WorldWideScience

Sample records for treatment facility final

  1. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Warner, C.L. (comp.)

    1979-07-01

    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described.

  2. Transuranic-contaminated solid waste Treatment Development Facility. Final safety analysis report

    International Nuclear Information System (INIS)

    Warner, C.L.

    1979-07-01

    The Final Safety Analysis Report (FSAR) for the Transuranic-Contaminated Solid-Waste Treatment Facility has been prepared in compliance with the Department of Energy (DOE) Manual Chapter 0531, Safety of Nonreactor Nuclear Facilities. The Treatment Development Facility (TDF) at the Los Alamos Scientific Laboratory is a research and development facility dedicated to the study of radioactive-waste-management processes. This analysis addresses site assessment, facility design and construction, and the design and operating characteristics of the first study process, controlled air incineration and aqueous scrub off-gas treatment with respect to both normal and accident conditions. The credible accidents having potentially serious consequences relative to the operation of the facility and the first process have been analyzed and the consequences of each postulated credible accident are presented. Descriptions of the control systems, engineered safeguards, and administrative and operational features designed to prevent or mitigate the consequences of such accidents are presented. The essential features of the operating and emergency procedures, environmental protection and monitoring programs, as well as the health and safety, quality assurance, and employee training programs are described

  3. Request for modification of 200 Area effluent treatment facility final delisting

    Energy Technology Data Exchange (ETDEWEB)

    BOWMAN, R.C.

    1998-11-19

    A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act.

  4. Request for modification of 200 Area effluent treatment facility final delisting

    International Nuclear Information System (INIS)

    Bowman, R.C.

    1998-01-01

    A Delisting Petition submitted to the U.S. Environmental Protection Agency in August 1993 addressed effluent to be generated at the 200 Area Effluent Treatment Facility from treating Hanford Facility waste streams. This Delisting Petition requested that 71.9 million liters per year of treated effluent, bearing the designation 'F001' through 'F005', and/or 'F039' that is derived from 'F001' through 'F005' waste, be delisted. On June 13, 1995, the U.S. Environmental Protection Agency published the final rule (Final Delisting), which formally excluded 71.9 million liters per year of 200 Area Effluent Treatment Facility effluent from ''being listed as hazardous wastes'' (60 FR 31115 now promulgated in 40 CFR 261). Given the limited scope, it is necessary to request a modification of the Final Delisting to address the management of a more diverse multi-source leachate (F039) at the 200 Area Effluent Treatment Facility. From past operations and current cleanup activities on the Hanford Facility, a considerable amount of both liquid and solid Resource Conservation and Recovery Act of 1976 regulated mixed waste has been and continues to be generated. Ultimately this waste will be treated as necessary to meet the Resource Conservation and Recovery Act Land Disposal Restrictions. The disposal of this waste will be in Resource Conservation and Recovery Act--compliant permitted lined trenches equipped with leachate collection systems. These operations will result in the generation of what is referred to as multi-source leachate. This newly generated waste will receive the listed waste designation of F039. This waste also must be managed in compliance with the provisions of the Resource Conservation and Recovery Act

  5. Final Environmental Impact Statement (FEIS)/Final Environmental Impact Report (FEIR). Otis Air National Guard Base, Wastewater Treatment Facility

    Science.gov (United States)

    1990-06-01

    and G.E. Ness, 1982, Survival of Vibrio cholerae and Escherichia coli in Estuarine Water and Sediments, Applied and Environmental Microbiology, 43...and publications in areas of water and wastewater treatment. David Tomasko, Ph.D., 1985. University of New Mexico . Staff Hydrogeologist. Research...Reserve in California. We are working on EIS’s for the U.S. Air Force Base Closings in realignment in California, New Mexico and Washington, and a very

  6. Wastewater Treatment Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Individual permits for municipal, industrial, and semi-public wastewater treatment facilities in Iowa for the National Pollutant Discharge Elimination System (NPDES)...

  7. Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. Final EIR/EIS

    International Nuclear Information System (INIS)

    1994-01-01

    On May 26, 1994, the Lake County Sanitation District and the US Bureau of Land Management released for public review a Draft Environmental Impact Report/Environmental Impact Statement (EIR/EIS) on the proposed Southeast Regional Wastewater Treatment Plant Facilities Improvements Project and Geysers Effluent Pipeline Project. A minimum 45-day review and comment period began on that date and notices were published in the Federal Register. The public review and comment period closed on July 26, 1994. Public hearings on the Draft EIMIS were held in Lakeport, CA, on June 30 and July 14, 1994. The first part of this document contains copies of the written comments submitted on the Draft EIR/EIS. It also contains summary paraphrased comments of the public hearings. The second part of this document contains responses to the comments

  8. KEWB facilities decontamination and disposition. Final report

    International Nuclear Information System (INIS)

    Ureda, B.F.

    1976-01-01

    The decontamination and disposition of the KEWB facilities, Buildings 073, 643, 123, and 793, are complete. All of the facility equipment, including reactor enclosure, reactor vessel, fuel handling systems, controls, radioactive waste systems, exhaust systems, electrical services, and protective systems were removed from the site. Buildings 643, 123, and 793 were completely removed, including foundations. The floor and portions of the walls of Building 073 were covered over by final grading. Results of the radiological monitoring and the final survey are presented. 9 tables, 19 figures

  9. Final environmental assessment for a refinement of the power delivery component of the Southern Nevada Water Authority Treatment and Transmission Facility

    International Nuclear Information System (INIS)

    1998-07-01

    The Southern Nevada Water Authority (SNWA) is designing and constructing a system of regional water supply facilities to meet current and projected water demands and increase system reliability. The existing Southern Nevada Water system is being upgraded with a number of improvements to increase the capacity of the system. However, even the expanded system is expected to be unable to meet projected peak daily water demands by the year 1999. As a result, new facilities are being designed and constructed to operate in conjunction with the upgraded Southern Nevada Water system. These new facilities, known as the Southern Nevada Water Authority Treatment and Transmission Facility (SNWA-TTF), include four primary components: a new raw water intake; new transmission facilities including below ground pipelines, tunnels, and above ground pumping stations; a water treatment facility; and new power supply facilities. Because existing power supplies would not be adequate for the new water treatment facilities, new power facilities, consisting of two new 230 kV-69 kV substations and new 69 and 230 kV power lines, are being constructed. This environmental assessment is specifically on the new power facilities

  10. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  11. Final closure plan for the high-explosives open burn treatment facility at Lawrence Livermore National Laboratory Experimental Test Site 300

    Energy Technology Data Exchange (ETDEWEB)

    Mathews, S.

    1997-04-01

    This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration of site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.

  12. Communication strategy for final disposal facility

    International Nuclear Information System (INIS)

    Seppaelae, Timo; Kurki, Osmo

    2000-01-01

    In May 1999, Posiva filed an application for a policy decision to the Council of State on the construction of a final disposal facility for spent nuclear fuel in Olkiluoto in the municipality of Eurajoki. The decision to be made by the Council of State must be ratified by the Parliament. The precondition for a positive decision is that the preliminary statement on safety to be provided by STLTK by the end of the year 1999 is in favour of Posiva. continuing with its repository development programme, and that the Eurajoki municipality approves the project in its statement by the 28th of January 2000. The policy decision by the Council of State is expected to be made in March followed by the ratification of the Parliament before the summer. In a poll-carried out among 350 decision-makers, less than 10 % of those who answered 134 persons) found Internet as the most important source of Posiva's information on final disposal. On the other hand, over 80 % of those who answered found the information folder as the most significant source of information. When considering all the information available on final disposal (TV, radio, newspapers, authorities, environmental organisations, etc.) Posiva was found to be the most significant source of information while newspapers and periodicals came second. In this case the environmental organisations seemed to have a minor role, as a result of not being too active in confrontation. As a conclusive remark it can be assumed that because it is not only Posiva's information that is relevant to decision-makers, but the media also plays a significant role, the impression that decision-makers have of final disposal is based on a mixture of messages coming from Posiva and from the media. That is why the communication related to decision-makers is also communication with media, in order to ensure that the messages produced by the media support the information produced by Posiva

  13. Final report on DOE nuclear facilities

    International Nuclear Information System (INIS)

    1991-11-01

    Risk analysis policy and guidance should be developed, especially for the non-DOE nuclear facilities. Minimum standards should be set on issues including risk management, the scope and depth of risk analysis (e.g., site-wide analysis, worker risk), and approaches to treatment of external events. Continued vigilance is required in maintaining operation staffing levels at the DOE research and testing reactors. Safety Analysis Reports should be updated to reflect the evolving configurations of the facilities and the current safety analysis requirements. The high-level waste storage programs at Hanford, Savannah River and INEL were evaluated. The Department of Energy has not adopted a cleanup policy with specific, clear objectives. DOE should define the respective roles of Headquarters, the field offices, and the M ampersand O contractors. The proposed budget priority setting system should not be implemented. The plan to develop a nation-wide programmatic environmental impact statement (PEIS) should be rethought. An environmental impact statement on the total cleanup program is inconsistent with the localized nature of cleanup decisionmaking. DOE must provide for significant improvements in its radiation protection and safety programs to meet current, and future, technical, engineering, and scientific procedures and practices for controlling sources and contamination, performing external and internal dosimetry, and implementing incident response plans, including applicable protective action guides. The culture of safety is not yet well established at Rocky Flats. The philosophy of the Department of Energy and the management of Rocky Flats is not understood, accepted and believed by the work force. The Advisory Committee has serious concerns about whether DOE's current program at WIPP will be able to demonstrate, in a timely manner, compliance with EPA's proposed long-term performance and human intrusion requirements for disposal of TRU and high-level radioactive wastes

  14. Interim Storage Facility decommissioning. Final report

    International Nuclear Information System (INIS)

    Johnson, R.P.; Speed, D.L.

    1985-01-01

    Decontamination and decommissioning of the Interim Storage Facility were completed. Activities included performing a detailed radiation survey of the facility, removing surface and imbedded contamination, excavating and removing the fuel storage cells, restoring the site to natural conditions, and shipping waste to Hanford, Washington, for burial. The project was accomplished on schedule and 30% under budget with no measurable exposure to decommissioning personnel

  15. Prevalence of Multiple Antibiotics Resistant (MAR) Pseudomonas Species in the Final Effluents of Three Municipal Wastewater Treatment Facilities in South Africa

    Science.gov (United States)

    Odjadjare, Emmanuel E.; Igbinosa, Etinosa O.; Mordi, Raphael; Igere, Bright; Igeleke, Clara L.; Okoh, Anthony I.

    2012-01-01

    The final effluents of three (Alice, Dimbaza, and East London) wastewater treatment plants (WWTPs) were evaluated to determine their physicochemical quality and prevalence of multiple antibiotics resistant (MAR) Pseudomonas species, between August 2007 and July 2008. The annual mean total Pseudomonas count (TPC) was 1.20 × 104 (cfu/100 mL), 1.08 × 104 (cfu/100 mL), and 2.66 × 104 (cfu/100 mL), for the Alice, Dimbaza, and East London WWTPs respectively. The effluents were generally compliant with recommended limits for pH, temperature, TDS, DO, nitrite and nitrate; but fell short of target standards for turbidity, COD, and phosphate. The tested isolates were highly sensitive to gentamicin (100%), ofloxacin (100%), clindamycin (90%), erythromycin (90%) and nitrofurantoin (80%); whereas high resistance was observed against the penicillins (90–100%), rifampin (90%), sulphamethoxazole (90%) and the cephems (70%). MAR index ranged between 0.26 and 0.58. The study demonstrated that MAR Pseudomonas species were quite prevalent in the final effluents of WWTPs in South Africa; and this can lead to serious health risk for communities that depend on the effluent-receiving waters for sundry purposes. PMID:22829792

  16. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  17. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project, Treatment Definitions and Descriptions, and Biological Specifications for Facility Design, Final Report 1999

    International Nuclear Information System (INIS)

    Hager, Robert C.; Costello, Ronald J.

    1999-01-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions)

  18. Optimal Conventional and Semi-Natural Treatments for the Upper Yakima Spring Chinook Salmon Supplementation Project; Treatment Definitions and Descriptions and Biological Specifications for Facility Design, 1995-1999 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Hager, Robert C. (Hatchery Operations Consulting); Costello, Ronald J. (Mobrand Biometrics, Inc., Vashon Island, WA)

    1999-10-01

    This report describes the Yakima Fisheries Project facilities (Cle Elum Hatchery and acclimation satellites) which provide the mechanism to conduct state-of-the-art research for addressing questions about spring chinook supplementation strategies. The definition, descriptions, and specifications for the Yakima spring chinook supplementation program permit evaluation of alternative fish culture techniques that should yield improved methods and procedures to produce wild-like fish with higher survival that can be used to rebuild depleted spring chinook stocks of the Columbia River Basin. The definition and description of three experimental treatments, Optimal Conventional (OCT), Semi-Natural (SNT), Limited Semi-Natural (LSNT), and the biological specifications for facilities have been completed for the upper Yakima spring chinook salmon stock of the Yakima Fisheries Project. The task was performed by the Biological Specifications Work Group (BSWG) represented by Yakama Indian Nation, Washington Department of Fish and Wildlife, National Marine Fisheries Service, and Bonneville Power Administration. The control and experimental variables of the experimental treatments (OCT, SNT, and LSNT) are described in sufficient detail to assure that the fish culture facilities will be designed and operated as a production scale laboratory to produce and test supplemented upper Yakima spring chinook salmon. Product specifications of the treatment groups are proposed to serve as the generic templates for developing greater specificity for measurements of product attributes. These product specifications will be used to monitor and evaluate treatment effects, with respect to the biological response variables (post release survival, long-term fitness, reproductive success and ecological interactions).

  19. Liquid Effluent Retention Facility/Effluent Treatment Facility Hazards Assessment

    International Nuclear Information System (INIS)

    Simiele, G.A.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning activities for the Liquid Effluent Retention Facility and Effluent Treatment Facility the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  20. Liquid effluent retention facility final-status groundwater monitoring plan

    International Nuclear Information System (INIS)

    Sweeney, M.D.; Chou, C.J.; Bjornstad, B.N.

    1997-09-01

    The following sections describe the groundwater-monitoring program for the Liquid Effluent Retention Facility (LERF). The LERF is regulated under the Resource Conservation and Recovery Act of 1976 (RCRA). The LERF is included in the open-quotes Dangerous Waste Portion of the Resource Conservation and Recovery Act Permit for the Treatment, Storage, and Disposal of Dangerous Waste, Permit WA890008967close quotes, (referred to herein as the Permit) (Ecology 1994) and is subject to final-status requirements for groundwater monitoring (WAC 173-303-645). This document describes a RCRA/WAC groundwater detection-monitoring program for groundwater in the uppermost aquifer system at the LERF. This plan describes the LERF monitoring network, constituent list, sampling schedule, statistical methods, and sampling and analysis protocols that will be employed for the LERF. This plan will be used to meet the groundwater monitoring requirements from the time the LERF becomes part of the Permit and through the post-closure care period, until certification of final closure

  1. Security of water treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Forsha, C.A. [Univ. of Pittsburgh at Johnstown, Johnstowne, PA (United States)

    2002-06-15

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  2. Security of water treatment facilities

    International Nuclear Information System (INIS)

    Forsha, C.A.

    2002-01-01

    The safety of the nation's water supply is at risk. Although harm may or may not be done to water sources, the fear is definitely a factor. No matter what size system supplies water, the community will expect increased security. Decisions must be made as to how much will be spent on security and what measures will be taken with the money. Small systems often have a difficult time in finding a direction to focus on. Physical and electronic protection is less involved because of the scale of service. Biological contamination is difficult to prevent if the assailants are determined. Small-scale water storage and low magnitudes of flow increase a contamination threat. Large systems have a size advantage when dealing with biological contamination because of the dilution factor, but physical and electronic protection is more involved. Large-scale systems are more likely to overlook components. A balance is maintained through anything dealing with the public. Having greater assurance that water quality will be maintained comes at the cost of knowing less about how water is protected and treated, and being banned from public land within watersheds that supply drinking water. Whether good or bad ideas are being implemented, security of water treatment facilities is changing. (author)

  3. Nuclear fuel treatment facility for 'Mutsu'

    International Nuclear Information System (INIS)

    Kanazawa, Toshio; Fujimura, Kazuo; Horiguchi, Eiji; Kobayashi, Tetsuji; Tamekiyo, Yoshizou

    1989-01-01

    A new fixed mooring harbor in Sekinehama and surrounding land facilities to accommodate a test voyage for the nuclear-powered ship 'Mutsu' in 1990 were constructed by the Japan Atomic Energy Research Institute. Kobe Steel took part in the construction of the nuclear fuel treatment process in various facilities, beginning in October, 1988. This report describes the outline of the facility. (author)

  4. Hazard Baseline Downgrade Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility

  5. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993

  6. Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The 200 Area Effluent Treatment Facility Dangerous Waste Permit Application documentation consists of both Part A and a Part B permit application documentation. An explanation of the Part A revisions associated with this treatment and storage unit, including the current revision, is provided at the beginning of the Part A section. Once the initial Hanford Facility Dangerous Waste Permit is issued, the following process will be used. As final, certified treatment, storage, and/or disposal unit-specific documents are developed, and completeness notifications are made by the US Environmental Protection Agency and the Washington State Department of Ecology, additional unit-specific permit conditions will be incorporated into the Hanford Facility Dangerous Waste Permit through the permit modification process. All treatment, storage, and/or disposal units that are included in the Hanford Facility Dangerous Waste Permit Application will operate under interim status until final status conditions for these units are incorporated into the Hanford Facility Dangerous Waste Permit. The Hanford Facility Dangerous Waste Permit Application, 200 Area Effluent Treatment Facility contains information current as of May 1, 1993.

  7. NPL deletion policy for RCRA-regulated TSD facilities finalized

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Under a new policy published by EPA on March 20, 1995, certain sites may be deleted from the National Priorities List (NPL) and deferred to RCRA corrective action. To be deleted from the NPL, a site must (1) be regulated under RCRA as a treatment, storage, or disposal (TSD) facility and (2) meet the four criteria specified by EPA. The new NPL deletion policy, which does not pertain to federal TSD facilities, became effective on April 19, 1995. 1 tab

  8. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of low-level radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Geologic data, hydrologic data, groundwater monitoring program, information, detection monitoring program, groundwater characterization drawings, building emergency plan--grout treatment facility, response action plan for grout treatment facility, Hanford Facility contingency plan, training course descriptions, overview of the Hanford Facility Grout Performance, assessment, bland use and zoning map, waste minimization plan, cover design engineering report, and clay liners (ADMIXTURES) in semiarid environments

  9. Mechanical Treatment: Material Recovery Facilities

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Bilitewski, B.

    2011-01-01

    A wide variety of mechanical treatment unit processes, including manual sorting, is described in Chapter 7.1. These unit processes may be used as a single separate operation (e.g. baling of recyclable cardboard) or as a single operation before or after biological and thermal treatment processes (e.......g. shredding prior to incineration or screening after composting). The mechanical treatment unit process is in the latter case an integrated part of the overall treatment usually with the purpose of improving the quality of the input material, or the efficiency or stability of the biological or thermal process......, or improving the quality of the output material. Examples hereof appear in the chapters on biological and thermal treatment. Mechanical treatment unit processes may also appear at industries using recycled material as part of their feedstock, for example, for removing impurities and homogenizing the material...

  10. Effluent Treatment Facility tritium emissions monitoring

    International Nuclear Information System (INIS)

    Dunn, D.L.

    1991-01-01

    An Environmental Protection Agency (EPA) approved sampling and analysis protocol was developed and executed to verify atmospheric emissions compliance for the new Savannah River Site (SRS) F/H area Effluent Treatment Facility. Sampling equipment was fabricated, installed, and tested at stack monitoring points for filtrable particulate radionuclides, radioactive iodine, and tritium. The only detectable anthropogenic radionuclides released from Effluent Treatment Facility stacks during monitoring were iodine-129 and tritium oxide. This paper only examines the collection and analysis of tritium oxide

  11. Final generic environmental impact statement on decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    1988-08-01

    This final generic environmental impact statement was prepared as part of the requirement for considering changes in regulations on decommissioning of commercial nuclear facilities. Consideration is given to the decommissioning of pressurized water reactors, boiling water reactors, research and test reactors, fuel reprocessing plants (FRPs) (currently, use of FRPs in the commercial sector is not being considered), small mixed oxide fuel fabrication plants, uranium hexafluoride conversion plants, uranium fuel fabrication plants, independent spent fuel storage installations, and non-fuel-cycle facilities for handling byproduct, source and special nuclear materials. Decommissioning has many positive environmental impacts such as the return of possibly valuable land to the public domain and the elimination of potential problems associated with increased numbers of radioactively contaminated facilities with a minimal use of resources. Major adverse impacts are shown to be routine occupational radiation doses and the commitment of nominally small amounts of land to radioactive waste disposal. Other impacts, including public radiation doses, are minor. Mitigation of potential health, safety, and environmental impacts requires more specific and detailed regulatory guidance than is currently available. Recommendations are made as to regulatory decommissioning particulars including such aspects as decommissioning alternatives, appropriate preliminary planning requirements at the time of commissioning, final planning requirements prior to termination of facility operations, assurance of funding for decommissioning, environmental review requirements. 26 refs., 7 figs., 68 tabs

  12. Final design of ITER port plug test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerisier, Thierry, E-mail: thierry.cerisier@yahoo.fr [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Romannikov, Alexander [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation); Rumyantsev, Yuri [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Cordier, Jean-Jacques; Dammann, Alexis [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Minakov, Victor; Rosales, Natalya; Mitrofanova, Elena [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Portone, Sergey; Mironova, Ekaterina [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation)

    2016-11-01

    Highlights: • We introduce the port plug test facility (purpose and status of the design). • We present the PPTF sub-systems. • We present the environmental and functional tests. • We present the occupational and nuclear safety functions. • We conclude on the achievements and next steps. - Abstract: To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill this requirement, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) is composed of several test stands that can be used to test the port plugs whereas at the end of manufacturing (in a non-nuclear environment), or after refurbishment in the ITER hot cell facility. The PPTF provides the possibility to perform environmental (leak tightness, vacuum and thermo-hydraulic performances) and functional tests (radio frequency acceptance tests, behavior of the plugs’ steering mechanism and calibration of diagnostics) on upper and equatorial port plugs. The final design of the port plug test facility is described. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  13. Membrane technology water treatment facility

    International Nuclear Information System (INIS)

    Gruzdev, E. N.; Starikov, E.N.

    2009-01-01

    The suggested technical solution, in contrast with the traditional treatment methods using pressure filtration and sorption cleaning, can be applied with minimal used for equipment, stable production and the use of reagents, prevention of the formation of waste water with high mineral content and avoid the need for neutralization of the main stream of waste water

  14. findings from audits of specialist treatment facilities

    African Journals Online (AJOL)

    Adele

    population groups in terms of the allocation of resources to, and the quality of ... facilities has decreased in real terms, limiting their treatment capacity and their capacity ... fordable, and accessible substance abuse treatment services1, ... The terms “white, black, asian/indian, and coloured” refer to demographic markers and ...

  15. Patient Satisfaction in Military Dental Treatment Facilities

    Science.gov (United States)

    2006-03-07

    the variance in regards to overall satisfaction. 15. SUBJECT TERMS Dentistry, Patient Satisfaction, Military, Consumer Satisfaction, Dental... patient satisfaction in military dental treatment facilities. Dental health is extremely important for the military as dental assets are not always... customer satisfaction is an important component of military dental care. Quarterly patient satisfaction reports are generated for each dental treatment

  16. Hanford facilities tracer study report (315 Water Treatment Facility)

    International Nuclear Information System (INIS)

    Ambalam, T.

    1995-01-01

    This report presents the results and findings of a tracer study to determine contact time for the disinfection process of 315 Water Treatment Facility that supplies sanitary water for the 300 Area. The study utilized fluoride as the tracer and contact times were determined for two flow rates. Interpolation of data and short circuiting effects are also discussed. The 315 Water Treatment Facility supplies sanitary water for the 300 Area to various process and domestic users. The Surface Water Treatment Rule (SWTR), outlined in the 1986 Safe Drinking Water Act Amendments enacted by the EPA in 1989 and regulated by the Washington State Department of Health (DOH) in Section 246-290-600 of the Washington Administrative Code (WAC), stipulates filtration and disinfection requirements for public water systems under the direct influence of surface water. The SWTR disinfection guidelines require that each treatment system achieves predetermined inactivation ratios. The inactivation by disinfection is approximated with a measure called CxT, where C is the disinfectant residual concentration and T is the effective contact time of the water with the disinfectant. The CxT calculations for the Hanford water treatment plants were derived from the total volume of the contact basin(s). In the absence of empirical data to support CxT calculations, the DOH determined that the CxT values used in the monthly reports for the water treatment plants on the Hanford site were invalid and required the performance of a tracer study at each plant. In response to that determination, a tracer study will be performed to determine the actual contact times of the facilities for the CxT calculations

  17. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    International Nuclear Information System (INIS)

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC ampersand FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate

  18. Addressing social aspects associated with wastewater treatment facilities

    International Nuclear Information System (INIS)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia

    2016-01-01

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  19. Addressing social aspects associated with wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Padilla-Rivera, Alejandro; Morgan-Sagastume, Juan Manuel; Noyola, Adalberto; Güereca, Leonor Patricia, E-mail: lguerecah@iingen.unam.mx

    2016-02-15

    In wastewater treatment facilities (WWTF), technical and financial aspects have been considered a priority, while other issues, such as social aspects, have not been evaluated seriously and there is not an accepted methodology for assessing it. In this work, a methodology focused on social concerns related to WWTF is presented. The methodology proposes the use of 25 indicators as a framework for measuring social performance to evaluate the progress in moving towards sustainability. The methodology was applied to test its applicability and effectiveness in two WWTF in Mexico (urban and rural). This evaluation helped define the key elements, stakeholders and barriers in the facilities. In this context, the urban facility showed a better overall performance, a result that may be explained mainly by the better socioeconomic context of the urban municipality. Finally, the evaluation of social aspects using the semi-qualitative approach proposed in this work allows for a comparison between different facilities and for the identification of strengths and weakness, and it provides an alternative tool for achieving and improving wastewater management. - Highlights: • The methodology proposes 25 indicators as a framework for measuring social performance in wastewater treatment facilities. • The evaluation helped to define the key elements, stakeholders and barriers in the wastewater treatment facilities. • The evaluation of social aspects allows the identification of strengths and weakness for improving wastewater management. • It provides a social profile of the facility that highlights the best and worst performances.

  20. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) is an existing treatment, storage, and/or disposal (TSD) unit located in the 200 East Area and the adjacent 600 Area of the Hanford Site. The GTF mixes dry cementitious solids with liquid mixed waste (containing both dangerous and radioactive constituents) produced by Hanford Site operations. The GTF consists of the following: The 241-AP-02D and 241-AP-04D waste pump pits and transfer piping; Dry Materials Facility (DMF); Grout Disposal Facility (GDF), consisting of the disposal vault and support and monitoring equipment; and Grout Processing Facility (GPF) and Westinghouse Hanford Company on the draft Hanford Facility Dangerous Waste Permit and may not be read to conflict with those comments. The Grout Treatment Facility Dangerous Waste Permit Application consists of both a Part A and a Part B permit application. An explanation of the Part A revisions associated with this TSD unit, including the current revision, is provided at the beginning of the Part A section. The Part B consists of 15 chapters addressing the organization and content of the Part B checklist prepared by the Washington State Department of Ecology (Ecology 1987). For ease of reference, the checklist section numbers, in brackets, follow chapter headings and subheadings

  1. Final closure of a low level waste disposal facility

    International Nuclear Information System (INIS)

    Potier, J.M.

    1995-01-01

    The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m 3 . The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters per square meter and per year)

  2. Final treatment of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Svolik, S.

    2004-01-01

    Final treatment of liquid radioactive wastes which are produced by 1 st and 2 nd bloc of the Mochovce NPP, prepares the NPP in its natural range. The purpose of the equipment is liquidation of wastes, which are formed at production. Wastes are warehoused in the building of active auxiliary plants in the present time, where are reservoirs in which they are deposited. Because they are already feeling and in 2006 year they should be filled definitely, it is necessary to treat them in that manner, so as they may be liquidated. Therefore the Board of directors of the Slovenske elektrarne has disposed about construction of final treatment of liquid radioactive wastes in the Mochovce NPP. Because of transport the wastes have to be treated in the locality of power plant. Technically, the final treatment of the wastes will be interconnected with building of active operation by bridges. These bridges will transport the wastes for treatment into processing centre

  3. DWTF [decontamination and waste treatment facilities] assessment

    International Nuclear Information System (INIS)

    Maimoni, A.

    1986-01-01

    The purpose of this study has been to evaluate the adequacy of present and proposed decontamination and waste treatment facilities (DWTF) at LLNL, to determine the cost effectiveness for proposed improvements, and possible alternatives for accomplishing these improvements. To the extent possible, we have also looked at some of the proposed environmental compliance and cleanup (ECC) projects

  4. Legal problems of waste treatment in German atomic energy facilities

    International Nuclear Information System (INIS)

    Pfaffelhuber, J.K.

    1980-01-01

    The execution of the strategies of waste treatment and disposal calls for the laws and regulations on the obligations of the owners of equipments and facilities and of the state for securing safety and the final elimination of radioactive wastes, which are defined mainly in Article 9 of Atomgesetz and Section 2 (Article 44 - 48) of the order on protection from radiation. The owners of equipments and facilities of atomic energy technology shall limit the emission of radiation to about 6% of internationally permissible values, avoid uncontrolled emission without fail, inspect emission and submit reports yearly to government offices. The owners have attention obligations to utilize harmlessly produced radioactive residues and the expanded or dismantled parts of radioactive equipments or to eliminate orderly such things as radioactive wastes, only when such utilization is unable technically or economically, or not adequate under the protection aims of Atomgesetz. The possessors of radioactive wastes shall deliver the wastes to the accumulation places of provinces for intermediate storage, to the facilities of the Federal Republic for securing safety or final storage, or the facilities authorized by government offices for the elimination of radioactive wastes. Provinces shall install the accumulation places for the intermediate storage of radioactive wastes produced in their territories, and the Federal Republic shall set up the facilities for securing safety and the final elimination of radioactive wastes (Article 9, Atomgesetz). (Okada, K.)

  5. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the low-level liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Hanford Site Maps, road evaluation for the grout treatment facility, Department of Ecology certificate of non-designation for centralia fly ash, double-shell tank waste compositional modeling, laboratory analysis reports for double-shell tank waste, stored in tanks 241-AN-103, 241-AN-106, and 241-AW-101, grout vault heat transfer results for M-106 grout formulation, test results for extraction procedure toxicity testing, test results for toxicity testing of double-shell tank grout, pilot-scale grout production test with a simulated low-level waste, characterization of simulated low-level waste grout produced in a pilot-scale test, description of the procedure for sampling nonaging waste storage tanks, description of laboratory procedures, grout campaign waste composition verification, variability in properties of grouted phosphate/sulfate N-reactor waste, engineering drawings, description of operating procedures, equipment list--transportable grout equipment, grout treatment facility--tank integrity assessment plan, long-term effects of waste solutions on concrete and reinforcing steel, vendor information, grout disposal facilities construction quality assurance plan, and flexible membrane liner/waste compatibility test results

  6. The final disposal facility of spent nuclear fuel

    International Nuclear Information System (INIS)

    Prvakova, S.; Necas, V.

    2001-01-01

    Today the most serious problem in the area of nuclear power engineering is the management of spent nuclear fuel. Due to its very high radioactivity the nuclear waste must be isolated from the environment. The perspective solution of nuclear fuel cycle is the final disposal into geological formations. Today there is no disposal facility all over the world. There are only underground research laboratories in the well developed countries like the USA, France, Japan, Germany, Sweden, Switzerland and Belgium. From the economical point of view the most suitable appears to build a few international repositories. According to the political and social aspect each of the country prepare his own project of the deep repository. The status of those programmes in different countries is described. The development of methods for the long-term management of radioactive waste is necessity in all countries that have had nuclear programmes. (authors)

  7. 200 Area Effluent Treatment Facility: Delisting petition

    International Nuclear Information System (INIS)

    1993-08-01

    Waste water has been generated for over 40 years as a result of operations conducted on the Hanford Site. This waste water previously was discharged to cribs, ponds, or ditches. An example of such waste water includes process condensate that might have been in contact with dangerous waste or mixed waste (containing both radioactive and dangerous components). This petition presents the treatment technologies that are designed into the 200 Area Effluent Treatment Facility to eliminate the dangerous characteristics of the waste and to delist the effluent in accordance with the requirements found in 40 Code of Federal Regulations 260.20 and 260.22. The purpose of this petition is to demonstrate that the 242-A Evaporator process condensate will be treated adequately so that the effluent from the 200 Area Effluent Treatment Facility will no longer require management as a regulated dangerous waste. This demonstration was performed by use of a surrogate (synthetic) waste, designed by the US Department of Energy, Richland Operations Office to include species that represent all organic and inorganic constituents (but not radionuclide species) expected to be found on the Hanford Site. Thus, the surrogate will encompass not only the expected 242-A Evaporator process condensate characteristics, but those of other potential 200 Area Effluent Treatment Facility waste streams and additional 40 CFR Appendix VIII constituents

  8. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Coenenberg, J.G.

    1997-08-15

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, `operating` treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  9. Hanford Facility dangerous waste permit application, liquid effluent retention facility and 200 area effluent treatment facility

    International Nuclear Information System (INIS)

    Coenenberg, J.G.

    1997-01-01

    The Hanford Facility Dangerous Waste Permit Application is considered to 10 be a single application organized into a General Information Portion (document 11 number DOE/RL-91-28) and a Unit-Specific Portion. The scope of the 12 Unit-Specific Portion is limited to Part B permit application documentation 13 submitted for individual, 'operating' treatment, storage, and/or disposal 14 units, such as the Liquid Effluent Retention Facility and 200 Area Effluent 15 Treatment Facility (this document, DOE/RL-97-03). 16 17 Both the General Information and Unit-Specific portions of the Hanford 18 Facility Dangerous Waste Permit Application address the content of the Part B 19 permit application guidance prepared by the Washington State Department of 20 Ecology (Ecology 1987 and 1996) and the U.S. Environmental Protection Agency 21 (40 Code of Federal Regulations 270), with additional information needs 22 defined by the Hazardous and Solid Waste Amendments and revisions of 23 Washington Administrative Code 173-303. For ease of reference, the Washington 24 State Department of Ecology alpha-numeric section identifiers from the permit 25 application guidance documentation (Ecology 1996) follow, in brackets, the 26 chapter headings and subheadings. A checklist indicating where information is 27 contained in the Liquid Effluent Retention Facility and 200 Area Effluent 28 Treatment Facility permit application documentation, in relation to the 29 Washington State Department of Ecology guidance, is located in the Contents 30 Section. 31 32 Documentation contained in the General Information Portion is broader in 33 nature and could be used by multiple treatment, storage, and/or disposal units 34 (e.g., the glossary provided in the General Information Portion). Wherever 35 appropriate, the Liquid Effluent Retention Facility and 200 Area Effluent 36 Treatment Facility permit application documentation makes cross-reference to 37 the General Information Portion, rather than duplicating

  10. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1992-07-01

    The Grout Treatment Facility (GTF) will provide permanent disposal for approximately 43 Mgal of radioactive liquid waste currently being stored in underground tanks on the Hanford Site. The first step in permanent disposal is accomplished by solidifying the liquid waste with cementitious dry materials. The resulting grout is cast within underground vaults. This report on the GTF contains information on the following: Vault design, run-on/run-off control design, and asphalt compatibility with 90-degree celsius double-shell slurry feed

  11. Final Design Report for the RH LLW Disposal Facility (RDF) Project, Revision 3

    International Nuclear Information System (INIS)

    Austad, Stephanie Lee

    2015-01-01

    The RH LLW Disposal Facility (RDF) Project was designed by AREVA Federal Services (AFS) and the design process was managed by Battelle Energy Alliance (BEA) for the Department of Energy (DOE). The final design report for the RH LLW Disposal Facility Project is a compilation of the documents and deliverables included in the facility final design.

  12. Fast Flux Test Facility final safety analysis report. Amendment 72

    Energy Technology Data Exchange (ETDEWEB)

    Gantt, D. A.

    1992-08-01

    This document provides the Final Safety Analysis Report (FSAR) Amendment 72 for incorporation into the Fast Flux Test Facility (FFTF) FSAR set. This amendment change incorporates Engineering Change Notices issued subsequent to Amendment 71 and approved for incorporation before June 24, 1992. These include changes in: Chapter 2, Site Characteristics; Chapter 3, Design Criteria Structures, Equipment, and Systems; Chapter 5B, Reactor Coolant System; Chapter 7, Instrumentation and Control Systems; Chapter 8, Electrical Systems - The description of the Class 1E, 125 Vdc systems is updated for the higher capacity of the newly installed, replacement batteries; Chapter 9, Auxiliary Systems - The description of the inert cell NASA systems is corrected to list the correct number of spare sample points; Chapter 11, Reactor Refueling System; Chapter 12, Radiation Protection and Waste Management; Chapter 13, Conduct of Operations; Chapter 16, Quality Assurance; Chapter 17, Technical Specifications; Chapter 19, FFTF Fire Specifications for Fire Detection, Alarm, and Protection Systems; Chapter 20, FFTF Criticality Specifications; and Appendix B, Primary Piping Integrity Evaluation.

  13. Functional criteria for emergency response facilities. Technical report (final)

    International Nuclear Information System (INIS)

    1981-02-01

    This report describes the facilities and systems to be used by nuclear power plant licensees to improve responses to emergency situations. The facilities include the Technical Support Center (TSC), Onsite Operational Support Center (OSC), and Nearsite Emergency Operations Facility (EOF), as well as a brief discussion of the emergency response function of the control room. The data systems described are the Safety Parameter Display System (SPDS) and Nuclear Data Link (NDL). Together, these facilities and systems make up the total Emergency Response Facilities (ERFs). Licensees should follow the guidance provided both in this report and in NUREG-0654 (FEMA-REP-1), Revision 1, for design and implementation of the ERFs

  14. Conceptual design of tritium treatment facility

    International Nuclear Information System (INIS)

    Tachikawa, Katsuhiro

    1982-01-01

    In connection with the development of fusion reactors, the development of techniques concerning tritium fuel cycle, such as the refining and circulation of fuel, the recovery of tritium from blanket, waste treatment and safe handling, is necessary. In Japan Atomic Energy Research Institute, the design of the tritium process research laboratory has been performed since fiscal 1977, in which the following research is carried out: 1) development of hydrogen isotope separation techniques by deep cooling distillation method and thermal diffusion method, 2) development of the refining, collection and storage techniques for tritium using metallic getters and palladium-silver alloy films, and 3) development of the safe handling techniques for tritium. The design features of this facility are explained, and the design standard for radiation protection is shown. At present, in the detailed design stage, the containment of tritium and safety analysis are studied. The building is of reinforced concrete, and the size is 48 m x 26 m. Glove boxes and various tritium-removing facilities are installed in two operation rooms. Multiple wall containment system and tritium-removing facilities are explained. (Kako, I.)

  15. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations

  16. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 appendices covering engineering drawings and operating procedures

  17. Grout treatment facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid mixed wastes (containing both dangerous and radioactive constitutents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 2 Appendices covering engineering drawings and operating procedures

  18. Grout Treatment Facility dangerous waste permit application

    International Nuclear Information System (INIS)

    1988-01-01

    This section briefly describes the Hanford Site, provides a general description of the site operations and administration, provides an overview of the contents of this Grout Treatment Facility (GTF) Permit Application, and gives a list of acronyms and abbreviations used in the document. The decision was made to use the checklist as a locator reference instead of using the checklist section numbers as paragraph section numbers because several different types of waste management units, some of which are not addressed in the checklists, are part of the GTF. The GTF is a waste management unit within the Hanford Site facility. In May 1988, a permit application was filed that identified the GTF as an existing facility. The GTF mixes dry cementitious solids with liquid wastes (containing both dangerous and radioactive constituents) produced by Hanford Site operations. In addition to the design and operating features of the GTF that are intended to meet the requirements of dangerous waste regulations, many additional design and operating features are necessary to comply with radioactive waste management practices. The GTF design features and practices are intended to keep operational exposure to radionuclides and dangerous substances ''as low as reasonably achievable'' (ALARA) and to provide a disposal system that protects the environment for at least 10,000 yr. In some instances, ALARA practices present difficulties when complying with requirements of dangerous waste regulations. This volume contains 14 Appendices. Topics include Engineering Drawings, Maps, Roads, Toxicity Testing, and Pilot-Scale Testing

  19. Final safety analysis report for the irradiated fuels storage facility

    International Nuclear Information System (INIS)

    Bingham, G.E.; Evans, T.K.

    1976-01-01

    A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1 1 / 2 cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100 0 F is reached

  20. Drainage facility management system : final report, June 2009.

    Science.gov (United States)

    2009-06-01

    This research project identified requirements for a drainage facility management system for the Oregon Department of Transportation. It also estimated the personnel resources needed to collect the inventory to populate such a system with data. A tota...

  1. Support of the radioactive waste treatment nuclear fuel fabrication facility

    International Nuclear Information System (INIS)

    Park, H.H.; Han, K.W.; Lee, B.J.; Shim, G.S.; Chung, M.S.

    1982-01-01

    Technical service of radioactive waste treatment in Daeduck Engineering Center includes; 1) Treatment of radioactive wastes from the nuclear fuel fabrication facility and from laboratories. 2) Establishing a process for intermediate treatment necessary till the time when RWTF is in completion. 3) Technical evaluation of unit processes and equipments concerning RWTF. About 35 drums (8 m 3 ) of solid wastes were treated and stored while more than 130 m 3 of liquid wastes were disposed or stored. A process with evaporators of 10 1/hr in capacity, a four-stage solvent washer, storage tanks and disposal system was designed and some of the equipments were manufactured. Concerning RWTF, its process was reviewed technically and emphasis were made on stability of the bituminization process against explosion, function of PAAC pump, decontamination, and finally on problems to be solved in the comming years. (Author)

  2. Operational experience at the Sludge Treatment Facility

    International Nuclear Information System (INIS)

    Sy, D.J.

    1987-01-01

    The Sludge Treatment Facility (STF) at the Oak Ridge Gaseous Diffusion Plant has been in operation since April 1987. The facility was designed to encapsulate hazardous sludge wastes in a cement matrix. Fixation will allow the waste to meet or exceed applicable compressive strength and leachability requirements. Thus, the grout mixture complies with the Resource Conservation and Recovery Act (RCRA) guidelines as a nonhazardous waste. The grout mixture is based upon a recipe formulation developed after several years of waste stream characterization and formulation studies. The wastes to be treated at the STF are wastes impounded in two ponds. The ponds have a combined capacity of 4.5 million gallons of sludge. The sludge is transferred from the ponds to a 15,000-gallon capacity storage tank by the use of a dredge. The grout mixture recipe dictates the amount of sludge, cement, fly ash, and admixture required for weighing per batch. All ingredients are weighed and then transferred to a tilt or high energy mixer for mixing. The grout mixture is then transferred to 89- or 96-gallon steel drums. The drums are placed in a storage yard designed for a point source discharge from the yard

  3. Sludge treatment facility preliminary siting study for the sludge treatment project (A-13B)

    International Nuclear Information System (INIS)

    WESTRA, A.G.

    1999-01-01

    This study evaluates various sites in the 100 K area and 200 areas of Hanford for locating a treatment facility for sludge from the K Basins. Both existing facilities and a new standalone facility were evaluated. A standalone facility adjacent to the AW Tank Farm in the 200 East area of Hanford is recommended as the best location for a sludge treatment facility

  4. RETROFITTING CONTROL FACILITIES FOR WET-WEATHER FLOW TREATMENT

    Science.gov (United States)

    Available technologies were evaluated to demonstrate the technical feasibility and cost effectiveness of retrofitting existing facilities to handle wet-weather flow. Cost/benefit relationships were also compared to construction of new conventional control and treatment facilities...

  5. Region 9 NPDES Facilities 2012- Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  6. Region 9 NPDES Facilities - Waste Water Treatment Plants

    Science.gov (United States)

    Point geospatial dataset representing locations of NPDES Waste Water Treatment Plant Facilities. NPDES (National Pollution Discharge Elimination System) is an EPA permit program that regulates direct discharges from facilities that discharge treated waste water into waters of the US. Facilities are issued NPDES permits regulating their discharge as required by the Clean Water Act. A facility may have one or more outfalls (dischargers). The location represents the facility or operating plant.

  7. Shielding calculations for the Intense Neutron Source Facility. Final report

    International Nuclear Information System (INIS)

    Battat, M.E.; Henninger, R.J.; Macdonald, J.L.; Dudziak, D.J.

    1978-06-01

    Results of shielding calculations for the Intnse Neutron Source (INS) facility are presented. The INS facility is designed to house two sources, each of which will produce D--T neutrons with intensities in the range from 1 to 3 x 10 15 n/s on a continuous basis. Topics covered include the design of the biological shield, use of two-dimensional discrete-ordinates results to specify the source terms for a Monte Carlo skyshine calculation, air activation, and dose rates in the source cell (after shutdown) due to activation of the biological shield

  8. EFFLUENT TREATMENT FACILITY PEROXIDE DESTRUCTION CATALYST TESTING

    International Nuclear Information System (INIS)

    HALGREN DL

    2008-01-01

    The 200 Area Effluent Treatment Facility (ETF) main treatment train includes the peroxide destruction module (PDM) where the hydrogen peroxide residual from the upstream ultraviolet light/hydrogen peroxide oxidation unit is destroyed. Removal of the residual peroxide is necessary to protect downstream membranes from the strong oxidizer. The main component of the PDM is two reaction vessels utilizing granular activated carbon (GAC) as the reaction media. The PDM experienced a number of operability problems, including frequent plugging, and has not been utilized since the ETF changed to groundwater as the predominant feed. The unit seemed to be underperforming in regards to peroxide removal during the early periods of operation as well. It is anticipated that a functional PDM will be required for wastewater from the vitrification plant and other future streams. An alternate media or methodology needs to be identified to replace the GAC in the PDMs. This series of bench scale tests is to develop information to support an engineering study on the options for replacement of the existing GAC method for peroxide destruction at the ETF. A number of different catalysts will be compared as well as other potential methods such as strong reducing agents. The testing should lead to general conclusions on the viability of different catalysts and identify candidates for further study and evaluation

  9. Water quality facility investigation report : final summary of project and evaluation of monitoring plan implementation.

    Science.gov (United States)

    2005-07-05

    The Oregon Department of Transportation (ODOT) has installed several stormwater : treatment facilities throughout the State to improve the quality of runoff discharged from : highways. These facilities include a variety of both above ground and below...

  10. Staging and storage facility feasibility study. Final report

    International Nuclear Information System (INIS)

    Swenson, C.E.

    1995-02-01

    This study was performed to investigate the feasibility of adapting the design of the HWVP Canister Storage Building (CSB) to meet the needs of the WHC Spent Nuclear Fuel Project for Staging and Storage Facility (SSF), and to develop Rough Order of Magnitude (ROM) cost and schedule estimates

  11. Alpha Decontamination and Disassembly Pilot Facility. Final report

    International Nuclear Information System (INIS)

    Daugherty, B.A.; Clark, H.E.

    1985-04-01

    The Alpha Decontamination and Disassembly (AD and D) Pilot Facility was built to develop and demonstrate a reference process for the decontamination and size reduction of noncombustible transuranic (TRU) waste. The goals of the reference process were to remove >99% of the surface contamination to the high-level waste tanks, and to achieve volume reduction factors greater than 15:1. Preliminary bench-scale decontamination work was accomplished at Savannah River Laboratory (SRL), establishing a reference decontamination process. Initially, the pilot facility did not achieve the decontamination goals. As the program continued, and modifications to the process were made, coupon analysis idicated that 99% of the surface contamination was removed to the high-level drain system. Prior to the AD and D Pilot Facility, no size reduction work had been done at SRL. Several other Department of Energy (DOE) facilities were experimenting with plasma arc torches for size reduction work. Their methods were employed in the AD and D hot cell with moderate success. The experimental work concluded with recommendations for further testing of other size reduction techniques. 11 figs., 6 tabs

  12. The ATF [Advanced Toroidal Facility] Data Management System: [Final report

    International Nuclear Information System (INIS)

    Kannan, K.L.; Baylor, L.R.

    1987-01-01

    The Advanced Toroidal Facility (ATF) Data Management System (DMG) is a VAX-based software system that provides unified data access for ATF data acquisition and analysis. The system was designed with user accessibility, software maintainability, and extensibility as primary goals. This paper describes the layered architecture of the system design, the system implementation, use, and the data file structure. 3 refs., 1 fig

  13. Liquid waste treatment at plutonium fuels fabrication facility, 2

    International Nuclear Information System (INIS)

    Matsumoto, Ken-ichi; Itoh, Ichiroh; Ohuchi, Jin; Miyo, Hiroaki

    1974-01-01

    The economics in the management of the radioactive liquid waste from Plutonium Fuels Fabrication Facility with sludge-blanket type flocculators has been evaluated. (1) Cost calculation: The cost of chemicals and electricity to treat 1 cubic meter of liquid waste is about 876 yen, while the total operating cost is 250 thousand yen per cubic meter in the case of 140 m 3 /year treatment. These figures are much higher than those for ordinary wastes, due to the particular operation against plutonium. (2) Proposal of the closed system for liquid waste treatment at PFFF: In the case of a closed system using evaporator, ion exchange column and rotary-kiln calciner, the operating cost is estimated at 40 thousand yen per cubic meter of liquid waste. Final radioactivity of treated liquid is below 10 -8 micro curies/ml. (Mori, K.)

  14. Overview of a conceptualized waste water treatment facility for the Consolidated Incinerator Facility

    International Nuclear Information System (INIS)

    McCabe, D.J.

    1992-01-01

    The offgas system in the Consolidated Incinerator Facility (CIF) will generate an aqueous waste stream which is expected to contain hazardous, nonhazardous, and radioactive components. The actual composition of this waste stream will not be identified until startup of the facility, and is expected to vary considerably. Wastewater treatment is being considered as a pretreatment to solidification in order to make a more stable final waste form and to reduce disposal costs. A potential treatment scenario has been defined which may allow disposition of this waste in compliance with all applicable regulations. The conceptualized wastewater treatment plant is based on literature evaluations for treating hazardous metals. Laboratory tests hwill be run to verify the design for its ability to remove the hazardous and radioactive components from this waste stream. The predominant mechanism employed for removal of the hazardous and radioactive metal ions is coprecipitation. The literature indicates that reasonably low quantities of hazardous metals can be achieved with this technique. The effect on the radioactive metal ions is not predictable and has not been tested. The quantity of radioactive metal ions predicted to be present in the waste is significantly less than the solubility limit of those ions, but is higher than the discharge guidelines established by DOE Order 5400.5

  15. Pain treatment facilities: do we need quantity or quality?

    NARCIS (Netherlands)

    de Meij, N.; Koke, A.; van der Weijden, T.; van Kleef, M.; Patijn, J.

    2014-01-01

    Rationale, aims and objectives: Chronic pain patients referred to a pain treatment facility have no guarantee that they will receive a proper diagnostic procedure or treatment. To obtain information about organizational aspects of pain treatment facilities and the content of their daily pain

  16. Requirements for facilities transferring or receiving select agents. Final rule.

    Science.gov (United States)

    2001-08-31

    CDC administers regulations that govern the transfer of certain biological agents and toxins ("select agents"). These regulations require entities that transfer or receive select agents to register with CDC and comply with biosafety standards contained in the Third Edition of the CDC/NIH publication "Biosafety in Microbiological and Biomedical Laboratories ("BMBL")." On October 28,1999, CDC published a Notice of Proposed Rulemaking ("NPRM") seeking both to revise the biosafety standards facilities must follow when handling select agents and to provide new biosecurity standards for such facilities. These new standards are contained in the Fourth Edition of BMBL, which the NPRM proposed to incorporate by reference, thereby replacing the Third Edition. No comments were received in response to this proposal. CDC is therefore amending its regulations to incorporate the Fourth Edition.

  17. Nuclear Astrophysics Data from Radioactive Beam Facilities. Final report

    International Nuclear Information System (INIS)

    Chen, Alan A.

    2008-01-01

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): 21 Na(p,γ) 22 Mg and 18 Ne(α,p) 21 Na - The importance of the 21 Na(p,γ) 22 Mg and the 18 Ne(α,p) 21 Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope 22 Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: 21 Na(p,γ) 22 Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne(α,p) 21 Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,γ) 26 Si and 13 N(p,γ)14O reactions - For Year 2, we worked on evaluations of the 25 Al(p,γ) 26 Si and 13 N(p,γ) 14 O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The 25 Al(p,γ) 26 Si reaction is a key uncertainty in the understanding the origin of galactic 26 Al, a target radioisotope for gamma ray astronomy; the 13 N(p,γ) 14 O reaction in turn is the trigger

  18. Radioactive waste package assay facility. Final report - V. A

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Strachan, N.R.; Findlay, D.J.S.; Wise, M.O.; Forrest, K.R.; Rogers, J.D.

    1993-01-01

    This report provides a summary of research work carried out in support of the development of an integrated assay system for the quality checking of Intermediate Level Waste encapsulated in cement. Four non-destructive techniques were originally identified as being viable methods for obtaining radiometric inventory data from a cemented 500 litre ILW package. The major part of the programme was devoted to the development of two interrogation techniques; active neutron for measuring the total fissile content and active gamma for measuring the total actinide content. An electron linear accelerator was used to supply the interrogating beam for these two methods. In addition the linear accelerator beam could be used for high energy radiography. The results of this work are described and the performances and limitations of the non-destructive methods are summarised. The main engineering and operational features which influence the design of an integrated assay facility are outlined and a conceptual layout for a facility to inspect 750 ILW drums a year is described. Details of the detection methods, data processing and potential application of the assay facility are given in three associated HMIP reports. (Author)

  19. Drilling supervision procedure for the Exploratory Shaft Facility: Final draft

    International Nuclear Information System (INIS)

    1986-11-01

    Drilling supervision will be undertaken in the Exploratory Shaft Facility (ESF) for boreholes drilled primarily for the purpose of hydrologic testing, downhole mechanical/thermal testing, sampling for laboratory testing, and for the placement of instrumentation. The primary purpose of this procedure is documentation of drilling activities prescribed by other procedures. Supervision of drilling includes designation of positions of authority, lines of communication, and methodology of supervising, monitoring, and documenting drilling and associated activities. The rationale for the specific applications of core drilling is provided by the test procedures for each activity. 2 figs

  20. Plasma lenses for SLAC Final Focus Test facility

    International Nuclear Information System (INIS)

    Betz, D.; Cline, D.; Joshi, C.; Rajagopalan, S.; Rosenzweig, J.; Su, J.J.; Williams, R.; Chen, P.; Gundersen, M.; Katsouleas, T.; Norem, J.

    1991-01-01

    A collaborative group of accelerator and plasma physicists and engineers has formed with an interest in exploring the use of plasma lenses to meet the needs of future colliders. Analytic and computational models of plasma lenses are briefly reviewed and several design examples for the SLAC Final Focus Test Beam are presented. The examples include discrete, thick, and adiabatic lenses. A potential plasma source with desirable lens characteristics is presented

  1. Multi-beam Mossbauer scattering facility. Final technical report

    International Nuclear Information System (INIS)

    1994-01-01

    The Mossbauer instrument construction which was financed by the DOE grant of $74,065 and MU matching funds of $52,000 is essentially completed and awaiting installation at the Missouri University Research Reactor (MURR) facility. All of the DOE funds have been spent and all of the matching funds plus about $4,000 to $5,000 of additional physics department funds have been committed to finishing the first phase of the new instrument, QUEGS--II (for QUAsiElastic Gamma-ray Scattering--generation II). This phase includes computer controls, detectors, and instrumentation for two of the four beam lines afforded by QUEGS-II. Included in this commitment of funds is $8,700 for equipment and machine shop services which have not yet been paid and $19,700 for a Ge detector for which bids are ready to be let

  2. Wireless local network architecture for Naval medical treatment facilities

    OpenAIRE

    Deason, Russell C.

    2004-01-01

    Approved for public release; distribution is unlimited In today's Navy Medicine, an approach towards wireless networks is coming into view. The idea of developing and deploying workable Wireless Local Area Networks (WLAN) throughout Naval hospitals is but just a few years down the road. Currently Naval Medical Treatment Facilities (MTF) are using wired Local Area Networks (LANs) throughout the infrastructure of each facility. Civilian hospitals and other medical treatment facilities have b...

  3. A comprehensive centralized control system for radiation waste treatment facility

    International Nuclear Information System (INIS)

    Kong Jinsong

    2014-01-01

    A comprehensive centralized control system is designed for the radiation waste treatment facility that lacking of coordinated operational mechanism for the radiation waste treatment. The centralized control and alarm linkage of various systems is implemented to ensure effectively the safety of nuclear facility and materials, improve the integral control ability through advanced informatization ways. (author)

  4. Final decommissioning report for the 183-C Filter Building/Pumproom facility

    International Nuclear Information System (INIS)

    Marske, S.G.

    1997-04-01

    This report documents the decommissioning and demolition (D ampersand D) of the 183-C Filter Building/Pumproom facility (located at the Hanford Site in Richland, Washington). The 183-C Facility D ampersand D involved the performance of characterization to support the development of a project plan and final hazard classification

  5. High temperature facility for atomic physics studies. Final report

    International Nuclear Information System (INIS)

    1978-01-01

    The results of a program designed to develop a laser heated plasma sample for atomic physics studies in the 30 to 100 eV range of electron temperature and the 3 x 10 17 to 10 18 cm -3 range in electron density are presented. The approach used was discussed in detail in Mathematical Sciences Northwest, Inc., (MSNW) Proposal 1660, that is, the laser breakdown mode of heating in a slow solenoid. An extensive rework of the plasma sample facility was done in order to use this mode of heating. Specifically, a new solenoid magnet was constructed to allow higher field operation and the plasma chamber was modified to allow the use of puff filling orifices and small bore tube liners. The vacuum system and focussing optics were changed to allow the use of an on-axis Cassagranian system capable of focussing the laser radiation to a nearly diffraction limited spot as is necessary when heating through a small aperture. The 10 liter CO 2 laser optics were charged to an unstable oscillator configuration and additional windows were provided into the optical cavity for alignment purposes

  6. Issues related to the licensing of final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Medici, M.A.; Alvarez, D.E.; Lee Gonzales, H.; Piumetti, E.H.; Palacios, E.

    2010-01-01

    The licensing process of a final disposal facility for radioactive waste involves the design, construction, pre-operation, operation, closure and post closure stages. While design and pre-operational stages are, to a reasonable extent, similar to other kind of nuclear or radioactive facilities, construction, operation, closure and post-closure of a radioactive waste disposal facility have unique meanings. As consequence of that, the licensing process should incorporate these particularities. Considering the long timeframes involved at each stage of a waste disposal facility, it is convenient that the development of the project being implemented in and step by step process, be flexible enough as to adapt to new requirements that would arise as a consequence of technology improvements or due to variations in the socio-economical and political conditions. In Argentina, the regulatory Standard AR 0.1.1 establishes the general guideline for the 'Licensing of Class I facilities (relevant facilities)'. Nevertheless, for radioactive waste final disposal facilities a new specific guidance should be developed in addition to the Basic Standard mentioned. This paper describes the particularities of final disposal facilities indicating that a specific licensing system for this type of facilities should be foreseen. (authors) [es

  7. Towards the final BSA modeling for the accelerator-driven BNCT facility at INFN LNL

    Energy Technology Data Exchange (ETDEWEB)

    Ceballos, C. [Centro de Aplicaciones Tecnlogicas y Desarrollo Nuclear, 5ta y30, Miramar, Playa, Ciudad Habana (Cuba); Esposito, J., E-mail: juan.esposito@lnl.infn.it [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Agosteo, S. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy); Colautti, P.; Conte, V.; Moro, D. [INFN, Laboratori Nazionali di Legnaro (LNL), via dell' Universita, 2, I-35020 Legnaro (PD) (Italy); Pola, A. [Politecnico di Milano, Dipartimento di Energia, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)] [INFN, Sezione di Milano, via Celoria 16, 20133 Milano (Italy)

    2011-12-15

    Some remarkable advances have been made in the last years on the SPES-BNCT project of the Istituto Nazionale di Fisica Nucleare (INFN) towards the development of the accelerator-driven thermal neutron beam facility at the Legnaro National Laboratories (LNL), aimed at the BNCT experimental treatment of extended skin melanoma. The compact neutron source will be produced via the {sup 9}Be(p,xn) reactions using the 5 MeV, 30 mA beam driven by the RFQ accelerator, whose modules construction has been recently completed, into a thick beryllium target prototype already available. The Beam Shaping Assembly (BSA) final modeling, using both neutron converter and the new, detailed, Be(p,xn) neutron yield spectra at 5 MeV energy recently measured at the CN Van de Graaff accelerator at LNL, is summarized here.

  8. Liquid waste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1999-01-01

    Pretreatment of high-level liquid radioactive waste (HLW) at the West Valley Demonstration Project (WVDP) involved three distinct processing operations: decontamination of liquid HLW in the Supernatant Treatment System (STS); volume reduction of decontaminated liquid in the Liquid Waste Treatment System (LWTS); and encapsulation of resulting concentrates into an approved cement waste form in the Cement Solidification System (CSS). Together, these systems and operations made up the Integrated Radwaste Treatment System (IRTS)

  9. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual; FINAL

    International Nuclear Information System (INIS)

    IRWIN, J.J.

    1999-01-01

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B-Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved

  10. Standards applicable to owners and operators of hazardous waste treatment, storage, and disposal facilities; liability coverage requirements--Environmental Protection Agency. Final rule and notice of extension of effective date.

    Science.gov (United States)

    1982-07-13

    The effective date for qualifications of insurers providing liability insurance used to satisfy liability coverage requirements applicable to owners or operators of hazardous waste management facilities, as such requirements are included in 40 CFR Parts 264 and 265, is extended from July 15, 1982, to October 16, 1982. The effective date for the rest of the liability coverage requirements remains July 15, 1982. This extension is being provided to allow 6 months between the date of promulgation and the effective date for the insurer qualification provision, in accordance with Section 3010(b) of the Resource Conservation and Recovery Act of 1976, as amended. During the period between July 15 and October 16, 1982, owners or operators may use certificates of insurance or policy endorsements that do not certify to the qualifications of the insurer.

  11. First Dutch Consensus of Pain Quality Indicators for Pain Treatment Facilities.

    Science.gov (United States)

    de Meij, Nelleke; van Grotel, Marloes; Patijn, Jacob; van der Weijden, Trudy; van Kleef, Maarten

    2016-01-01

    There is a general consensus about the need to define and improve the quality of pain treatment facilities. Although guidelines and recommendations to improve the quality of pain practice management have been launched, provision of appropriate pain treatment is inconsistent and the quality of facilities varies widely. The aim of the study was to develop an expert-agreed list of quality indicators applicable to pain treatment facilities. The list was also intended to be used as the basis for a set of criteria for registered status of pain treatment facilities. The University Pain Center Maastricht at the Department of Anesthesiology and Pain Management of the Maastricht University Medical Center conducted a 3-round Delphi study in collaboration with the Board of the Pain Section of the Dutch Society of Anesthesiologists (NVA). Twenty-five quality indicators were selected as relevant to 2 types of pain treatment facilities, pain clinics and pain centers. The final expert-agreed list consisted of 22 quality indicators covering 7 quality domains: supervision, availability of care, staffing level and patient load, quality policy, multidisciplinarity, regionalization, and research and education. This set of quality indicators may facilitate organizational evaluation and improve insight into service quality from the perspectives of patients, pain specialists, and other healthcare professionals. Recommendations for improvements to the current set of quality indicators are made. In 2014 the process of registering pain treatment facilities in the Netherlands started; facilities can register as a pain clinic or pain center. © 2015 World Institute of Pain.

  12. EPA Facility Registry Service (FRS): Wastewater Treatment Plants

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS), EPA's Integrated Compliance Information System (ICIS)...

  13. Outline of a fuel treatment facility in NUCEF

    International Nuclear Information System (INIS)

    Sugikawa, Susumu; Umeda, Miki; Kokusen, Junya

    1997-03-01

    This report presents outline of the nuclear fuel treatment facility for the purpose of preparing solution fuel used in Static Experiment Critical Facility (STACY) and Transient Experiment Critical Facility (TRACY) in Nuclear Fuel Cycle Safety Engineering Research Facility (NUCEF), including descriptions of process conditions and dimensions of major process equipments on dissolution system of oxide fuel, chemical adjustment system, purification system, acid recovery system, solution fuel storage system, and descriptions of safety design philosophy such as safety considerations of criticality, solvent fire, explosion of hydrogen and red-oil and so on. (author)

  14. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed

  15. Integrated radwaste treatment system. Final report

    International Nuclear Information System (INIS)

    Baker, M.N.; Houston, H.M.

    1997-10-01

    In May 1988, the West Valley Demonstration Project (WVDP) began pretreating liquid high-level radioactive waste (HLW). This HLW was produced during spent nuclear fuel reprocessing operations that took place at the Western New York Nuclear Service Center from 1966 to 1972. Original reprocessing operations used plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) processes to recover usable isotopes from spent nuclear fuel. The PUREX process produced a nitric acid-based waste stream, which was neutralized by adding sodium hydroxide to it. About two million liters of alkaline liquid HLW produced from PUREX neutralization were stored in an underground carbon steel tank identified as Tank 8D-2. The THOREX process, which was used to reprocess one core of mixed uranium-thorium fuel, resulted in about 31,000 liters of acidic waste. This acidic HLW was stored in an underground stainless steel tank identified as Tank 8D-4. Pretreatment of the HLW was carried out using the Integrated Radwaste Treatment System (IRTS), from May 1988 until May 1995. This system was designed to decontaminate the liquid HLW, remove salts from it, and encapsulate the resulting waste into a cement waste form that achieved US Nuclear Regulatory Commission (NRC) criteria for low-level waste (LLW) storage and disposal. A thorough discussion of IRTS operations, including all systems, subsystems, and components, is presented in US Department of Energy (DOE) Topical Report (DOE/NE/44139-68), Integrated Radwaste Treatment System Lessons Learned from 2 1/2 Years of Operation. This document also presents a detailed discussion of lessons learned during the first 2 1/2 years of IRTS operation. This report provides a general discussion of all phases of IRTS operation, and presents additional lessons learned during seven years of IRTS operation

  16. The Wastewater Treatment Test Facility at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richardson, S.A.; Kent, T.E.; Taylor, P.A.

    1995-01-01

    The Wastewater Treatment Test Facility (WTTF) contains 0.5 L/min test systems which provide a wide range of physical and chemical separation unit operations. The facility is a modified 48 foot trailer which contains all the unit operations of the ORNL's Process Waste Treatment Plant and Nonradiological Wastewater Treatment Plant including chemical precipitation, clarification, filtration, ion-exchange, air stripping, activated carbon adsorption, and zeolite system. This facility has been used to assess treatability of potential new wastewaters containing mixed radioactive, hazardous organic, and heavy metal compounds. With the ability to simulate both present and future ORNL wastewater treatment systems, the WTTF has fast become a valuable tool in solving wastewater treatment problems at the Oak Ridge reservation

  17. Fuze Experimentation Facility and Fuze Industrial Facility (FEF/FIF) Construction. Final Environmental Assessment

    Science.gov (United States)

    2011-04-01

    1-9. R esources N ot C arried Forw ard for D etailed A nalysis Legend Environmental Justice Concerns c:::J Proposed Project Area No Concerns...11 FEF/FIF C onstruction Environm ental A ssessm ent Page 3-6 Eglin A ir Force B ase, FL Final Figure 3-1. W ater R esources A t or N...Ecological A ssociations and Biological R esources A t or N ear the Proposed A ction Location Ecological Association Flatwoods Landscaped!Urban c:J

  18. Prevalence and characterisation of non-cholerae Vibrio spp. in final effluents of wastewater treatment facilities in two districts of the Eastern Cape Province of South Africa: implications for public health.

    Science.gov (United States)

    Okoh, Anthony I; Sibanda, Timothy; Nongogo, Vuyokazi; Adefisoye, Martins; Olayemi, Osuolale O; Nontongana, Nolonwabo

    2015-02-01

    Vibrios and other enteric pathogens can be found in wastewater effluents of a healthy population. We assessed the prevalence of three non-cholerae vibrios in wastewater effluents of 14 wastewater treatment plants (WWTP) in Chris Hani and Amathole district municipalities in the Eastern Cape Province of South Africa for a period of 12 months. With the exception of WWTP10 where presumptive vibrios were not detected in summer and spring, presumptive vibrios were detected in all seasons in other WWTP effluents. When a sample of 1,000 presumptive Vibrio isolates taken from across all sampling sites were subjected to molecular confirmation for Vibrio, 668 were confirmed to belong to the genus Vibrio, giving a prevalence rate of 66.8 %. Further, molecular characterisation of 300 confirmed Vibrio isolates revealed that 11.6 % (35) were Vibrio parahaemolyticus, 28.6 % (86) were Vibrio fluvialis and 28 % (84) were Vibrio vulnificus while 31.8 % (95) belonged to other Vibrio spp. not assayed for in this study. Antibiogram profiling of the three Vibrio species showed that V. parahaemolyticus was ≥50 % susceptible to 8 of the test antibiotics and ≥50 % resistant to only 5 of the 13 test antibiotics, while V. vulnificus showed a susceptibility profile of ≥50 % to 7 of the test antibiotics and a resistance profile of ≥50 % to 6 of the 13 test antibiotics. V. fluvialis showed ≥50 % resistance to 8 of the 13 antibiotics used while showing ≥50 % susceptibility to only 4 antibiotics used. All three Vibrio species were susceptible to gentamycin, cefuroxime, meropenem and imipenem. Multiple antibiotic resistance patterns were also evident especially against such antibiotics as tetracyclin, polymixin B, penicillin G, sulfamethazole and erythromycin against which all Vibrio species were resistant. These results indicate a significant threat to public health, more so in the Eastern Cape Province of South Africa which is characterised by widespread poverty, with more than a

  19. Pain treatment facilities: do we need quantity or quality?

    Science.gov (United States)

    de Meij, Nelleke; Köke, Albère; van der Weijden, Trudy; van Kleef, Maarten; Patijn, Jacob

    2014-10-01

    Chronic pain patients referred to a pain treatment facility have no guarantee that they will receive a proper diagnostic procedure or treatment. To obtain information about organizational aspects of pain treatment facilities and the content of their daily pain practice, we performed a questionnaire survey. The aim of the study was to evaluate the amount of pain treatment facilities, the content of organized specialized pain care and adherence to the criteria of the internationally accepted guidelines for pain treatment services. The University Pain Centre Maastricht in the Department of Anaesthesiology and Pain Management at Maastricht University Medical Centre developed a questionnaire survey based on the Recommendations for Pain Treatment Services of the International Association for the Study of Pain (IASP). The questionnaire was sent to the medical boards of all hospitals in the Netherlands (n=94). The response rate was 86% (n=81). Of all hospitals, 88.9% (n=72) reported the provision of organized specialized pain care, which was provided by a pain management team in 86.1% (n=62) and by an individual specialist in 13.9% (n=10). Insight was obtained from pain treatment facilities in five different domains: the organizational structure of pain management, composition of the pain team, pain team practice, patient characteristics, and research and education facilities. Although 88.9% of all hospitals stated that organized specialized pain care was provided, only a few hospitals could adhere to the criteria for pain treatment services of the IASP. The outcome of the questionnaire survey may help to define quality improvement standards for pain treatment facilities. © 2014 John Wiley & Sons, Ltd.

  20. Hexone Storage and Treatment Facility closure plan

    International Nuclear Information System (INIS)

    1992-11-01

    The HSTF is a storage and treatment unit subject to the requirements for the storage and treatment of dangerous waste. Closure is being conducted under interim status and will be completed pursuant to the requirements of Washington State Department of Ecology (Ecology) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-610 and WAC 173-303-640. Because dangerous waste does not include the source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of WAC 173-303 or of this closure plan. The information on radionuclides is provided only for general knowledge where appropriate. The known hazardous/dangerous waste remaining at the site before commencing other closure activities consists of the still vessels, a tarry sludge in the storage tanks, and residual contamination in equipment, piping, filters, etc. The treatment and removal of waste at the HSTF are closure activities as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and WAC 173-303

  1. Potable Water Treatment Facility General Permit (PWTF GP) ...

    Science.gov (United States)

    2017-08-28

    The Final PWTF GP establishes permit eligibility conditions, Notice of Intent (NOI) requirements, effluent limitations, standards, prohibitions, and best management practices for facilities that discharge to waters in the Commonwealth of Massachusetts (including both Commonwealth and Indian country lands) and the State of New Hampshire.

  2. Facility for low-level solid waste treatment

    International Nuclear Information System (INIS)

    Vicente, R.; Miyamoto, H.

    1987-01-01

    A facility for low-level solid waste compaction, encapsulation and storage is described. Solid wastes are compacted in 200 l drums and stored over concrete platforms covered with canvas, for decay or for interim storage before transport to the final disposal site. (Author) [pt

  3. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1993-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  4. Hong kong chemical waste treatment facilities: a technology overview

    Energy Technology Data Exchange (ETDEWEB)

    Siuwang, Chu [Enviropace Ltd., Hong Kong (Hong Kong)

    1994-12-31

    The effective management of chemical and industrial wastes represents one of the most pressing environmental problems confronting the Hong Kong community. In 1990, the Hong Kong government contracted Enviropace Limited for the design, construction and operation of a Chemical Waste Treatment Facility. The treatment and disposal processes, their integration and management are the subject of discussion in this paper

  5. Hazardous waste treatment facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1993-01-01

    To centralize treatment, storage, and staging areas for hazardous wastes, Los Alamos National Laboratory has designed a 12,000-ft 2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks, bulking small organic waste volumes, processing scintillation vials, treating reactives such as lithium hydride and pyrophoric uranium, treating contaminated solids such as barium sand, and treating plating wastes. The treated wastes will then be appropriately disposed of. This report describes the integral features of the hazardous waste treatment facility

  6. Car drivers’ characteristics and the maximum walking distance between parking facilities and final destination

    NARCIS (Netherlands)

    van der Waerden, P.J.H.J.; Timmermans, H.J.P.; de Bruin - Verhoeven, M.

    2017-01-01

    In this paper the relationship between car drivers’ personal and trip characteristics and the maximum distance car drivers are willing to walk between a parking facility and the final destination(s) will be discussed. The willingness to walk is investigated in the context of four different trip

  7. Ultraviolet Light Generation and Transport in the Final Optics Assembly of the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Wegner, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hackel, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Feit, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Parham, T. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kozlowski, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Whitman, P. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-02-12

    The design of the National Ignition Facility (NIF) includes a Final Optics Assembly (FOA) subsystem for ultraviolet (UV) light generation and transport for each of the 192 beamlines. Analytical and experimental work has been done to help understand and predict the performance of FOA.

  8. Experimental and Theoretical Progress of Linear Collider Final Focus Design and ATF2 Facility

    CERN Document Server

    Seryi, Andrei; Zimmermann, Frank; Kubo, Kiyoshi; Kuroda, Shigeru; Okugi, Toshiyuki; Tauchi, Toshiaki; Terunuma, Nobuhiro; Urakawa, Junji; White, Glen; Woodley, Mark; Angal-Kalinin, Deepa

    2014-01-01

    In this brief overview we will reflect on the process of the design of the linear collider (LC) final focus (FF) optics, and will also describe the theoretical and experimental efforts on design and practical realisation of a prototype of the LC FF optics implemented in the ATF2 facility at KEK, Japan, presently being commissioned and operated.

  9. Waste analysis plan for the 200 area effluent treatment facility and liquid effluent retention facility

    International Nuclear Information System (INIS)

    Ballantyne, N.A.

    1995-01-01

    This waste analysis plan (WAP) has been prepared for startup of the 200 Area Effluent Treatment Facility (ETF) and operation of the Liquid Effluent Retention Facility (LERF), which are located on the Hanford Facility, Richland, Washington. This WAP documents the methods used to obtain and analyze representative samples of dangerous waste managed in these units, and of the nondangerous treated effluent that is discharged to the State-Approved Land Disposal System (SALDS). Groundwater Monitoring at the SALDS will be addressed in a separate plan

  10. Wastewater treatment facilities: Energy efficient improvements and cogeneration

    International Nuclear Information System (INIS)

    Kunkle, R.; Gray, R.; Delzel, D.

    1992-10-01

    The Washington State Energy Office (WSEO) has worked with both the Bonneville Power Administration (BPA) and the US Department of Energy to provide technical and financial assistance to local governments. Based on a recent study conducted by Ecotope for WSEO, local governments spend an estimated $45 million on utility bills statewide. Water and wastewater facilities account for almost a third of this cost. As a result, WSEO decided to focus its efforts on the energy intensive water and wastewater sector. The ultimate goal of this project was to develop mechanisms to incorporate energy efficiency improvements into wastewater treatment facilities in retrofits and during upgrades, remodels, and new construction. Project activities included the following: The review of the existing regulatory environment for treatment system construction, A summary of financing options for efficiency improvements in treatment facilities, A literature review of energy efficiency opportunities in treatment plants, Survey and site visits to characterize existing facilities in Washington State, Estimates of the energy efficiency and cogeneration potential in the sector, and A case study to illustrate the implementation of an efficiency improvement in a treatment facility

  11. FY-1981 project status for the Transuranic Waste Treatment Facility

    International Nuclear Information System (INIS)

    Benedetti, R.L.; Tait, T.D.

    1981-11-01

    The primary objective of the Transuranic Waste Treatment Facility (TWTF) Project is to provide a facility to process low-level transuranic waste stored at the Idaho National Engineering Laboratory (INEL) into a form acceptable for disposal at the Waste Isolation Pilot Plant. This report provides brief summary descriptions of the project objectives and background, project status through FY-1981, planned activities for FY-1982, and the EG and G TWTF Project office position on processing INEL transuranic waste

  12. Reactivation of the Shock-Tunnel Facility at Fort Cronkhite. Final report

    International Nuclear Information System (INIS)

    1982-05-01

    This final report describes the results of work undertaken to reactivate the Shock Tunnel Facility at Battery Townsley, Fort Cronkhite, Marin County, California. The facility has been reactivated and can not be utilized for blast testing. The major emphasis will be testing of concepts pertaining to programs of interest to the Federal Emergency Management Agency (FEMA) and in particular to civil defense oriented research. However, a wide variety of testing requirements can be accommodated. For example, past programs at the facility have included: tests of debris from trees subjected to blast for Bell Telephone Laboratories; tests of the response of aluminum hull panels to blast loading and of the response of a model surface effects ship for the Naval Ship Research and Development center, and tests of the response of a radome prototype to blast loading conducted for ANCOM (the radome manufacturer). The Shock Tunnel Facility is located in a former coastal defense 16-inch gun emplacement constructed by the US Army beginning in 1938. It was converted in 1967 to serve as a facility for full-scale testing of the loading and response of structural elements and civil defense equipment. It remained in operation until November 1976 when Battery Townsley was turned over to the National Park Service. Work under the present purchase order consisted of the following major tasks: (I) cleanup and secure the facility, (II) reactivate the shock tunnel, and (III) design permanent facility improvements

  13. Federal Facilities Compliance Act, Conceptual Site Treatment Plan. Part 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-10-29

    This Conceptual Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed in this document include: general discussion of the plan, including the purpose and scope; technical aspects of preparing plans, including the rationale behind the treatability groupings and a discussion of characterization issues; treatment technology needs and treatment options for specific waste streams; low-level mixed waste options; TRU waste options; and future waste generation from restoration activities.

  14. Opportunities for Automated Demand Response in California Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Aghajanzadeh, Arian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wray, Craig [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-30

    Previous research over a period of six years has identified wastewater treatment facilities as good candidates for demand response (DR), automated demand response (Auto-­DR), and Energy Efficiency (EE) measures. This report summarizes that work, including the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy used and demand, as well as details of the wastewater treatment process. It also discusses control systems and automated demand response opportunities. Furthermore, this report summarizes the DR potential of three wastewater treatment facilities. In particular, Lawrence Berkeley National Laboratory (LBNL) has collected data at these facilities from control systems, submetered process equipment, utility electricity demand records, and governmental weather stations. The collected data were then used to generate a summary of wastewater power demand, factors affecting that demand, and demand response capabilities. These case studies show that facilities that have implemented energy efficiency measures and that have centralized control systems are well suited to shed or shift electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. In summary, municipal wastewater treatment energy demand in California is large, and energy-­intensive equipment offers significant potential for automated demand response. In particular, large load reductions were achieved by targeting effluent pumps and centrifuges. One of the limiting factors to implementing demand response is the reaction of effluent turbidity to reduced aeration at an earlier stage of the process. Another limiting factor is that cogeneration capabilities of municipal facilities, including existing power purchase agreements and utility receptiveness to purchasing electricity from cogeneration facilities, limit a facility’s potential to participate in other DR activities.

  15. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  16. Energy Efficiency Strategies for Municipal Wastewater Treatment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Daw, J.; Hallett, K.; DeWolfe, J.; Venner, I.

    2012-01-01

    Water and wastewater systems are significant energy consumers with an estimated 3%-4% of total U.S. electricity consumption used for the movement and treatment of water and wastewater. Water-energy issues are of growing importance in the context of water shortages, higher energy and material costs, and a changing climate. In this economic environment, it is in the best interest for utilities to find efficiencies, both in water and energy use. Performing energy audits at water and wastewater treatment facilities is one way community energy managers can identify opportunities to save money, energy, and water. In this paper the importance of energy use in wastewater facilities is illustrated by a case study of a process energy audit performed for Crested Butte, Colorado's wastewater treatment plant. The energy audit identified opportunities for significant energy savings by looking at power intensive unit processes such as influent pumping, aeration, ultraviolet disinfection, and solids handling. This case study presents best practices that can be readily adopted by facility managers in their pursuit of energy and financial savings in water and wastewater treatment. This paper is intended to improve community energy managers understanding of the role that the water and wastewater sector plays in a community's total energy consumption. The energy efficiency strategies described provide information on energy savings opportunities, which can be used as a basis for discussing energy management goals with water and wastewater treatment facility managers.

  17. Preliminary design for hot dirty-gas control-valve test facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

  18. 1976 Hanford americium-exposure incident: decontamination and treatment facility

    International Nuclear Information System (INIS)

    Berry, J.R.; McMurray, B.J.; Jech, J.J.; Breitenstein, B.D.; Quigley, E.J.

    1982-01-01

    An injured worker, contaminated with over 6 mCi of americium-241, required special treatment and housing for 4 months. This paper is a description of the design and management of the facility in which most of the treatment and housing occurred. The problems associated with contamination control, waste handling, supplies, and radiological concerns during the two-stage transfer of the patient from a controlled situation to his normal living environment are discussed in detail

  19. Latest development in project site radwaste treatment facility (SRTF) Sanmen

    International Nuclear Information System (INIS)

    Mennicken, K.; Lohmann, P.

    2015-01-01

    Westinghouse Electric Germany GmbH (WEG) was successful in being awarded a contract as to the planning, delivery, installation and commissioning of radwaste treatment systems for the AP1000 units at Sanmen site, PR China. Operational low and intermediate level radioactive waste will be processed in the Site Radwaste Treatment Facility (SRTF). This paper explains the latest developments of the project, especially the experience with customer-hired Chinese planning partners, installation companies and Customer operating personnel. (authors)

  20. Status of proton treatment facility at National Cancer Center, Kashiwa

    International Nuclear Information System (INIS)

    Tachikawa, T.; Kohmura, I.; Kataoka, S.; Nonaka, H.; Kimura, T.; Sato, T.; Nishio, T.; Shimbo, M.; Ogino, T.; Ikeda, H.

    2001-01-01

    Proton treatment facility at National Cancer Center Hospital East (Kashiwa) has two rotating gantry ports and one horizontal fixed port. In order to provide the same dose distribution at different gantry angles, the beam optics from the accelerator (235 MeV cyclotron) to the entrance of nozzle is specially tuned. Recently developed automatic tuning method of beam alignment can realize a sequential treatment at three irradiation ports. (author)

  1. Radiation protection -Operation of chemical wastewater treatment facility

    International Nuclear Information System (INIS)

    Lee, M. J.; Lim, M. H.; Ahn, S. S.; Jeong, Y. S.

    1996-12-01

    The wastewater and sewage treatment facility have been operated. From the results of operation, it was confirmed that the quality of treated wastewater was 1/5 or 1/10 lower than that of regulation of law for environmental conservation. The quality of treated sewage has been maintained to 70% of regulation of law for environmental conservation. (author). 14 tabs., 8 figs

  2. 200 area effluent treatment facility opertaional test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting

  3. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. The engineering studies, initiated in July 1991, identified 37 mixed waste streams, and 55 low-level waste streams. This report documents the waste stream information and potential treatment strategies, as well as the regulatory requirements for the Department of Energy-owned treatment facility option. The total report comprises three volumes and two appendices. This report consists of Volume 1, which explains the overall program mission, the guiding assumptions for the engineering studies, and summarizes the waste stream and regulatory information, and Volume 2, the Waste Stream Technical Summary which, encompasses the studies conducted to identify the INEL's waste streams and their potential treatment strategies

  4. Treatment of DOE mixed wastes using commercial facilities

    International Nuclear Information System (INIS)

    Kramer, J.F.; Ross, M.A.; Dilday, D.R.

    1992-02-01

    In a demonstration program, Department of Energy (DOE) solid mixed wastes generated during uranium processing operations are characterized to define the unit operations required for treatment. The objectives included the implementation of these treatment operations utilizing a commercial Treatment, Storage and Disposal Facility (TSDF). In contracting for commercial hazardous and mixed waste treatment, it is important to characterize the waste beyond the identification of toxicity characteristic (TC) and radiological content. Performing treatability studies and verification of all the unit operations required for treatment is critical. The stream selected for this program was TC hazardous for barium (D005) and contaminated with both depleted and low enriched uranium. The program resulted in the generation of characterization data and treatment strategies. The characterization and treatability studies indicated that although a common unit operation was required to remove the toxic characteristic, multiple pretreatment operations were needed. Many of these operations do not exist at available TSDF's, rendering some portions of the stream untreatable using existing commercial TSDF's. For this project the need for pretreatment operations resulted in only a portion of the waste originally targeted for treatment being accepted for treatment at a commercial TSDF. The majority of the targeted stream could not be successfully treated due to lack of an off-site commercial treatment facility having the available equipment and capacity or with the correct combination of RCRA permits and radioactive material handling licenses. This paper presents a case study documenting the results of the project

  5. Design of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Song, Dae Yong; Lee, Byung Doo; Kwack, Eun Ho; Choi, Young Myong

    2001-05-01

    We are developing Safeguards Information Treatment System at the facility level(SITS) to manage synthetically safeguards information and to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, we described the contents of the detailed design of SITS such as database, I/O layout and program. In the present, we are implementing the SITS based on the contents of the design of SITS, and then we plan to provide the system for the facilities after we finish implementing and testing the system.

  6. Development of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Doo; Song, Dae Yong; So, Dong Sup; Kwack, Eun Ho [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-04-01

    Safeguards Information Treatment System(SITS) at the facility level is required to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, the requirements and major functions of SITS were considered, and the error checking methods and the relationships of safeguards information were reviewed. SITS will be developed to cover the different accounting procedures and methods applied at the various facilities under IAEA safeguards. Also, the resolved result of the Y2K problem in the existing nuclear material accounting program was described. 3 tabs. (Author)

  7. Design of safeguards information treatment system at the facility level

    International Nuclear Information System (INIS)

    Song, Dae Yong; Lee, Byung Doo; Kwack, Eun Ho; Choi, Young Myong

    2001-05-01

    We are developing Safeguards Information Treatment System at the facility level(SITS) to manage synthetically safeguards information and to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this report, we described the contents of the detailed design of SITS such as database, I/O layout and program. In the present, we are implementing the SITS based on the contents of the design of SITS, and then we plan to provide the system for the facilities after we finish implementing and testing the system

  8. Risk management program for the 283-W water treatment facility

    International Nuclear Information System (INIS)

    Green, W.E.

    1999-01-01

    This Risk Management (RM) Program covers the 283-W Water Treatment Facility (283W Facility), located in the 200 West Area of the Hanford Site. A RM Program is necessary for this facility because it stores chlorine, a listed substance, in excess of or has the potential to exceed the threshold quantities defined in Title 40 of the Code of Federal Regulations (CFR) Part 68 (EPA, 1998). The RM Program contains data that will be used to prepare a RM Plan, which is required by 40 CFR 68. The RM Plan is a summary of the RM Program information, contained within this document, and will be submitted to the U.S. Environmental Protection Agency (EPA) ultimately for distribution to the public. The RM Plan will be prepared and submitted separately from this document

  9. Proton facility economics: the importance of "simple" treatments.

    Science.gov (United States)

    Johnstone, Peter A S; Kerstiens, John; Richard, Helsper

    2012-08-01

    Given the cost and debt incurred to build a modern proton facility, impetus exists to minimize treatment of patients with complex setups because of their slower throughput. The aim of this study was to determine how many "simple" cases are necessary given different patient loads simply to recoup construction costs and debt service, without beginning to cover salaries, utilities, beam costs, and so on. Simple cases are ones that can be performed quickly because of an easy setup for the patient or because the patient is to receive treatment to just one or two fields. A "standard" construction cost and debt for 1, 3, and 4 gantry facilities were calculated from public documents of facilities built in the United States, with 100% of the construction funded through standard 15-year financing at 5% interest. Clinical best case (that each room was completely scheduled with patients over a 14-hour workday) was assumed, and a statistical analysis was modeled with debt, case mix, and payer mix moving independently. Treatment times and reimbursement data from the investigators' facility for varying complexities of patients were extrapolated for varying numbers treated daily. Revenue assumptions of $X per treatment were assumed both for pediatric cases (a mix of Medicaid and private payer) and state Medicare simple case rates. Private payer reimbursement averages $1.75X per treatment. The number of simple patients required daily to cover construction and debt service costs was then derived. A single gantry treating only complex or pediatric patients would need to apply 85% of its treatment slots simply to service debt. However, that same room could cover its debt treating 4 hours of simple patients, thus opening more slots for complex and pediatric patients. A 3-gantry facility treating only complex and pediatric cases would not have enough treatment slots to recoup construction and debt service costs at all. For a 4-gantry center, focusing on complex and pediatric cases alone

  10. Centralized treatment facility for L/ILW produced in Iran

    International Nuclear Information System (INIS)

    Ettehadian, M.; Momenzadeh, S.; Ansar, M.; Burcl, R.

    2001-01-01

    Full text: Normal operation of 5 MW research reactor, and radioisotope application in medicine, industry and research institutes generate a significant amount of low level radioactive waste. The volume is expected to increase with the expansion of nuclear application. This paper describes the establishing of centralized waste treatment facility developed by Atomic Energy Organization of Iran (AEOI) using IAEA technical assistance and recommendation. The new treatment facility will enable the currently produced RW to be treated conditioned and stored until a national repository becomes available. The centralized facility consists of a waste processing and storage buildings, which will be used to store conditioned waste drums. The treatment methods used for liquid wastes are precipitation, ion exchange and ultra filtration followed by In-drum cementation of residues. An In-drum compactor will be used for compaction of solid wastes. Safe management of low and intermediate radioactive waste, better protection of environment and population and applying suitable and economical processes for treatment of L/ILW are the other objectives of this activity. (author)

  11. Estimation of marginal costs at existing waste treatment facilities.

    Science.gov (United States)

    Martinez-Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus; Riber, Christian; Kamuk, Bettina; Astrup, Thomas F

    2016-04-01

    address and include costs in existing waste facilities in decision-making may unintendedly lead to higher overall costs at societal level. To avoid misleading conclusions, economic assessment of alternative SWM solutions should not only consider potential costs associated with alternative treatment but also include marginal costs associated with existing facilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Medicare Program; Inpatient Rehabilitation Facility Prospective Payment System for Federal Fiscal Year 2018. Final rule.

    Science.gov (United States)

    2017-08-03

    This final rule updates the prospective payment rates for inpatient rehabilitation facilities (IRFs) for federal fiscal year (FY) 2018 as required by the statute. As required by section 1886(j)(5) of the Social Security Act (the Act), this rule includes the classification and weighting factors for the IRF prospective payment system's (IRF PPS) case-mix groups and a description of the methodologies and data used in computing the prospective payment rates for FY 2018. This final rule also revises the International Classification of Diseases, 10th Revision, Clinical Modification (ICD-10-CM) diagnosis codes that are used to determine presumptive compliance under the "60 percent rule," removes the 25 percent payment penalty for inpatient rehabilitation facility patient assessment instrument (IRF-PAI) late transmissions, removes the voluntary swallowing status item (Item 27) from the IRF-PAI, summarizes comments regarding the criteria used to classify facilities for payment under the IRF PPS, provides for a subregulatory process for certain annual updates to the presumptive methodology diagnosis code lists, adopts the use of height/weight items on the IRF-PAI to determine patient body mass index (BMI) greater than 50 for cases of single-joint replacement under the presumptive methodology, and revises and updates measures and reporting requirements under the IRF quality reporting program (QRP).

  13. Fugitive hydrocarbon emissions from pacific OCS facilities. Volume 1. Final report

    International Nuclear Information System (INIS)

    1992-01-01

    In January 1989, the Minerals Management Service (MMS) conducted a study using the latest approved methods for emission screening and sampling solely on Outer Continental Shelf (OCS) oil and gas platforms in the Santa Barbara Channel in order to determine platform emission rates more representative of that region. The study was designed and reviewed throughout its conduct by a Quality Review Board (QRB) composed of air resource agencies and industry. Representatives from the Tri-county Air Pollution Control Districts and the MMS actively participated at these meetings. Some participants expressed concerns about some of the methods used and the study results. ABB's thorough responses to these questions and comments were submitted to all reviewers before the printing of the final report, and are contained in appendices of the study final report now available to the public. The results of the MMS study show that the average emission factors for the Pacific OCS oil and gas facilities measured in 1989 are 3.5 times lower than those Pacific OCS facilities sampled in the 1979 API/Rockwell study, and 7.8 times lower than the Gulf of Mexico OCS facilities sampled in the same 1979 study. Efforts to determine the quantitative effect of inspection and maintenance programs on controlling emissions were inconclusive

  14. Final report of the radiological release survey of Building 11 at the Grand Junction Office Facility

    International Nuclear Information System (INIS)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 11 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  15. Final report of the radiological release survey of Building 29 at the Grand Junction Office Facility

    International Nuclear Information System (INIS)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailing during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 29 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  16. Final report of the radiological release survey of Building 19 at the Grand Junction Office Facility

    International Nuclear Information System (INIS)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 19 and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  17. The impact of a final disposal facility for spent nuclear fuel on a municipality's image

    International Nuclear Information System (INIS)

    Kankaanpaeae, H.; Haapavaara, L.; Lampinen, T.

    1999-02-01

    The study comprised on one hand a nationwide telephone interview (totally 800 interviews) aimed at mapping out the current image of possible host municipalities to a final disposal facility for spent nuclear fuel, and on the other hand some group interviews of people of another parish but of interest from the municipalities' point of view. The purpose of these group interviews was the same as that of the telephone interview, i.e. to find out what kind of an impact locating a final disposal facility of spent nuclear fuel in a certain municipality would have on the host municipality's image. Because the groups interviewed were selected on different grounds the results of the interviews are not fully comparable. The most important result of the study is that the current attitude towards a final disposal facility for spent nuclear fuel is calm and collected and that the matter is often considered from the standpoint of an outsider. The issue is easily ignored, classified as a matter 'which does not concern me', provided that the facility will not be placed too near one's own home. Among those interviewed the subject seemed not to be of any 'great interest and did not arouse spontaneous feelings for or against'. There are, however, deeply rooted beliefs concerning the facility and quite strong negative and positive attitudes towards it. The facility itself and the associated decision-making procedure arouse many questions, which at present to a large extent are still unexpressed because the subject is considered so remote. It is, however, necessary to give concrete answers to the questions because this makes it possible for people to relate the issue to daily life. It is further important that things arousing fear and doubts also can be discussed because a silence in this respect only emphasizes their importance. The attitude towards the facility is varying. On one hand there are economic and technical factors: the probable economic benefit from it, the obligation to

  18. Financial compensation for municipalities hosting interim or final disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Barboza, Alex; Vicente, Roberto

    2005-01-01

    Brazilian Law No. 10308 issued November 20, 2001, establishes in its 34th article that 'those municipalities hosting interim or final disposal facilities for radioactive waste are eligible to receive a monthly payment as compensation'. The values of due payments depend on parameters such as volume of wastes and activity and half-lives of the radionuclides. The method to calculating those values was established by the National Commission on Nuclear Energy, the Brazilian regulatory authority, by Resolution No. 10, issued in the August 18, 2003. In this paper we report the application of that method to a low- and intermediate-level radioactive waste interim storage facility at the Nuclear Energy Research Institute. (author)

  19. Mixed and Low-Level Waste Treatment Facility project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report, Appendix A, Environmental ampersand Regulatory Planning ampersand Documentation, identifies the regulatory requirements that would be imposed on the operation or construction of a facility designed to process the INEL's waste streams. These requirements are contained in five reports that discuss the following topics: (1) an environmental compliance plan and schedule, (2) National Environmental Policy Act requirements, (3) preliminary siting requirements, (4) regulatory justification for the project, and (5) health and safety criteria

  20. The AGP-Project conceptual design for a Spanish HLW final disposal facility

    International Nuclear Information System (INIS)

    Biurrun, E.; Engelmann, H.-J.; Huertas, F.; Ulibarri, A.

    1992-01-01

    Within the framework of the AGP Project a Conceptual Design for a HLW Final Disposal Facility to be eventually built in an underground salt formation in Spain has been developed. The AGP Project has the character of a system analysis. In the current project phase I several alternatives has been considered for different subsystems and/or components of the repository. The system variants, developed to such extent as to allow a comparison of their advantages and disadvantages, will allow the selection of a reference concept, which will be further developed to technical maturity in subsequent project phases. (author)

  1. An Effective Web Presence for Substance Abuse Treatment Facilities.

    Science.gov (United States)

    Link, Thomas W; Hefner, Jennifer L; Ford, Eric W; Huerta, Timothy R

    2016-01-01

    Website development for health care has only been prevalent in the last two and a half decades. The first websites were electronic versions of brochures providing hardly any interaction with the consumer or potential consumer. The percentage of consumers that use the internet during the decision-making process for health care providers continues to rise. As a result, the websites of health care providers are becoming more of a representation of the facility and creating an organizational image rather than a brochure-like informational page. The purpose of this study was to analyze substance abuse treatment center's websites in the State of California with the goal of informing the management of substance abuse centers regarding an effective and inexpensive means to closing the marketing gaps in the industry. This brief research report presents the results of employing an automated web-crawler to assess website quality along five dimensions: accessibility, content, marketing, technology, and usability score. The sample mean scores for all dimensions were between 4 and 6 on a 10-point scale. On average larger facilities had higher quality websites. The low mean scores on these dimensions indicate that that substance abuse centers have significant room for improvement of their website's. Efficiently spending marketing funds to increase the effectiveness of a treatment center's website can be a low cost way for even small facilities to increase market competitiveness.

  2. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    Energy Technology Data Exchange (ETDEWEB)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L. [Los Alamos National Lab., NM (United States)

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R&D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R&D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action.

  3. Mixed and Low-Level Waste Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    Mixed and low-level wastes generated at the Idaho National Engineering Laboratory (INEL) are required to be managed according to applicable State and Federal regulations, and Department of Energy Orders that provide for the protection of human health and the environment. The Mixed and Low-Level Waste Treatment Facility Project was chartered in 1991, by the Department of Energy to provide treatment capability for these mixed and low-level waste streams. The first project task consisted of conducting engineering studies to identify the waste streams, their potential treatment strategies, and the requirements that would be imposed on the waste streams and the facilities used to process them. This report documents those studies so the project can continue with an evaluation of programmatic options, system tradeoff studies, and the conceptual design phase of the project. This report, appendix B, comprises the engineering design files for this project study. The engineering design files document each waste steam, its characteristics, and identified treatment strategies

  4. Radioactive Liquid Waste Treatment Facility: Environmental Information Document

    International Nuclear Information System (INIS)

    Haagenstad, H.T.; Gonzales, G.; Suazo, I.L.

    1993-11-01

    At Los Alamos National Laboratory (LANL), the treatment of radioactive liquid waste is an integral function of the LANL mission: to assure U.S. military deterrence capability through nuclear weapons technology. As part of this mission, LANL conducts nuclear materials research and development (R ampersand D) activities. These activities generate radioactive liquid waste that must be handled in a manner to ensure protection of workers, the public, and the environment. Radioactive liquid waste currently generated at LANL is treated at the Radioactive Liquid Waste Treatment Facility (RLWTF), located at Technical Area (TA)-50. The RLWTF is 30 years old and nearing the end of its useful design life. The facility was designed at a time when environmental requirements, as well as more effective treatment technologies, were not inherent in engineering design criteria. The evolution of engineering design criteria has resulted in the older technology becoming less effective in treating radioactive liquid wastestreams in accordance with current National Pollutant Discharge Elimination System (NPDES) and Department of Energy (DOE) regulatory requirements. Therefore, to support ongoing R ampersand D programs pertinent to its mission, LANL is in need of capabilities to efficiently treat radioactive liquid waste onsite or to transport the waste off site for treatment and/or disposal. The purpose of the EID is to provide the technical baseline information for subsequent preparation of an Environmental Impact Statement (EIS) for the RLWTF. This EID addresses the proposed action and alternatives for meeting the purpose and need for agency action

  5. Seismic risk analysis for General Electric Plutonium Facility, Pleasanton, California. Final report, part II

    International Nuclear Information System (INIS)

    1980-01-01

    This report is the second of a two part study addressing the seismic risk or hazard of the special nuclear materials (SNM) facility of the General Electric Vallecitos Nuclear Center at Pleasanton, California. The Part I companion to this report, dated July 31, 1978, presented the seismic hazard at the site that resulted from exposure to earthquakes on the Calaveras, Hayward, San Andreas and, additionally, from smaller unassociated earthquakes that could not be attributed to these specific faults. However, while this study was in progress, certain additional geologic information became available that could be interpreted in terms of the existance of a nearby fault. Although substantial geologic investigations were subsequently deployed, the existance of this postulated fault, called the Verona Fault, remained very controversial. The purpose of the Part II study was to assume the existance of such a capable fault and, under this assumption, to examine the loads that the fault could impose on the SNM facility. This report first reviews the geologic setting with a focus on specifying sufficient geologic parameters to characterize the postulated fault. The report next presents the methodology used to calculate the vibratory ground motion hazard. Because of the complexity of the fault geometry, a slightly different methodology is used here compared to the Part I report. This section ends with the results of the calculation applied to the SNM facility. Finally, the report presents the methodology and results of the rupture hazard calculation

  6. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    International Nuclear Information System (INIS)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references

  7. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  8. Risk communication on the construction of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Okoshi, Minoru

    2005-01-01

    In this paper, risk communications among the Japan Radioisotope Association (JRIA), a local government and the general public which were carried out during the development process of a radioactive waste treatment facility in Takizawa Village, Iwate Prefecture are analyzed based on the articles of newspapers and the interviews with the concerned people. The analysis results show good risk communications were not carried out because of the absence of the confidence to the JRIA, decision making rules and the merits. In order to make good use of this experience for the future development of radioactive waste management facilities, the lessons learned from this case are summarized and the check lists for good risk communication are proposed. (author)

  9. Infection control challenges in deployed US military treatment facilities.

    Science.gov (United States)

    Hospenthal, Duane R; Crouch, Helen K

    2009-04-01

    Personnel sustaining combat-related injuries in current overseas conflicts continue to have their care complicated by infections caused by multidrug-resistant organisms, including Acinetobacter, Klebsiella, and Pseudomonas. Although presumed to be due to multiple factors both within and outside of the combat theater, concern has been raised about the difficulties in establishing and maintaining standard infection control (IC) practices in deployed medical treatment facilities and in the evacuation of the injured back to the United States. Level III facilities (hospitals capable of holding patients >72 hours) in Iraq and Afghanistan and the evacuation system from Iraq to the continental US were reviewed by an expert IC-infectious disease team. All reviewed facilities had established IC programs, but these were staffed by personnel with limited IC experience, often without perceived adequate time dedicated to perform their duties, and without uniform levels of command emphasis or support. Proper hand hygiene between patients was not always ideal. Isolation and cohorting of patients to decrease multidrug-resistant organism colonization and infection varied among facilities. Review of standard operating procedures found variability among institutions and in quality of these documents. Application of US national and theater-specific guidelines and of antimicrobial control measures also varied among facilities. Effective IC practices are often difficult to maintain in modern US hospitals. In the deployed setting, with ever-changing personnel in a less than optimal practice environment, IC is even more challenging. Standardization of practice with emphasis on the basics of IC practice (e.g., hand hygiene and isolation procedures) needs to be emplaced and maintained in the deployed setting.

  10. Preliminary exploitation of industrial facility for flue gas treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Zimek, Z.; Iller, E.; Tyminski, B.; Licki, J.

    2001-01-01

    Full text: High emission of SO 2 and NO x in the process of fossil fuel combustion creates a major world environmental problem. Poland which uses for energy production mainly pit and brown coal produces these pollutants as well. The certain amount of SO 2 and slightly less NO x pollutants is introduced into the atmosphere. 1/2 of SO 2 and 1/3 NO x pollution is contributed by heat and electricity generating boilers. The biggest sources of pollution are located in south west side of Poland and are connected with industrial centers but over 45% of the total 802 and 69% of NO x pollutants distributed over polish territory come from external sources. The laboratory facility for flue gas treatment radiation technology was organized in Institute of Nuclear Chemistry and Technology at Warsaw at the end of 80s. Soon after the pilot plant for flue gas treatment with electron beam has been installed at Power Plant Kaweczyn near Warsaw. The flow capacity trough those installations was respectively 400 and 20000 Nm /h. Three new elements have been introduced to the construction of the radiation chamber in Polish pilot installation. Those are: cascade double stage irradiation, longitudinal irradiation, (beam scanned along the chamber axis) and the air blow under the chamber window with the purpose to create air curtain separating the window from the flue gases causing corrosion. Three different system for filtration aid has been constructed and tested: bag filter, gravel bead filter and electrostatic precipitator. The pilot plant installation was used to establish the optimal parameters of industrial facility: optimizing of the process parameters leading to reduction of energy with high efficiency of SO 2 and NO x removal; selecting and testing filter devices and filtration process; developing of the monitoring and control systems at industrial plant for flue gas cleaning, preparation of the design for industrial scale facility. The positive results of the tests performed on

  11. Proposal of conditioning of the not-in-use sealed sources which are stored in the Radioactive Wastes Treatment Facility

    International Nuclear Information System (INIS)

    Jova, L.; Garcia, N.; Benitez, J.C.; Salgado, M.; Hernandez, A.

    1996-01-01

    There is a considerable number of sealed sources which are no longer in use at the radioactive wastes treatment facility. In the present work a methodology is proposed for the final conditioning of these sources, based on their immobilization in a cement matrix. This cementation is accomplished within a 200-liter tank

  12. 40 CFR 403.19 - Provisions of specific applicability to the Owatonna Waste Water Treatment Facility.

    Science.gov (United States)

    2010-07-01

    ... the Owatonna Waste Water Treatment Facility. 403.19 Section 403.19 Protection of Environment... Owatonna Waste Water Treatment Facility. (a) For the purposes of this section, the term “Participating... Industrial User discharging to the Owatonna Waste Water Treatment Facility in Owatonna, Minnesota, when a...

  13. Decontamination and decommissioning of the Argonne National Laboratory East Area radioactively contaminated surplus facilities: Final report

    International Nuclear Information System (INIS)

    Kline, W.H.; Fassnacht, G.F.; Moe, H.J.

    1987-07-01

    ANL has decontaminated and decommissioned (D and D) seven radiologically contaminated surplus facilities at its Illinois site: a ''Hot'' Machine Shop (Building 17) and support facilities; Fan House No. 1 (Building 37), Fan House No. 2 (Building 38), the Pangborn Dust Collector (Building 41), and the Industrial Waste Treatment Plant (Building 34) for exhaust air from machining of radioactive materials. Also included were a Nuclear Materials Storage Vault (Building 16F) and a Nuclear Research Laboratory (Building 22). The D and D work involved dismantling of all process equipment and associated plumbing, ductwork, drain lines, etc. After radiation surveys, floor and wall coverings, suspended ceilings, room partitions, pipe, conduit and electrical gear were taken down as necessary. In addition, underground sewers were excavated. The grounds around each facility were also thoroughly surveyed. Contaminated materials and soil were packaged and shipped to a low-level waste burial site, while nonactive debris was buried in the ANL landfill. Clean, reusable items were saved, and clean metal scrap was sold for salvage. After the decommissioning work, each building was torn down and the site relandscaped. The project was completed in 1985, ahead of schedule, with substantial savings

  14. RTR spent fuel treatment and final waste storage

    International Nuclear Information System (INIS)

    Thomasson, J.

    2000-01-01

    A number of RTR operators have chosen in the past to send their spent fuel to the US in the framework of the US take back program. However, this possibility ends as of May 12th, 2006. 3 different strategies are left for managing RTR spent fuel: extended storage, direct disposal and treatment-conditioning through reprocessing. Whilst former strategies raise a number of uncertainties, the latter already offers a management solution. It features two advantages. It benefits from the long experience of existing flexible industrial facilities from countries like France. Secondly, it offers a dramatic volume reduction of the ultimate waste to be stored under well-characterized, stable and durable forms. RTR spent fuel management through reprocessing-conditioning offers a durable management solution that can be fully integrated in whatever global radioactive waste management policy, including ultimate disposal

  15. Facile Dry Surface Cleaning of Graphene by UV Treatment

    Science.gov (United States)

    Kim, Jin Hong; Haidari, Mohd Musaib; Choi, Jin Sik; Kim, Hakseong; Yu, Young-Jun; Park, Jonghyurk

    2018-05-01

    Graphene has been considered an ideal material for application in transparent lightweight wearable electronics due to its extraordinary mechanical, optical, and electrical properties originating from its ordered hexagonal carbon atomic lattice in a layer. Precise surface control is critical in maximizing its performance in electronic applications. Graphene grown by chemical vapor deposition is widely used but it produces polymeric residue following wet/chemical transfer process, which strongly affects its intrinsic electrical properties and limits the doping efficiency by adsorption. Here, we introduce a facile dry-cleaning method based on UV irradiation to eliminate the organic residues even after device fabrication. Through surface topography, Raman analysis, and electrical transport measurement characteristics, we confirm that the optimized UV treatment can recover the clean graphene surface and improve graphene-FET performance more effectively than thermal treatment. We propose our UV irradiation method as a systematically controllable and damage-free post process for application in large-area devices.

  16. Mixed and low-level waste treatment facility project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  17. Mixed and low-level waste treatment facility project

    International Nuclear Information System (INIS)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies

  18. Special feature of the facilities for final disposal of radioactive waste and its potential impact on the licensing process

    International Nuclear Information System (INIS)

    Lee Gonzales, Horacio M.; Medici, Marcela A.; Alvarez, Daniela E.; Biaggio, Alfredo L.

    2009-01-01

    During the lifetime of a radioactive waste disposal facility it is possible to identify five stages: design, construction, operation, closure and post-closure. While the design, and pre-operation stages are, to some extent, similar to other kind of nuclear or radioactive facilities; construction, operation, closure and post-closure have quite special meanings in the case of radioactive waste disposal systems. For instance, the 'closure' stage of a final disposal facility seems to be equivalent to the commissioning stage of a conventional nuclear or radioactive facility. This paper describes the unique characteristics of these stages of final disposal systems, that lead to concluded that their licensing procedure can not be assimilated to the standard licensing procedures in use for other nuclear or radioactive facilities, making it necessary to develop a tailored license system. (author)

  19. Infection prevention and control in deployed military medical treatment facilities.

    Science.gov (United States)

    Hospenthal, Duane R; Green, Andrew D; Crouch, Helen K; English, Judith F; Pool, Jane; Yun, Heather C; Murray, Clinton K

    2011-08-01

    Infections have complicated the care of combat casualties throughout history and were at one time considered part of the natural history of combat trauma. Personnel who survived to reach medical care were expected to develop and possibly succumb to infections during their care in military hospitals. Initial care of war wounds continues to focus on rapid surgical care with debridement and irrigation, aimed at preventing local infection and sepsis with bacteria from the environment (e.g., clostridial gangrene) or the casualty's own flora. Over the past 150 years, with the revelation that pathogens can be spread from patient to patient and from healthcare providers to patients (including via unwashed hands of healthcare workers, the hospital environment and fomites), a focus on infection prevention and control aimed at decreasing transmission of pathogens and prevention of these infections has developed. Infections associated with combat-related injuries in the recent operations in Iraq and Afghanistan have predominantly been secondary to multidrug-resistant pathogens, likely acquired within the military healthcare system. These healthcare-associated infections seem to originate throughout the system, from deployed medical treatment facilities through the chain of care outside of the combat zone. Emphasis on infection prevention and control, including hand hygiene, isolation, cohorting, and antibiotic control measures, in deployed medical treatment facilities is essential to reducing these healthcare-associated infections. This review was produced to support the Guidelines for the Prevention of Infections Associated With Combat-Related Injuries: 2011 Update contained in this supplement of Journal of Trauma.

  20. Site safety progress review of spent fuel central interim storage facility. Final report

    International Nuclear Information System (INIS)

    Gurpinar, A.; Serva, L.; Giuliani

    1995-01-01

    Following the request of the Czech Power Board (CEZ) and within the scope of the Technical Cooperation Project CZR/9/003, a progress review of the site safety of the Spent Fuel Central Interim Storage Facility (SFCISF) was performed. The review involved the first two stages of the works comprising the regional survey and identification of candidate sites for the underground and surface storage options. Five sites have been identified as a result of the previous works. The following two stages will involved the identification of the preferred candidate sites for the two options and the final site qualification. The present review had the purpose of assessing the work already performed and making recommendations for the next two stages of works

  1. ENGINEERING STUDY FOR THE 200 AREA EFFLUENT TREATMENT FACILITY (ETF) SECONDARY WASTE TREATMENT OF PROJECTED FUTURE WASTE FEEDS

    International Nuclear Information System (INIS)

    LUECK, K.J.

    2004-01-01

    This report documents an engineering study conducted to evaluate alternatives for treating secondary waste in the secondary treatment train (STT) of the Hanford Site 200 Area Effluent Treatment Facility (ETF). The study evaluates ETF STT treatment alternatives and recommends preferred alternatives for meeting the projected future missions of the ETF. The preferred alternative(s) will process projected future ETF influents to produce a solid waste acceptable for final disposal on the Hanford Site. The main text of this report summarizes the ETF past and projected operations, lists the assumptions about projected operations that provide the basis for the engineering evaluation, and summarizes the evaluation process. The evaluation process includes identification of available modifications to the current ETF process, screens those modifications for technical viability, evaluates the technically viable alternatives, and provides conclusions and recommendations based on that evaluation

  2. Evaluation of the initial and final radiological status of a nuclear facility in sanitation status

    International Nuclear Information System (INIS)

    Granier, Guy; Aubonnet, Emilie; Courbet, Christele; Desnoyers, Yvon; Dubot, Didier; Fichet, Pascal; Nokhamzon, Jean-Guy; Ollivier Dehaye, Catherine; Pillette-Cousin, Lucien; Mahe, Charly

    2017-02-01

    This technical report is a guideline for radiological assessment of a nuclear facility in remediation stages. From initial state of remediation to final status survey it describes the best suited statistical or geostatistical approach for the characterization of sites contaminated by radionuclides. Prior to any characterization campaign an historical analysis coupled with a function analysis targeted investigations is fundamental to obtain a robust overview. The evaluation of the amount of radioactive material present in a defined area requires a sampling strategy correlated with characterization objective. On the other hand correlation between remediation objectives and characterization objectives also requires knowing acceptable level of risk. This give better inputs to allow available resources and take into account environmental constraints. In particular, radiological characterization of infrastructures is one of the key step to conduct industrial project of decommissioning nuclear facilities in remediation. It needs a reliable initial diagnosis to obtain an efficient waste management with a financial control Optimization of the production of nuclear waste. It is an important part of Setting the Off Final - Dismantling). This approach is compatible with French Regulation (Guide 14 ASN) for the first and second line of defence. Annexes provide feedback of experimentation of this methodology. This report supplements the methodological guide published by the GT10 CETAMA entitled 'Soil Radiological Characterisation Methodology' (CEA-R 6386). The latter is intended for project managers and covers all issues related to the characterization projects for soil. This guideline concern specifically design engineers in charge of implementation program at the different stages of investigation and data processing. Similarly, the proposed methodology can be broken for the characterization of chemical pollution and process equipment. (authors)

  3. Final cleanup of buildings within in legacy French research facilities: strategy, tools and lessons learned

    International Nuclear Information System (INIS)

    Le Goaller, C.; Doutreluingne, C.; Berton, M.A.; Doucet, O.

    2007-01-01

    This paper describes the methodology followed by the French Atomic Energy Commission (CEA) to decommission the buildings of former research facilities for demolition or possible reuse. It is a well known fact that the French nuclear safety authority has decided not to define any general release level for the decommissioning of nuclear facilities, thus effectively prohibiting radiological measurement-driven decommissioning. The decommissioning procedure therefore requires an intensive in-depth examination of each nuclear plant. This requires a good knowledge of the past history of the plant, and should be initiated as early as possible. The paper first describes the regulatory framework recently unveiled by the French Safety Authority, then, reviews its application to ongoing decommissioning projects. The cornerstone of the strategy is the definition of waste zoning in the buildings to segregate areas producing conventional waste from those generating nuclear waste. After dismantling, suitable measurements are carried out to confirm the conventional state of the remaining walls. This requires low-level measurement methods providing a suitable detection limit within an acceptable measuring time. Although this generally involves particle counting and in-situ low level gamma spectrometry, the paper focuses on y spectrometry. Finally, the lessons learned from ongoing projects are discussed. (authors)

  4. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  5. Theme day: corrosion and surface treatments in nuclear facilities. Proceedings

    International Nuclear Information System (INIS)

    2012-02-01

    This document brings together the available presentations given at the theme day organized by the Bourgogne Nuclear Pole on the topic of corrosion and surface treatments in nuclear facilities. Eleven presentations (slides) are compiled in this document: 1 - Introduction - PNB centre of competitiveness and R and D activities (A. Mantovan, PNB); 2 - Corrosion damage (M. Foucault, Areva NP - Centre Technique Le Creusot); 3 - Corrosion mechanisms (R. Oltra, UB-ICB); 4 - Examples of expertise management (C. Duret-Thual, Institut de la corrosion/Corrosion Institute); 5 - General framework of surface treatments (C. Nouveau, ENSAM Cluny Paris Tech); 6 - Surfaces et interfaces characterisation - Part A (C. Langlade, Y. Gachon, UTBM and HEF); 7 - Surfaces et interfaces characterisation - Part B (C. Langlade, Y. Gachon, UTBM and HEF); 8 - Ion beam surface treatment (Y. Le Guellec, Quertech Ingenierie); 9 - Impact surface treatment (G. Saout, Sonats); 10 - Metal oxides Characterisation by US laser (R. Oltra, UB-ICB); 11 - Detection and Characterisation of intergranular corrosion (Y. Kernin, Stephane Bourgois, Areva Intercontrole)

  6. Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.

  7. Preliminary siting criteria for the proposed mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Jorgenson-Waters, M.

    1992-09-01

    The Mixed and Low-Level Waste Treatment Facility project was established in 1991 by the US Department of Energy Idaho Field Office. This facility will provide treatment capabilities for Idaho National Engineering Laboratory (INEL) low-level mixed waste and low-level waste. This report identifies the siting requirements imposed on facilities that treat and store these waste types by Federal and State regulatory agencies and the US Department of Energy. Site selection criteria based on cost, environmental, health and safety, archeological, geological and service, and support requirements are presented. These criteria will be used to recommend alternative sites for the new facility. The National Environmental Policy Act process will then be invoked to evaluate the alternatives and the alternative sites and make a final site determination

  8. Mixed and Low-Level Treatment Facility Project

    International Nuclear Information System (INIS)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided

  9. Mixed and Low-Level Treatment Facility Project

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This appendix contains the mixed and low-level waste engineering design files (EDFS) documenting each low-level and mixed waste stream investigated during preengineering studies for Mixed and Low-Level Waste Treatment Facility Project. The EDFs provide background information on mixed and low-level waste generated at the Idaho National Engineering Laboratory. They identify, characterize, and provide treatment strategies for the waste streams. Mixed waste is waste containing both radioactive and hazardous components as defined by the Atomic Energy Act and the Resource Conservation and Recovery Act, respectively. Low-level waste is waste that contains radioactivity and is not classified as high-level waste, transuranic waste, spent nuclear fuel, or 11e(2) byproduct material as defined by DOE 5820.2A. Test specimens of fissionable material irradiated for research and development only, and not for the production of power or plutonium, may be classified as low-level waste, provided the concentration of transuranic is less than 100 nCi/g. This appendix is a tool that clarifies presentation format for the EDFS. The EDFs contain waste stream characterization data and potential treatment strategies that will facilitate system tradeoff studies and conceptual design development. A total of 43 mixed waste and 55 low-level waste EDFs are provided.

  10. F/H Effluent Treatment Facility. Preliminary engineering report

    International Nuclear Information System (INIS)

    1985-01-01

    The Department of Energy is currently proposing to construct the F/H ETF to process wastewater from the Separations Areas and replace the existing seepage basins. Reasons for seepage basin closure are two-fold. First, nonradioactive hazardous materials routinely discharged to the seepage basins may have adversely impacted the quality of the groundwater in the vicinity of the basins. Second, amendments to the Resource Conservation and Recovery Act (RCRA) were approved in 1984, prohibiting the discharge of hazardous wastes to unlined seepage basins after November, 1988. The F/H ETF will consist of wastewater storage facilities and a treatment plant discharging treated effluent to Upper Three Runs Creek. Seepage basin use in F and H Areas wil be discontinued after startup, allowing timely closure of these basins. 3 refs

  11. Treatment of measurement uncertainties at the power burst facility

    International Nuclear Information System (INIS)

    Meyer, L.C.

    1980-01-01

    The treatment of measurement uncertainty at the Power Burst Facility provides a means of improving data integrity as well as meeting standard practice reporting requirements. This is accomplished by performing the uncertainty analysis in two parts, test independent uncertainty analysis and test dependent uncertainty analysis. The test independent uncertainty analysis is performed on instrumentation used repeatedly from one test to the next, and does not have to be repeated for each test except for improved or new types of instruments. A test dependent uncertainty analysis is performed on each test based on the test independent uncertainties modified as required by test specifications, experiment fixture design, and historical performance of instruments on similar tests. The methodology for performing uncertainty analysis based on the National Bureau of Standards method is reviewed with examples applied to nuclear instrumentation

  12. Waste Management Effluent Treatment Facility: Phase I. CAC basic data

    International Nuclear Information System (INIS)

    Gemar, D.W.; O'Leary, C.D.

    1984-01-01

    In order to expedite design and construction of the Waste Management Effluent Treatment Facility (WMETF), the project has been divided into two phases. Phase I consists of four storage basins and the associated transfer lines, diversion boxes, and control rooms. The design data pertaining to Phase I of the WMETF project are presented together with general background information and objectives for both phases. The project will provide means to store and decontaminate wastewater streams that are currently discharged to the seepage basins in F Area and H Area. This currently includes both routine process flows sent directly to the seepage basins and diversions of contaminated cooling water or storm water runoff that are stored in the retention basins before being pumped to the seepage basins

  13. Treatment and storage of radioactive gases from nuclear facilities

    International Nuclear Information System (INIS)

    Johannsen, K.H.; Schwarzbach, R.

    1980-01-01

    Treatment of exhaust air from nuclear facilities aimed at retaining or separating the radionuclides of iodine, xenon, and krypton as well as of tritium and carbon-14 and their storage are of special interest in connection with increasing utilization of nuclear power in order to reduce releases of radioactive materials to the atmosphere. The state of the art and applicability of potential processes of separating volatile fission and activation products from nuclear power stations and reprocessing plants are reviewed. Possibilities of ultimate storage are presented. An evaluation of the current stage of development shows that processes for effective separation of radioactive gases are available. Recent works are focused on economy and safety optimization. Long-term storage, in particular of extremely long-lived radionuclides, needs further investigation. (author)

  14. Imaging the risks - risking the image: Social impact assessment of the final disposal facility

    International Nuclear Information System (INIS)

    Avolahti, J.; Vira, J.

    1999-01-01

    Preparations for the final disposal of spent nuclear fuel in Finland started about twenty years ago. At present the work is carried out by Posiva Oy, which in 1996 took over the programme managed earlier by Teollisuuden Voima Oy, one of the country's nuclear power companies. From 1996 on the preparations have been made for all the spent fuel from Finnish nuclear power stations. The site for the final disposal facility will be selected among four alternatives by the end of 2000 and - assuming that the technical approach proposed by Posiva is accepted by the Government and the Parliament - the construction of the repository will start in the 2010s. The disposal operations are planned to be started in 2020. The alternative four sites have gone through a systematic site selection process based on geologic siting criteria and on environmental and cultural considerations. One of the objectives of the process was to avoid inhabited areas, agricultural fields, valuable groundwater or preservation areas as well as areas which might draw interest as regards the potential for ore deposits. The idea was that the field investigations and later the possible disposal facility should not cause any harm to local people. Two of the candidate sites are at present nuclear power plant sites situated at the coast, the two other candidates are inland sites with no nuclear activities. The geologic siting investigations were started in 1987. Interim assessments of the results so far have been made in 1992 and 1996 and a final report of all the investigations will be published before the end of 2000. The present view is that all four candidates are geologically suitable for siting the repository. Posiva's EIA for the final disposal of spent fuel in Finland is nearing completion. A considerable effort was made to involve local groups and individuals in the assessment process. Yet the participation remained limited and consisted mainly of active opponents of the project and of those who were

  15. Imaging the risks - risking the image: Social impact assessment of the final disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Avolahti, J.; Vira, J. [Posiva Oy, Helsinki (Finland)

    1999-12-01

    Preparations for the final disposal of spent nuclear fuel in Finland started about twenty years ago. At present the work is carried out by Posiva Oy, which in 1996 took over the programme managed earlier by Teollisuuden Voima Oy, one of the country's nuclear power companies. From 1996 on the preparations have been made for all the spent fuel from Finnish nuclear power stations. The site for the final disposal facility will be selected among four alternatives by the end of 2000 and - assuming that the technical approach proposed by Posiva is accepted by the Government and the Parliament - the construction of the repository will start in the 2010s. The disposal operations are planned to be started in 2020. The alternative four sites have gone through a systematic site selection process based on geologic siting criteria and on environmental and cultural considerations. One of the objectives of the process was to avoid inhabited areas, agricultural fields, valuable groundwater or preservation areas as well as areas which might draw interest as regards the potential for ore deposits. The idea was that the field investigations and later the possible disposal facility should not cause any harm to local people. Two of the candidate sites are at present nuclear power plant sites situated at the coast, the two other candidates are inland sites with no nuclear activities. The geologic siting investigations were started in 1987. Interim assessments of the results so far have been made in 1992 and 1996 and a final report of all the investigations will be published before the end of 2000. The present view is that all four candidates are geologically suitable for siting the repository. Posiva's EIA for the final disposal of spent fuel in Finland is nearing completion. A considerable effort was made to involve local groups and individuals in the assessment process. Yet the participation remained limited and consisted mainly of active opponents of the project and of those

  16. Final environmental impact statement supplement for wastewater management systems, North Jefferson County, Kentucky wastewater facilities

    International Nuclear Information System (INIS)

    1992-12-01

    The Final Environmental Impact Statement Supplement (FEISS) serves to update the wastewater treatment alternatives presented in the original EIS (The North County Area Environmental Impact Statement, Jefferson County, KY, July 1984), determine the best alternative, and compare that alternative to the Louisville and Jefferson County Metropolitan Sewer District's North County Action Plan (NCAP). The NCAP was determined to have the greatest cost effectiveness, lowest environmental impact, and best implementability and reliability and so is the preferred alternative in the FEISS. Significant environmental impacts of the alternative are described and mitigative measures discussed

  17. Hazardous Waste Treatment Facility and skid-mounted treatment systems at Los Alamos

    International Nuclear Information System (INIS)

    Lussiez, G.W.; Zygmunt, S.J.

    1994-01-01

    To centralize treatment, storage, and areas for hazardous wastes, Los Alamos National Laboratory has designed a 1115 m2 hazardous waste treatment facility. The facility will house a treatment room for each of four kinds of wastes: nonradioactive characteristic wastes, nonradioactive listed wastes, radioactive characteristic wastes, and radioactive listed wastes. The facility will be used for repacking labpacks; bulking small organic waste volumes; processing scintillation vials; treating reactives such as lithium hydride and pyrophoric uranium; treating contaminated solids such as barium sand; treating plating wastes and other solutions with heavy metals and oxidizing organics: Separate treatment rooms will allow workers to avoid mixing waste types and prevent cross-contamination. The ventilation air from the treatment areas may contain hazardous or radioactive dust. Gas may also leak from process equipment. The gas treatment process includes separating solids and gases and neutralization or adsorption of the hazardous gases. The ventilation air from each room will first be filtered before being scrubbed in a common gas caustic scrubber on an outside pad. There are two levels of exhaust in each treatment room, one for heavy gases and another for light gases. Several features help mitigate or eliminate hazards due to spills and releases: each treatment room is sealed and under slight negative pressure; each room has its own HEPA filtration; to avoid mixing of incompatible wastes and reagents, portable individual spill-containment trays are used for skids, to limit the danger of spills, the waste is directly transferred from outside storage to the treatment room; to mitigate the consequences of a gas release in the room, mobile hoods are connected to the exhaust-air treatment system; the floor, walls, ceilings, fixtures, ducts, and piping are made of acid-resistant material or are coated

  18. Assessment of radiation doses due to normal operation, incidents and accidents of the final disposal facility

    International Nuclear Information System (INIS)

    Rossi, J.; Raiko, H.; Suolanen, V.; Ilvonen, M.

    1999-03-01

    Radiation doses for workers of the encapsulation and disposal facility and for inhabitants in the environment caused by the facility during its operation were considered. The study covers both the normal operation of the plant and some hypothetical incidents and accidents. Occupational radiation doses inside the plant during normal operation are based on the design basis, assuming that highest permitted dose levels are prevailing in control rooms during fuel transfer and encapsulation processes. Release through the ventilation stack is assumed to be filtered both in normal operation and in hypothetical incident and accident cases. Calculation of the offsite doses from normal operation is based on the hypothesis that one fuel pin per 100 fuel bundles for all batches of spent fuel transported to the encapsulation facility is leaking. The release magnitude in incidents and accidents is based on the event chains, which lead to loss of fuel pin tightness followed by a discharge of radionuclides into the handling chamber and to some degree through the ventilation stack into atmosphere. The weather data measured at the Olkiluoto meteorological mast was employed for calculating of offsite doses. Therefore doses could be calculated in a large amount of different dispersion conditions, the statistical frequencies of which have, been measured. Finally doses were combined into cumulative distributions, from which a dose value representing the 99.5 % confidence level, is presented. The dose values represent the exposure of a critical group, which is assumed to live at the distance of 200 meters from the encapsulation and disposal plant and thus it will receive the largest doses in most dispersion conditions. Exposure pathways considered were: cloudsnine, inhalation, groundshine and nutrition (milk of cow, meat of cow, green vegetables, grain and root vegetables). Nordic seasonal variation is included in ingestion dose models. The results obtained indicate that offsite doses

  19. Treatment, Storage and Disposal (TSD) Corrective Action Facility Polygons, Region 9, 2015, US EPA Region 9

    Data.gov (United States)

    U.S. Environmental Protection Agency — RCRA Treatment, Storage and Disposal facilities (TSDs) are facilities that have treated, stored or disposed of hazardous wastes. They are required to clean up...

  20. Precautions for preventing criticality at plutonium fuel treatment facilities

    International Nuclear Information System (INIS)

    Deworm, J.P.; Fieuw, G.; Cank, H. de

    1976-01-01

    Four criticality accidents took place between 1958 and 1964 at fuel processing plants using wet methods. So far accident of this type has taken place at production units where fissionable material is used. The prevention of criticality is one of the major concerns of the officials in charge of the plutonium fuel research laboratories operated at the Mol Nuclear Energy Study Centre by the SCK/CEN-Belgonucleaire Association. The means of preventing such an accident are of three types: introducing different types of treatment in well-defined work units; thorough analysis of planned experiments or fabrication programmes to determine the sub-criticality factors; application of technical and administrative procedures which ensure that the facilities are always sub-critical during the treatment and storage of fissionable materials. The installation includes a detection and warning system and provision is made for the immediate evacuation of staff should a crticality incident occur. The effects of a critical excursion on the building have been assessed. (author)

  1. Final report for fuel acquisition and design of a fast subcritical blanket facility

    International Nuclear Information System (INIS)

    Clikeman, F.M.; Ott, K.O.

    1976-01-01

    A summary is presented of work leading to the design of a subcritical facility for the study of fast reactor blankets. Included are activities related to fuel acquisition, design of the facility, and experiment planning

  2. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    International Nuclear Information System (INIS)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County

  3. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    International Nuclear Information System (INIS)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy's (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher's workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead

  4. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  5. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county`s future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  6. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, B.C.

    1997-05-01

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.

  7. The NASA Heliophysics Active Final Archive at the Space Physics Data Facility

    Science.gov (United States)

    McGuire, Robert E.

    2012-01-01

    The 2009 NASA Heliophysics Science Data Management Policy re-defined and extended the responsibilities of the Space Physics Data Facility (SPDF) project. Building on SPDF's established capabilities, the new policy assigned the role of active "Final Archive" for non-solar NASA Heliophysics data to SPDF. The policy also recognized and formalized the responsibilities of SPDF as a source for critical infrastructure services such as VSPO to the overall Heliophysics Data Environment (HpDE) and as a Center of Excellence for existing SPDF science-enabling services and software including CDAWeb, SSCWeb/4D Orbit Viewer, OMNIweb and CDF. We will focus this talk to the principles, strategies and planned SPDF architecture to effectively and efficiently perform these roles, with special emphasis on how SPDF will ensure the long-term preservation and ongoing online community access to all the data entrusted to SPDF. We will layout our archival philosophy and what we are advocating in our work with NASA missions both current and future, with potential providers of NASA and NASA-relevant archival data, and to make the data and metadata held by SPDF accessible to other systems and services within the overall HpOE. We will also briefly review our current services, their metrics and our current plans and priorities for their evolution.

  8. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    Science.gov (United States)

    Renier, Y.; Bambade, P.; Tauchi, T.; White, G. R.; Boogert, S.

    2013-06-01

    The Accelerator Test Facility 2 (ATF2) commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC) as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs), it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  9. Trajectory measurements and correlations in the final focus beam line at the KEK Accelerator Test Facility

    Directory of Open Access Journals (Sweden)

    Y. Renier

    2013-06-01

    Full Text Available The Accelerator Test Facility 2 (ATF2 commissioning group aims to demonstrate the feasibility of the beam delivery system of the next linear colliders (ILC and CLIC as well as to define and to test the tuning methods. As the design vertical beam sizes of the linear colliders are about few nanometers, the stability of the trajectory as well as the control of the aberrations are very critical. ATF2 commissioning started in December 2008, and thanks to submicron resolution beam position monitors (BPMs, it has been possible to measure the beam position fluctuation along the final focus of ATF2 during the 2009 runs. The optics was not the nominal one yet, with a lower focusing to make the tuning easier. In this paper, a method to measure the noise of each BPM every pulse, in a model-independent way, will be presented. A method to reconstruct the trajectory’s fluctuations is developed which uses the previously determined BPM resolution. As this reconstruction provides a measurement of the beam energy fluctuations, it was also possible to measure the horizontal and vertical dispersion function at each BPMs parasitically. The spatial and angular dispersions can be fitted from these measurements with uncertainties comparable with usual measurements.

  10. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Biggs, J.

    1995-01-01

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area

  11. PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY

    International Nuclear Information System (INIS)

    Halgren, D.L.

    2010-01-01

    The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft 2 ) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

  12. Biological Information Document, Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Biggs, J.

    1995-12-31

    This document is intended to act as a baseline source material for risk assessments which can be used in Environmental Assessments and Environmental Impact Statements. The current Radioactive Liquid Waste Treatment Facility (RLWTF) does not meet current General Design Criteria for Non-reactor Nuclear Facilities and could be shut down affecting several DOE programs. This Biological Information Document summarizes various biological studies that have been conducted in the vicinity of new Proposed RLWTF site and an Alternative site. The Proposed site is located on Mesita del Buey, a mess top, and the Alternative site is located in Mortandad Canyon. The Proposed Site is devoid of overstory species due to previous disturbance and is dominated by a mixture of grasses, forbs, and scattered low-growing shrubs. Vegetation immediately adjacent to the site is a pinyon-juniper woodland. The Mortandad canyon bottom overstory is dominated by ponderosa pine, willow, and rush. The south-facing slope was dominated by ponderosa pine, mountain mahogany, oak, and muhly. The north-facing slope is dominated by Douglas fir, ponderosa pine, and oak. Studies on wildlife species are limited in the vicinity of the proposed project and further studies will be necessary to accurately identify wildlife populations and to what extent they utilize the project area. Some information is provided on invertebrates, amphibians and reptiles, and small mammals. Additional species information from other nearby locations is discussed in detail. Habitat requirements exist in the project area for one federally threatened wildlife species, the peregrine falcon, and one federal candidate species, the spotted bat. However, based on surveys outside of the project area but in similar habitats, these species are not expected to occur in either the Proposed or Alternative RLWTF sites. Habitat Evaluation Procedures were used to evaluate ecological functioning in the project area.

  13. Improvement of Oil-Vapor Treatment Facility for Wolsong Unit 3,4

    International Nuclear Information System (INIS)

    Kim, Jeong Guk; Kwon, S. W.; Lee, H. S.

    2009-11-01

    With the purpose to minimize an oil-vapor discharge to the atmosphere and to be an environmentally friendly nuclear power plant by an improvement of mist eliminator for turbine lubricant system at Wolsong Nuclear Power Plant Unit 3,4, this project - project name : Improvement of Oil-vapor Treatment Facility for Wolsong Unit 3,4 - was conducted for six months (from Apr. 15, 2009 to Oct. 14, 2009). This Project contains Oil-vapor Source and Environmental Regulation, Analysis on the Present Oil-vapor Treatment Facility, Improvement of Oil-vapor Treatment Facility, Test Facility Design, Fabrication, Installation, Test Operation, Evaluation of the Facility

  14. Perceptions of Organizational Functioning in Substance Abuse Treatment Facilities in South Africa

    Science.gov (United States)

    Bowles, Steven; Louw, Johann; Myers, Bronwyn

    2011-01-01

    Directors' and treatment staff's perceptions of organizational functioning within substance abuse treatment facilities in four provinces in South Africa were examined via the Texas Christian University's Organizational Readiness for Change instrument. Forty-four treatment facilities (out of 89) participated in the study. Results indicated that…

  15. Final design and progress of WEAVE : the next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Middleton, Kevin; Benn, Chris; Dee, Kevin; Sayède, Frédéric; Lewis, Ian; Pragt, Johannes; Pico, Sergio; Walton, Nic; Rey, Jeurg; Allende Prieto, Carlos; Peñate, José; Lhome, Emilie; Agócs, Tibor; Alonso, José; Terrett, David; Brock, Matthew; Gilbert, James; Schallig, Ellen; Ridings, Andy; Guinouard, Isabelle; Verheijen, Marc; Tosh, Ian; Rogers, Kevin; Lee, Martin; Steele, Iain; Stuik, Remko; Tromp, Niels; Jaskó, Attila; Carrasco, Esperanza; Farcas, Szigfrid; Kragt, Jan; Lesman, Dirk; Kroes, Gabby; Mottram, Chris; Bates, Stuart; Rodriguez, Luis Fernando; Gribbin, Frank; Delgado, José Miguel; Herreros, José Miguel; Martin, Carlos; Cano, Diego; Navarro, Ramon; Irwin, Mike; Lewis, Jim; Gonzalez Solares, Eduardo; Murphy, David; Worley, Clare; Bassom, Richard; O'Mahoney, Neil; Bianco, Andrea; Zurita, Christina; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Martin, Adrian; Vallenari, Antonella; Salasnich, Bernardo; Baruffolo, Andrea; Jin, Shoko; Hill, Vanessa; Smith, Dan; Drew, Janet; Poggianti, Bianca; Pieri, Mat; Dominquez Palmero, Lillian; Farina, Cecilia

    2016-01-01

    We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also

  16. Final design and progress of WEAVE: the next generation wide-field spectroscopy facility for the William Herschel Telescope

    NARCIS (Netherlands)

    Dalton, Gavin; Trager, Scott; Abrams, Don Carlos; Bonifacio, Piercarlo; Aguerri, J. Alfonso L.; Middleton, Kevin; Benn, Chris; Dee, Kevin; Sayède, Frédéric; Lewis, Ian; Pragt, Johannes; Pico, Sergio; Walton, Nic; Rey, Jeurg; Allende Prieto, Carlos; Peñate, José; Lhome, Emilie; Agócs, Tibor; Alonso, José; Terrett, David; Brock, Matthew; Gilbert, James; Schallig, Ellen; Ridings, Andy; Guinouard, Isabelle; Verheijen, Marc; Tosh, Ian; Rogers, Kevin; Lee, Martin; Steele, Iain; Stuik, Remko; Tromp, Niels; Jaskó, Attila; Carrasco, Esperanza; Farcas, Szigfrid; Kragt, Jan; Lesman, Dirk; Kroes, Gabby; Mottram, Chris; Bates, Stuart; Rodriguez, Luis Fernando; Gribbin, Frank; Delgado, José Miguel; Herreros, José Miguel; Martin, Carlos; Cano, Diego; Navarro, Ramon; Irwin, Mike; Lewis, Jim; Gonzalez Solares, Eduardo; Murphy, David; Worley, Clare; Bassom, Richard; O'Mahoney, Neil; Bianco, Andrea; Zurita, Christina; ter Horst, Rik; Molinari, Emilio; Lodi, Marcello; Guerra, José; Martin, Adrian; Vallenari, Antonella; Salasnich, Bernardo; Baruffolo, Andrea; Jin, Shoko; Hill, Vanessa; Smith, Dan; Drew, Janet; Poggianti, Bianca; Pieri, Mat; Dominquez Palmero, Lillian; Farina, Cecilia

    2016-01-01

    We present the Final Design of the WEAVE next-generation spectroscopy facility for the William Herschel Telescope (WHT), together with a status update on the details of manufacturing, integration and the overall project schedule now that all the major fabrication contracts are in place. We also

  17. Actinide partitioning-transmutation program. V. Preconceptual designs and costs of partitioning facilities and shipping casks, Appendix 4. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    This Appendix contains cost estimate documents for the Fuels Fabrication Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contributing to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed. Shipping cask costs are provided.

  18. Actinide Partitioning-Transmutation Program Final Report. V. Preconceptual designs and costs of partitioning facilities and shipping casks (appendix 3)

    International Nuclear Information System (INIS)

    1980-06-01

    This Appendix contains cost estimate documents for the Fuels Reprocessing Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contribution to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed

  19. Actinide partitioning-transmutation program. V. Preconceptual designs and costs of partitioning facilities and shipping casks, Appendix 4. Final report

    International Nuclear Information System (INIS)

    1980-06-01

    This Appendix contains cost estimate documents for the Fuels Fabrication Plant Waste Treatment Facility. Plant costs are summarized by Code of Accounts and by Process Function. Costs contributing to each account are detailed. Process equipment costs are detailed for each Waste Treatment Process. Service utility costs are also summarized and detailed. Shipping cask costs are provided

  20. Analysis of contamination conditions of the Joyo Waste Treatment Facility

    International Nuclear Information System (INIS)

    Yoshizawa, S.; Ishijima, N.; Tanimoto, K.

    1999-08-01

    Decontamination methods have been studied for decommissioning of Joyo Waste Treatment Facility whose operation has been stopped in 1994. In this study, we analyzed samples of its system piping, whose dose rate was relatively low, to determine conditions of contamination. We also study appropriate decontamination methods for them. Results are as follows. 1. The inner surfaces of piping were covered with a very thin clad that was less than 1 micrometer in thickness and had many vacancies, looked like particle detachment, which were about 20 micrometers in depth. Something like corrosion product was observed near the surface and it was 440 micrometers in depth. 2. Radioactive contamination was considered to settle on a lower part of the piping and to be buried in the clad. A kind of dominant contamination nuclide was 60 Co. 3. Hot nitric acid process will be suitable for system decontamination to reduce dose rate before dismantling. But its feasibility tests are indispensable using samples of main system components that have high dose rate. Rubber lining tanks requires another methods because of its difficulty of decontamination. 4. Analyses and decontamination tests using main system are required to decide through decontamination methods according to the clearance level. (author)

  1. Radioactive Liquid Waste Treatment Facility Discharges in 2011

    Energy Technology Data Exchange (ETDEWEB)

    Del Signore, John C. [Los Alamos National Laboratory

    2012-05-16

    This report documents radioactive discharges from the TA50 Radioactive Liquid Waste Treatment Facilities (RLWTF) during calendar 2011. During 2011, three pathways were available for the discharge of treated water to the environment: discharge as water through NPDES Outfall 051 into Mortandad Canyon, evaporation via the TA50 cooling towers, and evaporation using the newly-installed natural-gas effluent evaporator at TA50. Only one of these pathways was used; all treated water (3,352,890 liters) was fed to the effluent evaporator. The quality of treated water was established by collecting a weekly grab sample of water being fed to the effluent evaporator. Forty weekly samples were collected; each was analyzed for gross alpha, gross beta, and tritium. Weekly samples were also composited at the end of each month. These flow-weighted composite samples were then analyzed for 37 radioisotopes: nine alpha-emitting isotopes, 27 beta emitters, and tritium. These monthly analyses were used to estimate the radioactive content of treated water fed to the effluent evaporator. Table 1 summarizes this information. The concentrations and quantities of radioactivity in Table 1 are for treated water fed to the evaporator. Amounts of radioactivity discharged to the environment through the evaporator stack were likely smaller since only entrained materials would exit via the evaporator stack.

  2. Gamma irradiation for sewage treatment at US army facilities

    International Nuclear Information System (INIS)

    Van den Berg, A.J.; Hollis, H.D.; Musselman, H.D.; Woodbridge, D.D.

    1975-01-01

    The US Army Corps of Engineers has been sponsoring research for many years on the use of gamma irradiation for disinfection and sterilization of sewage plant effluents. Initial research was directed to laboratory experiments using sterile solutions to determine the effects of gamma irradiation on E. coli, M-pyogenes and M-smegmatis organisms, and on the chemical constituents of sewage such as phenols, surfactants and pesticides. The results of the initial research warranted further study using municipal sewage secondary effluent as test samples. Current research is directed towards investigating the effects of radiation on the constituents of sewage sludge and on the cyst stage of the amoebic protozoa. Consideration has been given by the Corps to the management of waste-waters by disposal on land. Legal and medical reasons dictate that the plant effluents be sterilized before being used as fertilizers and soil conditioners. Gamma radiation from isotopic sources appears to be the best source of sterilizing energy for Army waste-water disposal. The Corps of Engineers is considering the construction of an experimental gamma irradiation pilot facility to validate laboratory experimental work and to establish design criteria for operating plants. The data obtained will provide a basis for performing detailed cost effectiveness studies on gamma irradiation as a method to treat secondary plant effluent. In addition, optimization work will be conducted to determine where in the sewage treatment cycle the use of gamma irradiation will produce the best results in meeting current and anticipated standards. (author)

  3. Financing CHP Projects at Wastewater Treatment Facilities with Clean Water State Revolving Funds

    Science.gov (United States)

    This factsheet provides information about CHP at wastewater treatment facilities, including applications, financial challenges, and financial opportunities, such as the Clean Water State Revolving Fund.

  4. Tank 103, 219-S Facility at 222-S Laboratory, analytical results for the final report

    International Nuclear Information System (INIS)

    Fuller, R.K.

    1998-01-01

    This is the final report for the polychlorinated biphenyls analysis of Tank-103 (TK-103) in the 219-S Facility at 222-S Laboratory. Twenty 1-liter bottles (Sample numbers S98SO00074 through S98SO00093) were received from TK-103 during two sampling events, on May 5 and May 7, 1998. The samples were centrifuged to separate the solids and liquids. The centrifuged sludge was analyzed for PCBs as Aroclor mixtures. The results are discussed on page 6. The sample breakdown diagram (Page 114) provides a cross-reference of sample identification of the bulk samples to the laboratory identification number for the solids. The request for sample analysis (RSA) form is provided as Page 117. The raw data is presented on Page 43. Sample Description, Handling, and Preparation Twenty samples were received in the laboratory in 1-Liter bottles. The first 8 samples were received on May 5, 1998. There were insufficient solids to perform the requested PCB analysis and 12 additional samples were collected and received on May 7, 1998. Breakdown and sub sampling was performed on May 8, 1998. Sample number S98SO00084 was lost due to a broken bottle. Nineteen samples were centrifuged and the solids were collected in 8 centrifuge cones. After the last sample was processed, the solids were consolidated into 2 centrifuge cones. The first cone contained 9.7 grams of solid and 13.0 grams was collected in the second cone. The wet sludge from the first centrifuge cone was submitted to the laboratory for PCB analysis (sample number S98SO00102). The other sample portion (S98SO00103) was retained for possible additional analyses

  5. Plasma Facing Components Generic Facilities Review Panel (PFC-GFRP): Final report

    International Nuclear Information System (INIS)

    McGrath, R.; Allen, S.; Hill, D.; Brooks, J.; Mattas, R.; Davis, J.; Lipschultz, B.; Ulrickson, M.

    1993-10-01

    The Plasma Facing Components (PFC) Facilities Review Panel was chartered by the US Department of Energy, Office of Fusion Energy, ITER (International Thermonuclear Experimental Reactor) and Technology Division, to outline the program plan and identify the supporting test facilities that lead to reliable, long-lived plasma facing components for ITER. This report summarizes the panel's findings and identifies the necessary and sufficient set of test facilities required for ITER PFC development

  6. Framework for Certification of Fish Propagation, Protection and Monitoring Facilities. Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Costello, Ronald J.

    1997-06-01

    A conceptual framework for certification of fish production and monitoring facilities including software templates to expedite implementation of the framework are presented. The framework is based on well established and widely utilized project management techniques. The implementation templates are overlays for Microsoft Professional Office software products: Excel, Word, and Project. Use of the software templates requires Microsoft Professional Office. The certification framework integrates two classical project management processes with a third process for facility certification. These processes are: (1) organization and definition of the project, (2) acquisition and organization of project documentation, and (3) facility certification. The certification process consists of systematic review of the production processes and the characteristics of the produced product. The criteria for certification review are the plans and specifications for the products and production processes that guided development of the facility. The facility is certified when the production processes are operating as designed and the product produced meets specifications. Within this framework, certification is a performance based process, not dissimilar from that practiced in many professions and required for many process, or a product meets professional/industry standards of performance. In the case of fish production facilities, the certifying authority may be diffuse, consisting of many entities acting through a process such as NEPA. A cornerstone of certification is accountability, over the long term, for the operation and products of a facility. This is particularly important for fish production facilities where the overall goal of the facility may require decades to accomplish.

  7. Management, treatment and final disposal of solid hazardous hospital wastes

    International Nuclear Information System (INIS)

    Sebiani Serrano, T.

    2000-01-01

    Medical Waste is characterized by its high risk to human health and the environment. The main risk is biological, due to the large amount of biologically contaminated materials present in such waste. However, this does not mean that the chemical and radioactive wastes are less harmful just because they represent a smaller part of the total waste. Hazardous wastes from hospitals can be divided in 3 main categories: Solid Hazardous Hospital Wastes (S.H.H.W.), Liquid Hazardous Hospital Wastes (L.H.H.W.) and Gaseous Hazardous Hospital Wastes (G.H.H.W.) Most gaseous and liquid hazardous wastes are discharged to the environment without treatment. Since this inappropriate disposal practice, however, is not visible to society, there is no societal reaction to such problem. On the contrary, hazardous solid wastes (S.H.H.W.) are visible to society and create worries in the population. As a result, social and political pressures arise, asking for solutions to the disposal problems of such wastes. In response to such pressures and legislation approved by Costa Rica on waste handling and disposal, the Caja Costarricense de Seguro Social developed a plan for the handling, treatment, and disposal of hazardous solid wastes at the hospitals and clinics of its system. The objective of the program is to reduce the risk to society of such wastes. In this thesis a cost-effectiveness analysis was conducted to determine the minimum cost at which it is possible to reach a maximum level of reduction in hazardous wastes, transferring to the environment the least possible volume of solid hazardous wastes, and therefore, reducing risk to a minimum. It was found that at the National Children's Hospital the internal handling of hazard solid wastes is conducted with a high level of effectiveness. However, once out of the hospital area, the handling is not effective, because hazardous and common wastes are all mixed together creating a larger amount of S.H.H.W. and reducing the final efficiency

  8. Assessment of the proposed decontamination and waste treatment facility at LLNL

    International Nuclear Information System (INIS)

    Cohen, J.J.

    1987-01-01

    To provide a centralized decontamination and waste treatment facility (DWTF) at LLNL, the construction of a new installation has been planned. Objectives for this new facility were to replace obsolete, structurally and environmentally sub-marginal liquid and solid waste process facilities and decontamination facility and to bring these facilities into compliance with existing federal, state and local regulations as well as DOE orders. In a previous study, SAIC conducted a preliminary review and evaluation of existing facilities at LLNL and cost effectiveness of the proposed DWTF. This document reports on a detailed review of specific aspects of the proposed DWTF

  9. A human factors engineering evaluation of the Multi-Function Waste Tank Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo, D.T. [Pacific Northwest Lab., Richland, WA (United States); Sarver, T.L. [ARES Corp., San Francisco, CA (United States)

    1995-06-05

    This report documents the methods and results of a human factors engineering (HFE) review conducted on the Multi-Function Waste Tank Facility (MWTF), Westinghouse Hanford Company (WHC) Project 236A, to be constructed at the U.S. Department of Energy (DOE) facility at Hanford, Washington. This HFE analysis of the MWTF was initiated by WHC to assess how well the current facility and equipment design satisfies the needs of its operations and maintenance staff and other potential occupants, and to identify areas of the design that could benefit from improving the human interfaces at the facility. Safe and effective operations, including maintenance, is a primary goal for the MWTF. Realization of this goal requires that the MWTF facility, equipment, and operations be designed in a manner that is consistent with the abilities and limitations of its operating personnel. As a consequence, HFE principles should be applied to the MWTF design, construction, its operating procedures, and its training. The HFE review was focused on the 200-West Area facility as the design is further along than that of the 200-East Area. The review captured, to the greatest extent feasible at this stage of design, all aspects of the facility activities and included the major topics generally associated with HFE (e.g., communication, working environment). Lessons learned from the review of the 200 West facility will be extrapolated to the 200-East Area, as well as generalized to the Hanford Site.

  10. A human factors engineering evaluation of the Multi-Function Waste Tank Facility. Final report

    International Nuclear Information System (INIS)

    Donohoo, D.T.; Sarver, T.L.

    1995-01-01

    This report documents the methods and results of a human factors engineering (HFE) review conducted on the Multi-Function Waste Tank Facility (MWTF), Westinghouse Hanford Company (WHC) Project 236A, to be constructed at the U.S. Department of Energy (DOE) facility at Hanford, Washington. This HFE analysis of the MWTF was initiated by WHC to assess how well the current facility and equipment design satisfies the needs of its operations and maintenance staff and other potential occupants, and to identify areas of the design that could benefit from improving the human interfaces at the facility. Safe and effective operations, including maintenance, is a primary goal for the MWTF. Realization of this goal requires that the MWTF facility, equipment, and operations be designed in a manner that is consistent with the abilities and limitations of its operating personnel. As a consequence, HFE principles should be applied to the MWTF design, construction, its operating procedures, and its training. The HFE review was focused on the 200-West Area facility as the design is further along than that of the 200-East Area. The review captured, to the greatest extent feasible at this stage of design, all aspects of the facility activities and included the major topics generally associated with HFE (e.g., communication, working environment). Lessons learned from the review of the 200 West facility will be extrapolated to the 200-East Area, as well as generalized to the Hanford Site

  11. Methodology for Determining Increases in Radionuclide Inventories for the Effluent Treatment Facility Process

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    A study is currently underway to determine if the Effluent Treatment Facility can be downgraded from a Hazard Category 3 facility to a Radiological Facility per DOE STD-1027-92. This technical report provides a methodology to determine and monitor increases in the radionuclide inventories of the ETF process columns. It also provides guidelines to ensure that other potential increases to the ETF radionuclide inventory are evaluated as required to ensure that the ETF remains a Radiological Facility

  12. Safety research experiment facilities, Idaho National Engineering Laboratory, Idaho. Final environmental impact statement

    International Nuclear Information System (INIS)

    Liverman, J.L.

    1977-09-01

    This environmental statement was prepared for the Safety Research Experiment Facilities (SAREF) Project. The purpose of the proposed project is to modify some existing facilities and provide a new test facility at the Idaho National Engineering Laboratory (INEL) for conducting fast breeder reactor (FBR) safety experiments. The SAREF Project proposal has been developed after an extensive study which identified the FBR safety research needs requiring in-reactor experiments and which evaluated the capability of various existing and new facilities to meet these needs. The proposed facilities provide for the in-reactor testing of large bundles of prototypical FBR fuel elements under a wide variety of conditions, ranging from those abnormal operating conditions which might be expected to occur during the life of an FBR power plant to the extremely low probability, hypothetical accidents used in the evaluation of some design options and in the assessment of the long-term potential risk associated with wide-acale deployment of the FBR

  13. Treatment of Male Sexual Offenders in a Correctional Facility.

    Science.gov (United States)

    Whitford, Robert W.

    1987-01-01

    Provides some background and treatment perspectives for counselors and psychologists who treat or contemplate treatment of adult male sexual offenders in prison settings. Discusses identification, assessment, amenability to treatment, assessment instruments, and treatment of sexual offenders. (ABL)

  14. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF

  15. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility.

    Science.gov (United States)

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-09-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA's simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Elimination of liquid discharge to the environment from the TA-50 Radioactive Liquid Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Moss, D.; Williams, N.; Hall, D.; Hargis, K.; Saladen, M.; Sanders, M.; Voit, S.; Worland, P.; Yarbro, S.

    1998-06-01

    Alternatives were evaluated for management of treated radioactive liquid waste from the radioactive liquid waste treatment facility (RLWTF) at Los Alamos National Laboratory. The alternatives included continued discharge into Mortandad Canyon, diversion to the sanitary wastewater treatment facility and discharge of its effluent to Sandia Canyon or Canada del Buey, and zero liquid discharge. Implementation of a zero liquid discharge system is recommended in addition to two phases of upgrades currently under way. Three additional phases of upgrades to the present radioactive liquid waste system are proposed to accomplish zero liquid discharge. The first phase involves minimization of liquid waste generation, along with improved characterization and monitoring of the remaining liquid waste. The second phase removes dissolved salts from the reverse osmosis concentrate stream to yield a higher effluent quality. In the final phase, the high-quality effluent is reused for industrial purposes within the Laboratory or evaporated. Completion of these three phases will result in zero discharge of treated radioactive liquid wastewater from the RLWTF.

  17. Transient phenomena in the final implosion stage at the PF-1000 facility

    International Nuclear Information System (INIS)

    Gribkov, V.A.; Banaszak, A.; Jakubowski, L.; Sadowski, M.J.; Szydlowski, A.; Bienkowska, B.; Borowiecki, M.; Ivanova-Stanik, I.; Karpinski, L.; Miklaszewski, R.A.; Paduch, M.; Scholz, M.; Tomaszewski, K.; Dubrovsky, A.V.

    2006-12-01

    This paper consists of two parts, which are essentially constituted as a single whole. Dense Plasma Focus device (DPF), which is known from the early 50's, is the oldest machine which has survived since the very beginning of thermonuclear researches. This is a high voltage high-current pulsed discharge, which is produced usually by a discharge of a capacitor bank in various gases. It consists of two coaxial electrodes with the central one (anode) spanned by a ring insulator. The device is known in two configurations of electrodes named by their creators - the Filippov type (in year 1954) and the Mather one (1961). The first configuration, elaborated in the Kurchatov Institute for Atomic Energy, Moscow, Russia, has a flat anode of disc shape lying directly on the upper edge of an insulator and a cathode ('liner') looks like a pan turned up-side down and covers the anode from the top. This is a relatively infrequent modification used at the present time in two or three centres. The second one was elaborated in the Los Alamos scientific laboratory, USA, and this has an anode in the shape of a tube with a flat lid on the top of it. Cathode is usually made in the form of a squirrel cage, i.e. containing a number of rods placed along the circumference around the anode tube. These devices on the low level of the energy stored in the bank are important due to their numerous applications. The upper level of the bank energy reached at present is interesting because of its perspectives as a unique neutron source for use in nuclear physics and radiation material sciences. The main processes taking place during a development of the discharge is described in this paper. Here we shall mention that the paper is devoted to investigations of physical processes taking place in the PF-1000 facility. This device was put into operation with full energy stored in the bank at the Institute of Plasma Physics and Laser Microfusion, Warsaw, Poland, about two years ago. The energy in the bank

  18. Future use of BI-GAS facility. Final report, Part II. [Other possible uses

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    The 120 tpd BI-GAS pilot plant, intended to produce SNG at high pressure, was completed in 1976. For the next three and a half years, the operator, Stearns-Roger Inc., was engaged in operating the plant while overcoming a series of mechanical problems that have prevented the plant from running at design capacity and pressure. Since July 1980, these problems have apparently been corrected and considerable progress was made. In late 1979, the Yates Congressional Committee directed DOE to investigate the possibility of establishing an entrained-bed gasifier test facility at the site. In January 1981, the DOE established a study group composed of DOE and UOP/SDC personnel to determine how best to use the BI-GAS facility. The group considered four possibilities: Continue operation of the facility in accordance with the technical program plan developed by DOE and Stearns-Roger; modify the plant into an entrained-bed facility for testing components and processes; mothball the facility, or dismantle the facility. The group took the view that modifying the plant into a test facility would increase substantially the amount of engineering data available to the designers of commercial gasification plants. Since it appears that syngas plants will be of commercial interest sooner than SNG plants will, it was decided that the facility should test syngas production components and processes at high pressure. Consequently, it was recommended that: Operation of the plant be continued, both to collect data and to prove the BI-GAS process, as long as the schedule of the technical program plan is met; Begin at once to prepare a detailed design for modifying the BI-GAS plant to a high-pressure, entrained flow syngas test facility; and Implement the modification plan as soon as the BI-GAS process is proven or it becomes apparent that progress is unsatisfactory.

  19. Treatment of wastes from a central spent-fuel rod consolidation facility

    International Nuclear Information System (INIS)

    Ross, W.A.

    1986-01-01

    The consolidation of commercial spent-fuel rods at a central treatment facility (such as the proposed Monitored Retrievable Storage Facility) will generate several types of waste, which may require treatment and disposal. Eight alternatives for the treatment of the wastes have been evaluated as part of DOE's Nuclear Waste Treatment Program at the Pacific Northwest Laboratory. The evaluation considered the system costs, potential waste form requirements, and processing characteristics

  20. Grout Treatment Facility Land Disposal Restriction Management Plan

    International Nuclear Information System (INIS)

    Hendrickson, D.W.

    1991-01-01

    This document establishes management plans directed to result in the land disposal of grouted wastes at the Hanford Grout Facilities in compliance with Federal, State of Washington, and Department of Energy land disposal restrictions. 9 refs., 1 fig

  1. Final Treatment Center Project for Liquid and Wet Radioactive Waste in Slovakia

    International Nuclear Information System (INIS)

    Kravarik, K.; Stubna, M.; Pekar, A.; Krajc, T.; Zatkulak, M.; Holicka, Z.; Slezak, M.

    2006-01-01

    The Final Treatment Center (FTC) for Mochovce nuclear power plant (NPP) is designed for treatment and final conditioning of radioactive liquid and wet waste produced from plant operation. Mochovce NNP uses a Russian VVER-440 type reactor. Treated wastes comprise radioactive concentrates, spent resin and sludge. VUJE Inc. as an experienced company in field of treatment of radioactive waste in Slovakia has been chosen as main contractor for technological part of FTC. This paper describes the capacity, flow chart, overall waste flow and parameters of the main components in the FTC. The initial project was submitted for approval to the Slovak Electric plc. in 2003. The design and manufacture of main components were performed in 2004 and 2005. FTC construction work started early in 2004. Initial non-radioactive testing of the system is planned for summer 2006 and then radioactive tests are to be followed. A one-year trial operation of facility is planned for completion in 2007. SE - VYZ will be operates the FTC during trial operation and after its completion. SE - VYZ is subsidiary company of Slovak Electric plc. and it is responsible for treatment with radioactive waste and spent fuel in the Slovak republic. SE - VYZ has, besides of other significant experience with operation of Jaslovske Bohunice Treatment Centre. The overall capacity of the FTC is 870 m 3 /year of concentrates and 40 m 3 /year of spent resin and sludge. Bituminization and cementation were provided as main technologies for treatment of these wastes. Treatment of concentrate is performed by bituminization. Concentrate and bitumen are metered into a thin film evaporator with rotating wiping blades. Surplus water is evaporated and concentrate salts are embedded in bitumen. Bitumen product is discharged into 200 l steel drums. Spent resin and sludge are decanted, dried and mixed with bitumen. These mixtures are also discharged into 200 l steel drums. Drums are moved along bituminization line on a roller

  2. Incineration facilities for treatment of radioactive wastes: a review

    International Nuclear Information System (INIS)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant

  3. Incineration facilities for treatment of radioactive wastes: a review

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, B.L.

    1976-02-01

    A description is given of incinerator installations in the US and in foreign countries. Included are descriptions of inactive incinerators, incinerator facilities currently in operation, and incinerator installations under construction. Special features of each installation and operational problems of each facility are emphasized. Problems in the incineration of radioactive waste are discussed in relation to the composition of the waste and the amount and type of radioactive contaminant.

  4. F/H effluent treatment facility. Technical data summary

    International Nuclear Information System (INIS)

    Ryan, J.P.; Stimson, R.E.

    1984-12-01

    This document provides the technical basis for the design of the facility. Some of the sections are described with options to permit simplification of the process, depending on the effluent quality criteria that the facility will have to meet. Each part of the F/HETF process is reviewed with respect to decontamination and concentration efficiency, operability, additional waste generation, energy efficiency, and compatability with the rest of the process

  5. Ocean Thermal Energy Converstion (OTEC) test facilities study program. Final report. Volume II. Part B

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-17

    Results are presented of an 8-month study to develop alternative non-site-specific OTEC facilities/platform requirements for an integrated OTEC test program which may include land and floating test facilities. Volume II--Appendixes is bound in three parts (A, B, and C) which together comprise a compendium of the most significant detailed data developed during the study. Part B provides an annotated test list and describes component tests and system tests.

  6. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    International Nuclear Information System (INIS)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE's nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation

  7. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  8. Final safety analysis report (FSAR) for waste receiving and processing (WRAP) facility

    International Nuclear Information System (INIS)

    Weidert, J.R.

    1997-01-01

    This safety analysis report provides a summary description of the WRAP Facility, focusing on significant safety-related characteristics of the location and facility design. This report demonstrates that adherence to the safety basis wi11 ensure necessary operational safety considerations have been addressed sufficiently and justifies the adequacy of the safety basis in protecting the health and safety of the public, workers, and the environment

  9. Improving the regulation of safety at DOE nuclear facilities. Final report

    International Nuclear Information System (INIS)

    1995-12-01

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE's nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation

  10. The effects of the final disposal facility for spent nuclear fuel on regional economy; Kaeytetyn ydinpolttoaineen loppusijoituslaitoksen aluetaloudelliset vaikutukset

    Energy Technology Data Exchange (ETDEWEB)

    Laakso, S. [Seppo Laakso Urban Research (Finland)

    1999-03-01

    The study deals with the economic effects of the final disposal facility for spent nuclear fuel on the alternative location municipalities - Eurajoki, Kuhmo, Loviisa and Aeaenekoski - and their neighbouring areas (in Finland). The economic influence of the facility on industrials, employment, population, property markets, community structure and local public economics are analysed applying the approach of regional economics. The evaluation of the facility`s effects on employment is based on the input-output analysis. Both the direct and indirect effects of the construction and the functioning of the facility are taken into account in the analysis. According to the results the total increase in employment caused by the construction of the facility is about 350 persons annually, at national level. Some 150 persons of this are estimated to live in the wider region and 100-150 persons in the facility`s influence area consisting of the location municipality and neighbouring municipalities. This amount is reached at the top stage of construction (around the year 2018). At the production stage - after the year 2020 - the facility`s effects on employment will be concentrated significantly more on the location municipality and the rest of the influence area than on the rest of the country, compared with the construction stage. The estimated employment growth in the production stage is approximately 160 persons at national level of which 100-120 persons live in the candidate municipality and in the rest of the influence area. There is a direct link between local employment and population development. The growth of jobs attracts immigrants affecting the development of both the number and the structure of population. The facility`s effects on population development in the alternative location municipalities are analysed using comparative population forecasts based on demographic population projection methods. According to the results the job growth caused by the facility will

  11. Final report of the decontamination and decommissioning of Building 1 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 1 was found to be radiologically contaminated and was demolished in 1996. The soil beneath and adjacent to the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  12. Engineering Evaluation/Cost Analysis for Power Burst Facility (PER-620) Final End State and PBF Vessel Disposal

    Energy Technology Data Exchange (ETDEWEB)

    B. C. Culp

    2007-05-01

    Preparation of this engineering evaluation/cost analysis is consistent with the joint U.S. Department of Energy and U.S. Environmental Protection Agency Policy on Decommissioning of Department of Energy Facilities Under the Comprehensive Environmental Response, Compensation, and Liability Act, (DOE and EPA 1995) which establishes the Comprehensive Environmental, Response, Compensation, and Liability Act non-time critical removal action process as an approach for decommissioning. The scope of this engineering evaluation/cost analysis is to evaluate alternatives and recommend a preferred alternative for the final end state of the PBF and the final disposal location for the PBF vessel.

  13. Final report of the decontamination and decommission of Building 31 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Krabacher, J.E.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also was the remedial action contractor. Radiological contamination was identified in Building 31 and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This area was addressed in the summary final report of the remediation of the exterior areas of the GJPO facility. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  14. Mixed and low-level waste treatment facility project. Volume 3, Waste treatment technologies (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    The technology information provided in this report is only the first step toward the identification and selection of process systems that may be recommended for a proposed mixed and low-level waste treatment facility. More specific information on each technology will be required to conduct the system and equipment tradeoff studies that will follow these preengineering studies. For example, capacity, maintainability, reliability, cost, applicability to specific waste streams, and technology availability must be further defined. This report does not currently contain all needed information; however, all major technologies considered to be potentially applicable to the treatment of mixed and low-level waste are identified and described herein. Future reports will seek to improve the depth of information on technologies.

  15. Reed Reactor Facility final report, September 1, 1995--August 31, 1996

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from September 1, 1995 to August 31, 1996. This report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission, the US Department of Energy, and the Oregon Department of Energy. Highlights of the last year include: student participation in the program is very high; the facility continues its success in obtaining donated equipment from the Portland General Electric, US Department of Energy, and other sources; the facility is developing more paid work; progress is being made in a collaborative project with Pacific Northwest National Laboratory on isotope production for medical purposes. There were over 1,500 individual visits to the Reactor Facility during the year. Most were students in classes at Reed College or area universities, colleges, and high schools. Including tours and research conducted at the facility, the Reed Reactor Facility contributed to the educational programs of six colleges and universities in addition to eighteen pre-college groups. During the year, the reactor was operated almost three hundred separate times. The total energy production was over 23 MW-hours. The reactor staff consists of a Director, an Associated Director, a contract Health Physicist, and approximately twenty Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 5% of the federal limits

  16. Reed Reactor Facility final report, September 1, 1995--August 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report covers the period from September 1, 1995 to August 31, 1996. This report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission, the US Department of Energy, and the Oregon Department of Energy. Highlights of the last year include: student participation in the program is very high; the facility continues its success in obtaining donated equipment from the Portland General Electric, US Department of Energy, and other sources; the facility is developing more paid work; progress is being made in a collaborative project with Pacific Northwest National Laboratory on isotope production for medical purposes. There were over 1,500 individual visits to the Reactor Facility during the year. Most were students in classes at Reed College or area universities, colleges, and high schools. Including tours and research conducted at the facility, the Reed Reactor Facility contributed to the educational programs of six colleges and universities in addition to eighteen pre-college groups. During the year, the reactor was operated almost three hundred separate times. The total energy production was over 23 MW-hours. The reactor staff consists of a Director, an Associated Director, a contract Health Physicist, and approximately twenty Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 5% of the federal limits.

  17. Final report of the HFIR [High Flux Isotope Reactor] irradiation facilities improvement project

    International Nuclear Information System (INIS)

    Montgomery, B.H.; Thoms, K.R.; West, C.D.

    1987-09-01

    The High-Flux Isotope Reactor (HFIR) has outstanding neutronics characteristics for materials irradiation, but some relatively minor aspects of its mechanical design severely limited its usefulness for that purpose. In particular, though the flux trap region in the center of the annular fuel elements has a very high neutron flux, it had no provision for instrumentation access to irradiation capsules. The irradiation positions in the beryllium reflector outside the fuel elements also have a high flux; however, although instrumented, they were too small and too few to replace the facilities of a materials testing reactor. To address these drawbacks, the HFIR Irradiation Facilities Improvement Project consisted of modifications to the reactor vessel cover, internal structures, and reflector. Two instrumented facilities were provided in the flux trap region, and the number of materials irradiation positions in the removable beryllium (RB) was increased from four to eight, each with almost twice the available experimental space of the previous ones. The instrumented target facilities were completed in August 1986, and the RB facilities were completed in June 1987

  18. Estimation of marginal costs at existing waste treatment facilities

    DEFF Research Database (Denmark)

    Martinez Sanchez, Veronica; Hulgaard, Tore; Hindsgaul, Claus

    2016-01-01

    , marginal costs were not (provided a response was initiated at the WtE to keep constant the utilized thermal capacity). Failing to systematically address and include costs in existing waste facilities in decision-making may unintendedly lead to higher overall costs at societal level. To avoid misleading...... a constant thermal load, (ii) Refused-Derived-Fuel (RDF) was included to maintain a constant thermal load, or (iii) no reaction occurred resulting in a reduced waste throughput without full utilization of the facility capacity. Results demonstrated that marginal costs of diversion from WtE were up to eleven...

  19. Identification and treatment of lithium as the primary toxicant in a groundwater treatment facility effluent

    International Nuclear Information System (INIS)

    Kszos, L.A.; Crow, K.R.

    1996-01-01

    6 Li is used in manufacturing nuclear weapons, shielding, and reactor control rods. Li compounds have been used at DOE facilities and Li-contaminated waste has historically been land disposed. Seep water from burial grounds near Y-12 contain small amounts of chlorinated hydrocarbons, traces of PCBs, and 10-19 mg/L Li. Seep treatment consists of oil-water separation, filtration, air stripping, and carbon adsorption. Routine biomonitoring tests using fathead minnows and Ceriodaphniadubia are conducted. Evaluation of suspected contaminants revealed that toxicity was most likely due to Li. Laboratory tests showed that 1 mg Li/L reduced the survival of both species; 0.5 mg Li/L reduced Ceriodaphnia reproduction and minnow growth. However, the toxicity was greatly reduced in presence of sodium (up to 4 mg Li/L, Na can fully negate the toxic effect of Li). Because of the low Na level discharged from the treatment facility, Li removal from the ground water was desired. SuperLig reg-sign columns were used (Li-selective organic macrocycle bonded to silica gel). Bench-scale tests showed that the material was very effective for removing Li from the effluent, reducing the toxicity

  20. Training manual for process operation and management of radioactive waste treatment facility

    Energy Technology Data Exchange (ETDEWEB)

    Shon, J. S.; Kim, K. J.; Ahn, S. J. [and others

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure.

  1. Training manual for process operation and management of radioactive waste treatment facility

    International Nuclear Information System (INIS)

    Shon, J. S.; Kim, K. J.; Ahn, S. J.

    2004-12-01

    Radioactive Waste Treatment Facility (RWTF) has been operating for safe and effective treatment of radioactive wastes generated in the Korea Atomic Energy Research Institute (KAERI). In RWTF, there are evaporation, bituminization and solar evaporation processes for liquid waste, solid waste treatment process and laundry process. As other radioactive waste treatment facilities in foreign countries, the emergency situation such as fire and overflow of liquid waste can be taken place during the operation and result in the spread of contamination of radioactivity. So, easy and definite operating procedure is necessary for the safe operation of the facility. This manual can be available as easy and concise training materials for new employees and workers dispatched from service agency. Especially, in case of emergency urgently occurred during operation, everyone working in the facility can quickly stop the facility following this procedure

  2. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    International Nuclear Information System (INIS)

    TOMASZEWSKI, T.A.

    2000-01-01

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management

  3. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    Energy Technology Data Exchange (ETDEWEB)

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  4. Facility Effluent Monitoring Plan for the Plutonium Finishing Plant (PFP); FINAL

    International Nuclear Information System (INIS)

    FRAZIER, T.P.

    1999-01-01

    A facility effluent monitoring plan is required by the U. S. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This facility effluent monitoring plan assesses effluent monitoring systems and evaluates whether these systems are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. To ensure the long-range integrity of the effluent monitoring systems, an update to this facility effluent monitoring plan is required whenever a new process or operation introduces new hazardous materials or significant radioactive materials. This document is reviewed annually even if there are no operational changes, and is updated, at a minimum, every 3 years

  5. Association Between Treatment at High-Volume Facilities and Improved Overall Survival in Soft Tissue Sarcomas.

    Science.gov (United States)

    Venigalla, Sriram; Nead, Kevin T; Sebro, Ronnie; Guttmann, David M; Sharma, Sonam; Simone, Charles B; Levin, William P; Wilson, Robert J; Weber, Kristy L; Shabason, Jacob E

    2018-03-15

    Soft tissue sarcomas (STS) are rare malignancies that require complex multidisciplinary management. Therefore, facilities with high sarcoma case volume may demonstrate superior outcomes. We hypothesized that STS treatment at high-volume (HV) facilities would be associated with improved overall survival (OS). Patients aged ≥18 years with nonmetastatic STS treated with surgery and radiation therapy at a single facility from 2004 through 2013 were identified from the National Cancer Database. Facilities were dichotomized into HV and low-volume (LV) cohorts based on total case volume over the study period. OS was assessed using multivariable Cox regression with propensity score-matching. Patterns of care were assessed using multivariable logistic regression analysis. Of 9025 total patients, 1578 (17%) and 7447 (83%) were treated at HV and LV facilities, respectively. On multivariable analysis, high educational attainment, larger tumor size, higher grade, and negative surgical margins were statistically significantly associated with treatment at HV facilities; conversely, black race and non-metropolitan residence were negative predictors of treatment at HV facilities. On propensity score-matched multivariable analysis, treatment at HV facilities versus LV facilities was associated with improved OS (hazard ratio, 0.87, 95% confidence interval, 0.80-0.95; P = .001). Older age, lack of insurance, greater comorbidity, larger tumor size, higher tumor grade, and positive surgical margins were associated with statistically significantly worse OS. In this observational cohort study using the National Cancer Database, receipt of surgery and radiation therapy at HV facilities was associated with improved OS in patients with STS. Potential sociodemographic disparities limit access to care at HV facilities for certain populations. Our findings highlight the importance of receipt of care at HV facilities for patients with STS and warrant further study into improving access to

  6. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    International Nuclear Information System (INIS)

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA's hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R ampersand D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required

  7. Environmental Assessment for decontaminating and decommissioning the General Atomics Hot Cell Facility. Final [report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    This EA evaluates the proposed action to decontaminate and decommission GA`s hot cell facility in northern San Diego, CA. This facility has been used for DOE and commercial nuclear R&D for > 30 years. About 30,000 cubic feet of decontamination debris and up to 50,000 cubic feet of contaminated soil are to be removed. Low-level radioactive waste would be shipped for disposal. It was determined that the proposal does not constitute a major federal action significantly affecting the human environment according to NEPA; therefore, a finding of no significant impact is made, and an environmental impact statement is not required.

  8. Final Corrective Action Study for the Former CCC/USDA Facility in Hanover, Kansas

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, Lorraine M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    Low concentrations of carbon tetrachloride in groundwater and vapor intrusion into a limited number of residences (attributable to the contaminant concentrations in groundwater) have been identified in Hanover, Kansas, at and near a grain storage facility formerly leased and operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA). At the request of the Kansas Department of Health and Environment (KDHE 2009h), the CCC/USDA has prepared this Corrective Action Study (CAS) for the facility. The CAS examines corrective actions to address the contamination in groundwater and soil vapor.

  9. Quality assurance project plan for the UMTRA technical assistance contractor hydrochemistry facility. Final report

    International Nuclear Information System (INIS)

    1993-07-01

    The Uranium Mill Tailings Remedial Action (UMTRA) hydrochemistry facility is used to perform a limited but important set of services for the UMTRA Project. Routine services include support of field-based hydrological and geochemical operations and water sampling activities. Less commonly, the hydrology and geochemistry staff undertake special studies and site characterization studies at this facility. It is also used to train hydrologists, geochemists, and groundwater sampling crews. A review of this Quality Assurance Project Plan (QAPP) shall be accomplished once each calendar year. This review will be targeted to be accomplished not sooner than 6 months and not later than 18 months after the last review

  10. Study on patient-induced radioactivity during proton treatment in hengjian proton medical facility

    International Nuclear Information System (INIS)

    Wu, Qingbiao; Wang, Qingbin; Liang, Tianjiao; Zhang, Gang; Ma, Yinglin; Chen, Yu; Ye, Rong; Liu, Qiongyao; Wang, Yufei; Wang, Huaibao

    2016-01-01

    At present, increasingly more proton medical facilities have been established globally for better curative effect and less side effect in tumor treatment. Compared with electron and photon, proton delivers more energy and dose at its end of range (Bragg peak), and has less lateral scattering for its much larger mass. However, proton is much easier to produce neutron and induced radioactivity, which makes radiation protection for proton accelerators more difficult than for electron accelerators. This study focuses on the problem of patient-induced radioactivity during proton treatment, which has been ignored for years. However, we confirmed it is a vital factor for radiation protection to both patient escort and positioning technician, by FLUKA’s simulation and activation formula calculation of Hengjian Proton Medical Facility (HJPMF), whose energy ranges from 130 to 230 MeV. Furthermore, new formulas for calculating the activity buildup process of periodic irradiation were derived and used to study the relationship between saturation degree and half-life of nuclides. Finally, suggestions are put forward to lessen the radiation hazard from patient-induced radioactivity. - Highlights: • A detailed study on patient-induced radioactivity was conducted by adopting Monte Carlo code FLUKA and activation formula. • New formulas for calculating the activity build-up process of periodic irradiation were derived and extensively studied. • Patient induced radioactivity, which has been ignored for years, is confirmed as a vital factor for radiation protection. • The induced radioactivity from single short-time treatment and long-time running (saturation) were studied and compared. • Some suggestions on how to reduce the hazard of patient’s induced radioactivity were given.

  11. Probabilistic risk assessment for back-end facilities: Improving the treatment of fire and explosion scenarios

    International Nuclear Information System (INIS)

    Sunman, C.R.J.; Campbell, R.J.; Wakem, M.J.

    1996-01-01

    The nuclear reprocessing facilities at Sellafield are a key component of the International business of BNFL. The operations carried out at the site extend from the receipt and storage of irradiated fuel, chemical reprocessing, plutonium and uranium finishing, through mixed oxide fuel production. Additionally there are a wide range of supporting processes including solid waste encapsulation, vitrification, liquid waste evaporation and treatment. Decommissioning of the site's older facilities is also proceeding. The comprehensive range of these activities requires that the safety assessment team keeps up to date with developments in the field, as well as conducting and sponsoring appropriate research into methodologies and modelling in order to deliver a cost effective, timely service. This paper will review the role of Probabilistic Risk Assessment (PRA) in safety cases for operations at Sellafield and go on to describe some areas of PRA methodology development in the UK and in which BNFL is a contributor. Finally the paper will summarise some specific areas of methodology development associated with improving the modelling of fire and explosion hazards which are specific to BNFL. (author)

  12. Reed Reactor Facility final report, September 1, 1994--August 31, 1995

    International Nuclear Information System (INIS)

    1997-01-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: student participation in the program is very high; the facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources; the facility is developing more paid work. There were 1,115 visits of the Reactor Facility by individuals during the year. Most of these visitors were students in classes at Reed College or area universities, colleges, and high schools. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Associate Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 1% of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily 41 Ar) were well within regulatory limits

  13. Reed Reactor Facility final report, September 1, 1994--August 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-09-01

    This report covers the period from September 1, 1994 to August 31, 1995. Information contained in this report is intended to fulfill several purposes including the reporting requirements of the US Nuclear Regulatory Commission (USNRC), the US Department of Energy (USDOE), and the Oregon Department of Energy (ODOE). Highlights of the last year include: student participation in the program is very high; the facility has been extraordinarily successful in obtaining donated equipment from Portland General Electric, US Department of Energy, Precision Castparts, Tektronix, and other sources; the facility is developing more paid work. There were 1,115 visits of the Reactor Facility by individuals during the year. Most of these visitors were students in classes at Reed College or area universities, colleges, and high schools. During the year, the reactor was operated 225 separate times on 116 days. The total energy production was 24.6 MW-hours. The reactor staff consists of a Director, an Associate Director, a contract Health Physicist, and approximately fifteen Reed College undergraduate students as hourly employees. All radiation exposures to individuals during this year were well below 1% of the federal limits. There were no releases of liquid radioactive material from the facility and airborne releases (primarily {sup 41}Ar) were well within regulatory limits.

  14. Gamma Irradiation Facility at Sandia National Laboratories, Albuquerque, New Mexico. Final environmental assessment

    International Nuclear Information System (INIS)

    1995-11-01

    The US Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed construction and operation of a new Gamma Irradiation Facility (GIF) at Sandia National Laboratories/New Mexico (SNL/NM). This facility is needed to: enhance capabilities to assure technical excellence in nuclear weapon radiation environments testing, component development, and certification; comply with all applicable ES and H safeguards, standards, policies, and regulations; reduce personnel radiological exposure to comply with ALARA limits in accordance with DOE orders and standards; consolidate major gamma ray sources into a central, secured area; and reduce operational risks associated with operation of the GIF and LICA in their present locations. This proposed action provides for the design, construction, and operation of a new GIF located within TA V and the removal of the existing GIF and Low Intensity Cobalt Array (LICA). The proposed action includes potential demolition of the gamma shield walls and removal of equipment in the existing GIF and LICA. The shielding pool used by the existing GIF will remain as part of the ACRR facility. Transportation of the existing 60 Co sources from the existing LICA and GIF to the new facility is also included in the proposed action. Relocation of the gamma sources to the new GIF will be accomplished by similar techniques to those used to install the sources originally

  15. Cold Vacuum Drying facility condensate collection system design description (SYS 19); FINAL

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) condensate collection system (CCS). The function of the CCS is to collect cooling coil condensate from air-handling units in the CVDF and to isolate the condensate in collection tanks until the condensate is determined to be acceptable to drain to the effluent drain collection basin

  16. Final report on the decontamination of the Curium Source Fabrication Facility

    International Nuclear Information System (INIS)

    Schaich, R.W.

    1983-12-01

    The Curium Source Fabrication Facility (CSFF) at Oak Ridge National Laboratory (ORNL) was decontaminated to acceptable contamination levels for maintenance activities, using standard decontamination techniques. Solid and liquid waste volumes were controlled to minimize discharges to the ORNL waste systems. This program required two years of decontamination effort at a total cost of approximately $700K. 5 references, 7 figures, 2 tables

  17. Final report of the radiological release survey of Building 54 at the Grand Junction Office Facility

    International Nuclear Information System (INIS)

    Johnson, R.K.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 54 and the underlying soil were found not to be radiologically contaminated, and can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual release report for each GJO building

  18. 78 FR 34918 - Direct Final Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and...

    Science.gov (United States)

    2013-06-11

    ... Approval of Sewage Sludge Incinerators State Plan for Designated Facilities and Pollutants; Indiana AGENCY... to control air pollutants from ``Sewage Sludge Incinerators'' (SSI). The Indiana Department of... unit,'' in part, as any device that combusts sewage sludge for the purpose of reducing the volume of...

  19. Status Review of Wildlife Mitigation, Columbia Basin Hydroelectric Projects, Columbia River Mainstem Facilities, 1984 Final Report.

    Energy Technology Data Exchange (ETDEWEB)

    Howerton, Jack; Hwang, Diana

    1984-11-01

    This report reviews the status of past, present, and proposed future wildlife planning and mitigation programs at existing hydroelectric projects in the Columbia River Basin. The project evaluations will form the basis for determining any needed remedial measures or additional project analysis. Each hydropower facility report is abstracted separately for inclusion in the Energy Data Base.

  20. Final turbine and test facility design report Alden/NREC fish friendly turbine

    Energy Technology Data Exchange (ETDEWEB)

    Cook, Thomas C. [Alden Research Lab., Holden, MA (United States); Cain, Stuart A. [Alden Research Lab., Holden, MA (United States); Fetfatsidis, Paul [Alden Research Lab., Holden, MA (United States); Hecker, George E. [Alden Research Lab., Holden, MA (United States); Stacy, Philip S. [Alden Research Lab., Holden, MA (United States)

    2000-09-01

    The final report provides an overview of the Alden/NREC Fish Friendly turbine design phase, turbine test plan, preliminary test results, costs, schedule, and a hypothetical application at a real world project.

  1. Two passive groundwater treatment installations at DOE facilities

    International Nuclear Information System (INIS)

    Barton, W.D.; Craig, P.M.; Stone, W.C.

    1997-01-01

    Groundwater is being successfully treated by reactive media at two DOE sites. Passive treatment utilizing containerized treatment media has been installed on a radioactive groundwater seep at Oak Ridge National Lab, Oak Ridge, Tennessee, and on a TCE plume at the Portsmouth Gaseous Diffusion Plant in Piketon, Ohio. In both applications, flow is conducted by gravity through canisters of reactive treatment media. The canister-based treatment installation at ORNL utilizes a natural sodium-chabazite zeolite to remove radiological cations (Sr, Cs) from contaminated groundwater at greater than 99.9% efficiency. Portsmouth is currently conducting tests on three different types of treatment media for reductive dehalogenation of TCE

  2. The treatment of active waste from a PIE facility

    International Nuclear Information System (INIS)

    Turier, C.A.; Kerswell, A.G.

    1978-09-01

    The types of radioactive waste produced in the post irradiation examination of nuclear fuel elements from several classes of reactor are described. Other radioactive wastes may be produced in cave facilities as a result of contamination of the equipment. The methods of disposal of all types of waste are considered, together with methods to improve the operation of the caves. The training of cave operators, and the use of method study to collect information in cave operations are considered also. (U.K.)

  3. Ventilation and air conditioning system in waste treatment and storage facilities

    International Nuclear Information System (INIS)

    Kinoshita, Hirotsugu; Sugawara, Kazushige.

    1987-01-01

    So far, the measures concerning the facilities for treating and storing radioactive wastes in nuclear fuel cycle in Japan were in the state which cannot be said to be sufficient. In order to cope with this situation, electric power companies constructed and operated radioactive waste concentration and volume reduction facilities, solid waste storing facilities for drums, high level solid waste storing facilities, spent fuel cask preserving facilities and so on successively in the premises of nuclear power stations, and for the wastes expected in future, the research and the construction plan of the facilities for treating and storing low, medium and high level wastes have been advanced. The ventilation and air conditioning system for these facilities is the important auxiliary system which has the mission of maintaining safe and pleasant environment in the facilities and lowering as far as possible the release of radioactive substances to outside. The outline of waste treatment and storage facilities is explained. The design condition, ventilation and air conditioning method, the features of respective waste treatment and storage facilities, and the problems for the future are described. Hereafter, mechanical ventilation system continues to be the main system, and filters become waste, while the exchange of filters is accompanied by the radiation exposure of workers. (Kako, I.)

  4. Final report of the decontamination and decommissioning of the BORAX-V facility turbine building

    International Nuclear Information System (INIS)

    Arave, A.E.; Rodman, G.R.

    1992-12-01

    The Boiling Water Reactor Experiment (BORAX)-V Facility Turbine Building Decontamination and Decommissioning (D ampersand D) Project is described in this report. The BORAX series of five National Reactor Testing Station (NRTS) reactors pioneered intensive work on boiling water reactor (BWR) experiments conducted between 1953 and 1964. Facility characterization, decision analyses, and D ampersand D plans for the turbine building were prepared from 1979 through 1990. D ampersand D activities of the turbine building systems were initiated in November of 1988 and completed with the demolition and backfill of the concrete foundation in March 1992. Due to the low levels of radioactivity and the absence of loose contamination, the D ampersand D activities were completed with no radiation exposure to the workers. The D ampersand D activities were performed in a manner that no radiological health or safety hazard to the public or to personnel at the Idaho National Engineering Laboratory (INEL) remain

  5. Final characterization report for the non-process areas of the 233-S Plutonium Concentration Facility

    International Nuclear Information System (INIS)

    Encke, D.B.; Harris, R.A.

    1997-04-01

    This report addresses the 233-S Plutonium Concentration Facility characterization survey data collected from January 21, 1997 through February 3, 1997. The characterization activities evaluated the radiological status and identified the hazardous materials locations. The scope of this report is limited to the nonprocess areas in the facility, which include the special work permit (SWP) change room, toilet, equipment room, electrical cubicle, control room, and pipe gallery. A portion of the roof (excluding the roof over the process hood and viewing room) was also included. Information in this report will be used to identify waste streams, provide specific chemical and radiological data to aid in planning decontamination and demolition activities, and allow proper disposal of the demolition debris, as required by the Comprehensive Environmental Response, Compensation, and Liability Act of 1980

  6. Final Environmental Assessment: Consolidated Dining Facility at Joint Base McGuire-Dix-Lakehurst, New Jersey

    Science.gov (United States)

    2013-05-01

    intended to ‘provide a cornerstone of integrated mission, services, and recreational activities that is a walkable , convenient, and attractive...Training areas are intended to enhance existing or grow into walkable campuses with barracks, dining facilities, administrative support functions and...preserve natural lands and critical environmental areas, and protect water and ai r quality by encouraging developments that are mixed-use, walkable

  7. Sharing of the RPI Reactor Critical Facility (RCF). Final summary report, January 1988--September 1995

    International Nuclear Information System (INIS)

    Harris, D.R.

    1995-01-01

    Rensselaer Polytechnic Institute (RPI) has participated for a number of years in Sharing of the Reactor Critical Facility (RCF) under the U.S. Department of Energy University Reactor Sharing Program. In September of each year a Sharing invitation is sent to 92 public and private high schools and to 74 colleges and universities within about a 3 hour drive to the RCF (Appendix B). Each year about 10 such educational institutions send groups to share the RCF

  8. Surrogate Final Technical Report for "Solar: A Photovoltaic Manufacturing Development Facility"

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Paul [State University of New York Research Foundation, Albany, NY (United States)

    2014-06-27

    The project goal to create a first-of-a-kind crystalline Silicon (c-Si) photovoltaic (PV) Manufacturing & Technology Development Facility (MDF) that will support the growth and maturation of a strong domestic PV manufacturing industry, based on innovative and differentiated technology, by ensuring industry participants can, in a timely and cost-effective manner, access cutting-edge manufacturing equipment and production expertise needed to accelerate the transition of innovative technologies from R&D into manufacturing.

  9. Suicidal behaviours in male and female users of illicit drugs recruited in drug treatment facilities

    Directory of Open Access Journals (Sweden)

    Elisabet Arribas-Ibar

    2017-07-01

    Conclusions: Prevalence of suicidal ideation/plans was high among illicit drug users recruited from healthcare facilities. Besides psychological variables, participation in illegal market activities and crime ought to be considered in drug users’ suicidal prevention. Suicide risk needs to be evaluated in drug treatment facilities and psychological status and context contemplated.

  10. Final work plan : investigation of potential contamination at the former USDA facility in Powhattan, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2007-02-02

    This Work Plan outlines the scope of work to be conducted to investigate the subsurface contaminant conditions at the property formerly leased by the Commodity Credit Corporation (CCC) in Powhattan, Kansas (Figure 1.1). Data obtained during this event will be used to (1) evaluate potential contaminant source areas on the property; (2) determine the vertical and horizontal extent of potential contamination; and (3) provide recommendations for future action, with the ultimate goal of assigning this site No Further Action status. The planned investigation includes groundwater monitoring requested by the Kansas Department of Health and Environment (KDHE), in accordance with Section V of the Intergovernmental Agreement between the KDHE and the Farm Service Agency of the U.S. Department of Agriculture (USDA). The work is being performed on behalf of the CCC/USDA by the Environmental Science Division of Argonne National Laboratory. A nonprofit, multidisciplinary research center operated by the University of Chicago for the U.S. Department of Energy, Argonne provides technical assistance to the CCC/USDA with environmental site characterization and remediation at former CCC/USDA grain storage facilities. Argonne issued a Master Work Plan (Argonne 2002) that has been approved by the KDHE. The Master Work Plan describes the general scope of all investigations at former CCC/USDA facilities in Kansas and provides guidance for these investigations. It should be consulted for the complete details of plans for work associated with the former CCC/USDA facility at Powhattan.

  11. DOE final report phase one startup, Waste Receiving and Processing Facility (WRAP)

    International Nuclear Information System (INIS)

    Jasen, W.G.

    1998-01-01

    This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented

  12. Final report of the radiological release survey of Building 30B at the Grand Junction Office Facility

    International Nuclear Information System (INIS)

    Krauland, P.A.; Corle, S.G.

    1997-09-01

    The U.S. Department of Energy (DOE) Grand Junction Office (GJO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore concentrates and mill tailings during vanadium refining activities of the Manhattan Engineer District, and during sampling, assaying, pilot milling, storage, and brokerage activities conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJO Remedial Action Project (GJORAP) to clean up and restore the facility lands, improvements, and underlying aquifer. WASTREN-Grand Junction is the site contractor for the facility and the remedial action contractor for GJORAP. Building 30B and the underlying soil were found not to be radiologically contaminated; therefore, the building can be released for unrestricted use. Placards have been placed at the building entrances indicating the completion of the radiological release survey and prohibiting the introduction of any radioactive materials within the building without written approvals from the GJO Facilities Operations Manager. This document was prepared in response to a DOE-GJO request for an individual final release report for each GJO building

  13. Development of safeguards information treatment system at facility level in Korea

    International Nuclear Information System (INIS)

    So, D.S.; Lee, B.D.; Song, D.Y.

    2001-01-01

    Safeguards Information Treatment System (SITS) at Facility level was developed to implement efficiently the obligations under IAEA comprehensive Safeguards Agreement, bilateral nuclear cooperation Agreements with other countries and domestic law, and to manage efficiently the information related to safeguards implementation at facility level in Korea. Nuclear facilities in Korea are categorized into 8 types based on its accounting characteristics as follows: (1) Item counting facility or bulk handling facility; (2) Batch follow-up facility or not; (3) MUF (Material Unaccounted For) occurrence or not; (4) Nuclear production facility or not; (5) Operation status of facility; (6) Information management of nuclear material transfer status between KMPs or not; (7) Indication of inventory KMP on the inventory change of nuclear material is required or not. Hardware and Software for SITS can be loaded on a personal computer under operation system of Window 2000 or Window NT. MS SQL server 7 and MS Internet Information Server were adopted for database management system and Web server, respectively. Network environment of SITS was designed to include nuclear research institute, nuclear power plants of PWR and CANDU, nuclear fuel fabrication facilities and other facilities. SITS can be operated standalone or under the client-server system if intranet exists. More detailed contents of SITS are described elsewhere. Each module of SITS will be tested during incorporation of existing data into SITS and SITS will be distributed to nuclear facilities in Korea

  14. Operation, Maintenance and Management of Wastewater Treatment Facilities: A Bibliography of Technical Documents.

    Science.gov (United States)

    Himes, Dottie

    This is an annotated bibliography of wastewater treatment manuals. Fourteen manuals are abstracted including: (1) A Planned Maintenance Management System for Municipal Wastewater Treatment Plants; (2) Anaerobic Sludge Digestion, Operations Manual; (3) Emergency Planning for Municipal Wastewater Treatment Facilities; (4) Estimating Laboratory Needs…

  15. NPDES Permit for Soap Creek Associates Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT-0023183, Soap Creek Associates, Inc. is authorized to discharge from its wastewater treatment facility located in West, Bighorn County, Montana, to Soap Creek.

  16. NPDES Permit for Town of Lodge Grass Wastewater Treatment Facility in Montana

    Science.gov (United States)

    Under National Pollutant Discharge Elimination System permit number MT0021890, the Town of Lodge Grass is authorized to discharge from from its wastewater treatment facility in Big Horn County to an unnamed slough to the Little Bighorn River.

  17. NPDES Permit for Dakota Magic Casino Wastewater Treatment Facility in North Dakota

    Science.gov (United States)

    Under NPDES permit ND-0030813, the Dakota Nation Gaming Enterprise is authorized to discharge from the wastewater treatment facility in Richland County, North Dakota, to a roadside ditch flowing to an unnamed tributary to the Bois de Sioux.

  18. Ground Water Monitoring Requirements for Hazardous Waste Treatment, Storage and Disposal Facilities

    Science.gov (United States)

    The groundwater monitoring requirements for hazardous waste treatment, storage and disposal facilities (TSDFs) are just one aspect of the Resource Conservation and Recovery Act (RCRA) hazardous waste management strategy for protecting human health and the

  19. NPDES Permit for Rosebud Casino and Hotel Wastewater Treatment Facility in South Dakota

    Science.gov (United States)

    Under NPDES permit SD-0034584, Rosebud Casino and Hotel, South Dakota, is authorized to discharge from its wastewater treatment facility in Todd County, South Dakota to an unnamed drainageway(s) tributary to Rock Creek.

  20. Village of Pender, Nebraska Wastewater Treatment Facility, Pender, Nebraska - Clean Water Act Public Notice

    Science.gov (United States)

    The EPA is providing notice of proposed Administrative Penalty Assessment against the Village of Pender, Nebraska Wastewater Treatment Facility (“Respondent”) for alleged violations of Sections 301 and/or 404 of the Clean Water Act

  1. Environmental Protection Agency (EPA) Facility Registry Service (FRS) Wastewater Treatment Plants

    Data.gov (United States)

    Department of Homeland Security — This GIS dataset contains data on wastewater treatment plants, based on EPA's Facility Registry Service (FRS) and NPDES, along with Clean Watersheds Needs Survey...

  2. National Ignition Facility subsystem design requirements final optics assembly subsystem SSDR 1.8.7

    International Nuclear Information System (INIS)

    Adams, C.

    1996-01-01

    This SSDR establishes the performance, design, development and test requirements for the Final Optic Assembly (FOA). The FOA (WBS 1.8.7) as part of the Target Experimental System (1.8) includes vacuum windows, frequency conversion crystals, focus lens, debris shields and supporting mechanical equipment

  3. Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun; Anderson, Gail

    1999-08-01

    The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.

  4. Final corrective action study for the former CCC/USDA facility in Ramona, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M. (Environmental Science Division)

    2011-04-20

    Past operations at a grain storage facility formerly leased and operated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in Ramona, Kansas, resulted in low concentrations of carbon tetrachloride in groundwater that slightly exceed the regulatory standard in only one location. As requested by the Kansas Department of Health and Environment, the CCC/USDA has prepared a Corrective Action Study (CAS) for the facility. The CAS examines corrective actions to address groundwater impacted by the former CCC/USDA facility but not releases caused by other potential groundwater contamination sources in Ramona. Four remedial alternatives were considered in the CAS. The recommended remedial alternative in the CAS consists of Environmental Use Control to prevent the inadvertent use of groundwater as a water supply source, coupled with groundwater monitoring to verify the continued natural improvement in groundwater quality. The Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) has directed Argonne National Laboratory to prepare a Corrective Action Study (CAS), consistent with guidance from the Kansas Department of Health and Environment (KDHE 2001a), for the CCC/USDA grain storage facility formerly located in Ramona, Kansas. This effort is pursuant to a KDHE (2007a) request. Although carbon tetrachloride levels at the Ramona site are low, they remain above the Kansas Tier 2 risk-based screening level (RBSL) and the U.S. Environmental Protection Agency (EPA) maximum contaminant level (MCL) of 5 {micro}g/L (Kansas 2003, 2004). In its request for the CAS, the KDHE (2007a) stated that, because of these levels, risk is associated with potential future exposure to contaminated groundwater. The KDHE therefore determined that additional measures are warranted to limit future use of the property and/or exposure to contaminated media as part of site closure. The KDHE further requested comparison of at least two corrective

  5. PCB usage at the Grand Junction Area Office Facility. Final report

    International Nuclear Information System (INIS)

    Miller, M.E.; Donivan, S.

    1982-06-01

    The development, implementation, and results of the polychlorinated biphenyl (PCB) identification project at the Grand Junction Area Office (GJAO) are summarized. Methodology for the PCB analysis is described, and results are tabulated. Of the 51 transformers and disconnects in use at GJAO, 15 unites were determined to be PCB-contaminated or filled with PCBs. This number falls within EPA's estimate of 25 to 40 percent of all transformers in use being at least contaminated. Approximately 324 gallons of PCBs and 515 gallons of PCB-contaminated fluids are being used currently. No contaminated transformers or disconnects are in a position to contaminate food or feed products at the facility

  6. Operational readiness review for the Waste Experimental Reduction Facility. Final report

    International Nuclear Information System (INIS)

    1993-11-01

    An Operational Readiness Review (ORR) at the Idaho National Engineering Laboratory's (INEL's) Waste Experimental Reduction Facility (WERF) was conducted by EG ampersand G Idaho, Inc., to verify the readiness of WERF to resume operations following a shutdown and modification period of more than two years. It is the conclusion of the ORR Team that, pending satisfactory resolution of all pre-startup findings, WERF has achieved readiness to resume unrestricted operations within the approved safety basis. ORR appraisal forms are included in this report

  7. Quality assurance guidance for low-level radioactive waste disposal facility: Final report

    International Nuclear Information System (INIS)

    Pittiglio, C.L. Jr.

    1989-01-01

    This document provides guidance to an applicant on meeting the quality control (QC) requirements for a low-level waste (LLW) disposal facility. The QC requirements are the basis for developing of a quality assurance (QA) program and for the guidance provided herein. The criteria are basic to any QA program. The document specifically establishes QA guidance for the design, construction, and operation of those structures, systems, components, as well as, for site characterization activities necessary to meet the performance objectives and to limit exposure to our release of radioactivity. 7 refs

  8. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    International Nuclear Information System (INIS)

    Coppens, Philip

    2003-01-01

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field

  9. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    International Nuclear Information System (INIS)

    Martone, M.

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member

  10. IFMIF : International Fusion Materials Irradiation Facility Conceptual Design Activity: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Martone, M [ENEA, Centro Ricerche Frascati, Rome (Italy)

    1997-01-01

    This report documents the results of the Conceptual Design Activity (CDA) on the International Fusion Materials Irradiation Facility (IFMIF), conducted during 1995 and 1996. The activity is under the auspices of the International Energy Agency (IEA) Implementing Agreement for a Programme of Research and Development on Fusion Materials. An IEA Fusion Materials Executive Subcommittee was charged with overseeing the IFMIF-CDA work. Participants in the CDA are the European Union, Japan, and the United States, with the Russian Federation as an associate member.

  11. SUNY beamline facilities at the National Synchrotron Light Source (Final Report)

    Energy Technology Data Exchange (ETDEWEB)

    Coppens, Philip

    2003-06-22

    The DOE sponsored SUNY synchrotron project has involved close cooperation among faculty at several SUNY campuses. A large number of students and postdoctoral associates have participated in its operation which was centered at the X3 beamline of the National Synchrotron Light Source at Brookhaven National Laboratory. Four stations with capabilities for Small Angle Scattering, Single Crystal and Powder and Surface diffraction and EXAFS were designed and operated with capability to perform experiments at very low as well as elevated temperatures and under high vacuum. A large amount of cutting-edge science was performed at the facility, which in addition provided excellent training for students and postdoctoral scientists in the field.

  12. Advanced accelerator test facility-Final report for the period 9/1/2010 - 8/31/2013

    Energy Technology Data Exchange (ETDEWEB)

    Hirshfield, Jay [Yale Univ., New Haven, CT (United States)

    2014-10-27

    This final report summarizes results achieved in the Beam Physics Laboratory at Yale University during the period 9/1/2010 – 8/31//2013, under DoE grant DE-FG02-07 ER 41504. During the period covered by this report, notable progress in technical consolidation of facilities in the Yale Beam Physics Laboratory has occurred; and theory, design, and fabrication for future experiments have been carried out. In the period covered by this grant, 29 scientific publications based on this work and related topics have appeared in the archival literature. Titles, authors, and citations are listed in Section V of this report.

  13. Final Environmental Statement related to the decommissioning of the Rare Earths Facility, West Chicago, Illinois. Docket No. 40-2061

    International Nuclear Information System (INIS)

    1983-05-01

    This Final Environmental Statement is issued by the US Nuclear Regulatory Commission in response to the plan proposed by Kerr-McGee Chemical Corporation for the decommissioning of their Rare Earths Facility located in West Chicago, Illinois. The statement considers the Kerr-McGee preferred plan and various alternatives to that plan. The action proposed by the Commission is the renewal of the Kerr-McGee license to allow stabilization of wastes onsite and for possession of the wastes under license for an indeterminate time. The license could be terminated at a later date if certain specified requirements were met

  14. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  15. Treatment and final conditioning of solid radioactive wastes

    International Nuclear Information System (INIS)

    Cerre, J.

    1960-01-01

    The storage of solid radioactive wastes on a site is so cumbersome and dangerous that we have developed a method of treatment and conditioning by means of which the volume of waste is considerably reduced and very long-lasting shielding can be provided. This paper describes the techniques adopted at Saclay, where the wastes are sheared, compressed and enveloped in concrete of variable thickness. The main part of the report is devoted to a description of the corresponding remote handling installation. (author) [fr

  16. Enhancing nitrogen removal in stormwater treatment facilities for transportation.

    Science.gov (United States)

    2015-01-01

    Stormwater from roadways is a point source of pollution. State DOTs must comply with Total Maximum : Daily Load (TMDL) regulations for nutrients such as nitrogen, which causes water quality impairment. Existing stormwater treatment technologies, such...

  17. Final environmental impact statement, construction and operation of the Spallation Neutron Source Facility. Summary

    International Nuclear Information System (INIS)

    1999-04-01

    DOE proposes to construct and operate a state-of-the-art, short-pulsed, spallation neutron source comprised of an ion source, a linear accelerator, a proton accumulator ring, and an experiment building containing a liquid mercury target and a suite of neutron scattering instrumentation. The proposed Spallation Neutron Source would be designed to operate at a proton beam power of 1 megawatt. The design would accommodate future upgrades to a peak operating power of 4 megawatts. These upgrades may include construction of a second proton accumulator ring and a second target. This document analyzes the potential environmental impacts from the proposed action and the alternatives. The analysis assumes a facility operating at a power of 1 MW and 4 MW over the life of the facility. The two primary alternatives analyzed in this FEIS are: the proposed action (to proceed with building the Spallation Neutron Source) and the No-Action Alternative. The No-Action Alternative describes the expected condition of the environment if no action were taken. Four siting alternatives for the Spallation Neutron Source are evaluated: Oak Ridge National Laboratory, Oak Ridge, TN, (preferred alternative); Argonne National Laboratory, Argonne, IL; Brookhaven National Laboratory, Upton, NY; and Los Alamos National Laboratory, Los Alamos, NM

  18. Final safety-analysis report for the Fifth Calcined Solids Storage Facility

    International Nuclear Information System (INIS)

    1982-01-01

    Radioactive aqueous wastes generated by the solvent extraction of uranium from expended fuels at ICPP will be calcined in the New Waste Calcining Facility (NWCF). The calcined solids are pneumatically transferred to stainless steel bins enclosed in concrete vaults for interim storage of up to 500 years. The Fifth Calcined Solids Storage Facility (CSSF) provides 1000 m 3 of storage and consists of seven annular stainless steel bins inside a reinforced concrete vault set on bedrock. Storage of calcined solids is essentially a passive operation with very little opportunity for release of radionuclides and with no potential for criticality. There will be no potential for fire or explosion. Shielding has been designed to assure that the radiation levels at the vault exterior surfaces will be limited to less than 0.5 mRem/h. A sump in the vault floor will collect any in-leakage that may occur. Any water that collects in the sump will be sampled then removed with the sump jet. There will be an extremely small chance of release of radioactive particulates into the atmosphere as a result of a bin leak. The Design Basis Accident (DBA) postulates the spill of solids from an eroded fill line into the vault coupled with a failure of the vault cooling air radiation monitor. For the DBA, the maximum calculated radiation dose to an exposed individual near the site boundary is less than 1.2 μRem to the bone and lung

  19. ESF [Exploratory Shaft Facility] impact evaluation report: Volume 1, Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This report assesses the impacts of integrating an Exploratory Shaft Facility (ESF) with a high-level nuclear waste repository in salt. A general repository subsurface design is described which complies with the Mine Safety and Health Administration regulations for gassy metal and non-metal mines. This design is combined with the ESF into a site-specific subsurface layout with associated shafts and surface facilities for each of seven sites. An evaluation to identify integration impacts is described for two specific ESF configurations (Cases 1 and 2) for each of the seven sites. These configurations are an ESF which uses two of the full size repository shafts, and an ESF with one 10-ft and one 22-ft diameter shaft. An evaluation of an ESF configuration (Case 3) with two 12-ft diameter shafts at three of the seven sites is also described. These sites are Deaf Smith, Davis Canyon, and Richton Dome. A fourth evaluation (Case 4) for the Deaf Smith site only, addresses a ''fast track'' subsurface development plan to allow waste emplacement by 1998. A fifth evaluation (Case 5), provides site-specific ES locations, for the three sites included in Case 3, which are supportive of a shaft siting study prepared by ONWI

  20. Corrosion of aluminium-clad spent fuel in LVR-15 research reactor storage facilities. Final report

    International Nuclear Information System (INIS)

    Splichal, K.; Berka, J.; Keilova, E.

    2006-03-01

    The corrosion of the research reactor aluminium clad spent fuel in water was investigated in two storage facilities. The standard racks were delivered by the IAEA and consisted of two aluminium alloys AA 6061 and Szav-1 coupons. Bimetallic couples create aluminium alloy and stainless steel 304 coupons. Rolled and extruded AA 6061 material was also tested. Single coupons, bimetallic and crevice couples were exposed in the at-reactor basin (ARB) and the high-level wastage pool (HLW). The water chemistry parameters were monitored and sedimentation of impurities was measured. The content of impurities of mainly Cl and SO 4 was in the range of 2 to 15 μg/l in the HLW pool; it was about one order higher in ARB. The Fe content was below 2 μg/l for both facilities. After two years of exposure the pitting was evaluated as local corrosion damage. The occurrence of pits was evaluated predominantly on the surfaces of single coupons and on the outer and inner surfaces of bimetallic and crevices coupons. No correlation was found between the pitting initiation and the type of aluminium alloys and rolled and extruded materials. In bimetallic couples the presence of stainless coupons did not have any effect on local corrosion. The depth of pits was lower than 50 μm for considerable areas of coupons and should be compared with the results of other participating institutes. (author)

  1. Healy Clean Coal Project: Healy coal firing at TRW Cleveland Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, T.; Petrill, E.; Sheppard, D.

    1991-08-01

    A test burn of two Alaskan coals was conducted at TRW`s Cleveland test facility in support of the Healy Clean Coal Project, as part of Clean Coal Technology III Program in which a new power plant will be constructed using a TRW Coal Combustion System. This system features ash slagging technology combined with NO{sub x} and SO{sub x} control. The tests, funded by the Alaska Industrial Development and Export Authority (AIDEA) and TRW, were conducted to verify that the candidate Healy station coals could be successfully fired in the TRW coal combustor, to provide data required for scale-up to the utility project size requirements, and to produce sufficient flash-calcined material (FCM) for spray dryer tests to be conducted by Joy/NIRO. The tests demonstrated that both coals are viable candidates for the project, provided the data required for scale-up, and produced the FCM material. This report describes the modifications to the test facility which were required for the test burn, the tests run, and the results of the tests.

  2. Federal Facility Compliance Act, Proposed Site Treatment Plan: Background Volume. Executive Summary

    International Nuclear Information System (INIS)

    1995-01-01

    This Federal Facility Compliance Act Site Treatment Plan discusses the options of radioactive waste management for Ames Laboratory. This is the background volume which discusses: site history and mission; framework for developing site treatment plans; proposed plan organization and related activities; characterization of mixed waste and waste minimization; low level mixed waste streams and the proposed treatment approach; future generation of TRU and mixed wastes; the adequacy of mixed waste storage facilities; and a summary of the overall DOE activity in the area of disposal of mixed waste treatment residuals

  3. Treatability studies of alternative wastewaters for Metal Finishing Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Wittry, D.M.; Martin, H.L.

    1994-01-01

    The 300-M Area Liquid Effluent Treatment Facility (LETF) of the Savannah River Site (SRS) is an end-of-pipe industrial wastewater treatment facility that uses precipitation and filtration, which is the EPA Best Available Technology economically achievable for a Metal Finishing and Aluminum Form Industries. Upon the completion of stored waste treatment, the LETF will be shut down, because production of nuclear materials for reactors stopped at the end of the Cold War. The economic use of the LETF for the treatment of alternative wastewater streams is being evaluated through laboratory bench-scale treatability studies

  4. Perceptions of final-year nursing students on the facilities, resources and quality of education provided by schools in Turkey.

    Science.gov (United States)

    Güner, Perihan

    2015-01-01

    The purpose of this study is to determine the perceptions of final-year nursing students regarding the adequacy of education, resources and internships in preparation for graduation. The study design was a descriptive cross-sectional study of nursing students (n: 1804) in their final year of education and questionnaires were used to collect data. Information related to student-to-instructor ratios and internships was obtained from each institution. Most students reported receiving instruction or supervision by lecturers and clinicians who did not specialise in the field. Overall, students did not find the facilities, educational or technological resources and the quality of education offered by their respective schools adequate. The proportion of students who found the level of theoretical education, clinical practice and instructor support adequate was higher in state university colleges of nursing/faculties of health sciences than in state university schools of health sciences.

  5. City of Raleigh, Wilders Grove Service Center, Solid Waste Services Facility. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Robert [Jacobs Engineering, NC (United States); Black, Bill [City of Raleigh, NC (United States); Battle, Fred [City of Raleigh, NC (United States)

    2015-07-22

    Final Report for DOE Grant EE0002808. Grant award was for technology demonstration of geothermal energy systems. One of the major objectives identified for the demonstration portion of the grant was to prove the viability of Ground Source Heat Pump (GSHP) systems in significantly reducing energy usage of HVAC and domestic water heating systems compared to traditional systems. Data were monitored and conclusions drawn, including estimating payback timeframes and documenting lessons learned.

  6. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    Energy Technology Data Exchange (ETDEWEB)

    Harrop, G.

    2003-02-27

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  7. The Design and Construction of the Advanced Mixed Waste Treatment Facility

    International Nuclear Information System (INIS)

    Harrop, G.

    2003-01-01

    The Advanced Mixed Treatment Project (AMWTP) privatized contract was awarded to BNFL Inc. in December 1996 and construction of the main facility commenced in August 2000. The purpose of the advanced mixed waste treatment facility is to safely treat plutonium contaminated waste, currently stored in drums and boxes, for final disposal at the Waste Isolation Pilot Plant (WIPP). The plant is being built at the Idaho National Engineering and Environmental Laboratory. Construction was completed in 28 months, to satisfy the Settlement Agreement milestone of December 2002. Commissioning of the related retrieval and characterization facilities is currently underway. The first shipment of pre-characterized waste is scheduled for March 2003, with AMWTP characterized and certified waste shipments from June 2003. To accommodate these challenging delivery targets BNFL adopted a systematic and focused construction program that included the use of a temporary structure to allow winter working, proven design and engineering principles and international procurement policies to help achieve quality and schedule. The technology involved in achieving the AMWTP functional requirements is primarily based upon a BNFL established pedigree of plant and equipment; applied in a manner that suits the process and waste. This technology includes the use of remotely controlled floor mounted and overhead power manipulators, a high power shredder and a 2000-ton force supercompactor with the attendant glove box suite, interconnections and automated material handling. The characterization equipment includes real-time radiography (RTR) units, drum and box assay measurement systems, drum head space gas sampling / analysis and drum venting, drum coring and sampling capabilities. The project adopted a particularly stringent and intensive pre-installation testing philosophy to ensure that equipment would work safely and reliably at the required throughput. This testing included the complete off site

  8. Cold Vacuum Drying facility personnel monitoring system design description (SYS 12); FINAL

    International Nuclear Information System (INIS)

    PITKOFF, C.C.

    1999-01-01

    This document describes the Cold Vacuum Drying Facility (CVDF) instrument air (IA) system that provides instrument quality air to the CVDF. The IA system provides the instrument quality air used in the process, HVAC, and HVAC instruments. The IA system provides the process skids with air to aid in the purging of the annulus of the transport cask. The IA system provides air for the solenoid-operated valves and damper position controls for isolation, volume, and backdraft in the HVAC system. The IA system provides air for monitoring and control of the HVAC system, process instruments, gas-operated valves, and solenoid-operated instruments. The IA system also delivers air for operating hand tools in each of the process bays

  9. The National Ignition Facility (NIF) and the issue of nonproliferation. Final study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-19

    NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States.

  10. First Commercial US Mixed Waste Vitrification Facility: Permits, Readiness Reviews, and Delisting of Final Wasteform

    International Nuclear Information System (INIS)

    Pickett, J.B.; Norford, S.W.; Diener, G.A.

    1998-01-01

    Westinghouse Savannah River Co. (WSRC) contracted GTS Duratek (Duratek) to construct and operate the first commercial vitrification facility to treat an F-006 mixed (radioactive/hazardous) waste in the United States. The permits were prepared and submitted to the South Carolina state regulators by WSRC - based on a detailed design by Duratek. Readiness Assessments were conducted by WSRC and Duratek at each major phase of the operation (sludge transfer, construction, cold and radioactive operations, and a major restart) and approved by the Savannah River Department of Energy prior to proceeding. WSRC prepared the first 'Upfront Delisting' petition for a vitrified mixed waste. Lessons learned with respect to the permit strategy, operational assessments, and delisting from this 'privatization' project will be discussed

  11. Management of radioactive material safety programs at medical facilities. Final report

    International Nuclear Information System (INIS)

    Camper, L.W.; Schlueter, J.; Woods, S.

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution's executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC's reporting and notification requirements are discussed, and a general description is given of how NRC's licensing, inspection and enforcement programs work

  12. The National Ignition Facility (NIF) and the issue of nonproliferation. Final study

    International Nuclear Information System (INIS)

    1995-01-01

    NIF, the next step proposed by DOE in a progression of Inertial Confinement Fusion (ICF) facilities, is expected to reach the goal of ICF capsule ignition in the laboratory. This report is in response to a request of a Congressman that DOE resolve the question of whether NIF will aid or hinder U.S. nonproliferation efforts. Both technical and policy aspects are addressed, and public participation was part of the decision process. Since the technical proliferation concerns at NIF are manageable and can be made acceptable, and NIF can contribute positively to U.S. arms control and nonproliferation policy goals, it is concluded that NIF supports the nuclear nonproliferation objectives of the United States

  13. Characterization of contaminated nuclear sites, facilities and materials: radioisotope and radiopharmaceutical manufacturers and suppliers. Final report

    International Nuclear Information System (INIS)

    1983-01-01

    The Environmental Protection Agency (EPA) is developing environmental protection standards for evaluating the risks and characterizing problems associated with disposal of radioactive wastes arising from decontamination and decommissioning DandD operations. Information on operations conducted at sites authorized to possess radioactive materials for the production and/or distribution of radioisotopes and radiopharmaceuticals was compiled and evaluated. This information was used to project the types, nature, and volumes of wastes which are likely to be generated during decontamination and decommissioning at representative facilities and identifying special problems that may occur. Radioisotope and radiopharmaceutical manufacturers have been grouped together because decommissioning operations will be similar. Nuclear pharmacies were also evaluated because of their increasing numbers and their role as middlemen between manufacturers and users of radiopharmaceuticals. The majority of the radioactive waste will arise from the decontamination of the laboratories, rather than the disposal of components

  14. Self streamlining wind tunnel: Further low speed testing and final design studies for the transonic facility

    Science.gov (United States)

    Wolf, S. W. D.

    1978-01-01

    Work was continued with the low speed self streamlining wind tunnel (SSWT) using the NACA 0012-64 airfoil in an effort to explain the discrepancies between the NASA Langley low turbulence pressure tunnel (LTPT) and SSWT results obtained with the airfoil stalled. Conventional wind tunnel corrections were applied to straight wall SSWT airfoil data, to illustrate the inadequacy of standard correction techniques in circumstances of high blockage. Also one SSWT test was re-run at different air speeds to investigate the effects of such changes (perhaps through changes in Reynold's number and freestream turbulence levels) on airfoil data and wall contours. Mechanical design analyses for the transonic self-streamlining wind tunnel (TSWT) were completed by the application of theoretical airfoil flow field data to the elastic beam and streamline analysis. The control system for the transonic facility, which will eventually allow on-line computer operation of the wind tunnel, was outlined.

  15. Management of radioactive material safety programs at medical facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Camper, L.W.; Schlueter, J.; Woods, S. [and others

    1997-05-01

    A Task Force, comprising eight US Nuclear Regulatory Commission and two Agreement State program staff members, developed the guidance contained in this report. This report describes a systematic approach for effectively managing radiation safety programs at medical facilities. This is accomplished by defining and emphasizing the roles of an institution`s executive management, radiation safety committee, and radiation safety officer. Various aspects of program management are discussed and guidance is offered on selecting the radiation safety officer, determining adequate resources for the program, using such contractual services as consultants and service companies, conducting audits, and establishing the roles of authorized users and supervised individuals; NRC`s reporting and notification requirements are discussed, and a general description is given of how NRC`s licensing, inspection and enforcement programs work.

  16. Emergency and backup power supplies at Department of Energy facilities: Augmented Evaluation Team -- Final report

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This report documents the results of the Defense Programs (DP) Augmented Evaluation Team (AET) review of emergency and backup power supplies (i.e., generator, uninterruptible power supply, and battery systems) at DP facilities. The review was conducted in response to concerns expressed by former Secretary of Energy James D. Watkins over the number of incidents where backup power sources failed to provide electrical power during tests or actual demands. The AET conducted a series of on-site reviews for the purpose of understanding the design, operation, maintenance, and safety significance of emergency and backup power (E&BP) supplies. The AET found that the quality of programs related to maintenance of backup power systems varies greatly among the sites visited, and often among facilities at the same site. No major safety issues were identified. However, there are areas where the AET believes the reliability of emergency and backup power systems can and should be improved. Recommendations for improving the performance of E&BP systems are provided in this report. The report also discusses progress made by Management and Operating (M&O) contractors to improve the reliability of backup sources used in safety significant applications. One area that requires further attention is the analysis and understanding of the safety implications of backup power equipment. This understanding is needed for proper graded-approach implementation of Department of Energy (DOE) Orders, and to help ensure that equipment important to the safety of DOE workers, the public, and the environment is identified, classified, recognized, and treated as such by designers, users, and maintainers. Another area considered important for improving E&BP system performance is the assignment of overall ownership responsibility and authority for ensuring that E&BP equipment performs adequately and that reliability and availability are maintained at acceptable levels.

  17. Final treatment of spent batteries by thermal plasma.

    Science.gov (United States)

    Cubas, Anelise Leal Vieira; Machado, Marina de Medeiros; Machado, Marília de Medeiros; Dutra, Ana Regina de Aguiar; Moecke, Elisa Helena Siegel; Fiedler, Haidi D; Bueno, Priscila

    2015-08-15

    The growth in the use of wireless devices, notebooks and other electronic products has led to an ever increasing demand for batteries, leading to these products being commonly found in inappropriate locations, with adverse effects on the environment and human health. Due to political pressure and according to the environmental legislation which regulates the destination of spent batteries, in several countries the application of reverse logistics to hazardous waste is required. Thus, some processes have been developed with the aim of providing an appropriate destination for these products. In this context, a method for the treatment of spent batteries using thermal plasma technology is proposed herein. The efficiency of the method was tested through the determination of parameters, such as total organic carbon, moisture content and density, as well as analysis by atomic absorption spectrometry, scanning electron microscopy and X-ray fluorescence using samples before and after inertization. The value obtained for the density was 19.15%. The TOC results indicated 8.05% of C in the batteries prior to pyrolisis and according to the XRF analysis Fe, S, Mn and Zn were the most stable elements in the samples (highest peaks). The efficiency of the paste inertization was 97% for zinc and 99.74% for manganese. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the electrolyte paste obtain from batteries. Copyright © 2015. Published by Elsevier Ltd.

  18. Electrokinetic treatment of contaminated soils, sludges, and lagoons. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wittle, J.K. [Electro-Petroleum, Inc., Wayne, PA (United States); Pamukcu, S. [Lehigh Univ., Bethlehem, PA (United States). Dept. of Civil Engineering

    1993-04-01

    The electrokinetic process is an emerging technology for in-situ soil decontamination, in which chemical species, both ionic and nonionic are transported to an electrode site in soil. These products are subsequently removed from the ground via collection systems engineered for each specific application. Electrokinetics refer to movement of water, ions and charged particles relative to one another under the action of an applied direct current electric field. In a porous compact matrix of surface charged particles such as soil, the ion containing pore fluid may be made to flow to collection sites under the applied field. This report describes the effort undertaken to investigate electrokinetically enhanced transport of soil contaminants in synthetic systems. These systems consisted of clay or clay-sand mixtures containing known concentration of a selected heavy metal salt solution or an organic compound. Metals, surrogate radio nuclides and organic compounds evaluated in the program were representatives of those found at a majority of DOE sites. Degree of removal of these metals from soil by the electrokinetic treatment process was assessed through the metal concentration profiles generated across the soil between the electrodes. The best removals, from about 85 to 95% were achieved at the anode side of the soil specimens. Transient pH change had an effect on the metal movement via transient creation of different metal species with different ionic mobilities, as well as changing of the surface characteristics of the soil medium.

  19. Final report of the decontamination and decommissioning of Building 39 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. The soil beneath Building 39 was radiologically contaminated and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  20. Final report of the decontamination and decommissioning of Building 6 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the domestic uranium procurement program funded by the U.S. Atomic Energy Commission. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Radiological contamination was identified in Building 6, and the building was demolished in 1992. The soil area within the footprint of the building has been remediated in accordance with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  1. Final report of the decontamination and decommissioning of Building 44 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-07-01

    The U.S. Department of Energy (DOE) Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, is also the remedial action contractor. Building 44 was radiologically contaminated and the building was demolished in 1994. The soil area within the footprint of the building was not contaminated; it complies with the identified standards and the area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  2. Mirror Fusion Test Facility-B (MFTF-B) axicell configuration: NbTi magnet system. Manufacturing/producibility final report. Volume 2

    International Nuclear Information System (INIS)

    Ritschel, A.J.; White, W.L.

    1985-05-01

    This Final MFTF-B Manufacturing/Producibility Report covers facilities, tooling plan, manufacturing sequence, schedule and performance, producibility, and lessons learned for the solenoid, axicell, and transition coils, as well as a deactivation plan, conclusions, references, and appendices

  3. Cost considerations for an ionising energy treatment facility

    International Nuclear Information System (INIS)

    Culpitt, R.A.

    1985-01-01

    Variables influencing the cost of food irradiation can be included under three broad headings: the physical characteristics of products to be treated; the operational characteristics of the plant to be used; costs of establishment and operation of an ionising energy treatment

  4. Polyvalent fuel treatment facility (TCP): shearing and dissolution of used fuel at La Hague facility

    Energy Technology Data Exchange (ETDEWEB)

    Brueziere, J.; Tribout-Maurizi, A.; Durand, L.; Bertrand, N. [Recycling Business Unit, AREVA, 1 place de la coupole, 92084 Paris La defense Cedex (France)

    2013-07-01

    Although many used nuclear fuel types have already been recycled, recycling plants are generally optimized for Light Water Reactor (LWR) UO{sub x} fuel. Benefits of used fuel recycling are consequently restricted to those fuels, with only limited capacity for the others like LWR MOX, Fast Reactor (FR) MOX or Research and Test Reactor (RTR) fuel. In order to recycle diverse fuel types, an innovative and polyvalent shearing and dissolving cell is planned to be put in operation in about 10 years at AREVA's La Hague recycling plant. This installation, called TCP (French acronym for polyvalent fuel treatment) will benefit from AREVA's industrial feedback, while taking part in the next steps towards a fast reactor fuel cycle development using innovative treatment solutions. Feasibility studies and R/Development trials on dissolution and shearing are currently ongoing. This new installation will allow AREVA to propose new services to its customers, in particular in term of MOX fuel, Research Test Reactors fuel and Fast Reactor fuel treatment. (authors)

  5. Argonne-West facility requirements for a radioactive waste treatment demonstration

    International Nuclear Information System (INIS)

    Dwight, C.C.; Felicione, F.S.; Black, D.B.; Kelso, R.B.; McClellan, G.C.

    1995-01-01

    At Argonne National Laboratory-West (ANL-W), near Idaho Falls, Idaho, facilities that were originally constructed to support the development of liquid-metal reactor technology are being used and/or modified to meet the environmental and waste management research needs of DOE. One example is the use of an Argonne-West facility to conduct a radioactive waste treatment demonstration through a cooperative project with Science Applications International Corporation (SAIC) and Lockheed Idaho Technologies Company. The Plasma Hearth Process (PBP) project will utilize commercially-adapted plasma arc technology to demonstrate treatment of actual mixed waste. The demonstration on radioactive waste will be conducted at Argonne's Transient Reactor Test Facility (TREAT). Utilization of an existing facility for a new and different application presents a unique set of issues in meeting applicable federal state, and local requirements as well as the additional constraints imposed by DOE Orders and ANL-W site requirements. This paper briefly describes the PHP radioactive demonstrations relevant to the interfaces with the TREAT facility. Safety, environmental design, and operational considerations pertinent to the PHP radioactive demonstration are specifically addressed herein. The personnel equipment, and facility interfaces associated with a radioactive waste treatment demonstration are an important aspect of the demonstration effort. Areas requiring significant effort in preparation for the PBP Project being conducted at the TREAT facility include confinement design, waste handling features, and sampling and analysis considerations. Information about the facility in which a radioactive demonstration will be conducted, specifically Argonne's TREAT facility in the case of PHP, may be of interest to other organizations involved in developing and demonstrating technologies for mixed waste treatment

  6. Delisting strategy for the Hanford Site 242-A Evaporator PUREX Plant Condensate Treatment Facility

    International Nuclear Information System (INIS)

    1992-04-01

    This document describes the strategy that the US Department of Energy, Richland Field Office intends to use in preparing the delisting petition for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Because the 242-A Evaporator/PUREX Plant Condensate Treatment Facility will not be operational until 1994, the delisting petition will be structured as an up-front petition based on the ''multiple waste treatment facility'' approach outline in the 1985 US Environmental Protection Agency's Petitions to Delist Hazardous Waste. The 242-A evaporator/PUREX Plant Condensate Treatment Facility effluent characterization data will not be available to support the delisting petition, because the delisting petition will be submitted to the US Environmental Protection Agency before start-up of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. Therefore, the delisting petition will be based on data collected during the pilot plant testing for the 242-A Evaporator/PUREX Plant Condensate Treatment Facility. This pilot plant testing will be conducted on synthetic waste. The composition of the synthetic waste will be based on: (1) constituents of regulatory concern, and (2) on process knowledge. The pilot plant testing will be performed to determine the removal efficiencies of the process equipment at concentrations greater than reasonably could be expected in the actual waste. This strategy document also describes the logic used to develop the synthetic waste, to develop the pilot plant testing program, and to prepare the delisting petition. This strategy document also described how full-scale operating data will be collected during initial operation of the 242-A Evaporator/PUREX Plant Condensate Treatment Facility to verify information presented in the delisting petition

  7. Use of information systems in Air Force medical treatment facilities in strategic planning and decision-making.

    Science.gov (United States)

    Yap, Glenn A; Platonova, Elena A; Musa, Philip F

    2006-02-01

    An exploratory study used Ansoff's strategic planning model as a framework to assess perceived effectiveness of information systems in supporting strategic business plan development at Air Force medical treatment facilities (MTFs). Results showed information systems were most effective in supporting historical trend analysis, strategic business plans appeared to be a balance of operational and strategic plans, and facilities perceived a greater need for new clinical, vice administrative, information systems to support strategic planning processes. Administrators believed information systems should not be developed at the local level and perceived information systems have the greatest impact on improving clinical quality outcomes, followed by ability to deliver cost effective care and finally, ability to increase market share.

  8. St. Louis demonstration final report: refuse processing plant equipment, facilities, and environmental evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Fiscus, D.E.; Gorman, P.G.; Schrag, M.P.; Shannon, L.J.

    1977-09-01

    The results are presented of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and the power plants. Data on plant material flows and operating parameters, plant operating costs, characteristics of plant material flows, and emissions from various processing operations were obtained during a testing program encompassing 53 calendar weeks. Refuse derived fuel (RDF) is the major product (80.6% by weight) of the refuse processing plant, the other being ferrous metal scrap, a marketable by-product. Average operating costs for the entire evaluation period were $8.26/Mg ($7.49/ton). The average overall processing rate for the period was 168 Mg/8-h day (185.5 tons/8-h day) at 31.0 Mg/h (34.2 tons/h). Future plants using an air classification system of the type used at the St. Louis demonstration plant will need an emissions control device for particulates from the large de-entrainment cyclone. Also in the air exhaust from the cyclone were total counts of bacteria and viruses several times higher than those of suburban ambient air. No water effluent or noise exposure problems were encountered, although landfill leachate mixed with ground water could result in contamination, given low dilution rates.

  9. Decontamination and decommissioning of the Argonne National Laboratory Building 350 Plutonium Fabrication Facility. Final report

    International Nuclear Information System (INIS)

    Kline, W.H.; Moe, H.J.; Lahey, T.J.

    1985-02-01

    In 1973, Argonne National Laboratory began consolidating and upgrading its plutonium-handling operations with the result that the research fuel-fabrication facility located in Building 350 was shut down and declared surplus. Sixteen of the twenty-three gloveboxes which comprised the system were disassembled and relocated for reuse or placed into controlled storage during 1974 but, due to funding constraints, full-scale decommissioning did not start until 1978. Since that time the fourteen remaining contaminated gloveboxes, including all internal and external equipment as well as the associated ventilation systems, have been assayed for radioactive content, dismantled, size reduced to fit acceptable packaging and sent to a US Department of Energy (DOE) transuranic retrievable-storage site or to a DOE low-level nuclear waste burial ground. The project which was completed in 1983, required 5 years to accomplish, 32 man years of effort, produced some 540 m 3 (19,000 ft 3 ) of radioactive waste of which 60% was TRU, and cost 2.4 million dollars

  10. Final report for the Idaho National Engineering Laboratory Central Facilities Area Landfill 2

    International Nuclear Information System (INIS)

    Doornbos, M.H.; Morgan, M.E.; Hubbell, J.M.

    1991-04-01

    This report summarize activities completed during FY-88 through FY-91 for the US Department of Energy's (DOE's) Hazardous Waste Remedial Actions Program (HAZWRAP) at the Idaho National Engineering Laboratory (INEL) Central Facilities Area (CFA) Landfill 2. The objectives of this program are to demonstrate new technologies or innovative uses of existing technologies for the identification and remediation of hazardous wastes within a municipal-type landfill. The site was chosen as a candidate site because it represents a problem typical of both DOE and public landfills. The HAZWRAP Technology Demonstration Project began at the INEL CFA Landfill 2 in 1987. During characterization and identification activities, several organic ''hotspots'' or anomalies were identified. Proposals were then solicited from the private sector for innovative technologies to remediate the isolated areas. Remediation was planned to be implemented using horizontal wells installed underneath a portion of the landfill. These innovative technologies and the well installation were planned to support the current goals of the DOE and the Environmental Protection Agency to treat hazardous waste in place. 2 refs., 2 figs., 2 tabs

  11. Underwater-manipulation system for measuring- and cutting tasks in dismantling decommissioned nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Stegemann, D.; Reimche, W.; Hansch, M.; Spitzer, M.

    1995-01-01

    Not only manipulators are necessary for dismantling and inspection of structure parts in decomissioned nuclear facilities, but flexible underwater-vehicles. Free-diving underwater-vehicles for inspection and dismantling tasks are still not developed and tested. Aim of the project is the development of sensors and devices for the position determination and the depth regulation. For inspection tasks an ultrasonic measurement and dosimeter device shall be built up. A measurement device has been developed which evaluates the ultrasonic time of flight from a transmitter at the vehicle to several receivers, installed in the reactor pressure vessel. The depth regulation is based on a pressure sensor and the direct control of the thrusters. The ultrasonic measurements are realized by an adapted ultrasonic card, the γ-dosimetry with an ionization chamber and a pA-amplifier. An acoustic orientation system was built up, which measures very accurately with one transmitter mounted on the vehicle and four receivers. Problem occur by reflection from the walls of the basin. The depth regulation is working faultless. The ultrasonic device is preferably used for distance measurement. The radiation measurement device was tested and mounted in the vehicle. (orig./HP) [de

  12. Grout for closure of the demonstration vault at the US DOE Hanford Facility. Final report

    International Nuclear Information System (INIS)

    Wakeley, L.D.; Ernzen, J.J.

    1992-08-01

    The Waterways Experiment Station (WES) developed a grout to be used as a cold- (nonradioactive) cap or void-fill grout between the solidified low-level waste and the cover blocks of a demonstration vault for disposal of phosphate-sulfate waste (PSW) at the US Department of Energy (DOE) Hanford Facility. The project consisted of formulation and evaluation of candidate grouts and selection of the best candidate grout, followed by a physical scale-model test to verify grout performance under project-specific conditions. Further, the project provided data to verify numerical models (accomplished elsewhere) of stresses and isotherms inside the Hanford demonstration vault. Evaluation of unhardened grout included obtaining data on segregation, bleeding, flow, and working time. For hardened grout, strength, volume stability, temperature rise, and chemical compatibility with surrogate wasteform grout were examined. The grout was formulated to accommodate unique environmental boundary conditions (vault temperature = 45 C) and exacting regulatory requirements (mandating less than 0.1% shrinkage with no expansion and no bleeding); and to remain pumpable for a minimum of 2 hr. A grout consisting of API Class H oil-well cement, an ASTM C 618 Class F fly ash, sodium bentonite clay, and a natural sand from the Hanford area met performance requirements in laboratory studies. It is recommended for use in the DOE Hanford demonstration PSW vault

  13. Accidental nuclear excursion recuplex operation 234-5 facility: Final medical report

    Energy Technology Data Exchange (ETDEWEB)

    Fuqua, P. A.

    1962-04-07

    The April 7, 1962 criticality accident involving human exposures was the first to have occurred in any production facility at Hanford. The accidental nuclear excursion did not result in any mechanical damage or spread of contamination. Three employees received over-exposure to gamma and neutron radiation. None were fatally exposed and in each case the over-exposure was recognized promptly. Following an initial period of medical observation and testing, the men were released to work. They continued to be followed clinically. Clinical studies performed were hematological procedures including leukocyte chromosome aberrations, morphologically aberrant blood cells, bone marrow evaluations, blood chemistry determinations, amino acid excretion studies, seminal fluid, urinary gonadotropins and estrogen excretion studies, testicular biopsies and crystalline lens examinations. These studies, along with a brief description of the accident and of the dosimetry, are summarized in this report by those participating in the studies. In view of the dose ranges received in these cases, both the negative and positive findings are considered to be of unusual interest due to the lack of knowledge of effects following human exposures at these levels.

  14. Shutdown and degradation: Optimization of thermal cutting processes for the dismantling of nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Schultz, H.; Hammer, G.; Hampe, A.; Homburg, A.

    1996-01-01

    Cutting processes are required for the dismantling of nuclear facilities which emit only a minimum of contaminated material in the form of shavings, sparks, dust, steam concentrate etc. and equipment which is easy to handle and can be remote controlled. A check of the usual mechanical, thermal and thermo-mechanical cutting procedures showed to what varying extent they are suitable for these tasks. Also the laser beam cutting was able to reduce the material discharge by optimal joints. For the investigation, the plasma cutting and the laser beam cutting were used with the aim of reducing considerably the material discharge by changing the adjust and device setting data for theses cases. The adapting of the speed and the amounts of gas turned out to be effective measures in reducing discharge. Adhesion of metal mass and slag in the joint edge could be achieved with aggressive bearth formation. The expectations made of the project could be fulfilled and process parameters for a pollutant optimised cutting determined. (orig.) [de

  15. Defense Waste Processing Facility: Savannah River Plant, Aiken, SC. Final environmental impact statement

    International Nuclear Information System (INIS)

    1982-02-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste (HLW) currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility (DWPF) at the SRP site. The SRP is a major US Department of Envgy (DOE) installation for the production of nuclear materials for national defense. Approximately 83 x 10 3 m 3 (22 million gal) of HLW currently are stored in tanks at the SRP site. The proposed DWPF would process the liquid HLW generated by SRP operations into a stable form for ultimate disposal. This EIS assesses the effects of the proposed immobilization project on land use, air quality, water quality, ecological systems, health risk, cultural resources, endangered species, wetlands protection, resource depletion, and regional social and economic systems. The radiological and nonradiological risks of transporting the immobilized wastes are assessed. The environmental impacts of disposal alternatives have recently been evaluated in a previous EIS and are therefore only summarized in this EIS

  16. ESF [Exploratory Shaft Facility] impact evaluation report: Volume 2: Final report

    International Nuclear Information System (INIS)

    1985-08-01

    This report assesses the impacts of integrating an Exploratory Shaft Facility (ESF) with a high-level nuclear waste repository in salt. An evaluation to identify integration impacts is described for two specific ESF configurations (Cases 1 and 2) for each of the seven sites. These configurations are an ESF which uses two of the full size repository shafts, and an ESF with one 10-ft and one 22-ft diameter shaft. An evaluation of an ESF configuration (Case 3) with two 12-ft diameter shafts at three of the seven sites is also described. These sites are Deaf Smith, Davis Canyon, and Richton Dome. A fourth evaluation (Case 4) for the Deaf Smith site only, addresses a ''fast track'' subsurface development plan to allow waste emplacement by 1998. A fifth evaluation (Case 5), provides site-specific ES locations, for the three sites included in Case 3, which are supportive of a shaft siting study prepared by ONWI. The report presents development schedules depicting construction activities and time frames commencing with receipt of the repository Construction Authorization and proceeding to initiation of emplacement operations. These schedules are site specific and are presented for each of the five cases

  17. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume V of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear energy research and the development, production, and testing of nuclear weapons at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives, which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for created (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the No Action Alternative, which includes only existing of approved waste management facilities, the alternatives for each of the waste-type configurations include Decentralized, Regionalized, and Centralized Alternatives for using existing and operating new waste management facilities. However, the siting, construction, and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  18. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume I of V

    International Nuclear Information System (INIS)

    1997-05-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type. This information includes the cumulative impacts of combining future siting configurations for the five waste types and the collective impacts of other past, present, and reasonably foreseeable future activities. The selected waste management facilities being considered for these different waste types are treatment and disposal facilities for low-level mixed waste; treatment and disposal facilities for low-level waste; treatment and storage facilities for transuranic waste in the event that treatment is required before disposal; storage facilities for treated (vitrified) high-level waste canisters; and treatment of nonwastewater hazardous waste by DOE and commercial vendors. In addition to the no action alternative, which includes only existing or approved waste management facilities, the alternatives for each of the waste type configurations include decentralized, regionalized, and centralized alternatives for using existing and operating new waste management facilities. However, the siting, construction and operations of any new facility at a selected site will not be decided until completion of a sitewide or project-specific environmental impact review

  19. Operation and Maintenance Manual for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Norm Stanley

    2011-02-01

    This Operation and Maintenance Manual lists operator and management responsibilities, permit standards, general operating procedures, maintenance requirements and monitoring methods for the Sewage Treatment Plant at the Central Facilities Area at the Idaho National Laboratory. The manual is required by the Municipal Wastewater Reuse Permit (LA-000141-03) the sewage treatment plant.

  20. Improving the Quality of Services in Residential Treatment Facilities: A Strength-Based Consultative Review Process

    Science.gov (United States)

    Pavkov, Thomas W.; Lourie, Ira S.; Hug, Richard W.; Negash, Sesen

    2010-01-01

    This descriptive case study reports on the positive impact of a consultative review methodology used to conduct quality assurance reviews as part of the Residential Treatment Center Evaluation Project. The study details improvement in the quality of services provided to youth in unmonitored residential treatment facilities. Improvements were…

  1. First Dutch Consensus of Pain Quality Indicators for Pain Treatment Facilities

    NARCIS (Netherlands)

    Meij, N. de; Grotel, M. van; Patijn, J.; Weijden, T.T. van der; Kleef, M. van

    2016-01-01

    BACKGROUND: There is a general consensus about the need to define and improve the quality of pain treatment facilities. Although guidelines and recommendations to improve the quality of pain practice management have been launched, provision of appropriate pain treatment is inconsistent and the

  2. Facilities for treatment of radioactive contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1981-02-01

    The standard applies to processes applied in facilities for treatment of radioactive contaminated water in nuclear power plants with LWR- and HTR-type reactors. It does not apply to the treatment of concentrates obtained in the decontamination of water. (orig.) [de

  3. Ex situ bioremediation of mineral oil in soils: Aerated pile treatment. Final report

    International Nuclear Information System (INIS)

    Graves, D.

    1998-04-01

    Under a contract with Southern Company Services, a pilot-scale evaluation of mineral oil biodegradation was conducted at Plant Mitchell. The evaluation consisted of two demonstrations to examine land treatment and aerated pile treatment of soil contaminated with the mineral insulating oil used in electrical transformers. Treatment of mineral oil contaminated soil is problematic in the State of Georgia and throughout the US because current practice is to excavate and landfill the contaminated soil. In many cases, the cost associated with these activities far exceeds the environmental risk of mineral oil in soil. This project was designed to evaluate the performance of bioremediation for the treatment of mineral oil in soil. Testing was carried out in a demonstration facility prepared by Georgia Power Company. The facility consisted of 12 independent treatment cells constructed on a concrete pad and covered with a roof

  4. Progress on the treatment of radioactive waste from reprocessing facilities

    International Nuclear Information System (INIS)

    Krause, H.

    With the opening of large-scale reprocessing plants, waste treatment will have to be dealt with on a new order of magnitude. Fundamental solutions to the waste problems are visible in the current lectures. Many procedures are still under study at the laboratory scale or somewhat above; much, therefore, remains to be done in order to bring such procedures to the requisite large scale magnitude in the available short time. Much also remains to be accomplished in the way of improving processes which are barely adequate, and rendering them completely satisfactory for an effective waste disposal system

  5. Failure prevention with stress measurement for dismantling of nuclear facilities. Final report

    International Nuclear Information System (INIS)

    Komber, T.; Reimche, W.; Bach, F.W.

    2003-07-01

    The dismantling of nuclear facilities is in progress since 20 years in Germany. Practical experiences in decommissioning have shown, that problem can occur during dismantling operations caused by release of residual stresses. In this case cutting parts or cutting tools get jammed if mechanical cutting techniques are used. The aim of this research work was to develop measuring techniques for the determination of the stress state in RPV, to predict the deformation during dismantling operations. This can serve as additional base for improved decommissioning planning and for time optimised dismantling. For determination of the stress state in components two small and inexpensive measuring techniques were new designed, for remote-controlled on-site use in atmosphere and under water. For the nondestructive determination of the directional stress state, based on the magnetostriction and the Harmonic-Analysis of alternating magnetic fields, a new developed rotating sensor is in use with a principal magnetisation direction. Because of the mainly isotropic material properties and the directional stresses, measured Harmonic values are influenced mainly by the stress state in the surface areas. In this way it is possible to determine the stress state qualitatively and the direction of principal stresses in the surface areas of the component. As an alternative to the established wire strain gauge, which remote-controlled application is still not possible under water, a new slot jet cutting strain control technique was designed. This technique detects the deformation in the surface after stresses are cut free by a water jet. So the stress state could be determined quantitatively in the surface and assessed in the depth. With the help of these two measuring techniques it is possible to characterize the stress state along a planned cutting line. The use of an adapted FEM simulation enables to calculate and determine the deformation of the cutting gap beforehand. These information

  6. Storage fee analysis for a nuclear waste terminal storage facility. Final report

    International Nuclear Information System (INIS)

    1976-09-01

    A model was developed for determining a pricing schedule designed to recover federal government costs incurred in the development, design, construction, operation, decommissioning, and surveillance of a federal repository for high-level waste generated by the commercial nuclear power industry. As currently constructed, the model computes current dollar prices on a yearly basis for a single unit charge or a split fee based upon two user-provided quantity flows. Over the period of facility operation, the computed-cost schedule shows variability on a year-to-year basis only within specified ranges. The model uses as basic input data: cost schedule for the federal repository; quantity flow schedule for each factor to be charged; schedule for escalation rate, discount rate, and interest rate; and fraction of costs to be recovered on each quantity flow if the split-fee option is used. The model allows testing of these variables in order to determine the relative significance of each component with regard to cost to, and impact on, the nuclear power industry. Another feature of the model is its versatility. Not only is the user able to specify the percent of total costs to be covered by each method of fee assessment listed above but also the user can specify a revenue-cost ratio, an option that would prove useful in trying to assess the general uncertainty involved when dealing in the future. In addition, the model accepts either current-dollar or constant-dollar cost measures, and in the case of the latter escalates the costs with user-provided assumptions

  7. Final master work plan : environmental investigations at former CCC/USDA facilities in Kansas, 2002 revision.

    Energy Technology Data Exchange (ETDEWEB)

    Burton, J. C.; Environmental Research

    2003-01-23

    The Commodity Credit Corporation (CCC) of the U.S. Department of Agriculture (USDA) has entered into an interagency agreement with the U.S. Department of Energy (DOE) under which Argonne National Laboratory provides technical assistance for hazardous waste site characterization and remediation for the CCC/USDA. Carbon tetrachloride is the contaminant of primary concern at sites in Kansas where former CCC/USDA grain storage facilities were located. Argonne applies its QuickSite(reg sign) Expedited Site Characterization (ESC) approach to these former facilities. The QuickSite environmental site characterization methodology is Argonne's proprietary implementation of the ESC process (ASTM 1998). Argonne has used this approach at several former CCC/USDA facilities in Kansas, including Agenda, Agra, Everest, and Frankfort. The Argonne ESC approach revolves around a multidisciplinary, team-oriented approach to problem solving. The basic features and steps of the QuickSite methodology are as follows: (1) A team of scientists with diverse expertise and strong field experience is required to make the process work. The Argonne team is composed of geologists, geochemists, geophysicists, hydrogeologists, chemists, biologists, engineers, computer scientists, health and safety personnel, and regulatory staff, as well as technical support staff. Most of the staff scientists are at the Ph.D. level; each has on average, more than 15 years of experience. The technical team works together throughout the process. In other words, the team that plans the program also implements the program in the field and writes the reports. More experienced scientists do not remain in the office while individuals with lesser degrees or experience carry out the field work. (2) The technical team reviews, evaluates, and interprets existing data for the site and the contaminants there to determine which data sets are technically valid and can be used in initially designing the field program. A basic

  8. Treatment compliance and challenges among tuberculosis patients across selected health facilities in Osun State Nigeria.

    Science.gov (United States)

    Ajao, K O; Ogundun, O A; Afolabi, O T; Ojo, T O; Atiba, B P; Oguntunase, D O

    2014-12-01

    Tuberculosis (TB) is a major public health problem in the world and Africa has approximately one quarter of the world's cases. One of the greatest challenges facing most TB programmes is the non-compliance to TB treatment among TB patients. This study aimed at determining the challenges of management of tuberculosis (TB) across selected Osun State health facilities. The study employed a descriptive cross-sectional design. A semi-structured questionnaire was used to collect data from 102 TB patients in the health facilities. The instrument measured socio-demographic variables, patient related factors, socio-economic variables, health care system related factors to TB disease and treatment. Data were analysed and summarized using descriptive and inferential statistics. Statistical significance was placed at p facilities (χ2 = 21.761, p facility and patient-related factors were largely responsible.

  9. Development of an Integrated Leachate Treatment Solution for the Port Granby Waste Management Facility - 12429

    Energy Technology Data Exchange (ETDEWEB)

    Conroy, Kevin W. [Golder Associates Inc., Lakewood, Colorado (United States); Vandergaast, Gerald [Atomic Energy of Canada Limited, Port Hope, Ontario (Canada)

    2012-07-01

    The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated into the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)

  10. Engineering report for interim solids removal modifications of the Steam Plant Wastewater Treatment Facility

    International Nuclear Information System (INIS)

    1995-04-01

    The Steam Plant Wastewater Treatment Facility (SPWTF) treats wastewater from the Y-12 Plant coal yard, steam plant, and water demineralizer facility. The facility is required to comply with National Pollutant Discharge Elimination System (NPDES) standards prior to discharge to East Fork Poplar Creek (EFPC). The existing facility was designed to meet Best Available Technology (BAT) standards and has been in operation since 1988. The SPWTF has had intermittent violations of the NPDES permit primarily due to difficulties in complying with the limit for total iron of 1.0 ppM. A FY-1997 Line Item project, SPWTF Upgrades, is planned to improve the capabilities of the SPWTF to eliminate non-compliances with the permit limits. The intent of the Interim Solids Removal Modification project is to improve the SPWTF effluent quality and to provide pilot treatment data to assist in the design and implementation of the SPWTF Upgrades Line Item Project

  11. Concept and Idea-Project for Yugoslav Low and Intermediate level Radioactive Waste Materials Final Disposal Facility

    International Nuclear Information System (INIS)

    Peric, A.

    1997-01-01

    Encapsulation of rad waste in a mortar matrix and displacement of such solidified waste forms into the shallow land burial system, engineered trench system type is suggested concept for the final disposal of low and intermediate level rad waste. The mortar-rad waste mixtures are cured in containers of either concrete or metal for an appropriate period of time, after which solidified rad waste-mortar monoliths are then placed in the engineered trench system, parallelepiped honeycomb structure. Trench consists of vertical barrier-walls, bottom barrier-floors, surface barrier-caps and permeable-reactive walls. Surroundings of the trench consists of buffer barrier materials, mainly clay. Each segment of the trench is equipped with the independent drainage system, as a part of the main drainage. Encapsulation of each filled trench honeycomb segment is performed with concrete cap. Completed trench is covered with impermeable plastic foil and soil leaner, preferably clay. Paper presents an overview of the final disposal facility engineered trench system type. Advantages in comparison with other types of final disposal system are given. (author)

  12. Modeling Accessibility of Screening and Treatment Facilities for Older Adults using Transportation Networks.

    Science.gov (United States)

    Zhang, Qiuyi; Northridge, Mary E; Jin, Zhu; Metcalf, Sara S

    2018-04-01

    Increased lifespans and population growth have resulted in an older U.S. society that must reckon with the complex oral health needs that arise as adults age. Understanding accessibility to screening and treatment facilities for older adults is necessary in order to provide them with preventive and restorative services. This study uses an agent-based model to examine the accessibility of screening and treatment facilities via transportation networks for older adults living in the neighborhoods of northern Manhattan, New York City. Older adults are simulated as socioeconomically distinct agents who move along a GIS-based transportation network using transportation modes that mediate their access to screening and treatment facilities. This simulation model includes four types of mobile agents as a simplifying assumption: walk, by car, by bus, or by van (i.e., a form of transportation assistance for older adults). These mobile agents follow particular routes: older adults who travel by car, bus, and van follow street roads, whereas pedestrians follow walkways. The model enables the user to focus on one neighborhood at a time for analysis. The spatial dimension of an older adult's accessibility to screening and treatment facilities is simulated through the travel costs (indicated by travel time or distance) incurred in the GIS-based model environment, where lower travel costs to screening and treatment facilities imply better access. This model provides a framework for representing health-seeking behavior that is contextualized by a transportation network in a GIS environment.

  13. Quantifying greenhouse gas emissions from waste treatment facilities

    DEFF Research Database (Denmark)

    Mønster, Jacob

    to be in-stalled in any vehicle and thereby enabling measurements wherever there were roads. The validation of the measurement method was done by releasing a controlled amount of methane and quantifying the emission using the release of tracer gas. The validation test showed that even in areas with large...... treatment plants. The PhD study reviewed and evaluated previously used methane measurement methods and found the tracer dispersion method promising. The method uses release of tracer gas and the use of mobile equipment with high analytical sensitivity, to measure the downwind plumes of methane and tracer...... ranged from 10 to 92 kg per hour and was found to change in even short timescales of a few hours. The periods with large emissions correlated with a drop in methane utilization, indicating that emissions came from the digesters tanks or gas storage/use. The measurements indicated that the main emissions...

  14. Design and Shielding of Radiotherapy Treatment Facilities; IPEM Report 75, 2nd Edition

    Science.gov (United States)

    Horton, Patrick; Eaton, David

    2017-07-01

    Design and Shielding of Radiotherapy Treatment Facilities provides readers with a single point of reference for protection advice to the construction and modification of radiotherapy facilities. The book assembles a faculty of national and international experts on all modalities including megavoltage and kilovoltage photons, brachytherapy and high-energy particles, and on conventional and Monte Carlo shielding calculations. This book is a comprehensive reference for qualified experts and radiation-shielding designers in radiation physics and also useful to anyone involved in the design of radiotherapy facilities.

  15. SEISMIC DESIGN REQUIREMENTS SELECTION METHODOLOGY FOR THE SLUDGE TREATMENT and M-91 SOLID WASTE PROCESSING FACILITIES PROJECTS

    International Nuclear Information System (INIS)

    RYAN GW

    2008-01-01

    In complying with direction from the U.S. Department of Energy (DOE), Richland Operations Office (RL) (07-KBC-0055, 'Direction Associated with Implementation of DOE-STD-1189 for the Sludge Treatment Project,' and 08-SED-0063, 'RL Action on the Safety Design Strategy (SDS) for Obtaining Additional Solid Waste Processing Capabilities (M-91 Project) and Use of Draft DOE-STD-I 189-YR'), it has been determined that the seismic design requirements currently in the Project Hanford Management Contract (PHMC) will be modified by DOE-STD-1189, Integration of Safety into the Design Process (March 2007 draft), for these two key PHMC projects. Seismic design requirements for other PHMC facilities and projects will remain unchanged. Considering the current early Critical Decision (CD) phases of both the Sludge Treatment Project (STP) and the Solid Waste Processing Facilities (M-91) Project and a strong intent to avoid potentially costly re-work of both engineering and nuclear safety analyses, this document describes how Fluor Hanford, Inc. (FH) will maintain compliance with the PHMC by considering both the current seismic standards referenced by DOE 0 420.1 B, Facility Safety, and draft DOE-STD-1189 (i.e., ASCE/SEI 43-05, Seismic Design Criteria for Structures, Systems, and Components in Nuclear Facilities, and ANSI ANS 2.26-2004, Categorization of Nuclear Facility Structures, Systems and Components for Seismic Design, as modified by draft DOE-STD-1189) to choose the criteria that will result in the most conservative seismic design categorization and engineering design. Following the process described in this document will result in a conservative seismic design categorization and design products. This approach is expected to resolve discrepancies between the existing and new requirements and reduce the risk that project designs and analyses will require revision when the draft DOE-STD-1189 is finalized

  16. Malaria prevalence and treatment of febrile patients at health facilities and medicine retailers in Cameroon.

    Science.gov (United States)

    Mangham, Lindsay J; Cundill, Bonnie; Achonduh, Olivia A; Ambebila, Joel N; Lele, Albertine K; Metoh, Theresia N; Ndive, Sarah N; Ndong, Ignatius C; Nguela, Rachel L; Nji, Akindeh M; Orang-Ojong, Barnabas; Wiseman, Virginia; Pamen-Ngako, Joelle; Mbacham, Wilfred F

    2012-03-01

    To investigate the quality of malaria case management in Cameroon 5 years after the adoption of artemisinin-based combination therapy (ACT). Treatment patterns were examined in different types of facility, and the factors associated with being prescribed or receiving an ACT were investigated. A cross-sectional cluster survey was conducted among individuals of all ages who left public and private health facilities and medicine retailers in Cameroon and who reported seeking treatment for a fever. Prevalence of malaria was determined by rapid diagnostic tests (RDTs) in consenting patients attending the facilities and medicine retailers. Among the patients, 73% were prescribed or received an antimalarial, and 51% were prescribed or received an ACT. Treatment provided to patients significantly differed by type of facility: 65% of patients at public facilities, 55% of patients at private facilities and 45% of patients at medicine retailers were prescribed or received an ACT (P = 0.023). The odds of a febrile patient being prescribed or receiving an ACT were significantly higher for patients who asked for an ACT (OR = 24.1, P < 0.001), were examined by the health worker (OR = 1.88, P = 0.021), had not previously sought an antimalarial for the illness (OR = 2.29, P = 0.001) and sought treatment at a public (OR = 3.55) or private facility (OR = 1.99, P = 0.003). Malaria was confirmed in 29% of patients and 70% of patients with a negative result were prescribed or received an antimalarial. Malaria case management could be improved. Symptomatic diagnosis is inefficient because two-thirds of febrile patients do not have malaria. Government plans to extend malaria testing should promote rational use of ACT; though, the introduction of rapid diagnostic testing needs to be accompanied by updated clinical guidelines that provide clear guidance for the treatment of patients with negative test results. © 2011 Blackwell Publishing Ltd.

  17. Nevada Test Site site treatment plan. Final annual update. Revision 1

    International Nuclear Information System (INIS)

    1998-04-01

    A Site Treatment Plan (STP) is required for facilities at which the US Department of Energy Nevada Operations Office (DOE/NV) generates or stores mixed waste (MW), defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act (RCRA) and a radioactive material subject to the Atomic Energy Act. This STP was written to identify specific treatment facilities for treating DOE/NV generated MW and provides proposed implementation schedules. This STP was approved by the Nevada Division of Environmental Protection (NDEP) and provided the basis for the negotiation and issuance of the FFCAct Consent Order (CO) dated March 6, 1996. The FFCAct CO sets forth stringent regulatory requirements to comply with the implementation of the STP

  18. Regional waste treatment facilities with underground monolith disposal for all low-heat-generating nuclear wastes

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1982-01-01

    An alternative system for treatment and disposal of all ''low-heat-generating'' nuclear wastes from all sources is proposed. The system, Regional Waste Treatment Facilities with Underground Monolith Disposal (RWTF/UMD), integrates waste treatment and disposal operations into single facilities at regional sites. Untreated and/or pretreated wastes are transported from generation sites such as reactors, hospitals, and industries to regional facilities in bulk containers. Liquid wastes are also transported in bulk after being gelled for transport. The untreated and pretreated wastes are processed by incineration, crushing, and other processes at the RWTF. The processed wastes are mixed with cement. The wet concrete mixture is poured into large low-cost, manmade caverns or deep trenches. Monolith dimensions are from 15 to 25 m wide, and 20 to 60 m high and as long as required. This alternative waste system may provide higher safety margins in waste disposal at lower costs

  19. Treatment and final disposal of nuclear waste. Siting of a deep repository

    International Nuclear Information System (INIS)

    1992-09-01

    Systems and facilities in the program for demonstration deposition of nuclear waste are presented. The siting process is described, from the general studies to the ultimate goal, where a permit to start demonstration deposition has been obtained. National and foreign experiences of siting issues are accounted for. Finally, the structure and plan for work for 1993-98 are outlined. 46 refs, 15 figs, 5 tabs

  20. Innovative and adaptive technologies in decommissioning of nuclear facilities. Final report of a coordinated research project 2004-2008

    International Nuclear Information System (INIS)

    2008-10-01

    There are dozens of old reactors and other nuclear facilities worldwide that are either being actively dismantled or are candidates for decommissioning in the near term. A significant proportion of these facilities are situated in Member States or institutions that do not have adequate expertise and technologies for planning and implementing state of the art decommissioning projects. The technology selection process is critical in that regard. The main objective of the IAEA technical activities on decommissioning is to promote the exchange of lessons learned in order to improve the technologies, thereby contributing to successful planning and implementation of decommissioning. This should be achieved through a better understanding of the decision making process in technology comparison and selection and relevant issues affecting the entire decommissioning process. The specific objectives of the Coordinated Research Project (CRP) on Innovative and Adaptive Technologies in Decommissioning of Nuclear Facilities include the following general aspects: (a) To establish methodologies and data needs for developing concepts and approaches relevant to technology comparison and selection in decommissioning; (b) To improve and expand the database on applications and performance of various types of decommissioning technologies; (c) To address specific issues for individual decommissioning technologies and generate data relevant to their comparison and selection. It is also expected that this project, and in particular the papers collected in this TECDOC, will draw Member States' attention to the practicality and achievability of timely planning and implementation of decommissioning, especially for many smaller projects. Concluding reports that summarized the work undertaken under the aegis of the CRP were presented at the third and final research coordination meeting held in Rez, Czech Republic, 3-7 December 2007, and collected in this technical publication. Operating

  1. Geothermal heating retrofit at the Utah State Prison Minimum Security Facility. Final report, March 1979-January 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    This report is a summary of progress and results of the Utah State Prison Geothermal Space Heating Project. Initiated in 1978 by the Utah State Energy Office and developed with assistance from DOE's Division of Geothermal and Hydropower Technologies PON program, final construction was completed in 1984. The completed system provides space and water heating for the State Prison's Minimum Security Facility. It consists of an artesian flowing geothermal well, plate heat exchangers, and underground distribution pipeline that connects to the existing hydronic heating system in the State Prison's Minimum Security Facility. Geothermal water disposal consists of a gravity drain line carrying spent geothermal water to a cooling pond which discharges into the Jordan River, approximately one mile from the well site. The system has been in operation for two years with mixed results. Continuing operation and maintenance problems have reduced the expected seasonal operation from 9 months per year to 3 months. Problems with the Minimum Security heating system have reduced the expected energy contribution by approximately 60%. To date the system has saved the prison approximately $18,060. The total expenditure including resource assessment and development, design, construction, performance verification, and reporting is approximately $827,558.

  2. Construction and operation of a tritium extraction facility at the Savannah River Site. Final environmental impact statement

    International Nuclear Information System (INIS)

    1999-03-01

    DOE proposes to construct and operate a Tritium Extraction Facility (TEF) at H Area on the Savannah River Site (SRS) to provide the capability to extract tritium from commercial light water reactor (CLWR) targets and from targets of similar design. The proposed action is also DOE's preferred alternative. An action alternative is to construct and operate TEF at the Allied General Nuclear Services facility, which is adjacent to the eastern side of the SRS. Under the no-action alternative DOE could incorporate tritium extraction capabilities in the accelerator for production of tritium. This EIS is linked to the Final Programmatic Environmental Impact Statement for Tritium Supply and Recycling, from which DOE determined that it would produce tritium either in an accelerator or in a commercial light water reactor. The purpose of the proposed action and alternatives evaluated in this EIS is to provide tritium extraction capability to support either tritium production technology. The EIS assesses the environmental impacts from the proposed action and the alternatives, including the no action alternative

  3. Auditable Safety Analysis and Final Hazard Classification for the 105-N Reactor Zone and 109-N Steam Generator Zone Facility

    International Nuclear Information System (INIS)

    Kloster, G.L.

    1998-07-01

    This document is a graded auditable safety analysis (ASA) and final hazard classification (FHC) for the Reactor/Steam Generator Zone Segment. The Reactor/Steam Generator Zone Segment, part of the N Reactor Complex, that is also known as the Reactor Building and Steam Generator Cells. The installation of the modifications described within to support surveillance and maintenance activities are to be completed by July 1, 1999. The surveillance and maintenance activities addressed within are assumed to continue for the next 15- 20 years, until the initiation of facility D ampersand D (i.e., Interim Safe Storage). The graded ASA in this document is in accordance with EDPI-4.30-01, Rev. 1, Safety Analysis Documentation, (BHI-DE-1) and is consistent with guidance provided by the U.S. Department of Energy. This ASA describes the hazards within the facility and evaluates the adequacy of the measures taken to reduce, control, or mitigate the identified hazards. This document also serves as the FHC for the Reactor/Steam Generator Zone Segment. This FHC is developed through the use of bounding accident analyses that envelope the potential exposures to personnel

  4. ENERGY EFFICIENCY UPGRADES FOR SANITATION FACILITIES IN SELAWIK, AK FINAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    POLLIS, REBECCA

    2014-10-17

    The Native Village of Selawik is a federally recognized Alaskan tribe, located at the mouth of the Selawik River, about 90 miles east of Kotzebue in northwest Alaska. Due to the community’s rural location and cold climate, it is common for electric rates to be four times higher than the cost urban residents pay. These high energy costs were the driving factor for Selawik pursuing funding from the Department of Energy in order to achieve significant energy cost savings. The main objective of the project was to improve the overall energy efficiency of the water treatment/distribution and sewer collection systems in Selawik by implementing the retrofit measures identified in a previously conducted utility energy audit. One purpose for the proposed improvements was to enable the community to realize significant savings associated with the cost of energy. Another purpose of the upgrades was to repair the vacuum sewer system on the west side of Selawik to prevent future freeze-up problems during winter months.

  5. Economic impacts of zebra mussels on drinking water treatment and electric power generation facilities.

    Science.gov (United States)

    Connelly, Nancy A; O'Neill, Charles R; Knuth, Barbara A; Brown, Tommy L

    2007-07-01

    Invasions of nonnative species such as zebra mussels can have both ecological and economic consequences. The economic impacts of zebra mussels have not been examined in detail since the mid-1990s. The purpose of this study was to quantify the annual and cumulative economic impact of zebra mussels on surface water-dependent drinking water treatment and electric power generation facilities (where previous research indicated the greatest impacts). The study time frame was from the first full year after discovery in North America (Lake St. Clair, 1989) to the present (2004); the study area was throughout the mussels' North American range. A mail survey resulted in a response rate of 31% for electric power companies and 41% for drinking water treatment plants. Telephone interviews with a sample of nonrespondents assessed nonresponse bias; only one difference was found and adjusted for. Over one-third (37%) of surveyed facilities reported finding zebra mussels in the facility and almost half (45%) have initiated preventive measures to prevent zebra mussels from entering the facility operations. Almost all surveyed facilities (91%) with zebra mussels have used control or mitigation alternatives to remove or control zebra mussels. We estimated that 36% of surveyed facilities experienced an economic impact. Expanding the sample to the population of the study area, we estimated 267 million dollars (BCa 95% CI = 161 million dollars - 467 million dollars) in total economic costs for electric generation and water treatment facilities through late 2004, since 1989. Annual costs were greater (44,000 dollars/facility) during the early years of zebra mussel infestation than in recent years (30,000 dollars). As a result of this and other factors, early predictions of the ultimate costs of the zebra mussel invasion may have been excessive.

  6. EFFLUENT TREATMENT FACILITY (ETF) WASTE STREAM STABILIZATION TESTING

    International Nuclear Information System (INIS)

    COOKE; LOCKREM; AVILA; KOCI

    2005-01-01

    The U.S. Department of Energy Hanford Site, the location of plutonium production for the US nuclear weapons program, is the focal point of a broad range of waste remediation efforts. This presentation will describe the development of cementitious waste forms for evaporated Hanford waste waters from several sources. Basin 42 waste water and simulants of proposed Waste Treatment and Immobilization Plant secondary wastes and Demonstration Bulk Vitrification System secondary wastes were solidified in cementitious matrices termed ''dry cementitious formulation.'' Solidification of these brines was difficult to deal with because of high sulfate contents. Two approaches were explored. The first was based on compositions similar to sulphoaluminate-belite cements. The main component of these cements is 4CaO · 2Al 2 O 3 · SO 4 . When hydrating in the presence of sulfate, these cements rapidly form ettringite. The goal was to consume the sulfate by rapidly forming ettringite. Forming ettringite before the mixture has filly set minimizes the potential for deleterious expansion at a later date. These formulations were developed based on mixtures of calcium-aluminate cement, a glassy blast-furnace slag, class F fly ash, and Portland cement. A second approach was based on using high alumina cement like ciment fondu. In this case the grout was a mixture of ciment fondu, a glassy blast-furnace slag, class f fly ash, and Portland cement. The literature shows that for concretes based on equal amounts of ciment fondu and blast furnace slag, cured at either 20 C or 38 C, the compressive strength increased continuously over a period of 1 year. In this second approach, enough reactive calcium aluminate was added to fully consume the sulfate at an early age. The results of this study will be presented. Included will be results for expansion and bleed water testing, adiabatic temperature rise, microstructure development, and the phase chemistry of the hydrated materials. The results of

  7. Final Status Survey Report for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201, Nevada National Security Site, Nevada

    International Nuclear Information System (INIS)

    Gwin, Jeremy; Frenette, Douglas

    2010-01-01

    This document contains the process knowledge, radiological data and subsequent statistical methodology and analysis to support approval for the radiological release of Corrective Action Unit (CAU) 117 - Pluto Disassembly Facility, Building 2201 located in Area 26 of the Nevada National Security Site (NNSS). Preparations for release of the building began in 2009 and followed the methodology described in the Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM). MARSSIM is the DOE approved process for release of Real Property (buildings and landmasses) to a set of established criteria or authorized limits. The pre-approved authorized limits for surface contamination values and corresponding assumptions were established by DOE O 5400.5. The release criteria coincide with the acceptance criteria of the U10C landfill permit. The U10C landfill is the proposed location to dispose of the radiologically non-impacted, or ''clean,'' building rubble following demolition. However, other disposition options that include the building and/or waste remaining at the NNSS may be considered providing that the same release limits apply. The Final Status Survey was designed following MARSSIM guidance by reviewing historical documentation and radiological survey data. Following this review a formal radiological characterization survey was performed in two phases. The characterization revealed multiple areas of residual radioactivity above the release criteria. These locations were remediated (decontaminated) and then the surface activity was verified to be less than the release criteria. Once remediation efforts had been successfully completed, a Final Status Survey Plan (10-015, ''Final Status Survey Plan for Corrective Action Unit 117 - Pluto Disassembly Facility, Building 2201'') was developed and implemented to complete the final step in the MARSSIM process, the Final Status Survey. The Final Status Survey Plan consisted of categorizing each individual room into one

  8. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    International Nuclear Information System (INIS)

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization

  9. Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

  10. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS. ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    International Nuclear Information System (INIS)

    Rutherford, W.W.; Geuther, W.J.; Strankman, M.R.; Conrad, E.A.; Rhoadarmer, D.D.; Black, D.M.; Pottmeyer, J.A.

    2009-01-01

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  11. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    Energy Technology Data Exchange (ETDEWEB)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR; CONRAD EA; RHOADARMER DD; BLACK DM; POTTMEYER JA

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transport and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is

  12. Siting a municipal solid waste disposal facility, part II: the effects of external criteria on the final decision.

    Science.gov (United States)

    Korucu, M Kemal; Karademir, Aykan

    2014-02-01

    The procedure of a multi-criteria decision analysis supported by the geographic information systems was applied to the site selection process of a planning municipal solid waste management practice based on twelve different scenarios. The scenarios included two different decision tree modes and two different weighting models for three different area requirements. The suitability rankings of the suitable sites obtained from the application of the decision procedure for the scenarios were assessed by a factorial experimental design concerning the effect of some external criteria on the final decision of the site selection process. The external criteria used in the factorial experimental design were defined as "Risk perception and approval of stakeholders" and "Visibility". The effects of the presence of these criteria in the decision trees were evaluated in detail. For a quantitative expression of the differentiations observed in the suitability rankings, the ranking data were subjected to ANOVA test after a normalization process. Then the results of these tests were evaluated by Tukey test to measure the effects of external criteria on the final decision. The results of Tukey tests indicated that the involvement of the external criteria into the decision trees produced statistically meaningful differentiations in the suitability rankings. Since the external criteria could cause considerable external costs during the operation of the disposal facilities, the presence of these criteria in the decision tree in addition to the other criteria related to environmental and legislative requisites could prevent subsequent external costs in the first place.

  13. TSD-DOSE: A radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.; Arnish, J.; LePoire, D.; Chen, S.-Y.

    1998-01-01

    Past practices at US Department of Energy (DOE) field facilities resulted in the presence of trace amounts of radioactive materials in some hazardous chemical wastes shipped from these facilities. In May 1991, the DOE Office of Waste Operations issued a nationwide moratorium on shipping all hazardous waste until procedures could be established to ensure that only nonradioactive hazardous waste would be shipped from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. To aid in assessing the potential impacts of shipments of mixed radioactive and chemically hazardous wastes, a radiological assessment computer model (or code) was developed on the basis of detailed assessments of potential radiological exposures and doses for eight commercial hazardous waste TSD facilities. The model, called TSD-DOSE, is designed to incorporate waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste-handling operations at a TSD facility. The code is intended to provide both DOE and commercial TSD facilities with a rapid and cost-effective method for assessing potential human radiation exposures from the processing of chemical wastes contaminated with trace amounts of radionuclides

  14. New treatment facility for low level process effluents at the Savannah River site

    International Nuclear Information System (INIS)

    Ebra, M.A.; Bibler, J.P.; Johnston, B.S.; Kilpatrick, L.L.; Poy, F.L.; Wallace, R.M.

    1987-01-01

    A new facility, the F/H Effluent Treatment Facility (F/H ETF) is under construction at the Savannah River site. It will decontaminate process effluents containing low levels of radionuclides and hazardous chemicals prior to discharge to a surface stream. These effluents, which are currently discharged to seepage basins, originate in the chemical separations and high-level radioactive waste processing areas, known as F-Area and H-Area. The new facility will allow closure of the basins in order to meet the provisions of the Resource Conservation and Recovery Act by November 1988. A high degree of reliability is expected from this design as a result of extensive process development work that has been conducted at the Savannah River Laboratory. This work has included both bench scale testing of individual unit operations and pilot scale testing of an integrated facility, 150 to 285 L/min (40 to 75 gpm), that contains the major operations

  15. Impact assessment of the forest fires on Oarai Research and Development Center Waste Treatment Facility

    International Nuclear Information System (INIS)

    Shimomura, Yusuke; Kitamura, Ryoichi; Hanari, Akira; Sato, Isamu

    2016-03-01

    In response to new standards for regulating waste treatment facility ('new regulatory standards'; December 18, 2013 enforcement), it was carried out impact assessment of forest fires on the Waste Treatment Facility existed in Oarai Research and Development Center of Japan Atomic Energy Agency. At first, a fire spread scenario of forest fires was assumed. The intensity of forest fires was evaluated from field surveys, forest fire evaluation models and so on. As models of forest fire intensity evaluation, Rothermel Model and Canadian Forest Fire Behavior Prediction (FBP) System were used. Impact assessment of radiant heat to the facility was carried out, and temperature change of outer walls for the assumed forest fires was estimated. The outer wall temperature of facility was estimated around 160degC at the maximum, it was revealed that it doesn't reach allowable temperature limit. Consequently, it doesn't influence the strength of concrete. In addition, a probability of fire breach was estimated to be about 20%. This report illustrates an example of evaluation of forest fires for the new regulatory standards through impact assessment of the forest fires on the Waste Treatment Facility. (author)

  16. Low-level liquid radioactive waste treatment at Murmansk, Russia: Technical design and review of facility upgrade and expansion

    International Nuclear Information System (INIS)

    Dyer, R.S.; Diamante, J.M.

    1996-07-01

    The governments of Norway and the US have committed their mutual cooperation and support the Murmansk Shipping Company (MSCo) to expand and upgrade the Low-Level Liquid Radioactive Waste (LLRW) treatment system located at the facilities of the Russian company RTP Atomflot, in Murmansk, Russia. RTP Atomflot provides support services to the Russian icebreaker fleet operated by the MSCo. The objective is to enable Russia to permanently cease disposing of this waste in Arctic waters. The proposed modifications will increase the facility's capacity from 1,200 m 3 per year to 5,000 m 3 per year, will permit the facility to process high-salt wastes from the Russian Navy's Northern fleet, and will improve the stabilization and interim storage of the processed wastes. The three countries set up a cooperative review of the evolving design information, conducted by a joint US and Norwegian technical team from April through December, 1995. To ensure that US and Norwegian funds produce a final facility which will meet the objectives, this report documents the design as described by Atomflot and the Russian business organization, ASPECT, both in design documents and orally. During the detailed review process, many questions were generated, and many design details developed which are outlined here. The design is based on the adsorption of radionuclides on selected inorganic resins, and desalination and concentration using electromembranes. The US/Norwegian technical team reviewed the available information and recommended that the construction commence; they also recommended that a monitoring program for facility performance be instituted

  17. Low-level wastewater treatment facility process control operational test report

    International Nuclear Information System (INIS)

    Bergquist, G.G.

    1996-01-01

    This test report documents the results obtained while conducting operational testing of a new TK 102 level controller and total outflow integrator added to the NHCON software that controls the Low-Level Wastewater Treatment Facility (LLWTF). The test was performed with WHC-SD-CP-OTP 154, PFP Low-Level Wastewater Treatment Facility Process Control Operational Test. A complete test copy is included in appendix A. The new TK 102 level controller provides a signal, hereafter referred to its cascade mode, to the treatment train flow controller which enables the water treatment process to run for long periods without continuous operator monitoring. The test successfully demonstrated the functionality of the new controller under standard and abnormal conditions expected from the LLWTF operation. In addition, a flow totalizer is now displayed on the LLWTF outlet MICON screen which tallies the process output in gallons. This feature substantially improves the ability to retrieve daily process volumes for maintaining accurate material balances

  18. Preparation and evaporation of Hanford Waste treatment plant direct feed low activity waste effluent management facility simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Howe, A. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-09-07

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream involves concentrating the condensate in a new evaporator at the Effluent Management Facility (EMF) and returning it to the LAW melter. The LMOGC stream will contain components, e.g. halides and sulfates, that are volatile at melter temperatures, have limited solubility in glass waste forms, and present a material corrosion concern. Because this stream will recycle within WTP, these components are expected to accumulate in the LMOGC stream, exacerbating their impact on the number of LAW glass containers that must be produced. Diverting the stream reduces the halides and sulfates in the glass and is a key objective of this program. In order to determine the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, determine the formation and distribution of key regulatoryimpacting constituents, and generate an aqueous stream that can be used in testing of the subsequent immobilization step. This overall program examines the potential treatment and immobilization of the LMOGC stream to enable alternative disposal. The objective of this task was to (1) prepare a simulant of the LAW Melter Off-gas Condensate expected during DFLAW operations, (2) demonstrate evaporation in order to predict the final composition of the effluents from the EMF

  19. Federal Facilities Compliance Act, Draft Site Treatment Plan: Compliance Plan Volume. Part 2, Volume 2

    International Nuclear Information System (INIS)

    1994-01-01

    This document presents the details of the implementation of the Site Treatment Plan developed by Ames Laboratory in compliance with the Federal Facilities Compliance Act. Topics discussed in this document include: implementation of the plan; milestones; annual updates to the plan; inclusion of new waste streams; modifications of the plan; funding considerations; low-level mixed waste treatment plan and schedules; and TRU mixed waste streams

  20. Federal Facilities Compliance Act, Draft Site Treatment Plan: Background Volume, Part 2, Volume 1

    International Nuclear Information System (INIS)

    1994-01-01

    This Draft Site Treatment Plan was prepared by Ames Laboratory to meet the requirements of the Federal Facilities Compliance Act. Topics discussed include: purpose and scope of the plan; site history and mission; draft plant organization; waste minimization; waste characterization; preferred option selection process; technology for treating low-level radioactive wastes and TRU wastes; future generation of mixed waste streams; funding; and process for evaluating disposal issues in support of the site treatment plan

  1. Centralized treatment facility for low level radioactive waste produced in Belgium. The CILVA project

    International Nuclear Information System (INIS)

    Renard, Cl.; Detilleux, M.; Debieve, P.

    1993-01-01

    Due to rather limited amount of waste produced and the small size of the Belgian territory (30 x 10 3 km 2 ), ONDRAF/NIRAS strategy aims at centralizing treatment conditioning and storage of radioactive waste. ONDRAF/NTRAS has decided to set up a new infrastructure: the CILVA unit. The CILVA facility is focused on the supercompaction and the incineration treatment, so that ONDRAF/NIRAS can safely manage all radioactive wastes produced in Belgium. (2 figs.)

  2. Training the Staff of a Drug Addiction Treatment Facility: A Case Study of Hogar De Encuentro

    Science.gov (United States)

    Sorensen, Andrew A.; Leske, M. Cristina

    1977-01-01

    This paper, presented at the American Public Health Association meeting; Chicago, November 1975, discusses a staff training program at a drug addiction treatment facility established for Spanish-speaking (and other) drug addicts. Staff improved counseling skills and knowledge of drug addiction, but changed little in attitudes toward drug use and…

  3. Safety assessments for centralized waste treatment and disposal facility in Puspokszilagy Hungary

    International Nuclear Information System (INIS)

    Berci, K.; Hauszmann, Z.; Ormai, P.

    2002-01-01

    The centralized waste treatment and disposal facility Puspokszilagy is a shallow land, near surface engineered type disposal unit. The site, together with its geographic, geological and hydrogeological characteristics, is described. Data are given on the radioactive inventory. The operational safety assessment and the post-closure safety assessment is outlined. (author)

  4. Facility-Based treatment of under five diarrhoea in Cross River State ...

    African Journals Online (AJOL)

    2015-06-29

    Jun 29, 2015 ... based diarrhoea treatment strategies and guidelines by health care professional at the facility level will go a long way in improving .... p-value. Oral rehydration solution alone or given with Zinc1. 28. (10.0%). 12 (13.2%).

  5. A centralized hazardous waste treatment plant: the facilities of the ZVSMM at Schwabach as an example

    Energy Technology Data Exchange (ETDEWEB)

    Amsoneit, Norbert [Zweckverband Sondermuell-Entsorgung Mittelfranken, Rednitzhembach (Germany)

    1993-12-31

    In this work a centralized hazardous waste treatment plant is described and its infra-structure is presented. Special emphasis is given to the handling of the residues produced and the different treatment processes at the final disposal. 2 refs., 4 figs.

  6. A centralized hazardous waste treatment plant: the facilities of the ZVSMM at Schwabach as an example

    Energy Technology Data Exchange (ETDEWEB)

    Amsoneit, Norbert [Zweckverband Sondermuell-Entsorgung Mittelfranken, Rednitzhembach (Germany)

    1994-12-31

    In this work a centralized hazardous waste treatment plant is described and its infra-structure is presented. Special emphasis is given to the handling of the residues produced and the different treatment processes at the final disposal. 2 refs., 4 figs.

  7. Independent dose per monitor unit review of eight U.S.A. proton treatment facilities

    International Nuclear Information System (INIS)

    Moyers, M. F.; Ibbott, G. S.; Grant, R. L.; Summers, P. A.; Followill, D. S.

    2014-01-01

    Purpose: Compare the dose per monitor unit at different proton treatment facilities using three different dosimetry methods. Methods: Measurements of dose per monitor unit were performed by a single group at eight facilities using 11 test beams and up to six different clinical portal treatment sites. These measurements were compared to the facility reported dose per monitor unit values. Results: Agreement between the measured and reported doses was similar using any of the three dosimetry methods. Use of the ICRU 59 N D,w based method gave results approximately 3% higher than both the ICRU 59 N X and ICRU 78 (TRS-398) N D,w based methods. Conclusions: Any single dosimetry method could be used for multi-institution trials with similar conformity between facilities. A multi-institutional trial could support facilities using both the ICRU 59 N X based and ICRU 78 (TRS-398) N D,w based methods but use of the ICRU 59 N D,w based method should not be allowed simultaneously with the other two until the difference is resolved

  8. Startup of the remote laboratory-scale waste-treatment facility

    International Nuclear Information System (INIS)

    Knox, C.A.; Siemens, D.H.; Berger, D.N.

    1981-01-01

    The Remote Laboratory-Scale Waste-Treatment Facility was designed as a system to solidify small volumes of radioactive liquid wastes. The objectives in operating this facility are to evaluate solidification processes, determine the effluents generated, test methods for decontaminating the effluents, and provide radioactive solidified waste products for evaluation. The facility consists of a feed-preparation module, a waste-solidification module and an effluent-treatment module. The system was designed for remote installation and operation. Several special features for remotely handling radioactive materials were incorporated into the design. The equipment was initially assembled outside of a radiochemical cell to size and fabricate the connecting jumpers between the modules and to complete some preliminary design-verification tests. The equipment was then disassembled and installed in the radiochemical cell. When installation was completed the entire system was checked out with water and then with a nonradioactive simulated waste solution. The purpose of these operations was to start up the facility, find and solve operational problems, verify operating procedures and train personnel. The major problems experienced during these nonradioactive runs were plugging of the spray calciner nozzle and feed tank pumping failures. When these problems were solved, radioactive operations were started. This report describes the installation of this facility, its special remote design feature and the startup operations

  9. The Hanford Site solid waste treatment project; Waste Receiving and Processing (WRAP) Facility

    International Nuclear Information System (INIS)

    Roberts, R.J.

    1991-01-01

    The Waste Receiving and Processing (WRAP) Facility will provide treatment and temporary storage (consisting of in-process storage) for radioactive and radioactive/hazardous mixed waste. This facility must be constructed and operated in compliance with all appropriate US Department of Energy (DOE) orders and Resource Conservation and Recovery Act (RCRA) regulations. The WRAP Facility will examine and certify, segregate/sort, and treat for disposal suspect transuranic (TRU) wastes in drums and boxes placed in 20-yr retrievable storage since 1970; low-level radioactive mixed waste (RMW) generated and placed into storage at the Hanford Site since 1987; designated remote-handled wastes; and newly generated TRU and RMW wastes from high-level waste (HLW) recovery and processing operations. In order to accelerated the WRAP Project, a partitioning of the facility functions was done in two phases as a means to expedite those parts of the WRAP duties that were well understood and used established technology, while allowing more time to better define the processing functions needed for the remainder of WRAP. The WRAP Module 1 phase one, is to provide the necessary nondestructive examination and nondestructive assay services, as well as all transuranic package transporter (TRUPACT-2) shipping for both WRAP Project phases, with heating, ventilation, and air conditioning; change rooms; and administrative services. Phase two of the project, WRAP Module 2, will provide all necessary waste treatment facilities for disposal of solid wastes. 1 tab

  10. Study on the development of safeguards information treatment system at the facility level

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B. D.; Song, D. Y.; So, D. S.; Kwak, E. H. [KAERI, Taejon (Korea, Republic of)

    2000-05-01

    Safeguards Information Treatment System(SITS) at the facility level is required to implement efficiently the obligations under the Korea-IAEA Safeguards Agreement, bilateral agreements with other countries and domestic law. In this paper, the requirements and major functions of SITS were considered, and the error checking methods and the relationships of safeguards information were reviewed. SITS will be developed to cover the different accounting procedures and methods applied at the various facilities under IAEA safeguards. Also, the resolved result of the Y2K problem in the existing nuclear material accounting program was described.

  11. Hazardous air pollutant (HAP) emission characterization of sewage treatment facilities in Korea.

    Science.gov (United States)

    Kang, Kyoung-Hee; Dong, Jong-In

    2010-04-01

    Until recently, nearly all sewage treatment-related regulations and researches have focused on the removal of the conventional and toxic pollutants from liquid effluents. The discharge of toxic compounds to the atmosphere has been implicitly regarded as a way of removal or destruction. During sewage treatment, the fate mechanism of volatilization/stripping, sorption and biotransformation primarily determines the fate of volatile HAPs. The objectives of this study are to investigate the emission characteristics of HAPs, which are generated from the liquid surface of sewage treatment facilities, by using an emission isolation flux chamber. HAP emissions increased at the inlet of the aerobic chamber during summer due to the relatively high atmospheric temperature. The percent ratio of flux for toluene reached its peak in winter, accounting for 33.6-34.2% of the total, but decreased to 25.1-28.6% in summer. In autumn, trichloroethene (TCE) was the highest, recording 17.6-18.1%, with chloroform and toluene showing similar levels. It seems that the ratio of chlorinated hydrocarbons increases in both summer and autumn because the chamber temperature during that time is higher than winter. This study is the initial study to investigate the emission characteristics of volatile HAPs emitted from domestic sewage treatment facilities to the air in Korea. Therefore, the isolation flux chamber will be used as an emission estimations tool to measure HAPs from sewage treatment facilities and may be applied to develop the emission factor and national source inventory of HAPs.

  12. Cyanobacteria, Toxins and Indicators: Field Monitoring,Treatment Facility Monitoring and Treatment Studies

    Science.gov (United States)

    This presentation is a compilation of harmful algal bloom (HAB) related field monitoring data from the 2015 bloom season, treatment plant monitoring data from the 2013 and 2014 bloom seasons, and bench-scale treatment study data from 2015.

  13. Optimal number of energy generators for biogas utilization in wastewater treatment facility

    International Nuclear Information System (INIS)

    Tsagarakis, Konstantinos P.

    2007-01-01

    A technoeconomic analysis has been undertaken considering the optimum number of energy producing generators using biogas coming from anaerobic digestion. Inputs for this analysis originate from available data on the first generator for energy production from biogas, installed in Greece at the wastewater treatment facility of Iraklio city. The data spans a period of 5.5 years of operation. It is concluded that the cost per kWh produced is 0.0876 Euro /kWh if one generator is used covering 15.9% of the facility's needs. If two generators are used, more biogas is utilized contributing 32.6% of the facility's needs at a marginal production cost of 0.0886 Euro /kWh. Similar estimations have been made for scenarios involving up to six generators. In contrast, the marginal cost of conventionally produced energy is 0.1383-0.2483 Euro /kWh

  14. Project C-018H, 242-A Evaporator/PUREX Plant Process Condensate Treatment Facility, functional design criteria. Revision 3

    International Nuclear Information System (INIS)

    Sullivan, N.

    1995-01-01

    This document provides the Functional Design Criteria (FDC) for Project C-018H, the 242-A Evaporator and Plutonium-Uranium Extraction (PUREX) Plant Condensate Treatment Facility (Also referred to as the 200 Area Effluent Treatment Facility [ETF]). The project will provide the facilities to treat and dispose of the 242-A Evaporator process condensate (PC), the Plutonium-Uranium Extraction (PUREX) Plant process condensate (PDD), and the PUREX Plant ammonia scrubber distillate (ASD)

  15. Treatment and final storage of radioactive wastes from the nuclear fuel cycle

    Energy Technology Data Exchange (ETDEWEB)

    Krause, H [Kernforschungszentrum Karlsruhe (Germany, F.R.)

    1977-05-01

    Types, amounts and activity concentrations of the radioactive wastes arising from the different sections of the fuel cycle are described as well as the methods of their treatment and final disposal. By conversion to glass products, highly active fission product solutions can be transferred into a form well suited for final disposal. Low and medium level waste waters are purified so far that safe discharge or reuse is possible. The concentrates thus produced are incorporated into concrete or bitumen. Baling lends itself for treatment of non-combustible solid wastes. Combustible wastes can be incinerated, the residues are incorporated into concrete. For final storage of the conditioned wastes, salt formations in the deep underground are chosen in the Federal Republic of Germany. They offer a series of favourable preconditions for this purpose and guarantee the isolation of the radionuclides from the biocycle over secular periods of time.

  16. Final height after gonadotrophin releasing hormone agonist treatment for central precocious puberty : The Dutch experience

    NARCIS (Netherlands)

    Mul, D; Oostdijk, W; Otten, BJ; Rouwe, C; Jansen, M; Delemarre-van de Waal, HA; Waelkens, JJJ; Drop, SLS

    Final height (FH) data of 96 children (87 girls) treated with GnRH agonist for central precocious puberty were studied. In girls mean FH exceeded initial height prediction by 7.4 (5.7) cm (p <0.001); FH was significantly lower than target height, but still in the genetic target range. When treatment

  17. Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen (Final)

    Science.gov (United States)

    EPA announced the availability of the final report, Nanomaterial Case Studies: Nanoscale Titanium Dioxide in Water Treatment and in Topical Sunscreen. This report is a starting point to determine what is known and what needs to be known about selected nanomaterials as par...

  18. Permitting mixed waste treatment, storage and disposal facilities: A mixed bag

    International Nuclear Information System (INIS)

    Ranek, N.L.; Coalgate, J.L.

    1995-01-01

    The Federal Facility Compliance Act of 1992 (FFCAct) requires the U.S. Department of Energy (DOE) to make a comprehensive national inventory of its mixed wastes (i.e., wastes that contain both a hazardous component that meets the Resource Conservation and Recovery Act (RCRA) definition of hazardous waste and a radioactive component consisting of source, special nuclear, or byproduct material regulated under the Atomic Energy Act (AEA)), and of its mixed waste treatment technologies and facilities. It also requires each DOE facility that stores or generates mixed waste to develop a treatment plan that includes, in part, a schedule for constructing units to treat those wastes that can be treated using existing technologies. Inherent in constructing treatment units for mixed wastes is, of course, permitting. This paper identifies Federal regulatory program requirements that are likely to apply to new DOE mixed waste treatment units. The paper concentrates on showing how RCRA permitting requirements interrelate with the permitting or licensing requirements of such other laws as the Atomic Energy Act, the Clean Water Act, and the Clean Air Act. Documentation needed to support permit applications under these laws are compared with RCRA permit application documentation. National Environmental Policy Act (NEPA) documentation requirements are also addressed, and throughout the paper, suggestions are made for managing the permitting process

  19. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumntation, and measurement techniques in fuel fabrication facilities, P.O.1236909. Final report

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-12-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. Some of the material included has appeared elswhere and it has been summarized. An extensive bibliography is included. A spcific example of application of the accountability methods to a model fuel fabrication facility which is based on the Westinghouse Anderson design

  20. Material control in nuclear fuel fabrication facilities. Part II. Accountability, instrumntation, and measurement techniques in fuel fabrication facilities, P. O. 1236909. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Borgonovi, G.M.; McCartin, T.J.; McDaniel, T.; Miller, C.L.; Nguyen, T.

    1978-12-01

    This report describes the measurement techniques, the instrumentation, and the procedures used in accountability and control of nuclear materials, as they apply to fuel fabrication facilities. Some of the material included has appeared elswhere and it has been summarized. An extensive bibliography is included. A spcific example of application of the accountability methods to a model fuel fabrication facility which is based on the Westinghouse Anderson design.

  1. TSD-DOSE : a radiological dose assessment model for treatment, storage, and disposal facilities

    International Nuclear Information System (INIS)

    Pfingston, M.

    1998-01-01

    In May 1991, the U.S. Department of Energy (DOE), Office of Waste Operations, issued a nationwide moratorium on shipping slightly radioactive mixed waste from DOE facilities to commercial treatment, storage, and disposal (TSD) facilities. Studies were subsequently conducted to evaluate the radiological impacts associated with DOE's prior shipments through DOE's authorized release process under DOE Order 5400.5. To support this endeavor, a radiological assessment computer code--TSD-DOSE (Version 1.1)--was developed and issued by DOE in 1997. The code was developed on the basis of detailed radiological assessments performed for eight commercial hazardous waste TSD facilities. It was designed to utilize waste-specific and site-specific data to estimate potential radiological doses to on-site workers and the off-site public from waste handling operations at a TSD facility. The code has since been released for use by DOE field offices and was recently used by DOE to evaluate the release of septic waste containing residual radioactive material to a TSD facility licensed under the Resource Conservation and Recovery Act. Revisions to the code were initiated in 1997 to incorporate comments received from users and to increase TSD-DOSE's capability, accuracy, and flexibility. These updates included incorporation of the method used to estimate external radiation doses from DOE's RESRAD model and expansion of the source term to include 85 radionuclides. In addition, a detailed verification and benchmarking analysis was performed

  2. Differences between U.S. substance abuse treatment facilities that do and do not offer domestic violence services.

    Science.gov (United States)

    Cohn, Amy; Najavits, Lisa M

    2014-04-01

    Victimization by and perpetration of domestic violence are associated with co-occurring mental and substance use disorders. This study used data from the National Survey of Substance Abuse Treatment Services to examine differences in organizational factors, treatment approaches offered, and client-level factors among 13,342 substance abuse treatment facilities by whether or not they offered domestic violence services. Only 36% of the facilities offered domestic violence services. Those that offered such services were more likely than those that did not to treat clients with co-occurring disorders. Principal-components analysis reduced eight treatment approaches to two factors: psychosocial services and traditional substance abuse services. Regression models indicated that the frequency with which psychosocial services were offered depended on the percentage of clients with co-occurring disorders who were being treated in the facility and whether or not that facility offered domestic violence services. Specifically, facilities that did not offer domestic violence services and that had a high percentage of clients with co-occurring disorders were more likely to offer psychosocial services than facilities that offered domestic violence services. A larger proportion of facilities offering domestic violence services offered traditional substance abuse treatment services, compared with facilities not offering domestic violence services, but this relationship was not contingent on the percentage of clients with co-occurring disorders at each facility. Improved efforts should be made to tailor treatments to accommodate the links between domestic violence, mental disorders, and substance abuse.

  3. Biofouling of microfilters at the Savannah River Site F/H-Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    McCabe, D.J.; Wiggins, A.W.; Poirier, M.R.; Hazen, T.C.

    1991-01-01

    The F/H-Effluent Treatment Facility uses state-of-the-art water treatment processes to remove contaminants from low-level radioactive wastewater at the Savannah River Site. The plant replaces seepage basins that were closed to comply with the 1984 amendments to the Resource Conservation and Recovery Act (RCRA). The facility removes both radioactive and nonradioactive contaminants from the effluents orginating from onsite waste management facilities. The unit processes involve filtration, ion exchange, activated carbon absorption, and reverse osmosis. The filtration step is prone to considerable fouling, reducing the overall throughput of the facility. The filters utilized in the process are Norton Ceraflo trademark ceramic microfilters. It was discovered that bacteria were primarily responsible for the severe filter fouling. Inorganic fouling was also observed, but was not normally as severe as the bacterial fouling. The bacteria densities necessary to induce severe fouling were not significantly higher than those often found in surface water streams. Diversion of waste streams containing the highest quantity of bacteria, and various methods of source reduction were implemented, which dramatically improved the filter performance. Addition of aluminum nitrate at low pH further improved the filter performance

  4. Continuous quality improvement in substance abuse treatment facilities: How much does it cost?

    Science.gov (United States)

    Hunt, Priscillia; Hunter, Sarah B; Levan, Deborah

    2017-06-01

    Continuous quality improvement (CQI) has grown in the U.S. since the 1970s, yet little is known about the costs to implement CQI in substance abuse treatment facilities. This paper is part of a larger group randomized control trial in a large urban county evaluating the impact of Plan-Study-Do-Act (PDSA)-CQI designed for community service organizations (Hunter, Ober, Paddock, Hunt, & Levan, 2014). Operated by one umbrella organization, each of the eight facilities of the study, four residential and four outpatient substance abuse treatment facilities, selected their own CQI Actions, including administrative- and clinical care-related Actions. Using an activity-based costing approach, we collected labor and supplies and equipment costs directly attributable to CQI Actions over a 12-month trial period. Our study finds implementation of CQI and meeting costs of this trial per facility were approximately $2000 to $10,500 per year ($4500 on average), or $10 to $60 per admitted client. We provide a description of the sources of variation in these costs, including differing intensity of the CQI Actions selected, which should help decision makers plan use of PDSA-CQI. Copyright © 2017. Published by Elsevier Inc.

  5. Biofouling of microfilters at the Savannah River Site F/H-area effluent treatment facility

    International Nuclear Information System (INIS)

    McCabe, D.J.; Wiggins, A.W.; Poirier, M.R.; Hazen, T.C.

    1992-01-01

    The F/H-Effluent Treatment Facility uses state-of-the-art water treatment processes to remove contaminants from low-level radioactive wastewater at the Savannah River Site, The plant replaces seepage basins that were closed to comply with the 1984 amendments to the Resource Conservation and Recovery Act (RCRA). The facility removes both radioactive and nonradioactive contaminants from the effluents originating from onsite waste management facilities. The unit processes involve filtration, ion exchange, activated carbon absorption, and reverse osmosis. The filtration step is prone to considerable fouling, reducing the overall throughput of the facility. The Filters utilized in the process are Norton Ceraflo ceramic microfilters. It was discovered that bacteria were primarily responsible for the severe filter fouling. Inorganic fouling was also observed, but was not normally as severe as the bacterial fouling. The bacteria densities necessary to induce severe fouling were not significantly higher than those often found in surface water streams. Diversion of waste streams containing the highest quantity of bacteria, and various methods of source reduction were implemented, which dramatically unproved the filter performance. Addition of aluminum nitrate at low pH further improved the filter performance. (author)

  6. Radiological assessment and management of radioactive spill in a liquid waste treatment facility - Case study

    International Nuclear Information System (INIS)

    Amer, H.A.; Shawky, S.; Ibrahiem, N.

    2002-01-01

    The radiological assessment and management of radioactive spill from liquid waste treatment facility is presented. The incident contaminated the area surrounding the treatment facility with various radionuclides, which were dispersed into the soil. A method based on the European basic safety standards was used to contain the risks associated with the contaminated site. The introduced case study proceeded up to the stage of simplified risk study, since the site is small and it was relatively easy to remove and store the contaminated soil. According to the obtained results, the removal of the upper 30-cm would be considered as appropriate remedying action to resume background level. One of the most important basic concepts of radiation protection in nuclear facilities is the continuity of monitoring radiological release to the environment. It is known that from nuclear facilities only very small amounts of radioactivity are discharged with the liquid effluents and the exhaust air into the environment. Recent studies screening the natural and artificial radionuclide in soil samples from the investigated area revealed normal background concentrations with no anomalies

  7. Alternatives of Treatment and Final Disposition of the Solid Hospital residuals

    International Nuclear Information System (INIS)

    Meza Monge, K.

    1998-01-01

    The current handling, treatment and final disposition of the hospital solid waste in Costa Rica are considered inadequate or at least insufficient. This situation represents a serious danger for the population's health and the environment, because they are exposed to infectious agents, toxic substances and even radioactive products that are generated among the residuals of the centers of health. This work, alternatives propose for the treatment and adequate final disposition of the solid waste produced in the hospitals of the country. They take into consideration the characteristics that present these residuals, the advantages and disadvantages of each one of the existent techniques and the technical and economic possibilities of the country. For this purpose, in first instance, a revision about the properties, the quality and the quantity of the solid waste produced by the national hospital centers was carried out. Also, a diagnostic of the current situation of the treatment and final disposition of these residuals in some of the most important hospitals of the country, as well as of the possibilities of physical space with that they count on was carried out. Then, the existent different treatment techniques and final disposition for the solid waste that comes from the centers of health are described, as well as their advantages and disadvantages and a comparative analysis of the same ones is carried out. The objective is completed, since alternatives of treatment and final disposition that are considered appropriate for this type of residuals are planned. Nevertheless, in the future, more detailed investigations and studies of feasibility, with the purpose of developing handling programs and elimination of the solid waste for each one of the hospital centers in Costa Rica should be carried out. (Author) [es

  8. Geographic access to radiation therapy facilities and disparities of early-stage breast cancer treatment

    Directory of Open Access Journals (Sweden)

    Yan Lin

    2018-05-01

    Full Text Available Few studies of breast cancer treatment have focused on the Northern Plains of the United States, an area with a high mastectomy rate. This study examined the association between geographic access to radiation therapy facilities and receipt of breast cancer treatments among early-stage breast cancer patients in South Dakota. Based on 4,209 early-stage breast cancer patients diagnosed between 2001 and 2012 in South Dakota, the study measured geographic proximity to radiation therapy facilities using the shortest travel time for patients to the closest radiation therapy facility. Two-level logistic regression models were used to estimate for early stage cases i the odds of mastectomy versus breast conserving surgery (BCS; ii the odds of not receiving radiation therapy after BCS versus receiving follow-up radiation therapy. Covariates included race/ethnicity, age at diagnosis, tumour grade, tumour sequence, year of diagnosis, census tract-level poverty rate and urban/rural residence. The spatial scan statistic method was used to identify geographic areas with significantly higher likelihood of experiencing mastectomy. The study found that geographic accessibility to radiation therapy facilities was negatively associated with the likelihood of receiving mastectomy after adjustment for other covariates, but not associated with radiation therapy use among patients receiving BCS. Compared with patients travelling less than 30 minutes to a radiation therapy facility, patients travelling more than 90 minutes were about 1.5 times more likely to receive mastectomy (odds ratio, 1.51; 95% confidence interval, 1.08-2.11 and patients travelling more than 120 minutes were 1.7 times more likely to receive mastectomy (odds ratio, 1.70; 95% confidence interval, 1.19-2.42. The study also identified a statistically significant cluster of patients receiving mastectomy who were located in south-eastern South Dakota, after adjustment for other factors. Because

  9. MASTICATION, PHONETICS AND ESTHETICS AS A FINAL RESULT OF PARTIAL OR COMPLETE DENTURE TREATMENT.

    Directory of Open Access Journals (Sweden)

    Kalina Georgieva

    2015-08-01

    Full Text Available Three target groups- dentists/ dental students, dental technicians and patients were asked to fill in an anonymous questionnaire about their satisfaction of the final results after prosthetic treatment with removable dentures using a scale from 1 to 5 (1- completely dissatisfied, 2-dissatisfied, 3-indifferent, 4-satisfied, 5-completely satisfied. The mean results (including colour, shape and size of artificial teeth, arrangement of front teeth, colour of artificial gums, phonetics, mastication, natural smile, enough space for tongue for all three groups of respondents were compared. Dental technicians (4,34 are more satisfied than dentists/dental students (3,62 and patients (3,53. A successful outcome of prosthetic treatment depends on one hand on the professional approach of the dental team and on the other hand on the patient’s motivation and cooperation. The predictive final results and realistic expectations lead to satisfaction of all participants in the treatment process.

  10. Investigation of development and management of treatment planning systems for BNCT at foreign facilities

    International Nuclear Information System (INIS)

    2001-03-01

    A new computational dosimetry system for BNCT: JCDS is developed by JAERI in order to carry out BNCT with epithermal neutron beam at present. The development and management situation of computational dosimetry system, which are developed and are used in BNCT facilities in foreign countries, were investigated in order to accurately grasp functions necessary for preparation of the treatment planning and its future subjects. In present state, 'SERA', which are developed by Idaho National Engineering and Environmental Laboratory (INEEL), is used in many BNCT facilities. Followings are necessary for development and management of the treatment planning system. (1) Reliability confirmation of system performance by verification as comparison examination of calculated value with actual experimental measured value. (2) Confirmation systems such as periodic maintenance for retention of the system quality. (3) The improvement system, which always considered relative merits and demerits with other computational dosimetry system. (4) The development of integrated system with patient setting. (author)

  11. Recycled Water Reuse Permit Renewal Application for the Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Mike [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This renewal application for a Recycled Water Reuse Permit is being submitted in accordance with the Idaho Administrative Procedures Act 58.01.17 “Recycled Water Rules” and the Municipal Wastewater Reuse Permit LA-000141-03 for continuing the operation of the Central Facilities Area Sewage Treatment Plant located at the Idaho National Laboratory. The permit expires March 16, 2015. The permit requires a renewal application to be submitted six months prior to the expiration date of the existing permit. For the Central Facilities Area Sewage Treatment Plant, the renewal application must be submitted by September 16, 2014. The information in this application is consistent with the Idaho Department of Environmental Quality’s Guidance for Reclamation and Reuse of Municipal and Industrial Wastewater and discussions with Idaho Department of Environmental Quality personnel.

  12. An integrated prediction and optimization model of biogas production system at a wastewater treatment facility.

    Science.gov (United States)

    Akbaş, Halil; Bilgen, Bilge; Turhan, Aykut Melih

    2015-11-01

    This study proposes an integrated prediction and optimization model by using multi-layer perceptron neural network and particle swarm optimization techniques. Three different objective functions are formulated. The first one is the maximization of methane percentage with single output. The second one is the maximization of biogas production with single output. The last one is the maximization of biogas quality and biogas production with two outputs. Methane percentage, carbon dioxide percentage, and other contents' percentage are used as the biogas quality criteria. Based on the formulated models and data from a wastewater treatment facility, optimal values of input variables and their corresponding maximum output values are found out for each model. It is expected that the application of the integrated prediction and optimization models increases the biogas production and biogas quality, and contributes to the quantity of electricity production at the wastewater treatment facility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Challenges in implementing uncomplicated malaria treatment in children: a health facility survey in rural Malawi.

    Science.gov (United States)

    Kabaghe, Alinune N; Phiri, Mphatso D; Phiri, Kamija S; van Vugt, Michèle

    2017-10-18

    Prompt and effective malaria treatment are key in reducing transmission, disease severity and mortality. With the current scale-up of artemisinin-based combination therapy (ACT) coverage, there is need to focus on challenges affecting implementation of the intervention. Routine indicators focus on utilization and coverage, neglecting implementation quality. A health system in rural Malawi was assessed for uncomplicated malaria treatment implementation in children. A cross-sectional health facility survey was conducted in six health centres around the Majete Wildlife Reserve in Chikwawa district using a health system effectiveness approach to assess uncomplicated malaria treatment implementation. Interviews with health facility personnel and exit interviews with guardians of 120 children under 5 years were conducted. Health workers appropriately prescribed an ACT and did not prescribe an ACT to 73% (95% CI 63-84%) of malaria rapid diagnostic test (RDT) positive and 98% (95% CI 96-100%) RDT negative children, respectively. However, 24% (95% CI 13-37%) of children receiving artemisinin-lumefantrine had an inappropriate dose by weight. Health facility findings included inadequate number of personnel (average: 2.1 health workers per 10,000 population), anti-malarial drug stock-outs or not supplied, and inconsistent health information records. Guardians of 59% (95% CI 51-69%) of children presented within 24 h of onset of child's symptoms. The survey presents an approach for assessing treatment effectiveness, highlighting bottlenecks which coverage indicators are incapable of detecting, and which may reduce quality and effectiveness of malaria treatment. Health service provider practices in prescribing and dosing anti-malarial drugs, due to drug stock-outs or high patient load, risk development of drug resistance, treatment failure and exposure to adverse effects.

  14. Analysis of glycerin waste in A-Area sanitary treatment facility material

    International Nuclear Information System (INIS)

    1995-01-01

    TNX has a large supply of 55 gallon drums containing pure glycerin and glycerin with additives. The glycerin drums were procured to simulate the glass stream in a pilot-scale melter process at TNX. Since the glycerin was not used for this process, TNX is looking at disposing the material in a sanitary waste treatment facility onsite. The effect of adding the contents of the drums to sewage bacteria was tested. A drum of pure glycerin and a drum of glycerin mixed with lithium chloride were tested. The test consisted of mixing sanitary sludge material with the glycerin material. The purpose of the test was to determine if the glycerin impacted the aerobic bacterial population. The bacterial densities were determined by taking samples from the sludge/glycerin mixtures and using aerobic plate count methods. The total organic carbon (TOC) levels were measured before and after testing. The results indicate that the cell density of the aerobic bacteria increased with the addition of glycerin and the glycerin mixture and the TOC removal rate was different for all tests. Disposal of glycerin in the wastewater treatment facilities should pose no problems. Additional testing and analysis of the mixed samples should be done before its disposal in a waste water treatment facility

  15. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities

    Directory of Open Access Journals (Sweden)

    Kristýna Černá

    2017-02-01

    Full Text Available Background: In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Material and Methods: Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Results: Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103–9.0×105 colony-forming units (CFU/m3, while the lowest ones in winter (2.7×103–2.9×105 CFU/m3. The concentration increased from the beginning of the work shift and reached a plateau after 6–7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Conclusions: Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1:1–9

  16. Exposure to airborne fungi during sorting of recyclable plastics in waste treatment facilities.

    Science.gov (United States)

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2017-02-28

    In working environment of waste treatment facilities, employees are exposed to high concentrations of airborne microorganisms. Fungi constitute an essential part of them. This study aims at evaluating the diurnal variation in concentrations and species composition of the fungal contamination in 2 plastic waste sorting facilities in different seasons. Air samples from the 2 sorting facilities were collected through the membrane filters method on 4 different types of cultivation media. Isolated fungi were classified to genera or species by using a light microscopy. Overall, the highest concentrations of airborne fungi were recorded in summer (9.1×103-9.0×105 colony-forming units (CFU)/m3), while the lowest ones in winter (2.7×103-2.9×105 CFU/m3). The concentration increased from the beginning of the work shift and reached a plateau after 6-7 h of the sorting. The most frequently isolated airborne fungi were those of the genera Penicillium and Aspergillus. The turnover of fungal species between seasons was relatively high as well as changes in the number of detected species, but potentially toxigenic and allergenic fungi were detected in both facilities during all seasons. Generally, high concentrations of airborne fungi were detected in the working environment of plastic waste sorting facilities, which raises the question of health risk taken by the employees. Based on our results, the use of protective equipment by employees is recommended and preventive measures should be introduced into the working environment of waste sorting facilities to reduce health risk for employees. Med Pr 2017;68(1):1-9. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  17. Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility

    International Nuclear Information System (INIS)

    SCHULTZ, M.V.

    2000-01-01

    As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to

  18. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment ampersand storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage ampersand treatment facilities

    International Nuclear Information System (INIS)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory's storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations

  19. Risk assessment of CST-7 proposed waste treatment and storage facilities Volume I: Limited-scope probabilistic risk assessment (PRA) of proposed CST-7 waste treatment & storage facilities. Volume II: Preliminary hazards analysis of proposed CST-7 waste storage & treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Sasser, K.

    1994-06-01

    In FY 1993, the Los Alamos National Laboratory Waste Management Group [CST-7 (formerly EM-7)] requested the Probabilistic Risk and Hazards Analysis Group [TSA-11 (formerly N-6)] to conduct a study of the hazards associated with several CST-7 facilities. Among these facilities are the Hazardous Waste Treatment Facility (HWTF), the HWTF Drum Storage Building (DSB), and the Mixed Waste Receiving and Storage Facility (MWRSF), which are proposed for construction beginning in 1996. These facilities are needed to upgrade the Laboratory`s storage capability for hazardous and mixed wastes and to provide treatment capabilities for wastes in cases where offsite treatment is not available or desirable. These facilities will assist Los Alamos in complying with federal and state requlations.

  20. Best available technology for the Los Alamos National Laboratory Radioactive Liquid Waste Treatment Facility

    International Nuclear Information System (INIS)

    Midkiff, W.S.; Romero, R.L.; Suazo, I.L.; Garcia, R.; Parsons, R.M.

    1993-01-01

    The existing Los Alamos National Laboratory TA-50 liquid radioactive waste treatment plant RLWP has been in service for over thirty years, during this period many technical, regulatory, and processing changes have occurred. The existing facility can no longer comply with the demands and requirements for continued operation, and would not be able to comply with anticipated stringent future contaminant discharge limitations. Either a major upgrading or replacement of the existing facility is required. In order to assess the most appropriate means of providing an adequate facility to comply with predicted requirements for Ta-50, this Best Available Technology (BAT) Study was conducted to compare feasible technical and economic alternatives in order to define the most favorable technology configuration. This report consists of eleven sections. Section 1 provides a general introduction and background of the TA-50 operations and the basis for this study. Section 2 provides a technical discussion of the unit processes at TA-50 and several other comparable operations at other DOE sites. Section 3 addresses the evaluation and selection of appropriate treatment processes. Section 4 provides an analysis of environmental issues and concerns. Section 5 presents the rationale for the selection of preferred process configurations. Section 6 is the evaluation of operational issues. Section 7 addresses energy and resource use topics. Section 8 provides an economic analysis, and Section 9 summarizes the evaluation and the identification of the BAT. These sections are augmented by appendices. The report identifies the construction of a new radioactive liquid waste treatment facility as the BAT. Based on the information analyzed for this study, this option appears to provide the best combination of environmental compliance, operability, and economic value

  1. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-31

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs.

  2. Environmental assessment for the Waste Water Treatment Facility at the West Valley Demonstration Project and finding of no significant impact

    International Nuclear Information System (INIS)

    1992-01-01

    The possible environmental impacts from the construction and operation of a waste water treatment facility for the West Valley Demonstration Project are presented. The West Valley Project is a demonstration project on the solidification of high-level radioactive wastes. The need for the facility is the result of a rise in the work force needed for the project which rendered the existing sewage treatment plant incapable of meeting the nonradioactive waste water treatment needs

  3. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    International Nuclear Information System (INIS)

    BOWERMAN, B.; CZAJKOWSKI, C.; DYER, R.S.; SORLIE, A.

    2000-01-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m 3 /year to 5,000 m 3 /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the process very

  4. LOW LEVEL LIQUID RADIOACTIVE WASTE TREATMENT AT MURMANSK, RUSSIA: FACILITY UPGRADE AND EXPANSION

    Energy Technology Data Exchange (ETDEWEB)

    BOWERMAN,B.; CZAJKOWSKI,C.; DYER,R.S.; SORLIE,A.

    2000-03-01

    Today there exist many almost overfilled storage tanks with liquid radioactive waste in the Russian Federation. This waste was generated over several years by the civil and military utilization of nuclear power. The current waste treatment capacity is either not available or inadequate. Following the London Convention, dumping of the waste in the Arctic seas is no longer an alternative. Waste is being generated from today's operations, and large volumes are expected to be generated from the dismantling of decommissioned nuclear submarines. The US and Norway have an ongoing co-operation project with the Russian Federation to upgrade and expand the capacity of a treatment facility for low level liquid waste at the RTP Atomflot site in Murmansk. The capacity will be increased from 1,200 m{sup 3}/year to 5,000 m{sup 3} /year. The facility will also be able to treat high saline waste. The construction phase will be completed the first half of 1998. This will be followed by a start-up and a one year post-construction phase, with US and Norwegian involvement for the entire project. The new facility will consist of 9 units containing various electrochemical, filtration, and sorbent-based treatment systems. The units will be housed in two existing buildings, and must meet more stringent radiation protection requirements that were not enacted when the facility was originally designed. The US and Norwegian technical teams have evaluated the Russian design and associated documentation. The Russian partners send monthly progress reports to US and Norway. Not only technical issues must be overcome but also cultural differences resulting from different methods of management techniques. Six to eight hour time differentials between the partners make real time decisions difficult and relying on electronic age tools becomes extremely important. Language difficulties is another challenge that must be solved. Finding a common vocabulary, and working through interpreters make the

  5. Final deactivation project report on the Integrated Process Demonstration Facility, Building 7602 Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-09-01

    The purpose of this report is to document the condition of the Integrated Process Demonstration Facility (Building 7602) at Oak Ridge National Laboratory (ORNL) after completion of deactivation activities by the High Ranking Facilities Deactivation Project (HRFDP). This report identifies the activities conducted to place the facility in a safe and environmentally sound condition prior to transfer to the U.S. Department of Energy (DOE) Environmental Restoration EM-40 Program. This report provides a history and description of the facility prior to commencing deactivation activities and documents the condition of the building after completion of all deactivation activities. Turnover items, such as the Post-Deactivation Surveillance and Maintenance (S ampersand M) Plan, remaining hazardous and radioactive materials inventory, radiological controls, Safeguards and Security, and supporting documentation provided in the Office of Nuclear Material and Facility Stabilization Program (EM-60) Turnover package are discussed

  6. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S&M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed.

  7. Final Deactivation Project report on the Alpha Powder Facility, Building 3028, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-04-01

    This report documents the condition of the Alpha Powder Facility (APF), Building 3028, after completion of deactivation activities. Activities conducted to place the facility in a safe and environmentally sound condition for transfer to the U.S. Department of Energy (DOE) Office of Environmental Restoration (EM-40) program are outlined. A history and profile of the facility prior to commencing deactivation activities and a profile of the building after completion of deactivation activities are provided. Turnover items, such as the post-deactivation surveillance and maintenance (S ampersand M) plan, remaining hazardous materials, radiological controls, safeguards and security, quality assurance, facility operations, and supporting documentation provided for in the DOE Nuclear Materials and Facility Stabilization Program (EM-60) turnover package are discussed

  8. Dental Treatment in a State-Funded Primary Dental Care Facility: Contextual and Individual Predictors of Treatment Need?

    Science.gov (United States)

    Wanyonyi, Kristina L; Radford, David R; Gallagher, Jennifer E

    2017-01-01

    This study examined individual and contextual factors which predict the dental care received by patients in a state-funded primary dental care training facility in England. Routine clinical and demographic data were extracted from a live dental patient management system in a state-funded facility using novel methods. The data, spanning a four-year period [2008-2012] were cleaned, validated, linked by means of postcode to deprivation status, and analysed to identify factors which predict dental treatment need. The predictive relationship between patients' individual characteristics (demography, smoking, payment status) and contextual experience (deprivation based on area of residence), with common dental treatments received was examined using unadjusted analysis and adjusted logistic regression. Additionally, multilevel modelling was used to establish the isolated influence of area of residence on treatments. Data on 6,351 dental patients extracted comprised of 147,417 treatment procedures delivered across 10,371 courses of care. Individual level factors associated with the treatments were age, sex, payment exemption and smoking status and deprivation associated with area of residence was a contextual predictor of treatment. More than 50% of children (care in the form of 'instruction and advice', compared with 46% of working age adults (18-64 years); p = 0.001. The odds of receiving treatment increased with each increasing year of age amongst adults (p = 0.001): 'partial dentures' (7%); 'scale and polish' (3.7%); 'tooth extraction' (3%; p = 0.001), and 'instruction and advice' (3%; p = 0.001). Smokers had a higher likelihood of receiving all treatments; and were notably over four times more likely to receive 'instruction and advice' than non-smokers (OR 4.124; 95% CI: 3.088-5.508; p = 0.01). A further new finding from the multilevel models was a significant difference in treatment related to area of residence; adults from the most deprived quintile were more likely

  9. Dental Treatment in a State-Funded Primary Dental Care Facility: Contextual and Individual Predictors of Treatment Need?

    Directory of Open Access Journals (Sweden)

    Kristina L Wanyonyi

    Full Text Available This study examined individual and contextual factors which predict the dental care received by patients in a state-funded primary dental care training facility in England.Routine clinical and demographic data were extracted from a live dental patient management system in a state-funded facility using novel methods. The data, spanning a four-year period [2008-2012] were cleaned, validated, linked by means of postcode to deprivation status, and analysed to identify factors which predict dental treatment need. The predictive relationship between patients' individual characteristics (demography, smoking, payment status and contextual experience (deprivation based on area of residence, with common dental treatments received was examined using unadjusted analysis and adjusted logistic regression. Additionally, multilevel modelling was used to establish the isolated influence of area of residence on treatments.Data on 6,351 dental patients extracted comprised of 147,417 treatment procedures delivered across 10,371 courses of care. Individual level factors associated with the treatments were age, sex, payment exemption and smoking status and deprivation associated with area of residence was a contextual predictor of treatment. More than 50% of children (<18 years and older adults (≥65 years received preventive care in the form of 'instruction and advice', compared with 46% of working age adults (18-64 years; p = 0.001. The odds of receiving treatment increased with each increasing year of age amongst adults (p = 0.001: 'partial dentures' (7%; 'scale and polish' (3.7%; 'tooth extraction' (3%; p = 0.001, and 'instruction and advice' (3%; p = 0.001. Smokers had a higher likelihood of receiving all treatments; and were notably over four times more likely to receive 'instruction and advice' than non-smokers (OR 4.124; 95% CI: 3.088-5.508; p = 0.01. A further new finding from the multilevel models was a significant difference in treatment related to area

  10. American Youths' Access to Substance Abuse Treatment: Does Type of Treatment Facility Matter?

    Science.gov (United States)

    Lo, Celia C.; Cheng, Tyrone C.

    2013-01-01

    Using data from the 2007 National Survey on Drug Use and Health, this study examines whether several social exclusion and psychological factors affect adolescents' receipt of substance abuse treatment. Multinomial logistic regression techniques were used to analyze data. The study asked how the specified factors provide pathways to receipt of…

  11. Nasreya: a treatment and disposal facility for industrial hazardous waste in Alexandria, Egypt: phase I.

    Science.gov (United States)

    Ramadan, Adham R; Kock, Per; Nadim, Amani

    2005-04-01

    A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.

  12. Behavior and removal of organic species in the Savannah River Plant effluent treatment facility

    International Nuclear Information System (INIS)

    Oblath, S.B.; Georgeton, G.K.

    1988-01-01

    The effluent treatment facility (ETF) at the Savannah River Plant (SRP) is a new facility designed to treat and decontaminate low-level radioactive wastewater prior to release to the environment. The wastewater is primarily composed of evaporator overheads from the chemical separations and waste handling facilities at SRP. Primarily a 2000 mg/L NaNO 3 solution, the wastewater also contains microcurie-per-liter quantities of radionuclides and milligram-per-liter concentrations of heavy metals and organic components. This paper shows a block diagram of the major process steps. The pH adjustment, filtration, mercury removal, reverse osmosis, and cation-exchange polishing steps give a significant reduction of inorganic species and radionuclide (except trittium) concentrations. The activated carbon removal step was recently added to remove organic species to ensure that the effluent discharge permit limits for oil and grease and biochemical oxygen demand are met. The concentrates and regenerates from each of the treatment steps are further concentrated by evaporation to reduce the volume sufficiently for incorporation into and disposal as a grout

  13. Oak Ridge National Laboratory West End Treatment Facility simulated sludge vitrification demonstration, Revision 1

    International Nuclear Information System (INIS)

    Cicero, C.A.; Bickford, D.F.; Bennert, D.M.; Overcamp, T.J.

    1994-01-01

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert hazardous and mixed wastes to a form suitable for permanent disposal. Vitrification, which has been declared the Best Demonstrated Available Technology for high-level radioactive waste disposal by the EPA, is capable of producing a highly durable wasteform that minimizes disposal volumes through organic destruction, moisture evaporation, and porosity reduction. However, this technology must be demonstrated over a range of waste characteristics, including compositions, chemistries, moistures, and physical characteristics to ensure that it is suitable for hazardous and mixed waste treatment. These wastes are typically wastewater treatment sludges that are categorized as listed wastes due to the process origin or organic solvent content, and usually contain only small amounts of hazardous constituents. The Oak Ridge National Laboratory's (ORNL) West End Treatment Facility's (WETF) sludge is considered on of these representative wastes. The WETF is a liquid waste processing plant that generates sludge from the biodenitrification and precipitation processes. An alternative wasteform is needed since the waste is currently stored in epoxy coated carbon steel tanks, which have a limited life. Since this waste has characteristics that make it suitable for vitrification with a high likelihood of success, it was identified as a suitable candidate by the Mixed Waste Integrated Program (MWIP) for testing at CU. The areas of special interest with this sludge are (1) minimum nitrates, (2) organic destruction, and (3) waste water treatment sludges containing little or no filter aid

  14. Maximizing Production Capacity from an Ultrafiltration Process at the Hanford Department of Waste Treatment Facility

    International Nuclear Information System (INIS)

    Foust, Henry C.; Holton, Langdon K.; Demick, Laurence E.

    2005-01-01

    The Department of Energy has contracted Bechtel National, Inc. to design, construct and commission a Waste Treatment and Immobilization Plant (WTP) to treat radioactive slurry currently stored in underground waste storage tanks. A critical element of the waste treatment capacity for the WTP is the proper operation of an ultrafiltration process (UFP). The UFP separates supernate solution from radioactive solids. The solution and solid phases are separately immobilized. An oversight review of the UFP design and operation has identified several methods to improve the capacity of the ultrafiltration process, which will also improve the capacity of the WTP. Areas explored were the basis of design, an analysis of the WTP capacity, process chemistry within the UFP, and UFP process control. This article discusses some of the findings of this oversight review in terms of sodium and solid production, which supports the treatment of low activity waste (LAW) associated with the facility, and solid production, which supports the treatment of high level waste (HLW) associated with the facility

  15. Screening study for waste biomass to ethanol production facility using the Amoco process in New York State. Appendices to the final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-08-01

    The final report evaluates the economic feasibility of locating biomass-to-ethanol waste conversion facilities in New York State. Part 1 of the study evaluates 74 potential sites in New York City and identifies two preferred sites on Staten Island, the Proctor and Gamble and the Arthur Kill sites for further consideration. Part 2 evaluates upstate New York and determines that four regions surrounding the urban centers of Albany, Buffalo, Rochester, and Syracuse provide suitable areas from which to select specific sites for further consideration. A conceptual design and economic viability evaluation were developed for a minimum-size facility capable of processing 500 tons per day (tpd) of biomass consisting of wood or paper, or a combination of the two for upstate regions. The facility would use Amoco`s biomass conversion technology and produce 49,000 gallons per day of ethanol and approximately 300 tpd of lignin solid by-product. For New York City, a 1,000-tpd processing facility was also evaluated to examine effects of economies of scale. The reports evaluate the feasibility of building a biomass conversion facility in terms of city and state economic, environmental, and community factors. Given the data obtained to date, including changing costs for feedstock and ethanol, the project is marginally attractive. A facility should be as large as possible and located in a New York State Economic Development Zone to take advantage of economic incentives. The facility should have on-site oxidation capabilities, which will make it more financially viable given the high cost of energy. This appendix to the final report provides supplemental material supporting the evaluations.

  16. Overview of established and emerging treatment technologies for polycyclic aromatic hydrocarbons at wood preserving facilities

    International Nuclear Information System (INIS)

    Shearon, M.D.

    1992-01-01

    The contamination of soil and groundwater by polycyclic aromatic hydrocarbons (PAHs) is common to wood preserving facilities and manufactured gas plants. Since the inception of RCRA and CERCLA, much attention has been focused upon the remediation of both active and defunct wood preserving facilities. The experiences gleaned from the use of proven technologies, and more importantly, the lessons being learned in the trials of emerging technologies on creosote-derived PAH clean-ups at wood preserving sites, should have direct bearing on the clean-up of similar contaminants at MGP sites. In this paper, a review of several remedial actions using waste removal/disposal, on-site incineration, and bioremediation will be presented. Additionally, emerging technologies for the treatment of PAH-contaminated soil and water will be reviewed. Lastly, recent information on risk assessment results for creosote sites and treated PAH waste will be discussed

  17. Final configuration with assembly assessment of the 100 kV high voltage bushing for the Indian test facility

    International Nuclear Information System (INIS)

    Sharma, Dheeraj Kumar; Shah, Sejal; Venkata Nagaraju, M.; Bandyopadhyay, Mainak; Rotti, Chandramouli; Chakraborty, Arun Kumar

    2015-01-01

    The Indian Test Facility (INTF) of Neutral Beam (NB) system is an Indian voluntary effort for the full characterization of the diagnostic neutral beam which is the part of ITER's neutral beam system. The design activities of INTF NB system are completed. The INTF High Voltage Bushing (HVB), which is one of the component of NB system, is designed to connect all the required feedlines, e.g. electrical busbars, RF co-axial lines, diagnostic lines and hydraulic and gas feed lines, carried by the transmission line from the HV deck to the Beam Source of NB system. It forms the primary vacuum boundary and provides 100 kV isolation for INTF beam operation. The entire feedlines pass through a metallic plate of HVB called Dished Head (DH) where all the feedlines converge. The overall diameter of DH is 847 mm which is governed by the diameter of the Porcelain insulator which is meant for 100 kV isolation. The effective diameter where all the feedlines converge at the dished head is ∼ 600 mm which is quite a challenge to accommodate 26 feedlines each of average diameter 60 mm. Electrical feedlines require Vacuum-Electrical feedthroughs for voltage isolation whereas water and gas lines are considered to be directly welded with the DH except one water line which requires 12 kV voltage isolation with respect to DH. For RF lines, different scheme is considered which includes separate Electrical Feedthrough and Vacuum Barrier. To provide connection to electrical cables of heaters and thermocouples, 4 numbers of multipin vacuum compatible electrical feedthroughs are provided which can accommodate ∼250 cables. Due to space constraints, Vacuum-Electrical Feedthroughs are considered to be welded with the DH and therefore they shall be of metal-ceramic-metal configuration to allow welding. To avoid undue loading on the ceramic part, the feedlines are supported additionally at DH using vacuum compatible and electrically insulating material. One more important aspect of the INTF

  18. Final Report for the Restart of the Waste Characterization, Reduction and Repackaging Facility (WCRRF) Contractor Readiness Assessment (CRA)

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, Gregory Mark [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-22

    The Los Alamos National Laboratory (LANL or Laboratory) Contractor Readiness Assessment (CRA) required for restart of the Technical Area (TA) 50 Waste Characterization, Reduction, and Repackaging Facility (WCRRF) for remediated nitrate salt (RNS) waste operations was performed in compliance with the requirements of Department of Energy (DOE) Order (O) 425.1D, Verification of Readiness to Start Up or Restart Nuclear Facilities, and LANL procedure FSD-115-001, Verification of Readiness to Start Up or Restart LANL Nuclear Facilities, Activities, and Operations.

  19. Final Environmental Impact Statement for the Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    2000-01-01

    DOE is responsible for the safe and efficient management of its sodium-bonded spent nuclear fuel. This fuel contains metallic sodium, a highly reactive material; metallic uranium, which is also reactive; and in some cases, highly enriched uranium. The presence of reactive materials could complicate the process of qualifying and licensing DOE's sodium-bonded spent nuclear fuel inventory for disposal in a geologic repository. Currently, more than 98 percent of this inventory is located at the Idaho National Engineering and Environmental Laboratory (INEEL), near Idaho Falls, Idaho. In addition, in a 1995 agreement with the State of Idaho, DOE committed to remove all spent nuclear fuel from Idaho by 2035. This EIS evaluates the potential environmental impacts associated with the treatment and management of sodium-bonded spent nuclear fuel in one or more facilities located at Argonne National Laboratory-West (ANL-W) at INEEL and either the F-Canyon or Building 105-L at the Savannah River Site (SRS) near Aiken, South Carolina. DOE has identified and assessed six proposed action alternatives in this EIS. These are: (1) electrometallurgical treatment of all fuel at ANL-W, (2) direct disposal of blanket fuel in high-integrity cans with the sodium removed at ANL-W, (3) plutonium-uranium extraction (PUREX) processing of blanket fuel at SRS, (4) melt and dilute processing of blanket fuel at ANL-W, (5) melt and dilute processing of blanket fuel at SRS, and (6) melt and dilute processing of all fuel at ANL-W. In addition, Alternatives 2 through 5 include the electrometallurgical treatment of driver fuel at ANL-W. Under the No Action Alternative, the EIS evaluates both the continued storage of sodium-bonded spent nuclear fuel until the development of a new treatment technology or direct disposal without treatment. Under all of the alternatives, the affected environment is primarily within 80 kilometers (50 miles) of spent nuclear fuel treatment facilities. Analyses indicate

  20. Role of disposal in developing Federal Facility Compliance Act mixed waste treatment plans

    International Nuclear Information System (INIS)

    Case, J.T.; Rhoderick, J.

    1994-01-01

    The Federal Facilities Compliance Act (FFCA) was enacted on October 6, 1992. This act amends the Solid Waste Disposal Act, which was previously amended by the Resource Conservation and Recovery Act (RCRA). The FFCA set in place a process for managing the Department of Energy's (DOE) mixed low-level radioactive wastes (MLLW), wastes that contain both hazardous and low-level radioactive constituents, with full participation of the affected states. The FFCA provides the framework for the development of treatment capacity for DOE's mixed waste. Disposal of the treatment residues is not addressed by the FFCA. DOE has initiated efforts in concert with the states in the development of a disposal strategy for the treated mixed wastes. This paper outlines DOE efforts in development of a mixed waste disposal strategy which is integrated with the FFCA Site Treatment Planning process

  1. Federal Facility Compliance Act: Conceptual Site Treatment Plan for Lawrence Livermore National Laboratory, Livermore, California

    International Nuclear Information System (INIS)

    1993-10-01

    The Department of Energy (DOE) is required by section 3021(b) of the Resource Conservation and Recovery Act (RCRA), as amended by the Federal Facility Compliance Act (the Act), to prepare plans describing the development of treatment capacities and technologies for treating mixed waste. The Act requires site treatment plans (STPs or plans) to be developed for each site at which DOE generates or stores mixed waste and submitted to the State or EPA for approval, approval with modification, or disapproval. The Lawrence Livermore National Laboratory (LLNL) Conceptual Site Treatment Plan (CSTP) is the preliminary version of the plan required by the Act and is being provided to California, the US Environmental Protection Agency (EPA), and others for review. A list of the other DOE sites preparing CSTPs is included in Appendix 1.1 of this document. Please note that Appendix 1.1 appears as Appendix A, pages A-1 and A-2 in this document

  2. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling

  3. Patient satisfaction on tuberculosis treatment service and adherence to treatment in public health facilities of Sidama zone, South Ethiopia

    Science.gov (United States)

    2013-01-01

    Background Patient compliance is a key factor in treatment success. Satisfied patients are more likely to utilize health services, comply with medical treatment, and continue with the health care providers. Yet, the national tuberculosis control program failed to address some of these aspects in order to achieve the national targets. Hence, this study attempted to investigate patient satisfaction and adherence to tuberculosis treatment in Sidama zone of south Ethiopia. Methods A facility based cross sectional study was conducted using quantitative method of data collection from March to April 2011. A sample of 531 respondents on anti TB treatment from 11 health centers and 1 hospital were included in the study. The sample size to each facility was allocated using probability proportional to size allocation, and study participants for the interview were selected by systematic random sampling. A Pre tested, interviewer administered questionnaire was used to collect the data. Collected data was edited, coded and entered to Epi data version 3.1 and exported to SPSS version 16. Confirmatory factor analysis was done to identify factors that explain most of the variance observed in most of the manifested variables. Bivariate and Multivariate analysis were computed to analyze the data. Result The study revealed 90% of the study participants were satisfied with TB treatment service. However, 26% of respondents had poor adherence to their TB treatment. Patient perceived on professional care, time spent with health care provider, accessibility, technical competency, convenience (cleanliness) and consultation and relational empathy were independent predictors of overall patient satisfaction (P patient satisfaction (Beta = 0.262). In multivariate analysis occupational status, area of residence, perceived time spent with health care provider, perceived accessibility, perceived waiting time, perceived professional care and over all patient satisfaction were significantly

  4. 200 Area effluent treatment facility process control plan 98-02

    International Nuclear Information System (INIS)

    Le, E.Q.

    1998-01-01

    This Process Control Plan (PCP) provides a description of the background information, key objectives, and operating criteria defining Effluent Treatment Facility (ETF) Campaign 98-02 as required per HNF-IP-0931 Section 37, Process Control Plans. Campaign 98-62 is expected to process approximately 18 millions gallons of groundwater with an assumption that the UP-1 groundwater pump will be shut down on June 30, 1998. This campaign will resume the UP-1 groundwater treatment operation from Campaign 97-01. The Campaign 97-01 was suspended in November 1997 to allow RCRA waste in LERF Basin 42 to be treated to meet the Land Disposal Restriction Clean Out requirements. The decision to utilize ETF as part of the selected interim remedial action of the 200-UP-1 Operable Unit is documented by the Declaration of the Record of Decision, (Ecology, EPA and DOE 1997). The treatment method was chosen in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), the Hanford Federal Facility Agreement and Consent Order (known as the Tri-Party Agreement or TPA), and to the extent practicable, the National Oil and Hazardous Substances Pollution Contingency Plan (NCP)

  5. A facile homogeneous precipitation synthesis of NiO nanosheets and their applications in water treatment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Junfeng, E-mail: daidai02304@163.com [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China); Tan, Yang; Su, Kang; Zhao, Junjie; Yang, Chen; Sang, Lingling [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Lu, Hongbin [National Laboratory of Solid State Microstructures and College of Engineering and Applied Sciences, Nanjing University, Nanjing (China); Chen, JianHua [School of Chemistry and Materials Engineering, Changshu Institute of Technology, Changshu (China); Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu (China)

    2015-05-15

    Highlights: • NiO nanosheets were synthesized via a facile homogeneous precipitation method. • The NiO nanosheets have a large surface area. • This preparation method was low-cost, simple equipments, easy preparation, short reaction time and better repeatability. • The product also showed a favourable ability to remove Cr(VI) and Congo red (CR) in water treatment. - Abstract: NiO nanosheets were successfully synthesized by a facile homogeneous precipitation method with the assistance of ethanol amine. The sample was characterized by X-ray diffraction (XRD), scanning electronic microscopy (SEM), transmission electron microscopy (TEM), and nitrogen adsorption–desorption techniques. The results demonstrated that the as-prepared product was cubic NiO nanosheets with a large surface area of 170.1 m{sup 2} g{sup −1}. Further, the as-prepared product was used to investigate its potential application for wastewater treatment. The maximum adsorption capacity for Cr(VI) and Congo red (CR) on NiO nanosheets has been determined using the Langmuir equation and found to reach up to 48.98 and 167.73 mg g{sup −1}, respectively. It could be concluded that NiO nanosheets with special surface features had the potential as adsorbents for wastewater treatment.

  6. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  7. F/H Effluent Treatment Facility filtration upgrade alternative evaluations overview

    Energy Technology Data Exchange (ETDEWEB)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-07-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater.

  8. Preliminary study for treatment methodology establishment of liquid waste containing uranium in refining facility lagoon

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Jik; Lee, Kune Woo; Won, Hui Jun; Ahn, Byung Gil; Shim, Joon Bo

    1999-12-01

    The preliminary study which establishes the treatment methodology of the sludge waste containing uranium in the conversion facility lagoon was performed. The property of lagoon liquid waste such as the initial water content, the density including radiochemical analysis results were obtained using the samples taken from the lagoon. The objective of this study is to provide some basically needed materials for selection of the most proper lagoon waste treatment methodology by reviewing the effective processes and methods for minimizing the secondary waste resulting from the treatment and disposition of large amount of radioactive liquid waste according to the facility closing. The lagoon waste can be classified into two sorts, such as supernatant and precipitate. The supernatants contain uranium less than 5 ppm and their water content are about 35 percent. Therefore, supernatants are solutions composed of mainly salt components. However, the precipitates have lots of uranium compound contained in the coagulation matrix, and are formed as two kinds of crystalline structures. The most proper method minimizing the secondary waste would be direct drying and solidification of the supernatants and precipitates after separation of them by filtering. (author)

  9. F/H effluent treatment facility filtration upgrade alternative evaluations overview

    International Nuclear Information System (INIS)

    Miles, W.C. Jr.; Poirier, M.R.; Brown, D.F.

    1992-01-01

    The F/H Effluent Treatment Facility (ETF) at the Savannah River Site (SRS) was designed to treat process wastewater from the 200-F/H Production Facilities (routine wastewater) as well as intermittent flows from the F/H Retention Basins and F/H Cooling Water Basins (nonroutine wastewater). Since start-up of the ETF at SRS in 1988, the treatment process has experienced difficulties processing routine and nonroutine wastewater. Studies have identified high bacteria and bacterial decomposition products in the wastewater as the cause for excessive fouling of the filtration system. In order to meet Waste Management requirements for the treatment of processed wastewater, an upgrade of the ETF filtration system is being developed. This upgrade must be able to process the nonroutine wastewater at design capacity. As a result, a study of alternative filter technologies was conducted utilizing simulated wastewater. The simulated wastewater tests have been completed. Three filter technologies, centrifugal polymeric ultrafilters, tubular polymeric ultrafilters, and backwashable cartridge filters have been selected for further evaluation utilizing actual ETF wastewater. (author)

  10. US Department of Energy Grand Junction Projects Office Remedial Action Project, final report of the decontamination and decommissioning of Building 36 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7-acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the GJPO Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, also is the remedial action contractor. Building 36 was found to be radiologically contaminated and was demolished in 1996. The soil beneath the building was remediated in accordance with identified standards and can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual final report for each contaminated GJPO building

  11. Method for assessment of stormwater treatment facilities – Synthetic road runoff addition including micro-pollutants and tracer

    DEFF Research Database (Denmark)

    Cederkvist, Karin; Jensen, Marina Bergen; Holm, Peter Engelund

    2017-01-01

    Stormwater treatment facilities (STFs) are becoming increasingly widespread but knowledge on their performance is limited. This is due to difficulties in obtaining representative samples during storm events and documenting removal of the broad range of contaminants found in stormwater runoff...

  12. Notification: EPA Region 10 Management Controls Over Allowing Substantial Public Funds to Construct the Spokane County Wastewater Treatment Facility

    Science.gov (United States)

    January 20, 2012. This EPA's OIG is initiating a review from an OIG hotline complaint regarding whether federal funds were properly used to construct the new Spokane County wastewater treatment facility in accordance with 40 CFR 35, Subpart K.

  13. Final Report on the Audit of Architect-Engineer Contracting at the Officer in Charge of Construction, Naval Facilities Engineering Command Contracts, Mediterranean, Madrid, Spain

    Science.gov (United States)

    1990-11-30

    This is our final report on the audit of Architect-Engineer Contracting for the Officer in Charge of Construction, Naval Facilities Engineering...Command Contracts, Mediterranean, for your information and use. This is the fourth in a series of reports issued as part of the audit of architect-engineer...A-E) contracting. The Contract Management Directorate made the audit from August 1989 through July 1990. When we expanded the audit scope to include

  14. Methods of sampling airborne fungi in working environments of waste treatment facilities.

    Science.gov (United States)

    Černá, Kristýna; Wittlingerová, Zdeňka; Zimová, Magdaléna; Janovský, Zdeněk

    2016-01-01

    The objective of the present study was to evaluate and compare the efficiency of a filter based sampling method and a high volume sampling method for sampling airborne culturable fungi present in waste sorting facilities. Membrane filters method was compared with surface air system method. The selected sampling methods were modified and tested in 2 plastic waste sorting facilities. The total number of colony-forming units (CFU)/m3 of airborne fungi was dependent on the type of sampling device, on the time of sampling, which was carried out every hour from the beginning of the work shift, and on the type of cultivation medium (p airborne fungi ranged 2×102-1.7×106 CFU/m3 when using the membrane filters (MF) method, and 3×102-6.4×104 CFU/m3 when using the surface air system (SAS) method. Both methods showed comparable sensitivity to the fluctuations of the concentrations of airborne fungi during the work shifts. The SAS method is adequate for a fast indicative determination of concentration of airborne fungi. The MF method is suitable for thorough assessment of working environment contamination by airborne fungi. Therefore we recommend the MF method for the implementation of a uniform standard methodology of airborne fungi sampling in working environments of waste treatment facilities. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  15. Facilities for the treatment of radioactively contaminated water in nuclear power plants

    International Nuclear Information System (INIS)

    1978-01-01

    The regulation is to be applied to design, construction and operation of facilities for the treatment of contaminated water in stationary nuclear power plants with LWR and HTR. The facilities are to be designed, constructed and operated in such manner that (a) imcontrolled discharge of contaminated water is avoided (Paragraph 46 section 1, no. 1 Radiation Protection Regulation) (b) the activity discharged with water is as low as possible ( paragraph 46, section 2, no. 2 Radiation Protection Regulation) (c)contaminated water will not get into the ground, unless this is permitted by a license (paragraph 46 section 6 Radiation Protection Regulation) (d) the radiation exposure resulting from direct radiation, contamination and inhalation of the personnel working with the facility is as low as possible and, at the most, corresponds to the values fixed in the regulation (paragraph 28 section 1 Radiation Protection Regulation) or the values given in the discharge permit. The regulation is not to be applied to installations for reactor coolant or fuel pit clean-up. (orig./HP) [de

  16. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities

    International Nuclear Information System (INIS)

    Barrett, M.; Fitzhenry, K.; O'Flaherty, V.; Dore, W.; Keaveney, S.; Cormican, M.; Rowan, N.; Clifford, E.

    2016-01-01

    It is accepted that discharged wastewaters can be a significant source of pathogenic viruses in receiving water bodies contributing to pollution and may in turn enter the human food chain and pose a risk to human health, thus norovirus (NoV) is often a predominant cause of gastroenteritis globally. Working with NoV poses particular challenges as it cannot be readily identified and detection by molecular methods does not assess infectivity. It has been proposed that the infectivity of NoV may be modelled through the use of an alternative virus; F-specific RNA (FRNA) bacteriophages; GA genotype and other FRNA bacteriophages have been used as a surrogate in studies of NoV inactivation. This study investigated the efficiency of novel pulsed ultraviolet irradiation and low pressure ultraviolet irradiation as a potential pathogen inactivation system for NoV and FRNA bacteriophage (GA) in secondary treated wastewaters. The role of UV dose and the impact of suspended solids concentration on removal efficiency were also examined. The study also investigated the role of settlement processes in wastewater treatment plants in removing NoV. While NoV inactivation could not be determined it was found that at a maximum UV dose of 6.9 J/cm"2 (6900 mJ/cm"2) an average 2.4 log removal of FRNA bacteriophage (GA) was observed; indicating the potential need for high UV doses to remove NoV if FRNA bacteriophage prove a suitable indicator for NoV. The study found that increasing concentrations of suspended solids impacted on PUV efficiency however, it appears the extent of the impact may be site specific. Furthermore, the study found that settlement processes can play a significant role in the removal of FRNA bacteriophage, thus potentially NoV. - Highlights: • Effectiveness of low pressure UV and novel high-intensity pulsed UV disinfection in NoVs removal. • Reduction of FRNA bacteriophage was seen in clarified wastewater after settling. • Adsorption of viral particles to solids

  17. Detection, fate and inactivation of pathogenic norovirus employing settlement and UV treatment in wastewater treatment facilities

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, M. [Microbial Ecology Laboratory, Microbiology, School of Natural sciences, National University of Ireland Galway (Ireland); Ryan Institute, National University of Ireland Galway (Ireland); College of Engineering and Informatics, National University of Ireland Galway (Ireland); Fitzhenry, K. [Ryan Institute, National University of Ireland Galway (Ireland); College of Engineering and Informatics, National University of Ireland Galway (Ireland); O' Flaherty, V. [Microbial Ecology Laboratory, Microbiology, School of Natural sciences, National University of Ireland Galway (Ireland); Ryan Institute, National University of Ireland Galway (Ireland); Dore, W.; Keaveney, S. [Marine Institute, Galway (Ireland); Cormican, M. [Ryan Institute, National University of Ireland Galway (Ireland); Centre for Health from Environment, Ryan Institute, National University of Ireland Galway (Ireland); Rowan, N. [Bioscience Research Institute, Athlone Institute of Technology (Ireland); Clifford, E., E-mail: eoghan.clifford@nuigalway.ie [Ryan Institute, National University of Ireland Galway (Ireland); College of Engineering and Informatics, National University of Ireland Galway (Ireland)

    2016-10-15

    It is accepted that discharged wastewaters can be a significant source of pathogenic viruses in receiving water bodies contributing to pollution and may in turn enter the human food chain and pose a risk to human health, thus norovirus (NoV) is often a predominant cause of gastroenteritis globally. Working with NoV poses particular challenges as it cannot be readily identified and detection by molecular methods does not assess infectivity. It has been proposed that the infectivity of NoV may be modelled through the use of an alternative virus; F-specific RNA (FRNA) bacteriophages; GA genotype and other FRNA bacteriophages have been used as a surrogate in studies of NoV inactivation. This study investigated the efficiency of novel pulsed ultraviolet irradiation and low pressure ultraviolet irradiation as a potential pathogen inactivation system for NoV and FRNA bacteriophage (GA) in secondary treated wastewaters. The role of UV dose and the impact of suspended solids concentration on removal efficiency were also examined. The study also investigated the role of settlement processes in wastewater treatment plants in removing NoV. While NoV inactivation could not be determined it was found that at a maximum UV dose of 6.9 J/cm{sup 2} (6900 mJ/cm{sup 2}) an average 2.4 log removal of FRNA bacteriophage (GA) was observed; indicating the potential need for high UV doses to remove NoV if FRNA bacteriophage prove a suitable indicator for NoV. The study found that increasing concentrations of suspended solids impacted on PUV efficiency however, it appears the extent of the impact may be site specific. Furthermore, the study found that settlement processes can play a significant role in the removal of FRNA bacteriophage, thus potentially NoV. - Highlights: • Effectiveness of low pressure UV and novel high-intensity pulsed UV disinfection in NoVs removal. • Reduction of FRNA bacteriophage was seen in clarified wastewater after settling. • Adsorption of viral particles

  18. Final work plan : investigation of potential contamination at the former CCC/USDA grain storage facility in Hanover, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-11-19

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility at the northeastern edge of the city of Hanover, Kansas, from 1950 until the early 1970s. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In February 1998, trace to low levels of carbon tetrachloride (below the maximum contaminant level [MCL] of 5.0 {micro}g/L) were detected in two private wells near the former grain storage facility at Hanover, as part of a statewide USDA private well sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. In April 2007, the CCC/USDA collected near-surface soil samples at 1.8-2 ft BGL (below ground level) at 61 locations across the former CCC/USDA facility. All soil samples were analyzed by the rigorous gas chromatograph-mass spectrometer analytical method (purge-and-trap method). No contamination was found in soil samples above the reporting limit of 10 {micro}g/kg. In July 2007, the CCC/USDA sampled indoor air at nine residences on or adjacent to its former facility to address the residents concerns regarding vapor intrusion. Low levels of carbon tetrachloride were detected at four of the nine homes. Because carbon tetrachloride found in private wells and indoor air at the site might be linked to historical use of fumigants containing carbon tetrachloride at its former grain storage facility, the CCC/USDA is proposing to conduct an investigation to determine the source and extent of the carbon tetrachloride contamination associated with the former facility. This investigation will be conducted in accordance with the intergovernmental agreement between the KDHE and the Farm Service Agency (FSA) of the USDA. The investigation at Hanover will be performed, on behalf of the CCC/USDA, by the Environmental Science

  19. Development of biological and chemical methods for environmental monitoring of DOE waste disposal and storage facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-04-01

    Hazardous chemicals in the environment have received ever increasing attention in recent years. In response to ongoing problems with hazardous waste management, Congress enacted the Resource Conservation and Recovery Act (RCRA) in 1976. In 1980, Congress adopted the Comprehensive Environmental Response Compensation, and Liability Act (CERCLA), commonly called Superfund to provide for emergency spill response and to clean up closed or inactive hazardous waste sites. Scientists and engineers have begun to respond to the hazardous waste challenge with research and development on treatment of waste streams as well as cleanup of polluted areas. The magnitude of the problem is just now beginning to be understood. The U.S. Environmental Protection Agency (USEPA) National Priorities List as of September 13 1985, contained 318 proposed sites and 541 final sites (USEPA, 1985). Estimates of up to 30,000 sites containing hazardous wastes (1,200 to 2,000 of which present a serious threat to public health) have been made (Public Law 96-150). In addition to the large number of sites, the costs of cleanup using available technology are phenomenal. For example, a 10-acre toxic waste site in Ohio is to be cleaned up by removing chemicals from the site and treating the contaminated groundwater. The federal government has already spent more than $7 million to remove the most hazardous wastes and the groundwater decontamination alone is expected to take at least 10 years and cost $12 million. Another example of cleanup costs comes from the State of California Commission for Economic Development which predicts a bright economic future for the state except for the potential outlay of $40 billion for hazardous waste cleanup mandated by federal and state laws.

  20. Final environmental impact statement. Proton--Proton Storage Accelerator Facility (ISABELLE), Brookhaven National Laboratory, Upton, New York

    International Nuclear Information System (INIS)

    1978-08-01

    An Environmental Impact Statement for a proposed research facility (ISABELLE) to be built at Brookhaven National Laboratory (BNL) is presented. It was prepared by the Department of Energy (DOE) following guidelines issued for such analyses. In keeping with DOE policy, this statement presents a concise and issues-oriented analysis of the significant environmental effects associated with the proposed action. ISABELLE is a proposed physics research facility where beams of protons collide providing opportunities to study high energy interactions. The facility would provide two interlaced storage ring proton accelerators, each with an energy up to 400 GeV intersecting in six experimental areas. The rings are contained in a tunnel with a circumference of 3.8 km (2.3 mi). The facility will occupy 250 ha (625 acres) in the NW corner of the existing BNL site. A draft Environmental Impact Statement for this proposed facility was issued for public review and comment by DOE on February 21, 1978. The principal areas of concern expressed were in the areas of radiological impacts and preservation of cultural values. After consideration of these comments, appropriate actions were taken and the text of the statement has been amended to reflect the comments. The text was annotated to indicate the origin of the comment. The Appendices contain a glossary of terms and listings of metric prefixes and conversions and symbols and abbreviations

  1. Final report of the decontamination and decommissioning of the exterior land areas at the Grand Junction Projects Office facility

    Energy Technology Data Exchange (ETDEWEB)

    Widdop, M.R.

    1995-09-01

    The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) facility occupies approximately 56.4 acres (22.8 hectares) along the Gunnison River near Grand Junction, Colorado. The site was contaminated with uranium ore and mill tailings during uranium-refining activities conducted by the Manhattan Engineer District and during pilot-milling experiments conducted for the US Atomic Energy Commission`s (AEC`s) domestic uranium procurement program. The GJPO facility was the collection and assay point for AEC uranium and vanadium oxide purchases until the early 1970s. The DOE Decontamination and Decommissioning Program sponsored the Grand Junction Projects Office Remedial Action Project (GJPORAP) to remediate the facility lands, site improvements, and the underlying aquifer. The site contractor, Rust Geotech, was the Remedial Action Contractor for GJPORAP. The exterior land areas of the facility assessed as contaminated have been remediated in accordance with identified standards and can be released for unrestricted use. Restoration of the aquifer will be accomplished through the natural flushing action of the aquifer during the next 50 to 80 years. The remediation of the DOE-GJPO facility buildings is ongoing and will be described in a separate report.

  2. National Ignition Facility, High-Energy-Density and Inertial Confinement Fusion, Peer-Review Panel (PRP) Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Keane, C. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-01-28

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) is operated as a National Nuclear Security Administration (NNSA) user facility in accordance with Department of Energy (DOE) best practices, including peer-reviewed experiments, regular external reviews of performance, and the use of a management structure that facilitates user and stakeholder feedback. NIF facility time is managed using processes similar to those in other DOE science facilities and is tailored to meet the mix of missions and customers that NIF supports. The NIF Governance Plan describes the process for allocating facility time on NIF and for creating the shot schedule. It also includes the flow of responsibility from entity to entity. The plan works to ensure that NIF meets its mission goals using the principles of scientific peer review, including transparency and cooperation among the sponsor, the NIF staff, and the various user communities. The NIF Governance Plan, dated September 28, 2012, was accepted and signed by LLNL Director Parney Albright, NIF Director Ed Moses, and Don Cook and Thomas D’Agostino of NNSA. Figure 1 shows the organizational structure for NIF Governance.

  3. Decontamination and dismantlement of the building 594 waste ion exchange facility at Argonne National Laboratory-East project final report

    International Nuclear Information System (INIS)

    Wiese, E. C.

    1998-01-01

    The Building 594 D and D Project was directed toward the following goals: Removal of any radioactive and hazardous materials associated with the Waste Ion Exchange Facility; Decontamination of the Waste Ion Exchange Facility to unrestricted use levels; Demolition of Building 594; and Documentation of all project activities affecting quality (i.e., waste packaging, instrument calibration, audit results, and personnel exposure) These goals had been set in order to eliminate the radiological and hazardous safety concerns inherent in the Waste Ion Exchange Facility and to allow, upon completion of the project, unescorted and unmonitored access to the area. The ion exchange system and the resin contained in the system were the primary areas of concern, while the condition of the building which housed the system was of secondary concern. ANL-E health physics technicians characterized the Building 594 Waste Ion Exchange Facility in September 1996. The characterization identified a total of three radionuclides present in the Waste Ion Exchange Facility with a total activity of less than 5 microCi (175 kBq). The radionuclides of concern were Co 60 , Cs 137 , and Am 241 . The highest dose rates observed during the project were associated with the resin in the exchange vessels. DOE Order 5480.2A establishes the maximum whole body exposure for occupational workers at 5 rem (50 mSv)/yr; the administrative limit at ANL-E is 1 rem/yr (10 mSv/yr)

  4. 2010 Annual Wastewater Reuse Report for the Idaho National Laboratory Site's Central Facilities Area Sewage Treatment Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mike lewis

    2011-02-01

    This report describes conditions, as required by the state of Idaho Wastewater Reuse Permit (#LA-000141-03), for the wastewater land application site at Idaho National Laboratory Site’s Central Facilities Area Sewage Treatment Plant from November 1, 2009, through October 31, 2010. The report contains the following information: • Site description • Facility and system description • Permit required monitoring data and loading rates • Status of special compliance conditions • Discussion of the facility’s environmental impacts. During the 2010 permit year, approximately 2.2 million gallons of treated wastewater was land-applied to the irrigation area at Central Facilities Area Sewage Treatment plant.

  5. Elimination of Pasteurella pneumotropica from a Mouse Barrier Facility by Using a Modified Enrofloxacin Treatment Regimen

    Science.gov (United States)

    Towne, Justin W; Wagner, April M; Griffin, Kurt J; Buntzman, Adam S; Frelinger, Jeffrey A; Besselsen, David G

    2014-01-01

    Multiple NOD.Cg-Prkdcscid Il2rgtm1WjlTg(HLA-A2.1)Enge/Sz (NSG/A2) transgenic mice maintained in a mouse barrier facility were submitted for necropsy to determine the cause of facial alopecia, tachypnea, dyspnea, and sudden death. Pneumonia and soft-tissue abscesses were observed, and Pasteurella pneumotropica biotype Jawetz was consistently isolated from the upper respiratory tract, lung, and abscesses. Epidemiologic investigation within the facility revealed presence of this pathogen in mice generated or rederived by the intramural Genetically Engineered Mouse Model (GEMM) Core but not in mice procured from several approved commercial vendors. Epidemiologic data suggested the infection originated from female or vasectomized male ND4 mice obtained from a commercial vendor and then comingled by the GEMM Core to induce pseudopregnancy in female mice for embryo implantation. Enrofloxacin delivered in drinking water (85 mg/kg body weight daily) for 14 d was sufficient to clear bacterial infection in normal, breeding, and immune-deficient mice without the need to change the antibiotic water source. This modified treatment regimen was administered to 2400 cages of mice to eradicate Pasteurella pneumotropica from the facility. Follow-up PCR testing for P. pneumotropica biotype Jawetz remained uniformly negative at 2, 6, 12, and 52 wk after treatment in multiple strains of mice that were originally infected. Together, these data indicate that enrofloxacin can eradicate P. pneumotropica from infected mice in a less labor-intensive approach that does not require breeding cessation and that is easily adaptable to the standard biweekly cage change schedule for individually ventilated cages. PMID:25255075

  6. Elimination of Pasteurella pneumotropica from a mouse barrier facility by using a modified enrofloxacin treatment regimen.

    Science.gov (United States)

    Towne, Justin W; Wagner, April M; Griffin, Kurt J; Buntzman, Adam S; Frelinger, Jeffrey A; Besselsen, David G

    2014-09-01

    Multiple NOD. Cg-Prkdc(scid)Il2rg(tm1Wjl)Tg(HLA-A2.1)Enge/Sz (NSG/A2) transgenic mice maintained in a mouse barrier facility were submitted for necropsy to determine the cause of facial alopecia, tachypnea, dyspnea, and sudden death. Pneumonia and soft-tissue abscesses were observed, and Pasteurella pneumotropica biotype Jawetz was consistently isolated from the upper respiratory tract, lung, and abscesses. Epidemiologic investigation within the facility revealed presence of this pathogen in mice generated or rederived by the intramural Genetically Engineered Mouse Model (GEMM) Core but not in mice procured from several approved commercial vendors. Epidemiologic data suggested the infection originated from female or vasectomized male ND4 mice obtained from a commercial vendor and then comingled by the GEMM Core to induce pseudopregnancy in female mice for embryo implantation. Enrofloxacin delivered in drinking water (85 mg/kg body weight daily) for 14 d was sufficient to clear bacterial infection in normal, breeding, and immune-deficient mice without the need to change the antibiotic water source. This modified treatment regimen was administered to 2400 cages of mice to eradicate Pasteurella pneumotropica from the facility. Follow-up PCR testing for P. pneumotropica biotype Jawetz remained uniformly negative at 2, 6, 12, and 52 wk after treatment in multiple strains of mice that were originally infected. Together, these data indicate that enrofloxacin can eradicate P. pneumotropica from infected mice in a less labor-intensive approach that does not require breeding cessation and that is easily adaptable to the standard biweekly cage change schedule for individually ventilated cages.

  7. Multi-criteria Decision Support System (DSS) for optimal locations of Soil Aquifer Treatment (SAT) facilities.

    Science.gov (United States)

    Tsangaratos, P; Kallioras, A; Pizpikis, Th; Vasileiou, E; Ilia, I; Pliakas, F

    2017-12-15

    Managed Aquifer Recharge is a wide-spread well-established groundwater engineering method which is largely seen as sound and sustainable solution to water scarcity hydrologically sensitive areas, such as the Circum Mediterranean. The process of site selection for the installation of a MAR facility is of paramount importance for the feasibility and effectiveness of the project itself, especially when the facility will include the use of waters of impaired quality as a recharge source, as in the case of Soil-Aquifer-Treatment systems. The main objective of this study is to present the developed framework of a multi-criteria Decision Support System (DSS) that integrates within a dynamic platform the main groundwater engineering parameters associated with MAR applications together with the general geographical features which determine the effectiveness of such a project. The proposed system will provide an advanced coupled DSS-GIS tool capable of handling local MAR-related issues -such as hydrogeology, topography, soil, climate etc., and spatially distributed variables -such as societal, economic, administrative, legislative etc., with special reference to Soil-Aquifer-Treatment technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Do drug treatment facilities increase clients' exposure to potential neighborhood-level triggers for relapse? A small-area assessment of a large, public treatment system.

    Science.gov (United States)

    Jacobson, Jerry O

    2006-03-01

    Research on drug treatment facility locations has focused narrowly on the issue of geographic proximity to clients. We argue that neighborhood conditions should also enter into the facility location decision and illustrate a formal assessment of neighborhood conditions at facilities in a large, metropolitan area, taking into account conditions clients already face at home. We discuss choice and construction of small-area measures relevant to the drug treatment context, including drug activity, disadvantage, and violence as well as statistical comparisons of clients' home and treatment locations with respect to these measures. Analysis of 22,707 clients discharged from 494 community-based outpatient and residential treatment facilities that received public funds during 1998-2000 in Los Angeles County revealed no significant mean differences between home and treatment neighborhoods. However, up to 20% of clients are exposed to markedly higher levels of disadvantage, violence, or drug activity where they attend treatment than where they live, suggesting that it is not uncommon for treatment locations to increase clients' exposure to potential environmental triggers for relapse. Whereas on average both home and treatment locations exhibit higher levels of these measures than the household locations of the general population, substantial variability in public treatment clients' home neighborhoods calls into question the notion that they hail exclusively from poor, high drug activity areas. Shortcomings of measures available for neighborhood assessment of treatment locations and implications of the findings for other areas of treatment research are also discussed.

  9. Final height and body mass index after treatment for childhood acute lymphoblastic leukemia

    Directory of Open Access Journals (Sweden)

    Tadej Battelino

    2006-03-01

    Full Text Available Background: Newer and more agressive forms of chemotherapy and newer protocols in the treatment have increased the survival rate of children with malignancies. Improved survival rates in children treated for acute lymphoblastic leukemia have focused attention on late effects including disorders of growth and puberty, and development of overweight or obesity.Methods: The height and weight expressed as body mass index (BMI of 47 patients (29 girls, 18 boys long-term survivors of childhood lymphoblastic leukemia was retrospectively analyzed. Height standard deviation score (HSDS according to Tanner and body mass index standard deviation scores (BMISDS before treatment and at follow-up were calculated. At the time of analysis all patients remained in first remission. Twenty-eight patients had cranial radiation with 12–18 Gy and 15 with 20–30 Gy. Four patients had no radiotherapy. All patients were treated with standard chemotherapy including intrathecal Methotrexat. Mean age (SD at the diagnosis was 5 5/12 (3 2/12 years, range (5/12 – 12 5/12 and at the time of evaluation 17 11/12 (3 9/12 years, range (10 1/12 – 31 6/12.Results: We observed significant decrease in HSDS from diagnosis to the final height in both radiation groups (p < 0.01 but the decrement in final height was similar with both radiation dose regimens. The decrement in final height SDS was greater in patients treated at a younger age (Pearson, p < 0.01. Girls treated with higher radiation dose (20–30 Gy were more severely affected than boys. In both radiation dose treatment groups there was a significant increase in BMISDS between diagnosis and final height (p < 0.0001 with no significant difference between treatment groups. Menarche occurred earlier in girls than normal with no significant difference between both radiation dose regimens.Conclusions: We observed significant deterioration in HSDS and increment in BMISDS regardless to the radiation dose.

  10. Evaluation of juvenile salmonid bypass facilities and passage at water diversions on the lower Umatilla River. Final report

    International Nuclear Information System (INIS)

    Cameron, W.A.; Knapp, S.M.; Carmichael, R.W.

    1997-07-01

    Outdated juvenile and adult fish passage facilities were recently reconstructed at the five major irrigation dams on the lower Umatilla River, Oregon to meet National marine Fisheries Service (NMFS) design standards. Changes in design at juvenile fish bypass facilities included reduced mesh size on the rotating drum screens, larger screening area, a more oblique orientation of the drum screens to canal flow, improved screen seals, replacement of bypass portals with vertical slot bypass channels, and increased bypass pipe diameters. Weir-and-pool adult fish ladders and jump pools were replaced with vertical-slot ladders. From 1991--1995, they investigated injury and travel rate of juvenile fish moving through the facilities, and efficiency of screens in preventing fish entry into the canals. Water velocities in front of canal screens, at bypass channel entrances, and at ladder diffusers were measured to assess adherence to NMFS criteria and identify hydraulic patterns. Biological evaluations were conducted by releasing and recapturing marked yearling summer steelhead (Oncorhynchus mykiss), yearling spring chinook salmon (O. tshawytscha), and subyearling fall chinook salmon (O. tshawytscha) in varying locations within the fish passage facilities

  11. Material control in nuclear fuel fabrication facilities. Part I. Fuel descriptions and fabrication processes, P.O. 1236909 Final report

    International Nuclear Information System (INIS)

    Borgonovi, G.M.; McCartin, T.J.; Miller, C.L.

    1978-12-01

    The report presents information on foreign nuclear fuel fabrication facilities. Fuel descriptions and fuel fabrication information for three basic reactor types are presented: The information presented for LWRs assumes that Pu--U Mixed Oxide Fuel (MOX) will be used as fuel

  12. Opportunities for Energy Efficiency and Open Automated Demand Response in Wastewater Treatment Facilities in California -- Phase I Report

    Energy Technology Data Exchange (ETDEWEB)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Song, Katherine; Piette, Mary Ann

    2009-04-01

    This report summarizes the Lawrence Berkeley National Laboratory?s research to date in characterizing energy efficiency and automated demand response opportunities for wastewater treatment facilities in California. The report describes the characteristics of wastewater treatment facilities, the nature of the wastewater stream, energy use and demand, as well as details of the wastewater treatment process. It also discusses control systems and energy efficiency and automated demand response opportunities. In addition, several energy efficiency and load management case studies are provided for wastewater treatment facilities.This study shows that wastewater treatment facilities can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for automated demand response at little additional cost. These improved controls may prepare facilities to be more receptive to open automated demand response due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  13. Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste

    International Nuclear Information System (INIS)

    1996-02-01

    This report evaluates the capabilities of the United States Department of Energy's (DOE's) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act

  14. Treatment of nanomaterial-containing waste in thermal waste treatment facilities; Behandlung nanomaterialhaltiger Abfaelle in thermischen Abfallbehandlungsanlagen

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, Julia; Weiss, Volker [Umweltbundesamt, Dessau-Rosslau (Germany); Oischinger, Juergen; Meiller, Martin; Daschner, Robert [Fraunhofer Umsicht, Sulzbach-Rosenberg (Germany)

    2016-09-15

    There is already a multitude of products on the market, which contain synthetic nanomaterials (NM), and for the coming years an increase of such products can be expected. Consequently, it is predictable that more nanomaterial-containing waste will occur in the residual waste that is predominately disposed in thermal waste treatment plants. However, the knowledge about the behaviour and effects of nanomaterials from nanomaterial-containing waste in this disposal route is currently still low. A research project of the German Environment Agency on the ''Investigation of potential environmental impacts when disposing nanomaterial-containing waste in waste treatment plants'' will therefore dedicate itself to a detailed examination of emission pathways in the thermal waste treatment facilities. The tests carried out i.a. on an industrial waste incineration plant and a sludge incineration plant with controlled addition of titanium dioxide at the nanoscale, showed that no increase in the emissions of NM in the exhaust gas was detected. The majority of the NM was found in the combustion residues, particularly the slag.

  15. Comparative analysis of rationale used by dentists and patient for final esthetic outcome of dental treatment.

    Science.gov (United States)

    Reddy, S Varalakshmi; Madineni, Praveen Kumar; Sudheer, A; Gujjarlapudi, Manmohan Choudary; Sreedevi, B; Reddy, Patelu Sunil Kumar

    2013-05-01

    To compare and evaluate the perceptions of esthetics among dentists and patients regarding the final esthetic outcome of a dental treatment. Esthetics is a matter of perception and is associated with the way different people look at an object. What constitutes esthetic for a particular person may not be acceptable for another. Hence it is subjective in nature. This becomes more obvious during the post-treatment evaluation of esthetics by dentist and the concerned patient. Opinion seldom matches. Hence, the study is a necessary part of the process of understanding the mind of dentist and patient regarding what constitutes esthetics. A survey has been conducted by means of a questionnaire consisting of 10 questions, on two groups of people. First group consists of 100 dentists picked at random in Kanyakumari district of Tamil Nadu, India. Second group consisted of 100 patients who required complete denture prosthesis. The second group was divided into two subgroups A and B. Subgroup A consisting of 50 men and subgroup B consisting of 50 women. In each subgroup 25 patients were selected in age group of 40 to 50 and 25 patients were selected in the age group of 50 to 60. The questionnaire was given to both the groups and asked to fill up, which was then statistically analyzed to look for patterns of thought process among them. Results were subjected to statistical analysis by Student's t-test. Perceptions of esthetics differs from dentist who is educated regarding esthetic principles of treatment and a patient who is not subjected to such education. Since, the questions were formulated such that patients could better understand the underlying problem, the final outcome of survey is a proof that dentists need to take into account what the patient regards as esthetics in order to provide a satisfactory treatment. CLINICAL AND ACADEMIC SIGNIFICANCE: The current study helps the dentist to better educate the patient regarding esthetics so that patient appreciates the final

  16. Opportunities for Automated Demand Response in Wastewater Treatment Facilities in California - Southeast Water Pollution Control Plant Case Study

    Energy Technology Data Exchange (ETDEWEB)

    Olsen, Daniel [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goli, Sasank [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Faulkner, David [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McKane, Aimee [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-12-20

    This report details a study into the demand response potential of a large wastewater treatment facility in San Francisco. Previous research had identified wastewater treatment facilities as good candidates for demand response and automated demand response, and this study was conducted to investigate facility attributes that are conducive to demand response or which hinder its implementation. One years' worth of operational data were collected from the facility's control system, submetered process equipment, utility electricity demand records, and governmental weather stations. These data were analyzed to determine factors which affected facility power demand and demand response capabilities The average baseline demand at the Southeast facility was approximately 4 MW. During the rainy season (October-March) the facility treated 40% more wastewater than the dry season, but demand only increased by 4%. Submetering of the facility's lift pumps and centrifuges predicted load shifts capabilities of 154 kW and 86 kW, respectively, with large lift pump shifts in the rainy season. Analysis of demand data during maintenance events confirmed the magnitude of these possible load shifts, and indicated other areas of the facility with demand response potential. Load sheds were seen to be possible by shutting down a portion of the facility's aeration trains (average shed of 132 kW). Load shifts were seen to be possible by shifting operation of centrifuges, the gravity belt thickener, lift pumps, and external pump stations These load shifts were made possible by the storage capabilities of the facility and of the city's sewer system. Large load reductions (an average of 2,065 kW) were seen from operating the cogeneration unit, but normal practice is continuous operation, precluding its use for demand response. The study also identified potential demand response opportunities that warrant further study: modulating variable-demand aeration loads, shifting

  17. Assessment of national systems for obtaining local siting acceptance of nuclear-waste-management facilities (1981). Final report

    International Nuclear Information System (INIS)

    1981-01-01

    There is a rich mixture of formal and informal approaches being used in our sister nuclear democracies in their attempts to deal with the difficulties in obtaining local siting acceptance of national waste management facilities. Some of these are meeting with a degree of success not yet achieved in the US. Although this survey documents and assesses many of these approaches, the scope of the study did not include an assessment of their relevance to common problems in the US. It would appear that in addition to a periodic updating of the approaches and progress of other countries in dealing with the siting of nuclear waste facilities, an assessment of the applicability of the more successful of these approaches to the US political system could make good use of the information developed in the preparation of this report

  18. Final deactivation report on the tritium target facility, Building 7025, at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1997-08-01

    This report includes a history and profile of Bldg. 7025 before and after completion of deactivation. It also discusses turnover items, such as the Postdeactivation Surveillance ampersand Maintenance Plan, remaining hazardous materials, radiological controls, Safeguards and Security, quality assurance, facility operations, and supporting documentation in the EM-60 Turnover package. Other than minimal S ampersand M activities, the building will be unoccupied and the exterior doors locked (access only for the required S ampersand M)

  19. Final report of the decontamination and decommissioning of Building 34 at the Grand Junction Projects Office Facility

    International Nuclear Information System (INIS)

    Widdop, M.R.

    1996-08-01

    The U.S. Department of Energy (DOE) Grand Junction Projects Office (GJPO) occupies a 61.7 acre facility along the Gunnison River near Grand Junction, Colorado. This site was contaminated with uranium ore and mill tailings during uranium refining activities of the Manhattan Engineer District and during pilot milling experiments conducted for the U.S. Atomic Energy Commission's domestic uranium procurement program. The DOE Defense Decontamination and Decommissioning Program established the Grand Junction Projects Office Remedial Action Project to clean up and restore the facility lands, improvements, and the underlying aquifer. The site contractor for the facility, Rust Geotech, was also the remedial action contractor. Building 34 was radiologically contaminated and the building was demolished in 1996. The soil area within the footprint of the building was analyzed and found to be not contaminated. The area can be released for unlimited exposure and unrestricted use. This document was prepared in response to a DOE request for an individual closeout report for each contaminated GJPO building

  20. Operation technology of the ventilation system of the radioactive waste treatment facility(II) - Design and operation note

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. M.; Lee, B. C.; Bae, S. M. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-12-01

    As the radioactive waste treatment work, such as compaction and/or solidification of wastes, are done directly by the workers in the Radioactive Waste Treatment Facility, the reasonable design and operation of the ventilation system is essential. In this report, the design criteria and specification of the ventilation equipment, system operation method are described for the effective design and operation of ventilation system in the radioactive waste treatment facility. And the anti-vibration work which was done in the Radioactive Waste Treatment Facility in KAERI to reduce the effect of vibration due to the continuous operation of big rotational equipment, the intake fans and the exhaust fans, are described in the report. 11 refs., 10 figs., 12 tabs. (Author)

  1. Remediation of copper-contaminated topsoils from a wood treatment facility using in situ stabilisation

    International Nuclear Information System (INIS)

    Bes, C.; Mench, M.

    2008-01-01

    Five organic matters, three phosphate compounds, zerovalent iron grit (ZVIG, 2% by soil weight), two alkaline compounds, and two commercial formulations were incorporated, singly and some combined with ZVIG, into a highly Cu-contaminated topsoil (Soil P7, 2600 mg Cu kg -1 ) from a wood treatment facility. Formulations and two composts were also singly incorporated into a slightly Cu-contaminated topsoil (Soil P10, 118 mg Cu kg -1 ) from the facility surrounding. This aimed to reduce the labile pool of Cu and its accumulation in beans cultivated on potted soils in a climatic chamber. Lowest Cu concentration in soil solution occurred in P7 soils amended with activated carbon (5%) and ZVIG, singly and combined. Basic slag (3.9%) and compost of sewage sludge (5%) combined with ZVIG promoted shoot production and limited foliar Cu accumulation. For amended P10 soils, no changes occurred in soil solution and foliar Cu concentrations, but one compost increased shoot production. - Three soil amendments, iron grit with compost, calcium oxide, and basic slags, decreased the phytotoxicity of a Cu-contaminated soil

  2. Pharmaceutical Formulation Facilities as Sources of Opioids and Other Pharmaceuticals to Wastewater Treatment Plant Effluents

    Science.gov (United States)

    2010-01-01

    Facilities involved in the manufacture of pharmaceutical products are an under-investigated source of pharmaceuticals to the environment. Between 2004 and 2009, 35 to 38 effluent samples were collected from each of three wastewater treatment plants (WWTPs) in New York and analyzed for seven pharmaceuticals including opioids and muscle relaxants. Two WWTPs (NY2 and NY3) receive substantial flows (>20% of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally effluent had median concentrations ranging from 3.4 to >400 μg/L. Maximum concentrations of oxycodone (1700 μg/L) and metaxalone (3800 μg/L) in samples from NY3 effluent exceeded 1000 μg/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 μg/L. These findings suggest that current manufacturing practices at these PFFs can result in pharmaceuticals concentrations from 10 to 1000 times higher than those typically found in WWTP effluents. PMID:20521847

  3. Final work plan : supplemental upward vapor intrusion investigation at the former CCC/USDA grain storage facility in Hanover, Kansas.

    Energy Technology Data Exchange (ETDEWEB)

    LaFreniere, L. M.; Environmental Science Division

    2008-12-15

    The Commodity Credit Corporation (CCC), an agency of the U.S. Department of Agriculture (USDA), operated a grain storage facility at the northeastern edge of the city of Hanover, Kansas, from 1950 until the early 1970s. During this time, commercial grain fumigants containing carbon tetrachloride were in common use by the grain storage industry to preserve grain in their facilities. In February 1998, trace to low levels of carbon tetrachloride (below the maximum contaminant level [MCL] of 5.0 {micro}g/L) were detected in two private wells near the former grain storage facility at Hanover, as part of a statewide USDA private well sampling program that was implemented by the Kansas Department of Health and Environment (KDHE) near former CCC/USDA facilities. In 2007, the CCC/USDA conducted near-surface soil sampling at 61 locations and also sampled indoor air at nine residences on or adjacent to its former Hanover facility to address the residents concerns regarding vapor intrusion. Low levels of carbon tetrachloride were detected at four of the nine homes. The results were submitted to the KDHE in October 2007 (Argonne 2007). On the basis of the results, the KDHE requested sub-slab sampling and/or indoor air sampling (KDHE 2007). This Work Plan describes, in detail, the proposed additional scope of work requested by the KDHE and has been developed as a supplement to the comprehensive site investigation work plan that is pending (Argonne 2008). Indoor air samples collected previously from four homes at Hanover were shown to contain the carbon tetrachloride at low concentrations (Table 2.1). It cannot be concluded from these previous data that the source of the detected carbon tetrachloride is vapor intrusion attributable to former grain storage operations of the CCC/USDA at Hanover. The technical objective of the vapor intrusion investigation described here is to assess the risk to human health due to the potential for upward migration of carbon tetrachloride and

  4. Treatment of Osteoporosis in Australian Residential Aged Care Facilities: Update on Consensus Recommendations for Fracture Prevention

    Science.gov (United States)

    Duque, Gustavo; Lord, Stephen R.; Mak, Jenson; Ganda, Kirtan; Close, Jacqueline J.T.; Ebeling, Peter; Papaioannou, Alexandra; Inderjeeth, Charles A.

    2016-01-01

    Background Older people living in residential aged care facilities (RACFs) are at a higher risk of suffering fractures than the community-dwelling older population. The first Consensus Conference on Treatment of Osteoporosis in RACFs in Australia, held in Sydney in July 2009, aimed to address some of the issues relating to the treatment of older residents with osteoporosis in RACFs. Considering that the field of osteoporosis diagnosis and management has significantly advanced in the last 5 years and that new evidence has been generated from studies performed within RACFs, a Second Consensus Conference was held in Sydney in November 2014. Methods An expert panel met in November 2014 in Penrith, NSW, Australia in an attempt to reach a consensus on diverse issues related to the treatment of osteoporosis at RACFs. Participants were selected by the scientific committee on the basis of their practice in an RACF and/or major published articles. The co-chairs distributed topics randomly to all participants, who then had to propose a statement on each topic for approval by the conference after a short, evidence-based presentation, when possible. Results This article provides an update on the most relevant evidence on osteoporosis in older people living in RACFs graded according to its level, quality, and relevance. Conclusion As with the first consensus, it is hoped that this statement will constitute an important guide to aid physicians in their decision making while practicing at RACFs. PMID:27349626

  5. Pilot-scale ultrafiltration testing for the F and H area effluent treatment facility

    International Nuclear Information System (INIS)

    Kessler, J.L.

    1984-01-01

    An F and H Area Effluent Treatment Facility (F/H ETF) is being designed to treat low activity aqueous effluents which are produced from F and H Area daily operations. The treatment scheme for the F/H ETF will include pretreatment (pH adjustment and filtration) followed by Reverse Osmosis and/or Ion Exchange to remove dissolved species. Several alternative treatment processes are being considered for the F/H ETF. One of the alternatives in the pretreatment step is tubular Ultrafiltration (UF), using a dynamically formed zirconium oxide membrane supported on a porous stainless steel backing. Pilot-scale testing with a single membrane module (13 ft 2 area) and 200-Area effluent simulant has demonstrated that UF is a viable filtration option for the F/H ETF. UF testing at TNX has defined the operating conditions necessary for extended operation and also demonstrated excellent filtration performance (filtrate SDI 2 /day) flux and will provide excellent pretreatment for both reverse osmosis and ion exchange. 2 refs

  6. Study of immobilization of waste from treatment of acid waters of a uranium mining facility

    International Nuclear Information System (INIS)

    Goda, R.T.; Oliveira, A.P. de; Silva, N.C. da; Villegas, R.A.S.; Ferreira, A.M.

    2017-01-01

    This study aimed to produce scientific and technical knowledge aiming at the development of techniques to immobilize the waste generated in the treatment of acid waters in the UTM-INB Caldas uranium mining and processing facility using Portland cement. This residue (calcium diuranate - DUCA) contains uranium compounds and metal hydroxides in a matrix of calcium sulfate. It is observed that this material, in contact with the lake of acid waters of the mine's own pit, undergoes resolubilization and, therefore, changes the quality of the acidic water contained therein, changing the treatment parameters. For the study of immobilization of this residue, the mass of water contained in both the residue deposited in the pit of the mine and in the pulp resulting from the treatment of the acid waters was determined. In addition, different DUCA / CEMENT / WATER ratios were used for immobilization and subsequent mechanical strength and leaching tests. The results showed that in the immobilized samples with 50% cement mass condition, no uranium was detected in the leaching tests, and the mechanical strength at compression was 9.4 MPa, which indicates that more studies are needed, but indicate a good capacity to immobilize uranium in cement

  7. The impact of a final disposal facility for spent nuclear fuel on a municipality`s image; Tutkimus loppusijoituslaitoksen vaikutuksista kuntien imagoon

    Energy Technology Data Exchange (ETDEWEB)

    Kankaanpaeae, H; Haapavaara, L; Lampinen, T

    1999-02-01

    The study comprised on one hand a nationwide telephone interview (totally 800 interviews) aimed at mapping out the current image of possible host municipalities to a final disposal facility for spent nuclear fuel, and on the other hand some group interviews of people of another parish but of interest from the municipalities` point of view. The purpose of these group interviews was the same as that of the telephone interview, i.e. to find out what kind of an impact locating a final disposal facility of spent nuclear fuel in a certain municipality would have on the host municipality`s image. Because the groups interviewed were selected on different grounds the results of the interviews are not fully comparable. The most important result of the study is that the current attitude towards a final disposal facility for spent nuclear fuel is calm and collected and that the matter is often considered from the standpoint of an outsider. The issue is easily ignored, classified as a matter `which does not concern me`, provided that the facility will not be placed too near one`s own home. Among those interviewed the subject seemed not to be of any `great interest and did not arouse spontaneous feelings for or against`. There are, however, deeply rooted beliefs concerning the facility and quite strong negative and positive attitudes towards it. The facility itself and the associated decision-making procedure arouse many questions, which at present to a large extent are still unexpressed because the subject is considered so remote. It is, however, necessary to give concrete answers to the questions because this makes it possible for people to relate the issue to daily life. It is further important that things arousing fear and doubts also can be discussed because a silence in this respect only emphasizes their importance. The attitude towards the facility is varying. On one hand there are economic and technical factors: the probable economic benefit from it, the obligation to

  8. SECONDARY WASTE/ETF (EFFLUENT TREATMENT FACILITY) PRELIMINARY PRE-CONCEPTUAL ENGINEERING STUDY

    International Nuclear Information System (INIS)

    May, T.H.; Gehner, P.D.; Stegen, Gary; Hymas, Jay; Pajunen, A.L.; Sexton, Rich; Ramsey, Amy

    2009-01-01

    This pre-conceptual engineering study is intended to assist in supporting the critical decision (CD) 0 milestone by providing a basis for the justification of mission need (JMN) for the handling and disposal of liquid effluents. The ETF baseline strategy, to accommodate (WTP) requirements, calls for a solidification treatment unit (STU) to be added to the ETF to provide the needed additional processing capability. This STU is to process the ETF evaporator concentrate into a cement-based waste form. The cementitious waste will be cast into blocks for curing, storage, and disposal. Tis pre-conceptual engineering study explores this baseline strategy, in addition to other potential alternatives, for meeting the ETF future mission needs. Within each reviewed case study, a technical and facility description is outlined, along with a preliminary cost analysis and the associated risks and benefits.

  9. Transition plan: Project C-018H, 200-E Area Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Connor, M.D.

    1994-01-01

    The purpose of this transition plan is to ensure an orderly transfer of project information to operations to satisfy Westinghouse Hanford Company (WHC) operational requirements and objectives, and ensure safe and efficient operation of Project C-018H, the 200-E Area Effluent Treatment Facility (ETF). This plan identifies the deliverables for Project C-018H upon completion of construction and turnover to WHC for operations, and includes acceptance criteria to objectively assess the adequacy of the contract deliverables in relation to present requirements. The scope of this plan includes a general discussion of the need for complete and accurate design basis documentation and design documents as project deliverables. This plan also proposes that a configuration management plan be prepared to protect and control the transferred design documents and reconstitute the design basis and design requirements, in the event that the deliverables and project documentation received from the contractor are less than adequate at turnover

  10. Composition and uses of anaerobic digestion derived biogas from wastewater treatment facilities in North America.

    Science.gov (United States)

    Lackey, Jillian C; Peppley, B; Champagne, P; Maier, A

    2015-08-01

    A study was conducted to determine the current knowledge of biogas production and its use at municipal wastewater treatment plants (WWTPs) across North America. Information was provided by municipal WWTPs across Canada and the US. It was determined that hydrogen sulfide (H2S) and silicon (Si) compounds had sufficient variability to be of concern. The only biogas production trend that could be identified was a possible seasonal relationship with sludge input and biogas production. Secondary analysis was performed to observe trends in biogas usage in urban areas larger than 150,000 in the US and 50,000 in Canada; 66% of facilities had anaerobic digestion systems and, of those, only 35% had an energy recovery system. Climatic, population, and socio-political influences on the trends were considered. The primary conclusion was that more data is required to perform significant analyses on biogas production and composition variation. © The Author(s) 2015.

  11. Assessment of wastewater treatment facility compliance with decreasing ammonia discharge limits using a regression tree model.

    Science.gov (United States)

    Suchetana, Bihu; Rajagopalan, Balaji; Silverstein, JoAnn

    2017-11-15

    A regression tree-based diagnostic approach is developed to evaluate factors affecting US wastewater treatment plant compliance with ammonia discharge permit limits using Discharge Monthly Report (DMR) data from a sample of 106 municipal treatment plants for the period of 2004-2008. Predictor variables used to fit the regression tree are selected using random forests, and consist of the previous month's effluent ammonia, influent flow rates and plant capacity utilization. The tree models are first used to evaluate compliance with existing ammonia discharge standards at each facility and then applied assuming more stringent discharge limits, under consideration in many states. The model predicts that the ability to meet both current and future limits depends primarily on the previous month's treatment performance. With more stringent discharge limits predicted ammonia concentration relative to the discharge limit, increases. In-sample validation shows that the regression trees can provide a median classification accuracy of >70%. The regression tree model is validated using ammonia discharge data from an operating wastewater treatment plant and is able to accurately predict the observed ammonia discharge category approximately 80% of the time, indicating that the regression tree model can be applied to predict compliance for individual treatment plants providing practical guidance for utilities and regulators with an interest in controlling ammonia discharges. The proposed methodology is also used to demonstrate how to delineate reliable sources of demand and supply in a point source-to-point source nutrient credit trading scheme, as well as how planners and decision makers can set reasonable discharge limits in future. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Establishing a clinical pharmacy technician at a United States Army military treatment facility.

    Science.gov (United States)

    Evans, Jennifer L; Gladd, Ellen M; Gonzalez, Alicia C; Tranam, Salman; Larrabee, Joni M; Lipphardt, Sarah E; Chen, Tina T; Ronn, Michael D; Spain, John

    2016-01-01

    To describe the creation of a clinical pharmacy technician position within the U.S. Army and to identify the personal skills and characteristics required to meet the demands of this role. An outpatient military treatment facility located in Maryland. The clinical pharmacy technician position was designed to support clinical pharmacy services within a patient-centered medical home. Funding and a position description were established to hire a clinical pharmacy technician. Expected duties included administrative (45%), patient education (30%), and dispensing (25%). Local policy, in accordance with federal law and U.S. Army regulations, was developed to define the expanded technician responsibility to deliver patient medication education. In the initial 3 months, the clinical pharmacy technician spent 24 hours per week on clinical activities, affording an additional 10-15 hours per week for clinical pharmacists to provide patient care. Completed consults increased from 41% to 56%, and patient-pharmacist encounters increased from 240 to 290 per month. The technician, acting as a clinical pharmacist extender, also completed an average of 90 patient encounters independently each month. As a result of these improvements, the decision was made to hire a second technician. Currently, the technicians spend 28-40 hours per week on clinical activities, offsetting an average of 26 hours per week for the clinical pharmacists. A patient-centered medical home clinical pharmacy technician can reduce the administrative workload for clinical pharmacists, improve their efficiency, and enhance the use of clinical pharmacy services. Several characteristics, particularly medication knowledge, make pharmacy technicians particularly suited for this role. The results from the implementation of a clinical pharmacy technician at this military treatment facility resulted in an Army-wide expansion of the position and suggested applicability in other practice sites, particularly in federal

  13. Facility-level, state, and financial factors associated with changes in the provision of smoking cessation services in US substance abuse treatment facilities: Results from the National Survey of Substance Abuse Treatment Services 2006 to 2012.

    Science.gov (United States)

    Cohn, Amy; Elmasry, Hoda; Niaura, Ray

    2017-06-01

    Cigarette smoking is common among patients in substance abuse treatment. Tobacco control programs have advocated for integrated tobacco dependence treatment into behavioral healthcare, including within substance abuse treatment facilities (SATFs) to reduce the public health burden of tobacco use. This study used data from seven waves (2006 to 2012) of the National Survey of Substance Abuse Treatment Services (n=94,145) to examine state and annual changes in the provision of smoking cessation services within US SATFs and whether changes over time could be explained by facility-level (private vs public ownership, receipt of earmarks, facility admissions, acceptance of government insurance) and state-level factors (cigarette tax per pack, smoke free policies, and percent of CDC recommended tobacco prevention spending). Results showed that the prevalence of SATFs offering smoking cessation services increased over time, from 13% to 65%. The amount of tax per cigarette pack, accepting government insurance, government (vs private) ownership, facility admissions, and CDC recommended tobacco prevention spending (per state) were the strongest correlates of the provision of smoking cessation programs in SATFs. Facilities that received earmarks were less likely to provide cessation services. Adult smoking prevalence and state-level smoke free policies were not significant correlates of the provision of smoking cessation services over time. Policies aimed at increasing the distribution of tax revenues to cessation services in SATFs may offset tobacco-related burden among those with substance abuse problems. Copyright © 2017. Published by Elsevier Inc.

  14. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING and SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    International Nuclear Information System (INIS)

    Griffin, P.W.

    2009-01-01

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  15. METHODS FOR DETERMINING AGITATOR MIXING REQUIREMENTS FOR A MIXING & SAMPLING FACILITY TO FEED WTP (WASTE TREATMENT PLANT)

    Energy Technology Data Exchange (ETDEWEB)

    GRIFFIN PW

    2009-08-27

    The following report is a summary of work conducted to evaluate the ability of existing correlative techniques and alternative methods to accurately estimate impeller speed and power requirements for mechanical mixers proposed for use in a mixing and sampling facility (MSF). The proposed facility would accept high level waste sludges from Hanford double-shell tanks and feed uniformly mixed high level waste to the Waste Treatment Plant. Numerous methods are evaluated and discussed, and resulting recommendations provided.

  16. Evaporation Of Hanford Waste Treatment Plant Direct Feed Low Activity Waste Effluent Management Facility Core Simulant

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Nash, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Mcclane, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); McCabe, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-09-01

    The Hanford Waste Treatment and Immobilization Plant (WTP) Low Activity Waste (LAW) vitrification facility will generate an aqueous condensate recycle stream (LAW Melter Off-Gas Condensate, LMOGC) from the off-gas system. The baseline plan for disposition of this stream during full WTP operations is to send it to the WTP Pretreatment Facility, where it will be blended with LAW, concentrated by evaporation, and recycled to the LAW vitrification facility. However, during the Direct Feed LAW (DFLAW) scenario, planned disposition of this stream is to evaporate it in a new evaporator, in the Effluent Management Facility (EMF), and then return it to the LAW melter. It is important to understand the composition of the effluents from the melter and new evaporator, so that the disposition of these streams can be accurately planned and accommodated. Furthermore, alternate disposition of the LMOGC stream would eliminate recycling of problematic components, and would reduce the need for closely integrated operation of the LAW melter and the Pretreatment Facilities. Long-term implementation of this option after WTP start-up would decrease the LAW vitrification mission duration and quantity of glass waste, amongst the other operational complexities such a recycle stream presents. In order to accurately plan for the disposition path, it is key to experimentally determine the fate of contaminants. To do this, testing is needed to accurately account for the buffering chemistry of the components, determine the achievable evaporation end point, identify insoluble solids that form, and determine the distribution of key regulatory-impacting constituents. The LAW Melter Off-Gas Condensate stream will contain components that are volatile at melter temperatures, have limited solubility in the glass waste form, and represent a materials corrosion concern, such as halides and sulfate. Because this stream will recycle within WTP, these components will accumulate in the Melter Condensate

  17. Mobilization plan for the Y-12 9409-5 tank storage facility RCRA closure plan. Final report. Revision 1

    International Nuclear Information System (INIS)

    1993-11-01

    This mobilization plan identifies the activities and equipment necessary to begin the field sampling for the Oak Ridge Y-12 9409-5 Diked Tank Storage Facility (DTSF) Resource Conservation and Recovery Act (RCRA) closure. Elements of the plan outline the necessary components of each mobilization task and identify whether SAIC or the Martin Marietta Energy Systems, Inc. Y-12 Environmental Restoration Division will be responsible for task coordination. Field work will be conducted in two phases: mobilization phase and soil sampling phase. Training and medical monitoring, access, permits and passes, decontamination/staging area, equipment, and management are covered in this document

  18. The study of the container types used for transport and final disposal of the radioactive wastes resulting from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Postelnicu, C.

    1998-01-01

    The purpose of the present paper is to select from a variety of package forms and capacities some containers which will be used for transport and disposal of the radioactive wastes resulting from decommissioning of nuclear facilities into the National Repository for Radioactive Waste - Baita, Bihor county. Taken into account the possibilities of railway and / or road transport and waste disposal in our country, detailed container classification was given in order to use them for radioactive waste transport and final disposal from decommissioning of IFIN-HH Research Reactor. (author)

  19. Testing of components on the shaking table facilities of AEP and contribution to full scale dynamic testing of Kozloduy NPP. Final report

    International Nuclear Information System (INIS)

    Ambriashvili, Y.

    1996-01-01

    This final report summarizes the results of components testing on the shaking table facilities of 'Atomenergoproject' which are considered as a contribution to the full scale dynamic testing of the Kozloduy nuclear power plant Units 5 and 6. It was designed on 1.0 g according to the calculations that were based on accelerograms which included artificial and already known recordings of real earthquakes. Maximum acceleration of the designed spectrum and new spectrum which are recommended are now within the range of frequencies 2.5-20 Hz. Active reactor and the primary loop are seismic stable as well as the tested equipment tested by 'Atomenergoproject'

  20. Public perception of odour and environmental pollution attributed to MSW treatment and disposal facilities: A case study

    Energy Technology Data Exchange (ETDEWEB)

    De Feo, Giovanni, E-mail: g.defeo@unisa.it [Department of Industrial Engineering, University of Salerno, via Ponte don Melillo 1, 84084 Fisciano (Italy); De Gisi, Sabino [Department of Industrial Engineering, University of Salerno, via Ponte don Melillo 1, 84084 Fisciano (Italy); Williams, Ian D. [Waste Management Research Group, Faculty of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)

    2013-04-15

    Highlights: ► Effects of closing MSW facilities on perception of odour and pollution studied. ► Residents’ perception of odour nuisance considerably diminished post closure. ► Odour perception showed an association with distance from MSW facilities. ► Media coverage increased knowledge about MSW facilities and how they operate. ► Economic compensation possibly affected residents’ views and concerns. - Abstract: If residents’ perceptions, concerns and attitudes towards waste management facilities are either not well understood or underestimated, people can produce strong opposition that may include protest demonstrations and violent conflicts such as those experienced in the Campania Region of Italy. The aim of this study was to verify the effects of the closure of solid waste treatment and disposal facilities (two landfills and one RDF production plant) on public perception of odour and environmental pollution. The study took place in four villages in Southern Italy. Identical questionnaires were administered to residents during 2003 and after the closure of the facilities occurred in 2008. The residents’ perception of odour nuisance considerably diminished between 2003 and 2009 for the nearest villages, with odour perception showing an association with distance from the facilities. Post closure, residents had difficulty in identifying the type of smell due to the decrease in odour level. During both surveys, older residents reported most concern about the potentially adverse health impacts of long-term exposure to odours from MSW facilities. However, although awareness of MSW facilities and concern about potentially adverse health impacts varied according to the characteristics of residents in 2003, substantial media coverage produced an equalisation effect and increased knowledge about the type of facilities and how they operated. It is possible that residents of the village nearest to the facilities reported lower awareness of and concern about