was research on the assimilation component of aboveground biomass of trees and its correlation with mensurational indices of trees (age, diameter and height in stands of the main forest forming species in the Ukrainian Northern Steppe zone - Pinus sylvestris L. (Scots pine and Robinia pseudoacacia L. (Black locust. The research was carried out in forest stands subordinated to the State Agency of Forest Resources of Ukraine. We used experimental data collected on sample plots established during years 2014-2016. The main research results prove that the foliage share in the tree greenery biomass structure had a wide range of values. For both investigated species, a positive correlation was found between the dry matter content in the tree foliage and the tree age, height and diameter. The foliage share in tree greenery biomass decreased with increasing mensurational index values. Correlation analysis revealed linear relationships between the mensurational indices and the discussed aboveground live biomass parameters. The closest correlation was observed between the stand age, mean stand diameter, mean stand height and dry matter content in the foliage.

  4. Genetic variation in a tropical tree species influences the associated epiphytic plant and invertebrate communities in a complex forest ecosystem

    Science.gov (United States)

    Zytynska, Sharon E.; Fay, Michael F.; Penney, David; Preziosi, Richard F.

    2011-01-01

    Genetic differences among tree species, their hybrids and within tree species are known to influence associated ecological communities and ecosystem processes in areas of limited species diversity. The extent to which this same phenomenon occurs based on genetic variation within a single tree species, in a diverse complex ecosystem such as a tropical forest, is unknown. The level of biodiversity and complexity of the ecosystem may reduce the impact of a single tree species on associated communities. We assessed the influence of within-species genetic variation in the tree Brosimum alicastrum (Moraceae) on associated epiphytic and invertebrate communities in a neotropical rainforest. We found a significant positive association between genetic distance of trees and community difference of the epiphytic plants growing on the tree, the invertebrates living among the leaf litter around the base of the tree, and the invertebrates found on the tree trunk. This means that the more genetically similar trees are host to more similar epiphyte and invertebrate communities. Our work has implications for whole ecosystem conservation management, since maintaining sufficient genetic diversity at the primary producer level will enhance species diversity of other plants and animals. PMID:21444307

  5. Classification of Parkinsonian syndromes from FDG-PET brain data using decision trees with SSM/PCA features.

    Science.gov (United States)

    Mudali, D; Teune, L K; Renken, R J; Leenders, K L; Roerdink, J B T M

    2015-01-01

    Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data.

  6. Fuel wood properties of some oak tree species of Manipur, India.

    Science.gov (United States)

    Meetei, Shougrakpam Bijen; Singh, E J; Das, Ashesh Kumar

    2015-07-01

    Five indigenous oak tree species, i.e., Castanopsis indica (Roxb. ex Lindl.) A.DC., Lithocarpus fenestratus (Roxb.) Rehder, Lithocarpus pachyphyllus (Kurz) Rehder, Lithocarpus polystachyus (Wall. ex A.DC.) Rehder and Quercus serrata Murray were estimated for their wood properties such as calorific value, density, moisture content and ash content from a sub-tropical forest of Haraothel hill, Senapati District, Manipur. Wood biomass components were found to have higher calorific value (kJ g(-)) than bark components. The calorific values for tree species were found highest in L. pachyphyllus (17.99 kJ g(-1)) followed by C. indica (17.98 kJ g1), L. fenestratus (17.96 kJ g"), L. polystachyus (17.80 kJ g(-1)) and Q. serrata (17.49 kJ g(-1)). Calorific values for bole bark, bole wood and branch bark were found significantly different (F > 3.48 at p = 0.05) in five oak tree species. Percentage of ash on dry weight basis was found to be highest in Q. serrata (4.73%) and lowest in C. indica (2.19%). Ash content of tree components gives a singnificant factor in determining fuelwood value index (FVI). Of all the five oak tree species, Q. serrata exhibited highest value of wood density (0.78 g cm-) and lowest was observed in C. indica (0.63 g cm(-3)). There was significant correlation between wood density (p L. pachyphyllus (898.41)> L. polystachyus (879.02)> L. fenestratus (824.61)> Q. serrata (792.50). Thus, the present study suggests that C. indica may be considered as a fuelwood oak tree species in Manipur.

  7. Hide and go seek with temperature signals of Northeastern US Tree Species

    Science.gov (United States)

    Alexander, M. R.; Pederson, N.; Bishop, D. A.; Pearl, J. K.; Anchukaitis, K. J.

    2017-12-01

    Improving reconstructions of past climate is vital in providing long-term context for regional climate change. There have been only two published reconstructions of past temperatures in the northeastern U.S. (NEUS) since the 1980s, one based on Picea rubens, and one out in 2017 based upon Chamaecyparis thyoides (Atlantic white cedar; AWC). Because increased species diversity generally improves dendrohydroclimatic reconstructions and both Picea rubens and AWC have limitations as paleoproxies due to land-use and air pollution, we conducted a series of tests to ask, "Does species diversity improve reconstructions of temperature history in the northeastern United States?" The first two tests were performed on AWC and then a network of AWC and Picea rubens. Subsequent tests added groups of species or genera from a network of 230 tree-ring chronologies beginning with those having the strongest relation between warming temperatures and increased growth. PC1 of the AWC test represented 40% of the variance and showed a significant positive relation with winter temperature (r = 0.38). As additional species were included, the "winter temperature PC" accounted for less of the overall variance, ranging from 26% of the variance in test 2 to 5% by test 5. AWC is swamped by the hydroclimatic signal that dominates our network. Populations of species such as Fagus grandifolia, Fraxinus nigra, Juniperus virginiana, Liriodendron tulipifera, Pinus rigida, and Pinus strobus from our network loaded strongest with AWC on the winter temperature PC. Including multiple species accounted for almost 20% more variance in the winter temperature record than AWC alone. Although drought is a dominating influence of tree growth in this region, our results suggest that winter temperatures are recorded within NEUS tree rings. Increasing the species diversity of tree proxies has the potential for improving reconstruction of paleotemperatures in regions lacking latitudinal or altitudinal tree lines

  8. Tree Density and Species Decline in the African Sahel Attributable to Climate

    Science.gov (United States)

    Gonzalez, Patrick; Tucker, Compton J.; Sy, H.

    2012-01-01

    Increased aridity and human population have reduced tree cover in parts of the African Sahel and degraded resources for local people. Yet, tree cover trends and the relative importance of climate and population remain unresolved. From field measurements, aerial photos, and Ikonos satellite images, we detected significant 1954-2002 tree density declines in the western Sahel of 18 +/- 14% (P = 0.014, n = 204) and 17 +/- 13% (P = 0.0009, n = 187). From field observations, we detected a significant 1960-2000 species richness decline of 21 +/- 11% (P = 0.0028, n = 14) across the Sahel and a southward shift of the Sahel, Sudan, and Guinea zones. Multivariate analyses of climate, soil, and population showed that temperature most significantly (P Sahel climate variability, particularly the significant (P Sahel tree cover changes to global climate change. This suggests roles for global action and local adaptation to address ecological change in the Sahel.

  9. Tree species identification in an African Savanna with airborne imaging spectroscopy and LiDAR from the Carnegie Airborne Observatory (CAO) using stacked support vector machines

    Science.gov (United States)

    Baldeck, C. A.; Colgan, M.; Féret, J.; Asner, G. P.

    2012-12-01

    Airborne remote sensing data provide promising opportunities for species identification of individual tree and shrub crowns across large areas which cannot be mapped from the ground. Previous investigations of the potential for species identification of crowns from airborne data have focused on pixel-level information (0.5-1m2), and thus have been unable to take advantage of the structural information that exist at the crown level. Hyperspectral data consisting of 58 bands from 517 to 1054nm and LiDAR (light detection and ranging) data providing vegetation height information were acquired over several landscapes within Kruger National Park, South Africa, by the CAO in 2008 at 1.1m spatial resolution. Over 1,000 individual trees and shrubs were mapped and identified in the field to construct species spectral and structural libraries. We used stacked support vector machines (SVM) that incorporate pixel-level spectral information and crown-level structural information to predict species identity for individual tree crowns. The addition of a crown-level classification step that incorporates crown structural information significantly improved model accuracy by ~6% and our prediction accuracy of the final model was ~75% for 16 species classes. This model was then used to predict the species identity of individual crowns across multiple airborne-mapped landscapes, made possible by an automated crown segmentation algorithm. The resultant species maps will make it possible to examine the environmental controls over individual species distributions and tree community composition, and provide important landscape-scale species distribution information relevant to park management and conservation.

  10. Assessment of suitability of tree species for the production of biomass on trace element contaminated soils.

    Science.gov (United States)

    Evangelou, Michael W H; Deram, Annabelle; Gogos, Alexander; Studer, Björn; Schulin, Rainer

    2012-03-30

    To alleviate the demand on fertile agricultural land for production of bioenergy, we investigated the possibility of producing biomass for bioenergy on trace element (TE) contaminated land. Soil samples and plant tissues (leaves, wood and bark) of adult willow (Salix sp.), poplar (Populus sp.), and birch (Betula pendula) trees were collected from five contaminated sites in France and Germany and analysed for Zn, Cd, Pb, Cu, Ca, and K. Cadmium concentration in tree leaves were correlated with tree species, whereas Zn concentration in leaves was site correlated. Birch revealed significantly lower leaf Cd concentrations (1.2-8.9 mg kg(-1)) than willow and poplar (5-80 mg kg(-1)), thus posing the lowest risk for TE contamination of surrounding areas. Birch displayed the lowest bark concentrations for Ca (2300-6200 mg kg(-1)) and K (320-1250 mg kg(-1)), indicating that it would be the most suitable tree species for fuel production, as high concentrations of K and Ca decrease the ash melting point which results in a reduced plant lifetime. Due to higher TE concentrations in bark compared to wood a small bark proportion in relation to the trunk is desirable. In general the bark proportion was reduced with the tree age. In summary, birch was amongst the investigated species the most suitable for biomass production on TE contaminated land. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Hydraulic Function in Australian Tree Species during Drought-Induced Mortality

    Science.gov (United States)

    Tissue, D.; Maier, C.; Creek, D.; Choat, B.

    2016-12-01

    Drought induced tree mortality and decline are key issues facing forest ecology and management. Here, we primarily investigated the hydraulic limitations underpinning drought-induced mortality in three Australian tree species. Using field-based large rainout shelters, three angiosperm species (Casuarina cunninghamiana, Eucalyptus sideroxylon, Eucalyptus tereticornis) were subjected to two successive drought and recovery cycles, prior to a subsequent long and extreme drought to mortality; total duration of experiment was 2.5 years. Leaf gas exchange, leaf and stem hydraulics, and carbon reserves were monitored during the experiment. Trees died as a result of failure in the hydraulic transport system, primarily related to water stress induced embolism. Stomatal closure occurred prior to the induction of significant embolism in the stem xylem of all species. Nonetheless, trees suffered a rapid decline in xylem water potential and increase in embolism during the severe drought treatment. Trees died at water potentials causing greater than 90% loss of hydraulic conductivity in the stem, providing support for the theory that lethal water potential is correlated with complete loss of hydraulic function in the stem xylem of angiosperms.

  12. Certified and uncertified logging concessions compared in Gabon: changes in stand structure, tree species, and biomass.

    Science.gov (United States)

    Medjibe, V P; Putz, Francis E; Romero, Claudia

    2013-03-01

    Forest management certification is assumed to promote sustainable forest management, but there is little field-based evidence to support this claim. To help fill this gap, we compared a Forest Stewardship Council (FSC)-certified with an adjacent uncertified, conventionally logged concession (CL) in Gabon on the basis of logging damage, above-ground biomass (AGB), and tree species diversity and composition. Before logging, we marked, mapped, and measured all trees >10 cm dbh in 20 and twelve 1-ha permanent plots in the FSC and CL areas, respectively. Soil and tree damage due to felling, skidding, and road-related activities was then assessed 2-3 months after the 508 ha FSC study area and the 200 ha CL study area were selectively logged at respective intensities of 5.7 m(3)/ha (0.39 trees/ha) and 11.4 m(3)/ha (0.76 trees/ha). For each tree felled, averages of 9.1 and 20.9 other trees were damaged in the FSC and CL plots, respectively; when expressed as the impacts per timber volume extracted, the values did not differ between the two treatments. Skid trails covered 2.9 % more of the CL surface, but skid trail length per unit timber volume extracted was not greater. Logging roads were wider in the CL than FSC site and disturbed 4.7 % more of the surface. Overall, logging caused declines in AGB of 7.1 and 13.4 % at the FSC and CL sites, respectively. Changes in tree species composition were small but greater for the CL site. Based on these findings and in light of the pseudoreplicated study design with less-than perfect counterfactual, we cautiously conclude that certification yields environmental benefits even after accounting for differences in logging intensities.

  13. Direct vs. Microclimate-Driven Effects of Tree Species Diversity on Litter Decomposition in Young Subtropical Forest Stands.

    Science.gov (United States)

    Seidelmann, Katrin N; Scherer-Lorenzen, Michael; Niklaus, Pascal A

    2016-01-01

    Effects of tree species diversity on decomposition can operate via a multitude of mechanism, including alterations of microclimate by the forest canopy. Studying such effects in natural settings is complicated by the fact that topography also affects microclimate and thus decomposition, so that effects of diversity are more difficult to isolate. Here, we quantified decomposition rates of standard litter in young subtropical forest stands, separating effects of canopy tree species richness and topography, and quantifying their direct and micro-climate-mediated components. Our litterbag study was carried out at two experimental sites of a biodiversity-ecosystem functioning field experiment in south-east China (BEF-China). The field sites display strong topographical heterogeneity and were planted with tree communities ranging from monocultures to mixtures of 24 native subtropical tree species. Litter bags filled with senescent leaves of three native tree species were placed from Nov. 2011 to Oct. 2012 on 134 plots along the tree species diversity gradient. Topographic features were measured for all and microclimate in a subset of plots. Stand species richness, topography and microclimate explained important fractions of the variations in litter decomposition rates, with diversity and topographic effects in part mediated by microclimatic changes. Tree stands were 2-3 years old, but nevertheless tree species diversity explained more variation (54.3%) in decomposition than topography (7.7%). Tree species richness slowed litter decomposition, an effect that slightly depended on litter species identity. A large part of the variance in decomposition was explained by tree species composition, with the presence of three tree species playing a significant role. Microclimate explained 31.4% of the variance in decomposition, and was related to lower soil moisture. Within this microclimate effect, species diversity (without composition) explained 8.9% and topography 34.4% of

  14. Patterns of tree species diversity in relation to climatic factors on the Sierra Madre Occidental, Mexico.

    Science.gov (United States)

    Silva-Flores, Ramón; Pérez-Verdín, Gustavo; Wehenkel, Christian

    2014-01-01

    Biological diversity can be defined as variability among living organisms from all sources, including terrestrial organisms, marine and other aquatic ecosystems, and the ecological complexes which they are part of. This includes diversity within species, between species, and of ecosystems. Numerous diversity indices combine richness and evenness in a single expression, and several climate-based explanations have been proposed to explain broad-scale diversity patterns. However, climate-based water-energy dynamics appears to be an essential factor that determines patterns of diversity. The Mexican Sierra Madre Occidental occupies an area of about 29 million hectares and is located between the Neotropical and Holarctic ecozones. It shelters a high diversity of flora, including 24 different species of Pinus (ca. 22% on the whole), 54 species of Quercus (ca. 9-14%), 7 species of Arbutus (ca. 50%) and many other trees species. The objectives of this study were to model how tree species diversity is related to climatic and geographic factors and stand density and to test the Metabolic Theory, Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis, Mid-Domain Effect, and the Water-Energy Dynamic Theory on the Sierra Madre Occidental, Durango. The results supported the Productivity-Diversity Hypothesis, Physiological Tolerance Hypothesis and Water-Energy Dynamic Theory, but not the Mid-Domain Effect or Metabolic Theory. The annual aridity index was the variable most closely related to the diversity indices analyzed. Contemporary climate was found to have moderate to strong effects on the minimum, median and maximum tree species diversity. Because water-energy dynamics provided a satisfactory explanation for the patterns of minimum, median and maximum diversity, an understanding of this factor is critical to future biodiversity research. Quantile regression of the data showed that the three diversity parameters of tree species are generally higher in cold

  15. Patterns of root respiration rates and morphological traits in 13 tree species in a tropical forest.

    Science.gov (United States)

    Makita, Naoki; Kosugi, Yoshiko; Dannoura, Masako; Takanashi, Satoru; Niiyama, Kaoru; Kassim, Abd Rahman; Nik, Abdul Rahim

    2012-03-01

    The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.

  16. Tree species identity and interactions with neighbors determine nutrient leaching in model tropical forests.

    Science.gov (United States)

    Ewel, John J; Bigelow, Seth W

    2011-12-01

    An ecosystem containing a mixture of species that differ in phenology, morphology, and physiology might be expected to resist leaching of soil nutrients to a greater extent than one composed of a single species. We tested the effects of species identity and plant-life-form richness on nutrient leaching at a lowland tropical site where deep infiltration averages >2 m year(-1). Three indigenous tree species with contrasting leafing phenologies (evergreen, dry-season deciduous, and wet-season deciduous) were grown in monoculture and together with two other life-forms with which they commonly occur in tropical forests: a palm and a giant, perennial herb. To calculate nutrient leaching over an 11-year period, concentrations of nutrients in soil water were multiplied by drainage rates estimated from a water balance. The effect of plant-life-form richness on retention differed according to tree species identity and nutrient. Nitrate retention was greater in polycultures of the dry-season deciduous tree species (mean of 7.4 kg ha(-1) year(-1) of NO(3)-N lost compared to 12.7 in monoculture), and calcium and magnesium retention were greater in polycultures of the evergreen and wet-season deciduous tree species. Complementary use of light led to intensification of soil exploitation by roots, the main agent responsible for enhanced nutrient retention in some polycultures. Other mechanisms included differences in nutrient demand among species, and avoidance of catastrophic failure due to episodic weather events or pest outbreaks. Even unrealistically simple multi-life-form mimics of tropical forest can safeguard a site's nutrient capital if careful attention is paid to species' characteristics and temporal changes in interspecific interactions.

  17. Divergent Hydraulic Safety Strategies in Three Co-occurring Anacardiaceae Tree Species in a Chinese Savanna.

    Science.gov (United States)

    Zhang, Shu-Bin; Zhang, Jiao-Lin; Cao, Kun-Fang

    2016-01-01

    Vulnerability segmentation, the condition under which plant leaves are more vulnerable to drought-induced cavitation than stems, may act as a "safety valve" to protect stems from hydraulic failure. Evergreen, winter-deciduous, and drought-deciduous tree species co-occur in tropical savannas, but there have been no direct studies on the role of vulnerability segmentation and stomatal regulation in maintaining hydraulic safety in trees with these three leaf phenologies. To this end, we selected three Anacardiaceae tree species co-occurring in a Chinese savanna, evergreen Pistacia weinmanniifolia , drought-deciduous Terminthia paniculata , and winter-deciduous Lannea coromandelica , to study inter-species differentiation in leaf and stem hydraulic safety. We found that the two deciduous species had significantly higher sapwood-specific hydraulic conductivity and leaf-specific hydraulic conductance than the evergreen species. Moreover, two deciduous species were more vulnerable to stem cavitation than the evergreen species, although both drought-deciduous species and evergreen species had drought-resistance leaves. The evergreen species maintained a wide hydraulic safety margin (HSM) in stems and leaves; which was achieved by embolism resistance of both stems and leaves and isohydric stomatal control. Both deciduous species had limited HSMs in stems and leaves, being isohydric in the winter-deciduous species and anisohydric in drought-deciduous species. The difference in water potential at 50% loss of hydraulic conductivity between the leaves and the terminal stems (P50 leaf-stem ) was positive in P. weinmanniifolia and L. coromandelica , whereas, T. paniculata exhibited a lack of vulnerability segmentation. In addition, differences in hydraulic architecture were found to be closely related to other structural traits, i.e., leaf mass per area, wood density, and sapwood anatomy. Overall, the winter-deciduous species exhibits a drought-avoidance strategy that maintains

  18. Spectral mapping of savanna tree species at canopy level, with focus on tall trees, using an integrated CAO Hyperspectral & LiDAR sensor approach

    CSIR Research Space (South Africa)

    Naidoo, L

    2010-03-01

    Full Text Available The detection and mapping of tree/plant species in the savanna ecosystem can provide numerous benefits for the managerial authorities. This includes the accurate mapping of the spatial distribution of economically viable trees which are a key source...

  19. Divergence in strategies for coping with winter embolism among co-occurring temperate tree species: the role of positive xylem pressure, wood type and tree stature

    Science.gov (United States)

    Cun-Yang Niu; Frederick C. Meinzer; Guang-You. Hao

    2017-01-01

    1. In temperate ecosystems, freeze-thaw events are an important environmental stress that can induce severe xylem embolism (i.e. clogging of conduits by air bubbles) in overwintering organs of trees. However, no comparative studies of different adaptive strategies among sympatric tree species for coping with winter embolism have examined the potential role of the...

  20. Assessment of suitability of tree species for the production of biomass on trace element contaminated soils

    International Nuclear Information System (INIS)

    Evangelou, Michael W.H.; Deram, Annabelle; Gogos, Alexander; Studer, Björn; Schulin, Rainer

    2012-01-01

    Highlights: ► Birch: lowest metal concentrations in foliage, wood and bark. ► Bark proportion does not have to decline with increasing age of tree. ► Long harvest rotation (>25 y) reduces metal concentrations in stem. ► Birch: most suitable tree for BCL. - Abstract: To alleviate the demand on fertile agricultural land for production of bioenergy, we investigated the possibility of producing biomass for bioenergy on trace element (TE) contaminated land. Soil samples and plant tissues (leaves, wood and bark) of adult willow (Salix sp.), poplar (Populus sp.), and birch (Betula pendula) trees were collected from five contaminated sites in France and Germany and analysed for Zn, Cd, Pb, Cu, Ca, and K. Cadmium concentration in tree leaves were correlated with tree species, whereas Zn concentration in leaves was site correlated. Birch revealed significantly lower leaf Cd concentrations (1.2–8.9 mg kg −1 ) than willow and poplar (5–80 mg kg −1 ), thus posing the lowest risk for TE contamination of surrounding areas. Birch displayed the lowest bark concentrations for Ca (2300–6200 mg kg −1 ) and K (320–1250 mg kg −1 ), indicating that it would be the most suitable tree species for fuel production, as high concentrations of K and Ca decrease the ash melting point which results in a reduced plant lifetime. Due to higher TE concentrations in bark compared to wood a small bark proportion in relation to the trunk is desirable. In general the bark proportion was reduced with the tree age. In summary, birch was amongst the investigated species the most suitable for biomass production on TE contaminated land.

  1. Pesticides in urban multiunit dwellings: hazard identification using classification and regression tree (CART) analysis.

    Science.gov (United States)

    Julien, Rhona; Levy, Jonathan I; Adamkiewicz, Gary; Hauser, Russ; Spengler, John D; Canales, Robert A; Hynes, H Patricia

    2008-10-01

    Many units in public housing or other low-income urban dwellings may have elevated pesticide residues, given recurring infestation, but it would be logistically and economically infeasible to sample a large number of units to identify highly exposed households to design interventions. Within this study, our aim was to devise a low-cost approach to identify homes in public housing with high levels of pesticide residues, using information that would allow the housing authority and residents to determine optimal strategies to reduce household exposures. As part of the Healthy Public Housing Initiative, we collected environmental samples from 42 public housing apartments in Boston, MA, in 2002 and 2003 and gathered housing characteristics; for example, household demographics and self-reported pesticide use information, considering information available with and without a home visit. Focusing on five organophosphate and pyrethroid pesticides, we used classification and regression tree analysis (CART) to disaggregate the pesticide concentration data into homogenous subsamples according to housing characteristics, which allowed us to identify households and associated networks impacted by the mismanagement of pesticides. The CART analysis demonstrated reasonable sensitivity and specificity given more extensive household information but generally poor performance using only information available without a home visit. Apartments with high concentrations of cyfluthrin, a pyrethroid of interest given that it is a restricted use pesticide, were more likely to be associated with Hispanic residents who resided in their current apartment for more than 5 yr, consistent with documented pesticide usage patterns. We conclude that using CART as an exploratory technique to better understand the home characteristics associated with elevated pesticide levels may be a viable approach for risk management in large multiunit housing developments.

  2. Classification and regression tree (CART) model to predict pulmonary tuberculosis in hospitalized patients.

    Science.gov (United States)

    Aguiar, Fabio S; Almeida, Luciana L; Ruffino-Netto, Antonio; Kritski, Afranio Lineu; Mello, Fernanda Cq; Werneck, Guilherme L

    2012-08-07

    Tuberculosis (TB) remains a public health issue worldwide. The lack of specific clinical symptoms to diagnose TB makes the correct decision to admit patients to respiratory isolation a difficult task for the clinician. Isolation of patients without the disease is common and increases health costs. Decision models for the diagnosis of TB in patients attending hospitals can increase the quality of care and decrease costs, without the risk of hospital transmission. We present a predictive model for predicting pulmonary TB in hospitalized patients in a high prevalence area in order to contribute to a more rational use of isolation rooms without increasing the risk of transmission. Cross sectional study of patients admitted to CFFH from March 2003 to December 2004. A classification and regression tree (CART) model was generated and validated. The area under the ROC curve (AUC), sensitivity, specificity, positive and negative predictive values were used to evaluate the performance of model. Validation of the model was performed with a different sample of patients admitted to the same hospital from January to December 2005. We studied 290 patients admitted with clinical suspicion of TB. Diagnosis was confirmed in 26.5% of them. Pulmonary TB was present in 83.7% of the patients with TB (62.3% with positive sputum smear) and HIV/AIDS was present in 56.9% of patients. The validated CART model showed sensitivity, specificity, positive predictive value and negative predictive value of 60.00%, 76.16%, 33.33%, and 90.55%, respectively. The AUC was 79.70%. The CART model developed for these hospitalized patients with clinical suspicion of TB had fair to good predictive performance for pulmonary TB. The most important variable for prediction of TB diagnosis was chest radiograph results. Prospective validation is still necessary, but our model offer an alternative for decision making in whether to isolate patients with clinical suspicion of TB in tertiary health facilities in

  3. Using Classification and Regression Trees (CART) to Identify Prescribing Thresholds for Cardiovascular Disease.

    Science.gov (United States)

    Schilling, Chris; Mortimer, Duncan; Dalziel, Kim; Heeley, Emma; Chalmers, John; Clarke, Philip

    2016-02-01

    Many guidelines for clinical decisions are hierarchical and nonlinear. Evaluating if these guidelines are used in practice requires methods that can identify such structures and thresholds. Classification and regression trees (CART) were used to analyse prescribing patterns of Australian general practitioners (GPs) for the primary prevention of cardiovascular disease (CVD). Our aim was to identify if GPs use absolute risk (AR) guidelines in favour of individual risk factors to inform their prescribing decisions of lipid-lowering medications. We employed administrative prescribing information that is linked to patient-level data from a clinical assessment and patient survey (the AusHeart Study), and assessed prescribing of lipid-lowering medications over a 12-month period for patients (n = 1903) who were not using such medications prior to recruitment. CART models were developed to explain prescribing practice. Out-of-sample performance was evaluated using receiver operating characteristic (ROC) curves, and optimised via pruning. We found that individual risk factors (low-density lipoprotein, diabetes, triglycerides and a history of CVD), GP-estimated rather than Framingham AR, and sociodemographic factors (household income, education) were the predominant drivers of GP prescribing. However, sociodemographic factors and some individual risk factors (triglycerides and CVD history) only become relevant for patients with a particular profile of other risk factors. The ROC area under the curve was 0.63 (95% confidence interval [CI] 0.60-0.64). There is little evidence that AR guidelines recommended by the National Heart Foundation and National Vascular Disease Prevention Alliance, or conditional individual risk eligibility guidelines from the Pharmaceutical Benefits Scheme, are adopted in prescribing practice. The hierarchy of conditional relationships between risk factors and socioeconomic factors identified by CART provides new insights into prescribing decisions

  4. Analysis of effects of manhole covers on motorcycle driver maneuvers: a nonparametric classification tree approach.

    Science.gov (United States)

    Chang, Li-Yen

    2014-01-01

    A manhole cover is a removable plate forming the lid over the opening of a manhole to allow traffic to pass over the manhole and to prevent people from falling in. Because most manhole covers are placed in roadway traffic lanes, if these manhole covers are not appropriately installed or maintained, they can represent unexpected hazards on the road, especially for motorcycle drivers. The objective of this study is to identify the effects of manhole cover characteristics as well as driver factors and traffic and roadway conditions on motorcycle driver maneuvers. A video camera was used to record motorcycle drivers' maneuvers when they encountered an inappropriately installed or maintained manhole cover. Information on 3059 drivers' maneuver decisions was recorded. Classification and regression tree (CART) models were applied to explore factors that can significantly affect motorcycle driver maneuvers when passing a manhole cover. Nearly 50 percent of the motorcycle drivers decelerated or changed their driving path to reduce the effects of the manhole cover. The manhole cover characteristics including the level difference between manhole cover and pavement, the pavement condition over the manhole cover, and the size of the manhole cover can significantly affect motorcycle driver maneuvers. Other factors, including traffic conditions, lane width, motorcycle speed, and loading conditions, also have significant effects on motorcycle driver maneuvers. To reduce the effects and potential risks from the manhole covers, highway authorities not only need to make sure that any newly installed manhole covers are as level as possible but also need to regularly maintain all the manhole covers to ensure that they are in good condition. In the long run, the size of manhole covers should be kept as small as possible so that the impact of manhole covers on motorcycle drivers can be effectively reduced. Supplemental materials are available for this article. Go to the publisher

  5. Integrating classification trees with local logistic regression in Intensive Care prognosis.

    Science.gov (United States)

    Abu-Hanna, Ameen; de Keizer, Nicolette

    2003-01-01

    Health care effectiveness and efficiency are under constant scrutiny especially when treatment is quite costly as in the Intensive Care (IC). Currently there are various international quality of care programs for the evaluation of IC. At the heart of such quality of care programs lie prognostic models whose prediction of patient mortality can be used as a norm to which actual mortality is compared. The current generation of prognostic models in IC are statistical parametric models based on logistic regression. Given a description of a patient at admission, these models predict the probability of his or her survival. Typically, this patient description relies on an aggregate variable, called a score, that quantifies the severity of illness of the patient. The use of a parametric model and an aggregate score form adequate means to develop models when data is relatively scarce but it introduces the risk of bias. This paper motivates and suggests a method for studying and improving the performance behavior of current state-of-the-art IC prognostic models. Our method is based on machine learning and statistical ideas and relies on exploiting information that underlies a score variable. In particular, this underlying information is used to construct a classification tree whose nodes denote patient sub-populations. For these sub-populations, local models, most notably logistic regression ones, are developed using only the total score variable. We compare the performance of this hybrid model to that of a traditional global logistic regression model. We show that the hybrid model not only provides more insight into the data but also has a better performance. We pay special attention to the precision aspect of model performance and argue why precision is more important than discrimination ability.

  6. Risk assessment of dental caries by using Classification and Regression Trees.

    Science.gov (United States)

    Ito, Ataru; Hayashi, Mikako; Hamasaki, Toshimitsu; Ebisu, Shigeyuki

    2011-06-01

    Being able to predict an individual's risks of dental caries would offer a potentially huge natural step forward toward better oral heath. As things stand, preventive treatment against caries is mostly carried out without risk assessment because there is no proven way to analyse an individual's risk factors. The purpose of this study was to try to identify those patients with high and low risk of caries by using Classification and Regression Trees (CART). In this historical cohort study, data from 442 patients in a general practice who met the inclusion criteria were analysed. CART was applied to the data to seek a model for predicting caries by using the following parameters according to each patient: age, number of carious teeth, numbers of cariogenic bacteria, the secretion rate and buffer capacity of saliva, and compliance with a prevention programme. The risks of caries were presented by odds ratios. Multiple logistic regression analysis was performed to confirm the results obtained by CART. CART identified high and low risk patients for primary caries with relative odds ratios of 0.41 (95%CI: 0.22-0.77, p = 0.0055) and 2.88 (95%CI: 1.49-5.59, p = 0.0018) according the numbers of cariogenic bacteria. High and low risk patients for secondary caries were also identified with the odds ratios of 0.07 (95%CI: 0.01-0.55, p = 0.00109) and 7.00 (95%CI: 3.50-13.98, p caries. Cariogenic bacteria play a leading role in the incidence of caries. CART proved effective in identifying an individual patient's risk of caries. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Demographic variation and habitat specialization of tree species in a diverse tropical forest of Cameroon

    Directory of Open Access Journals (Sweden)

    David Kenfack

    2014-11-01

    Full Text Available Background Many tree species in tropical forests have distributions tracking local ridge-slope-valley topography. Previous work in a 50-ha plot in Korup National Park, Cameroon, demonstrated that 272 species, or 63% of those tested, were significantly associated with topography. Methods We used two censuses of 329,000 trees ≥1 cm dbh to examine demographic variation at this site that would account for those observed habitat preferences. We tested two predictions. First, within a given topographic habitat, species specializing on that habitat (‘residents’ should outperform species that are specialists of other habitats (‘foreigners’. Second, across different topographic habitats, species should perform best in the habitat on which they specialize (‘home’ compared to other habitats (‘away’. Species’ performance was estimated using growth and mortality rates. Results In hierarchical models with species identity as a random effect, we found no evidence of a demographic advantage to resident species. Indeed, growth rates were most often higher for foreign species. Similarly, comparisons of species on their home vs. away habitats revealed no sign of a performance advantage on the home habitat. Conclusions We reject the hypothesis that species distributions along a ridge-valley catena at Korup are caused by species differences in trees ≥1 cm dbh. Since there must be a demographic cause for habitat specialization, we offer three alternatives. First, the demographic advantage specialists have at home occurs at the reproductive or seedling stage, in sizes smaller than we census in the forest plot. Second, species may have higher performance on their preferred habitat when density is low, but when population builds up, there are negative density-dependent feedbacks that reduce performance. Third, demographic filtering may be produced by extreme environmental conditions that we did not observe during the census interval.

  8. Photosynthetic capacity of senescent leaves for a subtropical broadleaf deciduous tree species Liquidambar formosana Hance.

    Science.gov (United States)

    Luo, Zidong; Guan, Huade; Zhang, Xinping; Liu, Na

    2017-07-24

    Photosynthetic capacity and leaf life span generally determine how much carbon a plant assimilates during the growing season. Leaves of deciduous tree species start senescence in late season, but whether the senescent leaves still retain capacity of carbon assimilation remains a question. In this study, we investigated leaf phenology and photosynthesis of a subtropical broadleaf deciduous tree species Liquidambar formosana Hance in the central southern continental China. The results show that L. formosana has extended leaf senescence (more than 2 months) with a substantial number of red leaves persisting on the tree. Leaf photosynthetic capacity decreases over season, but the senescent red leaves still maintain relatively high photosynthetic capacity at 42%, 66% and 66% of the mature leaves for net photosynthesis rate, apparent quantum yield, and quantum yield at the light compensation point, respectively. These results indicate that L. formosana may still contribute to carbon sink during leaf senescence.

  9. [Effects of tree species on polysaccharides content of epiphytic Dendrobium officinale].

    Science.gov (United States)

    Guo, Ying-Ying; Zhu, Yan; Si, Jin-Ping; Liu, Jing-Jing; Wu, Cheng-Yong; Li, Hui

    2014-11-01

    To reveals the effects of tree species on polysaccharides content of epiphytic Dendrobium officinale. The polysaccharides content of D. officinale attached to living tress in wild or stumps in bionic-facility was determined by phenol-sulfuric acid method. There were extremely significant differences of polysaccharides content of D. officinale attached to different tree species, but the differences had no relationship with the form and nutrition of barks. The polysaccharides content of D. officinale mainly affected by the light intensity of environment, so reasonable illumination favored the accumulation of polysaccharides. Various polysaccharides content of D. officinal from different attached trees is due to the difference of light regulation, but not the form and nutrition of barks.

  10. Forestry trial data can be used to evaluate climate-based species distribution models in predicting tree invasions

    Directory of Open Access Journals (Sweden)

    Rethabile Motloung

    2014-01-01

    Full Text Available Climate is frequently used to predict the outcome of species introductions based on the results from species distribution models (SDMs. However, despite the widespread use of SDMs for pre- and post-border risk assessments, data that can be used to validate predictions is often not available until after an invasion has occurred. Here we explore the potential for using historical forestry trials to assess the performance of climate-based SDMs. SDMs were parameterized based on the native range distribution of 36 Australian acacias, and predictions were compared against both the results of 150 years of government forestry trials, and current invasive distribution in southern Africa using true skill statistic, sensitivity and specificity. Classification tree analysis was used to evaluate why some Australian acacias failed in trials while others were successful. Predicted suitability was significantly related to the invaded range (sensitivity = 0.87 and success in forestry trials (sensitivity = 0.80, but forestry trial failures were under-predicted (specificity = 0.35. Notably, for forestry trials, the success in trials was greater for species invasive somewhere in the world. SDM predictions also indicate a considerable invasion potential of eight species that are currently naturalized but not yet widespread. Forestry trial data clearly provides a useful additional source of data to validate and refine SDMs in the context of risk assessment. Our study identified the climatic factors required for successful invasion of acacias, and accentuates the importance of integration of status elsewhere for risk assessment.

  11. Calorific values of twelve forest tree species growing in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, K.; Wijesinghe, M.T.J.P.

    1985-01-01

    Calorific values were determined on 1-g samples taken from each of 2 increment cores collected from 3 trees of each species in Oct-Nov 1981. Most trees were growing in plantations and varied in age from 7 to 25 yr. The average calorific content varied by less than 11% between species, ranging from 4683 cal/g for Eucalyptus alba to 5225 cal/g for Pinus caribaea. Calorific contents in the 12 species decreased in the following order: P. caribaea, Tectona grandis, Cupressus macrocarpa, Gmelina arborea, E. microcorys, E. tereticornis, Casuarina equisetifolia, E. grandis, E. camaldulensis, Acacia decurrens, Albizia moluccana and E. alba. It is concluded that there is little value in choosing appropriate species for fuelwood plantations based on wood calorific values. 4 references.

  12. Effects of groundwater abstraction on two keystone tree species in an arid savanna national park

    Directory of Open Access Journals (Sweden)

    Eleanor Shadwell

    2017-01-01

    Full Text Available Background In arid systems with no surface water, deep boreholes in ephemeral river beds provide for humans and animals. With continually increasing infrastructure development for tourism in arid wildlife parks such as the Kgalagadi Transfrontier Park in southern Africa, we ask what effects increased abstraction may have on large trees. Large trees in arid savannas perform essential ecosystem services by providing food, shade, nesting sites and increased nutrients for many other plant and animal species and for this are regarded as keystone species. Methods We determine seasonal fluctuations in the water table while also determining the water source for the dominant large tree species in the Auob and Nossob rivers in the Park. We also determine the extent to which these trees are physiologically stressed using leaf δ13C, xylem pressure potentials, specific leaf area and an estimate of canopy death. We do this both upstream and downstream of a low water use borehole in the Auob River and a high water use borehole in the Nossob River. Results Our results show that the trees are indeed using deep groundwater in the wet season and that this is the same water used by people. In the dry season, trees in the Auob downstream of the active borehole become detached from the aquifer and use more isotopically enriched soil water. In the Nossob in the dry season, all trees use isotopically enriched soil water, and downstream of the active borehole use stomatal regulation to maintain leaf water potentials. These results suggest that trees in the more heavily utilised Nossob are under more water stress than those trees in the Auob but that trees in both rivers demonstrate physiological adaptation to the changes in available water with smaller heavier leaves, no significant canopy dieback and in the dry season in the Nossob stomatal regulation of leaf water potentials. Discussion An increase in abstraction of groundwater particularly at the Nossob borehole may

  13. Effects of groundwater abstraction on two keystone tree species in an arid savanna national park.

    Science.gov (United States)

    Shadwell, Eleanor; February, Edmund

    2017-01-01

    In arid systems with no surface water, deep boreholes in ephemeral river beds provide for humans and animals. With continually increasing infrastructure development for tourism in arid wildlife parks such as the Kgalagadi Transfrontier Park in southern Africa, we ask what effects increased abstraction may have on large trees. Large trees in arid savannas perform essential ecosystem services by providing food, shade, nesting sites and increased nutrients for many other plant and animal species and for this are regarded as keystone species. We determine seasonal fluctuations in the water table while also determining the water source for the dominant large tree species in the Auob and Nossob rivers in the Park. We also determine the extent to which these trees are physiologically stressed using leaf δ 13 C, xylem pressure potentials, specific leaf area and an estimate of canopy death. We do this both upstream and downstream of a low water use borehole in the Auob River and a high water use borehole in the Nossob River. Our results show that the trees are indeed using deep groundwater in the wet season and that this is the same water used by people. In the dry season, trees in the Auob downstream of the active borehole become detached from the aquifer and use more isotopically enriched soil water. In the Nossob in the dry season, all trees use isotopically enriched soil water, and downstream of the active borehole use stomatal regulation to maintain leaf water potentials. These results suggest that trees in the more heavily utilised Nossob are under more water stress than those trees in the Auob but that trees in both rivers demonstrate physiological adaptation to the changes in available water with smaller heavier leaves, no significant canopy dieback and in the dry season in the Nossob stomatal regulation of leaf water potentials. An increase in abstraction of groundwater particularly at the Nossob borehole may cause an additional draw down of the water table adding

  14. New flux based dose-response relationships for ozone for European forest tree species.

    Science.gov (United States)

    Büker, P; Feng, Z; Uddling, J; Briolat, A; Alonso, R; Braun, S; Elvira, S; Gerosa, G; Karlsson, P E; Le Thiec, D; Marzuoli, R; Mills, G; Oksanen, E; Wieser, G; Wilkinson, M; Emberson, L D

    2015-11-01

    To derive O3 dose-response relationships (DRR) for five European forest trees species and broadleaf deciduous and needleleaf tree plant functional types (PFTs), phytotoxic O3 doses (PODy) were related to biomass reductions. PODy was calculated using a stomatal flux model with a range of cut-off thresholds (y) indicative of varying detoxification capacities. Linear regression analysis showed that DRR for PFT and individual tree species differed in their robustness. A simplified parameterisation of the flux model was tested and showed that for most non-Mediterranean tree species, this simplified model led to similarly robust DRR as compared to a species- and climate region-specific parameterisation. Experimentally induced soil water stress was not found to substantially reduce PODy, mainly due to the short duration of soil water stress periods. This study validates the stomatal O3 flux concept and represents a step forward in predicting O3 damage to forests in a spatially and temporally varying climate. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  15. Using AVIRIS data and multiple-masking techniques to map urban forest trees species

    Science.gov (United States)

    Q. Xiao; S.L. Ustin; E.G. McPherson

    2004-01-01

    Tree type and species information are critical parameters for urban forest management, benefit cost analysis and urban planning. However, traditionally, these parameters have been derived based on limited field samples in urban forest management practice. In this study we used high-resolution Airborne Visible Infrared Imaging Spectrometer (AVIRIS) data and multiple-...

  16. Changes in the relationship between annual tree growth and climatic variables for four hardwood species

    Science.gov (United States)

    E.R. Smith; J.C. Rennie

    1991-01-01

    A study was conducted to characterize temporal and spatial variability in the growth response of four major hardwood species (white oak, chestnut oak, northern red oak, and yellow-poplar) to climatic fluctuations, and to evaluate the role of environmental factors associated with difference in response among individuals. The study incorporated tree-ring data collected...

  17. Coniochaeta (Lecythophora), Collophora gen. nov and Phaeomoniella species associated with wood necroses of Prunus trees

    NARCIS (Netherlands)

    Damm, U.; Fourie, P.H.; Crous, P.W.

    2010-01-01

    Species of the genus Coniochaeta (anamorph: Lecythophora) are known as pathogens of woody hosts, but can also cause opportunistic human infections. Several fungi with conidial stages resembling Lecythophora were isolated from necrotic wood samples of Prunus trees in South Africa. In order to reveal

  18. Coniochaeta (Lecythophora), Collophora gen. nov. and Phaeomoniella species associated with wood necroses of Prunus trees

    NARCIS (Netherlands)

    Damm, U.; Fourie, P.H.; Crous, P.W.

    2010-01-01

    Species of the genus Coniochaeta (anamorph: Lecythophora) are known as pathogens of woody hosts, but can also cause opportunistic human infections. Several fungi with conidial stages resembling Lecythophora were isolated from necrotic wood samples of Prunus trees in South Africa. In order to reveal

  19. Coniochaeta (Lecythophora), Collophora gen. nov. And Phaeomoniella species associated with wood necroses of Prunus trees

    NARCIS (Netherlands)

    Damm, U.; Fourie, P.H.; Crous, P.W.

    2010-01-01

    Species of the genus Coniochaeta (anamorph: Lecythophora) are known as pathogens of woody hosts, but can also cause opportunistic human infections. Several fungi with conidial stages resembling Lecythophora were isolated from necrotic wood samples of Prunus trees in South Africa. In order to reveal

  20. An object-oriented forest landscape model and its representation of tree species

    Science.gov (United States)

    Hong S. He; David J. Mladenoff; Joel Boeder

    1999-01-01

    LANDIS is a forest landscape model that simulates the interaction of large landscape processes and forest successional dynamics at tree species level. We discuss how object-oriented design (OOD) approaches such as modularity, abstraction and encapsulation are integrated into the design of LANDIS. We show that using OOD approaches, model decisions (olden as model...

  1. Surface tension phenomena in the xylem sap of three diffuse porous temperate tree species

    Science.gov (United States)

    K. K. Christensen-Dalsgaard; M. T. Tyree; P. G. Mussone

    2011-01-01

    In plant physiology models involving bubble nucleation, expansion or elimination, it is typically assumed that the surface tension of xylem sap is equal to that of pure water, though this has never been tested. In this study we collected xylem sap from branches of the tree species Populus tremuloides, Betula papyrifera and Sorbus...

  2. Long-Term Effects of Exotic Tree Species ( Tectona grandis Linn. F ...

    African Journals Online (AJOL)

    Long-Term Effects of Exotic Tree Species ( Tectona grandis Linn. F.) on the Status of Extractable Micronutrients in the ... The study therefore implied that Tectona grandis has an extractive property on micronutrient particularly on soils that are low in these nutrients. Nigerian Journal of Soil and Environmental Research Vol.

  3. Intraspecific Variation in Armillaria Species from Shrubs and Trees in Northwestern Spain

    Directory of Open Access Journals (Sweden)

    O. Aguín

    2004-08-01

    Full Text Available Until recently, the identification of Armillaria species relied upon morphological characteristics and mating tests, but now molecular techniques based on polymorphisms in the IGS region of the fungal rDNA are more commonly used, since these are more rapid and reliable. Differences found in RFLP patterns identifying Armillaria species have suggested the existence of intraspecific variation. In this work, 185 Armillaria isolates from different plant species (including fruit trees, broadleaf and coniferous trees, ornamental shrubs, kiwifruit and grapevine affected by white root rot were analyzed by RFLP-PCR, in order to study intraspecific variation in Armillaria and the relationship with the plant host. Armillaria mellea was found in the majority of samples (71%, and was the most frequent Armillaria species in symptomatic ornamental shrubs, kiwifruit, grapevine, fruit trees and broadleaf trees. In conifers however white root rot was generally caused by Armillaria ostoyae. Armillaria gallica was identified, although with low incidence, in ornamental, coniferous, broadleaf and fruit hosts. Intraspecies variation was recorded only in A. mellea, for which RFLP patterns mel 1 and mel 2 were found. Most plants infected with A. mellea showed the mel 2 pattern. Further research is needed to study whether Armillaria RFLP patterns are specific to certain plant hosts, and whether intraspecific variation is related to differences in pathogenicity.

  4. A review of the regeneration dynamics of North American boreal forest tree species

    Science.gov (United States)

    D. F. Greene; John C. Zasada; L. Sirois; D. Kneeshaw; H. Morin; I. Charron; M. J. Simard

    1999-01-01

    In this review, we focus on the biotic parameters that are crucial to an understanding of the recruitment dynamics of North American boreal tree species following natural (fire, budworm infestation, windthrow) or human-induced (clearcut, partial cut) disturbances. The parameters we emphasize are (i) the production of seeds and asexual stems (both of...

  5. No evidence that boron influences tree species distributions in lowland tropical forests of Panama.

    Science.gov (United States)

    Turner, Benjamin L; Zalamea, Paul-Camilo; Condit, Richard; Winter, Klaus; Wright, S Joseph; Dalling, James W

    2017-04-01

    It was recently proposed that boron might be the most important nutrient structuring tree species distributions in tropical forests. Here we combine observational and experimental studies to test this hypothesis for lowland tropical forests of Panama. Plant-available boron is uniformly low in tropical forest soils of Panama and is not significantly associated with any of the > 500 species in a regional network of forest dynamics plots. Experimental manipulation of boron supply to seedlings of three tropical tree species revealed no evidence of boron deficiency or toxicity at concentrations likely to occur in tropical forest soils. Foliar boron did not correlate with soil boron along a local scale gradient of boron availability. Fifteen years of boron addition to a tropical forest increased plant-available boron by 70% but did not significantly change tree productivity or boron concentrations in live leaves, wood or leaf litter. The annual input of boron in rainfall accounts for a considerable proportion of the boron in annual litterfall and is similar to the pool of plant-available boron in the soil, and is therefore sufficient to preclude boron deficiency. We conclude that boron does not influence tree species distributions in Panama and presumably elsewhere in the lowland tropics. No claim to original US government works New Phytologist © 2016 New Phytologist Trust.

  6. Invasion by native tree species prevents biotic homogenization in novel forests of Puerto Rico

    Science.gov (United States)

    Oscar J. Abelleira Martinez

    2010-01-01

    There is concern that secondary forests dominated by introduced species, known as novel forests, increase taxonomical similarity between localities and lead to biotic homogenization in human dominated landscapes. In Puerto Rico, agricultural abandonment has given way to novel forests dominated by the introduced African tulip tree Spathodea campanulata Beauv. (...

  7. Estimating the global conservation status of more than 15,000 Amazonian tree species

    DEFF Research Database (Denmark)

    ter Steege, Hans; Pitman, Nigel C. A.; Killeen, Timothy J.

    2015-01-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree ...

  8. [Compatible biomass models for main tree species with measurement error in Heilongjiang Province of Northeast China].

    Science.gov (United States)

    Dong, Li-hu; Li, Feng-ri; Jia, Wei-wei; Liu, Fu-xiang; Wang, He-zhi

    2011-10-01

    Based on the biomass data of 516 sampling trees, and by using non-linear error-in-variable modeling approach, the compatible models for the total biomass and the biomass of six components including aboveground part, underground part, stem, crown, branch, and foliage of 15 major tree species (or groups) in Heilongjiang Province were established, and the best models for the total biomass and components biomass were selected. The compatible models based on total biomass were developed by adopting the method of joint control different level ratio function. The heteroscedasticity of the models for total biomass was eliminated with log transformation, and the weighted regression was applied to the models for each individual component. Among the compatible biomass models established for the 15 major species (or groups) , the model for total biomass had the highest prediction precision (90% or more), followed by the models for aboveground part and stem biomass, with a precision of 87.5% or more. The prediction precision of the biomass models for other components was relatively low, but it was still greater than 80% for most test tree species. The modeling efficiency (EF) values of the total, aboveground part, and stem biomass models for all the tree species (or groups) were over 0.9, and the EF values of the underground part, crown, branch, and foliage biomass models were over 0.8.

  9. In Vitro Activities of Ketoconazole, Econazole, Miconazole, and Melaleuca alternifolia (Tea Tree) Oil against Malassezia Species

    Science.gov (United States)

    Hammer, K. A.; Carson, C. F.; Riley, T. V.

    2000-01-01

    The in vitro activities of ketoconazole, econazole, miconazole, and tea tree oil against 54 Malassezia isolates were determined by agar and broth dilution methods. Ketoconazole was more active than both econazole and miconazole, which showed very similar activities. M. furfur was the least susceptible species. M. sympodialis, M. slooffiae, M. globosa, and M. obtusa showed similar susceptibilities to the four agents. PMID:10639388

  10. Co-occurring species differ in tree-ring δ18O trends.

    Science.gov (United States)

    John D. Marshall; Robert A. Monserud

    2006-01-01

    The stable oxygen isotope ratio (δ18O) of tree-ring cellulose is jointly determined by the δ18O of xylem water, the δ18O of atmospheric water vapor, the humidity of the atmosphere and perhaps by species-specific differences in leaf structure and function. Atmospheric...

  11. Disturbance Level Determines the Regeneration of Commercial Tree Species in the Eastern Amazon

    NARCIS (Netherlands)

    Schwartz, G.; Lopes, J.C.; Kanashiro, M.; Mohren, G.M.J.; Pena Claros, M.

    2014-01-01

    The effects of reduced-impact logging (RIL) on the regeneration of commercial tree species were investigated, as long-term timber yields depend partly on the availability of seedlings in a managed forest. On four occasions during a 20-month period in the Tapajós National Forest (Eastern Amazon,

  12. Seed germination methods for native Caribbean trees and shrubs : with emphasis on species relevant for Bonaire

    NARCIS (Netherlands)

    Burg, van der W.J.; Freitas, J.; Debrot, A.O.

    2014-01-01

    This paper is intended as a basis for nature restoration activities using seeds of trees and (larger) shrubs native to Bonaire with the aim of reforestation. It describes the main seed biology issues relevant for species from this region, to facilitate decisions on time and stage of harvesting, safe

  13. Species tree of a recent radiation: the subfamily Delphininae (Cetacea, Mammalia).

    Science.gov (United States)

    Amaral, Ana R; Jackson, Jennifer A; Möller, Luciana M; Beheregaray, Luciano B; Manuela Coelho, M

    2012-07-01

    Lineages undergoing rapid radiations provide exceptional opportunities for studying speciation and adaptation, but also represent a challenge for molecular systematics because retention of ancestral polymorphisms and the occurrence of hybridization can obscure relationships among lineages. Dolphins in the subfamily Delphininae are one such case. Non-monophyly, rapid speciation events, and discordance between morphological and molecular characters have made the inference of phylogenetic relationships within this subfamily very difficult. Here we approach this problem by applying multiple methods intended to estimate species trees using a multi-gene dataset for the Delphininae (Sousa, Sotalia, Stenella, Tursiops, Delphinus and Lagenodelphis). Incongruent gene trees obtained indicate that incomplete lineage sorting and possibly hybridization are confounding the inference of species history in this group. Nonetheless, using coalescent-based methods, we have been able to extract an underlying species-tree signal from divergent histories of independent genes. This is the first time a molecular study provides support for such relationships. This study further illustrates how methods of species-tree inference can be very sensitive both to the characteristics of the dataset and the evolutionary processes affecting the evolution of the group under study. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Effects of canopy tree species on belowground biogeochemistry in a lowland wet tropical forest

    Science.gov (United States)

    Keller, Adrienne B.; Reed, Sasha C.; Townsend, Alan R.; Cleveland, Cory C.

    2013-01-01

    Tropical rain forests are known for their high biological diversity, but the effects of plant diversity on important ecosystem processes in this biome remain unclear. Interspecies differences in both the demand for nutrients and in foliar and litter nutrient concentrations could drive variations in both the pool sizes and fluxes of important belowground resources, yet our understanding of the effects and importance of aboveground heterogeneity on belowground biogeochemistry is poor, especially in the species-rich forests of the wet tropics. To investigate the effects of individual tree species on belowground biogeochemical processes, we used both field and laboratory studies to examine how carbon (C), nitrogen (N), and phosphorus (P) cycles vary under nine different canopy tree species – including three legume and six non-legume species – that vary in foliar nutrient concentrations in a wet tropical forest in southwestern Costa Rica. We found significant differences in belowground C, N and P cycling under different canopy tree species: total C, N and P pools in standing litter varied by species, as did total soil and microbial C and N pools. Rates of soil extracellular acid phosphatase activity also varied significantly among species and functional groups, with higher rates of phosphatase activity under legumes. In addition, across all tree species, phosphatase activity was significantly positively correlated with litter N/P ratios, suggesting a tight coupling between relative N and P inputs and resource allocation to P acquisition. Overall, our results suggest the importance of aboveground plant community composition in promoting belowground biogeochemical heterogeneity at relatively small spatial scales.

  15. Estimating the global conservation status of more than 15,000 Amazonian tree species

    OpenAIRE

    ter Steege, H.; et al., [Unknown; Duivenvoorden, J.F.

    2015-01-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened ...

  16. Tree species composition and structure in an old bottomland hardwood forest in south-central Arkansas

    Science.gov (United States)

    Brian Roy Lockhart; James M. Guldin; Thomas Foti

    2010-01-01

    Tree species composition and structure was determined for an old bottomland hardwood forest located in the Moro Creek Bottoms Natural Area in south-central Arkansas. Diversity for this forest was high with species richness ranging from 33 for the overstory and sapling strata to 26 for the seedling stratum and Shannon-Weiner values of 2.54 to 1.02 for the overstory and...

  17. Do seasonal profiles of foliar pigments improve species discrimination of evergreen coastal tree species in KwaZulu- Natal, South Africa?

    CSIR Research Space (South Africa)

    Van Deventer, Heidi

    2013-04-01

    Full Text Available pigments, as well as improve species discrimination. This study investigated the potential of seasonal pigment profiles (for foliar carotenoid and total chlorophyll) in improving species discrimination for trees using leaf spectral data. Our aims were to (i...

  18. Analysis of Chi-square Automatic Interaction Detection (CHAID) and Classification and Regression Tree (CRT) for Classification of Corn Production

    Science.gov (United States)

    Susanti, Yuliana; Zukhronah, Etik; Pratiwi, Hasih; Respatiwulan; Sri Sulistijowati, H.

    2017-11-01

    To achieve food resilience in Indonesia, food diversification by exploring potentials of local food is required. Corn is one of alternating staple food of Javanese society. For that reason, corn production needs to be improved by considering the influencing factors. CHAID and CRT are methods of data mining which can be used to classify the influencing variables. The present study seeks to dig up information on the potentials of local food availability of corn in regencies and cities in Java Island. CHAID analysis yields four classifications with accuracy of 78.8%, while CRT analysis yields seven classifications with accuracy of 79.6%.

  19. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    Science.gov (United States)

    Zhou, Xiaoqi; Wang, Shen S. J.; Chen, Chengrong

    2017-12-01

    Forest plantations have been widely used as an effective measure for increasing soil carbon (C), and nitrogen (N) stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA) to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species-enzyme-C/N model to investigate how temperature and tree species influence soil C/N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG), N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP) and phosphorus acquisition enzymes (acid phosphatases). The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01-2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99-2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii) and hoop pine (Araucaria cunninghamii Ait.), increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22-1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native coniferous tree species like hoop pine and

  20. The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life.

    Science.gov (United States)

    Zhou, Xin; Frandsen, Paul B; Holzenthal, Ralph W; Beet, Clare R; Bennett, Kristi R; Blahnik, Roger J; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V; Collins, Gemma E; deWaard, Jeremy; Dean, John; Flint, Oliver S; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D; Kondratieff, Boris C; Malicky, Hans; Milton, Megan A; Morinière, Jérôme; Morse, John C; Mwangi, François Ngera; Pauls, Steffen U; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A; Zamora-Muñoz, Carmen; Ziesmann, Tanja; Kjer, Karl M

    2016-09-05

    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between 'Barcode Index Numbers' (BINs) and 'species' that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description.This article is part of the themed issue 'From DNA barcodes to biomes'. © 2016 The Authors.

  1. Effect of temperate climate tree species on gross ammonification, gross nitrification and N2O formation

    Science.gov (United States)

    Brüggemann, N.; Rosenkranz, P.; Papen, H.; Butterbach-Bahl, K.

    2003-04-01

    Microbial nitrogen turnover processes in the soil, like ammonification, nitrification and denitrification, play an important role in the formation of nitrous oxide (N2O): (i) ammonification, because it releases nitrogen from organic material in the form of ammonium (NH4+), which in turn can serve as substrate for nitrification; (ii) nitrification itself (i.e. the turnover of NH4+ to nitrate, NO3-), during which nitric oxide (NO) and N2O can be released as by-products at varying ratios; (iii) denitrification, in which NO3- serves as electron acceptor and is converted to molecular nitrogen (N2) via NO and N2O as intermediates, that can also be partially lost to the atmosphere. Temperate forest soils are a substantial source of atmospheric N2O contributing up to 10% to the total atmospheric N2O budget. However, this figure is afflicted with a huge uncertainty due to a number of factors governing the soil N2O formation, consumption, release and uptake, which are not fully understood at present. To one of these factors belongs the influence of the tree species on nitrogen turnover processes in the soil and the formation of N trace gases related with them. The aim of the present work was to analyse this tree species effect for the temperate climate region. For this purpose the effect of five different temperate tree species, having the same age and growing on the same soil in direct vicinity to each other, on gross ammonification and gross nitrification as well as on N2O formation was investigated. The trees (common beech, Fagus sylvatica; pedunculate oak, Quercus robur; Norway spruce, Picea abies; Japanese larch, Larix leptolepis; mountain pine, Pinus mugo) were part of a species trial in Western Jutland, Denmark, established in 1965 on a former sandy heathland. Samples from the soil under these five tree species were taken in spring and in summer 2002, respectively, differentiating between organic layer and mineral soil. The gross rates of ammonification as well of

  2. Differences in forest area classification based on tree tally from variable- and fixed-radius plots

    Science.gov (United States)

    David Azuma; Vicente J. Monleon

    2011-01-01

    In forest inventory, it is not enough to formulate a definition; it is also necessary to define the "measurement procedure." In the classification of forestland by dominant cover type, the measurement design (the plot) can affect the outcome of the classification. We present results of a simulation study comparing classification of the dominant cover type...

  3. The ratio of K to Ca in thalli of several species of lichens occurring on various trees

    Directory of Open Access Journals (Sweden)

    Stanisława Kuziel

    2015-01-01

    Full Text Available The per cent contents of K and Ca in 7 species of lichens and in the bark: of trees and extracts from this bark were determined. The ratio K : Ca was calculated. In the particular species of lichens collected from the tree the K : Ca ratio varies from 0.05 to 4.93. In the thalli of one species collected from various species of trees the content of cations varies, but the K: Ca ratio is more or less constant in particular species.

  4. Growth of four tropical tree species in petroleum-contaminated soil and effects of crude oil contamination

    NARCIS (Netherlands)

    Pérez-Hernández, I.; Ochoa-Gaona, S.; Adams, R.H.; Rivera-Cruz, M.C.; Pérez-Hernández, V.; Jarquín-Sánchez, A.; Geissen, V.; Martínez-Zurimendi, P.

    2017-01-01

    Under greenhouse conditions, we evaluated establishment of four tree species and their capacity to degrade crude oil recently incorporated into the soil; the species were as follows: Cedrela odorata (tropical cedar), Haematoxylum campechianum (tinto bush), Swietenia macrophylla (mahogany), and

  5. Winning and losing tree species of reassembly in Minnesota's mixed and broadleaf forests.

    Directory of Open Access Journals (Sweden)

    Brice B Hanberry

    Full Text Available We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota's mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity.

  6. Winning and Losing Tree Species of Reassembly in Minnesota’s Mixed and Broadleaf Forests

    Science.gov (United States)

    Hanberry, Brice B.; Palik, Brian J.; He, Hong S.

    2013-01-01

    We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota’s mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity. PMID:23613911

  7. Winning and losing tree species of reassembly in Minnesota's mixed and broadleaf forests.

    Science.gov (United States)

    Hanberry, Brice B; Palik, Brian J; He, Hong S

    2013-01-01

    We examined reassembly of winning and losing tree species, species traits including shade and fire tolerance, and associated disturbance filters and forest ecosystem types due to rapid forest change in the Great Lakes region since 1850. We identified winning and losing species by changes in composition, distribution, and site factors between historical and current surveys in Minnesota's mixed and broadleaf forests. In the Laurentian Mixed Forest, shade-intolerant aspen replaced shade-intolerant tamarack as the most dominant tree species. Fire-tolerant white pine and jack pine decreased, whereas shade-tolerant ashes, maples, and white cedar increased. In the Eastern Broadleaf Forest, fire-tolerant white oaks and red oaks decreased, while shade-tolerant ashes, American basswood, and maples increased. Tamarack, pines, and oaks have become restricted to sites with either wetter or sandier and drier soils due to increases in aspen and shade-tolerant, fire-sensitive species on mesic sites. The proportion of shade-tolerant species increased in both regions, but selective harvest reduced the applicability of functional groups alone to specify winners and losers. Harvest and existing forestry practices supported aspen dominance in mixed forests, although without aspen forestry and with fire suppression, mixed forests will transition to a greater composition of shade-tolerant species, converging to forests similar to broadleaf forests. A functional group framework provided a perspective of winning and losing species and traits, selective filters, and forest ecosystems that can be generalized to other regions, regardless of species identity.

  8. Isolation and molecular characterization of Cryptococcus species isolated from pigeon nests and Eucalyptus trees.

    Science.gov (United States)

    Kamari, A; Sepahvand, A; Mohammadi, R

    2017-06-01

    Cryptococcus species are pathogenic and non-pathogenic basidiomycete yeasts that are found widely in the environment. Based on phenotypic methods, this genus has many species; however, its taxonomy is presently being re-evaluated by modern techniques. The Cryptococcus species complex includes two sibling taxa of Cryptococcus neoformans and Cryptococcus gattii . We aimed to investigate the possible distribution of Cryptococcus species in pigeon nests and Eucalyptus trees in Ilam, Iran, using molecular techniques. Two hundred and seventy-four specimens were collected from pigeon nests and Eucalyptus trees during 2016-2017. All the specimens were sub-cultured on Sabouraud Glucose Agar with chloramphenicol and bird seed agar. For molecular identification, the ITS15.8SITS2 rDNA region was amplified using the first and fourth internal transcribed spacer (ITS1 and ITS4, respectively) primers. The purified products were applied for cycle sequencing reactions in forward direction with ITS1 primer. The obtained results were analyzed with Chromas 2.3. Thirty-three out of 186 cultures (17.7%) and 11 out of 88 cultures (12.5%) were positive among pigeon nest and Eucalyptus tree specimens, respectively. Cryptococcus albidus (17.2%), C. albidus var. kuetzingii (3.4%), C. adeliensis (3.4%), C. uzbekistanensis (3.4%), and C. neoformans var. grubii (3.4%) were isolated from pigeon nests, and Cryptococcus adeliensis (25%) was the only Cryptococcus species isolated from Eucalyptus trees. The presence of pigeons and Eucalyptus trees in the vicinity of some particular places such as rest homes and hospitals should be considered as a risk factor for the immunocompromised population.

  9. TimeTree2: species divergence times on the iPhone

    Science.gov (United States)

    Kumar, Sudhir; Hedges, S. Blair

    2011-01-01

    Summary: Scientists, educators and the general public often need to know times of divergence between species. But they rarely can locate that information because it is buried in the scientific literature, usually in a format that is inaccessible to text search engines. We have developed a public knowledgebase that enables data-driven access to the collection of peer-reviewed publications in molecular evolution and phylogenetics that have reported estimates of time of divergence between species. Users can query the TimeTree resource by providing two names of organisms (common or scientific) that can correspond to species or groups of species. The current TimeTree web resource (TimeTree2) contains timetrees reported from molecular clock analyses in 910 published studies and 17 341 species that span the diversity of life. TimeTree2 interprets complex and hierarchical data from these studies for each user query, which can be launched using an iPhone application, in addition to the website. Published time estimates are now readily accessible to the scientific community, K–12 and college educators, and the general public, without requiring knowledge of evolutionary nomenclature. Availability: TimeTree2 is accessible from the URL http://www.timetree.org, with an iPhone app available from iTunes (http://itunes.apple.com/us/app/timetree/id372842500?mt=8) and a YouTube tutorial (http://www.youtube.com/watch?v=CxmshZQciwo). Contact: sbh1@psu.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21622662

  10. Tree species diversity mitigates disturbance impacts on the forest carbon cycle.

    Science.gov (United States)

    Pedro, Mariana Silva; Rammer, Werner; Seidl, Rupert

    2015-03-01

    Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

  11. Genetic effects of air pollution on forest tree species of the Carpathian Mountains

    International Nuclear Information System (INIS)

    Longauer, Roman; Goemoery, Dusan; Paule, Ladislav; Blada, Ioan; Popescu, Flaviu; Mankovska, Blanka; Mueller-Starck, Gerhard; Schubert, Roland; Percy, Kevin; Szaro, Robert C.; Karnosky, David F.

    2004-01-01

    The effects of air pollution on the genetic structure of Norway spruce, European silver fir and European beech were studied at four polluted sites in Slovakia, Romania and Czech Republic. In order to reduce potential effects of site heterogeneity on the health condition, pair-wise sampling of pollution-tolerant and sensitive trees was applied. Genotypes of sampled trees were determined at 21 isozyme gene loci of spruce, 18 loci of fir and 15 loci of beech. In comparison with Norway spruce, fewer genetic differences were revealed in beech and almost no differentiation between pollution-tolerant and sensitive trees was observed in fir. In adult stands of Norway spruce, sensitive trees exhibited higher genetic multiplicity and diversity. The decline of pollution-sensitive trees may result thus in a gradual genetic depletion of pollution-exposed populations of Norway spruce through the loss of less frequent alleles with potential adaptive significance to altered stressing regimes in the future. Comparison of the subsets of sensitive and tolerant Norway spruce individuals as determined by presence or absence of discolorations (''spruce yellowing'') revealed different heterozygosity at 3 out of 11 polymorphic loci. - Genetic effects of air pollution on main forest trees of the Carpathians are species- and site-specific

  12. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    Directory of Open Access Journals (Sweden)

    X. Zhou

    2017-12-01

    Full Text Available Forest plantations have been widely used as an effective measure for increasing soil carbon (C, and nitrogen (N stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species–enzyme–C∕N model to investigate how temperature and tree species influence soil C∕N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG, N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP and phosphorus acquisition enzymes (acid phosphatases. The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01–2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99–2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii and hoop pine (Araucaria cunninghamii Ait., increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22–1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native

  13. Impacts of the Brown Tree Snake: Patterns of Decline and Species Persistence in Guam's Avifauna

    Science.gov (United States)

    Wiles, G.J.; Bart, J.; Beck, R.E.; Aguon, C.F.

    2003-01-01

    Predation by brown tree snakes (Boiga irregularis ) devastated the avifauna of Guam in the Mariana Islands during the last half of the twentieth century, causing the extirpation or serious reduction of most of the island's 25 resident bird species. Past studies have provided qualitative descriptions of the decline of native forest birds but have not considered all species or presented quantitative analyses. We analyzed two sets of survey data gathered in northern Guam between 1976 and 1998 and reviewed unpublished sources to provide a comprehensive account of the impact of brown tree snakes on the island's birds. Our results indicate that 22 species, including 17 of 18 native species, were severely affected by snakes. Twelve species were likely extirpated as breeding residents on the main island, 8 others experienced declines of ≥90% throughout the island or at least in the north, and 2 were kept at reduced population levels during all or much of the study. Declines of ≥90% occurred rapidly, averaging just 8.9 years along three roadside survey routes combined and 1.6 years at a 100-ha forested study site. Declines in northern Guam were also relatively synchronous and occurred from about 1976 to 1986 for most species. The most important factor predisposing a species to coexistence with brown tree snakes was its ability to nest and roost at locations where snakes were uncommon. Large clutch size and large body size were also related to longer persistence times, although large body size appeared to delay, but not prevent, extirpation. Our results draw attention to the enormous detrimental impact that brown tree snakes are likely to have upon invading new areas. Increased containment efforts on Guam are needed to prevent further colonizations, but a variety of additional management efforts would also benefit the island's remaining bird populations.

  14. Classification of mangroves vegetation species using texture analysis on Rapideye satellite imagery

    Science.gov (United States)

    Roslani, M. A.; Mustapha, M. A.; Lihan, T.; Juliana, W. A. Wan

    2013-11-01

    Mangroves are unique ecosystem structures that are typically made up of salt tolerant species of vegetation that can be found in tropical and subtropical climate country. Mangrove ecosystem plays important role and also is known as highly productive ecosystem with high diversity of flora and fauna. However, these ecosystems have been declining over time due to the various kinds of direct and indirect pressures. Thus, there is an increasing need to monitor and assess this ecosystem for better conservation and management efforts. The multispectral RapidEye satellite image was used to identify the mangrove vegetation species within the Matang Mangrove Forest Reserve in Perak, Malaysia using texture analysis. Classification was implemented using the maximum likelihood classifier (MLC) method. Total of eleven main mangrove species were found in the satellite image of the study site which includes Rhizophora mucronata, Rhizophora apiculata, Bruguiera parviflora, Bruguiera cylindrica, Bruguiera gymnorrhiza, Avicennia alba, Avicennia officinalis, Sonneratia alba, Sonneratia caseolaris, Sonneratia ovata and Xylocarpus granatum. The classification results showed that the textured image produced high overall classification assessment recorded at 84% and kappa statistic of 0.8016. Meanwhile, the non-textured image produces 80% of overall accuracy and kappa statistic of 0.7061. The classification result indicated the capability of high resolution satellite image to classify the mangrove species and inclusion of texture information in the classification increased the classification accuracy.

  15. Light-related variation in sapling architecture of three shade-tolerant tree species of the Mexican rain forest

    NARCIS (Netherlands)

    Martinez-Sanchez, J.L.; Meave, J.; Bongers, F.

    2008-01-01

    The crown architecture of three shade-tolerant tree species (two subcanopy and one mid-canopy) was analyzed in relation to the light regime of the forest understorey. The aim was to examine to which extent shade-tolerant species variate in their crown architecture. Tree saplings (265) between 50 and

  16. The impact of annual and seasonal rainfall patterns on growth and phenology of emergent tree species in Southeastern Amazonia, Brazil

    Science.gov (United States)

    James Grogan; Mark Schulze

    2012-01-01

    Understanding tree growth in response to rainfall distribution is critical to predicting forest and species population responses to climate change. We investigated inter-annual and seasonal variation in stem diameter by three emergent tree species in a seasonally dry tropical forest in southeast Pará, Brazil. Annual diameter growth rates by Swietenia macrophylla...

  17. Project CAPTURE: a U.S. national prioritization assessment of tree species for conservation, management, and restoration

    Science.gov (United States)

    Kevin M. Potter; Barbara S. Crane; Valerie D. Hipkins

    2017-01-01

    that forest tree species will undergo population-level extirpation or species-level extinction during the next century. Project CAPTURE (Conservation Assessment and Prioritization of Forest Trees Under Risk of Extirpation) is a cooperative effort across the three U.S. Department of Agriculture Forest Service (USDA FS) deputy areas to establish a framework for...

  18. Oviposition Preference and Larval Performance of Anoplophora glabripennis (Coleoptera: Cerambycidae) in Four Eastern North American Hardwood Tree Species

    Science.gov (United States)

    W. D. Morewood; P. R. Neiner; J. R. McNeil; J. C. Sellmer; K. Hoover

    2003-01-01

    Anoplophora glabripennis (Motschulsky ) is an invasive wood-boring cerambycid beetle that kills hardwood trees. The host range of this species is unusually broad but is not well defined in the available literature and may include tree species that have not been reported as hosts because they have not previously been exposed to the beetle. We...

  19. Project CAPTURE: using forest inventory and analysis data to prioritize tree species for conservation, management, and restoration

    Science.gov (United States)

    Kevin M. Potter; Barbara S. Crane; William W. Hargrove

    2015-01-01

    A variety of threats, most importantly climate change and insect and disease infestation, will increase the likelihood that forest tree species could experience population-level extirpation or species-level extinction during the next century. Project CAPTURE (Conservation Assessment and Prioritization of Forest Trees Under Risk of Extirpation) is a cooperative effort...

  20. Projected tree species redistribution under climate change: Implications for ecosystem vulnerability across protected areas in the eastern United States

    Science.gov (United States)

    Scott G. Zolkos; Patrick Jantz; Tina Cormier; Louis R. Iverson; Daniel W. McKenney; Scott J. Goetz

    2015-01-01

    The degree to which tree species will shift in response to climate change is uncertain yet critical to understand for assessing ecosystem vulnerability. We analyze results from recent studies that model potential tree species habitat across the eastern United States during the coming century. Our goals were to quantify and spatially analyze habitat projections and...

  1. Simulated effects of climate change, fragmentation, and inter-specific competition on tree species migration in northern Wisconsin, USA

    Science.gov (United States)

    Robert M. Scheller; David J. Mladenoff

    2008-01-01

    The reproductive success, growth, and mortality rates of tree species in the northern United States will be differentially affected by projected climate change over the next century. As a consequence, the spatial distributions of tree species will expand or contract at differential rates. In addition, human fragmentation of the landscape may limit effective seed...

  2. The effect of organic acids on base cation leaching from the forest floor under six North American tree species

    NARCIS (Netherlands)

    Dijkstra, F.A.; Geibe, C.; Holmstrom, S.; Lundstrom, U.S.; Breemen, van N.

    2001-01-01

    Organic acidity and its degree of neutralization in the forest floor can have large consequences for base cation leaching under different tree species. We investigated the effect of organic acids on base cation leaching from the forest floor under six common North American tree species. Forest floor

  3. Investigating the influence of radiometric calibration on tree species determination based on small footprint full-waveform airborne LiDAR

    Science.gov (United States)

    Mücke, W.; Briese, C.; Hollaus, M.; Pfeifer, N.; Wagner, W.

    2013-12-01

    Small footprint airborne LiDAR is a well-established measurement technique in forestry, where cost- and time efficient wide-area data acquisition of the vegetation structure is required. Gathering stand-based information about tree species composition is of particular interest for forestry applications. Modern LiDAR systems provide, next to the acquired 3D (i.e. geometric) information, also a quantification of the signal strength of each echo. In order to utilize this information for tree species determination independently from different overlapping LiDAR swaths, different LiDAR sensors or acquisition times, radiometric calibration is a necessity. This contribution summarises the theoretical background of radiometric LiDAR data calibration on the physical basis of the radar equation. Using LiDAR observations of reference targets with known reflectivity the so-called calibration constant is computed. It accounts for sensor specific parameters, as well as atmospheric attenuation of the laser signal. Hence the backscatter properties of the laser echoes can be determined and physical observables characterizing the reflectivity of the scanned surface can be estimated. A practical calibration workflow is demonstrated on the example of a single wavelength full-waveform LiDAR data set from a mixed woodland in Austria. Subsequently, an automated method for tree species determination that is based on the laser light scattering mechanisms in the forest canopy is applied on both (calibrated and un-calibrated) data sets. First, an edge-based segmentation approach is used to aggregate LiDAR echoes to segments representing single tree crowns. Second, metrics are computed for each tree crown describing radiometric and geometric features that are related to foliage composition. Third, these metrics are used in a knowledge-based fuzzy classification scheme for the determination of segments representing coniferous and deciduous trees. Influences of the radiometric calibration on the

  4. Allometric models for aboveground biomass of ten tree species in northeast China

    Directory of Open Access Journals (Sweden)

    Shuo Cai

    2013-07-01

    Full Text Available China contains 119 million hectares of natural forest, much of which is secondary forest. An accurate estimation of the biomass of these forests is imperative because many studies conducted in northeast China have only used primary forest and this may have resulted in biased estimates. This study analyzed secondary forest in the area using information from a forest inventory to develop allometric models of the aboveground biomass (AGB. The parameter values of the diameter at breast height (DBH, tree height (H, and crown length (CL were derived from a forest inventory of 2,733 trees in a 3.5 ha plot. The wood-specific gravity (WSG was determined for 109 trees belonging to ten species. A partial sampling method was also used to determine the biomass of branches (including stem, bark and foliage in 120 trees, which substantially easy the field works. The mean AGB was 110,729 kg ha–1. We developed four allometric models from the investigation and evaluated the utility of other 19 published ones for AGB in the ten tree species. Incorporation of full range of variables with WSG-DBH-H-CL, significantly improved the precision of the models. Some of models were chosen that best fitted each tree species with high precision (R2 = 0.939, SEE 0.167. At the latitude level, the estimated AGBof secondary forest was lower than that in mature primary forests, but higher than that in primary broadleaf forest and the average level in other types of forest likewise. 

  5. Automated classification of tropical shrub species: a hybrid of leaf shape and machine learning approach.

    Science.gov (United States)

    Murat, Miraemiliana; Chang, Siow-Wee; Abu, Arpah; Yap, Hwa Jen; Yong, Kien-Thai

    2017-01-01

    Plants play a crucial role in foodstuff, medicine, industry, and environmental protection. The skill of recognising plants is very important in some applications, including conservation of endangered species and rehabilitation of lands after mining activities. However, it is a difficult task to identify plant species because it requires specialized knowledge. Developing an automated classification system for plant species is necessary and valuable since it can help specialists as well as the public in identifying plant species easily. Shape descriptors were applied on the myDAUN dataset that contains 45 tropical shrub species collected from the University of Malaya (UM), Malaysia. Based on literature review, this is the first study in the development of tropical shrub species image dataset and classification using a hybrid of leaf shape and machine learning approach. Four types of shape descriptors were used in this study namely morphological shape descriptors (MSD), Histogram of Oriented Gradients (HOG), Hu invariant moments (Hu) and Zernike moments (ZM). Single descriptor, as well as the combination of hybrid descriptors were tested and compared. The tropical shrub species are classified using six different classifiers, which are artificial neural network (ANN), random forest (RF), support vector machine (SVM), k-nearest neighbour (k-NN), linear discriminant analysis (LDA) and directed acyclic graph multiclass least squares twin support vector machine (DAG MLSTSVM). In addition, three types of feature selection methods were tested in the myDAUN dataset, Relief, Correlation-based feature selection (CFS) and Pearson's coefficient correlation (PCC). The well-known Flavia dataset and Swedish Leaf dataset were used as the validation dataset on the proposed methods. The results showed that the hybrid of all descriptors of ANN outperformed the other classifiers with an average classification accuracy of 98.23% for the myDAUN dataset, 95.25% for the Flavia dataset and 99

  6. Classification and regression tree analysis vs. multivariable linear and logistic regression methods as statistical tools for studying haemophilia.

    Science.gov (United States)

    Henrard, S; Speybroeck, N; Hermans, C

    2015-11-01

    Haemophilia is a rare genetic haemorrhagic disease characterized by partial or complete deficiency of coagulation factor VIII, for haemophilia A, or IX, for haemophilia B. As in any other medical research domain, the field of haemophilia research is increasingly concerned with finding factors associated with binary or continuous outcomes through multivariable models. Traditional models include multiple logistic regressions, for binary outcomes, and multiple linear regressions for continuous outcomes. Yet these regression models are at times difficult to implement, especially for non-statisticians, and can be difficult to interpret. The present paper sought to didactically explain how, why, and when to use classification and regression tree (CART) analysis for haemophilia research. The CART method is non-parametric and non-linear, based on the repeated partitioning of a sample into subgroups based on a certain criterion. Breiman developed this method in 1984. Classification trees (CTs) are used to analyse categorical outcomes and regression trees (RTs) to analyse continuous ones. The CART methodology has become increasingly popular in the medical field, yet only a few examples of studies using this methodology specifically in haemophilia have to date been published. Two examples using CART analysis and previously published in this field are didactically explained in details. There is increasing interest in using CART analysis in the health domain, primarily due to its ease of implementation, use, and interpretation, thus facilitating medical decision-making. This method should be promoted for analysing continuous or categorical outcomes in haemophilia, when applicable. © 2015 John Wiley & Sons Ltd.

  7. Applying an Ensemble Classification Tree Approach to the Prediction of Completion of a 12-Step Facilitation Intervention with Stimulant Abusers

    Science.gov (United States)

    Doyle, Suzanne R.; Donovan, Dennis M.

    2014-01-01

    Aims The purpose of this study was to explore the selection of predictor variables in the evaluation of drug treatment completion using an ensemble approach with classification trees. The basic methodology is reviewed and the subagging procedure of random subsampling is applied. Methods Among 234 individuals with stimulant use disorders randomized to a 12-Step facilitative intervention shown to increase stimulant use abstinence, 67.52% were classified as treatment completers. A total of 122 baseline variables were used to identify factors associated with completion. Findings The number of types of self-help activity involvement prior to treatment was the predominant predictor. Other effective predictors included better coping self-efficacy for substance use in high-risk situations, more days of prior meeting attendance, greater acceptance of the Disease model, higher confidence for not resuming use following discharge, lower ASI Drug and Alcohol composite scores, negative urine screens for cocaine or marijuana, and fewer employment problems. Conclusions The application of an ensemble subsampling regression tree method utilizes the fact that classification trees are unstable but, on average, produce an improved prediction of the completion of drug abuse treatment. The results support the notion there are early indicators of treatment completion that may allow for modification of approaches more tailored to fitting the needs of individuals and potentially provide more successful treatment engagement and improved outcomes. PMID:25134038

  8. Patterns and determinants of wood physical and mechanical properties across major tree species in China.

    Science.gov (United States)

    Zhu, JiangLing; Shi, Yue; Fang, LeQi; Liu, XingE; Ji, ChengJun

    2015-06-01

    The physical and mechanical properties of wood affect the growth and development of trees, and also act as the main criteria when determining wood usage. Our understanding on patterns and controls of wood physical and mechanical properties could provide benefits for forestry management and bases for wood application and forest tree breeding. However, current studies on wood properties mainly focus on wood density and ignore other wood physical properties. In this study, we established a comprehensive database of wood physical properties across major tree species in China. Based on this database, we explored spatial patterns and driving factors of wood properties across major tree species in China. Our results showed that (i) compared with wood density, air-dried density, tangential shrinkage coefficient and resilience provide more accuracy and higher explanation power when used as the evaluation index of wood physical properties. (ii) Among life form, climatic and edaphic variables, life form is the dominant factor shaping spatial patterns of wood physical properties, climatic factors the next, and edaphic factors have the least effects, suggesting that the effects of climatic factors on spatial variations of wood properties are indirectly induced by their effects on species distribution.

  9. Effects of acid rain and surfactant pollution on the foliar structure of some tree species

    International Nuclear Information System (INIS)

    Raddi, P.; Moricca, S.; Paoletti, E.

    1994-01-01

    For 10 years we have been studying the effects of acid rain and ABS (a surfactant always found in sea aerosols) on several tree species. Alterations of the leaf structure were considered as damage index. We tried to quantify the damage to the wax structure by scoring in accordance with a damage scale given by SEM observations and by computing a damage index that allowed for a comparison among tree provenances and within individuals of the same provenance or clone. We tested the response of several species: Norway spruce, silver fir, cypress, London plane, chestnut, walnut, Italian alder, tree of heaven, common maple, European white elm, manna ash, holm oak, European beech. The different species exhibited different levels of damage in relation to the type of treatment: when ABS was present, the damage was always more severe. In the broadleaved trees, the most frequent disturbances noted were: erosion of the epicuticular wax, alterations in the stomata, lesions, abscission and/or alternation of hairs. Damage from ABS treatments was compared to damge observed in coastal vegetation after strong sea winds. By comparing natural and induced damage, we were able to demonstrate that ABS is one of the possible causes of coastal vegetation decline and that ABS may also impact significantly on vegetation growing far away from the sea. (orig.)

  10. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    Directory of Open Access Journals (Sweden)

    Guodong Jia

    Full Text Available Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined.

  11. The Trichoptera barcode initiative: a strategy for generating a species-level Tree of Life

    Science.gov (United States)

    Frandsen, Paul B.; Holzenthal, Ralph W.; Beet, Clare R.; Bennett, Kristi R.; Blahnik, Roger J.; Bonada, Núria; Cartwright, David; Chuluunbat, Suvdtsetseg; Cocks, Graeme V.; Collins, Gemma E.; deWaard, Jeremy; Dean, John; Flint, Oliver S.; Hausmann, Axel; Hendrich, Lars; Hess, Monika; Hogg, Ian D.; Kondratieff, Boris C.; Malicky, Hans; Milton, Megan A.; Morinière, Jérôme; Morse, John C.; Mwangi, François Ngera; Pauls, Steffen U.; Gonzalez, María Razo; Rinne, Aki; Robinson, Jason L.; Salokannel, Juha; Shackleton, Michael; Smith, Brian; Stamatakis, Alexandros; StClair, Ros; Thomas, Jessica A.; Zamora-Muñoz, Carmen; Ziesmann, Tanja

    2016-01-01

    DNA barcoding was intended as a means to provide species-level identifications through associating DNA sequences from unknown specimens to those from curated reference specimens. Although barcodes were not designed for phylogenetics, they can be beneficial to the completion of the Tree of Life. The barcode database for Trichoptera is relatively comprehensive, with data from every family, approximately two-thirds of the genera, and one-third of the described species. Most Trichoptera, as with most of life's species, have never been subjected to any formal phylogenetic analysis. Here, we present a phylogeny with over 16 000 unique haplotypes as a working hypothesis that can be updated as our estimates improve. We suggest a strategy of implementing constrained tree searches, which allow larger datasets to dictate the backbone phylogeny, while the barcode data fill out the tips of the tree. We also discuss how this phylogeny could be used to focus taxonomic attention on ambiguous species boundaries and hidden biodiversity. We suggest that systematists continue to differentiate between ‘Barcode Index Numbers’ (BINs) and ‘species’ that have been formally described. Each has utility, but they are not synonyms. We highlight examples of integrative taxonomy, using both barcodes and morphology for species description. This article is part of the themed issue ‘From DNA barcodes to biomes’. PMID:27481793

  12. Estimating the global conservation status of more than 15,000 Amazonian tree species

    Science.gov (United States)

    ter Steege, Hans; Pitman, Nigel C. A.; Killeen, Timothy J.; Laurance, William F.; Peres, Carlos A.; Guevara, Juan Ernesto; Salomão, Rafael P.; Castilho, Carolina V.; Amaral, Iêda Leão; de Almeida Matos, Francisca Dionízia; de Souza Coelho, Luiz; Magnusson, William E.; Phillips, Oliver L.; de Andrade Lima Filho, Diogenes; de Jesus Veiga Carim, Marcelo; Irume, Mariana Victória; Martins, Maria Pires; Molino, Jean-François; Sabatier, Daniel; Wittmann, Florian; López, Dairon Cárdenas; da Silva Guimarães, José Renan; Mendoza, Abel Monteagudo; Vargas, Percy Núñez; Manzatto, Angelo Gilberto; Reis, Neidiane Farias Costa; Terborgh, John; Casula, Katia Regina; Montero, Juan Carlos; Feldpausch, Ted R.; Honorio Coronado, Euridice N.; Montoya, Alvaro Javier Duque; Zartman, Charles Eugene; Mostacedo, Bonifacio; Vasquez, Rodolfo; Assis, Rafael L.; Medeiros, Marcelo Brilhante; Simon, Marcelo Fragomeni; Andrade, Ana; Camargo, José Luís; Laurance, Susan G. W.; Nascimento, Henrique Eduardo Mendonça; Marimon, Beatriz S.; Marimon, Ben-Hur; Costa, Flávia; Targhetta, Natalia; Vieira, Ima Célia Guimarães; Brienen, Roel; Castellanos, Hernán; Duivenvoorden, Joost F.; Mogollón, Hugo F.; Piedade, Maria Teresa Fernandez; Aymard C., Gerardo A.; Comiskey, James A.; Damasco, Gabriel; Dávila, Nállarett; García-Villacorta, Roosevelt; Diaz, Pablo Roberto Stevenson; Vincentini, Alberto; Emilio, Thaise; Levis, Carolina; Schietti, Juliana; Souza, Priscila; Alonso, Alfonso; Dallmeier, Francisco; Ferreira, Leandro Valle; Neill, David; Araujo-Murakami, Alejandro; Arroyo, Luzmila; Carvalho, Fernanda Antunes; Souza, Fernanda Coelho; do Amaral, Dário Dantas; Gribel, Rogerio; Luize, Bruno Garcia; Pansonato, Marcelo Petrati; Venticinque, Eduardo; Fine, Paul; Toledo, Marisol; Baraloto, Chris; Cerón, Carlos; Engel, Julien; Henkel, Terry W.; Jimenez, Eliana M.; Maas, Paul; Mora, Maria Cristina Peñuela; Petronelli, Pascal; Revilla, Juan David Cardenas; Silveira, Marcos; Stropp, Juliana; Thomas-Caesar, Raquel; Baker, Tim R.; Daly, Doug; Paredes, Marcos Ríos; da Silva, Naara Ferreira; Fuentes, Alfredo; Jørgensen, Peter Møller; Schöngart, Jochen; Silman, Miles R.; Arboleda, Nicolás Castaño; Cintra, Bruno Barçante Ladvocat; Valverde, Fernando Cornejo; Di Fiore, Anthony; Phillips, Juan Fernando; van Andel, Tinde R.; von Hildebrand, Patricio; Barbosa, Edelcilio Marques; de Matos Bonates, Luiz Carlos; de Castro, Deborah; de Sousa Farias, Emanuelle; Gonzales, Therany; Guillaumet, Jean-Louis; Hoffman, Bruce; Malhi, Yadvinder; de Andrade Miranda, Ires Paula; Prieto, Adriana; Rudas, Agustín; Ruschell, Ademir R.; Silva, Natalino; Vela, César I. A.; Vos, Vincent A.; Zent, Eglée L.; Zent, Stanford; Cano, Angela; Nascimento, Marcelo Trindade; Oliveira, Alexandre A.; Ramirez-Angulo, Hirma; Ramos, José Ferreira; Sierra, Rodrigo; Tirado, Milton; Medina, Maria Natalia Umaña; van der Heijden, Geertje; Torre, Emilio Vilanova; Vriesendorp, Corine; Wang, Ophelia; Young, Kenneth R.; Baider, Claudia; Balslev, Henrik; de Castro, Natalia; Farfan-Rios, William; Ferreira, Cid; Mendoza, Casimiro; Mesones, Italo; Torres-Lezama, Armando; Giraldo, Ligia Estela Urrego; Villarroel, Daniel; Zagt, Roderick; Alexiades, Miguel N.; Garcia-Cabrera, Karina; Hernandez, Lionel; Huamantupa-Chuquimaco, Isau; Milliken, William; Cuenca, Walter Palacios; Pansini, Susamar; Pauletto, Daniela; Arevalo, Freddy Ramirez; Sampaio, Adeilza Felipe; Valderrama Sandoval, Elvis H.; Gamarra, Luis Valenzuela

    2015-01-01

    Estimates of extinction risk for Amazonian plant and animal species are rare and not often incorporated into land-use policy and conservation planning. We overlay spatial distribution models with historical and projected deforestation to show that at least 36% and up to 57% of all Amazonian tree species are likely to qualify as globally threatened under International Union for Conservation of Nature (IUCN) Red List criteria. If confirmed, these results would increase the number of threatened plant species on Earth by 22%. We show that the trends observed in Amazonia apply to trees throughout the tropics, and we predict that most of the world’s >40,000 tropical tree species now qualify as globally threatened. A gap analysis suggests that existing Amazonian protected areas and indigenous territories will protect viable populations of most threatened species if these areas suffer no further degradation, highlighting the key roles that protected areas, indigenous peoples, and improved governance can play in preventing large-scale extinctions in the tropics in this century. PMID:26702442

  13. Managing Commercial Tree Species for Timber Production and Carbon Sequestration: Management Guidelines and Financial Returns

    Energy Technology Data Exchange (ETDEWEB)

    Gary D. Kronrad

    2006-09-19

    A carbon credit market is developing in the United States. Information is needed by buyers and sellers of carbon credits so that the market functions equitably and efficiently. Analyses have been conducted to determine the optimal forest management regime to employ for each of the major commercial tree species so that profitability of timber production only or the combination of timber production and carbon sequestration is maximized. Because the potential of a forest ecosystem to sequester carbon depends on the tree species, site quality and management regimes utilized, analyses have determined how to optimize carbon sequestration by determining how to optimally manage each species, given a range of site qualities, discount rates, prices of carbon credits and other economic variables. The effects of a carbon credit market on the method and profitability of forest management, the cost of sequestering carbon, the amount of carbon that can be sequestered, and the amount of timber products produced has been determined.

  14. Diversity, stand characteristics and spatial aggregation of tree species in a Bangladesh forest ecosystem

    DEFF Research Database (Denmark)

    Uddin, Mohammad B.; Steinbauer, Manuel; Beierkuhnlein, Carl

    2011-01-01

    Assessing biodiversity and the spatial structures of forest ecosystems are important for forestry and nature conservation. However, tropical forests of Bangladesh are only sparsely investigated. Here we determined biodiversity (alpha, beta and gamma), spatial species turnover and stand characteri......Assessing biodiversity and the spatial structures of forest ecosystems are important for forestry and nature conservation. However, tropical forests of Bangladesh are only sparsely investigated. Here we determined biodiversity (alpha, beta and gamma), spatial species turnover and stand...... characteristics of one of the few remnant tropical forests in Bangladesh. Two differently protected areas of Satchari forest were compared. We recorded tree species composition, in a systematic plot design, measured diameter at breast height for each individual tree (to assess basal area), and calculated decay...

  15. Temporal expansion of annual crop classification layers for the CONUS using the C5 decision tree classifier

    Science.gov (United States)

    Friesz, Aaron M.; Wylie, Bruce K.; Howard, Daniel M.

    2017-01-01

    Crop cover maps have become widely used in a range of research applications. Multiple crop cover maps have been developed to suite particular research interests. The National Agricultural Statistics Service (NASS) Cropland Data Layers (CDL) are a series of commonly used crop cover maps for the conterminous United States (CONUS) that span from 2008 to 2013. In this investigation, we sought to contribute to the availability of consistent CONUS crop cover maps by extending temporal coverage of the NASS CDL archive back eight additional years to 2000 by creating annual NASS CDL-like crop cover maps derived from a classification tree model algorithm. We used over 11 million records to train a classification tree algorithm and develop a crop classification model (CCM). The model was used to create crop cover maps for the CONUS for years 2000–2013 at 250 m spatial resolution. The CCM and the maps for years 2008–2013 were assessed for accuracy relative to resampled NASS CDLs. The CCM performed well against a withheld test data set with a model prediction accuracy of over 90%. The assessment of the crop cover maps indicated that the model performed well spatially, placing crop cover pixels within their known domains; however, the model did show a bias towards the ‘Other’ crop cover class, which caused frequent misclassifications of pixels around the periphery of large crop cover patch clusters and of pixels that form small, sparsely dispersed crop cover patches.

  16. Soil greenhouse gas fluxes from different tree species on Taihang Mountain, North China

    Science.gov (United States)

    Liu, X. P.; Zhang, W. J.; Hu, C. S.; Tang, X. G.

    2014-03-01

    The objectives of this study were to investigate seasonal variation of greenhouse gas fluxes from soils on sites dominated by plantation (Robinia pseudoacacia, Punica granatum, and Ziziphus jujube) and natural regenerated forests (Vitex negundo var. heterophylla, Leptodermis oblonga, and Bothriochloa ischcemum), and to identify how tree species, litter exclusion, and soil properties (soil temperature, soil moisture, soil organic carbon, total N, soil bulk density, and soil pH) explained the temporal and spatial variation in soil greenhouse gas fluxes. Fluxes of greenhouse gases were measured using static chamber and gas chromatography techniques. Six static chambers were randomly installed in each tree species. Three chambers were randomly designated to measure the impacts of surface litter exclusion, and the remaining three were used as a control. Field measurements were conducted biweekly from May 2010 to April 2012. Soil CO2 emissions from all tree species were significantly affected by soil temperature, soil moisture, and their interaction. Driven by the seasonality of temperature and precipitation, soil CO2 emissions demonstrated a clear seasonal pattern, with fluxes significantly higher during the rainy season than during the dry season. Soil CH4 and N2O fluxes were not significantly correlated with soil temperature, soil moisture, or their interaction, and no significant seasonal differences were detected. Soil organic carbon and total N were significantly positively correlated with CO2 and N2O fluxes. Soil bulk density was significantly negatively correlated with CO2 and N2O fluxes. Soil pH was not correlated with CO2 and N2O emissions. Soil CH4 fluxes did not display pronounced dependency on soil organic carbon, total N, soil bulk density, and soil pH. Removal of surface litter significantly decreased in CO2 emissions and CH4 uptakes. Soils in six tree species acted as sinks for atmospheric CH4. With the exception of Ziziphus jujube, soils in all tree

  17. Temperature response surfaces for mortality risk of tree species with future drought

    Science.gov (United States)

    Adams, Henry D.; Barron-Gafford, Greg A.; Minor, Rebecca L.; Gardea, Alfonso A.; Bentley, Lisa Patrick; Law, Darin J.; Breshears, David D.; McDowell, Nate G.; Huxman, Travis E.

    2017-11-01

    Widespread, high levels of tree mortality, termed forest die-off, associated with drought and rising temperatures, are disrupting forests worldwide. Drought will likely become more frequent with climate change, but even without more frequent drought, higher temperatures can exacerbate tree water stress. The temperature sensitivity of drought-induced mortality of tree species has been evaluated experimentally for only single-step changes in temperature (ambient compared to ambient + increase) rather than as a response surface (multiple levels of temperature increase), which constrains our ability to relate changes in the driver with the biological response. Here we show that time-to-mortality during drought for seedlings of two western United States tree species, Pinus edulis (Engelm.) and Pinus ponderosa (Douglas ex C. Lawson), declined in continuous proportion with increasing temperature spanning a 7.7 °C increase. Although P. edulis outlived P. ponderosa at all temperatures, both species had similar relative declines in time-to-mortality as temperature increased (5.2% per °C for P. edulis; 5.8% per °C for P. ponderosa). When combined with the non-linear frequency distribution of drought duration—many more short droughts than long droughts—these findings point to a progressive increase in mortality events with global change due to warming alone and independent of additional changes in future drought frequency distributions. As such, dire future forest recruitment patterns are projected assuming the calculated 7-9 seedling mortality events per species by 2100 under business-as-usual warming occur, congruent with additional vulnerability predicted for adult trees from stressors like pathogens and pests. Our progressive projection for increased mortality events was driven primarily by the non-linear shape of the drought duration frequency distribution, a common climate feature of drought-affected regions. These results illustrate profound benefits for

  18. Population Development of Several Species of Ants on the Cocoa Trees in South Sulawesi

    Directory of Open Access Journals (Sweden)

    Fatahuddin Fatahuddin

    2010-08-01

    Full Text Available Several species of ants with different behavior have been found in cocoa plantations and their behavior is important to be considered because it might be correlated with the degree of protection of cocoa plant from cocoa pests. The aim of this research is to manipulate and to develop ants population in environment, so they are able to establish permanently in cocoa trees. This research was conducted in Papakaju Regions Luwu Regency in Juli to November 2009. In this study, 10 cocoa trees with ants were sampled (each species of ant in 10 cocoa trees. A control of 10 tree samples without ant was also taken. In order to assess the abundance of ant population, it was grouped based on scoring, which score 1 for less than 20 ants, score 2 for 21–50 ants, score 3 for 51–200 ants, score 4 for 201–1000 ants, and score 5 for more than 1000 per tree. The results indicated that average of population score of the three ants species reached the highest population for the Oecophylla. smaragdina with average score 4.85 (>1000 ants, Dolichoderus thoracicus, with average score 3.90 (> 200 ants and Crematogaster. difformis with average score 3.10 (>200 ants. This research indicated that three species of ants, Oecophylla smaragdina (weaver ant, Dolichoderus thoracicus (cocoa black ant and Crematogaster difformis (cracking ant. in farmer cocoa plantations in South Sulawesi giving better performance against major pests of cocoa in particular cocoa pod borer (CPB. Key words: Ant Population, Oecophylla smaragdina, Dolichoderus thoracicus, Crematogaster difformis, artificial nest, cocoa.

  19. Prediction of Dominant Forest Tree Species Using QuickBird and Environmental Data

    Director