WorldWideScience

Sample records for treadmill walking reduce

  1. Attention demanding tasks during treadmill walking reduce step width variability in young adults

    Directory of Open Access Journals (Sweden)

    Troy Karen L

    2005-08-01

    Full Text Available Abstract Background The variability of step time and step width is associated with falls by older adults. Further, step time is significantly influenced when performing attention demanding tasks while walking. Without exception, step time variability has been reported to increase in normal and pathologically aging older adults. Because of the role of step width in managing frontal plane dynamic stability, documenting the influence of attention-demanding tasks on step width variability may provide insight to events that can disturb dynamic stability during locomotion and increase fall risk. Preliminary evidence suggests performance of an attention demanding task significantly decreases step width variability of young adults walking on a treadmill. The purpose of the present study was to confirm or refute this finding by characterizing the extent and direction of the effects of a widely used attention demanding task (Stroop test on the step width variability of young adults walking on a motorized treadmill. Methods Fifteen healthy young adults walked on a motorized treadmill at a self-selected velocity for 10 minutes under two conditions; without performing an attention demanding task and while performing the Stroop test. Step width of continuous and consecutive steps during the collection was derived from the data recorded using a motion capture system. Step width variability was computed as the standard deviation of all recorded steps. Results Step width decreased four percent during performance of the Stroop test but the effect was not significant (p = 0.10. In contrast, the 16 percent decrease in step width variability during the Stroop test condition was significant (p = 0.029. Conclusion The results support those of our previous work in which a different attention demanding task also decreased step width variability of young subjects while walking on a treadmill. The decreased step width variability observed while performing an attention

  2. Human treadmill walking needs attention

    Directory of Open Access Journals (Sweden)

    Daniel Olivier

    2006-08-01

    Full Text Available Abstract Background The aim of the study was to assess the attentional requirements of steady state treadmill walking in human subjects using a dual task paradigm. The extent of decrement of a secondary (cognitive RT task provides a measure of the attentional resources required to maintain performance of the primary (locomotor task. Varying the level of difficulty of the reaction time (RT task is used to verify the priority of allocation of attentional resources. Methods 11 healthy adult subjects were required to walk while simultaneously performing a RT task. Participants were instructed to bite a pressure transducer placed in the mouth as quickly as possible in response to an unpredictable electrical stimulation applied on the back of the neck. Each subject was tested under five different experimental conditions: simple RT task alone and while walking, recognition RT task alone and while walking, walking alone. A foot switch system composed of a pressure sensitive sensor was placed under the heel and forefoot of each foot to determine the gait cycle duration. Results Gait cycle duration was unchanged (p > 0.05 by the addition of the RT task. Regardless of the level of difficulty of the RT task, the RTs were longer during treadmill walking than in sitting conditions (p 0.05 was found between the attentional demand of the walking task and the decrement of performance found in the RT task under varying levels of difficulty. This finding suggests that the healthy subjects prioritized the control of walking at the expense of cognitive performance. Conclusion We conclude that treadmill walking in young adults is not a purely automatic task. The methodology and outcome measures used in this study provide an assessment of the attentional resources required by walking on the treadmill at a steady state.

  3. Treadmill walking with body weight support

    OpenAIRE

    Aaslund, Mona Kristin

    2012-01-01

    Background: Rehabilitating walking in patients post-stroke with safe, task-specific, intensive training of sufficient duration, can be challenging. Body weight supported treadmill training (BWSTT) has been proposed as an effective method to meet these challenges and may therefore have benefits over training overground walking. However, walking characteristics should not be aggravated during BWSTT or require a long familiarisation time compared to overground walking. Objectives: To investi...

  4. The efficacy of treadmill training with and without projected visual context for improving walking ability and reducing fall incidence and fear of falling in older adults with fall-related hip fracture: a randomized controlled trial.

    Science.gov (United States)

    van Ooijen, Mariëlle W; Roerdink, Melvyn; Trekop, Marga; Janssen, Thomas W J; Beek, Peter J

    2016-12-28

    The ability to adjust walking to environmental context is often reduced in older adults and, partly as result of this, falls are common in this population. A treadmill with visual context projected on its belt (e.g., obstacles and targets) allows for practicing step adjustments relative to that context, while concurrently exploiting the great amount of walking practice associated with conventional treadmill training. The present study was conducted to compare the efficacy of adaptability treadmill training, conventional treadmill training and usual physical therapy in improving walking ability and reducing fear of falling and fall incidence in older adults during rehabilitation from a fall-related hip fracture. In this parallel-group, open randomized controlled trial, seventy older adults with a recent fall-related hip fracture (83.3 ± 6.7 years, mean ± standard deviation) were recruited from inpatient rehabilitation care and block randomized to six weeks inpatient adaptability treadmill training (n = 24), conventional treadmill training (n = 23) or usual physical therapy (n = 23). Group allocation was only blind for assessors. Measures related to walking ability were assessed as the primary outcome before and after the intervention and at 4-week and 12-month follow-up. Secondary outcomes included general health, fear of falling, fall rate and proportion of fallers. Measures of general walking ability, general health and fear of falling improved significantly over time. Significant differences among the three intervention groups were only found for the Functional Ambulation Category and the dual-task effect on walking speed, which were in favor of respectively conventional treadmill training and adaptability treadmill training. Overall, adaptability treadmill training, conventional treadmill training and usual physical therapy resulted in similar effects on walking ability, fear of falling and fall incidence in older adults rehabilitating

  5. Treadmill walking exercise modulates bone mineral status and ...

    African Journals Online (AJOL)

    Treadmill walking exercise modulates bone mineral status and inflammatory cytokines in obese asthmatic patients with long term intake of corticosteroids. Shehab M. Abd El-Kader, Osama H. Al-Jiffri, Eman M. Ashmawy, Riziq Allah M. Gaowgzeh ...

  6. Anti-gravity treadmills are effective in reducing knee forces.

    Science.gov (United States)

    Patil, Shantanu; Steklov, Nikolai; Bugbee, William D; Goldberg, Timothy; Colwell, Clifford W; D'Lima, Darryl D

    2013-05-01

    Lower body positive pressure (LBPP) treadmills permit significant unweighting of patients and have the potential to enhance recovery following lower limb surgery. We determined the efficacy of an LBPP treadmill in reducing knee forces in vivo. Subjects, implanted with custom electronic tibial prostheses to measure forces in the knee, were tested on a treadmill housed within a LBPP chamber. Tibiofemoral forces were monitored at treadmill speeds from 1.5 mph (0.67 m/s) to 4.5 mph (2.01 m/s), treadmill incline from -10° to +10°, and four treadmill chamber pressure settings adjusted to decrease net treadmill reaction force from 100% to 25% of the subject's body weight (BW). The peak axial tibiofemoral force ranged from 5.1 times BW at a treadmill speed of 4.5 mph (2.01 m/s) and a pressure setting of 100% BW to 0.8 times BW at 1.5 mph (0.67 m/s) and a pressure setting of 25% BW. Peak knee forces were significantly correlated with walking speed and treadmill reaction force (R(2)  = 0.77, p = 0.04). The LBPP treadmill might be an effective tool in the rehabilitation of patients following lower-extremity surgery. The strong correlation between tibiofemoral force and walking speed and treadmill reaction forces allows for more precisely achieving the target knee forces desired during early rehabilitation. Copyright © 2012 Orthopaedic Research Society.

  7. Construction of Gait Adaptation Model in Human Splitbelt Treadmill Walking

    Directory of Open Access Journals (Sweden)

    Yuji Otoda

    2009-01-01

    Full Text Available There are a huge number of studies that measure kinematics, dynamics, the oxygen uptake and so on in human walking on the treadmill. Especially in walking on the splitbelt treadmill where the speed of the right and left belt is different, remarkable differences in kinematics are seen between normal and cerebellar disease subjects. In order to construct the gait adaptation model of such human splitbelt treadmill walking, we proposed a simple control model and made a newly developed 2D biped robot walk on the splitbelt treadmill. We combined the conventional limit-cycle based control consisting of joint PD-control, cyclic motion trajectory planning and a stepping reflex with a newly proposed adjustment of P-gain at the hip joint of the stance leg. We showed that the data of robot (normal subject model and cerebellum disease subject model experiments had high similarities with the data of normal subjects and cerebellum disease subjects experiments carried out by Reisman et al. (2005 and Morton and Bastian (2006 in ratios and patterns. We also showed that P-gain at the hip joint of the stance leg was the control parameter of adaptation for symmetric gaits in splitbelt walking and P-gain adjustment corresponded to muscle stiffness adjustment by the cerebellum. Consequently, we successfully proposed the gait adaptation model in human splitbelt treadmill walking and confirmed the validity of our hypotheses and the proposed model using the biped robot.

  8. Comparison of the metabolic energy cost of overground and treadmill walking in older adults.

    Science.gov (United States)

    Berryman, Nicolas; Gayda, Mathieu; Nigam, Anil; Juneau, Martin; Bherer, Louis; Bosquet, Laurent

    2012-05-01

    We assessed whether the metabolic energy cost of walking was higher when measured overground or on a treadmill in a population of healthy older adults. We also assessed the association between the two testing modes. Participants (n = 20, 14 men and 6 women aged between 65 and 83 years of age) were randomly divided into two groups. Half of them went through the overground-treadmill sequence while the other half did the opposite order. A familiarization visit was held for each participant prior to the actual testing. For both modes of testing, five walking speeds were experimented (0.67, 0.89, 1.11, 1.33 and 1.67 m s(-1)). Oxygen uptake was monitored for all walking speeds. We found a significant difference between treadmill and track metabolic energy cost of walking, whatever the walking speed. The results show that walking on the treadmill requires more metabolic energy than walking overground for all experimental speeds (P < 0.05). The association between both measures was low to moderate (0.17 < ICC < 0.65), and the standard error of measurement represented 6.9-15.7% of the average value. These data indicate that metabolic energy cost of walking results from a treadmill test does not necessarily apply in daily overground activities. Interventions aiming at reducing the metabolic energy cost of walking should be assessed with the same mode as it was proposed during the intervention. If the treadmill mode is necessary for any purposes, functional overground walking tests should be implemented to obtain a more complete and specific evaluation.

  9. Extraction of stride events from gait accelerometry during treadmill walking.

    Science.gov (United States)

    Sejdić, Ervin; Lowry, Kristin A; Bellanca, Jennica; Perera, Subashan; Redfern, Mark S; Brach, Jennifer S

    Evaluating stride events can be valuable for understanding the changes in walking due to aging and neurological diseases. However, creating the time series necessary for this analysis can be cumbersome. In particular, finding heel contact and toe-off events which define the gait cycles accurately are difficult. We proposed a method to extract stride cycle events from tri-axial accelerometry signals. We validated our method via data collected from 14 healthy controls, 10 participants with Parkinson's disease and 11 participants with peripheral neuropathy. All participants walked at self-selected comfortable and reduced speeds on a computer-controlled treadmill. Gait accelerometry signals were captured via a tri-axial accelerometer positioned over the L3 segment of the lumbar spine. Motion capture data were also collected and served as the comparison method. Our analysis of the accelerometry data showed that the proposed methodology was able to accurately extract heel and toe contact events from both feet. We used t-tests, ANOVA and mixed models to summarize results and make comparisons. Mean gait cycle intervals were the same as those derived from motion capture and cycle-to-cycle variability measures were within 1.5%. Subject group differences could be identified similarly using measures with the two methods. A simple tri-axial acceleromter accompanied by a signal processing algorithm can be used to capture stride events. Clinical Impact: The proposed algorithm enables the assessment of stride events during treadmill walking, and is the first step towards the assessment of stride events using tri-axial accelerometers in real-life settings.

  10. Treadmill walking exercise modulates bone mineral status and ...

    African Journals Online (AJOL)

    and high density lipoprotein cholesterol (HDL-c) & significant reduction in parathyroid hormone, leptin, tumor necrosis fac- ... Conclusion: Treadmill walking exercise training is an effective treatment policy to improve bone mineral status and modulates inflammatory ..... the decreased body fat mass, but potentially through an.

  11. Gait Coordination After Stroke: Benefits of Acoustically Paced Treadmill Walking

    NARCIS (Netherlands)

    Roerdink, M.; Lamoth, C.J.C.; Kwakkel, G.; van Wieringen, P.C.W.; Beek, P.J.

    2007-01-01

    Background and Purpose: Gait coordination often is compromised after stroke. The purpose of this study was to evaluate the efficacy of acoustically paced treadmill walking as a method for improving gait coordination in people after stroke. Participants: Ten people after stroke volunteered for the

  12. Gait coordination after stroke: benefits of acoustically paced treadmill walking.

    NARCIS (Netherlands)

    Roerdink, M.; Lamoth, C.J.; Kwakkel, G.; Wieringen, P.C. van; Beek, P.J.

    2007-01-01

    BACKGROUND AND PURPOSE: Gait coordination often is compromised after stroke. The purpose of this study was to evaluate the efficacy of acoustically paced treadmill walking as a method for improving gait coordination in people after stroke. PARTICIPANTS: Ten people after stroke volunteered for the

  13. Treadmill training and body weight support for walking after stroke.

    Science.gov (United States)

    Mehrholz, Jan; Thomas, Simone; Elsner, Bernhard

    2017-08-17

    Treadmill training, with or without body weight support using a harness, is used in rehabilitation and might help to improve walking after stroke. This is an update of the Cochrane review first published in 2003 and updated in 2005 and 2014. To determine if treadmill training and body weight support, individually or in combination, improve walking ability, quality of life, activities of daily living, dependency or death, and institutionalisation or death, compared with other physiotherapy gait-training interventions after stroke. The secondary objective was to determine the safety and acceptability of this method of gait training. We searched the Cochrane Stroke Group Trials Register (last searched 14 February 2017), the Cochrane Central Register of Controlled Trials (CENTRAL) and the Database of Reviews of Effects (DARE) (the Cochrane Library 2017, Issue 2), MEDLINE (1966 to 14 February 2017), Embase (1980 to 14 February 2017), CINAHL (1982 to 14 February 2017), AMED (1985 to 14 February 2017) and SPORTDiscus (1949 to 14 February 2017). We also handsearched relevant conference proceedings and ongoing trials and research registers, screened reference lists, and contacted trialists to identify further trials. Randomised or quasi-randomised controlled and cross-over trials of treadmill training and body weight support, individually or in combination, for the treatment of walking after stroke. Two review authors independently selected trials, extracted data, and assessed risk of bias and methodological quality. The primary outcomes investigated were walking speed, endurance, and dependency. We included 56 trials with 3105 participants in this updated review. The average age of the participants was 60 years, and the studies were carried out in both inpatient and outpatient settings. All participants had at least some walking difficulties and many could not walk without assistance. Overall, the use of treadmill training did not increase the chances of walking

  14. Treadmill walking of the pneumatic biped Lucy: Walking at different speeds and step-lengths

    Science.gov (United States)

    Vanderborght, B.; Verrelst, B.; Van Ham, R.; Van Damme, M.; Versluys, R.; Lefeber, D.

    2008-07-01

    Actuators with adaptable compliance are gaining interest in the field of legged robotics due to their capability to store motion energy and to exploit the natural dynamics of the system to reduce energy consumption while walking and running. To perform research on compliant actuators we have built the planar biped Lucy. The robot has six actuated joints, the ankle, knee and hip of both legs with each joint powered by two pleated pneumatic artificial muscles in an antagonistic setup. This makes it possible to control both the torque and the stiffness of the joint. Such compliant actuators are used in passive walkers to overcome friction when walking over level ground and to improve stability. Typically, this kind of robots is only designed to walk with a constant walking speed and step-length, determined by the mechanical design of the mechanism and the properties of the ground. In this paper, we show that by an appropriate control, the robot Lucy is able to walk at different speeds and step-lengths and that adding and releasing weights does not affect the stability of the robot. To perform these experiments, an automated treadmill was built

  15. Walking on an Oscillating Treadmill: Two Paths to Functional Adaptation

    Science.gov (United States)

    Brady, Rachel A.; Peters, Brian T.; Bloomberg, Jacob J.

    2010-01-01

    We mounted a treadmill on top of a six degree-of-freedom motion base platform to investigate and characterize locomotor responses produced by healthy adults when introduced to a novel walking condition. Subjects were classified into two groups according to how their stride times were affected by the perturbation. Our data suggest that a person's choice of adaptation strategy is influenced by the relationship between his unique, natural stride frequency and the external frequency imposed by the motion base. Our data suggest that a person's stride time response while walking on a laterally oscillating treadmill is influenced by the relationship between his unique, natural stride frequency and the imposed external frequency of the motion base. This relationship may be useful for checking the efficacy of gait training and rehabilitation programs. Preselecting and manipulating a person's EST could be one way to draw him out of his preferred "entrainment well" during therapy or training.

  16. IMU-based ambulatory walking speed estimation in constrained treadmill and overground walking.

    Science.gov (United States)

    Yang, Shuozhi; Li, Qingguo

    2012-01-01

    This study evaluated the performance of a walking speed estimation system based on using an inertial measurement unit (IMU), a combination of accelerometers and gyroscopes. The walking speed estimation algorithm segments the walking sequence into individual stride cycles (two steps) based on the inverted pendulum-like behaviour of the stance leg during walking and it integrates the angular velocity and linear accelerations of the shank to determine the displacement of each stride. The evaluation was performed in both treadmill and overground walking experiments with various constraints on walking speed, step length and step frequency to provide a relatively comprehensive assessment of the system. Promising results were obtained in providing accurate and consistent walking speed/step length estimation in different walking conditions. An overall percentage root mean squared error (%RMSE) of 4.2 and 4.0% was achieved in treadmill and overground walking experiments, respectively. With an increasing interest in understanding human walking biomechanics, the IMU-based ambulatory system could provide a useful walking speed/step length measurement/control tool for constrained walking studies.

  17. Aerobic treadmill plus Bobath walking training improves walking in subacute stroke: a randomized controlled trial.

    Science.gov (United States)

    Eich, H-J; Mach, H; Werner, C; Hesse, S

    2004-09-01

    To evaluate the immediate and long-term effects of aerobic treadmill plus Bobath walking training in subacute stroke survivors compared with Bobath walking training alone. Randomized controlled trial. Rehabilitation unit. Fifty patients, first-time supratentorial stroke, stroke interval less than six weeks, Barthel Index (0-100) from 50 to 80, able to walk a minimum distance of 12 m with either intermittent help or stand-by while walking, cardiovascular stable, minimum 50 W in the bicycle ergometry, randomly allocated to two groups, A and B. Group A 30 min of treadmill training, harness secured and minimally supported according to patients' needs, and 30 min of physiotherapy, every workday for six weeks, speed and inclination of the treadmill were adjusted to achieve a heart rate of HR: (Hrmax-HRrest)*0.6+HRrest; in group B 60 min of daily physiotherapy for six weeks. Primary outcome variables were the absolute improvement of walking velocity (m/s) and capacity (m), secondary were gross motor function including walking ability (score out of 13) and walking quality (score out of 41), blindly assessed before and after the intervention, and at follow-up three months later. Patients tolerated the aerobic training well with no side-effects, significantly greater improvement of walking velocity and capacity both at study end (p =0.001 versus p =0.002) and at follow-up (p Bobath walking training in moderately affected stroke patients was better than Bobath walking training alone with respect to the improvement of walking velocity and capacity. The treatment approach is recommended in patients meeting the inclusion criteria. A multicentre trial should follow to strengthen the evidence.

  18. Walking economy during cued versus non-cued self-selected treadmill walking in persons with Parkinson's disease.

    Science.gov (United States)

    Gallo, Paul M; McIsaac, Tara L; Garber, Carol Ewing

    2014-01-01

    Gait impairments related to Parkinson's disease (PD) include variable step length and decreased walking velocity, which may result in poorer walking economy. Auditory cueing is a common method used to improve gait mechanics in PD that has been shown to worsen walking economy at set treadmill walking speeds. It is unknown if auditory cueing has the same effects on walking economy at self-selected treadmill walking speeds. To determine if auditory cueing will affect walking economy at self-selected treadmill walking speeds and at speeds slightly faster and slower than self-selected. Twenty-two participants with moderate PD performed three, 6-minute bouts of treadmill walking at three speeds (self-selected and ± 0.22 m·sec-1). One session used cueing and the other without cueing. Energy expenditure was measured and walking economy was calculated (energy expenditure/power). Poorer walking economy and higher energy expenditure occurred during cued walking at a self-selected and a slightly faster walking speed, but there was no apparent difference at the slightly slower speed. These results suggest that potential gait benefits of auditory cueing may come at an energy cost and poorer walking economy for persons with PD at least at some treadmill walking speeds.

  19. [Kinetics of heifers and cows walking on an instrumented treadmill].

    Science.gov (United States)

    Nuss, K; Waldern, N M; Weishaupt, M A; Wiestner, T

    2015-01-01

    Kinetic data of stride characteristics and ground reaction forces of cattle become increasingly important as automated lameness detection may be installed in dairy cow housing systems in the future. Therefore, sound heifers and cows were measured on an instrumented treadmill to collect such basic data. Nine heifers and 10 cows were trained to walk on an instrumented treadmill. Vertical ground reaction forces as well as step and stride timing and length variables were measured for all limbs simultaneously. On average, 16 stride cycles in cows and 24 strides in heifers were analysed in each case. The cows walked on the treadmill at an average speed of 1.2 ± 0.05 m/s (mean ± standard deviation), with a stride rate of 43.0 ± 1.9/min and a stride length of 1.68 ± 0.1 m. The heifers had average values of 1.3 ± 0.04 m/s, 53.7 ± 2.2/min and 1.49 ± 0.05 m, respectively. The stance duration relative to stride duration (the duty factor) was for the cows significantly longer in the forelimbs (67%) than in the hind limbs (64%). Force-time-curves of all limbs showed two peaks, one after landing (FP1) and another during push off (FP2). Vertical ground reaction force was highest for FP1 in the hind limbs, but for FP2 in the forelimbs. At all limbs, force minimum between the peaks occurred shortly before midstance. The vertical impulse carried by both forelimbs amounted to 53.7% of the total stride impulse in cows and to 55.0% in heifers. The location of the centre of body mass varied during the stride cycle but was always located more towards the front limbs. Cows and heifers showed a symmetrical walk with minimal intra-individual variations. Relative stride impulse of the front limbs was higher than that of the hind limbs. Peak vertical force in the hind limbs was highest at landing and in the forelimbs at push off. The present study offers kinetic data of sound cows and heifers which might be helpful as guidelines for automated systems for lameness detection in cattle.

  20. Cardiorespiratory responses to aquatic treadmill walking in patients with rheumatoid arthritis.

    Science.gov (United States)

    Hall, Jane; Grant, Jim; Blake, David; Taylor, Gordon; Garbutt, Gerard

    2004-01-01

    Hydrotherapy is popular with patients with rheumatoid arthritis (RA). Its efficacy as an aerobic conditioning aid is equivocal. Patients with RA have reduced muscle strength and may be unable to achieve a walking speed commensurate with an aerobic training effect because the resistance to movement increases with speed in water. The physiological effects of immersion may alter the heart rate-oxygen consumption relationship (HR-VO2) with the effect of rendering land-based exercise prescriptions inaccurate. The primary purpose of the present study was to compare the relationships between heart rate (HR), and ratings of perceived exertion (RPE), with speed during land and water treadmill walking in patients with RA. The study design used a two-factor within-subjects model. Fifteen females with RA (47+/-8 SD years) completed three consecutive bouts of walking for five minutes at 2.5, 3.5 and 4.5 km/h(-1) on land and water treadmills. Expired gas, collected via open-circuit spirometry, HR and RPE were measured. HR and RPE increased on land and in water as speed increased. Below 3.5 km/h(-1) VO2 was significantly lower in water than on land (pBorg scale, higher in water than on land. The study showed that the metabolic demand of walking at 4.5 km/h(-1) was sufficient to stimulate an increase in aerobic capacity. The use of land-based prescriptive norms would underestimate the metabolic cost in water. Therefore, in water HR should be increased by approximately 9 beats/min(-1) to achieve similar energy demands to land treadmill walking.

  1. Psychophysical and ergogenic effects of synchronous music during treadmill walking.

    Science.gov (United States)

    Karageorghis, Costas I; Mouzourides, Denis A; Priest, David-Lee; Sasso, Tariq A; Morrish, Daley J; Walley, Carolyn J

    2009-02-01

    The present study examined the impact of motivational music and oudeterous (neutral in terms of motivational qualities) music on endurance and a range of psychophysical indices during a treadmill walking task. Experimental participants (N=30; mean age=20.5 years, SD=1.0 years) selected a program of either pop or rock tracks from artists identified in an earlier survey. They walked to exhaustion, starting at 75% maximal heart rate reserve, under conditions of motivational synchronous music, oudeterous synchronous music, and a no-music control. Dependent measures included time to exhaustion, ratings of perceived exertion (RPE), and in-task affect (both recorded at 2-min intervals), and exercise-induced feeling states. A one-way repeated measures ANOVA was used to analyze time to exhaustion data. Two-way repeated measures (Music Condition ? Trial Point) ANOVAs were used to analyze in-task measures, whereas a one-way repeated measures MANOVA was used to analyze the exercise-induced feeling states data. Results indicated that endurance was increased in both music conditions and that motivational music had a greater ergogenic effect than did oudeterous music (pmusic when compared with control throughout the trial (p.05) upon RPE or exercise-induced feeling states, although a moderate effect size was recorded for the latter (etap2=.09). The present results indicate that motivational synchronous music can elicit an ergogenic effect and enhance in-task affect during an exhaustive endurance task.

  2. Human-Robot Interaction: Does Robotic Guidance Force Affect Gait-Related Brain Dynamics during Robot-Assisted Treadmill Walking?

    Science.gov (United States)

    Knaepen, Kristel; Mierau, Andreas; Swinnen, Eva; Fernandez Tellez, Helio; Michielsen, Marc; Kerckhofs, Eric; Lefeber, Dirk; Meeusen, Romain

    2015-01-01

    In order to determine optimal training parameters for robot-assisted treadmill walking, it is essential to understand how a robotic device interacts with its wearer, and thus, how parameter settings of the device affect locomotor control. The aim of this study was to assess the effect of different levels of guidance force during robot-assisted treadmill walking on cortical activity. Eighteen healthy subjects walked at 2 km.h-1 on a treadmill with and without assistance of the Lokomat robotic gait orthosis. Event-related spectral perturbations and changes in power spectral density were investigated during unassisted treadmill walking as well as during robot-assisted treadmill walking at 30%, 60% and 100% guidance force (with 0% body weight support). Clustering of independent components revealed three clusters of activity in the sensorimotor cortex during treadmill walking and robot-assisted treadmill walking in healthy subjects. These clusters demonstrated gait-related spectral modulations in the mu, beta and low gamma bands over the sensorimotor cortex related to specific phases of the gait cycle. Moreover, mu and beta rhythms were suppressed in the right primary sensory cortex during treadmill walking compared to robot-assisted treadmill walking with 100% guidance force, indicating significantly larger involvement of the sensorimotor area during treadmill walking compared to robot-assisted treadmill walking. Only marginal differences in the spectral power of the mu, beta and low gamma bands could be identified between robot-assisted treadmill walking with different levels of guidance force. From these results it can be concluded that a high level of guidance force (i.e., 100% guidance force) and thus a less active participation during locomotion should be avoided during robot-assisted treadmill walking. This will optimize the involvement of the sensorimotor cortex which is known to be crucial for motor learning.

  3. Everyday multitasking habits: University students seamlessly text and walk on a split-belt treadmill.

    Science.gov (United States)

    Hinton, Dorelle Clare; Cheng, Yeu-Yao; Paquette, Caroline

    2018-01-01

    With increasing numbers of adults owning a cell phone, walking while texting has become common in daily life. Previous research has shown that walking is not entirely automated and when challenged with a secondary task, normal walking patterns are disrupted. This study investigated the effects of texting on the walking patterns of healthy young adults while walking on a split-belt treadmill. Following full adaptation to the split-belt treadmill, thirteen healthy adults (23±3years) walked on a tied-belt and split-belt treadmill, both with and without a simultaneous texting task. Inertial-based movement monitors recorded spatiotemporal components of gait and stability. Measures of spatial and temporal gait symmetry were calculated to compare gait patterns between treadmill (tied-belt and split-belt) and between texting (absent or present) conditions. Typing speed and accuracy were recorded to monitor texting performance. Similar to previous research, the split-belt treadmill caused an alteration to both spatial and temporal aspects of gait, but not to time spent in dual support or stability. However, all participants successfully maintained balance while walking and were able to perform the texting task with no significant change to accuracy or speed on either treadmill. From this paradigm it is evident that when university students are challenged to text while walking on either a tied-belt or split-belt treadmill, without any other distraction, their gait is minimally affected and they are able to maintain texting performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. The Combined Effects of Body Weight Support and Gait Speed on Gait Related Muscle Activity: A Comparison between Walking in the Lokomat Exoskeleton and Regular Treadmill Walking

    Science.gov (United States)

    Van Kammen, Klaske; Boonstra, Annemarijke; Reinders-Messelink, Heleen; den Otter, Rob

    2014-01-01

    Background For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS) on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton. Methods Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants’ body weight) and gait speed (0.8, 1.8, and 2.8 km/h), while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded. Results The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged), but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided. Conclusion Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible. PMID:25226302

  5. The combined effects of body weight support and gait speed on gait related muscle activity: a comparison between walking in the Lokomat exoskeleton and regular treadmill walking.

    Directory of Open Access Journals (Sweden)

    Klaske Van Kammen

    Full Text Available BACKGROUND: For the development of specialized training protocols for robot assisted gait training, it is important to understand how the use of exoskeletons alters locomotor task demands, and how the nature and magnitude of these changes depend on training parameters. Therefore, the present study assessed the combined effects of gait speed and body weight support (BWS on muscle activity, and compared these between treadmill walking and walking in the Lokomat exoskeleton. METHODS: Ten healthy participants walked on a treadmill and in the Lokomat, with varying levels of BWS (0% and 50% of the participants' body weight and gait speed (0.8, 1.8, and 2.8 km/h, while temporal step characteristics and muscle activity from Erector Spinae, Gluteus Medius, Vastus Lateralis, Biceps Femoris, Gastrocnemius Medialis, and Tibialis Anterior muscles were recorded. RESULTS: The temporal structure of the stepping pattern was altered when participants walked in the Lokomat or when BWS was provided (i.e. the relative duration of the double support phase was reduced, and the single support phase prolonged, but these differences normalized as gait speed increased. Alternations in muscle activity were characterized by complex interactions between walking conditions and training parameters: Differences between treadmill walking and walking in the exoskeleton were most prominent at low gait speeds, and speed effects were attenuated when BWS was provided. CONCLUSION: Walking in the Lokomat exoskeleton without movement guidance alters the temporal step regulation and the neuromuscular control of walking, although the nature and magnitude of these effects depend on complex interactions with gait speed and BWS. If normative neuromuscular control of gait is targeted during training, it is recommended that very low speeds and high levels of BWS should be avoided when possible.

  6. Effects of an attention demanding task on dynamic stability during treadmill walking

    Directory of Open Access Journals (Sweden)

    Troy Karen L

    2008-04-01

    Full Text Available Abstract Background People exhibit increased difficulty balancing when they perform secondary attention-distracting tasks while walking. However, a previous study by Grabiner and Troy (J. Neuroengineering Rehabil., 2005 found that young healthy subjects performing a concurrent Stroop task while walking on a motorized treadmill exhibited decreased step width variability. However, measures of variability do not directly quantify how a system responds to perturbations. This study re-analyzed data from Grabiner and Troy 2005 to determine if performing the concurrent Stroop task directly affected the dynamic stability of walking in these same subjects. Methods Thirteen healthy volunteers walked on a motorized treadmill at their self-selected constant speed for 10 minutes both while performing the Stroop test and during undisturbed walking. This Stroop test consisted of projecting images of the name of one color, printed in text of a different color, onto a wall and asking subjects to verbally identify the color of the text. Three-dimensional motions of a marker attached to the base of the neck (C5/T1 were recorded. Marker velocities were calculated over 3 equal intervals of 200 sec each in each direction. Mean variability was calculated for each time series as the average standard deviation across all strides. Both "local" and "orbital" dynamic stability were quantified for each time series using previously established methods. These measures directly quantify how quickly small perturbations grow or decay, either continuously in real time (local or discretely from one cycle to the next (orbital. Differences between Stroop and Control trials were evaluated using a 2-factor repeated measures ANOVA. Results Mean variability of trunk movements was significantly reduced during the Stroop tests compared to normal walking. Conversely, local and orbital stability results were mixed: some measures showed slight increases, while others showed slight decreases

  7. Walking on a Vertically Oscillating Treadmill: Phase Synchronization and Gait Kinematics.

    Directory of Open Access Journals (Sweden)

    Jeff A Nessler

    Full Text Available Sensory motor synchronization can be used to alter gait behavior. This type of therapy may be useful in a rehabilitative setting, though several questions remain regarding the most effective way to promote and sustain synchronization. The purpose of this study was to describe a new technique for using synchronization to influence a person's gait and to compare walking behavior under this paradigm with that of side by side walking. Thirty one subjects walked on a motorized treadmill that was placed on a platform that oscillated vertically at various frequencies and amplitudes. Synchronization with the platform and stride kinematics were recorded during these walking trials and compared with previously reported data from side by side walking. The results indicated that vertical oscillation of the treadmill surface at frequencies that matched subjects preferred stride or step frequency resulted in greater unintentional synchronization when compared with side by side walking data (up to 78.6±8.3% of the trial vs 59.2±17.4%. While intermittent phase locking was observed in all cases, periods of synchronization occurred more frequently and lasted longer while walking on the oscillating treadmill (mean length of periods of phase locking 11.85 steps vs 5.18 steps. Further, stride length, height and duration were altered by changing the frequency of treadmill oscillation. These results suggest that synchronization to a haptic signal may hold implications for use in a clinical setting.

  8. Intensity of treadmill walking exercise on acute mood symptoms in persons with multiple sclerosis.

    Science.gov (United States)

    Ensari, Ipek; Sandroff, Brian M; Motl, Robert W

    2017-01-01

    An acute bout of moderate-intensity treadmill walking exercise has previously been associated with improvements in overall mood disturbance and vigor, without worsening fatigue, among persons with multiple sclerosis (MS).This study examined the effects of light-, moderate-, and high-intensity bouts of treadmill walking exercise on immediate and delayed mood states in MS. This was a within-subjects, randomized, and counter-balanced study. 23 women and 1 man with MS undertook 20-minute bouts of light-, moderate-, and high-intensity treadmill walking, and seated quiet rest. Participants completed the profile of mood states (POMS) questionnaire before, immediately after, and 45 minutes after each condition. Total mood disturbance (TMD) and six subscales of the POMS were analyzed using 2-way, repeated-measures analysis of variance (ANOVA). There was a significant condition-by-time interaction on TMD scores ([Formula: see text]) and vigor scores ([Formula: see text]). The moderate-intensity treadmill walking yielded the largest improvements in TMD and vigor immediately post-condition (p  .05). TMD and vigor improved immediately after moderate-intensity walking, but the changes dissipated over time. Fatigue did not worsen after any of the walking conditions. These results indicate that an acute bout of moderate-intensity walking may help with mood management in persons with MS, without worsening fatigue.

  9. A novel walking speed estimation scheme and its application to treadmill control for gait rehabilitation

    Directory of Open Access Journals (Sweden)

    Yoon Jungwon

    2012-08-01

    Full Text Available Abstract Background Virtual reality (VR technology along with treadmill training (TT can effectively provide goal-oriented practice and promote improved motor learning in patients with neurological disorders. Moreover, the VR + TT scheme may enhance cognitive engagement for more effective gait rehabilitation and greater transfer to over ground walking. For this purpose, we developed an individualized treadmill controller with a novel speed estimation scheme using swing foot velocity, which can enable user-driven treadmill walking (UDW to more closely simulate over ground walking (OGW during treadmill training. OGW involves a cyclic acceleration-deceleration profile of pelvic velocity that contrasts with typical treadmill-driven walking (TDW, which constrains a person to walk at a preset constant speed. In this study, we investigated the effects of the proposed speed adaptation controller by analyzing the gait kinematics of UDW and TDW, which were compared to those of OGW at three pre-determined velocities. Methods Ten healthy subjects were asked to walk in each mode (TDW, UDW, and OGW at three pre-determined speeds (0.5 m/s, 1.0 m/s, and 1.5 m/s with real time feedback provided through visual displays. Temporal-spatial gait data and 3D pelvic kinematics were analyzed and comparisons were made between UDW on a treadmill, TDW, and OGW. Results The observed step length, cadence, and walk ratio defined as the ratio of stride length to cadence were not significantly different between UDW and TDW. Additionally, the average magnitude of pelvic acceleration peak values along the anterior-posterior direction for each step and the associated standard deviations (variability were not significantly different between the two modalities. The differences between OGW and UDW and TDW were mainly in swing time and cadence, as have been reported previously. Also, step lengths between OGW and TDW were different for 0.5 m/s and 1.5 m/s gait velocities

  10. Walking during body-weight-supported treadmill training and acute responses to varying walking speed and body-weight support in ambulatory patients post-stroke.

    Science.gov (United States)

    Aaslund, Mona Kristin; Helbostad, Jorunn Lægdheim; Moe-Nilssen, Rolf

    2013-05-01

    Rehabilitating walking in ambulatory patients post-stroke, with training that is safe, task-specific, intensive, and of sufficient duration, can be challenging. Some challenges can be met by using body-weight-supported treadmill training (BWSTT). However, it is not known to what degree walking characteristics are similar during BWSTT and overground walking. In addition, important questions regarding the training protocol of BWSTT remain unanswered, such as how proportion of body-weight support (BWS) and walking speed affect walking characteristics during training. The objective was therefore to investigate if and how kinematic walking characteristics are different between overground walking and treadmill walking with BWS in ambulatory patients post-stroke, and the acute response of altering walking speed and percent BWS during treadmill walking with BWS. A cross-sectional repeated-measures design was used. Ambulating patients post-stroke walked in slow, preferred, and fast walking speed overground and at comparable speeds on the treadmill with 20% and 40% BWS. Kinematic walking characteristics were obtained using a kinematic sensor attached over the lower back. Forty-four patients completed the protocol. Kinematic walking characteristics were similar during treadmill walking with BWS, compared to walking overground. During treadmill walking, choice of walking speed had greater impact on kinematic walking characteristics than proportion of BWS. Faster walking speeds tended to affect the kinematic walking characteristics positively. This implies that in order to train safely and with sufficient intensity and duration, therapists may choose to include BWSTT in walking rehabilitation also for ambulatory patients post-stroke without aggravating gait pattern during training.

  11. Influence of treadmill acceleration on actual walk-to-run transition.

    Science.gov (United States)

    Van Caekenberghe, I; Segers, V; De Smet, K; Aerts, P; De Clercq, D

    2010-01-01

    When accelerating continuously, humans spontaneously change from a walking to a running pattern by means of a walk-to-run transition (WRT). Results of previous studies indicate that when higher treadmill accelerations are imposed, higher WRT-speeds can be expected. By studying the kinematics of the WRT at different accelerations, the underlying mechanisms can be unravelled. 19 young, healthy female subjects performed walk-to-run transitions on a constantly accelerating treadmill (0.1, 0.2 and 0.5 m s(-2)). A higher acceleration induced a higher WRT-speed, by effecting the preparation of transition, as well as the actual transition step. Increasing the acceleration caused a higher WRT-speed as a result of a greater step length during the transition step, which was mainly a consequence of a prolonged airborne phase. Besides this effect on the transition step, the direct preparation phase of transition (i.e. the last walking step before transition) appeared to fulfil specific constraints required to execute the transition regardless of the acceleration imposed. This highlights an important role for this step in the debate regarding possible determinants of WRT. In addition spatiotemporal and kinematical data confirmed that WRT remains a discontinuous change of gait pattern in all accelerations imposed. It is concluded that the walk-to-run transition is a discontinuous switch from walking to running which depends on the magnitude of treadmill belt acceleration. Copyright 2009 Elsevier B.V. All rights reserved.

  12. Walking Versus Jogging in Stages III and IV of the Bruce Treadmill Test.

    Science.gov (United States)

    Cundiff, D.; Schwane, J.

    Observations during research involving the Bruce Treadmill Test (BTMT) indicating that Stage III for females and Stage IV for males represented speeds which are intermediate between comfortable walking and confortable jogging for many subjects, prompted this study to determine ways to obtain more consistent group results. Twenty-eight subjects…

  13. CALF MUSCLE WORK AND SEGMENT ENERGY CHANGES IN HUMAN TREADMILL WALKING

    NARCIS (Netherlands)

    HOF, AL; NAUTA, J; VANDERKNAAP, ER; SCHALLIG, MAA; STRUWE, DP

    1992-01-01

    The relation between changes in potential and kinetic energy in a seven-segment model of the human body and the work of m. triceps surae was investigated in four subjects walking on a treadmill at speeds between 0.5 and 2.0 m/s. Segment energy levels were determined by means of tachometers attached

  14. The interacting effects of treadmill walking and different types of visuospatial cognitive task: Discriminating dual task and age effects.

    Science.gov (United States)

    Nankar, Mayur; Szturm, Tony; Marotta, Jonathan; Shay, Barbara; Beauchet, Olivier; Allali, Gilles

    2017-11-01

    The objective of this study is to examine the influence that visuospatial cognitive tasks have on gait function during DT treadmill walking, and as a function of age. Conversely, to examine the influence that walking has on executive functions involving visuospatial processing. Twenty-five young (26±6.1years) and 25 older adults (76±3.9) performed different types of computerized visuomotor (VM) tracking and visuospatial cognitive tasks (VCG) while standing and treadmill walking. Spatiotemporal gait variables, average values and co-efficient of variation (COV) were obtained from 40 consecutive steps during single- and dual-task walk trials. Performance-based measures of the VM and VCG task were obtained during standing and walking. VM dual-task walking had a significant effect on gait measures in the young age group (YG), but no DT effect was observed in the old age group (OG). Visuomotor tracking performance, however, was significantly reduced in the OG as compared to the YG when tested in both standing and walking. The opposite was true for VCG; a significant DT effect on gait performance was observed in the OG, but no DT effect was observed in the YG. Success rate of the VCG task decreased during walking, but only for OG. Controlling gait speed and objective evaluation of the visuospatial cognitive tasks helps to determine the level of engagement in the DT tasks. This is important in order to determine the strategies used during the DT test protocols, i.e. cross-domain interference. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Energy expenditure of transfemoral amputees during floor and treadmill walking with different speeds.

    Science.gov (United States)

    Starholm, Inger Marie; Mirtaheri, Peyman; Kapetanovic, Nihad; Versto, Tarjei; Skyttemyr, Gjermund; Westby, Fredrik Tobias; Gjovaag, Terje

    2016-06-01

    Walking energy expenditure, calculated as the percent utilization of the maximal aerobic capacity, is little investigated in transfemoral amputees. Compare the energy expenditure of healthy participants (control participants) and transfemoral amputees walking with their respective preferred walking speeds on the treadmill (TPWS) and floor (FPWS). Randomized cross-over study. Oxygen uptake (VO2) was measured when walking with the FPWS and TPWS. VO2max was measured by an incremental treadmill test. Mean ± standard deviation VO2max of the transfemoral amputees and control participants were 30.6 ± 8.7 and 49.0 ± 14.4 mL kg(-1) min(-1), respectively (p amputees and control participants was 0.89 ± 0.2 and 1.33 ± 0.3 m s(-1), respectively (p amputees and control participants was 1.22 ± 0.2 and 1.52 ± 0.1 m s(-1), respectively (p amputees and control participants was 54% and 31% of VO2max, respectively (p amputees and control participants was 42% and 29% of the VO2max, respectively (p amputees than the control participants, regardless of walking surface. There are minimal differences in energy expenditure between treadmill and floor walking for the control participants but large differences for the transfemoral amputees. During walking, the transfemoral amputees expend a larger percentage of their maximal aerobic capacity than healthy participants. With a low VO2max, ordinary activities, such as walking, become physically more challenging for the transfemoral amputees than the control participants, and this may, in turn, have a negative effect on the walking range of the transfemoral amputees. © The International Society for Prosthetics and Orthotics 2015.

  16. Sounding better: fast audio cues increase walk speed in treadmill-mediated virtual rehabilitation environments.

    Science.gov (United States)

    Powell, Wendy; Stevens, Brett; Hand, Steve; Simmonds, Maureen

    2010-01-01

    Music or sound effects are often used to enhance Virtual Environments, but it is not known how this audio may influence gait speed. This study investigated the influence of audio cue tempo on treadmill walking with and without visual flow. The walking speeds of 11 individuals were recorded during exposure to a range of audio cue rates. There was a significant effect of audio tempo without visual flow, with a 16% increase in walk speed with faster audio cue tempos. Audio with visual flow resulted in a smaller but still significant increase in walking speed (8%). The results suggest that the inclusion of faster rate audio cues may be of benefit in improving walk speed in virtual rehabilitation.

  17. 30 min of treadmill walking at self-selected speed does not increase gait variability in independent elderly

    NARCIS (Netherlands)

    Da Rocha, Emmanuel S.; Kunzler, Marcos R.; Bobbert, Maarten F.; Duysens, Jacques; Carpes, Felipe P.

    2017-01-01

    Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise

  18. Gait Complexity and Regularity Are Differently Modulated by Treadmill Walking in Parkinson's Disease and Healthy Population

    Directory of Open Access Journals (Sweden)

    Thibault Warlop

    2018-02-01

    Full Text Available Variability raises considerable interest as a promising and sensitive marker of dysfunction in physiology, in particular in neurosciences. Both internally (e.g., pathology and/or externally (e.g., environment generated perturbations and the neuro-mechanical responses to them contribute to the fluctuating dynamics of locomotion. Defective internal gait control in Parkinson's disease (PD, resulting in typical timing gait disorders, is characterized by the breakdown of the temporal organization of stride duration variability. Influence of external cue on gait pattern could be detrimental or advantageous depending on situations (healthy or pathological gait pattern, respectively. As well as being an interesting rehabilitative approach in PD, treadmills are usually implemented in laboratory settings to perform instrumented gait analysis including gait variability assessment. However, possibly acting as an external pacemaker, treadmill could modulate the temporal organization of gait variability of PD patients which could invalidate any gait variability assessment. This study aimed to investigate the immediate influence of treadmill walking (TW on the temporal organization of stride duration variability in PD and healthy population. Here, we analyzed the gait pattern of 20 PD patients and 15 healthy age-matched subjects walking on overground and on a motorized-treadmill (randomized order at a self-selected speed. The temporal organization and regularity of time series of walking were assessed on 512 consecutive strides and assessed by the application of non-linear mathematical methods (i.e., the detrended fluctuation analysis and power spectral density; and sample entropy, for the temporal organization and regularity of gait variability, respectively. A more temporally organized and regular gait pattern seems to emerge from TW in PD while no influence was observed on healthy gait pattern. Treadmill could afford the necessary framework to regulate gait

  19. A synergy perspective on gait – over-ground vs. treadmill walking

    DEFF Research Database (Denmark)

    Læssøe, Uffe; Madeleine, Pascal

    INTRODUCTION: Increased stride-to-stride time variability is reported among elderly fallers and various patient groups [1]. Variability is therefore often regarded as an indicator of gait deficits. However, movement variability is also a general and natural phenomenon. A synergy perspective...... on movements has proposed that elemental and performance variables may represent good and bad components of variability [2]. We suggest that the gait pattern can be regarded as a movement synergy in which medio-lateral deviation in one stride can be corrected during the next stride (the elemental variables......). Such corrections ensure a straight gait path (the performance variable). AIM: The aim of this study was to apply a synergy approach to gait analysis by comparing over-ground and treadmill walking. The treadmill was hypothesized to demand a less variable walking path resulting in a larger good/bad variability ratio...

  20. Kinetic comparison of walking on a treadmill versus over ground in children with cerebral palsy.

    Science.gov (United States)

    van der Krogt, Marjolein M; Sloot, Lizeth H; Buizer, Annemieke I; Harlaar, Jaap

    2015-10-15

    Kinetic outcomes are an essential part of clinical gait analysis, and can be collected for many consecutive strides using instrumented treadmills. However, the validity of treadmill kinetic outcomes has not been demonstrated for children with cerebral palsy (CP). In this study we compared ground reaction forces (GRF), center of pressure, and hip, knee and ankle moments, powers and work, between overground (OG) and self-paced treadmill (TM) walking for 11 typically developing (TD) children and 9 children with spastic CP. Considerable differences were found in several outcome parameters. In TM, subjects demonstrated lower ankle power generation and more absorption, and increased hip moments and work. This shift from ankle to hip strategy was likely due to a more backward positioning of the hip and a slightly more forward trunk lean. In mediolateral direction, GRF and hip and knee joint moments were increased in TM due to wider step width. These findings indicate that kinetic data collected on a TM cannot be readily compared with OG data in TD children and children with CP, and that treadmill-specific normative data sets should be used when performing kinetic gait analysis on a treadmill. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. THE EFFECT OF ACUTE TREADMILL WALKING ON COGNITIVE CONTROL AND ACADEMIC ACHIEVEMENT IN PREADOLESCENT CHILDREN

    OpenAIRE

    Hillman, Charles H.; Pontifex, Matthew B.; Raine, Lauren B.; Castelli, Darla M.; Hall, Eric E.; Kramer, Arthur F.

    2009-01-01

    The effect of an acute bout of moderate treadmill walking on behavioral and neuroelectric indices of the cognitive control of attention and applied aspects of cognition involved in school-based academic performance were assessed. A within-subjects design included twenty preadolescent participants (Age = 9.5 ± 0.5 years; 8 female) to assess exercise-induced changes in performance during a modified flanker task and the Wide Range Achievement Test 3. The resting session consisted of cognitive te...

  2. IMPACT OF BODY WEIGHT SUPPORTED BACKWARD TREADMILL TRAINING ON WALKING SPEED IN CHILDREN WITH SPASTIC DIPLEGIA

    Directory of Open Access Journals (Sweden)

    Hamada El Sayed Abd Allah Ayoub

    2016-10-01

    Full Text Available Background: A lot of the ambulating children with spastic diplegia were able to walk with flexed hips, knees and ankles this gait pattern is known as crouch gait. The most needed functional achievement of diplegic children habilitation is to be able to walk appropriately. The development of an independent and efficient walking is one of the main objectives for children with cerebral palsy especially those with spastic diplegia. Method: Twenty children with spastic diplegia enrolled in this study, they were classified into two groups of equal number, eligibility to our study were ages ranged from seven to ten years, were able to ambulate, They had gait problems and abnormal gait kinematics. The control group (A received selected physical therapy program based on neurodevelopmental approach for such cases, while the study group (B received partial body weight supported backward treadmill training in addition to regular exercise program. Gait pattern was assessed using the Biodex Gait Trainer II for each group pre and post three months of the treatment program. Results: There was statistically significant improvement in walking speed in the study group (P<0.05 with significant difference when comparing post treatment results between groups (p<0.05. Conclusion: These findings suggested that partial body weight supported backward treadmill training can be included as a supplementary therapeutic modality to improve walking speed and functional abilities of children with diplegic cerebral palsy.

  3. Adaptation of neuromuscular activation patterns during treadmill walking after long-duration space flight

    Science.gov (United States)

    Layne, C. S.; Lange, G. W.; Pruett, C. J.; McDonald, P. V.; Merkle, L. A.; Mulavara, A. P.; Smith, S. L.; Kozlovskaya, I. B.; Bloomberg, J. J.

    The precise neuromuscular control needed for optimal locomotion, particularly around heel strike and toe off, is known to be compromised after short duration (8- to 15-day) space flight. We hypothesized here that longer exposure to weightlessness would result in maladaptive neuromuscular activation during postflight treadmill walking. We also hypothesized that space flight would affect the ability of the sensory-motor control system to generate adaptive neuromuscular activation patterns in response to changes in visual target distance during postflight treadmill walking. Seven crewmembers, who completed 3- to 6-month missions, walked on a motorized treadmill while visually fixating on a target placed 30 cm (NEAR) or 2 m (FAR) from the subject's eyes. Electronic foot switch data and surface electromyography were collected from selected muscles of the right lower limb. Results indicate that the phasic features of neuromuscular activation were moderately affected and the relative amplitude of activity in the tibialis anterior and rectus femoris around toe off changed after space flight. Changes also were evident after space flight in how these muscles adapted to the shift in visual target distance.

  4. Effects of Progressive Body Weight Support Treadmill Forward and Backward Walking Training on Stroke Patients' Affected Side Lower Extremity's Walking Ability.

    Science.gov (United States)

    Kim, Kyunghoon; Lee, Sukmin; Lee, Kyoungbo

    2014-12-01

    [Purpose] The purpose of the present study was to examine the effects of progressive body weight supported treadmill forward and backward walking training (PBWSTFBWT), progressive body weight supported treadmill forward walking training (PBWSTFWT), progressive body weight supported treadmill backward walking training (PBWSTBWT), on stroke patients' affected side lower extremity's walking ability. [Subjects and Methods] A total of 36 chronic stroke patients were divided into three groups with 12 subjects in each group. Each of the groups performed one of the progressive body weight supported treadmill training methods for 30 minute, six times per week for three weeks, and then received general physical therapy without any other intervention until the follow-up tests. For the assessment of the affected side lower extremity's walking ability, step length of the affected side, stance phase of the affected side, swing phase of the affected side, single support of the affected side, and step time of the affected side were measured using optogait and the symmetry index. [Results] In the within group comparisons, all the three groups showed significant differences between before and after the intervention and in the comparison of the three groups, the PBWSTFBWT group showed more significant differences in all of the assessed items than the other two groups. [Conclusion] In the present study progressive body weight supported treadmill training was performed in an environment in which the subjects were actually walked, and PBWSTFBWT was more effective at efficiently training stroke patients' affected side lower extremity's walking ability.

  5. Hysteresis in Center of Mass Velocity Control during the Stance Phase of Treadmill Walking

    Directory of Open Access Journals (Sweden)

    Raymond K. Chong

    2017-04-01

    Full Text Available Achieving a soft landing during walking can be quantified by analyzing changes in the vertical velocity of the body center of mass (CoM just prior to the landing of the swing limb. Previous research suggests that walking speed and step length may predictably influence the extent of this CoM control. Here we ask how stable this control is. We altered treadmill walking speed by systematically increasing or decreasing it at fixed intervals. We then reversed direction. We hypothesized that the control of the CoM vertical velocity during the late stance of the walking gait may serve as an order parameter which has an attribute of hysteresis. The presence of hysteresis implies that the CoM control is not based on simply knowing the current input conditions to predict the output response. Instead, there is also the influence of previous speed conditions on the ongoing responses. We found that the magnitudes of CoM control were different depending on whether the treadmill speed (as the control parameter was ramped up or down. Changes in step length also influenced CoM control. A stronger effect was observed when the treadmill speed was speeded up compared to down. However, the effect of speed direction remained significant after controlling for step length. The hysteresis effect of CoM control as a function of speed history demonstrated in the current study suggests that the regulation of CoM vertical velocity during late stance is influenced by previous external conditions and constraints which combine to influence the desired behavioral outcome.

  6. Body weight-supported treadmill training vs. overground walking training for persons with chronic stroke: a pilot randomized controlled trial.

    Science.gov (United States)

    Combs-Miller, Stephanie A; Kalpathi Parameswaran, Anu; Colburn, Dawn; Ertel, Tara; Harmeyer, Amanda; Tucker, Lindsay; Schmid, Arlene A

    2014-09-01

    To compare the effects of body weight-supported treadmill training and overground walking training when matched for task and dose (duration/frequency/intensity) on improving walking function, activity, and participation after stroke. Single-blind, pilot randomized controlled trial with three-month follow-up. University and community settings. A convenience sample of participants (N = 20) at least six months post-stroke and able to walk independently were recruited. Thirty-minute walking interventions (body weight-supported treadmill training or overground walking training) were administered five times a week for two weeks. Intensity was monitored with the Borg Rating of Perceived Exertion Scale at five-minute increments to maintain a moderate training intensity. Walking speed (comfortable/fast 10-meter walk), walking endurance (6-minute walk), spatiotemporal symmetry, and the ICF Measure of Participation and ACTivity were assessed before, immediately after, and three months following the intervention. The overground walking training group demonstrated significantly greater improvements in comfortable walking speed compared with the body weight-supported treadmill training group immediately (change of 0.11 m/s vs. 0.06 m/s, respectively; p = 0.047) and three months (change of 0.14 m/s vs. 0.08 m/s, respectively; p = 0.029) after training. Only the overground walking training group significantly improved comfortable walking speed (p = 0.001), aspects of gait symmetry (p = 0.032), and activity (p = 0.003) immediately after training. Gains were maintained at the three-month follow-up (p training was more beneficial than body weight-supported treadmill training at improving self-selected walking speed for the participants in this study. © The Author(s) 2014.

  7. The impact of an anti-gravity treadmill (AlterG) training on walking capacity and corticospinal tract structure in children with cerebral palsy.

    Science.gov (United States)

    Azizi, Sh; Marzbani, H; Raminfard, S; Birgani, P M; Rasooli, A H; Mirbagheri, M M

    2017-07-01

    We studied the effects of an anti-gravity treadmill (AlterG) training on walking capacity and corticospinal tract structure in children with Cerebral Palsy (CP). AlterG can help CP children walk on the treadmill by reducing their weights up to 80% and maintain their balance during locomotion. AlterG training thus has the potential to improve walking capacity permanently as it can provide systematic and intense locomotor training for sufficiently long period of time and produce brain neuroplasticity. AlterG training was given for 45 minutes, three times a week for two months. The neuroplasticity of corticospinal tract was evaluated using Diffusion Tensor Imaging (DTI). The fractional Anisotropy (FA) feature was extracted to quantify structural changes of the corticospinal tract. Walking capacity was evaluated using popular clinical measurements of gait; i.e., walking speed, mobility and balance. The evaluations were done before and after training. Our results revealed that AlterG training resulted in an increase in average FA value of the corticospinal tract following the training. The outcome measures of clinical assessments of gait presented enhanced walking capacity of the CP subjects. Our findings indicated that the improved walking capacity was concurrent with the enhancement of the corticospinal tract structure. The clinical implication is that AlterG training may be considered as a therapeutic tool for permanent gait improvement in CP children.

  8. The effect of uphill and downhill walking on gait parameters: A self-paced treadmill study.

    Science.gov (United States)

    Kimel-Naor, Shani; Gottlieb, Amihai; Plotnik, Meir

    2017-07-26

    It has been shown that gait parameters vary systematically with the slope of the surface when walking uphill (UH) or downhill (DH) (Andriacchi et al., 1977; Crowe et al., 1996; Kawamura et al., 1991; Kirtley et al., 1985; McIntosh et al., 2006; Sun et al., 1996). However, gait trials performed on inclined surfaces have been subject to certain technical limitations including using fixed speed treadmills (TMs) or, alternatively, sampling only a few gait cycles on inclined ramps. Further, prior work has not analyzed upper body kinematics. This study aims to investigate effects of slope on gait parameters using a self-paced TM (SPTM) which facilitates more natural walking, including measuring upper body kinematics and gait coordination parameters. Gait of 11 young healthy participants was sampled during walking in steady state speed. Measurements were made at slopes of +10°, 0° and -10°. Force plates and a motion capture system were used to reconstruct twenty spatiotemporal gait parameters. For validation, previously described parameters were compared with the literature, and novel parameters measuring upper body kinematics and bilateral gait coordination were also analyzed. Results showed that most lower and upper body gait parameters were affected by walking slope angle. Specifically, UH walking had a higher impact on gait kinematics than DH walking. However, gait coordination parameters were not affected by walking slope, suggesting that gait asymmetry, left-right coordination and gait variability are robust characteristics of walking. The findings of the study are discussed in reference to a potential combined effect of slope and gait speed. Follow-up studies are needed to explore the relative effects of each of these factors. Copyright © 2017. Published by Elsevier Ltd.

  9. Physiological responses to multiple speed treadmill walking for Syme vs. transtibial amputation--a case report.

    Science.gov (United States)

    Lin-Chan, S; Nielsen, D H; Shurr, D G; Saltzman, C L

    2003-12-02

    To date, there have been no longitudinal studies comparing walking at different levels of amputation. The objective of this study was to compare the self-selected walking velocity (SSWV) and selected physiologic variables during walking between a Syme and a later transtibial level of amputation for a single subject. Additional comparison was made between the SACH foot prosthesis and a dynamic response foot prosthesis. A 35-year-old male with a traumatic Syme amputation later underwent elective transtibial amputation. SSWV and multiple speed treadmill walking tests (53.64, 67.05, 80.46, 93.87 and 107.28 m/min) were evaluated under three conditions (Syme prosthesis with SACH foot, transtibial prosthesis with SACH foot, and transtibial prosthesis with Flex-Foot). Walking with transtibial prosthesis showed minimal differences in oxygen consumption (0 - 5% reduction), heart rate response (0 - 1% reduction), or gait efficiency (0 - 5% improvement) across all speeds when compared with Syme prosthesis (both with SACH foot). However, the SSWV was 6 - 8% faster for the transtibial SACH foot. Walking with transtibial Flex-Foot required less cardiovascular demand than with transtibial SACH foot at higher speeds. In this case report, it seemed that transtibial amputation did not have adverse effects on selected physiological responses at a variety of walking speeds when compared to Syme amputation, and that the use of a dynamic response foot enhanced his gait performance. Further experimental studies involving more subjects with traumatic Syme and transtibial amputations are required to better understand the effect of these two levels of amputation on energy cost of walking.

  10. The Activation Pattern of Trunk and Lower Limb Muscles in an Electromyographic Assessment; Comparison Between Ground and Treadmill Walking.

    Science.gov (United States)

    Mazaheri, Reza; Sanjari, Mohammad Ali; Radmehr, Gelareh; Halabchi, Farzin; Angoorani, Hooman

    2016-09-01

    Due to biomechanical differences, various patterns of muscle contraction are expected to occur while walking over ground versus when walking on a treadmill. This study aimed to compare amplitude and duration of activation of selected trunk and lower extremity muscles during over-ground and treadmill walking. Through a simple sampling method, 19 sedentary healthy men within the age range of 20 - 40 were selected. Surface electromyography of rectus abdominis, external oblique, longissimus and multifidus muscles as the selected trunk muscles and vastus medialis, vastus lateralis and hamstrings as the selected lower limb muscles were recorded. In each gait cycle, there were no statistically significant differences in duration of selected trunk as well as lower limb muscles activity between treadmill and over-ground walking. However the mean amplitude of rectus abdominis (P = 0.005), longissimus (P = 0.018) and multifidus (P = 0.044) as the selected trunk muscles as well as the mean amplitude of vastus lateralis (P = 0.005) and vastus medialis (P lower limb muscles was greater on treadmill compared with over ground. Due to the stabilizing role of trunk and lower limb muscles during walking, these muscles seem to be active throughout the entire gait cycle. The increased muscle amplitude on treadmill can demonstrate that more motor units may be recruited during the contraction, which can be helpful in prescribing the appropriate type of exercise especially for patients with core muscle weakness.

  11. Referent body weight values in over ground walking, over ground jogging, treadmill jogging, and elliptical exercise.

    Science.gov (United States)

    Kaplan, Yonatan; Barak, Yannai; Palmonovich, Ezequiel; Nyska, Meir; Witvrouw, Erik

    2014-01-01

    I. To evaluate average percentage body weight (APBW) values and weight-bearing distribution percentages (WBDP) between four common sports activities in a referent adult population. II. To suggest clinical implications. Original research study. Lerner Sports Center, Hebrew University, Mount Scopus, Jerusalem, Israel. Seventy-five asymptomatic volunteers, mean age=33.5 (19-72) years SD=15.1, mean weight (kg)=70.7 (43-113) SD=14.1. Four tests were conducted: 1. Overground walking (OGW) over a 20 m distance, 2. Overground jogging (OGJ) over a 20 m distance, 3. Treadmill jogging (TJ) at a constant speed of 8.5 km/h for a 15-second interval and 4. Elliptical exercise (EE) for a 20 second period at a resistance and incline level of 10, and a steady pace within the range of 70-95 steps/min. The Smartstep™ weight-bearing gait analysis system. The APBW value on the entire foot in OGW was 112% (SD=15.57), in OGJ, 201% (SD=31.24, in TJ, 175% (SD=25.48) and in EE, 73% (SD=13.8). Regarding WBDP, the swing phase in OGJ and TJ was significantly longer than the stance phase (p<0.05). OGW resulted in significantly less swing phase compared to OGJ and TJ (p<0.05). EE significantly reduces weight-bearing as compared to other common functional and sporting activities. These findings may assist the rehabilitation team when considering returning individuals back to early activity following certain bony or soft tissue pathologies or lower-limb surgical procedures. This information is also useful from a repetitive loading standpoint (to prevent overuse injury) or for exercise recommendations for those at greater risk for exacerbating chronic joint pathology. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Activation of ankle muscles following rapid displacement of a light touch contact during treadmill walking.

    Science.gov (United States)

    Shiva, Tania; Misiaszek, John E

    2018-02-01

    The first exposure of a rapid displacement of a light touch reference induces an inappropriate balance corrective response during standing in a proportion of participants that is extinguished with repeated exposures. We hypothesized that if the spatial touch reference was critical to performing of a task the evoked response would be more consistently expressed across participants and observed with repeated exposures to the disturbance. To test this, 20 participants received either forward (N = 10) or backward right-touch displacements at right-heel strike during motorized treadmill walking without visual feedback. Electromyographic recordings from four arm, four leg and one neck muscle were sampled along with joint kinematic and step cycle data. Rapid displacement of the touch surface elicited responses in all 20 participants. However, the frequency of first trial responses was not different from what was observed during standing. In contrast, responses were observed in all participants with subsequent trials. None of the participants tripped or stumbled as a result of the touch perturbations; however, the step cycle duration was consistently shorter following the first forward-touch displacement. A post-experiment questionnaire revealed that many participants often perceived the touch plate displacement as a disturbance to the treadmill belt speed, suggesting the disturbance was occasionally misinterpreted. The activation of ankle muscles following the unexpected slip of a touch reference during walking suggests that tactile information from the finger is a relevant sensory cue for the regulation and control of stepping and stability.

  13. EFFECTS OF UNSTABLE SHOES ON ENERGY COST DURING TREADMILL WALKING AT VARIOUS SPEEDS

    Directory of Open Access Journals (Sweden)

    Keiji Koyama

    2012-12-01

    Full Text Available In recent years, shoes having rounded soles in the anterior- posterior direction have been commercially introduced, which are commonly known as unstable shoes (US. However, physiological responses during walking in US, particularly at various speeds, have not been extensively studied to date. The purpose of this study was to investigate the effect of wearing unstable shoes while walking at low to high speeds on the rate of perceived exertion (RPE, muscle activation, oxygen consumption (VO2, and optimum speed. Healthy male adults wore US or normal walking shoes (WS, and walked at various speeds on a treadmill with no inclination. In experiment 1, subjects walked at 3, 4, 5, 6, and 7 km·h-1 (duration, 3 min for all speeds and were recorded on video from the right sagittal plane to calculate the step length and cadence. Simultaneously, electromyogram (EMG was recorded from six different thigh and calf muscles, and the integrated EMG (iEMG was calculated. In experiment 2, RPE, heart rate and VO2 were measured with the walking speed being increased from 3.6 to 7.2 km·h-1 incrementally by 0.9 km·h-1 every 6 min. The optimum speed, defined by the least oxygen cost, was calculated from the fitted quadratic relationship between walking speed and oxygen cost. Wearing US resulted in significantly longer step length and lower cadence compared with WS condition at any given speed. For all speeds, iEMG in the medial gastrocnemius and soleus muscles, heart rate, and VO2 were significantly higher in US than WS. However, RPE and optimum speed (US, 4.75 ± 0.32 km·h-1; WS, 4. 79 ± 0.18 km·h-1 did not differ significantly between the two conditions. These results suggest that unstable shoes can increase muscle activity of lower legs and energy cost without influencing RPE and optimum speed during walking at various speeds

  14. Effects of acupuncture, core-stability exercises, and treadmill walking exercises in treating a patient with postsurgical lumbar disc herniation: a clinical case report.

    Science.gov (United States)

    Ganiyu, Sokunbi Oluwaleke; Gujba, Kachalla Fatimah

    2015-02-01

    The objective of this study is to investigate the effects of acupuncture, core-stability exercises, and treadmill 12-minute walking exercises in treating patients with postsurgical lumbar disc herniation. A 34-year-old woman with a history lumbar disc prolapse who had undergone lumbar disc surgery on two different occasions was treated using acupuncture, core-stability exercises, and treadmill walking exercises three times per week for 12 weeks. The outcome measures used in this study were pain intensity, spinal range of movement, and general health. After 12 weeks of treatment, the patient had made improvement in terms of pain, which was reduced from 9/10 to 1/10. In a similar vein, the patient's general health showed improvement of >100% after 12 weeks of treatment. Pre-treatment scores of spinal flexion and left-side flexion, which measured 20 cm and 12 cm, respectively, increased to 25 cm and 16 cm after 12 weeks of treatment. This study showed that acupuncture, core-stability exercises, and treadmill walking exercises were useful in relieving pain, increasing spinal range of movement, and improving the health of a patient with postsurgical lumbar disc herniation. Copyright © 2015. Published by Elsevier B.V.

  15. EEG Single-Trial Detection of Gait Speed Changes during Treadmill Walk.

    Directory of Open Access Journals (Sweden)

    Giuseppe Lisi

    Full Text Available In this study, we analyse the electroencephalography (EEG signal associated with gait speed changes (i.e. acceleration or deceleration. For data acquisition, healthy subjects were asked to perform volitional speed changes between 0, 1, and 2 Km/h, during treadmill walk. Simultaneously, the treadmill controller modified the speed of the belt according to the subject's linear speed. A classifier is trained to distinguish between the EEG signal associated with constant speed gait and with gait speed changes, respectively. Results indicate that the classification performance is fair to good for the majority of the subjects, with accuracies always above chance level, in both batch and pseudo-online approaches. Feature visualisation and equivalent dipole localisation suggest that the information used by the classifier is associated with increased activity in parietal areas, where mu and beta rhythms are suppressed during gait speed changes. Specifically, the parietal cortex may be involved in motor planning and visuomotor transformations throughout the online gait adaptation, which is in agreement with previous research. The findings of this study may help to shed light on the cortical involvement in human gait control, and represent a step towards a BMI for applications in post-stroke gait rehabilitation.

  16. Pelvic step: the contribution of horizontal pelvis rotation to step length in young healthy adults walking on a treadmill.

    Science.gov (United States)

    Liang, Bo Wei; Wu, Wen Hua; Meijer, Onno G; Lin, Jian Hua; Lv, Go Rong; Lin, Xiao Cong; Prins, Maarten R; Hu, Hai; van Dieën, Jaap H; Bruijn, Sjoerd M

    2014-01-01

    Transverse plane pelvis rotations during walking may be regarded as the "first determinant of gait". This would assume that pelvis rotations increase step length, and thereby reduce the vertical movements of the centre of mass-"the pelvic step". We analysed the pelvic step using 20 healthy young male subjects, walking on a treadmill at 1-5 km/h, with normal or big steps. Step length, pelvis rotation amplitude, leg-pelvis relative phase, and the contribution of pelvis rotation to step length were calculated. When speed increased in normal walking, pelvis rotation changed from more out-of-phase to in-phase with the upper leg. Consequently, the contribution of pelvis rotation to step length was negative at lower speeds, switching to positive at 3 km/h. With big steps, leg and pelvis were more in-phase, and the contribution of pelvis rotation to step length was always positive, and relatively large. Still, the overall contribution of pelvis rotations to step length was small, less than 3%. Regression analysis revealed that leg-pelvis relative phase predicted about 60% of the variance of this contribution. The results of the present study suggest that, during normal slow walking, pelvis rotations increase, rather than decrease, the vertical movements of the centre of mass. With large steps, this does not happen, because leg and pelvis are in-phase at all speeds. Finally, it has been suggested that patients with hip flexion limitation may use larger pelvis rotations to increase step length. This, however, may only work as long as the pelvis rotates in-phase with the leg. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Specific smartphone usage and cognitive performance affect gait characteristics during free-living and treadmill walking.

    Science.gov (United States)

    Niederer, Daniel; Bumann, Anke; Mühlhauser, Yvonne; Schmitt, Mareike; Wess, Katja; Engeroff, Tobias; Wilke, Jan; Vogt, Lutz; Banzer, Winfried

    2018-04-06

    Mobile phone tasks like texting, typing, and dialling during walking are known to impact gait characteristics. Beyond that, the effects of performing smartphone-typical actions like researching and taking self-portraits (selfie) on gait have not been investigated yet. We aimed to investigate the effects of smartphone usage on relevant gait characteristics and to reveal potential association of basic cognitive and walking plus smartphone dual-task abilities. Our cross-sectional, cross-over study on physically active, healthy participants was performed on two days, interrupted by a 24-h washout in between. Assessments were: 1) Cognitive testing battery consisting of the trail making test (TMT A and B) and the Stroop test 2) Treadmill walking under five smartphone usage conditions: no use (control condition), reading, dialling, internet searching and taking a selfie in randomized order. Kinematic and kinetic gait characteristics were assessed to estimate conditions influence. In our sample of 36 adults (24.6 ± 1 years, 23 female, 13 male), ANCOVAs followed by post-hoc t-tests revealed that smartphone usage impaired all tested gait characteristics: gait speed (decrease, all conditions): F = 54.7, p usage was systematically associated with the TMT B time regarding cadence and double stride length for reading (r = -0.37), dialling (r = -0.35) and taking a selfie (r = -0.34). Smartphone usage substantially impacts walking characteristics in most situations. Changes of gait patterns indicate higher cognitive loads and lower awareness. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Effects of interventions on normalizing step width during self-paced dual-belt treadmill walking with virtual reality, a randomised controlled trial.

    Science.gov (United States)

    Oude Lansink, I L B; van Kouwenhove, L; Dijkstra, P U; Postema, K; Hijmans, J M

    2017-10-01

    Step width is increased during dual-belt treadmill walking, in self-paced mode with virtual reality. Generally a familiarization period is thought to be necessary to normalize step width. The aim of this randomised study was to analyze the effects of two interventions on step width, to reduce the familiarization period. We used the GRAIL (Gait Real-time Analysis Interactive Lab), a dual-belt treadmill with virtual reality in the self-paced mode. Thirty healthy young adults were randomly allocated to three groups and asked to walk at their preferred speed for 5min. In the first session, the control-group received no intervention, the 'walk-on-the-line'-group was instructed to walk on a line, projected on the between-belt gap of the treadmill and the feedback-group received feedback about their current step width and were asked to reduce it. Interventions started after 1min and lasted 1min. During the second session, 7-10days later, no interventions were given. Linear mixed modeling showed that interventions did not have an effect on step width after the intervention period in session 1. Initial step width (second 30s) of session 1 was larger than initial step width of session 2. Step width normalized after 2min and variation in step width stabilized after 1min. Interventions do not reduce step width after intervention period. A 2-min familiarization period is sufficient to normalize and stabilize step width, in healthy young adults, regardless of interventions. A standardized intervention to normalize step width is not necessary. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. 30 min of treadmill walking at self-selected speed does not increase gait variability in independent elderly.

    Science.gov (United States)

    Da Rocha, Emmanuel S; Kunzler, Marcos R; Bobbert, Maarten F; Duysens, Jacques; Carpes, Felipe P

    2018-06-01

    Walking is one of the preferred exercises among elderly, but could a prolonged walking increase gait variability, a risk factor for a fall in the elderly? Here we determine whether 30 min of treadmill walking increases coefficient of variation of gait in elderly. Because gait responses to exercise depend on fitness level, we included 15 sedentary and 15 active elderly. Sedentary participants preferred a lower gait speed and made smaller steps than the actives. Step length coefficient of variation decreased ~16.9% by the end of the exercise in both the groups. Stride length coefficient of variation decreased ~9% after 10 minutes of walking, and sedentary elderly showed a slightly larger step width coefficient of variation (~2%) at 10 min than active elderly. Active elderly showed higher walk ratio (step length/cadence) than sedentary in all times of walking, but the times did not differ in both the groups. In conclusion, treadmill gait kinematics differ between sedentary and active elderly, but changes over time are similar in sedentary and active elderly. As a practical implication, 30 min of walking might be a good strategy of exercise for elderly, independently of the fitness level, because it did not increase variability in step and stride kinematics, which is considered a risk of fall in this population.

  20. Body weight supported treadmill training versus traditional training in patients dependent on walking assistance after stroke: a randomized controlled trial.

    Science.gov (United States)

    Høyer, Ellen; Jahnsen, Reidun; Stanghelle, Johan Kvalvik; Strand, Liv Inger

    2012-01-01

    Treadmill training with body weight support (TTBWS) for relearning walking ability after brain damage is an approach under current investigation. Efficiency of this method beyond traditional training is lacking evidence, especially in patients needing walking assistance after stroke. The objective of this study was to investigate change in walking and transfer abilities, comparing TTBWS with traditional walking training. A single-blinded, randomized controlled trial was conducted. Sixty patients referred for multi-disciplinary primary rehabilitation were assigned into one of two intervention groups, one received 30 sessions of TTBWS plus traditional training, the other traditional training alone. Daily training was 1 hr. Outcome measures were Functional Ambulation Categories (FAC), Walking, Functional Independence Measure (FIM); shorter transfer and stairs, 10 m and 6-min walk tests. Substantial improvements in walking and transfer were shown within both groups after 5 and 11 weeks of intervention. Overall no statistical significant differences were found between the groups, but 12 of 17 physical measures tended to show improvements in favour of the treadmill approach. Both training strategies provided significant improvements in the tested activities, suggesting that similar outcomes can be obtained in the two modalities by systematic, intensive and goal directed training.

  1. Autonomous exoskeleton reduces metabolic cost of human walking.

    Science.gov (United States)

    Mooney, Luke M; Rouse, Elliott J; Herr, Hugh M

    2014-11-03

    Passive exoskeletons that assist with human locomotion are often lightweight and compact, but are unable to provide net mechanical power to the exoskeletal wearer. In contrast, powered exoskeletons often provide biologically appropriate levels of mechanical power, but the size and mass of their actuator/power source designs often lead to heavy and unwieldy devices. In this study, we extend the design and evaluation of a lightweight and powerful autonomous exoskeleton evaluated for loaded walking in (J Neuroeng Rehab 11:80, 2014) to the case of unloaded walking conditions. The metabolic energy consumption of seven study participants (85 ± 12 kg body mass) was measured while walking on a level treadmill at 1.4 m/s. Testing conditions included not wearing the exoskeleton and wearing the exoskeleton, in both powered and unpowered modes. When averaged across the gait cycle, the autonomous exoskeleton applied a mean positive mechanical power of 26 ± 1 W (13 W per ankle) with 2.12 kg of added exoskeletal foot-shank mass (1.06 kg per leg). Use of the leg exoskeleton significantly reduced the metabolic cost of walking by 35 ± 13 W, which was an improvement of 10 ± 3% (p = 0.023) relative to the control condition of not wearing the exoskeleton. The results of this study highlight the advantages of developing lightweight and powerful exoskeletons that can comfortably assist the body during walking.

  2. Wearing a safety harness during treadmill walking influences lower extremity kinematics mainly through changes in ankle regularity and local stability

    Directory of Open Access Journals (Sweden)

    Decker Leslie M

    2012-02-01

    Full Text Available Abstract Background Wearing a harness during treadmill walking ensures the subject's safety and is common practice in biomedical engineering research. However, the extent to which such practice influences gait is unknown. This study investigated harness-related changes in gait patterns, as evaluated from lower extremity kinematics during treadmill walking. Findings Healthy subjects (n = 10 walked on a treadmill at their preferred speed for 3 minutes with and without wearing a harness (LiteGait®, Mobility Research, Inc.. In the former condition, no weight support was provided to the subjects. Lower extremity kinematics was assessed in the sagittal plane from the mean (meanRoM, standard deviation (SDRoM and coefficient of variation (CoVRoM of the hip, knee, and ankle ranges of motion (RoM, as well as from the sample entropy (SampEn and the largest Lyapunov exponent (LyE of the joints' angles. Wearing the harness increased the meanRoM of the hip, the SDRoM and the CoVRoM of the knee, and the SampEn and the LyE of the ankle. In particular, the harness effect sizes for both the SampEn and the LyE of the ankle were large, likely reflecting a meaningful decline in the neuromuscular stabilizing control of this joint. Conclusions Wearing a harness during treadmill walking marginally influences lower extremity kinematics, resulting in more or less subtle changes in certain kinematic variables. However, in cases where differences in gait patterns would be expressed through modifications in these variables, having subjects walk with a harness may mask or reinforce such differences.

  3. Similarity of muscle synergies extracted from the lower limb including the deep muscles between level and uphill treadmill walking.

    Science.gov (United States)

    Saito, Akira; Tomita, Aya; Ando, Ryosuke; Watanabe, Kohei; Akima, Hiroshi

    2018-01-01

    This study aimed to examine muscle synergies involving the deeper muscles of the lower limb during level and uphill treadmill walking. Seven men and five women walked on a treadmill at three speeds (60, 80, and 100m/min) and two grades (level and 10% grade). Surface electromyographic (EMG) signals were recorded from 10 muscles of the lower limb, including vastus intermedius, adductor magnus, and adductor longus. Muscle synergies were extracted applying non-negative matrix factorization, and the relative co-activation across muscles and the temporal information of synergy recruitment were identified by the muscle synergy vector and synergy activation coefficient, respectively. Correlation coefficients between a pair of synergy vectors during level and uphill walking were analyzed as a similarity index, with the similarity criterion at r=0.76. Changes in synergy activation coefficients between the walking conditions were evaluated by cross-correlation analysis. The mean number of synergies ranged from 3.8 to 4.0 across all conditions, and they were not significantly different between level and uphill walking conditions. Similarity between walking conditions was high (r>0.76) for three muscle synergies, but not for one synergy that mainly consisted of the quadriceps femoris. The inter-condition similarity of the synergy activation coefficients was high for the four synergies, and a significant lag time for synergy 2, which consisted mainly of the activity of medial gastrocnemius, was found at 60 and 80m/min. The muscle synergies extracted from the lower limb involving the deeper muscles appear to be consistent during level and uphill treadmill walking. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. In vivo six-degree-of-freedom knee-joint kinematics in overground and treadmill walking following total knee arthroplasty.

    Science.gov (United States)

    Guan, Shanyuanye; Gray, Hans A; Schache, Anthony G; Feller, Julian; de Steiger, Richard; Pandy, Marcus G

    2017-08-01

    No data are available to describe six-degree-of-freedom (6-DOF) knee-joint kinematics for one complete cycle of overground walking following total knee arthroplasty (TKA). The aims of this study were firstly, to measure 6-DOF knee-joint kinematics and condylar motion for overground walking following TKA; and secondly, to determine whether such data differed between overground and treadmill gait when participants walked at the same speed during both tasks. A unique mobile biplane X-ray imaging system enabled accurate measurement of 6-DOF TKA knee kinematics during overground walking by simultaneously tracking and imaging the joint. The largest rotations occurred for flexion-extension and internal-external rotation whereas the largest translations were associated with joint distraction and anterior-posterior drawer. Strong associations were found between flexion-extension and adduction-abduction (R 2  = 0.92), joint distraction (R 2  = 1.00), and anterior-posterior translation (R 2  = 0.77), providing evidence of kinematic coupling in the TKA knee. Although the measured kinematic profiles for overground walking were grossly similar to those for treadmill walking, several statistically significant differences were observed between the two conditions with respect to temporo-spatial parameters, 6-DOF knee-joint kinematics, and condylar contact locations and sliding. Thus, caution is advised when making recommendations regarding knee implant performance based on treadmill-measured knee-joint kinematic data. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1634-1643, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  5. Slow walking on a treadmill desk does not negatively affect executive abilities: An examination of cognitive control, conflict adaptation, response inhibition, and post-error slowing

    Directory of Open Access Journals (Sweden)

    Michael J Larson

    2015-05-01

    Full Text Available An increasing trend in the workplace is for employees to walk on treadmills while working to attain known health benefits; however, the effect of walking on a treadmill during cognitive control and executive function tasks is not well known. We compared the cognitive control processes of conflict adaptation (i.e., congruency sequence effects—improved performance following high-conflict relative to low-conflict trials, post-error slowing (i.e., Rabbitt effect, and response inhibition during treadmill walking (1.5 mph relative to sitting. Understanding the influence of treadmill desks on these cognitive processes may have implications for worker health and productivity. Sixty-nine individuals were randomized to either a sitting (n = 35 or treadmill-walking condition (n = 34. Groups did not differ in age or body mass index. All participants completed a computerized Eriksen flanker task and a response-inhibition go/no-go task in random order while either walking on a treadmill or seated. Response times (RTs and accuracy were analyzed separately for each task using mixed model analysis of variance. Separate ANOVAs for RTs and accuracy showed the expected conflict adaptation effects, post-error slowing, and response inhibition effects when collapsed across sitting and treadmill groups (all Fs > 78.77, Ps .38, suggesting no decrements or enhancements in conflict-related control and adjustment processes or response inhibition for those walking on a treadmill versus sitting. We conclude that cognitive control performance remains relatively unaffected during slow treadmill walking relative to sitting.

  6. Kinetic comparison of walking on a treadmill versus over ground in children with cerebral palsy

    NARCIS (Netherlands)

    van der Krogt, M.M.; Sloot, L.H.; Buizer, A.I.; Harlaar, J.

    2015-01-01

    Kinetic outcomes are an essential part of clinical gait analysis, and can be collected for many consecutive strides using instrumented treadmills. However, the validity of treadmill kinetic outcomes has not been demonstrated for children with cerebral palsy (CP). In this study we compared ground

  7. Treadmill workstations: the effects of walking while working on physical activity and work performance.

    Science.gov (United States)

    Ben-Ner, Avner; Hamann, Darla J; Koepp, Gabriel; Manohar, Chimnay U; Levine, James

    2014-01-01

    We conducted a 12-month-long experiment in a financial services company to study how the availability of treadmill workstations affects employees' physical activity and work performance. We enlisted sedentary volunteers, half of whom received treadmill workstations during the first two months of the study and the rest in the seventh month of the study. Participants could operate the treadmills at speeds of 0-2 mph and could use a standard chair-desk arrangement at will. (a) Weekly online performance surveys were administered to participants and their supervisors, as well as to all other sedentary employees and their supervisors. Using within-person statistical analyses, we find that overall work performance, quality and quantity of performance, and interactions with coworkers improved as a result of adoption of treadmill workstations. (b) Participants were outfitted with accelerometers at the start of the study. We find that daily total physical activity increased as a result of the adoption of treadmill workstations.

  8. Effect of Treadmill Exercise Using 80% Intensity of Six Minute Walk Test on Walking Distance and Quality of Life in Moderate Stage Chronic Obstructive Pulmonary Disease Patients

    Directory of Open Access Journals (Sweden)

    Farida Arisanti

    2016-06-01

    Full Text Available Skeletal muscle dysfunction poses as one of the systemic manifestation of chronic obstructive pulmonary disease (COPD in the impact of inactivity and deconditioning from early fatigue to the end of declining quality of life (QoL. Giving pulmonary rehabilitation program of treadmill exercise will overcome the problem, but standard method for moderate stage of COPD is not yet available. This study aimed to evaluate the effect of treadmill exercise using 80% intensity of six minute walk test on walking distance and QoL in moderate stage COPD in order to overcome muscle dysfunction. Samples were taken from Physical Medicine and Rehabilitation and Respirology subdivision of Internal Medicine outpatient clinic of Dr. Hasan Sadikin General Hospital Bandung, from March 2012–April 2013. Data analysis was tested using t-test for comparison of two independent mean data. Otherwise, non parametric test of Mann Whitney and Wilcoxon Match Pair test. Thirty three subjects of moderate stage COPD were divided into 2 groups (intervention and control. Intervention group received treadmill exercise with 80% intensity from preliminary 6MWT for 30–60 minutes/session, 3 session/week for 6 weeks. Significant increase on walking distance was found in intervention group (70.66 m compared to control group (7.43 m after 6 weeks (p≤0.05. QoL using St. George Respiratory Questionnaire (SGRQ showed significant decrease in intervention group for all components in the end of 6 weeks (total p=0.0038, symptoms p=0.0162, activities p=0.0043 and impact p=0.0057, p≤0.05. Eighty percent intensity of 6MWT in treadmill exercise for 6 weeks was well tolerated and could overcome skeletal muscle dysfunction in moderate stage COPD. It also revealed higher values in aerobic capacity and QoL compared to previous studies. In conclusion, treadmill exercise using 80% intensity of 6MWT provides further walking distance and higher QoL compared to control in moderate stage COPD.

  9. Treadmill Interface for Virtual Reality vs. Overground Walking: A Comparison of Gait in Individuals with and without Pain.

    Science.gov (United States)

    Powell, Wendy; Stevens, Brett; Simmonds, Maureen

    2009-01-01

    A treadmill (TR) interfaced with a virtual reality (VR) system can provide an engaging environment that could improve activity adherence and walking function for individuals with pain. Furthermore, inclusion of discrete visual and auditory cues into the VR environment (e.g. manipulation of optic flow speed or audio beat frequency) could improve walking. This study compared gait characteristics (speed and cadence) of a baseline over ground walk (OVR) with a TR walk as part of a project to develop gait referenced visual and auditory frequency cues. Thirty-six participants aged between 22 and 80 years, with pain (n=19) and without pain (n=17) took part. A 2 x 2 MANOVA conducted on the speed and cadence for all participants showed a significant difference between pain and control groups for speed (F1,34=9.56, p1,34=5.75, p1,34=81.39, p1,34=25.46, p<0.01). Differences between OVR and TR walking indicate that visual or auditory cues for VR walk training should be referenced according to TR baseline measures.

  10. Treadmill workstations: the effects of walking while working on physical activity and work performance.

    Directory of Open Access Journals (Sweden)

    Avner Ben-Ner

    Full Text Available We conducted a 12-month-long experiment in a financial services company to study how the availability of treadmill workstations affects employees' physical activity and work performance. We enlisted sedentary volunteers, half of whom received treadmill workstations during the first two months of the study and the rest in the seventh month of the study. Participants could operate the treadmills at speeds of 0-2 mph and could use a standard chair-desk arrangement at will. (a Weekly online performance surveys were administered to participants and their supervisors, as well as to all other sedentary employees and their supervisors. Using within-person statistical analyses, we find that overall work performance, quality and quantity of performance, and interactions with coworkers improved as a result of adoption of treadmill workstations. (b Participants were outfitted with accelerometers at the start of the study. We find that daily total physical activity increased as a result of the adoption of treadmill workstations.

  11. Effects of the Integration of Dynamic Weight Shifting Training Into Treadmill Training on Walking Function of Children with Cerebral Palsy: A Randomized Controlled Study.

    Science.gov (United States)

    Wu, Ming; Kim, Janis; Arora, Pooja; Gaebler-Spira, Deborah J; Zhang, Yunhui

    2017-11-01

    The aim of the study was to determine whether applying an assistance force to the pelvis and legs during treadmill training can improve walking function in children with cerebral palsy. Twenty-three children with cerebral palsy were randomly assigned to the robotic or treadmill only group. For participants who were assigned to the robotic group, a controlled force was applied to the pelvis and legs during treadmill walking. For participants who were assigned to the treadmill only group, manual assistance was provided as needed. Each participant trained 3 times/wk for 6 wks. Outcome measures included walking speed, 6-min walking distance, and clinical assessment of motor function, which were evaluated before, after training, and 8 wks after the end of training, and were compared between two groups. Significant increases in walking speed and 6-min walking distance were observed after robotic training (P = 0.03), but no significant change was observed after treadmill training only. A greater increase in 6-min walking distance was observed after robotic training than that after treadmill only training (P = 0.01). Applying a controlled force to the pelvis and legs, for facilitating weight-shift and leg swing, respectively, during treadmill training may improve walking speed and endurance in children with cerebral palsy. Complete the self-assessment activity and evaluation online at http://www.physiatry.org/JournalCME CME OBJECTIVES: Upon completion of this article, the reader should be able to: (1) discuss the importance of physical activity at the participation level (sports programs) for children with cerebral palsy; (2) contrast the changes in walking ability and endurance for children in GMFCS level I, II and III following sports programs; and (3) identify the impact of higher frequency of sports program attendance over time on walking ability. Advanced ACCREDITATION: The Association of Academic Physiatrists is accredited by the Accreditation Council for Continuing

  12. Efficacy of treadmill exercises on arterial blood oxygenation, oxygen consumption and walking distance in healthy elderly people: a controlled trial.

    Science.gov (United States)

    Bichay, Ashraf Adel Fahmy; Ramírez, Juan M; Núñez, Víctor M; Lancho, Carolina; Poblador, María S; Lancho, José L

    2016-05-25

    Regular physical exercise and healthy lifestyle can improve aerobic power of the elderly, although lung capacity gradually deteriorates with age. The aims of the study are: a) to evaluate the therapeutic effect of a treadmill exercise program on arterial blood oxygenation (SaO2), maximum oxygen consumption (VO2max) and maximum walking distance (MWD) in healthy elderly people; b) to examine the outcome of the program at a supervised short-term and at an unsupervised long-term. A prospective, not-randomized controlled intervention trial (NRCT) was conducted. Eighty participants were allocated into two homogeneous groups (training group, TG, n = 40; control group, CG, n = 40). Each group consisted of 20 men and 20 women. Pre-intervention measures of SaO2, VO2max and MWD were taken of each participant 1-week before the training program to establish the baseline. Also, during the training program, the participants were followed up at the 12, 30 and 48th week. The exercise program consisted of walking on a treadmill with fixed 0 % grade of inclination 3 times weekly for 48 weeks; the first 12 weeks were supervised and the remaining 36 weeks of the program were unsupervised. Participants in the control group were encouraged to walk twice a week during 45 min, and received standard recommendations for proper health. Related to the baseline, the SaO2, VO2max, and MWD is greater in the intervention group at the 12(th) (p recommended for healthy older people, improving aerobic power. Current Controlled Trials ISRCTN12621097 .

  13. Interactive footstep sounds modulate the perceptual-motor aftereffect of treadmill walking

    DEFF Research Database (Denmark)

    Turchet, Luca; Camponogara, Ivan; Cesari, Paola

    2015-01-01

    walking. Behavioral results confirmed those of a perceptual questionnaire, which showed that the snow sound was effective in producing strong pseudo-haptic illusions. Our results provide evidence that the walking in place aftereffect results from a recalibration of haptic, visuo-motor but also sound......-motor control systems. Self-motion perception is multimodal....

  14. Interlimb communication following unexpected changes in treadmill velocity during human walking

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Geertsen, Svend Sparre; Sinkjær, Thomas

    2015-01-01

    Interlimb reflexes play an important role in human walking, particularly when dynamic stability is threatened by external perturbations or changes in the walking surface. Interlimb reflexes have recently been demonstrated in the contralateral biceps femoris (cBF) following knee joint rotations ap...

  15. Effects of robotic treadmill training on functional mobility, walking capacity, motor symptoms and quality of life in ambulatory patients with Parkinson's disease: a preliminary prospective longitudinal study.

    Science.gov (United States)

    Paker, Nurdan; Bugdayci, Derya; Goksenoglu, Goksen; Sen, Aysu; Kesiktas, Nur

    2013-01-01

    Decreased mobility and walking capacity occur frequently in Parkinson's disease (PD). Robotic treadmill training is a novel method to improve the walking capacity in rehabilitation. The primary aim of this study was to investigate the effects of robotic treadmill training on functional mobility and walking capacity in PD. Secondly, we aimed to assess the effects of the robotic treadmill training the motor symptoms and quality of life in patients with PD. Seventy patients with idiopathic Parkinson's disease who admitted to the outpatient clinic of the rehabilitation hospital were screened and 12 ambulatory volenteers who met the study criteria were included in this study. Patients were evaluated by Hoehn Yahr (HY) scale clinically. Two sessions robotic treadmill training per week during 5 weeks was planned for every patient. Patients were evaluated by the Timed Up and Go (TUG) test, 10 meter walking test (10 MWT), Unified Parkinson's Disease Rating Scale (UPDRS) motor section and Parkinson's Disease Questionnaire-39 (PDQ-39) at the baseline, at the 5 and 12 weeks. Cognitive and emotional states of the patients were assessed by Mini Mental State Examination (MMSE) test and Hospital Anxiety and Depression Scale (HADS) at the baseline. All patients were under medical treatment for the PD in this study and drug treatment was not changed during the study. Ten patients completed the study. The mean age was 65.6 ± 6.6 years. Five patients (50%) were women. Disease severity was between the HY stage 1-3. Two patients did not continue the robotic treadmill training after 7 sessions. They also did not want to come for control visits. TUG test, 10 MWT and UPDRS motor subscale scores showed statistically significant improvement after robotic treadmill training (p = 0.02, p = 0.001, p = 0.016). PDQ-39 scores improved significantly after robotic treadmill training (p = 0.03), however, the scores turned back to the baseline level at the 12. week control. As a result of this

  16. Effects of interventions on normalizing step width during self-paced dual-belt treadmill walking with virtual reality, a randomised controlled trial

    NARCIS (Netherlands)

    Lansink, I. L. B. Oude; van Kouwenhove, L.; Dijkstra, P. U.; Postema, K.; Hijmans, J. M.

    2017-01-01

    Background: Step width is increased during dual-belt treadmill walking, in self-paced mode with virtual reality. Generally a familiarization period is thought to be necessary to normalize step width. Aim: The aim of this randomised study was to analyze the effects of two interventions on step width,

  17. Comparison of two-hand kettlebell exercise and graded treadmill walking: effectiveness as a stimulus for cardiorespiratory fitness.

    Science.gov (United States)

    Thomas, James F; Larson, Kurtis L; Hollander, Daniel B; Kraemer, Robert R

    2014-04-01

    Prevailing interest in the use of kettlebell (KB) exercises for rehabilitation and improvement of muscular strength has led to several recent studies, some suggesting that KB exercise may be useful for improvement of cardiorespiratory fitness. The purpose of this study was to determine whether KB exercise would produce similar cardiovascular stress to that of walking and thus provide an additional exercise mode for the improvement of cardiorespiratory fitness. It was hypothesized that a moderate-intensity, continuous KB protocol, would produce similar metabolic and cardiorespiratory responses as a brisk bout of graded treadmill (TM) walking, but greater rating of perceived exertion (RPE). Ten novice volunteers (5 men, 5 women) completed a preliminary session to determine body composition and VO2max and to familiarize participants with standardized KB exercise technique. Subsequently, they completed a 30-minute KB session that included 3 continuous 10-minute sets of 10 KB swings followed by 10 sumo deadlifts, with 3-minute rests between 10-minute exercise periods. The third session was a 30-minute TM regimen that began at the walking speed and 4% grade that matched the VO2 from the KB session and included 3-minute rest intervals after 10-minute TM exercise periods. VO2, respiratory exchange ratio, kcal·min, and blood pressure were similar for KB and moderate-intensity TM exercise, but RPE and heart rate were greater during KB exercise. Data indicate that a KB routine consisting of 2-hand swings and sumo deadlifts with 3-minute rest periods produces similar metabolic responses to those of a moderate-intensity TM walking protocol designed for the improvement of aerobic fitness.

  18. Ankle kinematics of individuals with chronic ankle instability while walking and jogging on a treadmill in shoes.

    Science.gov (United States)

    Chinn, Lisa; Dicharry, Jay; Hertel, Jay

    2013-11-01

    To evaluate frontal and sagittal plane ankle kinematics between subjects with chronic ankle instability (CAI) and healthy controls while walking and jogging shod on a treadmill. Cross-sectional study. Motion analysis laboratory. Fifteen subjects with self-reported CAI and 13 healthy subjects volunteered. Sagittal and frontal plane ankle kinematics were calculated throughout the gait cycle. For each speed, the means and associated 90% confidence intervals (CIs) were calculated in each plane across the entire gait cycle and increments in which the CI bands for the groups did not cross each other for at least 3 consecutive percentage points of the gait cycle were identified. At various increments while both walking and jogging, CAI subjects were found to be more plantar flexed compared to controls. In the frontal plane, CAI subjects were found to be more inverted at three different increments while jogging only. While shod, kinematic differences were observed between groups. The alterations may indicate that while shod, CAI subjects may adjust their gait in order to successfully accomplish the given task. Published by Elsevier Ltd.

  19. Chest tcpO2 changes during constant-load treadmill walking tests in patients with claudication

    International Nuclear Information System (INIS)

    Ouedraogo, N; Leftheriotis, G; Abraham, P; Feuilloy, M; Mahe, G; Saumet, J-L

    2011-01-01

    Changes in chest transcutaneous-pO 2 at rest (ΔtcpO 2 ) mimic absolute changes in arterial-pO 2 during moderate exercise, although the absolute starting values may dramatically differ. We retrospectively studied 485 patients (group 1), prospectively studied 292 new patients (group 2) and estimated the intra-test and the test–retest reproducibility of ΔtcpO 2 during constant-load treadmill tests: 3.2 km h −1 , 10% grade, using the cross correlation technique. Patients were classified into groups according to their best fit to nine pre-defined mathematic models. Respectively, 71% and 76% of patients of groups 1 and 2 fitted with a model showing a ΔtcpO 2 increase during and a decrease following exercise. Another 18% and 12% of the patients of groups 1 and 2 respectively fitted with a model that showed an abrupt decrease at exercise onset, a slow increase during walking and an overshoot in the recovery period, referred here as a walking-induced transcutaneous hack (WITH) profile. The mean r max value for the cross-correlation analysis was 0.919 ± 0.091 and 0.800 ± 0.129 for intra-test and test–retest reproducibility. Most profiles show the expected ΔtcpO 2 exercise-induced increase. Future studies are needed to confirm and explain the WITH profiles that we found, and screen for potential-associated diseases

  20. A thermal stress treadmill walk for clinic evaluation of candidates for hazardous materials (HazMat) duty.

    Science.gov (United States)

    Raymond, Lawrence W; Barringer, Thomas A

    2014-01-01

    U.S. guidance for examining hazmat workers recommends stress testing be considered when heat stress is expected. However, the most common stress test-Bruce protocol treadmill electrocardiography (BPTE) wearing gym clothes-creates little thermal stress. Evaluate a novel thermal stress treadmill walk (TSTW). Body temperatures and heart rates during BPTE in 93 current and potential hazmat workers wearing gym clothes were compared with later values in 35 of these subjects while they were wearing thermally-restrictive "sauna suits" during a 45-min TSTW. Physiological strain index (PSI) was calculated from temperature and heart rate changes and compared with PSI values from hazmat simulations and climatic chamber exercises. Tympanic temperature (TT) rose 0.5°C (SD 0.5) during BPTE lasting 12.4 min (SD 2.9). PSI reached 6.0 (SD 1.3). TT rose 1.0°C (SD 0.5) during TSTW, p < .01. PSI averaged 6.6 (SD 1.9) in 29 subjects who completed TSTW, versus 5.7 (SD 5.7) in the 6 subjects who did not. Ingested thermistor temperatures increased more than did TT during TSTW, yielding PSI of 7.0 (SD 1.5), equal to PSI values from climatic chamber exercises, i.e., 7.0 (SD 1.0). TSTW increased body temperature and PSI in 29 of the 35 subjects who completed it to levels matching those of operational simulations in climatic chambers and during hazmat exercises. This TSTW may be useful for evaluating candidates for hazmat duty.

  1. The effect of treadmill training on gross motor function and walking speed in ambulatory adolescents with cerebral palsy: a randomized controlled trial.

    Science.gov (United States)

    Chrysagis, Nikolaos; Skordilis, Emmanouil K; Stavrou, Nektarios; Grammatopoulou, Eirini; Koutsouki, Dimitra

    2012-09-01

    The aim of this study was to evaluate the effect of a treadmill program on gross motor function, walking speed, and spasticity of ambulatory adolescents with spastic cerebral palsy (diplegia and tetraplegia). In this randomized controlled trial, 22 adolescents (13-19 yrs old) from a special school for children with physical disabilities were randomly allocated to the experimental and control training groups. The experimental training group underwent a treadmill program without body weight support at a comfortable speed. The control group received treatment with conventional physiotherapy, which consisted of three sets of exercises with mat activities, balance, gait training, and functional gross motor activities. The program lasted 12 wks with a frequency of three times per week for both groups. Pretest and posttest measurements of self-selected walking speed, gross motor function, and spasticity were conducted. The analysis of covariance findings examining posttest differences between groups were significant with respect to self-selected walking speed (F = 8.545, P = 0.000) and gross motor function (F = 9.088, P = 0.007), whereas no significance was found for spasticity. Treadmill training may improve the walking speed and gross motor function of adolescents with spastic cerebral palsy, without adverse effects on spasticity.

  2. Tibial impacts and muscle activation during walking, jogging and running when performed overground, and on motorised and non-motorised treadmills.

    Science.gov (United States)

    Montgomery, G; Abt, G; Dobson, C; Smith, T; Ditroilo, M

    2016-09-01

    To examine tibial acceleration and muscle activation during overground (OG), motorised treadmill (MT) and non-motorised treadmill conditions (NMT) when walking, jogging and running at matched velocities. An accelerometer recorded acceleration at the mid-tibia and surface EMG electrodes recorded rectus femoris (RF), semitendinosus (ST), tibialis anterior (TA) and soleus (SL) muscle activation during OG, MT and NMT locomotion whilst walking, jogging and running. The NMT produced large reductions in tibial acceleration when compared with OG and MT conditions across walking, jogging and running conditions. RF EMG was small-moderately higher in the NMT condition when compared with the OG and MT conditions across walking, jogging and running conditions. ST EMG showed large and very large increases in the NMT when compared to OG and MT conditions during walking whilst SL EMG found large increases on the NMT when compared to OG and MT conditions during running. The NMT condition generated very large increases in step frequency when compared to OG and MT conditions during walking, with large and very large decreases during jogging and very large decreases during running. The NMT generates large reductions in tibial acceleration, moderate to very large increases in muscular activation and large to very large decreases in cycle time when compared to OG and MT locomotion. Whilst this may decrease the osteogenic potential of NMT locomotion, there may be uses for NMTs during rehabilitation for lower limb injuries. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Best facilitated cortical activation during different stepping, treadmill, and robot-assisted walking training paradigms and speeds: A functional near-infrared spectroscopy neuroimaging study.

    Science.gov (United States)

    Kim, Ha Yeon; Yang, Sung Phil; Park, Gyu Lee; Kim, Eun Joo; You, Joshua Sung Hyun

    2016-01-01

    Robot-assisted and treadmill-gait training are promising neurorehabilitation techniques, with advantages over conventional gait training, but the neural substrates underpinning locomotor control remain unknown particularly during different gait training modes and speeds. The present optical imaging study compared cortical activities during conventional stepping walking (SW), treadmill walking (TW), and robot-assisted walking (RW) at different speeds. Fourteen healthy subjects (6 women, mean age 30.06, years ± 4.53) completed three walking training modes (SW, TW, and RW) at various speeds (self-selected, 1.5, 2.0, 2.5, and 3.0  km/h). A functional near-infrared spectroscopy (fNIRS) system determined cerebral hemodynamic changes associated with cortical locomotor network areas in the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), prefrontal cortex (PFC), and sensory association cortex (SAC). There was increased cortical activation in the SMC, PMC, and SMA during different walking training modes. More global locomotor network activation was observed during RW than TW or SW. As walking speed increased, multiple locomotor network activations were observed, and increased activation power spectrum. This is the first empirical evidence highlighting the neural substrates mediating dynamic locomotion for different gait training modes and speeds. Fast, robot-assisted gait training best facilitated cortical activation associated with locomotor control.

  4. Effects of a 6-Week Aquatic Treadmill Exercise Program on Cardiorespiratory Fitness and Walking Endurance in Subacute Stroke Patients: A PILOT TRIAL.

    Science.gov (United States)

    Han, Eun Young; Im, Sang Hee

    2017-03-15

    To assess the feasibility and safety of a 6-week course of water walking performed using a motorized aquatic treadmill in individuals with subacute stroke for cardiorespiratory fitness, walking endurance, and activities of daily living. Twenty subacute stroke patents were randomly assigned to aquatic treadmill exercise (ATE) or land-based exercise (LBE). The ATE group (n = 10) performed water-based aerobic exercise on a motorized aquatic treadmill, and the LBE group (n = 10) performed land-based aerobic exercise on a cycle ergometer. Both groups performed aerobic exercise for 30 minutes, 5 times per week for 6 weeks. Primary outcome measures were 6-minute walk test for walking endurance and cardiopulmonary fitness parameters of a symptom-limited exercise tolerance test, and secondary measures were Korean version of the Modified Barthel Index (K-MBI) for activities of daily living. All variables were assessed at baseline and at the end of the intervention. The ATE group showed significant improvements in 6-minute walk test (P = .005), peak oxygen uptake (V·o2peak; P = .005), peak heart rate (P = .007), exercise tolerance test duration (P = .005), and K-MBI (P = .008). The LBE group showed a significant improvement only in K-MBI (P = .012). In addition, improvement in V·o2peak was greater in the ATE than in the LBE group. This preliminary study showed that a 6-week ATE program improved peak aerobic capacity and walking endurance in patients with subacute stroke. The improvement in V·o2peak after an ATE exercise program was greater than that observed after an LBE program. Therefore, ATE effectively improves cardiopulmonary fitness in patients with subacute stroke.

  5. Intra-rater repeatability of gait parameters in healthy adults during self-paced treadmill-based virtual reality walking.

    Science.gov (United States)

    Al-Amri, Mohammad; Al Balushi, Hilal; Mashabi, Abdulrhman

    2017-12-01

    Self-paced treadmill walking is becoming increasingly popular for the gait assessment and re-education, in both research and clinical settings. Its day-to-day repeatability is yet to be established. This study scrutinised the test-retest repeatability of key gait parameters, obtained from the Gait Real-time Analysis Interactive Lab (GRAIL) system. Twenty-three male able-bodied adults (age: 34.56 ± 5.12 years) completed two separate gait assessments on the GRAIL system, separated by 5 ± 3 days. Key gait kinematic, kinetic, and spatial-temporal parameters were analysed. The Intraclass-Correlation Coefficients (ICC), Standard Error Measurement (SEM), Minimum Detectable Change (MDC), and the 95% limits of agreements were calculated to evaluate the repeatability of these gait parameters. Day-to-day agreements were excellent (ICCs > 0.87) for spatial-temporal parameters with low MDC and SEM values, gait performance over time.

  6. Pelvic step: The contribution of horizontal pelvis rotation to step length in young healthy adults walking on a treadmill

    NARCIS (Netherlands)

    Liang, B.W.; Wu, W.H.; Meijer, O.G.; Lin, J.H.; Lv, G.R.; Lin, X.C.; Prins, M.R.; Hu, H.; van Dieen, J.H.; Bruijn, S.M.

    2014-01-01

    Transverse plane pelvis rotations during walking may be regarded as the "first determinant of gait". This would assume that pelvis rotations increase step length, and thereby reduce the vertical movements of the centre of mass-"the pelvic step". We analysed the pelvic step using 20 healthy young

  7. Load rather than length sensitive feedback contributes to soleus muscle activity during human treadmill walking

    DEFF Research Database (Denmark)

    af Klint, Richard; Mazzaro, Nazarena; Nielsen, Jens Bo

    2010-01-01

    Walking requires a constant adaptation of locomotor output from sensory afferent feedback mechanisms to ensure efficient and stable gait. We investigated the nature of the sensory afferent feedback contribution to the soleus motoneuronal drive and to the corrective stretch reflex by manipulating...... on the soleus stretch reflex was measured by presenting dorsiflexion perturbations ( approximately 5 degrees, 360-400 degrees/s) in mid and late stances. Short (SLRs) and medium latency reflexes (MLRs) were quantified in a 15 ms analysis window. The MLR decreased with decreased loading (P = 0......-related afferent feedback contributes both to the background locomotor activity and to the medium latency stretch reflex. In contrast, length-related afferent feedback may contribute to only the medium latency stretch reflex....

  8. Adaptation mechanism of interlimb coordination in human split-belt treadmill walking through learning of foot contact timing: a robotics study.

    Science.gov (United States)

    Fujiki, Soichiro; Aoi, Shinya; Funato, Tetsuro; Tomita, Nozomi; Senda, Kei; Tsuchiya, Kazuo

    2015-09-06

    Human walking behaviour adaptation strategies have previously been examined using split-belt treadmills, which have two parallel independently controlled belts. In such human split-belt treadmill walking, two types of adaptations have been identified: early and late. Early-type adaptations appear as rapid changes in interlimb and intralimb coordination activities when the belt speeds of the treadmill change between tied (same speed for both belts) and split-belt (different speeds for each belt) configurations. By contrast, late-type adaptations occur after the early-type adaptations as a gradual change and only involve interlimb coordination. Furthermore, interlimb coordination shows after-effects that are related to these adaptations. It has been suggested that these adaptations are governed primarily by the spinal cord and cerebellum, but the underlying mechanism remains unclear. Because various physiological findings suggest that foot contact timing is crucial to adaptive locomotion, this paper reports on the development of a two-layered control model for walking composed of spinal and cerebellar models, and on its use as the focus of our control model. The spinal model generates rhythmic motor commands using an oscillator network based on a central pattern generator and modulates the commands formulated in immediate response to foot contact, while the cerebellar model modifies motor commands through learning based on error information related to differences between the predicted and actual foot contact timings of each leg. We investigated adaptive behaviour and its mechanism by split-belt treadmill walking experiments using both computer simulations and an experimental bipedal robot. Our results showed that the robot exhibited rapid changes in interlimb and intralimb coordination that were similar to the early-type adaptations observed in humans. In addition, despite the lack of direct interlimb coordination control, gradual changes and after-effects in the

  9. Varied overground walking training versus body-weight-supported treadmill training in adults within 1 year of stroke: a randomized controlled trial.

    Science.gov (United States)

    DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Thabane, Lehana; Ma, Jinhui; Lee, Timothy D

    2015-05-01

    Although task-related walking training has been recommended after stroke, the theoretical basis, content, and impact of interventions vary across the literature. There is a need for a comparison of different approaches to task-related walking training after stroke. To compare the impact of a motor-learning-science-based overground walking training program with body-weight-supported treadmill training (BWSTT) in ambulatory, community-dwelling adults within 1 year of stroke onset. In this rater-blinded, 1:1 parallel, randomized controlled trial, participants were stratified by baseline gait speed. Participants assigned to the Motor Learning Walking Program (MLWP) practiced various overground walking tasks under the supervision of 1 physiotherapist. Cognitive effort was encouraged through random practice and limited provision of feedback and guidance. The BWSTT program emphasized repetition of the normal gait cycle while supported on a treadmill and assisted by 1 to 3 therapy staff. The primary outcome was comfortable gait speed at postintervention assessment (T2). In total, 71 individuals (mean age = 67.3; standard deviation = 11.6 years) with stroke (mean onset = 20.9 [14.1] weeks) were randomized (MLWP, n = 35; BWSTT, n = 36). There was no significant between-group difference in gait speed at T2 (0.002 m/s; 95% confidence interval [CI] = -0.11, 0.12; P > .05). The MLWP group improved by 0.14 m/s (95% CI = 0.09, 0.19), and the BWSTT group improved by 0.14 m/s (95% CI = 0.08, 0.20). In this sample of community-dwelling adults within 1 year of stroke, a 15-session program of varied overground walking-focused training was not superior to a BWSTT program of equal frequency, duration, and in-session step activity. © The Author(s) 2014.

  10. Comparison of forward versus backward walking using body weight supported treadmill training in an individual with a spinal cord injury: a single subject design.

    Science.gov (United States)

    Moriello, Gabriele; Pathare, Neeti; Cirone, Cono; Pastore, Danielle; Shears, Dacia; Sulehri, Sahira

    2014-01-01

    Body weight supported treadmill training (BWSTT) is a task-specific intervention that promotes functional locomotion. There is no research evaluating the effect of backward walking (BW) using BWSTT in individuals with spinal cord injury (SCI). The purpose of this single subject design was to examine the differences between forward walking (FW) and BW training using BWSTT in an individual with quadriparesis. The participant was a 57-year-old male with incomplete C3-C6 SCI. An ABABAB design (A = BW; B = FW; each phase = 3 weeks of biweekly sessions) was utilized. Outcome measures included: gait parameters; a timed 4-meter walk; the 5-repetition sit-to-stand test (STST); tandem stance time; and 6-minute walk test (6MWT). Data was analyzed with split level method of trend estimation. Improvements in gait parameters, on the timed 4-meter walk, 6MWT, tandem balance and aerobic endurance were similar with FW and BW training. The only difference between FW and BW training was that BW training resulted in greater improvements in the STST. The results of this study suggest that in this individual backward walking training was advantageous, resulting in improved ability to perform the 5-repetition STST. It is suspected that these changes can be attributed to the differences in muscle activation and task difficulty between FW and BW.

  11. Metabolic equivalents fail to indicate metabolic load in post-myocardial infarction patients during the modified Bruce treadmill walking test.

    Science.gov (United States)

    Woolf-May, K; Meadows, S; Ferrett, D; Kearney, E

    2016-01-01

    To investigate the suitability of metabolic equivalents (METs) for determining exercise intensity in phase-IV post-myocardial infarction (MI) men during the modified Bruce treadmill walking test (MBWT). Twenty phase-IV post-MI men (mean±SD, aged 64.4±5.8 years) and 20 healthy non-cardiac male controls (59.8±7.6 years) participated. Participants performed a MBWT. Throughout the participants' heart rate (HR), heart rhythm, expired air parameters and ratings of perceived exertion (RPEs) were measured. MET values were compared between groups and those currently ascribed to each stage of the MBWT. General linear model analysis found no significant differences between groups during the MBWT for V O 2 , V CO 2 , HR, METs or RPEs (Borg 6-20 scale). Ascribed METs did not differ from mean METs of post-MIs or controls other than at stage 5 where post-MI METs were significantly lower. Irrespective, the post-MI group worked at a higher percentage of their anaerobic threshold (AT) (respiratory exchange ratio, RER=1.0) ( F (2,5) =7.22, p<0.008), higher RER ( F (2,5) =11.25, p<0.001) with increased breathing frequency ( F (2,5) =7.22, p<0.001). Regression analysis revealed AT to be V O 2 25.6 (mL/kg/min) for post-MI versus V O 2 31.1 (mL/kg/min) for controls. Gross energy expenditure (kcal/min) was greater for the post-MI group compared with controls ( F (2,5) =11.22, p<0.001). Throughout the MBWT, post-MI group worked at a higher %AT/MET than controls ( F (2,196) =211.76, p<0.01). Body composition did not strongly influence %AT/MET, parameters of V O 2 , METs or RPE. During the MBWT, post-MI men worked more anaerobically per MET (%AT/MET) than controls. Therefore, current METs based on non-cardiac individuals appear unsuitable in determining the full metabolic load of the exercise intensity for cardiac patients during the MBWT.

  12. Near-Infrared Spectroscopic Measurements of Calf Muscle during Walking at Simulated Reduced Gravity - Preliminary Results

    Science.gov (United States)

    Ellerby, Gwenn E. C.; Lee, Stuart M. C.; Stroud, Leah; Norcross, Jason; Gernhardt, Michael; Soller, Babs R.

    2008-01-01

    Consideration for lunar and planetary exploration space suit design can be enhanced by investigating the physiologic responses of individual muscles during locomotion in reduced gravity. Near-infrared spectroscopy (NIRS) provides a non-invasive method to study the physiology of individual muscles in ambulatory subjects during reduced gravity simulations. PURPOSE: To investigate calf muscle oxygen saturation (SmO2) and pH during reduced gravity walking at varying treadmill inclines and added mass conditions using NIRS. METHODS: Four male subjects aged 42.3 +/- 1.7 years (mean +/- SE) and weighing 77.9 +/- 2.4 kg walked at a moderate speed (3.2 +/- 0.2 km/h) on a treadmill at inclines of 0, 10, 20, and 30%. Unsuited subjects were attached to a partial gravity simulator which unloaded the subject to simulate body weight plus the additional weight of a space suit (121 kg) in lunar gravity (0.17G). Masses of 0, 11, 23, and 34 kg were added to the subject and then unloaded to maintain constant weight. Spectra were collected from the lateral gastrocnemius (LG), and SmO2 and pH were calculated using previously published methods (Yang et al. 2007 Optics Express ; Soller et al. 2008 J Appl Physiol). The effects of incline and added mass on SmO2 and pH were analyzed through repeated measures ANOVA. RESULTS: SmO2 and pH were both unchanged by added mass (p>0.05), so data from trials at the same incline were averaged. LG SmO2 decreased significantly with increasing incline (p=0.003) from 61.1 +/- 2.0% at 0% incline to 48.7 +/- 2.6% at 30% incline, while pH was unchanged by incline (p=0.12). CONCLUSION: Increasing the incline (and thus work performed) during walking causes the LG to extract more oxygen from the blood supply, presumably to support the increased metabolic cost of uphill walking. The lack of an effect of incline on pH may indicate that, while the intensity of exercise has increased, the LG has not reached a level of work above the anaerobic threshold. In these

  13. Real-time EEG-based brain-computer interface to a virtual avatar enhances cortical involvement in human treadmill walking.

    Science.gov (United States)

    Luu, Trieu Phat; Nakagome, Sho; He, Yongtian; Contreras-Vidal, Jose L

    2017-08-21

    Recent advances in non-invasive brain-computer interface (BCI) technologies have shown the feasibility of neural decoding for both users' gait intent and continuous kinematics. However, the dynamics of cortical involvement in human upright walking with a closed-loop BCI has not been investigated. This study aims to investigate the changes of cortical involvement in human treadmill walking with and without BCI control of a walking avatar. Source localization revealed significant differences in cortical network activity between walking with and without closed-loop BCI control. Our results showed sustained α/µ suppression in the Posterior Parietal Cortex and Inferior Parietal Lobe, indicating increases of cortical involvement during walking with BCI control. We also observed significant increased activity of the Anterior Cingulate Cortex (ACC) in the low frequency band suggesting the presence of a cortical network involved in error monitoring and motor learning. Additionally, the presence of low γ modulations in the ACC and Superior Temporal Gyrus may associate with increases of voluntary control of human gait. This work is a further step toward the development of a novel training paradigm for improving the efficacy of rehabilitation in a top-down approach.

  14. Evaluation of a wearable body monitoring device during treadmill walking and jogging in patients with fibromyalgia syndrome.

    Science.gov (United States)

    Munguía-Izquierdo, Diego; Santalla, Alfredo; Legaz-Arrese, Alejandro

    2012-01-01

    To evaluate the reliability and validity of a body monitoring device against measures obtained from indirect calorimetry (IC) in patients with fibromyalgia syndrome (FMS) during various incremental exercise intensities. Cross-sectional reliability and validity study. Testing was completed in a university exercise physiology laboratory. Women (N=25) with FMS, with a mean age ± SD of 48.6±8.4 years and a median symptom duration of 15 years (25th-75th percentiles, 10-23y), were recruited to the study. Not applicable. Patients walked and jogged on a treadmill at 4 intensities (50m·min(-1), 0% grade [n=25]; 83.3m·min(-1), 0% grade [n=25]; 116.7m·min(-1), 0% grade [n=21]; 116.7m·min(-1), 2.5% grade [n=13]) during 2 measurement conditions, while IC and a multiple-sensor body monitor measured energy expenditure (EE). The differences between the readings (test 1 - test 2) and the SD of the differences, intraclass correlation coefficient (ICC), 95% confidence interval (CI) for the ICC, coefficient of repeatability, intrapatient SD, standard error of mean (SEM), minimal detectable change, Wilcoxon signed-rank test, and Bland-Altman graphs were used to examine reliability. The magnitude of the associations between IC and the body monitoring device, ICC, 95% CI for the ICC, paired t tests, and Bland-Altman graphs were used to examine the validity of the body monitoring device versus the IC. Moderate to excellent test-retest reliability was found for the 4 bouts of exercise (ICC=.73-.76). The SEM and minimal detectable change were satisfactory for the 4 bouts of exercise (.54-1.18kcal·min(-1) and 1.51-3.28kcal·min(-1), respectively). The differences mean between test and retest were lower than the SEM for the 4 bouts of exercise, varying from -.17 to .14kcal·min(-1). No significant differences were found between test and retest for any bout. The Bland-Altman plots and the coefficients of repeatability indicated that the differences between repeated tests would lie

  15. Treadmill Desks at LANL - Pilot Study

    Energy Technology Data Exchange (ETDEWEB)

    Fellows, Samara Kia [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-28

    It is well established that sedentariness is the largest, preventable contributor to premature death, eclipsing smoking in recent years. One approach to reduce sedentariness is by using a treadmill desk to perform office work while walking at a low speed.We found an increased interest level when the treadmill desks were first introduced to LANL, but after a few months interest appeared to drop. It is possible that treadmill desk use was occurring, but subjects did not record their use. The treadmill desks will not be readily available for purchase by employees due to the study outcome. Additionally, conclusive changes in body measurements could not be performed due to lack of follow up by 58% of the participants.

  16. Reducing gait speed affects axial coordination of walking turns.

    Science.gov (United States)

    Forsell, Caroline; Conradsson, David; Paquette, Caroline; Franzén, Erika

    2017-05-01

    Turning is a common feature of daily life and dynamic coordination of the axial body segments is a cornerstone for safe and efficient turning. Although slow walking speed is a common trait of old age and neurological disorders, little is known about the effect of walking speed on axial coordination during walking turns. The aim of this study was to investigate the influence of walking speed on axial coordination during walking turns in healthy elderly adults. Seventeen healthy elderly adults randomly performed 180° left and right turns while walking in their self-selected comfortable pace and in a slow pace speed. Turning velocity, spatiotemporal gait parameters (step length and step time), angular rotations and angular velocity of the head and pelvis, head-pelvis separation (i.e. the angular difference in degrees between the rotation of the head and pelvis) and head-pelvis velocity were analyzed using Wilcoxon signed-rank tests. During slow walking, turning velocity was 15% lower accompanied by shorter step length and longer step time compared to comfortable walking. Reducing walking speed also led to a decrease in the amplitude and velocity of the axial rotation of the head and pelvis as well as a reduced head-pelvis separation and angular velocity. This study demonstrates that axial coordination during turning is speed dependent as evidenced by a more 'en bloc' movement pattern (i.e. less separation between axial segments) at reduced speeds in healthy older adults. This emphasizes the need for matching speed when comparing groups with diverse walking speeds to differentiate changes due to speed from changes due to disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.

    Science.gov (United States)

    Hsu, Chao-Jung; Kim, Janis; Tang, Rongnian; Roth, Elliot J; Rymer, William Z; Wu, Ming

    2017-10-01

    To determine whether applying a mediolateral corrective force to the pelvis during treadmill walking would enhance muscle activity of the paretic leg and improve gait symmetry in individuals with post-stroke hemiparesis. Fifteen subjects with post-stroke hemiparesis participated in this study. A customized cable-driven robotic system based over a treadmill generated a mediolateral corrective force to the pelvis toward the paretic side during early stance phase. Three different amounts of corrective force were applied. Electromyographic (EMG) activity of the paretic leg, spatiotemporal gait parameters and pelvis lateral displacement were collected. Significant increases in integrated EMG of hip abductor, medial hamstrings, soleus, rectus femoris, vastus medialis and tibialis anterior were observed when pelvic corrective force was applied, with pelvic corrective force at 9% of body weight inducing greater muscle activity than 3% or 6% of body weight. Pelvis lateral displacement was more symmetric with pelvic corrective force at 9% of body weight. Applying a mediolateral pelvic corrective force toward the paretic side may enhance muscle activity of the paretic leg and improve pelvis displacement symmetry in individuals post-stroke. Forceful weight shift to the paretic side could potentially force additional use of the paretic leg and improve the walking pattern. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  18. Post-exercise hypotensive responses following an acute bout of aquatic and overground treadmill walking in people post-stroke: a pilot study.

    Science.gov (United States)

    Lai, Byron; Jeng, Brenda; Vrongistinos, Konstantinos; Jung, Taeyou

    2015-06-01

    The purpose of this study is to investigate the effects of a single-bout of aquatic treadmill walking (ATW) and overground treadmill walking (OTW) on the magnitude and duration of post-exercise ambulatory blood pressure (BP) in people post-stroke. Seven people post-stroke participated in a cross-sectional comparative study. BP was monitored for up to 9 hours after a 15-minute bout of ATW and OTW at approximately 70% of maximal oxygen consumption (VO2max), performed on separate days. Mean systolic and diastolic BP values were compared between both exercise conditions and a day without exercise (control). Three hours after OTW, mean SBP increased by 9% from pre-exercise baseline compared to a 3% decrease during the control day (P exercise compared to a 1% DBP increase of the control day (P exercise (P exercise. Also, these data suggest that ATW can elicit clinically meaningful reductions in DBP and night-time SBP. Thus, it is recommended for clinicians to consider ATW as a non-pharmaceutical means to regulate DBP and promote nighttime dipping of SBP in people post-stroke. However, caution is advised during the immediate hours after exercise, a period of possible BP inflation.

  19. The effect of bridge exercise method on the strength of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels.

    Science.gov (United States)

    Kang, Taewook; Lee, Jaeseok; Seo, Junghoon; Han, Dongwook

    2017-04-01

    [Purpose] The purpose of this research is to investigate the effect of the method of bridge exercise on the change of rectus abdominis muscle and the muscle activity of paraspinal muscles while doing treadmill walking with high heels. [Subjects and Methods] The subjects of this research are healthy female students consisting of 10 persons performing bridge exercises in a supine group, 10 persons performing bridge exercises in a prone group, and 10 persons in a control group while in S university in Busan. Bridge exercise in supine position is performed in hook lying position. Bridge exercise in prone position is plank exercise in prostrate position. To measure the strength of rectus abdominis muscle, maintaining times of the posture was used. To measure the muscle activity of paraspinal muscles, EMG (4D-MT & EMD-11, Relive, Korea) was used. [Results] The strength of rectus abdominis muscle of both bridge exercises in the supine group and bridge exercises in the prone group increases significantly after exercise. The muscle activity of paraspinal muscle such as thoracic parts and lumbar parts in bridge exercises in the prone group decreases statistically while walking on a treadmill with high heels. Muscle activity of thoracic parts paraspinal muscle and bridge exercises in the supine group decreased significantly. [Conclusion] According to this study, we noticed that bridge exercise in a prone position is desirable for women who prefer wearing high heels as a back pain prevention exercise method.

  20. Varied overground walking-task practice versus body-weight-supported treadmill training in ambulatory adults within one year of stroke: a randomized controlled trial protocol.

    Science.gov (United States)

    DePaul, Vincent G; Wishart, Laurie R; Richardson, Julie; Lee, Timothy D; Thabane, Lehana

    2011-10-21

    Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP), a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT) in community-dwelling, ambulatory, adults within 1 year of stroke. A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1) using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that outcomes will be optimized through the application of a task

  1. Varied overground walking-task practice versus body-weight-supported treadmill training in ambulatory adults within one year of stroke: a randomized controlled trial protocol

    Directory of Open Access Journals (Sweden)

    DePaul Vincent G

    2011-10-01

    Full Text Available Abstract Background Although task-oriented training has been shown to improve walking outcomes after stroke, it is not yet clear whether one task-oriented approach is superior to another. The purpose of this study is to compare the effectiveness of the Motor Learning Walking Program (MLWP, a varied overground walking task program consistent with key motor learning principles, to body-weight-supported treadmill training (BWSTT in community-dwelling, ambulatory, adults within 1 year of stroke. Methods/Design A parallel, randomized controlled trial with stratification by baseline gait speed will be conducted. Allocation will be controlled by a central randomization service and participants will be allocated to the two active intervention groups (1:1 using a permuted block randomization process. Seventy participants will be assigned to one of two 15-session training programs. In MLWP, one physiotherapist will supervise practice of various overground walking tasks. Instructions, feedback, and guidance will be provided in a manner that facilitates self-evaluation and problem solving. In BWSTT, training will emphasize repetition of the normal gait cycle while supported over a treadmill, assisted by up to three physiotherapists. Outcomes will be assessed by a blinded assessor at baseline, post-intervention and at 2-month follow-up. The primary outcome will be post-intervention comfortable gait speed. Secondary outcomes include fast gait speed, walking endurance, balance self-efficacy, participation in community mobility, health-related quality of life, and goal attainment. Groups will be compared using analysis of covariance with baseline gait speed strata as the single covariate. Intention-to-treat analysis will be used. Discussion In order to direct clinicians, patients, and other health decision-makers, there is a need for a head-to-head comparison of different approaches to active, task-related walking training after stroke. We hypothesize that

  2. Reducing the metabolic cost of walking with an ankle exoskeleton: interaction between actuation timing and power.

    Science.gov (United States)

    Galle, Samuel; Malcolm, Philippe; Collins, Steven Hartley; De Clercq, Dirk

    2017-04-27

    Powered ankle-foot exoskeletons can reduce the metabolic cost of human walking to below normal levels, but optimal assistance properties remain unclear. The purpose of this study was to test the effects of different assistance timing and power characteristics in an experiment with a tethered ankle-foot exoskeleton. Ten healthy female subjects walked on a treadmill with bilateral ankle-foot exoskeletons in 10 different assistance conditions. Artificial pneumatic muscles assisted plantarflexion during ankle push-off using one of four actuation onset timings (36, 42, 48 and 54% of the stride) and three power levels (average positive exoskeleton power over a stride, summed for both legs, of 0.2, 0.4 and 0.5 W∙kg -1 ). We compared metabolic rate, kinematics and electromyography (EMG) between conditions. Optimal assistance was achieved with an onset of 42% stride and average power of 0.4 W∙kg -1 , leading to 21% reduction in metabolic cost compared to walking with the exoskeleton deactivated and 12% reduction compared to normal walking without the exoskeleton. With suboptimal timing or power, the exoskeleton still reduced metabolic cost, but substantially less so. The relationship between timing, power and metabolic rate was well-characterized by a two-dimensional quadratic function. The assistive mechanisms leading to these improvements included reducing muscular activity in the ankle plantarflexors and assisting leg swing initiation. These results emphasize the importance of optimizing exoskeleton actuation properties when assisting or augmenting human locomotion. Our optimal assistance onset timing and average power levels could be used for other exoskeletons to improve assistance and resulting benefits.

  3. A reduced order model of a quadruped walking system

    International Nuclear Information System (INIS)

    Sano, Akihito; Furusho, Junji; Naganuma, Nobuyuki

    1990-01-01

    Trot walking has recently been studied by several groups because of its stability and realizability. In the trot, diagonally opposed legs form pairs. While one pair of legs provides support, the other pair of legs swings forward in preparation for the next step. In this paper, we propose a reduced order model for the trot walking. The reduced order model is derived by using two dominant modes of the closed loop system in which the local feedback at each joint is implemented. It is shown by numerical examples that the obtained reduced order model can well approximate the original higher order model. (author)

  4. Autonomous exoskeleton reduces metabolic cost of human walking during load carriage

    Science.gov (United States)

    2014-01-01

    Background Many soldiers are expected to carry heavy loads over extended distances, often resulting in physical and mental fatigue. In this study, the design and testing of an autonomous leg exoskeleton is presented. The aim of the device is to reduce the energetic cost of loaded walking. In addition, we present the Augmentation Factor, a general framework of exoskeletal performance that unifies our results with the varying abilities of previously developed exoskeletons. Methods We developed an autonomous battery powered exoskeleton that is capable of providing substantial levels of positive mechanical power to the ankle during the push-off region of stance phase. We measured the metabolic energy consumption of seven subjects walking on a level treadmill at 1.5 m/s, while wearing a 23 kg vest. Results During the push-off portion of the stance phase, the exoskeleton applied positive mechanical power with an average across the gait cycle equal to 23 ± 2 W (11.5 W per ankle). Use of the autonomous leg exoskeleton significantly reduced the metabolic cost of walking by 36 ± 12 W, which was an improvement of 8 ± 3% (p = 0.025) relative to the control condition of not wearing the exoskeleton. Conclusions In the design of leg exoskeletons, the results of this study highlight the importance of minimizing exoskeletal power dissipation and added limb mass, while providing substantial positive power during the walking gait cycle. PMID:24885527

  5. Optimal spectral tracking - with application to speed dependent neural modulation of tibialis anterior during human treadmill walking

    DEFF Research Database (Denmark)

    Brittain, John-Stuart; Catton, Celia; Conway, Bernard A.

    2009-01-01

    to track slow varying or dynamic responses with any statistical certainty. Presented is a complete framework for the non-stationary analysis of trial-varying data. Theory is introduced and developed in the characterisation of speed dependent neural modulation of the locomotor drive to tibialis anterior (TA......) during healthy treadmill locomotion. The approach adopts adaptive filter theory while retaining a spectral focus, thus remaining compatible with much of the current literature. Spectral tracking procedures are evaluated using both surrogate and neurophysiological time-series. Confidence intervals...... are derived in both empiric and numerical form. Analysis of the pre-synaptic drive to TA under the modulation of treadmill belt speed follows, with results demonstrating clear speed dependent influences on the spectral content of TA, suggesting dynamic neural modulation of the locomotor drive. Findings...

  6. Exercise training utilizing body weight-supported treadmill walking with a young adult with cerebral palsy who was non-ambulatory.

    Science.gov (United States)

    DiBiasio, Paula A; Lewis, Cynthia L

    2012-11-01

    The purpose of this case report is to determine the effects of exercise training using body weight-supported treadmill walking (BWSTW) with an 18-year-old male diagnosed with Cerebral palsy (CP) who was non-ambulatory and not receiving physical therapy. Outcome measures included the Pediatric Quality of Life Inventory (PedsQL), the Pediatric Evaluation of Disability Inventory (PEDI), heart rate (HR), rate of perceived exertion, 3-minute walk test and physiological cost index (PCI). BWSTW sessions took place twice a week for 6 weeks with a reduction of approximately 40% of the patient's weight. Over-ground 3-minute walk test distance and PCI were essentially unchanged. BWSTW exercise time increased by 67% with a 43% increase in speed while average working HR decreased by 8%. BWSTW PCI decreased by 26%. PedsQL parent report improved in all domains. PedsQL self-report demonstrated a mild decrease. PEDI showed improvements in self-care and mobility. Exercise utilizing BWSTW resulted in a positive training effect for this young adult with CP who was non-ambulatory. Developing effective and efficient protocols for exercise training utilizing BWSTW may aid in the use of this form of exercise and further quantify outcomes. Ensuring that young adults with CP have safe and feasible options to exercise and be physically active on a regular basis is an important role of a physical therapist.

  7. The influence of step frequency on the range of perceptually natural visual walking speeds during walking-in-place and treadmill locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    Walking-In-Place (WIP) techniques make relatively natural walking experiences within immersive virtual environments possible when the physical interaction space is limited in size. In order to facilitate such experiences it is necessary to establish a natural connection between steps in place and...

  8. Metabolic and physiological effects of ingesting extracts of bitter orange, green tea and guarana at rest and during treadmill walking in overweight males.

    Science.gov (United States)

    Sale, C; Harris, R C; Delves, S; Corbett, J

    2006-05-01

    This study examined the acute effects of ingesting a widely used commercial formula containing extracts of bitter orange, green tea and guarana (Gx) on the metabolic rate and substrate utilisation in overweight, adult males at rest (study 1) and during treadmill walking (study 2). Two different groups of 10 sedentary males with more than 20% body fat participated in studies 1 and 2. In each study, subjects participated in two experimental trials during which they were given two 500 mg capsules containing either Gx or a placebo (P) in a counterbalanced double-blind manner. Doses of the main active ingredients were 6 mg of synephrine, 150 mg caffeine and 150 mg catechin polyphenols. In study 1, subjects completed 7 h supine rest with baseline measures taken during the first hour, with expired gases, blood pressure, heart rate and venous blood being collected every 30 min for the remaining 6 h following ingestion of Gx or P. In study 2, subjects exercised for 60 min at 60% heart rate reserve following ingestion of Gx or P 1 h previously. Venous blood samples were collected twice at rest and at 5, 10, 15, 20, 30, 40, 50 and 60 min, with expired gas measurements taken at 4, 9, 14, 19, 29, 39, 49 and 59 min. In both studies, venous blood was analysed for NEFA, glycerol, glucose and lactate concentrations, while expired gases were used to calculate ATP production from carbohydrate and NEFA, as well as the total substrate utilised. The results did not show any significant effect of Gx ingestion on total ATP utilisation during 6 h rest or during 60 min treadmill walking. Changes were observed in the relative contributions of CHO and NEFA oxidation to ATP production in both studies, such that there was an increase in ATP production from CHO and a decrease from NEFA. The increase in CHO oxidation was shown to be as high as 30% at rest.

  9. Curved Walking Rehabilitation with a Rotating Treadmill in Patients with Parkinson’s Disease: A Proof of Concept

    Science.gov (United States)

    Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco

    2017-01-01

    Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson’s disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking. PMID:28293213

  10. Prosthetic ankle push-off work reduces metabolic rate but not collision work in non-amputee walking

    Science.gov (United States)

    Caputo, Joshua M.; Collins, Steven H.

    2014-12-01

    Individuals with unilateral below-knee amputation expend more energy than non-amputees during walking and exhibit reduced push-off work and increased hip work in the affected limb. Simple dynamic models of walking suggest a possible solution, predicting that increasing prosthetic ankle push-off should decrease leading limb collision, thereby reducing overall energy requirements. We conducted a rigorous experimental test of this idea wherein ankle-foot prosthesis push-off work was incrementally varied in isolation from one-half to two-times normal levels while subjects with simulated amputation walked on a treadmill at 1.25 m.s-1. Increased prosthesis push-off significantly reduced metabolic energy expenditure, with a 14% reduction at maximum prosthesis work. In contrast to model predictions, however, collision losses were unchanged, while hip work during swing initiation was decreased. This suggests that powered ankle push-off reduces walking effort primarily through other mechanisms, such as assisting leg swing, which would be better understood using more complete neuromuscular models.

  11. Differences in muscle activity and temporal step parameters between Lokomat guided walking and treadmill walking in post-stroke hemiparetic patients and healthy walkers

    NARCIS (Netherlands)

    van Kammen, Klaske; Boonstra, Anne M.; van der Woude, Lucas H. V.; Reinders-Messelink, Heelen; Otter, den Rob

    2017-01-01

    Background: The Lokomat is a robotic exoskeleton that can be used to train gait function in hemiparetic stroke. To purposefully employ the Lokomat for training, it is important to understand (1) how Lokomat guided walking affects muscle activity following stroke and how these effects differ between

  12. Paediatric treadmill friction injuries.

    Science.gov (United States)

    Jeremijenko, Luke; Mott, Jonathan; Wallis, Belinda; Kimble, Roy

    2009-05-01

    The aim of this study was to report on the severity and incidence of children injured by treadmills and to promote the implementation of safety standards. This retrospective review of children with treadmill friction injuries was conducted in a single tertiary-level burns centre in Australia between January 1997 and June 2007. The study revealed 37 children who sustained paediatric treadmill friction injuries. This was a presentation of 1% of all burns. Thirty-three (90%) of the injuries occurred in the last 3.5 years (January 2004 to June 2007). The modal age was 3.2 years. Thirty-three (90%) injuries were either full thickness or deep partial friction burns. Eleven (30%) required split thickness skin grafts. Of those who became entrapped, 100% required skin grafting. This study found that paediatric treadmill friction injuries are severe and increasing in incidence. Australian standards should be developed, implemented and mandated to reduce this preventable and severe injury.

  13. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial.

    Science.gov (United States)

    Mirelman, Anat; Rochester, Lynn; Maidan, Inbal; Del Din, Silvia; Alcock, Lisa; Nieuwhof, Freek; Rikkert, Marcel Olde; Bloem, Bastiaan R; Pelosin, Elisa; Avanzino, Laura; Abbruzzese, Giovanni; Dockx, Kim; Bekkers, Esther; Giladi, Nir; Nieuwboer, Alice; Hausdorff, Jeffrey M

    2016-09-17

    Age-associated motor and cognitive deficits increase the risk of falls, a major cause of morbidity and mortality. Because of the significant ramifications of falls, many interventions have been proposed, but few have aimed to prevent falls via an integrated approach targeting both motor and cognitive function. We aimed to test the hypothesis that an intervention combining treadmill training with non-immersive virtual reality (VR) to target both cognitive aspects of safe ambulation and mobility would lead to fewer falls than would treadmill training alone. We carried out this randomised controlled trial at five clinical centres across five countries (Belgium, Israel, Italy, the Netherlands, and the UK). Adults aged 60-90 years with a high risk of falls based on a history of two or more falls in the 6 months before the study and with varied motor and cognitive deficits were randomly assigned by use of computer-based allocation to receive 6 weeks of either treadmill training plus VR or treadmill training alone. Randomisation was stratified by subgroups of patients (those with a history of idiopathic falls, those with mild cognitive impairment, and those with Parkinson's disease) and sex, with stratification per clinical site. Group allocation was done by a third party not involved in onsite study procedures. Both groups aimed to train three times per week for 6 weeks, with each session lasting about 45 min and structured training progression individualised to the participant's level of performance. The VR system consisted of a motion-capture camera and a computer-generated simulation projected on to a large screen, which was specifically designed to reduce fall risk in older adults by including real-life challenges such as obstacles, multiple pathways, and distracters that required continual adjustment of steps. The primary outcome was the incident rate of falls during the 6 months after the end of training, which was assessed in a modified intention

  14. Neuromechanical Control for Dynamic Bipedal Walking with Reduced Impact Forces

    DEFF Research Database (Denmark)

    Widenka, Johannes; Xiong, Xiaofeng; Matthias Braun, Jan

    2016-01-01

    Human walking emerges from an intricate interaction of nervous and musculoskeletal systems. Inspired by this principle, we integrate neural control and muscle-like mechanisms to achieve neuromechanical control of the biped robot RunBot. As a result, the neuromechanical controller enables Run...

  15. Is it possible to reduce the knee joint compression force during level walking with hiking poles?

    DEFF Research Database (Denmark)

    Jensen, S B; Henriksen, M; Aaboe, J

    2010-01-01

    Walking with hiking poles has become a popular way of exercising. Walking with poles is advocated as a physical activity that significantly reduces the loading of the hip, knee and ankle joints. We have previously observed that pole walking does not lead to a reduction of the load on the knee joint....... However, it is unclear whether an increased force transmitted through the poles can reduce the load on the knee joint. Thus, the purpose of the present study was to investigate if an increased load transmitted through the arms to the poles could reduce the knee joint compression force during level walking...... with poles. We hypothesized that an increased pole force would result in a reduction of the knee joint compression force. Gait analyses from 10 healthy subjects walking with poles were obtained. The pole force was measured simultaneously during the gait analyses. The knee joint compression forces were...

  16. Exhausting treadmill running causes dephosphorylation of sMLC2 and reduced level of myofilament MLCK2 in slow twitch rat soleus muscle.

    Science.gov (United States)

    Hortemo, Kristin Halvorsen; Aronsen, Jan Magnus; Lunde, Ida G; Sjaastad, Ivar; Lunde, Per Kristian; Sejersted, Ole M

    2015-02-01

    Myosin light chain 2 (MLC2) is a small protein in the myosin complex, regulating muscle contractile function by modulating Ca(2+) sensitivity of myofilaments. MLC2 can be modified by phosphorylation and O-GlcNAcylation, two reversible and dynamic posttranslational modifications. The slow isoform of MLC2 (sMLC2) is dephosphorylated in soleus muscle during in situ loaded shortening contractions, which correlates with reduction in shortening capacity. Here, we hypothesize that exhausting in vivo treadmill running induces dephosphorylation of MLC2 in slow twitch soleus, but not in fast twitch EDL muscle, and that there are reciprocal changes in MLC2 O-GlcNAcylation. At rest, both phosphorylation and O-GlcNAcylation of MLC2 were lower in slow than fast twitch muscles. One bout of exhausting treadmill running induced dephosphorylation of sMLC2 in soleus, paralleled by reduced levels of the kinase MLCK2 associated to myofilaments, suggesting that the acute reduction in phosphorylation is mediated by dissociation of MLCK2 from myofilaments. O-GlcNAcylation of MLC2 did not change significantly, and seems of limited importance in the regulation of MLC2 phosphorylation during in vivo running. After 6 weeks of treadmill running, the dephosphorylation of sMLC2 persisted in soleus along with reduction in MLCK2 both in myofilament- and total protein fraction. In EDL on the contrary, phosphorylation of MLC2 was not altered after one exercise bout or after 6 weeks of treadmill running. Thus, in contrast to fast twitch muscle, MLC2 dephosphorylation occurs in slow twitch muscle during in vivo exercise and may be linked to reduced myofilament-associated MLCK2 and reduced shortening capacity. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Treadmill training of infants with Down syndrome: evidence-based developmental outcomes.

    Science.gov (United States)

    Ulrich, D A; Ulrich, B D; Angulo-Kinzler, R M; Yun, J

    2001-11-01

    On average, infants with Down syndrome (DS) learn to walk about 1 year later than nondisabled (ND) infants. The purpose of this study was to determine if practice stepping on a motorized treadmill could help reduce the delay in walking onset normally experienced by these infants. Thirty families of infants with DS were randomly assigned to the intervention or control group. All infants were karyotyped trisomy 21 and began participation in the study when they could sit alone for 30 seconds (Bayley Scales of Infant Development, Second Edition 1993, item 34). Infants received traditional physical therapy at least every other week. In addition, intervention infants received practice stepping on a small, motorized treadmill, 5 days per week, for 8 minutes a day, in their own homes. Parents were trained to support their infants on these specially engineered miniature treadmills. Every 2 weeks research staff went into the homes and tested infants' overall motor progress by administering the Bayley Scales of Infant Development, Second Edition, monitored growth status via a battery of 11 anthropometric measures, and checked parents' compliance with physical therapy and treadmill intervention. The primary measures of the intervention's effectiveness were comparisons between the groups on the length of time elapsed between sitting for 30 seconds (entry into the study) and 1) raising self to stand; 2) walking with help; and 3) walking independently. The experimental group learned to walk with help and to walk independently significantly faster (73.8 days and 101 days, respectively) than the control group, both of which also produced large effect size statistics for the group differences. The groups were not statistically different for rate of learning to raise self to stand but there was a moderate effect size statistic suggesting that the groups were meaningfully different in favor of the experimental group. These results provide evidence that, with training and support

  18. [Treadmills in rehabilitation medicine: technical characteristics and selection criteria].

    Science.gov (United States)

    Capodaglio, P; Vercelli, S; Colombo, R; Capodaglio, E M; del Moro, V Mattai; Franchignoni, F

    2008-01-01

    The treadmill is a commonly used means of testing and training patients with cardiopulmonary diseases. There is growing interest in the use of the treadmill also for rehabilitation of patients with orthopaedic and neurological diseases. Commercially available treadmills show wide differences in terms of structure and function that have a direct impact on the specific rehabilitation protocols. The aims of this paper are: a) to briefly review the physiology and biomechanics of treadmill exercise as compared to overground walking; b) to point out the technical specifications of treadmills suitable for rehabilitation settings; c) to provide guidelines for treadmill selection in the different categories of rehabilitation patients. First, the different physiological and biomechanical characteristics of walking on a treadmill and overground are discussed. Uphill and downhill walking as well as backward walking are also presented together with the spin-offs for rehabilitation practice. Then, the technical features of treadmills (treadbelt, frame, bars, deck, rollers, shock absorption, elevation motor, drive motor, flywheel, display) are described and the specific requisites for the different patient categories undergoing rehabilitation are discussed in detail. Finally, guidelines and a flow-chart for identifying the main technical requisites for appropriate treadmill selection in the different disabilities are provided. A summary table of the technical specifications of the commercially available rehabilitation treadmills is also included.

  19. Efficacy of autologous leukocyte-reduced platelet-rich plasma therapy for patellar tendinopathy in a rat treadmill model

    Science.gov (United States)

    Yoshida, Mamoru; Funasaki, Hiroki; Marumo, Keishi

    2016-01-01

    Summary Background An autologous platelet-rich plasma (PRP) therapy has currently been applied for the tendinopathy; however, its efficacy and an optimal platelets concentration in PRP were uncertain. We analyzed them in an animal model prepared using a repetitive running exercise. Methods We made the tendinopathy rat model of patellar tendon using a rodent treadmill machine. Rats with tendinopathy were injected with leukocyte-reduced PRP at the platelets concentration of 1.0×106/μL (P10 group), PRP at the platelets concentration of 5.0×105/μL (P5 group) or normal saline (control group) into the space between the patellar tendon and the fat pad bilaterally or were multiply dry-needled at the tibial insertion site (MN group) at once. To assess the pain-reliving effect, the spontaneous locomotor activities at night (12 h) were measured every day. Histological sections of the patellar tendon stained with hematoxylineosin or prepared by TdT-mediated dUTP nick end labeling were microscopically analyzed. Results The numbers of spontaneous locomotor activities in the P10 group were significantly larger than those in the P5, MN or control groups and they recovered up to a healthy level. On histologic examinations, the numbers of microtears, laminations, or apoptotic cells in the patellar tendons in the P10 or P5 groups were significantly lower than those in the MN or control groups, although no significant differences were observed between the P10 and P5 groups. Conclusions The injections of an autologous leukocyte-reduced PRP were effective for pain relief and for partial restoration of the patellar tendon in the tendinopathy rat model. The injections of a PRP at the platelets concentration of 1.0×106/μL completely relieved the pain and were more effective than those at the platelets concentration of 5.0×105/μL whereas there was no difference for the effect of histological restoration or apoptosis inhibition between them. PMID:27900294

  20. Activity of the equine rectus abdominis and oblique external abdominal muscles measured by surface EMG during walk and trot on the treadmill.

    Science.gov (United States)

    Zsoldos, R R; Kotschwar, A; Kotschwar, A B; Rodriguez, C P; Peham, C; Licka, T

    2010-11-01

    The rectus abdominis (RA) and oblique external abdominal (OEA) muscles are both part of the construction of the equine trunk and thought to be essential for the function of the spine during locomotion. Although RA activity at trot has previously been investigated, the relationship between OEA and RA at walk and trot has not yet been described. To document abdominal muscle activities during walk and trot, and test the hypothesis that muscle activity at walk would be smaller than at trot. Six horses (8-20 years old, 450-700 kg) were used for surface electromyography (EMG) measurements, with EMG electrodes placed caudal to the sternum (RA) and at the level of the 16th rib (OEA). On all hooves, the withers and the sacrum reflective markers were placed to determine motion cycles. Normal distribution of data was tested using a Kolmogorov-Smirnov test and Student's t test was used to compare left-right and walk-trot differences (P activity ranged from 8-44 mV (RA) and 7-54 mV (OEA). At trot, EMG activity ranged from 18-150 mV (RA) and 27-239 mV (OEA). There were statistically significant differences between maximum activities of left and right OEA and RA muscles at walk in all horses, and in 4/6 horses at trot. Muscle activities of OEA and RA are smaller at walk than at trot. At walk, the OEA/RA ratio is lower than at trot. There are more significant correlations between muscle activities of both RA and OEA and limb movements at walk than at the trot. © 2010 EVJ Ltd.

  1. A Simple Exoskeleton That Assists Plantarflexion Can Reduce the Metabolic Cost of Human Walking

    Science.gov (United States)

    Malcolm, Philippe; Derave, Wim; Galle, Samuel; De Clercq, Dirk

    2013-01-01

    Background Even though walking can be sustained for great distances, considerable energy is required for plantarflexion around the instant of opposite leg heel contact. Different groups attempted to reduce metabolic cost with exoskeletons but none could achieve a reduction beyond the level of walking without exoskeleton, possibly because there is no consensus on the optimal actuation timing. The main research question of our study was whether it is possible to obtain a higher reduction in metabolic cost by tuning the actuation timing. Methodology/Principal Findings We measured metabolic cost by means of respiratory gas analysis. Test subjects walked with a simple pneumatic exoskeleton that assists plantarflexion with different actuation timings. We found that the exoskeleton can reduce metabolic cost by 0.18±0.06 W kg−1 or 6±2% (standard error of the mean) (p = 0.019) below the cost of walking without exoskeleton if actuation starts just before opposite leg heel contact. Conclusions/Significance The optimum timing that we found concurs with the prediction from a mathematical model of walking. While the present exoskeleton was not ambulant, measurements of joint kinetics reveal that the required power could be recycled from knee extension deceleration work that occurs naturally during walking. This demonstrates that it is theoretically possible to build future ambulant exoskeletons that reduce metabolic cost, without power supply restrictions. PMID:23418524

  2. Supine Treadmill Exercise in Lower Body Negative Pressure Combined with Resistive Exercise Counteracts Bone Loss, Reduced Aerobic Upright Exercise Capacity and Reduced Muscle Strength

    Science.gov (United States)

    Meuche, Sabine; Schneider, S. M.; Lee, S. M. C.; Macias, B. R.; Smith, S. M.; Watenpaugh, D. E.; Hargens, A. R.

    2006-01-01

    Long-term exposure to weightlessness leads to cardiovascular and musculoskeletal deconditioning. In this report, the effectiveness of combined supine treadmill exercise in a lower body negative pressure chamber (LBNPex) and flywheel resistive exercise (Rex) countermeasures was determined to prevent bone loss, reduced aerobic upright exercise capacity and reduced muscle strength. We hypothesized that exercise subjects would show less decrease in bone mineral density (BMD), peak oxygen consumption (VO2pk) and knee extensor strength (KES) than control subjects. Sixteen healthy female subjects participated in a 60-d 6(sup 0) head-down tilt bed rest (BR) study after providing written informed consent. Subjects were assigned to one of two groups: a non-exercising control group CON or an exercise group EX performing LBNPex 2-4 d/wk and Rex every 3rd-d. VO2pk was measured with a maximal, graded, upright treadmill test performed pre-BR and on 3-d after BR. BMD was assessed before and 3-d after BR. Isokinetic KES was measured before and 5-d after BR. Two-way repeated measures ANOVA were performed. Statistical significance was set at p less than 0.05. CON experienced a significant decrease in BMD in the trochanter (PRE: 0.670 plus or minus 0.045; POST: 0.646 plus or minus 0.352 g (raised dot) per square centimeter) and in the whole hip (PRE=0.894 plus or minus 0.059; POST: 0.858 plus or minus 0.057 g (raised dot) per square centimeter). BMD also decreased significantly in EX in the trochanter (PRE: 0.753 plus or minus 0.0617; POST: 0.741 plus or minus 0.061 g (raised dot) per square centimeter) and whole hip (PRE: 0.954 plus or minus 0.067; POST: 0.935 plus or minus 0.069 g (raised dot) per square centimeter). BMD losses were significantly less in EX than in CON subjects. VO2pk was significantly decreased in the CON after BR (PRE: 38.0 plus or minus 4.8; POST: 29.9 plus or minus 4.2 ml (raised dot) per kilogram per minute), but not in the EX (PRE: 39.0 plus or minus 2.0; POST

  3. Functional gait rehabilitation in elderly people following a fall-related hip fracture using a treadmill with visual context: design of a randomized controlled trial.

    Science.gov (United States)

    van Ooijen, Mariëlle W; Roerdink, Melvyn; Trekop, Marga; Visschedijk, Jan; Janssen, Thomas W; Beek, Peter J

    2013-04-16

    Walking requires gait adjustments in order to walk safely in continually changing environments. Gait adaptability is reduced in older adults, and (near) falls, fall-related hip fractures and fear of falling are common in this population. Most falls occur due to inaccurate foot placement relative to environmental hazards, such as obstacles. The C-Mill is an innovative, instrumented treadmill on which visual context (e.g., obstacles) is projected. The C-Mill is well suited to train foot positioning relative to environmental properties while concurrently utilizing the high-intensity practice benefits associated with conventional treadmill training. The present protocol was designed to examine the efficacy of C-Mill gait adaptability treadmill training for improving walking ability and reducing fall incidence and fear of falling relative to conventional treadmill training and usual care. We hypothesize that C-Mill gait adaptability treadmill training and conventional treadmill training result in better walking ability than usual care due to the enhanced training intensity, with superior effects for C-Mill gait adaptability treadmill training on gait adaptability aspects of walking given the concurrent focus on practicing step adjustments. The protocol describes a parallel group, single-blind, superiority randomized controlled trial with pre-tests, post-tests, retention-tests and follow-up. Hundred-twenty-six older adults with a recent fall-related hip fracture will be recruited from inpatient rehabilitation care and allocated to six weeks of C-Mill gait adaptability treadmill training (high-intensity, adaptive stepping), conventional treadmill training (high-intensity, repetitive stepping) or usual care physical therapy using block randomization, with allocation concealment by opaque sequentially numbered envelopes. Only data collectors are blind to group allocation. Study parameters related to walking ability will be assessed as primary outcome pre-training, post

  4. Quantifying the dose-response of walking in reducing coronary heart disease risk: meta-analysis.

    Science.gov (United States)

    Zheng, Henry; Orsini, Nicola; Amin, Janaki; Wolk, Alicja; Nguyen, Van Thi Thuy; Ehrlich, Fred

    2009-01-01

    The evidence for the efficacy of walking in reducing the risk of and preventing coronary heart disease (CHD) is not completely understood. This meta-analysis aimed to quantify the dose-response relationship between walking and CHD risk reduction for both men and women in the general population. Studies on walking and CHD primary prevention between 1954 and 2007 were identified through Medline, SportDiscus and the Cochrane Database of Systematic Reviews. Random-effect meta-regression models were used to pool the relative risks from individual studies. A total of 11 prospective cohort studies and one randomized control trial study met the inclusion criteria, with 295,177 participants free of CHD at baseline and 7,094 cases at follow-up. The meta-analysis indicated that an increment of approximately 30 min of normal walking a day for 5 days a week was associated with 19% CHD risk reduction (95% CI = 14-23%; P-heterogeneity = 0.56; I (2) = 0%). We found no evidence of heterogeneity between subgroups of studies defined by gender (P = 0.67); age of the study population (P = 0.52); or follow-up duration (P = 0.77). The meta-analysis showed that the risk for developing CHD decreases as walking dose increases. Walking should be prescribed as an evidence-based effective exercise modality for CHD prevention in the general population.

  5. Do walking strategies to increase physical activity reduce reported sitting in workplaces: a randomized control trial

    Directory of Open Access Journals (Sweden)

    Burton Nicola W

    2009-07-01

    Full Text Available Abstract Background Interventions designed to increase workplace physical activity may not automatically reduce high volumes of sitting, a behaviour independently linked to chronic diseases such as obesity and type II diabetes. This study compared the impact two different walking strategies had on step counts and reported sitting times. Methods Participants were white-collar university employees (n = 179; age 41.3 ± 10.1 years; 141 women, who volunteered and undertook a standardised ten-week intervention at three sites. Pre-intervention step counts (Yamax SW-200 and self-reported sitting times were measured over five consecutive workdays. Using pre-intervention step counts, employees at each site were randomly allocated to a control group (n = 60; maintain normal behaviour, a route-based walking group (n = 60; at least 10 minutes sustained walking each workday or an incidental walking group (n = 59; walking in workday tasks. Workday step counts and reported sitting times were re-assessed at the beginning, mid- and endpoint of intervention and group mean± SD steps/day and reported sitting times for pre-intervention and intervention measurement points compared using a mixed factorial ANOVA; paired sample-t-tests were used for follow-up, simple effect analyses. Results A significant interactive effect (F = 3.5; p t = 3.9, p t = 2.5, p Conclusion Compared to controls, both route and incidental walking increased physical activity in white-collar employees. Our data suggests that workplace walking, particularly through incidental movement, also has the potential to decrease employee sitting times, but there is a need for on-going research using concurrent and objective measures of sitting, standing and walking.

  6. The use of individual cut points from treadmill walking to assess free-living moderate to vigorous physical activity in obese subjects by accelerometry: is it useful?

    Directory of Open Access Journals (Sweden)

    Aadland Eivind

    2012-11-01

    Full Text Available Abstract Background Variation in counts between subjects at a given speed or work rate are the most important source of error in physical activity (PA measurements with accelerometers. The aim of this study was to explore how the use of individual accelerometer cut points (ICPs affected the analysis of PA field data. Methods We performed a treadmill calibration protocol to determine cut points for moderate to vigorous PA (MVPA (≥3 metabolic equivalents and assessed free-living PA in 44 severely obese subjects using the Actigraph GT1M accelerometer. We obtained cut points in 42 subjects (11 men, mean (standard deviation of body mass index (BMI 39.8 (5.7, age 43.2 (9.2 years, of whom 35 had valid measurement of free-living PA (minutes of MVPA/day. Linear regression was used to analyze associations with the ICPs and time in MVPA/day. MVPA/day was also compared with values derived using a group cut point (GCP. Results Resting oxygen consumption (partial r = 0.74, p 2 = 14%, p = .023, coefficient of variation = 45.1%. Conclusions The results indicate that the use of ICPs had a strong influence on the PA level. Two thirds of the variation in the ICPs could be explained, however, a certain degree of measurement error will be present. Thus, we are not able to conclude with respect to the most appropriate procedure for analyzing time in MVPA.

  7. Think the thought, walk the walk - social priming reduces the Stroop effect.

    Science.gov (United States)

    Goldfarb, Liat; Aisenberg, Daniela; Henik, Avishai

    2011-02-01

    In the Stroop task, participants name the color of the ink that a color word is written in and ignore the meaning of the word. Naming the color of an incongruent color word (e.g., RED printed in blue) is slower than naming the color of a congruent color word (e.g., RED printed in red). This robust effect is known as the Stroop effect and it suggests that the intentional instruction - "do not read the word" - has limited influence on one's behavior, as word reading is being executed via an automatic path. Herein is examined the influence of a non-intentional instruction - "do not read the word" - on the Stroop effect. Social concept priming tends to trigger automatic behavior that is in line with the primed concept. Here participants were primed with the social concept "dyslexia" before performing the Stroop task. Because dyslectic people are perceived as having reading difficulties, the Stroop effect was reduced and even failed to reach significance after the dyslectic person priming. A similar effect was replicated in a further experiment, and overall it suggests that the human cognitive system has more success in decreasing the influence of another automatic process via an automatic path rather than via an intentional path. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Reduced muscle power is associated with slower walking velocity and falls in people with Parkinson's disease.

    Science.gov (United States)

    Allen, N E; Sherrington, C; Canning, C G; Fung, V S C

    2010-05-01

    Muscle strength (force) and power (force x velocity) are reduced in Parkinson's disease (PD). Reduced muscle power is associated with slower walking velocity and falls in the older population, but these associations in people with PD have not previously been investigated. This study investigated the relationships between leg extensor muscle power and strength with walking speed and past falls in people with PD. Forty people with mild to moderate PD were assessed. Walking velocity was measured over 10 m and the number of falls the participant reported having in the past 12 months was recorded. Leg extensor muscle power and strength were measured using a Keiser leg press machine. Muscle power explained more than half of the variance (R(2) = 0.54) in walking velocity and remained significantly (p velocity in models which included Unified Parkinson's Disease Rating Scale (UPDRS) motor scores. Participants with low muscle power were 6 times more likely to report multiple falls in the past year than those with high muscle power (OR = 6.0, 95% CI 1.1 to 33.3), though this association between falls and power was no longer significant in models which included UPDRS motor scores (p = 0.09). Muscle power is a significant determinant of walking velocity in PD even after adjusting for UPDRS motor score. Muscle power training warrants investigation in people with PD. Copyright 2010 Elsevier Ltd. All rights reserved.

  9. Genetic impairment of AMPK{alpha}2 signaling does not reduce muscle glucose uptake during treadmill exercise in mice

    DEFF Research Database (Denmark)

    Maarbjerg, Stine Just; Jørgensen, Sebastian Beck; Rose, Adam John

    2009-01-01

    Some studies suggest that the 5'-AMP-activated protein kinase (AMPK) is important in regulating muscle glucose uptake in response to intense electrically stimulated contractions. However, it is unknown if AMPK regulates muscle glucose uptake during in vivo exercise. We studied this in male and fe...... signaling is not essential in regulating glucose uptake in mouse skeletal muscle during treadmill exercise and that other unknown mechanisms play a central role. Key words: exercise, glucose uptake, AMPK.......-KD mouse. Muscle glucose clearance was measured using [3H]-2-deoxy-glucose as tracer. In wildtype mice glucose clearance was increased at 30% and 70% of maximal running speed by 40% and 350% in the quadriceps muscle, and by 120% and 380% in gastrocnemius muscle, respectively. Glucose clearance...

  10. A comparison of the effects of visual deprivation and regular body weight support treadmill training on improving over-ground walking of stroke patients: a multiple baseline single subject design.

    Science.gov (United States)

    Kim, Jeong-Soo; Kang, Sun-Young; Jeon, Hye-Seon

    2015-01-01

    The body-weight-support treadmill (BWST) is commonly used for gait rehabilitation, but other forms of BWST are in development, such as visual-deprivation BWST (VDBWST). In this study, we compare the effect of VDBWST training and conventional BWST training on spatiotemporal gait parameters for three individuals who had hemiparetic strokes. We used a single-subject experimental design, alternating multiple baselines across the individuals. We recruited three individuals with hemiparesis from stroke; two on the left side and one on the right. For the main outcome measures we assessed spatiotemporal gait parameters using GAITRite, including: gait velocity; cadence; step time of the affected side (STA); step time of the non-affected side (STN); step length of the affected side (SLA); step length of the non-affected side (SLN); step-time asymmetry (ST-asymmetry); and step-length asymmetry (SL-asymmetry). Gait velocity, cadence, SLA, and SLN increased from baseline after both interventions, but STA, ST-asymmetry, and SL-asymmetry decreased from the baseline after the interventions. The VDBWST was significantly more effective than the BWST for increasing gait velocity and cadence and for decreasing ST-asymmetry. VDBWST is more effective than BWST for improving gait performance during the rehabilitation for ground walking.

  11. Biomechanical Analysis of Treadmill Locomotion on the International Space Station

    Science.gov (United States)

    De Witt, J. K.; Fincke, R. S.; Guilliams, M. E.; Ploutz-Snyder, L. L.

    2011-01-01

    Treadmill locomotion exercise is an important aspect of ISS exercise countermeasures. It is widely believed that an optimized treadmill exercise protocol could offer benefits to cardiovascular and bone health. If training heart rate is high enough, treadmill exercise is expected to lead to improvements in aerobic fitness. If impact or bone loading forces are high enough, treadmill exercise may be expected to contribute to improved bone outcomes. Ground-based research suggests that joint loads increase with increased running speed. However, it is unknown if increases in locomotion speed results in similar increases in joint loads in microgravity. Although data exist regarding the biomechanics of running and walking in microgravity, a majority were collected during parabolic flight or during investigations utilizing a microgravity analog. The Second Generation Treadmill (T2) has been in use on the International Space Station (ISS) and records the ground reaction forces (GRF) produced by crewmembers during exercise. Biomechanical analyses will aid in understanding potential differences in typical gait motion and allow for modeling of the human body to determine joint and muscle forces during exercise. By understanding these mechanisms, more appropriate exercise prescriptions can be developed that address deficiencies. The objective of this evaluation is to collect biomechanical data from crewmembers during treadmill exercise prior to and during flight. The goal is to determine if locomotive biomechanics differ between normal and microgravity environments and to determine how combinations of subject load and speed influence joint loading during in-flight treadmill exercise. Further, the data will be used to characterize any differences in specific bone and muscle loading during locomotion in these two gravitational conditions. This project maps to the HRP Integrated Research Plan risks including Risk of Bone Fracture (Gap B15), Risk of Early Onset Osteoporosis Due to

  12. Anterior cruciate ligament deficiency reduces walking economy in "copers" and "non-copers".

    Science.gov (United States)

    Iliopoulos, Efthymios; Galanis, Nikiforos; Iosifidis, Michael; Zafeiridis, Andreas; Papadopoulos, Pericles; Potoupnis, Michael; Geladas, Nikolaos; Vrabas, Ioannis S; Kirkos, John

    2017-05-01

    Patients with ACL injury requiring surgical treatment (non-copers) demonstrate altered neuromuscular control and gait pattern compared with those returning to their pre-injury activities without surgery (copers). Pathological gait pattern may increase the energy cost of walking. We compared the energy cost of flat, uphill, and downhill walking between ACL-deficient and healthy individuals and between "copers" and "non-copers". Nineteen young males with unilateral ACL injury were allocated into "copers" and "non-copers" according to their ability to return to pre-injury activity without ACL reconstruction. Lysholm and IKDC scales were recorded, and a control group (n = 10) matched for physical characteristics and activity levels was included. All participants performed 8-min walking tasks at 0, +10, and -10 % gradients. Energy cost was assessed by measurement of oxygen consumption (VO 2 ). HR and ventilation (VE), respiratory exchange ratio (RER), and VE/VO 2 were also measured. VO 2 and HR were higher in ACL-deficient patients than in controls during walking at 0, +10, and -10 % gradients (p economy of level, uphill, and downhill walking is reduced in ACL-deficient patients. Despite the improved functional and clinical outcome of "copers", their walking economy appears similar to that of "non-copers" but impaired compared with healthy individuals. The higher energy demand and effort during locomotion in "copers" and "non-copers" has clinical implications for designing safer rehabilitation programmes. The increased energy cost in "copers" may be another parameter to consider when deciding on the most appropriate therapeutic intervention (operative and non-operative), particularly for athletes. II.

  13. Rocker shoes reduce Achilles tendon load in running and walking in patients with chronic Achilles tendinopathy.

    Science.gov (United States)

    Sobhani, Sobhan; Zwerver, Johannes; van den Heuvel, Edwin; Postema, Klaas; Dekker, Rienk; Hijmans, Juha M

    2015-03-01

    Relative rest and pain relief play an important role in the management of Achilles tendinopathy, and might be achieved by reducing the load on the Achilles tendon. Previous studies have provided evidence that rocker shoes are able to decrease the ankle internal plantar flexion moment in healthy runners during walking and running. Since plantar flexion moment is related to the Achilles tendon loading, rocker shoes might be considered in the conservative management of Achilles tendinopathy. Therefore, the aim of this study was to investigate the biomechanics of running and walking in a group of patients with Achilles tendinopathy wearing standard shoes versus rocker shoes. Cross-over. Thirteen Achilles tendinopathy patients (mean age 48 ± 14.5 years) underwent three-dimensional gait analysis wearing standard running shoes and rocker shoes during running and walking. Surface electromyography of triceps surae and tibialis anterior was recorded simultaneously. Patients had symptoms for an average of 22.5 months (median 11.5 months) and VISA-A scores were 54 ± 16. With the rocker shoes, the peak plantar flexion moment was reduced by 13% in both running (0.28 N m/kg, pshoes in walking. There was no difference between electromyography peak amplitudes of triceps surae between two shoe sessions in both activities. When used by patients with chronic Achilles tendinopathy, rocker shoes cause a significant reduction in plantar flexion moment in the late stance phase of running and walking without substantial adaptations in triceps surae muscular activity. Copyright © 2014 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Cognitive Resources Necessary for Motor Control in Older Adults Are Reduced by Walking and Coordination Training.

    Science.gov (United States)

    Godde, Ben; Voelcker-Rehage, Claudia

    2017-01-01

    We examined if physical exercise interventions were effective to reduce cognitive brain resources recruited while performing motor control tasks in older adults. Forty-three older adults (63-79 years of age) participated in either a walking ( n = 17) or a motor coordination ( n = 15) intervention (1 year, 3 times per week) or were assigned to a control group ( n = 11) doing relaxation and stretching exercises. Pre and post the intervention period, we applied functional MRI to assess brain activation during imagery of forward and backward walking and during counting backwards from 100 as control task. In both experimental groups, activation in the right dorsolateral prefrontal cortex (DLPFC) during imagery of forward walking decreased from pre- to post-test (Effect size: -1.55 and -1.16 for coordination and walking training, respectively; Cohen's d ). Regression analysis revealed a significant positive association between initial motor status and activation change in the right DLPFC ( R 2 = 0.243, F (3,39) = 4.18, p = 0.012). Participants with lowest motor status at pretest profited most from the interventions. Data suggest that physical training in older adults is effective to free up cognitive resources otherwise needed for the control of locomotion. Training benefits may become particularly apparent in so-called dual-task situations where subjects must perform motor and cognitive tasks concurrently.

  15. Treadmill desks: A 1-year prospective trial.

    Science.gov (United States)

    Koepp, Gabriel A; Manohar, Chinmay U; McCrady-Spitzer, Shelly K; Ben-Ner, Avner; Hamann, Darla J; Runge, Carlisle F; Levine, James A

    2013-04-01

    Sedentariness is associated with weight gain and obesity. A treadmill desk is the combination of a standing desk and a treadmill that allow employees to work while walking at low speed. The hypothesis was that a 1-year intervention with treadmill desks is associated with an increase in employee daily physical activity (summation of all activity per minute) and a decrease in daily sedentary time (zero activity). Employees (n = 36; 25 women, 11 men) with sedentary jobs (87 ± 27 kg, BMI 29 ± 7 kg/m(2) , n = 10 Lean BMI 30 kg/m(2) ) volunteered to have their traditional desk replaced with a treadmill desk to promote physical activity for 1 year. Daily physical activity (using accelerometers), work performance, body composition, and blood variables were measured at Baseline and 6 and 12 months after the treadmill desk intervention. Subjects who used the treadmill desk increased daily physical activity from baseline 3,353 ± 1,802 activity units (AU)/day to, at 6 months, 4,460 ± 2,376 AU/day (P office workers without affecting work performance. Copyright © 2012 The Obesity Society.

  16. Comparação das respostas fisiológicas, perceptuais e afetivas durante caminhada em ritmo autosselecionado por mulheres adultas de três diferentes faixas etárias Comparison of the physiological, perception and affective responses during treadmill walking at self-selected pace by adult women of three different age groups

    Directory of Open Access Journals (Sweden)

    Cosme Franklim Buzzachera

    2010-10-01

    Full Text Available Comparar as respostas fisiológicas, perceptuais e afetivas durante caminhada em ritmo autosselecionado por mulheres adultas de três diferentes faixas etárias. Métodos: Foram investigados 66 sujeitos do sexo feminino, previamente sedentários, distribuídos de acordo com a sua idade cronológica nos seguintes grupos: GI (20,0-25,0 anos, n = 22, GII (30,0-35,0 anos, n = 22 e GIII (40,0-45,0 anos, n = 22. Todos os participantes foram submetidos a (i pré-avaliação médica, avaliação antropométrica e processo de familiarização, (ii teste incremental máximo em esteira, e (iii um teste de 20-minutos de caminhada em ritmo autosselecionado em esteira. As respostas fisiológicas (consumo de oxigênio, O2, e frequência cardíaca, FC foram mensuradas continuamente durante a realização do teste de 20-minutos de caminhada em ritmo autosselecionado. Por sua vez, as respostas perceptuais (percepção subjetiva de esforço, PSE e afetivas foram determinadas a cada intervalo de cinco minutos do teste. Para a análise estatística, empregou-se uma ANOVA de um fator (faixa etária, adotando-se um valor de p To compare the physiological, perception and affective responses during treadmill walking at a self-selected pace by previously sedentary women from three age groups. Methods: Sixty-six healthy women were assigned into three groups according to their age: GI (20.0-25.0 yr, n = 22, GII (30.0-35.0 yr, n = 22 and GIII (40.0-45.0 yr, n = 22. Each participant performed (i an initial medical screening, anthropometric assessment and familiarization; (ii an incremental treadmill test to determine O2max; and (iii a 20-min treadmill walking bout at a self-selected pace. During the 20-min of treadmill walking at a self-selected pace, the physiological (oxygen uptake, O2 and heart rate, HR responses were continuously recorded. The perception (Borg-RPE for the overall body, 6-20 and affective (Feeling Scale responses were measured every 5 min throughout the

  17. Low-cost implementation of a self-paced treadmill by using a commercial depth sensor.

    Science.gov (United States)

    Kim, Jonghyun; Gravunder, Andrew; Stanley, Christopher J; Park, Hyung-Soon

    2013-01-01

    A self-paced treadmill that can simulate overground walking has the potential to improve the effectiveness of treadmill training for gait rehabilitation. We have implemented a self-paced treadmill without the need for expensive equipment such as a motion capture system and an instrumented treadmill. For this, an inexpensive depth sensor, ASUS XtionTM, substitutes for the motion capture system, and a low-cost commercial treadmill is considered as the platform of the self-paced treadmill. The proposed self-paced treadmill is also convenient because the depth sensor does not require markers placed on user's body. Through pilot tests with two healthy subjects, it is quantitatively and qualitatively verified that the proposed self-paced treadmill achieves similar performance as one which utilizes a commercial motion capture system (VICON) as well as an instrumented treadmill.

  18. Experimentally reduced hip abductor function during walking: Implications for knee joint loads

    DEFF Research Database (Denmark)

    Henriksen, Marius; Aaboe, Jens; Simonsen, Erik B

    2009-01-01

    -dimensional trunk and lower extremity joint kinematics and kinetics. Surface electromyography (EMG) of the glutei, quadriceps, and hamstring muscles were also measured. The peak GM EMG activity had temporal concurrence with peaks in frontal plane moments at both hip and knee joints. The EMG activity in the GM...... muscle was significantly reduced by pain (-39.6%). All other muscles were unaffected. Peaks in the frontal plane hip and knee joint moments were significantly reduced during pain (-6.4% and -4.2%, respectively). Lateral trunk lean angles and midstance hip joint adduction and knee joint extension angles...... loads at the knee joint during level walking....

  19. Simulating ideal assistive devices to reduce the metabolic cost of walking with heavy loads.

    Directory of Open Access Journals (Sweden)

    Christopher L Dembia

    Full Text Available Wearable robotic devices can restore and enhance mobility. There is growing interest in designing devices that reduce the metabolic cost of walking; however, designers lack guidelines for which joints to assist and when to provide the assistance. To help address this problem, we used musculoskeletal simulation to predict how hypothetical devices affect muscle activity and metabolic cost when walking with heavy loads. We explored 7 massless devices, each providing unrestricted torque at one degree of freedom in one direction (hip abduction, hip flexion, hip extension, knee flexion, knee extension, ankle plantarflexion, or ankle dorsiflexion. We used the Computed Muscle Control algorithm in OpenSim to find device torque profiles that minimized the sum of squared muscle activations while tracking measured kinematics of loaded walking without assistance. We then examined the metabolic savings provided by each device, the corresponding device torque profiles, and the resulting changes in muscle activity. We found that the hip flexion, knee flexion, and hip abduction devices provided greater metabolic savings than the ankle plantarflexion device. The hip abduction device had the greatest ratio of metabolic savings to peak instantaneous positive device power, suggesting that frontal-plane hip assistance may be an efficient way to reduce metabolic cost. Overall, the device torque profiles generally differed from the corresponding net joint moment generated by muscles without assistance, and occasionally exceeded the net joint moment to reduce muscle activity at other degrees of freedom. Many devices affected the activity of muscles elsewhere in the limb; for example, the hip flexion device affected muscles that span the ankle joint. Our results may help experimentalists decide which joint motions to target when building devices and can provide intuition for how devices may interact with the musculoskeletal system. The simulations are freely available

  20. A reduced somatosensory gating response in individuals with multiple sclerosis is related to walking impairment.

    Science.gov (United States)

    Arpin, David J; Gehringer, James E; Wilson, Tony W; Kurz, Max J

    2017-10-01

    When identical stimuli are presented in rapid temporal succession, neural responses to the second stimulation are often weaker than those observed for the first. This phenomenon is termed sensory gating and is believed to be an adaptive feature that helps prevent higher-order cortical centers from being flooded with unnecessary information. Recently, sensory gating in the somatosensory system has been linked to deficits in tactile discrimination. Additionally, studies have linked poor tactile discrimination with impaired walking and balance in individuals with multiple sclerosis (MS). In this study, we examine the neural basis of somatosensory gating in patients with MS and healthy controls and assess the relationship between somatosensory gating and walking performance. We used magnetoencephalography to record neural responses to paired-pulse electrical stimulation applied to the right posterior tibial nerve. All participants also walked across a digital mat, which recorded their spatiotemporal gait kinematics. Our results showed the amplitude of the response to the second stimulation was sharply reduced only in controls, resulting in a significantly reduced somatosensory gating in the patients with MS. No group differences were observed in the amplitude of the response to the first stimulation nor the latency of the neural response to either the first or second stimulation. Interestingly, the altered somatosensory gating responses were correlated with aberrant spatiotemporal gait kinematics in the patients with MS. These results suggest that inhibitory GABA circuits may be altered in patients with MS, which impacts somatosensory gating and contributes to the motor performance deficits seen in these patients. NEW & NOTEWORTHY We aimed to determine whether somatosensory gating in patients with multiple sclerosis (MS) differed compared with healthy controls and whether a relationship exists between somatosensory gating and walking performance. We found reduced

  1. The Integrated Virtual Environment Rehabilitation Treadmill System

    Science.gov (United States)

    Feasel, Jeff; Whitton, Mary C.; Kassler, Laura; Brooks, Frederick P.; Lewek, Michael D.

    2015-01-01

    Slow gait speed and interlimb asymmetry are prevalent in a variety of disorders. Current approaches to locomotor retraining emphasize the need for appropriate feedback during intensive, task-specific practice. This paper describes the design and feasibility testing of the integrated virtual environment rehabilitation treadmill (IVERT) system intended to provide real-time, intuitive feedback regarding gait speed and asymmetry during training. The IVERT system integrates an instrumented, split-belt treadmill with a front-projection, immersive virtual environment. The novel adaptive control system uses only ground reaction force data from the treadmill to continuously update the speeds of the two treadmill belts independently, as well as to control the speed and heading in the virtual environment in real time. Feedback regarding gait asymmetry is presented 1) visually as walking a curved trajectory through the virtual environment and 2) proprioceptively in the form of different belt speeds on the split-belt treadmill. A feasibility study involving five individuals with asymmetric gait found that these individuals could effectively control the speed of locomotion and perceive gait asymmetry during the training session. Although minimal changes in overground gait symmetry were observed immediately following a single training session, further studies should be done to determine the IVERT’s potential as a tool for rehabilitation of asymmetric gait by providing patients with congruent visual and proprioceptive feedback. PMID:21652279

  2. The integrated virtual environment rehabilitation treadmill system.

    Science.gov (United States)

    Feasel, Jeff; Whitton, Mary C; Kassler, Laura; Brooks, Frederick P; Lewek, Michael D

    2011-06-01

    Slow gait speed and interlimb asymmetry are prevalent in a variety of disorders. Current approaches to locomotor retraining emphasize the need for appropriate feedback during intensive, task-specific practice. This paper describes the design and feasibility testing of the integrated virtual environment rehabilitation treadmill (IVERT) system intended to provide real-time, intuitive feedback regarding gait speed and asymmetry during training. The IVERT system integrates an instrumented, split-belt treadmill with a front-projection, immersive virtual environment. The novel adaptive control system uses only ground reaction force data from the treadmill to continuously update the speeds of the two treadmill belts independently, as well as to control the speed and heading in the virtual environment in real time. Feedback regarding gait asymmetry is presented 1) visually as walking a curved trajectory through the virtual environment and 2) proprioceptively in the form of different belt speeds on the split-belt treadmill. A feasibility study involving five individuals with asymmetric gait found that these individuals could effectively control the speed of locomotion and perceive gait asymmetry during the training session. Although minimal changes in overground gait symmetry were observed immediately following a single training session, further studies should be done to determine the IVERT's potential as a tool for rehabilitation of asymmetric gait by providing patients with congruent visual and proprioceptive feedback.

  3. Brisk walking reduces ad libitum snacking in regular chocolate eaters during a workplace simulation.

    Science.gov (United States)

    Oh, Hwajung; Taylor, Adrian H

    2012-02-01

    Workplace snacking can contribute to obesity. Exercise reduces chocolate cravings but effects on chocolate consumption are unknown. This study investigated the effect of brief exercise on ad libitum consumption during breaks in a computerised task. Seventy-eight regular chocolate eaters, age: 24.90±8.15 years, BMI: 23.56±3.78 kg/m(2) abstained for 2 days. They were randomly assigned to one of four conditions, in a 2 × 2 factorial design, involving either a 15 min brisk walk or quiet rest, and then computerised Stroop tasks with low or high demanding conditions, in three 180 s blocks with a 90 s interval. Throughout, a pre-weighed bowl of chocolates was available for ad libitum eating. A two-way ANOVA revealed no interaction effect of exercise and stress on total chocolate consumption, or main effect of stress, but a main effect of exercise [F(1, 74)=7.12, pchocolate consumption was less (t(73.5)=2.69, 95% CI for difference 3.4-22.9, ES=0.61) for the exercise (15.6 g) than control (28.8 g) group. Exercise also increased affective activation, but there was no mediating effect of change in affect on chocolate consumption. A brief walk may help to reduce ad libitum snacking in regular chocolate eaters. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  4. Comparison of the Activity of the Gluteus Medius According to the Angles of Inclination of a Treadmill with Vertical Load

    OpenAIRE

    Jeong, Da-Eun; Lee, Su-Kyoung; Kim, Kyoung

    2014-01-01

    [Purpose] The purpose of this study was to compare the muscle activity of the gluteus medius according to treadmill inclination during gait with a vertical load on a treadmill. [Methods] Sixteen healthy subjects were recruited for this study. The subjects walked on a treadmill at inclination angles of 0, 5, and 10 degrees. [Results] Muscle activity of the gluteus medius increased at 5° compared to 0° treadmill inclination, though the difference was not significant. On the other hand, gluteus ...

  5. Peak medial (but not lateral) hamstring activity is significantly lower during stance phase of running. An EMG investigation using a reduced gravity treadmill.

    Science.gov (United States)

    Hansen, Clint; Einarson, Einar; Thomson, Athol; Whiteley, Rodney

    2017-09-01

    The hamstrings are seen to work during late swing phase (presumably to decelerate the extending shank) then during stance phase (presumably stabilizing the knee and contributing to horizontal force production during propulsion) of running. A better understanding of this hamstring activation during running may contribute to injury prevention and performance enhancement (targeting the specific role via specific contraction mode). Twenty active adult males underwent surface EMG recordings of their medial and lateral hamstrings while running on a reduced gravity treadmill. Participants underwent 36 different conditions for combinations of 50%-100% altering bodyweight (10% increments) & 6-16km/h (2km/h increments, i.e.: 36 conditions) for a minimum of 6 strides of each leg (maximum 32). EMG was normalized to the peak value seen for each individual during any stride in any trial to describe relative activation levels during gait. Increasing running speed effected greater increases in EMG for all muscles than did altering bodyweight. Peak EMG for the lateral hamstrings during running trials was similar for both swing and stance phase whereas the medial hamstrings showed an approximate 20% reduction during stance compared to swing phase. It is suggested that the lateral hamstrings work equally hard during swing and stance phase however the medial hamstrings are loaded slightly less every stance phase. Likely this helps explain the higher incidence of lateral hamstring injury. Hamstring injury prevention and rehabilitation programs incorporating running should consider running speed as more potent stimulus for increasing hamstring muscle activation than impact loading. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Does an instrumented treadmill correctly measure the ground reaction forces?

    Directory of Open Access Journals (Sweden)

    Patrick A. Willems

    2013-11-01

    Since the 1990s, treadmills have been equipped with multi-axis force transducers to measure the three components of the ground reaction forces during walking and running. These measurements are correctly performed if the whole treadmill (including the motor is mounted on the transducers. In this case, the acceleration of the treadmill centre of mass relative to the reference frame of the laboratory is nil. The external forces exerted on one side of the treadmill are thus equal in magnitude and opposite in direction to the external forces exerted on the other side. However, uncertainty exists about the accuracy of these measures: due to friction between the belt and the tread-surface, due to the motor pulling the belt, some believe that it is not possible to correctly measure the horizontal components of the forces exerted by the feet on the belt. Here, we propose a simple model of an instrumented treadmill and we demonstrate (1 that the forces exerted by the subject moving on the upper part of the treadmill are accurately transmitted to the transducers placed under it and (2 that all internal forces – including friction – between the parts of the treadmill are cancelling each other.

  7. Walking modality, but not task difficulty, influences the control of dual-task walking.

    Science.gov (United States)

    Wrightson, J G; Smeeton, N J

    2017-10-01

    During dual-task gait, changes in the stride-to-stride variability of stride time (STV) are suggested to represent the allocation of cognitive control to walking [1]. However, contrasting effects have been reported for overground and treadmill walking, which may be due to differences in the relative difficulty of the dual task. Here we compared the effect of overground and treadmill dual-task walking on STV in 18 healthy adults. Participants walked overground and on a treadmill for 120s during single-task (walking only) and dual-task (walking whilst performing serial subtractions in sevens) conditions. Dual-task effects on STV, cognitive task (serial subtraction) performance and perceived task difficulty were compared between walking modalities. STV was increased during overground dual-task walking, but was unchanged during treadmill dual-task walking. There were no differences in cognitive task performance or perceived task difficulty. These results show that gait is controlled differently during overground and treadmill dual-task walking. However, these differences are not solely due to differences in task difficulty, and may instead represent modality dependent control strategies. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. The influence of incline walking on joint mechanics.

    Science.gov (United States)

    Haggerty, Mason; Dickin, D Clark; Popp, Jennifer; Wang, Henry

    2014-04-01

    Walking is a popular form of exercise and is associated with many health benefits; however, frontal-plane knee joint loading brought about by a large internal knee-abduction moment and cyclic loading could lead to cartilage degeneration over time. Therefore, knee joint mechanics during an alternative walking exercise needs to be analyzed. The purpose of this study was to examine the lower-extremity joint mechanics in the frontal and sagittal planes during incline walking. Fifteen healthy males walked on a treadmill at five gradients (0%, 5%, 10%, 15%, and 20%) at 1.34m/s, and lower-extremity joint mechanics in the frontal and sagittal planes were quantified. The peak internal knee-abduction moment significantly decreased from the level walking condition at all gradients except 5%. Also, a negative relationship between the internal knee-abduction moment and the treadmill gradient was found to exist in 10% increments (0-10%, 5-15%, and 10-20%). The decrease in the internal knee-abduction moment during incline walking could have positive effects on knee joint health such as potentially reducing cartilage degeneration of the knee joint, reducing pain, and decreasing the rate of development of medial tibiofemoral osteoarthritis. This would be beneficial for a knee surgery patient, obese persons, and older adults who are using incline walking for rehabilitation and exercise protocols. Findings from the current study can provide guidance for the development of rehabilitation and exercise prescriptions incorporating incline walking. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance

    Science.gov (United States)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body

  10. Layout Improvement Study to Reduce Staff Walking Distance in a Large Health Care Facility: How to Not Walk an Extra 4740 Miles.

    Science.gov (United States)

    Ley-Chavez, Adriana; Hmar-Lagroun, Tatiana; Douglas-Ntagha, Pamela; Cumbo, Charlotte L

    2016-01-01

    Inefficient facility layouts have been found to be a challenge in health care, with excessive walking adding to the demands of staff and creating delays, which can impact the quality of care. Minimizing unnecessary transportation during care delivery improves efficiency, reduces delays, and frees up resources for use on value-added activities. This article presents a methodology and application of facility design to improve responsiveness and efficiency at a large hospital. The approach described provides the opportunity to improve existing layouts in facilities in which the floor plan is already defined, but there is some flexibility to relocate key areas. The existing physical constraints and work flows are studied and taken into consideration, and the volume of traffic flow throughout the facility guides the decision of where to relocate areas for maximum efficiency. Details on the steps followed and general recommendations to perform the necessary process and data analyses are provided. We achieved a 34.8% reduction in distance walked (4740 miles saved per year) and a 30% reduction in floors traveled in elevators (344 931 floors, which translate to 842 hours spent using elevators) by relocating 4 areas in which frequently used resources are housed.

  11. Commercial Motion Sensor Based Low-Cost and Convenient Interactive Treadmill

    Directory of Open Access Journals (Sweden)

    Jonghyun Kim

    2015-09-01

    Full Text Available Interactive treadmills were developed to improve the simulation of overground walking when compared to conventional treadmills. However, currently available interactive treadmills are expensive and inconvenient, which limits their use. We propose a low-cost and convenient version of the interactive treadmill that does not require expensive equipment and a complicated setup. As a substitute for high-cost sensors, such as motion capture systems, a low-cost motion sensor was used to recognize the subject’s intention for speed changing. Moreover, the sensor enables the subject to make a convenient and safe stop using gesture recognition. For further cost reduction, the novel interactive treadmill was based on an inexpensive treadmill platform and a novel high-level speed control scheme was applied to maximize performance for simulating overground walking. Pilot tests with ten healthy subjects were conducted and results demonstrated that the proposed treadmill achieves similar performance to a typical, costly, interactive treadmill that contains a motion capture system and an instrumented treadmill, while providing a convenient and safe method for stopping.

  12. Walking reduces the gap between encoding and sensorimotor alignment effects in spatial updating of described environments.

    Science.gov (United States)

    Santoro, Ilaria; Murgia, Mauro; Sors, Fabrizio; Agostini, Tiziano

    2017-04-01

    Spatial updating allows people to keep track of the self-to-object relations during movement. Previous studies demonstrated that physical movement enhanced spatial updating in remote environments, but failed to find the same effect in described environments. However, these studies mainly considered rotation as a physical movement, without examining other types of movement, such as walking. We investigated how walking affects spatial updating within described environments. Using the judgement of relative directions task, we compared the effects of imagination of rotation, physical rotation, and walking on spatial updating. Spatial updating was evaluated in terms of accuracy and response times in different perspectives, and by calculating two indexes, namely the encoding and sensorimotor alignment effects. As regards response times, we found that in the imagination of rotation and physical rotation conditions the encoding alignment effect was higher than the sensorimotor alignment effect, while in the walking condition this gap disappeared. We interpreted these results in terms of an enhanced link between allocentric and sensorimotor representations, due to the information acquired through walking.

  13. Does walking in nature restore directed attention?

    Directory of Open Access Journals (Sweden)

    2015-09-01

    Full Text Available Aims: Mental fatigue is commonly understood and experienced as mental exhaustion, irritability and foggy thinking. Research indicates mental fatigue is indicative of depleted directed attention resources. Thus, restoration of directed attention is thought to alleviate mental fatigue. This research sought to determine if walking in nature compared to walking on a treadmill provided enhanced performance on tasks of directed attention. Method: Twenty-two participants completed a 30-min walk on a treadmill and a walk in the local Botanic Garden on separate days. Two directed attention tasks (Rapid Visual Information Processing (RVIP and Necker Cube reversal task were conducted both before and after each walk as well as a Perceived Arousal Scale and a Positive and Negative Affect Schedule. Results: Total hits and sensitivity to a target on a RVIP task improved significantly in both locations F(1, 20 = 11.892, p = .003, F(1, 20 = 12.364, p = .002 respectively. However, there was no significant difference between the nature walk and the treadmill walk. Significant order effects were found for sensitivity to targets pre/post walks, F(1, 19 = 10.309, p = .005 and F(1, 19 = 8.578, p = .009 respectively. Necker cube baseline scores indicated a significant reduction in reversals after 30 minutes of walking in both locations. Arousal was higher overall in the nature walk compared to the treadmill walk, F(1, 20 = 11.626, p = .003. Conclusions: No evidence was obtained to suggest that walking in nature leads to improved directed attention compared to walking on a treadmill. Results indicate that improvements were due to significant learning affects. The significantly higher overall score on the arousal scale in the natural environment suggests that participants were more alert in this environment.

  14. Personality and Reduced Incidence of Walking Limitation in Late Life: Findings From the Health, Aging, and Body Composition Study

    Science.gov (United States)

    Ferrucci, Luigi; Costa, Paul T.; Faulkner, Kimberly; Rosano, Caterina; Satterfield, Suzanne; Ayonayon, Hilsa N.; Simonsick, Eleanor M.

    2012-01-01

    Objectives. To examine the association between openness to experience and conscientiousness and incident reported walking limitation. Method. The study population consisted of 786 men and women aged 71–81 years (M = 75 years, SD = 2.7) participating in the Health, Aging, and Body Composition—Cognitive Vitality Substudy. Results. Nearly 20% of participants (155/786) developed walking limitation during 6 years of follow-up. High openness was associated with a reduced risk of walking limitation (hazard ratio [HR] = 0.83, 95% confidence interval [CI] = 0.69–0.98), independent of sociodemographic factors, health conditions, and conscientiousness. This association was not mediated by lifestyle factors and was not substantially modified by other risk factors for functional disability. Conscientiousness was not associated with risk of walking limitation (HR = 0.91, 95% CI = 0.77–1.07). Discussion. Findings suggest that personality dimensions, specifically higher openness to experience, may contribute to functional resilience in late life. PMID:22437204

  15. Effects of long-distance walking on socket-limb interface pressure, tactile sensitivity and subjective perceptions of trans-tibial amputees.

    Science.gov (United States)

    Yeung, L F; Leung, Aaron K L; Zhang, Ming; Lee, Winson C C

    2013-06-01

    Many trans-tibial amputees could not tolerate long-distance walking. Lack of walking could explain for the increased cardiovascular diseases mortality rate. This study investigated the effects of long-distance walking (LDW) on socket-limb interface pressure, tactile sensitivity of the residual limb, and subjective feedbacks, which potentially identified the difficulties in LDW. Five male unilateral trans-tibial amputees walked on a level treadmill for a total of one hour at comfortable speed. Tactile sensitivity of the residual limb and socket-limb interface pressure during over-ground walking were measured before and after the treadmill walking. Modified Prosthesis Evaluation Questionnaires were also administered. After the treadmill walking, the socket-limb interface pressure and the tactile sensitivity at the popliteal depression area were significantly reduced. This corresponds well with the questionnaire results showing that the level of discomfort and pain of the residual limb did not increase. The questionnaire revealed that there were significant increases in fatigue level at the sound-side plantar flexors, which could lead to impaired dynamic stability. Fatigue of sound-side plantar-flexor was the main difficulty faced by the five subjects when walking long-distances. This finding might imply the importance of refining prosthetic components and rehabilitation protocols in reducing the muscle fatigue. • After long-distance walking (LDW) of the trans-tibal amputee subjects, there were significant increases in fatigue level at the plantar flexors. These might explain the reduced walking stability as perceived by the subjects. • LDW did not produce any problems in residual-limb comfort and pain feeling. These were in line with the significant reductions of socket-limb interface pressure and the tactile sensitivity at the popliteal depression after LDW. • Refinements of prosthetic components and rehabilitation protocols should be attempted to reduce the

  16. Intensive cycle ergometer training improves gait speed and endurance in patients with Parkinson's disease: A comparison with treadmill training.

    Science.gov (United States)

    Arcolin, Ilaria; Pisano, Fabrizio; Delconte, Carmen; Godi, Marco; Schieppati, Marco; Mezzani, Alessandro; Picco, Daniele; Grasso, Margherita; Nardone, Antonio

    2015-01-01

    Cycle ergometer training improves gait in the elderly, but its effect in patients with Parkinson's disease (PD) is not completely known. Twenty-nine PD inpatients were randomized to treadmill (n = 13, PD-T) or cycle ergometer (n = 16, PD-C) training for 3 weeks, 1 hour/day. Outcome measures were distance travelled during the 6-min walking test (6MWT), spatio-temporal variables of gait assessed by baropodometry, the Timed Up and Go (TUG) duration, the balance score through the Mini-BESTest, and the score of the Unified Parkinson's Disease Rating Scale (UPDRS). Sex, age, body mass index, disease duration, Hoehn-Yahr staging, comorbidity and medication did not differ between groups. At end of training, ANCOVA showed significant improvement, of similar degree, in both groups for 6MWT, speed, step length and cadence of gait, TUG, Mini-BESTest and UPDRS. This pilot study shows that cycle ergometer training improves walking parameters and reduces clinical signs of PD, as much as treadmill training does. Gait velocity is accompanied by step lengthening, making the gait pattern close to that of healthy subjects. Cycle ergometer is a valid alternative to treadmill for improving gait in short term in patients with PD.

  17. Anti-gravity treadmill can promote aerobic exercise for lower limb osteoarthritis patients.

    Science.gov (United States)

    Kawae, Toshihiro; Mikami, Yukio; Fukuhara, Kouki; Kimura, Hiroaki; Adachi, Nobuo

    2017-08-01

    [Purpose] The anti-gravity treadmill (Alter-G ® ) allows the load on the lower limbs to be adjusted, which is considered useful for patients with lower limb osteoarthritis. The aim of the present study was to examine the effects of aerobic exercise using an anti-gravity treadmill in patients with lower limb osteoarthritis by using a cardiopulmonary exercise load monitoring system. [Subjects and Methods] The subjects were 20 patients with lower limb osteoarthritis. These subjects walked naturally for 8 minutes and then walked on the Alter-G for 8 minutes at their fastest speed at a load where lower limb pain was alleviated. [Results] Subjective and objective exercise intensity did not differ significantly between level ground walking and Alter-G walking neither before nor after walking. Pain before walking did not differ significantly between level ground walking and Alter-G walking, but pain after walking was significantly greater with level ground walking than with Alter-G walking. [Conclusion] Exercise therapy using an anti-gravity treadmill was useful for patients with lower limb osteoarthritis in terms of cardiopulmonary function, which suggested that this could become a new form of exercise therapy.

  18. Comparison of the activity of the gluteus medius according to the angles of inclination of a treadmill with vertical load.

    Science.gov (United States)

    Jeong, Da-Eun; Lee, Su-Kyoung; Kim, Kyoung

    2014-02-01

    [Purpose] The purpose of this study was to compare the muscle activity of the gluteus medius according to treadmill inclination during gait with a vertical load on a treadmill. [Methods] Sixteen healthy subjects were recruited for this study. The subjects walked on a treadmill at inclination angles of 0, 5, and 10 degrees. [Results] Muscle activity of the gluteus medius increased at 5° compared to 0° treadmill inclination, though the difference was not significant. On the other hand, gluteus medius muscle activity significantly decreased in treadmill walking at an inclination of 10° compared to 5°. [Conclusion] Selective strengthening exercises using a 5° treadmill angle could be useful for patients experiencing gluteus medius weakness.

  19. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Science.gov (United States)

    Sloot, Lizeth H; van den Noort, Josien C; van der Krogt, Marjolein M; Bruijn, Sjoerd M; Harlaar, Jaap

    2015-01-01

    Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms). Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally measure reflexes during

  20. Can Treadmill Perturbations Evoke Stretch Reflexes in the Calf Muscles?

    Directory of Open Access Journals (Sweden)

    Lizeth H Sloot

    Full Text Available Disinhibition of reflexes is a problem amongst spastic patients, for it limits a smooth and efficient execution of motor functions during gait. Treadmill belt accelerations may potentially be used to measure reflexes during walking, i.e. by dorsal flexing the ankle and stretching the calf muscles, while decelerations show the modulation of reflexes during a reduction of sensory feedback. The aim of the current study was to examine if belt accelerations and decelerations of different intensities applied during the stance phase of treadmill walking can evoke reflexes in the gastrocnemius, soleus and tibialis anterior in healthy subjects. Muscle electromyography and joint kinematics were measured in 10 subjects. To determine whether stretch reflexes occurred, we assessed modelled musculo-tendon length and stretch velocity, the amount of muscle activity, as well as the incidence of bursts or depressions in muscle activity with their time delays, and co-contraction between agonist and antagonist muscle. Although the effect on the ankle angle was small with 2.8±1.0°, the perturbations caused clear changes in muscle length and stretch velocity relative to unperturbed walking. Stretched muscles showed an increasing incidence of bursts in muscle activity, which occurred after a reasonable electrophysiological time delay (163-191 ms. Their amplitude was related to the muscle stretch velocity and not related to co-contraction of the antagonist muscle. These effects increased with perturbation intensity. Shortened muscles showed opposite effects, with a depression in muscle activity of the calf muscles. The perturbations only slightly affected the spatio-temporal parameters, indicating that normal walking was retained. Thus, our findings showed that treadmill perturbations can evoke reflexes in the calf muscles and tibialis anterior. This comprehensive study could form the basis for clinical implementation of treadmill perturbations to functionally

  1. Red blood cell deformability in patients with claudication after pain-free treadmill training.

    Science.gov (United States)

    Mika, Piotr; Spodaryk, Krzysztof; Cencora, Andrzej; Mika, Anna

    2006-07-01

    To assess the effect of pain-free treadmill training on red blood cell deformability and walking distance in patients with claudication. Randomized-controlled trial of exercise training. Patients were recruited from the primary care, vascular outpatient clinic. A total of 60 patients with peripheral arterial occlusive disease (stage II according to Leriche-Fontaine) were randomized into the treadmill program or a control group. Fifty-five patients completed the study (27 in the exercising group and 28 in the control group). Patients in the exercising group were walking on the treadmill 3 times a week for 3 months. Each session consisted of 1 hour repetitive walking [performed to 85% of the pain-free walking time (PFWT)] was supervised by a qualified physiotherapist. Changes in erythrocyte deformability and treadmill walking performance (PFWT, maximal walking time) were assessed in both groups before the study and after 3 months. After 3 months of treadmill training, red blood cell deformability in the exercising group significantly increased (Ptraining is associated with a significant increase in red cell deformability in patients with claudication.

  2. Gait training reduces ankle joint stiffness and facilitates heel strike in children with Cerebral Palsy

    DEFF Research Database (Denmark)

    Willerslev-Olsen, Maria; Lorentzen, Jakob; Nielsen, Jens Bo

    2014-01-01

    BACKGROUND: Foot drop and toe walking are frequent concerns in children with cerebral palsy (CP). Increased stiffness of the ankle joint muscles may contribute to these problems. OBJECTIVE: Does four weeks of daily home based treadmill training with incline reduce ankle joint stiffness...... in stiffness following training (P = 0.01). Toe lift in the swing phase (P = 0.014) and heel impact (P = 0.003) increased significantly following the training during both treadmill and over-ground walking. CONCLUSIONS: Daily intensive gait training may influence the elastic properties of ankle joint muscles...

  3. Exploring Muscle Activation during Nordic Walking: A Comparison between Conventional and Uphill Walking.

    Science.gov (United States)

    Pellegrini, Barbara; Peyré-Tartaruga, Leonardo Alexandre; Zoppirolli, Chiara; Bortolan, Lorenzo; Bacchi, Elisabetta; Figard-Fabre, Hélène; Schena, Federico

    2015-01-01

    Nordic Walking (NW) owes much of its popularity to the benefits of greater energy expenditure and upper body engagement than found in conventional walking (W). Muscle activation during NW is still understudied, however. The aim of the present study was to assess differences in muscle activation and physiological responses between NW and W in level and uphill walking conditions. Nine expert Nordic Walkers (mean age 36.8±11.9 years; BMI 24.2±1.8 kg/m2) performed 5-minute treadmill trials of W and NW at 4 km/h on inclines of 0% and 15%. The electromyographic activity of seven upper body and five leg muscles and oxygen consumption (VO2) were recorded and pole force during NW was measured. VO2 during NW was 22.3% higher at 0% and only 6.9% higher at 15% than during W, while upper body muscle activation was 2- to 15-fold higher under both conditions. Lower body muscle activation was similarly increased during NW and W in the uphill condition, whereas the increase in erector spinae muscle activity was lower during NW than W. The lack of a significant increase in pole force during uphill walking may explain the lower extra energy expenditure of NW, indicating less upper body muscle activation to lift the body against gravity. NW seemed to reduce lower back muscle contraction in the uphill condition, suggesting that walking with poles may reduce effort to control trunk oscillations and could contribute to work production during NW. Although the difference in extra energy expenditure between NW and W was smaller in the uphill walking condition, the increased upper body muscle involvement during exercising with NW may confer additional benefit compared to conventional walking also on uphill terrains. Furthermore, people with low back pain may gain benefit from pole use when walking uphill.

  4. The effects of tone-reducing orthotics on walking of an individual after incomplete spinal cord injury.

    Science.gov (United States)

    Nash, Barbara; Roller, Joellen M; Parker, Michael G

    2008-03-01

    Most literature about the efficacy of tone-reducing orthotics pertains to adults and children with central nervous system (CNS) pathology. There is relatively little mention of using this type of orthotic with adults after spinal cord injury (SCI). Therefore, the purpose of this study was to investigate whether tone-reducing orthotics have an effect on gait including electromyographic (EMG) activity, velocity, step length, time in double-limb support, and SCI-Functional Ambulation Inventory (SCI-FAI) scores for an individual with incomplete SCI and spasticity. We used a single case design. The subject was a 25-year-old white male who was 16 months post-injury with a diagnosis of T6 left/T9 right sensory, L3 motor American Spinal Injury Association C incomplete SCI. Five different walking conditions were tested during each of two separate sessions: barefoot, shoes, foot plates, one ankle-foot orthosis (AFO) with a joint, and one with a tone-reducing AFO, and tone-reducing AFOs bilaterally. Surface EMG was used to record electrical activity of four muscle groups bilaterally. Step length, gait velocity, and time in double limb support were calculated for all five walking conditions. Gait parameters were further analyzed with video analysis using the SCI-FAI. Mean EMG was relatively constant in all muscle groups under all walking conditions with the exception of the gastrocnemius. In this muscle group, EMG activity with the use of tone-reducing orthotics was better modulated than the other conditions. Gait velocity and step length both increased with tone-reducing orthotics, whereas double limb support time decreased, thus improving the corresponding SCI-FAI score accordingly. The subject showed improvement in the control of his lower extremities while wearing bilateral tone-reducing AFOs as evidenced by an increased step length and gait velocity and a decrease in the amount of time spent in double limb support. Electromyographic data were less conclusive, although

  5. Effects of treadmill-walking training with additional body load on quality of life in subjects with Parkinson's disease Efeitos do treino da marcha em esteira com aumento da carga corporal sobre a qualidade de vida de sujeitos com doença de Parkinson

    Directory of Open Access Journals (Sweden)

    Nadiesca T. Filippin

    2010-08-01

    Full Text Available BACKGROUND: Parkinson's disease (PD causes motor and non-motor impairments that affect the subject's quality of life. OBJECTIVE: To assess the effects of treadmill-walking training with additional body load on the quality of life and motor function of subjects with PD. METHODS: Nine subjects with PD, Hoehn and Yahr stages 2-3, not demented and with capability to ambulate independently took part in this study. The training program was divided into three phases (A1-B-A2: treadmill training with additional body load (A1, control condition (conventional physical therapy group; B and a second period of treadmill training with load (A2. Each phase lasted six weeks. Quality of life and motor function were assessed by the PDQ-39 and the motor score of the Unified Parkinson's Disease Rating Scale (UPDRS, respectively. The evaluations and the training were performed during the on-phase of the medication cycle. RESULTS: There was improvement in the total PDQ-39 score across the training period. The subscores mobility, activities of daily living and cognition subscores significantly improved after the training period. The improvement in the total score was associated with motor and non-motor factors in all of the training phases. The UPDRS motor score also improved, however it did not present any association with the improvement in quality of life. CONCLUSIONS: The results showed that the treadmill-walking training with additional body load allowed an improvement in motor and non-motor aspects related to quality of life and motor function in subjects with PD.CONTEXTUALIZAÇÃO: A doença de Parkinson (DP causa prejuízos motores e não-motores que afetam a qualidade de vida dos sujeitos. OBJETIVO: Avaliar os efeitos de um treino de marcha em esteira, com aumento da carga corporal, sobre a qualidade de vida e a função motora de sujeitos com DP. MÉTODOS: Nove sujeitos com DP idiopática, estágio 2 a 3 da escala de Hoehn & Yahr, sem demência e com

  6. The Effects of Walking or Walking-with-Poles Training on Tissue Oxygenation in Patients with Peripheral Arterial Disease

    Directory of Open Access Journals (Sweden)

    Eileen G. Collins

    2012-01-01

    Full Text Available This randomized trial proposed to determine if there were differences in calf muscle StO2 parameters in patients before and after 12 weeks of a traditional walking or walking-with-poles exercise program. Data were collected on 85 patients who were randomized to a traditional walking program ( or walking-with-poles program ( of exercise training. Patients walked for 3 times weekly for 12 weeks. Seventy-one patients completed both the baseline and the 12-week follow-up progressive treadmill tests ( traditional walking and walking-with-poles. Using the near-infrared spectroscopy measures, StO2 was measured prior to, during, and after exercise. At baseline, calf muscle oxygenation decreased from % prior to the treadmill test to % at peak exercise. The time elapsed prior to reaching nadir StO2 values increased more in the traditional walking group when compared to the walking-with-poles group. Likewise, absolute walking time increased more in the traditional walking group than in the walking-with-poles group. Tissue oxygenation decline during treadmill testing was less for patients assigned to a 12-week traditional walking program when compared to those assigned to a 12-week walking-with-poles program. In conclusion, the 12-week traditional walking program was superior to walking-with-poles in improving tissue deoxygenation in patients with PAD.

  7. Dual-task training on a treadmill to improve gait and cognitive function in elderly idiopathic fallers.

    Science.gov (United States)

    Dorfman, Moran; Herman, Talia; Brozgol, Marina; Shema, Shirley; Weiss, Aner; Hausdorff, Jeffrey M; Mirelman, Anat

    2014-10-01

    Daily activities require the ability to dual task (DT), utilizing cognitive resources while walking to negotiate complex environmental conditions. For older adults, these additional cognitive demands often lead to reduced gait quality that increases the risk of falls. The aim of this study was to assess whether a combined intervention, consisting of treadmill training (TT) while performing DT, improves cognitive and motor performance in older adults with a history of multiple falls. A repeated measures design was used to evaluate the effects of training in 10 elderly fallers (mean age, 78.1 ± 5.81 y, 7 women). The progressive intensive training sessions included walking on a treadmill while practicing a variety of dual tasks 3 times a week for more than 6 weeks. Cognitive and motor measures were used to assess the effects of the intervention immediately after training and 1 month posttraining. Improvements were observed in Berg Balance Scale (P = 0.02), Dynamic Gait Index (P = 0.03), gait speed during usual walking and while DT (P Elderly: P = 0.02). At 1 month postintervention, changes were not significant. After 6 weeks of TT + DT program, elderly fallers demonstrated improved scores on tests of mobility, functional performance tasks, and cognition.Dual task training can be readily implemented by therapists as a component of a fall-risk reduction training program.Video Abstract available. See Video (Supplemental Digital Content 1, http://links.lww.com/JNPT/A81) for more insights from the authors.

  8. Efficacy of Tai Chi, brisk walking, meditation, and reading in reducing mental and emotional stress.

    Science.gov (United States)

    Jin, P

    1992-05-01

    Tai Chi, a moving meditation, is examined for its efficacy in post-stressor recovery. Forty-eight male and 48 female Tai Chi practitioners were randomly assigned to four treatment groups: Tai Chi, brisk walking, mediation and neutral reading. Mental arithmetic and other difficult tests were chosen as mental challenges, and a stressful film was used to produce emotional disturbance. Tai Chi and the other treatments were applied after these stressors. After all treatments, the salivary cortisol level dropped significantly, and the mood states were also improved. In general the stress-reduction effect of Tai Chi characterized moderate physical exercise. Heart rate, blood pressure, and urinary catecholamine changes for Tai Chi were found to be similar to those for walking at a speed of 6 km/hr. Although Tai Chi appeared to be superior to neutral reading in the reduction of state anxiety and the enhancement of vigour, this effect could be partially accounted for by the subjects' high expectations about gains from Tai Chi. Approaches controlling for expectancy level are recommended for further assessment.

  9. Efficacy of Body Ventilation System for Reducing Strain in Warm and Hot Climates

    National Research Council Canada - National Science Library

    Chinevere, Troy D; Cadarette, Bruce S; Goodman, Daniel A; Ely, Brett R; Cheuvront, Samuel N; Sawka, Michael N

    2008-01-01

    ...) reduced physiological strain during exercise-heat stress. Seven heat-acclimated volunteers attempted nine, 2-h treadmill walks at 200 W/sq m in three environments, -40 C, 20% rh (HD), 35 C, 75% rh (HW), and 30 C, 50% rh, (WW...

  10. Locomotor stability and adaptation during perturbed walking across the adult female lifespan

    NARCIS (Netherlands)

    McCrum, Christopher; Epro, Gaspar; Meijer, Kenneth; Zijlstra, Wiebren; Brueggemann, Gert-Peter; Karamanidis, Kiros

    2016-01-01

    The aim of this work was to examine locomotor stability and, adaptation across the adult female lifespan during perturbed walking on the treadmill. 11 young, 11 middle and 14 older-aged female adults (mean and SD: 25.5(2.1), 50.6(6.4) and 69.0(4.7) years old respectively) walked on a treadmill. We

  11. Method for Evoking a Trip-Like Response Using a Treadmill-Based Perturbation During Locomotion

    Science.gov (United States)

    2014-01-01

    r t i c l e i n f o Article history: Accepted 31 October 2013 Keywords: Accidental falls Treadmill test Virtual reality Amputee Gait CAREN... Rehabilitation Environment (CAREN). During single-limb stance, the treadmill belt speed was rapidly changed, thereby requiring the subject to perform...study. Perturbations were delivered while subjects walked in a Computer Assisted Rehabilitation Environment (CAREN) extended version (Motek Medical BV

  12. High-intensity interval training on an aquatic treadmill in adults with osteoarthritis: effect on pain, balance, function, and mobility.

    Science.gov (United States)

    Bressel, Eadric; Wing, Jessica E; Miller, Andrew I; Dolny, Dennis G

    2014-08-01

    Although aquatic exercise is considered a potentially effective treatment intervention for people with osteoarthritis (OA), previous research has focused primarily on calisthenics in a shallow pool with the inherent limitations on regulating exercise intensity. The purpose of this study was to quantify the efficacy of a 6-week aquatic treadmill exercise program on measures of pain, balance, function, and mobility. Eighteen participants (age = 64.5 ± 10.2 years) with knee OA completed a non-exercise control period followed by a 6-week exercise period. Outcome measures included visual analog scales for pain, posturography for balance, sit-to-stand test for function, and a 10-m walk test for mobility. The exercise protocol included balance training and high-intensity interval training (HIT) in an aquatic treadmill using water jets to destabilize while standing and achieve high ratings of perceived exertion (14-19) while walking. In comparison with pretests, participants displayed reduced joint pain (pre = 50.3 ± 24.8 mm vs. post = 15.8 ± 10.6 mm), improved balance (equilibrium pre = 66.6 ± 11.0 vs. post = 73.5 ± 7.1), function (rising index pre = 0.49 ± 0.19% vs. post = 0.33 ± 0.11%), and mobility (walk pre = 8.6 ± 1.4 s vs. post = 7.8 ± 1.1 s) after participating in the exercise protocol (p = 0.03-0.001). The same benefits were not observed after the non-exercise control period. Adherence to the exercise protocol was exceptional and no participants reported adverse effects, suggesting that aquatic treadmill exercise that incorporates balance and HIT training was well tolerated by patients with OA and may be effective at managing symptoms of OA.

  13. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance.

    Science.gov (United States)

    Routson, Rebecca L; Clark, David J; Bowden, Mark G; Kautz, Steven A; Neptune, Richard R

    2013-07-01

    Recent studies have suggested the biomechanical subtasks of walking can be produced by a reduced set of co-excited muscles or modules. Individuals post-stroke often exhibit poor inter-muscular coordination characterized by poor timing and merging of modules that are normally independent in healthy individuals. However, whether locomotor therapy can influence module composition and timing and whether these improvements lead to improved walking performance is unclear. The goal of this study was to examine the influence of a locomotor rehabilitation therapy on module composition and timing and post-stroke hemiparetic walking performance. Twenty-seven post-stroke hemiparetic subjects participated in a 12-week locomotor intervention incorporating treadmill training with body weight support and manual trainers accompanied by training overground walking. Electromyography (EMG), kinematic and ground reaction force data were collected from subjects both pre- and post-therapy and from 19 age-matched healthy controls walking on an instrumented treadmill at their self-selected speed. Non-negative matrix factorization was used to identify the module composition and timing from the EMG data. Module timing and composition, and various measures of walking performance were compared pre- and post-therapy. In subjects with four modules pre- and post-therapy, locomotor training resulted in improved timing of the ankle plantarflexor module and a more extended paretic leg angle that allowed the subjects to walk faster and with more symmetrical propulsion. In addition, subjects with three modules pre-therapy increased their number of modules and improved walking performance post-therapy. Thus, locomotor training has the potential to influence module composition and timing, which can lead to improvements walking performance. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. A Pilot Study of Partial Unweighted Treadmill Training in Mobility-Impaired Older Adults

    Directory of Open Access Journals (Sweden)

    Matthew J. Peterson

    2014-01-01

    Full Text Available Background. Partial unweighted treadmill training is a potentially effective modality for improving fitness and function in frail elders. We tested the feasibility of partial unweighted treadmill training in older, mobility-impaired veterans. Methods. Eight mobility-impaired elders participated in partial unweighted treadmill training three times/week for twelve weeks. Outcome measures included gait speed, performance-oriented mobility assessment (POMA, eight foot up and go, and the SF-36 physical functioning short form. Results. There was significant improvement in treadmill walking time (+8.5 minutes; P<0.001, treadmill walking speed (+0.14 meters/second; P=0.02, and percent of body weight support (−2.2%; P=0.02. Changes in physical performance included usual gait speed (+0.12 meters/second; P=0.001, rapid gait speed (+0.13 meters/second; P=0.01, POMA (+2.4 summary score; P<0.001, and eight foot up and go (−1.2 seconds; P=0.05. Conclusions. Partial unweighted treadmill training is feasible in mobility-impaired elders. Improvements in treadmill training capacity resulted in clinically meaningful improvements in fitness levels and improved mobility.

  15. Biosensors for EVA: Muscle Oxygen and pH During Walking, Running and Simulated Reduced Gravity

    Science.gov (United States)

    Lee, S. M. C.; Ellerby, G.; Scott, P.; Stroud, L.; Norcross, J.; Pesholov, B.; Zou, F.; Gernhardt, M.; Soller, B.

    2009-01-01

    During lunar excursions in the EVA suit, real-time measurement of metabolic rate is required to manage consumables and guide activities to ensure safe return to the base. Metabolic rate, or oxygen consumption (VO2), is normally measured from pulmonary parameters but cannot be determined with standard techniques in the oxygen-rich environment of a spacesuit. Our group developed novel near infrared spectroscopic (NIRS) methods to calculate muscle oxygen saturation (SmO2), hematocrit, and pH, and we recently demonstrated that we can use our NIRS sensor to measure VO2 on the leg during cycling. Our NSBRI-funded project is looking to extend this methodology to examine activities which more appropriately represent EVA activities, such as walking and running and to better understand factors that determine the metabolic cost of exercise in both normal and lunar gravity. Our 4 year project specifically addresses risk: ExMC 4.18: Lack of adequate biomedical monitoring capability for Constellation EVA Suits and EPSP risk: Risk of compromised EVA performance and crew health due to inadequate EVA suit systems.

  16. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise.

    Science.gov (United States)

    Parfitt, Rhodri; Hensman, Marianne Y; Lucas, Samuel J E

    2017-07-01

    Aquatic treadmills are used as a rehabilitation method for conditions such as spinal cord injury, osteoarthritis, and stroke, and can facilitate an earlier return to exercise training for athletes. However, their effect on cerebral blood flow (CBF) responses has not been examined. We tested the hypothesis that aquatic treadmill exercise would augment CBF and lower HR compared with land-based treadmill exercise. Eleven participants completed incremental exercise (crossover design) starting from walking pace (4 km·h, immersed to iliac crest [aquatic], 6 km·h [land]) and increasing 1 km·h every 2 min up to 10 km·h for aquatic (maximum belt speed) or 12 km·h for land. After this, participants completed two 2-min bouts of exercise immersed to midthigh and midchest at constant submaximal speed (aquatic), or were ramped to exhaustion (land; increased gradient 2° every min). Middle cerebral artery blood flow velocity (MCAv) and HR were measured throughout, and the initial 10 min of each protocol and responses at each immersion level were compared. Compared with land-based treadmill, MCAvmean increased more from baseline for aquatic exercise (21% vs 12%, P aquatic walking compared with land-based moderate intensity running (~10 cm·s, P = 0.56). Greater water immersion lowered HR (139 vs 178 bpm for midchest vs midthigh), whereas MCAvmean remained constant (P = 0.37). Findings illustrate the potential for aquatic treadmill exercise to enhance exercise-induced elevations in CBF and thus optimize shear stress-mediated adaptation of the cerebrovasculature.

  17. "Anti-Gravity" Treadmills Speed Rehabilitation

    Science.gov (United States)

    2009-01-01

    A former Ames Research Center engineer, Dr. Robert Whalen, invented a treadmill that he licensed to a Menlo Park, California company, Alter-G Inc. The company s G-Trainer is an enclosed treadmill that uses air pressure to help patients feel up to 80 percent lighter, easing discomfort during rehabilitation. A patient desiring more weightlessness during a workout can simply press a button and the air pressure increases, lifting the body and reducing strain and impact. The U.S. Food and Drug Administration cleared the G-Trainer for medical use in January 2008, and researchers are now assessing the G-Trainer s effectiveness in aiding patients with various neurological or musculoskeletal conditions.

  18. A freely-moving monkey treadmill model

    Science.gov (United States)

    Foster, Justin D.; Nuyujukian, Paul; Freifeld, Oren; Gao, Hua; Walker, Ross; Ryu, Stephen I.; Meng, Teresa H.; Murmann, Boris; Black, Michael J.; Shenoy, Krishna V.

    2014-08-01

    Objective. Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach. We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the flexibility and utility of this new monkey model, including the first recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results. Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average firing rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at different speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance. Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic

  19. A method for handlebars ballast calculation in order to reduce vibrations transmissibility in walk behind tractors

    Directory of Open Access Journals (Sweden)

    Angelo Fabbri

    2017-06-01

    Full Text Available Walk behind tractors have some advantages over other agricultural machines, such as the cheapness and the easy to use, however the driver is exposed to high level of vibrations transmitted from handles to hand-arm system and to shoulders. The vibrations induce discomfort and early fatigue to the operator. In order to control the vibration transmissibility, a ballast mass may be added to the handles. Even if the determination of the appropriate ballast mass is a critical point in the handle design. The aim of this research was to study the influence of the handle mass modification, on the dynamic structure behaviour. Modal frequencies and subsequent transmissibility calculated by using an analytical approach and a finite elements model, were compared. A good agreement between the results obtained by the two methods was found (average percentage difference calculated on natural frequencies equal to 5.8±3.8%. Power tillers are made generally by small or medium-small size manufacturers that have difficulties in dealing with finite element codes or modal analysis techniques. As a consequence, the proposed analytical method could be used to find the optimal ballast mass in a simple and economic way, without experimental tests or complex finite element codes. A specific and very simple software or spreadsheet, developed on the base of the analytical method here discussed, could effectively to help the manufacturers in the handlebar design phase. The choice of the correct elastic mount, the dimensioning of the guide members and the ballast mass could be considerably simplified.

  20. Evaluation of the Effectiveness of Tai Chi versus Brisk Walking in Reducing Cardiovascular Risk Factors: Protocol for a Randomized Controlled Trial

    Directory of Open Access Journals (Sweden)

    Aileen W. K. Chan

    2016-07-01

    Full Text Available Physical inactivity is one of the major modifiable lifestyle risk factors for cardiovascular disease (CVD. This protocol aims to evaluate the effectiveness of Tai Chi versus brisk walking in reducing CVD risk factors. This is a randomized controlled trial with three arms, namely, Tai Chi group, walking group, and control group. The Tai Chi group will receive Tai Chi training, which consists of two 60-min sessions each week for three months, and self-practice for 30 min every day. The walking group will perform brisk walking for 30 min every day. The control group will receive their usual care. 246 subjects with CVD risk factors will be recruited from two outpatient clinics. The primary outcome is blood pressure. Secondary outcomes include fasting blood for lipid profile, sugar and glycated haemoglobin (HbA1c; body mass index, waist circumference, body fat percentage; perceived stress level and quality of life. Data collections will be conducted at baseline, 3-month, 6-month and 9-month. Generalized estimating equations model will be used to compare the changes in outcomes across time between groups. It is expected that both the Tai Chi and walking groups could maintain better health and have improved quality of life, and that Tai Chi will be more effective than brisk walking in reducing CVD risk factors.

  1. A comparison of different methods for reducing the unintended positional drift accompanying walking-in-place locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    types of feedback informing the user that a certain amount of drift had occurred and a control condition devoid of feedback. The feedback differed in terms of sensory modality (auditory, visual or audiovisual), onset mode (gradual or sudden) and presentation mode (either the feedback constituted...... a warning or a deprivation of the stimuli used to represent the virtual world). Finally, a condition providing passive haptic feedback (a circular carpet) was included. The types of feedback were assessed in terms of how effectively they reduced UPD as well as how helpful and intrusive they were perceived...... (UPD). Users walking in place while wearing a head-mounted display tend to physically drift in the direction which they are headed within the virtual environment. This paper details a within-subjects study evaluating different methods for minimizing UPD. The study included 14 conditions: 13 different...

  2. Use of orthoses lowers the O(2) cost of walking in children with spastic cerebral palsy.

    Science.gov (United States)

    Maltais, D; Bar-Or, O; Galea, V; Pierrynowski, M

    2001-02-01

    The aim of this study was to assess the effects of hinged ankle foot orthoses (AFO) on the metabolic and cardiopulmonary cost of walking and gross motor skills of children with cerebral palsy (CP). Ten habitual users of hinged AFO with spastic diplegic CP (9.01 yr +/- 2.10) participated in the study. Expired gas and heart rate (HR) were measured during sitting and with AFO on and off during steady state treadmill walking at three speeds: 3 km.h(-1), comfortable walking speed (CWS), and 90% of their fastest walking speed (FWS). Comfortable and fastest ground walking speed and Gross Motor Function Measure scores were also assessed with AFO on and off and analyzed with ANOVA. Because not all children could walk at all speeds on the treadmill, an ANOVA was performed on data for children who walked at 3 km.h(-1) and CWS (N = 8 for HR; N = 9 for pulmonary ventilation and metabolic variables) and a t-test on data at 90% of FWS (N = 9 for HR; N = 8 for pulmonary ventilation and metabolic variables). When children wore their AFO net oxygen uptake (L.min(-1), absolute--sitting values) was significantly (P AFO on by 10.3% but only at 3 km.h(-1). AFO did not affect net HR (beats.min(-1)) nor the respiratory exchange ratio at any speed, nor any physiologic variable at CWS, nor gross motor skills. Use of hinged AFO reduces the oxygen and ventilatory cost of walking in children with spastic diplegic CP.

  3. A walking program for people with severe knee osteoarthritis did not reduce pain but may have benefits for cardiovascular health: a phase II randomised controlled trial.

    Science.gov (United States)

    Wallis, J A; Webster, K E; Levinger, P; Singh, P J; Fong, C; Taylor, N F

    2017-12-01

    The primary aim was to evaluate the effect of a dosed walking program on knee pain for patients with severe knee osteoarthritis (OA). Secondary aims evaluated the effects on cardiovascular health, function and quality of life. Participants with severe knee OA and increased cardiovascular risk were randomly assigned to a 12-week walking program of 70 min/week of at least moderate intensity, or to usual care. The primary outcome was knee pain (0-10). Secondary outcomes were of cardiovascular risk including physical activity, blood pressure, blood lipid and glucose levels, body mass index and waist circumference; WOMAC Index scores; physical function; and quality of life. Forty-six participants (23 each group) were recruited. Sixteen participants (70%) adhered to the walking program. Intention to treat analysis showed no between-group difference in knee pain. The walking group had increased odds of achieving a healthy systolic blood pressure (OR = 5.7, 95% CI 1.2-26.9), and a faster walking speed (Mean Difference (MD) = 0.12 m/s, 95% CI 0.02-0.23). Per protocol analysis based on participant adherence showed the walking group had more daily steps (MD = 1345 steps, 95% CI 365-2325); more time walking (MD = 18 min/day, 95% CI 5-31); reduced waist circumference (MD = -5.3 cm, 95% CI -10.5 to -0.03); and increased knee stiffness (MD = 0.9 units, 95% CI 0.07-1.8). Patients with severe knee OA prescribed a 12-week walking program of 70 min/week may have had cardiovascular benefits without decreasing knee pain. Australian New Zealand Clinical Trials Registry ACTRN12615000015549. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  4. Rocker shoes reduce Achilles tendon load in running and walking in patients with chronic Achilles tendinopathy

    NARCIS (Netherlands)

    Sobhani, Sobhan; Zwerver, Johannes; van den Heuvel, Edwin; Postema, Klaas; Dekker, Rienk; Hijmans, Juha M.

    OBJECTIVES: Relative rest and pain relief play an important role in the management of Achilles tendinopathy, and might be achieved by reducing the load on the Achilles tendon. Previous studies have provided evidence that rocker shoes are able to decrease the ankle internal plantar flexion moment in

  5. Body weight-supported bedside treadmill training facilitates ambulation in ICU patients: An interventional proof of concept study.

    Science.gov (United States)

    Sommers, Juultje; Wieferink, Denise C; Dongelmans, Dave A; Nollet, Frans; Engelbert, Raoul H H; van der Schaaf, Marike

    2017-10-01

    Early mobilisation is advocated to improve recovery of intensive care unit (ICU) survivors. However, severe weakness in combination with tubes, lines and machinery are practical barriers for the implementation of ambulation with critically ill patients. The aim of this study was to explore the feasibility of Body Weight-Supported Treadmill Training (BWSTT) in critically ill patients in the ICU. A custom build bedside Body Weight-Supported Treadmill was used and evaluated in medical and surgical patients in the ICU. Feasibility was evaluated according to eligibility, successful number of BWSTT, number of staff needed, adverse events, number of patients that could not have walked without BWSTT, patient satisfaction and anxiety. Twenty participants, underwent 54 sessions BWSTT. Two staff members executed the BWSTT and no adverse events occurred. Medical equipment did not have to be disconnected during all treatment sessions. In 74% of the sessions, the participants would not have been able to walk without the BWSTT. Patient satisfaction with BWSTT was high and anxiety low. This proof of concept study demonstrated that BWSTT is safe, reduces staff resource, and facilitates the first time to ambulation in critically ill patients with severe muscle weakness in the ICU. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Functional electrical stimulation of gluteus medius reduces the medial joint reaction force of the knee during level walking.

    Science.gov (United States)

    Rane, Lance; Bull, Anthony Michael James

    2016-11-03

    By altering muscular activation patterns, internal forces acting on the human body during dynamic activity may be manipulated. The magnitude of one of these forces, the medial knee joint reaction force (JRF), is associated with disease progression in patients with early osteoarthritis (OA), suggesting utility in its targeted reduction. Increased activation of gluteus medius has been suggested as a means to achieve this. Motion capture equipment and force plate transducers were used to obtain kinematic and kinetic data for 15 healthy subjects during level walking, with and without the application of functional electrical stimulation (FES) to gluteus medius. Musculoskeletal modelling was employed to determine the medial knee JRF during stance phase for each trial. A further computer simulation of increased gluteus medius activation was performed using data from normal walking trials by a manipulation of modelling parameters. Relationships between changes in the medial knee JRF, kinematics and ground reaction force were evaluated. In simulations of increased gluteus medius activity, the total impulse of the medial knee JRF was reduced by 4.2 % (p = 0.003) compared to control. With real-world application of FES to the muscle, the magnitude of this reduction increased to 12.5 % (p gluteus medius activity. The results support a major role for gluteus medius in the protection of the knee for patients with OA, establishing the muscle's central importance to effective therapeutic regimes. FES may be used to achieve increased activation in order to mitigate distal internal loads, and much of the benefit of this increase can be attributed to resulting changes in kinematic parameters and the ground reaction force. The utility of interventions targeting gluteus medius can be assessed in a relatively straightforward way by determination of the magnitude of reduction in pelvic drop, an easily accessed marker of aberrant loading at the knee.

  7. Treadmill training with an incline reduces ankle joint stiffness and improves active range of movement during gait in adults with cerebral palsy

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Kirk, Henrik; Fernandez-Lago, Helena

    2017-01-01

    of gait were obtained before and after the intervention/control period. Intervention subjects trained 31.4 SD 10.1 days for 29.0 SD 2.3 min (total) 15.2 h. RESULTS: Passive ankle joint stiffness was reduced (F = 5.1; p = 0.031), maximal gait speed increased (F = 42.8, p 

  8. Gait training reduces ankle joint stiffness and facilitates heel strike in children with Cerebral Palsy.

    Science.gov (United States)

    Willerslev-Olsen, Maria; Lorentzen, Jakob; Nielsen, Jens Bo

    2014-01-01

    Foot drop and toe walking are frequent concerns in children with cerebral palsy (CP). Increased stiffness of the ankle joint muscles may contribute to these problems. Does four weeks of daily home based treadmill training with incline reduce ankle joint stiffness and facilitate heel strike in children with CP? Seventeen children with CP (4-14 years) were recruited. Muscle stiffness and gait ability were measured twice before and twice after training with an interval of one month. Passive and reflex-mediated stiffness were measured by a dynamometer which applied stretches below and above reflex threshold. Gait kinematics were recorded by 3-D video-analysis during treadmill walking. Foot pressure was measured by force-sensitive foot soles during treadmill and over-ground walking. Children with increased passive stiffness showed a significant reduction in stiffness following training (P = 0.01). Toe lift in the swing phase (P = 0.014) and heel impact (P = 0.003) increased significantly following the training during both treadmill and over-ground walking. Daily intensive gait training may influence the elastic properties of ankle joint muscles and facilitate toe lift and heel strike in children with CP. Intensive gait training may be beneficial in preventing contractures and maintain gait ability in children with CP.

  9. Fall-related gait characteristics on the treadmill and in daily life.

    Science.gov (United States)

    Rispens, Sietse M; Van Dieën, Jaap H; Van Schooten, Kimberley S; Cofré Lizama, L Eduardo; Daffertshofer, Andreas; Beek, Peter J; Pijnappels, Mirjam

    2016-02-02

    Body-worn sensors allow assessment of gait characteristics that are predictive of fall risk, both when measured during treadmill walking and in daily life. The present study aimed to assess differences as well as associations between fall-related gait characteristics measured on a treadmill and in daily life. In a cross-sectional study, trunk accelerations of 18 older adults (72.3 ± 4.5 years) were recorded during walking on a treadmill (Dynaport Hybrid sensor) and during daily life (Dynaport MoveMonitor). A comprehensive set of 32 fall-risk-related gait characteristics was estimated and compared between both settings. For 25 gait characteristics, a systematic difference between treadmill and daily-life measurements was found. Gait was more variable, less symmetric, and less stable during daily life. Fourteen characteristics showed a significant correlation between treadmill and daily-life measurements, including stride time and regularity (0.48  0.25). Gait characteristics revealed less stable, less symmetric, and more variable gait during daily life than on a treadmill, yet about half of the characteristics were significantly correlated between conditions. These results suggest that daily-life gait analysis is sensitive to static personal factors (i.e., physical and cognitive capacity) as well as dynamic situational factors (i.e., behavior and environment), which may both represent determinants of fall risk.

  10. Method for evoking a trip-like response using a treadmill-based perturbation during locomotion.

    Science.gov (United States)

    Sessoms, Pinata H; Wyatt, Marilynn; Grabiner, Mark; Collins, John-David; Kingsbury, Trevor; Thesing, Nancy; Kaufman, Kenton

    2014-01-03

    Because trip-related falls account for a significant proportion of falls by patients with amputations and older adults, the ability to repeatedly and reliably simulate a trip or evoke a trip-like response in a laboratory setting has potential utility as a tool to assess trip-related fall risk and as a training tool to reduce fall risk. This paper describes a treadmill-based method for delivering postural perturbations during locomotion to evoke a trip-like response and serve as a surrogate for an overground trip. Subjects walked at a normalized velocity in a Computer Assisted Rehabilitation Environment (CAREN). During single-limb stance, the treadmill belt speed was rapidly changed, thereby requiring the subject to perform a compensatory stepping response to avoid falling. Peak trunk flexion angle and peak trunk flexion velocity during the initial compensatory step following the perturbation were smaller for responses associated with recoveries compared to those associated with falls. These key fall prediction variables were consistent with the outcomes observed for laboratory-induced trips of older adults. This perturbation technique also demonstrated that this method of repeated but randomly delivered perturbations can evoke consistent, within-subject responses. © 2013 Elsevier Ltd. All rights reserved.

  11. Comparison of Plantar Pressure Distribution between Different Speed and Incline During Treadmill Jogging.

    Science.gov (United States)

    Ho, I-Ju; Hou, Yi-You; Yang, Chich-Haung; Wu, Wen-Lan; Chen, Sheng-Kai; Guo, Lan-Yuen

    2010-01-01

    The aim of this study was to examine the effect of changes in speed and incline slope on plantar pressure distribution of the foot during treadmill jogging. Plantar pressure parameters were measured with the Pedar-X system in twenty healthy girls (mean age of 20.7 years, mean height of 1.60m, and a mean weight of 53.35kg). Because variations in walking speed or slope can significantly change the magnitude of plantar pressure, comparisons of plantar pressure distribution between the two independent protocols during treadmill jogging were considered in this study. First, the subjects ran at the same speed of 2 m·s(-1) with different incline slopes of 0%, 5%, 10%, and 15%. Second, they ran on the same slope of 0% with different speeds of 1.5 m·s(-1), 2.0 m·s(-1), and 2.5 m·s(-1). The peak pressure of the eight plantar surface areas, apart from the medial forefoot and the hallux, significantly increased (p jogging were associated with changes in plantar pressures. By systematic investigation of foot kinematics and plantar pressure during jogging with varying incline slope and speed, the results of this study provided further insight into foot biomechanics during jogging. Key pointsThe study aimed to compare the plantar pressure distribution of the foot between different incline and speed during treadmill jogging by using plantar insole measurement system.With the increase of speed, apart from the hallux and medical forefoot, the peak pressure of all regions was raised significantly.As the slope increased, there was reduced peak pressure of the heel, medial forefoot, and hallux and toes.

  12. Treadmill exercise represses neuronal cell death in an aged transgenic mouse model of Alzheimer's disease.

    Science.gov (United States)

    Um, Hyun-Sub; Kang, Eun-Bum; Koo, Jung-Hoon; Kim, Hyun-Tae; Jin-Lee; Kim, Eung-Joon; Yang, Chun-Ho; An, Gil-Young; Cho, In-Ho; Cho, Joon-Yong

    2011-02-01

    The present study was undertaken to further investigate the protective effect of treadmill exercise on the hippocampal proteins associated with neuronal cell death in an aged transgenic (Tg) mice with Alzheimer's disease (AD). To address this, Tg mouse model of AD, Tg-NSE/PS2m, which expresses human mutant PS2 in the brain, was chosen. Animals were subjected to treadmill exercise for 12 weeks from 24 months of age. The exercised mice were treadmill run at speed of 12 m/min, 60 min/day, 5 days/week on a 0% gradient for 3 months. Treadmill exercised mice improved cognitive function in water maze test. Treadmill exercised mice significantly reduced the expression of Aβ-42, Cox-2, and caspase-3 in the hippocampus. In parallel, treadmill exercised Tg mice decreased the phosphorylation levels of JNK, p38MAPK and tau (Ser404, Ser202, Thr231), and increased the phosphorylation levels of ERK, PI3K, Akt and GSK-3α/β. In addition, treadmill exercised Tg mice up-regulated the expressions of NGF, BDNF and phospho-CREB, and the expressions of SOD-1, SOD-2 and HSP-70. Treadmill exercised Tg mice up-regulated the expression of Bcl-2, and down-regulated the expressions of cytochrome c and Bax in the hippocampus. The number of TUNEL-positive cells in the hippocampus in mice was significantly decreased after treadmill exercise. Finally, serum TC, insulin, glucose, and corticosterone levels were significantly decreased in the Tg mice after treadmill exercise. As a consequence of such change, Aβ-dependent neuronal cell death in the hippocampus of Tg mice was markedly suppressed following treadmill exercise. These results strongly suggest that treadmill exercise provides a therapeutic potential to inhibit both Aβ-42 and neuronal death pathways. Therefore, treadmill exercise may be beneficial in prevention or treatment of AD. Copyright © 2010 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  13. The Effects of Combined Treadmill Training and Pharmacological Treatment on Management of Multiple Sclerosis Female Patients

    Directory of Open Access Journals (Sweden)

    Ali Asghar Arastoo

    2013-04-01

    Full Text Available Objectives: To compare the effectiveness of two treatment methods of ‘combination pharmacological treatment and treadmill training’ and ‘pharmacological treatment’ on management of multiple sclerosis (MS female patients. Methods: In this quasi experimental and interventional study a sample of 20 MS patients (mean age: 36.75 years with Expanded Disability Status Scale scores (EDSS 1.0 to 4.0 were randomly assigned to a ‘pharmacologic treatment’ (Ph group and a combination group of ‘pharmacologic treatment& treadmill training’ (PhTT. All these individuals used the drugs of choice ‘Rebif’ and ‘Avonex’. The intervention consisted of 8-weeks (24 sessions of treadmill training (30 minutes each, at 40-75% of age-predicted maximum heart rate for the PhTT group. The Ph group followed their own routine treatment program. Balance, speed and endurance of walking, quality of life and fatigue were measured by Berg Balance Score, 10 meter timed walk test, 2 minute walk test, and Fatigue Severity Scale (FFS. Data were analyzed by paired t test and one way ANOVA. Results: Comparison of results indicated that pre and post intervention led to significant improvements in the balance score (P=0.001, 10m walk time (P=0.001, walking endurance (P=0.007, and FFS (P=0.04 in the PhTT group. In contrast, no significant changes were observed in the Ph group’s balance score, 10m timed walk and fatigue, while there was a significant decrease in the 2min walking distance (P=0.015 in this group. Discussion: These results suggest that treadmill training in combination with pharmacological treatment improve balance and walking capacity and level of fatigue in women with mild to moderate MS.

  14. Nordic walking versus walking without poles for rehabilitation with cardiovascular disease: Randomized controlled trial.

    Science.gov (United States)

    Girold, Sébastien; Rousseau, Jérome; Le Gal, Magalie; Coudeyre, Emmanuel; Le Henaff, Jacqueline

    2017-07-01

    With Nordic walking, or walking with poles, one can travel a greater distance and at a higher rate than with walking without poles, but whether the activity is beneficial for patients with cardiovascular disease is unknown. This randomized controlled trial was undertaken to determine whether Nordic walking was more effective than walking without poles on walk distance to support rehabilitation training for patients with acute coronary syndrome (ACS) and peripheral arterial occlusive disease (PAOD). Patients were recruited in a private specialized rehabilitation centre for cardiovascular diseases. The entire protocol, including patient recruitment, took place over 2 months, from September to October 2013. We divided patients into 2 groups: Nordic Walking Group (NWG, n=21) and Walking Group without poles (WG, n=21). All patients followed the same program over 4 weeks, except for the walk performed with or without poles. The main outcome was walk distance on the 6-min walk test. Secondary outcomes were maximum heart rate during exercise and walk distance and power output on a treadmill stress test. We included 42 patients (35 men; mean age 57.2±11 years and BMI 26.5±4.5kg/m 2 ). At the end of the training period, both groups showed improved walk distance on the 6-min walk test and treatment stress test as well as power on the treadmill stress test (Ptraining period, Nordic walking training appeared more efficient than training without poles for increasing walk distance on the 6-min walk test for patients with ACS and PAOD. Copyright © 2017. Published by Elsevier Masson SAS.

  15. Within- and Between-Day Repeatability and Variability in Children's Physiological Responses during Submaximal Treadmill Exercise

    Science.gov (United States)

    Amorim, Paulo R. S.; Byrne, Nuala Mary; Hills, Andrew P.

    2009-01-01

    The purpose of this study was to verify within- and between-day repeatability and variability in children's oxygen uptake (VO[subscript 2]), gross economy (GE; VO[subscript 2] divided by speed) and heart rate (HR) during treadmill walking based on self-selected speed (SS). Fourteen children (10.1 plus or minus 1.4 years) undertook three testing…

  16. Adaptation to walking with an exoskeleton that assists ankle extension.

    Science.gov (United States)

    Galle, S; Malcolm, P; Derave, W; De Clercq, D

    2013-07-01

    The goal of this study was to investigate adaptation to walking with bilateral ankle-foot exoskeletons with kinematic control that assisted ankle extension during push-off. We hypothesized that subjects would show a neuromotor and metabolic adaptation during a 24min walking trial with a powered exoskeleton. Nine female subjects walked on a treadmill at 1.36±0.04ms(-1) during 24min with a powered exoskeleton and 4min with an unpowered exoskeleton. Subjects showed a metabolic adaptation after 18.5±5.0min, followed by an adapted period. Metabolic cost, electromyography and kinematics were compared between the unpowered condition, the beginning of the adaptation and the adapted period. In the beginning of the adaptation (4min), a reduction in metabolic cost of 9% was found compared to the unpowered condition. This reduction was accompanied by reduced muscular activity in the plantarflexor muscles, as the powered exoskeleton delivered part of the necessary ankle extension moment. During the adaptation this metabolic reduction further increased to 16%, notwithstanding a constant exoskeleton assistance. This increased reduction is the result of a neuromotor adaptation in which subjects adapt to walking with the exoskeleton, thereby reducing muscular activity in all leg muscles. Because of the fast adaptation and the significant reductions in metabolic cost we want to highlight the potential of an ankle-foot exoskeleton with kinematic control that assists ankle extension during push-off. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial.

    Science.gov (United States)

    Mirelman, Anat; Rochester, Lynn; Reelick, Miriam; Nieuwhof, Freek; Pelosin, Elisa; Abbruzzese, Giovanni; Dockx, Kim; Nieuwboer, Alice; Hausdorff, Jeffrey M

    2013-02-06

    Recent work has demonstrated that fall risk can be attributed to cognitive as well as motor deficits. Indeed, everyday walking in complex environments utilizes executive function, dual tasking, planning and scanning, all while walking forward. Pilot studies suggest that a multi-modal intervention that combines treadmill training to target motor function and a virtual reality obstacle course to address the cognitive components of fall risk may be used to successfully address the motor-cognitive interactions that are fundamental for fall risk reduction. The proposed randomized controlled trial will evaluate the effects of treadmill training augmented with virtual reality on fall risk. Three hundred older adults with a history of falls will be recruited to participate in this study. This will include older adults (n=100), patients with mild cognitive impairment (n=100), and patients with Parkinson's disease (n=100). These three sub-groups will be recruited in order to evaluate the effects of the intervention in people with a range of motor and cognitive deficits. Subjects will be randomly assigned to the intervention group (treadmill training with virtual reality) or to the active-control group (treadmill training without virtual reality). Each person will participate in a training program set in an outpatient setting 3 times per week for 6 weeks. Assessments will take place before, after, and 1 month and 6 months after the completion of the training. A falls calendar will be kept by each participant for 6 months after completing the training to assess fall incidence (i.e., the number of falls, multiple falls and falls rate). In addition, we will measure gait under usual and dual task conditions, balance, community mobility, health related quality of life, user satisfaction and cognitive function. This randomized controlled trial will demonstrate the extent to which an intervention that combines treadmill training augmented by virtual reality reduces fall risk

  18. Mini Treadmill for Musculoskeletal Health

    Science.gov (United States)

    Humphreys, Bradley

    2015-01-01

    Because NASA's approach to space exploration calls for long-term extended missions, there is a pressing need to equip astronauts with effective exercise regimens that will maintain musculoskeletal and cardiovascular health. ZIN Technologies, Inc., has developed an innovative miniature treadmill for use in both zero-gravity and terrestrial environments. The treadmill offers excellent periodic impact exercise to stimulate cardiovascular activity and bone remodeling as well as resistive capability to encourage full-body muscle maintenance. A novel speed-control algorithm allows users to modulate treadmill speed by adjusting stride, and a new subject load device provides a more Earth-like gravity replacement load. This new and compact treadmill offers a unique approach to managing astronaut health while addressing the inherent and stringent challenges of space flight. The innovation also has the potential to offer numerous terrestrial applications, as a real-time daily load stimulus (DLS) measurement feature provides an effective mechanism to combat or manage osteoporosis, a major public health threat for 55 percent of Americans over the age of 50.

  19. Shedding light on walking in the dark: the effects of reduced lighting on the gait of older adults with a higher-level gait disorder and controls

    Directory of Open Access Journals (Sweden)

    Gruendlinger Leor

    2005-08-01

    Full Text Available Abstract Objective To study the effects of reduced lighting on the gait of older adults with a high level gait disorder (HLGD and to compare their response to that of healthy elderly controls. Methods 22 patients with a HLGD and 20 age-matched healthy controls were studied under usual lighting conditions (1000 lumens and in near darkness (5 lumens. Gait speed and gait dynamics were measured under both conditions. Cognitive function, co-morbidities, depressive symptoms, and vision were also evaluated. Results Under usual lighting conditions, patients walked more slowly, with reduced swing times, and increased stride-to-stride variability, compared to controls. When walking under near darkness conditions, both groups slowed their gait. All other measures of gait were not affected by lighting in the controls. In contrast, patients further reduced their swing times and increased their stride-to-stride variability, both stride time variability and swing time variability. The unique response of the patients was not explained by vision, mental status, co-morbidities, or the values of walking under usual lighting conditions. Conclusion Walking with reduced lighting does not affect the gait of healthy elderly subjects, except for a reduction in speed. On the other hand, the gait of older adults with a HLGD becomes more variable and unsteady when they walk in near darkness, despite adapting a slow and cautious gait. Further work is needed to identify the causes of the maladaptive response among patients with a HLGD and the potential connection between this behavior and the increased fall risk observed in these patients.

  20. Does long-distance walking improve or deteriorate walking stability of transtibial amputees?

    Science.gov (United States)

    Wong, Duo Wai-Chi; Lam, Wing Kai; Yeung, L F; Lee, Winson C C

    2015-10-01

    Falls are common in transtibial amputees which are linked to their poor stability. While amputees are encouraged to walk more, they are more vulnerable to fatigue which leads to even poorer walking stability. The objective of this study was to evaluate the dynamic stability of amputees after long-distance walking. Six male unilateral transtibial amputees (age: 53 (SD: 8.8); height: 170cm (SD: 3.4); weight: 75kg (SD: 4.7)) performed two sessions (30minutes each) of treadmill walking, separated by a short period of gait tests. Gait tests were performed before the walking (baseline) and after each session of treadmill walking. Gait parameters and their variability across repeated steps at each of the three conditions were computed. There were no significant differences in walking speed, step length, stance time, time of occurrence, and magnitude of peak angular velocities of the knee and hip joint (P>0.05). However, variability of knee and hip angular velocity after 30-minute walking was significantly higher than the baseline (Pamputees to restore their walking stability after further continuous walking. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. A comparison of the health benefits of reduced-exertion high-intensity interval training (REHIT) and moderate-intensity walking in type 2 diabetes patients.

    Science.gov (United States)

    Ruffino, José S; Songsorn, Preeyaphorn; Haggett, Malindi; Edmonds, Daniel; Robinson, Anthony M; Thompson, Dylan; Vollaard, Niels B J

    2017-02-01

    Reduced-exertion high-intensity interval training (REHIT) is a genuinely time-efficient intervention that can improve aerobic capacity and insulin sensitivity in sedentary individuals. The present study compared the effects of REHIT and moderate-intensity walking on health markers in patients with type 2 diabetes (T2D) in a counter-balanced crossover study. Sixteen men with T2D (mean ± SD age: 55 ± 5 years, body mass index: 30.6 ± 2.8 kg·m -2 , maximal aerobic capacity: 27 ± 4 mL·kg -1 ·min -1 ) completed 8 weeks of REHIT (three 10-min low-intensity cycling sessions/week with two "all-out" 10-20-s sprints) and 8 weeks of moderate-intensity walking (five 30-min sessions/week at an intensity corresponding to 40%-55% of heart-rate reserve), with a 2-month wash-out period between interventions. Before and after each intervention, participants underwent an incremental fitness test, an oral glucose tolerance test (OGTT), a whole-body dual-energy X-ray absorptiometry scan, and continuous glucose monitoring. REHIT was associated with a significantly larger increase in maximal aerobic capacity compared with walking (7% vs. 1%; time × intervention interaction effect: p walking decreased resting mean arterial pressure (-4%; main effect of time: p walking in improving aerobic fitness, but similar to walking REHIT is not an effective intervention for improving insulin sensitivity or glycaemic control in T2D patients in the short term.

  2. Give Your Ideas Some Legs: The Positive Effect of Walking on Creative Thinking

    Science.gov (United States)

    Oppezzo, Marily; Schwartz, Daniel L.

    2014-01-01

    Four experiments demonstrate that walking boosts creative ideation in real time and shortly after. In Experiment 1, while seated and then when walking on a treadmill, adults completed Guilford's alternate uses (GAU) test of creative divergent thinking and the compound remote associates (CRA) test of convergent thinking. Walking increased 81% of…

  3. Treadmill walking exercise modulates bone mineral status and ...

    African Journals Online (AJOL)

    Background: Obesity and asthma are an important public health problem in Saudi Arabia. An increasing body of data supports the hypothesis that obesity is a risk factor for asthma. Asthma appears to be associated with low bone mineral density (BMD) due to long-term use of corticosteroids. Studies recently showed that ...

  4. Fast visual prediction and slow optimization of preferred walking speed.

    Science.gov (United States)

    O'Connor, Shawn M; Donelan, J Maxwell

    2012-05-01

    People prefer walking speeds that minimize energetic cost. This may be accomplished by directly sensing metabolic rate and adapting gait to minimize it, but only slowly due to the compounded effects of sensing delays and iterative convergence. Visual and other sensory information is available more rapidly and could help predict which gait changes reduce energetic cost, but only approximately because it relies on prior experience and an indirect means to achieve economy. We used virtual reality to manipulate visually presented speed while 10 healthy subjects freely walked on a self-paced treadmill to test whether the nervous system beneficially combines these two mechanisms. Rather than manipulating the speed of visual flow directly, we coupled it to the walking speed selected by the subject and then manipulated the ratio between these two speeds. We then quantified the dynamics of walking speed adjustments in response to perturbations of the visual speed. For step changes in visual speed, subjects responded with rapid speed adjustments (lasting 300 s). The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that seeks to minimize energetic cost.

  5. Accuracy of unloading with the anti-gravity treadmill.

    Science.gov (United States)

    McNeill, David K P; de Heer, Hendrik D; Bounds, Roger G; Coast, J Richard

    2015-03-01

    Body weight (BW)-supported treadmill training has become increasingly popular in professional sports and rehabilitation. To date, little is known about the accuracy of the lower-body positive pressure treadmill. This study evaluated the accuracy of the BW support reported on the AlterG "Anti-Gravity" Treadmill across the spectrum of unloading, from full BW (100%) to 20% BW. Thirty-one adults (15 men and 16 women) with a mean age of 29.3 years (SD = 10.9), and a mean weight of 66.55 kg (SD = 12.68) were recruited. Participants were weighed outside the machine and then inside at 100-20% BW in 10% increments. Predicted BW, as presented by the AlterG equipment, was compared with measured BW. Significant differences between predicted and measured BW were found at all but 90% through 70% of BW. Differences were small (higher than predicted at 35.75% (SD = 2.89, p 5%) found at 100% BW and the greatest BW support (30 and 20% BW). These differences may be associated with changes in metabolic demand and maximum speed during walking or running and should be taken into consideration when using these devices for training and research purposes.

  6. Aerobic treadmill training effectively enhances cardiovascular fitness and gait function for older persons with chronic stroke.

    Science.gov (United States)

    Mackay-Lyons, Marilyn

    2012-01-01

    Does high-intensity aerobic treadmill exercise improve cardiovascular fitness and gait function in people with chronic stroke? Randomised, controlled trial. An outpatient rehabilitation centre in Germany. Individuals with chronic stroke >60 years of age with residual gait impairment, and ability to walk on the treadmill at ≥0.3km/h for 3 minutes were eligible. Serious cardiovascular conditions (eg, angina pectoris, heart failure, valvular dysfunction, peripheral arterial occlusive disease), dementia, aphasia, and major depression were exclusion criteria. Randomisation of 38 participants allocated 20 to the intervention group and 18 to the usual care group. The intervention group underwent treadmill training (3 times/week) for 3 months. The program was intended to achieve 30-50 minutes of treadmill training at 60-80% of the maximum heart rate reserve as determined by a maximum effort exercise test. The training was supervised by a physician and/or physiotherapist. The usual care group received conventional care physiotherapy for 1 hour 1-3 times a week without any aerobic training. The primary outcomes were peak oxygen consumption rate and the 6-minute walk test. Secondary outcome measures were self-selected and maximum walking speeds as measured in the 10-m walk test, Berg balance score, 5-Chair-Rise test, Rivermead Mobility Index, and Medical Outcomes Study Short-Form 12 (SF- 12). The outcomes were measured at baseline, immediately after completion of training, and at 12 months. 36 participants completed the study. After the 3-month training period, the change in peak oxygen consumption rate was significantly more in the treatment group, by 6.3mL/kg/min (95% CI 5.7 to 6.9). The change in distance achieved in the 6-minute walk test was also significantly more in the treatment group by 53 metres (95% CI 32 to 75). Among the secondary outcomes, maximum walking speed (by 0.14m/s, 95% CI 0.08 to 0.20), Berg balance score (by 2.6 points, 95% CI 0.5 to 4.7), and SF-12

  7. Effects of walking trainings on walking function among stroke survivors: a systematic review.

    Science.gov (United States)

    Ilunga Tshiswaka, Daudet; Bennett, Crystal; Franklin, Cheyanne

    2018-03-01

    Physical function is often compromised as a result of stroke event. Although interventions propose different strategies that seek to improve stroke survivors' physical function, a need remains to evaluate walking training studies aimed at improving such physical function. The aim of this review was to assess the available literature that highlights the impact of walking training on enhancing walking for stroke survivors. We performed a systematic literature review of online databases - Google Scholar, PubMed, CINHAL, Cochrane Library, Scopus, and EBSCO - with the following inclusion criteria: manuscript published from 2005 to 2016, written in English, with treatment and control groups, for walking training studies aimed at improving physical function among stroke survivors. Findings indicated that walking speed, walking distance, and gait speed were the most used outcome variables for measuring improved physical function among stroke survivors. Importantly, proposed interventions involved either overground or treadmill walking trainings, if not both. Preserved locomotor improvements were not noted in all interventions at follow-up. Some interventions that used walking treadmill training augmented by auditory stimulations reported significant improvements in physical function compared with overground walking training augmented by auditory stimulations. The imperative to improve physical function among stroke survivors with physical impairment is paramount, as it allows survivors to be socially, emotionally, and physically more independent. In general, we note an insufficiency of research on the interaction between physical function and socialization among stroke survivors.

  8. Agreement between the spatio-temporal gait parameters from treadmill-based photoelectric cell and the instrumented treadmill system in healthy young adults and stroke patients.

    Science.gov (United States)

    Lee, Myungmo; Song, Changho; Lee, Kyoungjin; Shin, Doochul; Shin, Seungho

    2014-07-14

    Treadmill gait analysis was more advantageous than over-ground walking because it allowed continuous measurements of the gait parameters. The purpose of this study was to investigate the concurrent validity and the test-retest reliability of the OPTOGait photoelectric cell system against the treadmill-based gait analysis system by assessing spatio-temporal gait parameters. Twenty-six stroke patients and 18 healthy adults were asked to walk on the treadmill at their preferred speed. The concurrent validity was assessed by comparing data obtained from the 2 systems, and the test-retest reliability was determined by comparing data obtained from the 1st and the 2nd session of the OPTOGait system. The concurrent validity, identified by the intra-class correlation coefficients (ICC [2, 1]), coefficients of variation (CVME), and 95% limits of agreement (LOA) for the spatial-temporal gait parameters, were excellent but the temporal parameters expressed as a percentage of the gait cycle were poor. The test-retest reliability of the OPTOGait System, identified by ICC (3, 1), CVME, 95% LOA, standard error of measurement (SEM), and minimum detectable change (MDC95%) for the spatio-temporal gait parameters, was high. These findings indicated that the treadmill-based OPTOGait System had strong concurrent validity and test-retest reliability. This portable system could be useful for clinical assessments.

  9. Metabolic and clinical comparative analysis of treadmill six-minute walking test and cardiopulmonary exercise testing in obese and eutrophic women Análise clínica e metabólica comparativa entre o teste de caminhada de seis minutos e o teste de exercício cardiopulmonar em mulheres obesas e eutróficas

    Directory of Open Access Journals (Sweden)

    Luciana Di Thommazo-Luporini

    2012-01-01

    Full Text Available BACKGROUND: Impaired exercise tolerance is directly linked to decreased functional capacity as a consequence of obesity. OBJECTIVES: To analyze and compare the cardiopulmonary, metabolic, and perceptual responses during a cardiopulmonary exercise test (CPX and a treadmill six-minute walking test (tread6MWT in obese and eutrophic women. METHOD: Twenty-nine female participants, aged 20-45 years were included. Fourteen were allocated to the obese group and 15 to the eutrophic group. Anthropometric measurements and body composition assessment were performed. RESULTS: In both tests, obese women presented with significantly higher absolute oxygen uptake, minute ventilation, and systolic and diastolic blood pressure; they also presented with lower speed, distance walked, and oxygen uptake corrected by the weight compared to eutrophics. During the maximal exercise test, perceived dyspnea was greater and the respiratory exchange ratio was lower in obese subjects compared to eutrophics. During the submaximal test, carbon dioxide production, tidal volume, and heart rate were higher in obese subjects compared to eutrophic women. When analyzing possible correlations between the CPX and the tread6MWT at peak, there was a strong correlation for the variable heart rate and a moderate correlation for the variable oxygen uptake. The heart rate obtained in the submaximal test was able to predict the one obtained in the maximal test. Bland-Altman plots demonstrated the agreement between both tests to identify metabolic and physiological parameters at peak exercise. CONCLUSIONS: The six-minute walking test induced ventilatory, metabolic, and cardiovascular responses in agreement with the maximal testing. Thus, the six-minute walking test proves to be important for functional evaluation in the physical therapy routine.CONTEXTUALIZAÇÃO: A reduzida tolerância ao exercício está relacionada à diminuída capacidade funcional consequente da obesidade. Objetivos

  10. Freely-Paced Walking In Healthy Adults Does Not Meet Minimum ...

    African Journals Online (AJOL)

    Subjects underwent body composition assessment and measurement of VO2max to determine the corresponding heart rate at 50% of VO2max. Subjects then completed two 20-minute sessions of brisk walking on either a treadmill or in a non-treadmill setting with heart rate measurement used to assess exercise intensity.

  11. A comparison of four different approaches to reducing unintended positional drift during walking-In-Place locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Christian; Serafin, Stefania; Nordahl, Rolf

    2014-01-01

    Users wearing a head-mounted display while relying on Walking-In-Place techniques for virtual locomotion tend to physically drift in the direction which they are headed within the virtual environment. It has previously been demonstrated that different types of feedback may be used to constrain th...

  12. Can external lateral stabilization reduce the energy cost of walking in persons with a lower limb amputation?

    NARCIS (Netherlands)

    IJmker, T.; Noten, S.; Lamoth, C. J.; Beek, P. J.; van der Woude, L. H. V.; Houdijk, H.

    The aim of this study was to examine whether impaired balance control is partly responsible for the increased energy cost of walking in persons with a lower limb amputation (LLA). Previous studies used external lateral stabilization to evaluate the energy cost for balance control; this caused a

  13. Walking with wider steps increases stance phase gluteus medius activity.

    Science.gov (United States)

    Kubinski, Samantha N; McQueen, Christina A; Sittloh, Keir A; Dean, Jesse C

    2015-01-01

    Increases in step width have been reported for several clinical populations, including older adults and stroke survivors. These populations often also exhibit decreased hip abductor strength, suggesting that walking with wider steps may be an adaptive response in order to reduce the mechanical demands on the hip abductors. The purpose of this study was to quantify the relationship between step width and gluteus medius (GM) activity during walking. Fourteen young, uninjured adults walked on a treadmill at 1.25 m/s for four step width conditions (Normal, Narrow, Medium, and Wide) while step width and stance phase GM electromyographic (EMG) activity were quantified. We also measured hip abduction torque and GM activity during maximum voluntary isometric contractions (MVICs) at three hip angles (neutral, abducted 10°, and abducted 20°). During walking trials, GM activity was significantly (p < 0.0001) influenced by step width; compared to Normal walking, GM activity was 47% higher with Wide steps and 24% lower with Narrow steps. We also observed a weak positive correlation (r = 0.18 ± 0.14) between step width and GM activity during Normal walking, as GM activity was higher with wider steps. These results cannot be attributed to changes in GM conformation under the recording electrode, as GM activity was not influenced by hip angle during MVICs. The increased GM activity with wider steps does not support the proposal that increasing step width would be a beneficial adaptation to weakened hip abductors. A likely alternative explanation is that increased step width is a response to decreased gait balance. Published by Elsevier B.V.

  14. Gait analysis in chronic heart failure: The calf as a locus of impaired walking capacity.

    Science.gov (United States)

    Panizzolo, Fausto A; Maiorana, Andrew J; Naylor, Louise H; Dembo, Lawrence; Lloyd, David G; Green, Daniel J; Rubenson, Jonas

    2014-11-28

    Reduced walking capacity, a hallmark of chronic heart failure (CHF), is strongly correlated with hospitalization and morbidity. The aim of this work was to perform a detailed biomechanical gait analysis to better identify mechanisms underlying reduced walking capacity in CHF. Inverse dynamic analyses were conducted in CHF patients and age- and exercise level-matched control subjects on an instrumented treadmill at self-selected treadmill walking speeds and at speeds representing +20% and -20% of the subjects' preferred speed. Surprisingly, no difference in preferred speed was observed between groups, possibly explained by an optimization of the mechanical cost of transport in both groups (the mechanical cost to travel a given distance; J/kg/m). The majority of limb kinematics and kinetics were also similar between groups, with the exception of greater ankle dorsiflexion angles during stance in CHF. Nevertheless, over two times greater ankle plantarflexion work during stance and per distance traveled is required for a given triceps surae muscle volume in CHF patients. This, together with a greater reliance on the ankle compared to the hip to power walking in CHF patients, especially at faster speeds, may contribute to the earlier onset of fatigue in CHF patients. This observation also helps explain the high correlation between triceps surae muscle volume and exercise capacity that has previously been reported in CHF. Considering the key role played by the plantarflexors in powering walking and their association with exercise capacity, our findings strongly suggest that exercise-based rehabilitation in CHF should not omit the ankle muscle group. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Modulation of recurrent inhibition from knee extensors to ankle motoneurones during human walking

    DEFF Research Database (Denmark)

    Lamy, Jean-Charles; Iglesias, Caroline; Lackmy, Alexandra

    2008-01-01

    The neural control for muscle coordination during human locomotion involves spinal and supraspinal networks, but little is known about the exact mechanisms implicated. The present study focused on modulation of heteronymous recurrent inhibition from knee extensors to ankle motoneurones at different...... times in the gait cycle, when quadriceps (Quad) muscle activity overlaps that in tibialis anterior (TA) and soleus (Sol). The effects of femoral nerve stimulation on ankle motoneurones were investigated during treadmill walking and during tonic co-contraction of Quad and TA/Sol while standing. Recurrent...... inhibition of TA motoneurones depended on the level of background EMG, and was similar during walking and standing for matched background EMG levels. On the other hand, recurrent inhibition in Sol was reduced in early stance, with respect to standing, and enhanced in late stance. Reduced inhibition in Sol...

  16. People With Chronic Neck Pain Walk With a Stiffer Spine.

    Science.gov (United States)

    Falla, Deborah; Gizzi, Leonardo; Parsa, Hesam; Dieterich, Angela; Petzke, Frank

    2017-04-01

    Study Design Controlled laboratory study, case-control design. Objective To evaluate spine kinematics and gait characteristics in people with nonspecific chronic neck pain. Background People with chronic neck pain present with a number of sensorimotor and biomechanical alterations, yet little is known about the influence of neck pain on gait and motions of the spine during gait. Methods People with chronic nonspecific neck pain and age- and sex-matched asymptomatic controls walked on a treadmill at 3 different speeds (self-selected, 3 km/h, and 5 km/h), either with their head in a neutral position or rotated 30°. Tridimensional motion capture was employed to quantify body kinematics. Neck and trunk rotations were derived from the difference between the transverse plane component of the head and thorax and thorax and pelvis angles to provide an indication of neck and trunk rotation during gait. Results Overall, the patient group showed shorter stride length compared to the control group (Pneck pain showed smaller trunk rotations (Pneck pain walk with reduced trunk rotation, especially when challenged by walking with their head positioned in rotation. Reduced rotation of the trunk during gait may have long-term consequences on spinal health. J Orthop Sports Phys Ther 2017;47(4):268-277. Epub 3 Feb 2017. doi:10.2519/jospt.2017.6768.

  17. Validity and Reproducibility of a New Treadmill Protocol: The Fitkids Treadmill Test

    NARCIS (Netherlands)

    Tim Takken; Bart C. Bongers; Elle M.W. Kotte; Janke de Groot; Alexander M.F. Winkler

    2015-01-01

    Validity and Reproducibility of a New Treadmill Protocol: The Fitkids Treadmill Test. Med. Sci. Sports Exerc., Vol. 47, No. 10, pp. 2241–2247, 2015. Purpose: This study aimed to investigate the validity and reproducibility of a new treadmill protocol in healthy children and adolescents: the Fitkids

  18. COMPARISON OF PLANTAR PRESSURE DISTRIBUTION BETWEEN DIFFERENT SPEED AND INCLINE DURING TREADMILL JOGGING

    Directory of Open Access Journals (Sweden)

    I-Ju Ho

    2010-03-01

    Full Text Available The aim of this study was to examine the effect of changes in speed and incline slope on plantar pressure distribution of the foot during treadmill jogging. Plantar pressure parameters were measured with the Pedar-X system in twenty healthy girls (mean age of 20.7 years, mean height of 1.60m, and a mean weight of 53.35kg. Because variations in walking speed or slope can significantly change the magnitude of plantar pressure, comparisons of plantar pressure distribution between the two independent protocols during treadmill jogging were considered in this study. First, the subjects ran at the same speed of 2 m·s-1 with different incline slopes of 0%, 5%, 10%, and 15%. Second, they ran on the same slope of 0% with different speeds of 1.5 m·s-1, 2.0 m·s-1, and 2.5 m·s-1. The peak pressure of the eight plantar surface areas, apart from the medial forefoot and the hallux, significantly increased (p < 0.05 with an increase of 33% of peak pressure from 1.5 m·s-1 to 2.5 m·s-1 (speed at heel region. In contrast, the peak pressures at the heel, medial fore-foot, toe and hallux decreased significantly (p < 0. 05 with increasing incline slope. At the heel, peak pressure reduced by 27% from 0% to 15% incline, however, pressure at the lateral midfoot region increased as following. Different speeds and incline slopes during jogging were associated with changes in plantar pressures. By systematic investigation of foot kinematics and plantar pressure during jogging with varying incline slope and speed, the results of this study provided further insight into foot biomechanics during jogging

  19. Evaluation of a Treadmill with Vibration Isolation and Stabilization (TVIS) for Use on the International Space Station

    Science.gov (United States)

    McCrory, Jean L.; Lemmon, David R.; Sommer, H. Joseph; Prout, Brian; Smith, Damon; Korth, Deborah W.; Lucero, Javier; Greenisen, Michael; Moore, Jim

    1999-01-01

    A treadmill with vibration isolation and stabilization designed for the International Space Station (ISS) was evaluated during Shuttle mission STS-81. Three crew members ran and walked on the device, which floats freely in zero gravity. For the majority of the more than 2 hours of locomotion studied, the treadmill showed peak to peak linear and angular displacements of less than 2.5 cm and 2.5 deg, respectively. Vibration transmitted to the vehicle was within the microgravity allocation limits that are defined for the ISS. Refinements to the treadmill and harness system are discussed. This approach to treadmill design offers the possibility of generating 1G-like loads on the lower extremities while preserving the microgravity environment of the ISS for structural safety and vibration free experimental conditions.

  20. The Effect of Visual Display Properties and Gain Presentation Mode on the Perceived Naturalness of Virtual Walking Speeds

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    2015-01-01

    Individuals tend to find realistic walking speeds too slow when relying on treadmill walking or Walking-In-Place (WIP) techniques for virtual travel. This paper details three studies investigating the effects of visual display properties and gain presentation mode on the perceived naturalness of ...

  1. The Effect of Head Mounted Display Weight and Locomotion Method on the Perceived Naturalness of Virtual Walking Speeds

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    This poster details a study investigating the effect of Head Mounted Display (HMD) weight and locomotion method (Walking-In-Place and treadmill walking) on the perceived naturalness of virtual walking speeds. The results revealed significant main effects of movement type, but no significant effec...

  2. Inflight Treadmill Exercise Can Serve as Multi-Disciplinary Countermeasure System

    Science.gov (United States)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; hide

    2014-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects, functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. These data also support the concept that space flight may cause central adaptation of converging body-load somatosensory and vestibular input during gravitational transitions [1]. Therefore, we conclude that providing significant body-support loading during inflight treadmill along with balance training is necessary to mitigate decrements in critical mission tasks that require dynamic postural stability and mobility. Data obtained from space flight and bed rest

  3. Comparison of walking overground and in a Computer Assisted Rehabilitation Environment (CAREN in individuals with and without transtibial amputation

    Directory of Open Access Journals (Sweden)

    Gates Deanna H

    2012-11-01

    Full Text Available Abstract Background Due to increased interest in treadmill gait training, recent research has focused on the similarities and differences between treadmill and overground walking. Most of these studies have tested healthy, young subjects rather than impaired populations that might benefit from such training. These studies also do not include optic flow, which may change how the individuals integrate sensory information when walking on a treadmill. This study compared overground walking to treadmill walking in a computer assisted virtual reality environment (CAREN in individuals with and without transtibial amputations (TTA. Methods Seven individuals with traumatic TTA and 27 unimpaired controls participated. Subjects walked overground and on a treadmill in a CAREN at a normalized speed. The CAREN applied optic flow at the same speed that the subject walked. Temporal-spatial parameters, full body kinematics, and kinematic variability were collected during all trials. Results Both subject groups decreased step time and control subjects decreased step length when walking in the CAREN. Differences in lower extremity kinematics were small (○ and did not exceed the minimal detectable change values for these measures. Control subjects exhibited decreased transverse and frontal plane range of motion of the pelvis and trunk when walking in the CAREN, while patients with TTA did not. Both groups exhibited increased step width variability during treadmill walking in the CAREN, but only minor changes in kinematic variability. Conclusions The results of this study suggest that treadmill training in a virtual environment should be similar enough to overground that changes should carry over. Caution should be made when comparing step width variability and step time results from studies utilizing a treadmill to those overground.

  4. Invariant hip moment pattern while walking with a robotic hip exoskeleton

    Science.gov (United States)

    Lewis, Cara L.; Ferris, Daniel P.

    2011-01-01

    Robotic lower limb exoskeletons hold significant potential for gait assistance and rehabilitation; however, we have a limited understanding of how people adapt to walking with robotic devices. The purpose of this study was to test the hypothesis that people reduce net muscle moments about their joints when robotic assistance is provided. This reduction in muscle moment results in a total joint moment (muscle plus exoskeleton) that is the same as the moment without the robotic assistance despite potential differences in joint angles. To test this hypothesis, eight healthy subjects trained with the robotic hip exoskeleton while walking on a force-measuring treadmill. The exoskeleton provided hip flexion assistance from approximately 33% to 53% of the gait cycle. We calculated the root mean squared difference (RMSD) between the average of data from the last 15 minutes of the powered condition and the unpowered condition. After completing three 30-minute training sessions, the hip exoskeleton provided 27% of the total peak hip flexion moment during gait. Despite this substantial contribution from the exoskeleton, subjects walked with a total hip moment pattern (muscle plus exoskeleton) that was almost identical and more similar to the unpowered condition than the hip angle pattern (hip moment RMSD 0.027, angle RMSD 0.134, p<0.001). The angle and moment RMSD were not different for the knee and ankle joints. These findings support the concept that people adopt walking patterns with similar joint moment patterns despite differences in hip joint angles for a given walking speed. PMID:21333995

  5. Exergame and Balance Training modulate Prefrontal Brain Activity during Walking and enhance Executive Function in Older Adults

    Directory of Open Access Journals (Sweden)

    Patrick eEggenberger

    2016-04-01

    Full Text Available Different types of exercise training have the potential to induce structural and functional brain plasticity in the elderly. Thereby, functional brain adaptations were observed during cognitive tasks in functional magnetic resonance imaging studies that correlated with improved cognitive performance. This study aimed to investigate if exercise training induces functional brain plasticity during challenging treadmill walking and elicits associated changes in cognitive executive functions. Forty-two elderly participants were recruited and randomly assigned to either interactive cognitive-motor video game dancing (DANCE or balance and stretching training (BALANCE. The 8-week intervention included three sessions of 30 minutes per week and was completed by 33 participants (mean age 74.9±6.9 years. Prefrontal cortex (PFC activity during preferred and fast walking speed on a treadmill was assessed applying functional near infrared spectroscopy pre- and post-intervention. Additionally, executive functions comprising shifting, inhibition, and working memory were assessed. The results showed that both interventions significantly reduced left and right hemispheric PFC oxygenation during the acceleration of walking (p < .05 or trend, r = .25 to .36, while DANCE showed a larger reduction at the end of the 30-second walking task compared to BALANCE in the left PFC (F(1, 31 = 3.54, p = .035, r = .32. These exercise training induced modulations in PFC oxygenation correlated with improved executive functions (p < .05 or trend, r = .31 to .50. The observed reductions in PFC activity may release cognitive resources to focus attention on other processes while walking, which could be relevant to improve mobility and falls prevention in the elderly. This study provides a deeper understanding of the associations between exercise training, brain function during walking, and cognition in older adults.

  6. Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton.

    Science.gov (United States)

    Mooney, Luke M; Herr, Hugh M

    2016-01-28

    Ankle exoskeletons can now reduce the metabolic cost of walking in humans without leg disability, but the biomechanical mechanisms that underlie this augmentation are not fully understood. In this study, we analyze the energetics and lower limb mechanics of human study participants walking with and without an active autonomous ankle exoskeleton previously shown to reduce the metabolic cost of walking. We measured the metabolic, kinetic and kinematic effects of wearing a battery powered bilateral ankle exoskeleton. Six participants walked on a level treadmill at 1.4 m/s under three conditions: exoskeleton not worn, exoskeleton worn in a powered-on state, and exoskeleton worn in a powered-off state. Metabolic rates were measured with a portable pulmonary gas exchange unit, body marker positions with a motion capture system, and ground reaction forces with a force-plate instrumented treadmill. Inverse dynamics were then used to estimate ankle, knee and hip torques and mechanical powers. The active ankle exoskeleton provided a mean positive power of 0.105 ± 0.008 W/kg per leg during the push-off region of stance phase. The net metabolic cost of walking with the active exoskeleton (3.28 ± 0.10 W/kg) was an 11 ± 4 % (p = 0.019) reduction compared to the cost of walking without the exoskeleton (3.71 ± 0.14 W/kg). Wearing the ankle exoskeleton significantly reduced the mean positive power of the ankle joint by 0.033 ± 0.006 W/kg (p = 0.007), the knee joint by 0.042 ± 0.015 W/kg (p = 0.020), and the hip joint by 0.034 ± 0.009 W/kg (p = 0.006). This study shows that the ankle exoskeleton does not exclusively reduce positive mechanical power at the ankle joint, but also mitigates positive power at the knee and hip. Furthermore, the active ankle exoskeleton did not simply replace biological ankle function in walking, but rather augmented the total (biological + exoskeletal) ankle moment and power. This study

  7. Acute Exercise and Oxidative Stress: CrossFit(™) vs. Treadmill Bout.

    Science.gov (United States)

    Kliszczewicz, Brian; Quindry, C John; Blessing, L Daniel; Oliver, D Gretchen; Esco, R Michael; Taylor, J Kyle

    2015-09-29

    CrossFit(™), a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit(™) bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit(™) experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit(™) and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit(™)=+143%, Treadmill=+115%) and 2-HP (CrossFit(™)=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit(™)=-16%, Treadmill=-8%) and 2-HP (CF=-16%, TM=-1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit(™) and Treadmill: IPE (CrossFit(™)=+25%, Treadmill=+17%), 1-HP (CrossFit(™)=+26%, Treadmill=+4.8%), 2-HP (CrossFit(™)=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit(™)=-10%, Treadmill=-12%), 1-HP (CrossFit(™)=-12%, Treadmill=-6%), 2-HP (CrossFit(™)=-7%, Treadmill=-11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit(™) bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.

  8. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    Directory of Open Access Journals (Sweden)

    Kliszczewicz Brian

    2015-09-01

    Full Text Available CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE, immediately-post-exercise (IPE, 1 hr-post (1-HP and 2 hr-post (2-HP, to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%,Treadmill=+115% and 2-HP (CrossFit™=+256%,Treadmill+167%. Protein Carbonyls were increased IPE in CF only (+5%, while a time-dependent decrease occurred 1-HP (CrossFit™=−16%,Treadmill=−8% and 2-HP (CF=−16%,TM=−1% compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%,Treadmill=+17%, 1-HP (CrossFit™=+26%,Treadmill=+4.8%, 2-HP (CrossFit™=+20%,Treadmill=+12%. Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™= −10%,Treadmill=−12%, 1-HP (CrossFit™= −12%,Treadmill=−6%, 2-HP (CrossFit™= −7%,Treadmill=−11%. No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses.

  9. Acute Exercise and Oxidative Stress: CrossFit™ vs. Treadmill Bout

    Science.gov (United States)

    Kliszczewicz, Brian; Quindry, C. John; Blessing, L. Daniel; Oliver, D. Gretchen; Esco, R. Michael; Taylor, J. Kyle

    2015-01-01

    CrossFit™, a popular high-intensity training modality, has been the subject of scrutiny, with concerns of elevated risk of injury and health. Despite these concerns empirical evidence regarding physiologic stresses including acute oxidative stress is lacking. Therefore, the purpose of this investigation was to examine the acute redox response to a CrossFit™ bout. Furthermore, these findings were compared to a high-intensity treadmill bout as a point of reference. Ten males 26.4 ± 2.7 yrs having three or more months of CrossFit™ experience participated in the present study. Blood plasma was collected at four time points: Pre-exercise (PRE), immediately-post-exercise (IPE), 1 hr-post (1-HP) and 2 hr-post (2-HP), to examine oxidative damage and antioxidant capacity. Regarding plasma oxidative damage, CrossFit™ and Treadmill elicited a time-dependent increase of lipid peroxides 1-HP (CrossFit™=+143%, Treadmill=+115%) and 2-HP (CrossFit™=+256%, Treadmill+167%). Protein Carbonyls were increased IPE in CF only (+5%), while a time-dependent decrease occurred 1-HP (CrossFit™=−16%, Treadmill=−8%) and 2-HP (CF=−16%, TM=−1%) compared to IPE. Regarding antioxidant capacity, Ferric Reducing Antioxidant Power also demonstrated a time-dependent increase within CrossFit™ and Treadmill: IPE (CrossFit™=+25%, Treadmill=+17%), 1-HP (CrossFit™=+26%, Treadmill=+4.8%), 2-HP (CrossFit™=+20%, Treadmill=+12%). Total Enzymatic Antioxidant Capacity showed a time-dependent decrease in IPE (CrossFit™=−10%, Treadmill=−12%), 1-HP (CrossFit™=−12%, Treadmill=−6%), 2-HP (CrossFit™=−7%, Treadmill=−11%). No trial-dependent differences were observed in any biomarker of oxidative stress. The CrossFit™ bout elicited an acute blood oxidative stress response comparable to a traditional bout of high-intensity treadmill running. Results also confirm that exercise intensity and the time course of exercise recovery influence oxidative responses. PMID:26557192

  10. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk-run-rest mixtures.

    Science.gov (United States)

    Long, Leroy L; Srinivasan, Manoj

    2013-04-06

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk-run mixture at intermediate speeds and a walk-rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients-a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk-run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill.

  11. Validity and reliability of a portable gait analysis system for measuring spatiotemporal gait characteristics: comparison to an instrumented treadmill.

    Science.gov (United States)

    Donath, Lars; Faude, Oliver; Lichtenstein, Eric; Nüesch, Corina; Mündermann, Annegret

    2016-01-20

    Gait analysis serves as an important tool for clinicians and other health professionals to assess gait patterns related to functional limitations due to neurological or orthopedic conditions. The purpose of this study was to assess the validity of a body-worn inertial sensor system (RehaGait®) for measuring spatiotemporal gait characteristics compared to a stationary treadmill (Zebris) and the reliability of both systems at different walking speeds and slopes. Gait analysis was performed during treadmill walking at different speeds (habitual walking speed (normal speed); 15 % above normal walking speed; 15 % below normal walking speed) and slopes (0 % slope; 15 % slope) in 22 healthy participants twice 1 week apart. Walking speed, stride length, cadence and stride time were computed from the inertial sensor system and the stationary treadmill and compared using repeated measures analysis of variance. Effect sizes of differences between systems were assessed using Cohen's d, and limits of agreement and systematic bias were computed. The RehaGait® system slightly overestimated stride length (+2.7 %) and stride time (+0.8 %) and underestimate cadence (-1.5 %) with small effect sizes for all speeds and slopes (Cohen's d ≤ 0.44) except slow speed at 15 % slope (Cohen's d > 0.80). Walking speed obtained with the RehaGait® system closely matched the speed set on the treadmill tachometer. Intraclass correlation coefficients (ICC) were excellent for speed, cadence and stride time and for stride length at normal and fast speed at 0 % slope (ICC: .91-1.00). Good ICC values were found for stride length at slow speed at 0 % slope and all speeds at 15 % slope (ICC: .73-.90). Both devices had excellent reliability for most gait characteristics (ICC: .91-1.00) except good reliability for the RehaGait® for stride length at normal and fast speed at 0 % slope and at slow speed at 15 % slope (ICC: .80-.87). Larger limits of agreement for walking at 15

  12. The Perceived Naturalness of Virtual Walking Speeds during WIP Locomotion

    DEFF Research Database (Denmark)

    Nilsson, Niels Chr.; Serafin, Stefania; Nordahl, Rolf

    2016-01-01

    It is well established that individuals tend to underestimate visually presented walking speeds when relying on treadmills for virtual walking. However, prior to the present studies this perceptual distortion had not been observed in relation to Walking-in-Place (WIP) locomotion, and a number...... of the factors contributing to the perceptual distortion have yet to be identified. In this paper we present a summary of seven of our studies investigating what factors that influence self-motion perception during virtual walking and two meta-analyses of the findings of the seven studies. The studies relate...... to how gait cycle characteristics, visual display properties, and methodological differences affect speed underestimation during treadmill and WIP locomotion. The studies suggested the following: A significant main effect was found for step frequency; both display and geometric field of view were...

  13. Partial Body Weight-Supported Treadmill Training in Spinocerebellar Ataxia.

    Science.gov (United States)

    de Oliveira, Laura Alice Santos; Martins, Camilla Polonini; Horsczaruk, Carlos Henrique Ramos; da Silva, Débora Cristina Lima; Vasconcellos, Luiz Felipe; Lopes, Agnaldo José; Meira Mainenti, Míriam Raquel; Rodrigues, Erika de Carvalho

    2018-01-01

    The motor impairments related to gait and balance have a huge impact on the life of individuals with spinocerebellar ataxia (SCA). Here, the aim was to assess the possibility of retraining gait, improving cardiopulmonary capacity, and challenging balance during gait in SCA using a partial body weight support (BWS) and a treadmill. Also, the effects of this training over functionality and quality of life were investigated. Eight SCA patients were engaged in the first stage of the study that focused on gait training and cardiovascular conditioning. From those, five took part in a second stage of the study centered on dynamic balance training during gait. The first and second stages lasted 8 and 10 weeks, respectively, both comprising sessions of 50 min (2 times per week). The results showed that gait training using partial BWS significantly increased gait performance, treadmill inclination, duration of exercise, and cardiopulmonary capacity in individuals with SCA. After the second stage, balance improvements were also found. Combining gait training and challenging tasks to the postural control system in SCA individuals is viable, well tolerated by patients with SCA, and resulted in changes in capacity for walking and balance.

  14. Displacement of the pelvis during human walking : experimental data and model predictions

    NARCIS (Netherlands)

    Zijlstra, W; Hof, AL

    1997-01-01

    Displacements of the pelvis during treadmill walking were studied in dependence of walking speed, stride frequency and stride length. Displacement curves per stride cycle were described by means of harmonic analysis. Simple mechanical, or geometrical models of the body's center of mass (COM)

  15. Effect of walking speed on typing performance using an active workstation.

    Science.gov (United States)

    Funk, Rachel E; Taylor, Megan L; Creekmur, Ceith C; Ohlinger, Christine M; Cox, Ronald H; Berg, William P

    2012-08-01

    This study tested the effect of treadmill walking speed on typing performance when these tasks were performed simultaneously. 24 research participants (M age = 23.2 yr.) performed a typing test under each of four conditions including the control (seated), treadmill walking at 1.3 km/hr., 2.25 km/hr., and 3.2 km/hr. Results indicated that treadmill walking had a detrimental effect on typing performance, but that the walking speed of 2.25 km/hr. would result in better typing performance than the slower and faster speeds. Seated typing was better than typing while walking at 1.3 km/hr. and typing while walking at 3.2 km/hr. Typing performance while walking at 2.25 km/hr. was not different than seated typing performance. The results support the potential of treadmill walking at 2.25 km/hr. to provide low-intensity physical activity without compromising typing performance.

  16. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed

    NARCIS (Netherlands)

    Fokkema, Tryntsje; Kooiman, Thea J. M.; Krijnen, Wim P.; Van der Schans, Cees P.; De Groot, Martijn

    Purpose: To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Methods: Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge

  17. Effect of balance support on the energy cost of walking after stroke.

    NARCIS (Netherlands)

    Ijmker, T.; Houdijk, J.H.P.; Lamoth, C.J.C.; Jarbandhan, A.; Rijntjes, D.; Beek, P.J.; van der Woude, L.H.V.

    2013-01-01

    Objective: To examine the influence of balance support on the energy cost of treadmill and overground walking in ambulatory patients with stroke. Design: Cross-sectional. Setting: Research laboratory at a rehabilitation center. Participants: Patients with stroke depending on a walking aid in daily

  18. Locomotion Strategy and Magnitude of Ground Reaction Forces During Treadmill Training on ISS.

    Science.gov (United States)

    Fomina, Elena; Savinkina, Alexandra

    2017-09-01

    Creation of the cosmonaut in-flight physical training process is currently based on the leading role of support afferents in the development of hypogravity changes in the motor system. We assume that the strength of support afferents is related to the magnitude of the ground reaction forces (GRF). For this purpose it was necessary to compare the GRF magnitude on the Russian BD-2 treadmill for different locomotion types (walking and running), modes (active and passive), and subjects. Relative GRF values were analyzed while subjects performed walking and running during active and passive modes of treadmill belt movement under 1 G (N = 6) and 0 G (N = 4) conditions. For different BD-2 modes and both types of locomotion, maximum GRF values varied in both 0 G and 1 G. Considerable individual variations were also found in the locomotion strategies, as well as in maximum GRF values. In 0 G, the smallest GRF values were observed for walking in active mode, and the largest during running in passive mode. In 1 G, GRF values were higher during running than while walking, but the difference between active and passive modes was not observed; we assume this was due to the uniqueness of the GRF profile. The maximum GRF recorded during walking and running in active and passive modes depended on the individual pattern of locomotion. The maximum GRF values that we recorded on BD-2 were close to values found by other researchers. The observations from this study could guide individualized countermeasures prescriptions for microgravity.Fomina E, Savinkina A. Locomotion strategy and magnitude of ground reaction forces during treadmill training on ISS. Aerosp Med Hum Perform. 2017; 88(9):841-849.

  19. Give your ideas some legs: the positive effect of walking on creative thinking.

    Science.gov (United States)

    Oppezzo, Marily; Schwartz, Daniel L

    2014-07-01

    Four experiments demonstrate that walking boosts creative ideation in real time and shortly after. In Experiment 1, while seated and then when walking on a treadmill, adults completed Guilford's alternate uses (GAU) test of creative divergent thinking and the compound remote associates (CRA) test of convergent thinking. Walking increased 81% of participants' creativity on the GAU, but only increased 23% of participants' scores for the CRA. In Experiment 2, participants completed the GAU when seated and then walking, when walking and then seated, or when seated twice. Again, walking led to higher GAU scores. Moreover, when seated after walking, participants exhibited a residual creative boost. Experiment 3 generalized the prior effects to outdoor walking. Experiment 4 tested the effect of walking on creative analogy generation. Participants sat inside, walked on a treadmill inside, walked outside, or were rolled outside in a wheelchair. Walking outside produced the most novel and highest quality analogies. The effects of outdoor stimulation and walking were separable. Walking opens up the free flow of ideas, and it is a simple and robust solution to the goals of increasing creativity and increasing physical activity. PsycINFO Database Record (c) 2014 APA, all rights reserved.

  20. Energy cost of walking: comparison of "intelligent prosthesis" with conventional mechanism.

    Science.gov (United States)

    Buckley, J G; Spence, W D; Solomonidis, S E

    1997-03-01

    To determine physiological energy cost with Blatchford's "Intelligent Prosthesis" (IP) compared to energy cost with a conventional pneumatic swing phase control (PSPC) mechanism. Before-After trial: subjects fitted with IP walked on programmable treadmill at speeds: 6 min slow, 6 min fast, 8 min while speed changed, between slow, normal, and fast, every minute, and 6 min normal. Breath-by-breath analysis of subject's expired air determined average Vo2 (L/min) within each period. Procedure repeated after 1-week interval using PSPC prosthesis. Testing sessions supervised by experienced prosthetist. Rehabilitation centre. Volunteer sample. Three men, unilateral transfemoral traumatic amputee patients, ages 39 to 59 years. Normally used ischial containment socket, Blatchford Endolite Stabilised Stance Flex knee with PSPC and Multiflex foot and ankle. Fitting, programming, and alignment of IP (own socket) by Bioengineering Unit's resident prosthetist, IP's microprocessor programmed to facilitate five walking speeds. Physiological energy cost (Vo2), of using IP compared to using PSPC mechanism. Two subjects displayed reduced Vo2 of between 5.6% and 9.0% using IP compared to PSPC prosthesis at a pace either faster or slower than their normal pace. Third subject showed no significant change in oxygen consumption despite IP unit being heavier. All subjects displayed reduced Vo2 (averaging 4.1%) using IP for period of variable speed walking. Although differences were small, they tend to indicate that use of the heavier IP unit lowered the energy cost of walking at speeds other than the amputee's normal pace.

  1. Efeito da intervenção em esteira motorizada na aquisição da marcha independente e desenvolvimento motor em bebês de risco para atraso desenvolvimental Efecto de la intervención en caminadora automática en la adquisición de la marcha independiente y desarrollo motor en bebés de riesgo para retraso de desarrollo Treadmill training effects on walking acquisition and motor development in infants at risk of developmental delay

    Directory of Open Access Journals (Sweden)

    Diana Xavier C. Schlittler

    2011-03-01

    ática para el grupo experimental. Todos los bebés fueron evaluados mensualmente por la Alberta Infant Motor Scale y los del grupo experimental fueron filmados realizando los pasos en la caminadora. Comparaciones entre los grupos a lo largo del tiempo fueron realizadas utilizando análisis de variancia (ANOVA y de multivariancia (MANOVA. RESULTADOS: Los bebés del grupo experimental adquirieron la marcha independiente a los 12,8 y los del grupo control de riesgo a los 13,8 meses de edad corregida, siendo que la adquisición del grupo control de riesgo ocurrió más tarde que en el grupo control típico (1,1 meses; pOBJECTIVE: To examine the effect of motorized treadmill intervention on independent walking acquisition and other motor milestones in infants at risk of developmental delay. METHODS: Experimental study with 15 infants, observed since the 5th month of age: five infants at risk of developmental delay submitted to both physiotherapy sessions and intervention in motorized treadmill (Experimental Group; five infants at risk of developmental delay submitted to physiotherapy sessions only (Risk Control Group; and five infants without risks of developmental delay (Typical Control Group. Physiotherapy sessions occurred twice a week, followed by motorized treadmill intervention for the Experimental Group. Motorized treadmill intervention began when infants acquired cephalic control and was interrupted by independent walking or at 14 months post-conceptual age. All babies were monthly assessed with Alberta Infant Motor Scale and the Experimental Group was filmed during the exercise on the motorized treadmill. Comparisons among groups and months were performed using analysis of variance (ANOVA and multivariance (MANOVA. RESULTS: Experimental Group infants acquired independent walking at 12.8 months and the Risk Control Group infants at 13.8 months of corrected age, which was delayed compared to the Typical Control Group (1.1 months; p<0.05. Experimental Group of infants

  2. Cardiovascular responses to treadmill exercise in Nigerian ...

    African Journals Online (AJOL)

    2011-07-25

    Jul 25, 2011 ... Background: Left ventricular hypertrophy (LVH) is an independent risk factor for adverse cardiac outcomes in hypertensive patients. Objective: This study is designed to assess the cardiovascular responses to treadmill exercise among Nigerian hypertensives with echocardiographically proven LVH.

  3. Uphill walking with a simple exoskeleton: plantarflexion assistance leads to proximal adaptations.

    Science.gov (United States)

    Galle, S; Malcolm, P; Derave, W; De Clercq, D

    2015-01-01

    While level walking with a pneumatic ankle-foot exoskeleton is studied extensively, less is known on uphill walking. The goals of this study were to get a better understanding of the biomechanical adaptations and the influence of actuation timing on metabolic cost during uphill walking with a plantarflexion assisting exoskeleton. Seven female subjects walked on a treadmill with 15% inclination at 1.36 ms(-1) in five conditions (4 min): one condition with an unpowered exoskeleton and four with a powered exoskeleton with onset of pneumatic muscle actuation at 19, 26, 34 and 41% of stride. During uphill walking the metabolic cost was more than 10% lower for all powered conditions compared to the unpowered condition. When actuation onset was in between 26 and 34% of the stride, metabolic cost was suggested to be minimal. While it was expected that exoskeleton assistance would reduce muscular activity of the plantarflexors during push-off, subjects used the additional power to raise the body centre of mass in the beginning of each step to a higher point compared to unpowered walking. This reduced the muscular activity in the m. vastus lateralis and the m. biceps femoris as less effort was necessary to reach the highest body centre of mass position in the single support phase. In conclusion, subjects can use plantarflexion assistance during the push-off to reduce muscular activity in more proximal joints in order to minimize energy cost during uphill locomotion. Kinetic data seem necessary to fully understand this mechanism, which highlights the complexity of human-exoskeleton interaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Walking economy in people with Parkinson's disease.

    Science.gov (United States)

    Christiansen, Cory L; Schenkman, Margaret L; McFann, Kim; Wolfe, Pamela; Kohrt, Wendy M

    2009-07-30

    Gait dysfunction is an early problem identified by patients with Parkinson's disease (PD). Alterations in gait may result in an increase in the energy cost of walking (i.e., walking economy). The purpose of this study was to determine whether walking economy is atypical in patients with PD when compared with healthy controls. A secondary purpose was to evaluate the associations of age, sex, and level of disease severity with walking economy in patients with PD. The rate of oxygen consumption (VO(2)) and other responses to treadmill walking were compared in 90 patients (64.4 +/- 10.3 years) and 44 controls (64.6 +/- 7.3 years) at several walking speeds. Pearson correlation coefficients (r) were calculated to determine relationships of age, sex, and disease state with walking economy in PD patients. Walking economy was significantly worse in PD patients than in controls at all speeds above 1.0 mph. Across all speeds, VO(2) was 6 to 10% higher in PD patients. Heart rate, minute ventilation, respiratory exchange ratio, and rating of perceived exertion were correspondingly elevated. No significant relationship of age, sex, or UPDRS score with VO(2) was found for patients with PD. The findings suggest that the physiologic stress of daily physical activities is increased in patients with early to mid-stage PD, and this may contribute to the elevated level of fatigue that is characteristic of PD. Copyright 2009 Movement Disorder Society.

  5. Factors predicting walking intolerance in patients with peripheral ...

    African Journals Online (AJOL)

    Objective. To determine which physiological variables conduce to walking intolerance in patients with peripheral arterial disease (PAD). Design. The physiological response to a graded treadmill exercise test (GTT) in patients with PAD was characterised. Setting. Patients were recruited from the Department of. Vascular ...

  6. Impact of Mild versus Moderate Intensity Aerobic Walking Exercise ...

    African Journals Online (AJOL)

    Background: Patients with hemophilia A have low bone density than healthy controls. It is now widely recognized that physical activity and sports are beneficial for patients with hemophilia. Objective: The aim of this study was to compare the effects of mild and moderate intensity treadmill walking exercises on markers of ...

  7. Metabolic Rate and Ground Reaction Force During Motorized and Non-Motorized Treadmill Exercise

    Science.gov (United States)

    Everett, Meghan E.; Loehr, James A.; DeWitt, John K.; Laughlin, Mitzi; Lee, Stuart M. C.

    2010-01-01

    PURPOSE: To measure vertical ground reaction force (vGRF) and oxygen consumption (VO2) at several velocities during exercise using a ground-based version of the ISS treadmill in the M and NM modes. METHODS: Subjects (n = 20) walked or ran at 0.89, 1.34, 1.79, 2.24, 2.68, and 3.12 m/s while VO2 and vGRF data were collected. VO2 was measured using open-circuit spirometry (TrueOne 2400, Parvo-Medics). Data were averaged over the last 2 min of each 5-min stage. vGRF was measured in separate 15-s bouts at 125 Hz using custom-fitted pressure-sensing insoles (F-Scan Sport Sensors, Tekscan, Inc). A repeated-measures ANOVA was used to test for differences in VO2 and vGRF between M and NM and across speeds. Significance was set at P < 0.05. RESULTS: Most subjects were unable to exercise for 5 min at treadmill speeds above 1.79 m/s in the NM mode; however, vGRF data were obtained for all subjects at each speed in both modes. VO2 was approx.40% higher during NM than M exercise across treadmill speeds. vGRF increased with treadmill speed but was not different between modes. CONCLUSION: Higher VO2 with no change in vGRF suggests that the additional metabolic cost associated with NM treadmill exercise is accounted for in the horizontal forces required to move the treadmill belt. Although this may limit the exercise duration at faster speeds, high-intensity NM exercise activates the hamstrings and plantarflexors, which are not specifically targeted or well protected by other in-flight countermeasures.

  8. Perturbation During Treadmill Training Improves Dynamic Balance and Gait in Parkinson's Disease: A Single-Blind Randomized Controlled Pilot Trial.

    Science.gov (United States)

    Steib, Simon; Klamroth, Sarah; Gaßner, Heiko; Pasluosta, Cristian; Eskofier, Björn; Winkler, Jürgen; Klucken, Jochen; Pfeifer, Klaus

    2017-08-01

    Gait and balance dysfunction are major symptoms in Parkinson's disease (PD). Treadmill training improves gait characteristics in this population but does not reflect the dynamic nature of controlling balance during ambulation in everyday life contexts. To evaluate whether postural perturbations during treadmill walking lead to superior effects on gait and balance performance compared with standard treadmill training. In this single-blind randomized controlled trial, 43 PD patients (Hoehn & Yahr stage 1-3.5) were assigned to either an 8-week perturbed treadmill intervention (n = 21) or a control group (n = 22) training on the identical treadmill without perturbations. Patients were assessed at baseline, postintervention, and at 3 months' follow-up. Primary endpoints were overground gait speed and balance (Mini-BESTest). Secondary outcomes included fast gait speed, walking capacity (2-Minute Walk Test), dynamic balance (Timed Up-and-Go), static balance (postural sway), and balance confidence (Activities-Specific Balance Confidence [ABC] scale). There were no significant between-group differences in change over time for the primary outcomes. At postintervention, both groups demonstrated similar improvements in overground gait speed ( P = .009), and no changes in the Mini-BESTest ( P = .641). A significant group-by-time interaction ( P = .048) existed for the Timed Up-and-Go, with improved performance only in the perturbation group. In addition, the perturbation but not the control group significantly increased walking capacity ( P = .038). Intervention effects were not sustained at follow-up. Our primary findings suggest no superior effect of perturbation training on gait and balance in PD patients. However, some favorable trends existed for secondary gait and dynamic balance parameters, which should be investigated in future trials.

  9. Cardiovascular rehabilitation soon after stroke using feedback-controlled robotics-assisted treadmill exercise: study protocol of a randomised controlled pilot trial.

    Science.gov (United States)

    Stoller, Oliver; de Bruin, Eling D; Schuster-Amft, Corina; Schindelholz, Matthias; de Bie, Rob A; Hunt, Kenneth J

    2013-09-22

    After experiencing a stroke, most individuals also suffer from cardiac disease, are immobile and thus have low endurance for exercise. Aerobic capacity is seriously reduced in these individuals and does not reach reasonable levels after conventional rehabilitation programmes. Cardiovascular exercise is beneficial for improvement of aerobic capacity in mild to moderate stroke. However, less is known about its impact on aerobic capacity, motor recovery, and quality-of-life in severely impaired individuals. The aim of this pilot study is to explore the clinical efficacy and feasibility of cardiovascular exercise with regard to aerobic capacity, motor recovery, and quality-of-life using feedback-controlled robotics-assisted treadmill exercise in non-ambulatory individuals soon after experiencing a stroke. This will be a single-centred single blind, randomised control trial with a pre-post intervention design. Subjects will be recruited early after their first stroke (≤20 weeks) at a neurological rehabilitation clinic and will be randomly allocated to an inpatient cardiovascular exercise programme that uses feedback-controlled robotics-assisted treadmill exercise (experimental) or to conventional robotics-assisted treadmill exercise (control). Intervention duration depends on the duration of each subject's inpatient rehabilitation period. Aerobic capacity, as the primary outcome measure, will be assessed using feedback-controlled robotics-assisted treadmill-based cardiopulmonary exercise testing. Secondary outcome measures will include gait speed, walking endurance, standing function, and quality-of-life. Outcome assessment will be conducted at baseline, after each 4-week intervention period, and before clinical discharge. Ethical approval has been obtained. Whether cardiovascular exercise in non-ambulatory individuals early after stroke has an impact on aerobic capacity, motor recovery, and quality-of-life is not yet known. Feedback-controlled robotics

  10. A treadmill and motion coupled virtual reality system for gait training post-stroke.

    Science.gov (United States)

    Fung, Joyce; Richards, Carol L; Malouin, Francine; McFadyen, Bradford J; Lamontagne, Anouk

    2006-04-01

    A virtual reality (VR)-based locomotor training system has been developed for gait rehabilitation post-stroke. The system consists of a self-paced treadmill mounted onto a 6-degrees-of-freedom motion platform. Virtual environments (VEs) that are synchronized with the speed of the treadmill and the motions of the platform are rear-projected onto a screen in front of the walking subject. A feasibility study was conducted to test the capability of two stroke patients and one healthy control to be trained with the system. Three VE scenarios (corridor walking, street crossing, and park stroll) were woven into a gait-training program that provided three levels of complexity (walking speed, slopes, collision avoidances), progression criteria (number of successful trials) and knowledge of results. Results show that, with practice, patients can effectively increase their gait speed as demanded by the task and adapt their gait with respect to the change in physical terrain. However, successful completion of tasks requiring adaptation to increasing demands related to speed and physical terrains does not necessarily predict the patient's ability to anticipate and avoid collision with obstacles during walking. This feasibility study demonstrates that persons with stroke are able to adapt to this novel VR system and be immersed in the VEs for gait training.

  11. Walking Problems

    Science.gov (United States)

    ... your legs or feet Movement disorders such as Parkinson's disease Diseases such as arthritis or multiple sclerosis Vision or balance problems Treatment of walking problems depends on the cause. Physical therapy, surgery, or mobility aids may help.

  12. Enhancing performance during inclined loaded walking with a powered ankle-foot exoskeleton.

    Science.gov (United States)

    Galle, Samuel; Malcolm, Philippe; Derave, Wim; De Clercq, Dirk

    2014-11-01

    A simple ankle-foot exoskeleton that assists plantarflexion during push-off can reduce the metabolic power during walking. This suggests that walking performance during a maximal incremental exercise could be improved with an exoskeleton if the exoskeleton is still efficient during maximal exercise intensities. Therefore, we quantified the walking performance during a maximal incremental exercise test with a powered and unpowered exoskeleton: uphill walking with progressively higher weights. Nine female subjects performed two incremental exercise tests with an exoskeleton: 1 day with (powered condition) and another day without (unpowered condition) plantarflexion assistance. Subjects walked on an inclined treadmill (15%) at 5 km h(-1) and 5% of body weight was added every 3 min until exhaustion. At volitional termination no significant differences were found between the powered and unpowered condition for blood lactate concentration (respectively, 7.93 ± 2.49; 8.14 ± 2.24 mmol L(-1)), heart rate (respectively, 190.00 ± 6.50; 191.78 ± 6.50 bpm), Borg score (respectively, 18.57 ± 0.79; 18.93 ± 0.73) and VO₂ peak (respectively, 40.55 ± 2.78; 40.55 ± 3.05 ml min(-1) kg(-1)). Thus, subjects were able to reach the same (near) maximal effort in both conditions. However, subjects continued the exercise test longer in the powered condition and carried 7.07 ± 3.34 kg more weight because of the assistance of the exoskeleton. Our results show that plantarflexion assistance during push-off can increase walking performance during a maximal exercise test as subjects were able to carry more weight. This emphasizes the importance of acting on the ankle joint in assistive devices and the potential of simple ankle-foot exoskeletons for reducing metabolic power and increasing weight carrying capability, even during maximal intensities.

  13. Validity and reproducibility of a new treadmill protocol: the Fitkids Treadmill Test.

    NARCIS (Netherlands)

    Kotte, E.M.W.; Groot, J.F. de; Bongers, B.C.; Winkler, A.M.F.; Takken, T.

    2015-01-01

    Purpose: This study aimed to investigate the validity and reproducibility of a new treadmill protocol in healthy children and adolescents: the Fitkids Treadmill Test (FTT). Methods:Sixty-eight healthy children and adolescents (6-18 yr) were randomly divided into a validity group (14 boys and 20

  14. Validity and Reproducibility of a New Treadmill Protocol : The Fitkids Treadmill Test

    NARCIS (Netherlands)

    Kotte, Elles M W; De Groot, Janke F.; Bongers, Bart C.; Winkler, Alexander M F; Takken, Tim

    2015-01-01

    Purpose This study aimed to investigate the validity and reproducibility of a new treadmill protocol in healthy children and adolescents: the Fitkids Treadmill Test (FTT). Methods Sixty-eight healthy children and adolescents (6-18 yr) were randomly divided into a validity group (14 boys and 20

  15. Treadmill training effects in different age groups following middle cerebral artery occlusion in rats.

    Science.gov (United States)

    Wang, Ray-Yau; Yu, Shang-Ming; Yang, Yea-Ru

    2005-01-01

    Despite the increased understanding of treadmill training on stroke patients, its effects on different age groups are not clearly known. The present study presents such effects through a model of cerebral ischemia on young and old groups of rats. To investigate the effect of treadmill training on young and old rats after cerebral ischemia caused by middle cerebral artery occlusion (MCAO). Forty old (22-24 months of age) and 32 young (3-4 months of age) rats underwent the MCAO procedure for 60 min. Rats that survived the procedure were randomly assigned to a 1- or a 2-week treadmill training group, or a time-matched control group (n=6-8 for each group). The infarct volume was compared between the treadmill training and the control groups for both the young and old rats at 1 or 2 weeks. After treadmill training for 1 week, the mean infarct volume was 7.26+/-0.49 and 9.51+/-0.84% for the young and old rats, respectively. The 1-week treadmill training effect was significant in the young rats (p=0.0207) but not in the old rats (p=0.0840). The mean infarct volume was 6.84+/-0.51 and 7.63+/-0.52% for the young and old rats, respectively, after the 2-week treadmill training. Both the young and old rat groups demonstrated a significant reduction in the infarct volume compared with that of the control group (p=0.021 for the young group and p=0.039 for the old group) after 2 weeks of treadmill training. The present findings clearly demonstrate the different training effects of locomotor activity in reducing ischemic infarction in young and old rats. The delayed reduction in ischemic infarction in old rats was notable and may be attributable to the slow response of angiogenic and neurogenic mechanisms in the old rats. Copyright (c) 2005 S. Karger AG, Basel

  16. Design and Control of a Powered Hip Exoskeleton for Walking Assistance

    Directory of Open Access Journals (Sweden)

    Qingcong Wu

    2015-03-01

    Full Text Available The wearable powered exoskeleton is a human-robot cooperation system that integrates the strength of a robot with human intelligence. This paper presents the research results into a powered hip exoskeleton (PH-EXOS designed to provide locomotive assistance to individuals with walking impediments. The Bowden cable actuated exoskeleton has an anthropomorphic structure with six degrees of freedom (DOF in order to match the human hip anatomy and enable natural interaction with the user. The mechanical structure, the actuation system, and the interaction kinematics of PH-EXOS are optimized to achieve preferable manoeuvrability and harmony. For the control of the exoskeleton, a real-time control system is established in xPC target environment based on Matlab/RTW. A Cascaded PID controller is developed to perform the trajectories tracking tasks in passive control mode. Besides, based on the pressure information on the thigh, a fuzzy adaptive controller is developed to perform walking assistance tasks in active control mode. Preliminary treadmill walking experiments on a healthy subject were conducted to verify the effectiveness of the proposed device and control approaches in reducing walking effort.

  17. Effectiveness of treadmill training on balance control in elderly people: a randomized controlled clinical trial.

    Science.gov (United States)

    Pirouzi, Soraya; Motealleh, Ali Reza; Fallahzadeh, Fatemeh; Fallahzadeh, Mohammad Amin

    2014-11-01

    Physical exercise would improve postural stability, which is an essential factor in preventing accidental fall among the elderly population. The aim of this study is to examine the effectiveness of treadmill walking on balance improvement among the elderly people. A total of 30 community dwelling older adults with a Berg Balance Scale score of 36-48 and the ability to walk without aid were considered and divided into control (n=15) and experimental (n=15) groups. Individuals in the experimental group participated in 30 minutes of forward and backward treadmill training based on three times a week interval for a period of four weeks. Individuals in the control group were instructed to continue with their daily routine activity. Before and after training, gait speed was measured by six-minute walk test and balance ability was evaluated by Fullerton Advanced Balance Scale (FABS) and Berg Balance Scale (BBS) tests. Postural sway items such as the Center of Pressure (COP), average displacement and velocity were evaluated by using a force platform system. Data were collected in quiet standing, tandem position and standing on foam pads before and after intervention. After intervention, balance variables in the experimental group indicated a significant improvement in quiet standing on firm and foam surfaces, but no considerable improvement was shown in tandem position. A between-group comparison showed a significant reduction in COP velocity in the sagittal plane (P=0.030) during quiet standing and in the frontal plane (P=0.001) during standing on foam, whereas no significant reduction in COP parameters during tandem position was found. It is recommended that twelve sessions of forward and backward treadmill walk are effective in balance improvement in elderly people. IRCT201209199440N2.

  18. Effectiveness of Treadmill Training on Balance Control in Elderly People: A Randomized Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Soraya Pirouzi

    2014-11-01

    Full Text Available Physical exercise would improve postural stability, which is an essential factor in preventing accidental fall among the elderly population. The aim of this study is to examine the effectiveness of treadmill walking on balance improvement among the elderly people. A total of 30 community dwelling older adults with a Berg Balance Scale score of 36-48 and the ability to walk without aid were considered and divided into control (n=15 and experimental (n=15 groups. Individuals in the experimental group participated in 30 minutes of forward and backward treadmill training based on three times a week interval for a period of four weeks. Individuals in the control group were instructed to continue with their daily routine activity. Before and after training, gait speed was measured by six-minute walk test and balance ability was evaluated by Fullerton Advanced Balance Scale (FABS and Berg Balance Scale (BBS tests. Postural sway items such as the Center of Pressure (COP, average displacement and velocity were evaluated by using a force platform system. Data were collected in quiet standing, tandem position and standing on foam pads before and after intervention. After intervention, balance variables in the experimental group indicated a significant improvement in quiet standing on firm and foam surfaces, but no considerable improvement was shown in tandem position. A between-group comparison showed a significant reduction in COP velocity in the sagittal plane (P=0.030 during quiet standing and in the frontal plane (P=0.001 during standing on foam, whereas no significant reduction in COP parameters during tandem position was found. It is recommended that twelve sessions of forward and backward treadmill walk are effective in balance improvement in elderly people. Trial Registration Number: IRCT201209199440N2

  19. Nordic Walking May Safely Increase the Intensity of Exercise Training in Healthy Subjects and in Patients with Chronic Heart Failure.

    Science.gov (United States)

    Lejczak, Andrzej; Josiak, Krystian; Węgrzynowska-Teodorczyk, Kinga; Rudzińska, Eliza; Jankowska, Ewa A; Banasiak, Waldemar; Piepoli, Massimo F; Woźniewski, Marek; Ponikowski, Piotr

    2016-01-01

    Physical activity in patients with chronic heart failure (HF) improves the exercise capacity and quality of life, and may also reduce mortality and hospitalizations. The greatest benefits are achieved through high-intensity aerobic exercises resulting in a stronger cardiorespiratory response. Nordic walking (NW), a walking technique using two poles and mimicking the movements performed while cross-country skiing, is associated with the involvement of more muscle groups than in the case of classic walking, and should therefore make it possible to increase exercise intensity, resulting in more effective training for patients with HF. The aim of the study was to assess the feasibility and safety of the NW technique, and to compare the effort intensity while walking with and without the NW technique in both healthy subjects and in patients with chronic HF. The study involved 12 healthy individuals (aged 30 ± 10 years, 5 men) and 12 men with stable chronic systolic HF (aged 63 ± 11 years, all categorized in New York Heart Association class II, median LVEF 30%, median peak VO(2) 18.25 mL/kg/min). All the participants completed two randomly assigned submaximal walking tests (one with NW poles and one without) conducted on a level treadmill for 6 min at a constant speed of 5 km/h. Walking with the NW technique was feasible, safe and well tolerated in all subjects. In both the control group and the chronic HF group, walking with the NW technique increased peak VO(2), RER, VE, PET CO(2), HR and SBP over walking without the poles; and the fatigue grade according to the abridged Borg scale was higher. Dyspnea did not increase significantly with the NW technique. The NW technique can increase the intensity of aerobic training in a safe and well-tolerated way in both healthy individuals and in patients with chronic HF.

  20. Study on Assessment of Physical Endurance in Older Persons : Availability of 400-m Walking Performance Test

    OpenAIRE

    芳賀, 脩光; 衣笠, 隆; 仲真, 迅; 十枝内, 厚次; 宮崎, 裕美; 岩下, 太郎; 伊藤, 稔; 渡部, 和彦; 佐藤, 祐造; 大野, 秀樹; Shukoh, HAGA; Takashi, KINUGASA; Hayashi, NAKAMA; Koji, TOSHINAI; Hiromi, MIYAZAKI

    1999-01-01

    Few studies have evaluated physical endurance as measured by a walking performance test. We investigated a 400-m walking test which indirectly assesses physical endurance in older people. In Study I, fifty-three healthy subjects aged 67.8±0.7 years performed and incremental treadmill walking test, and a 400-m walking test. The RPE 11(fairly light)level by the Borg scale was regarded as the exercise intensity during the 400-m walking test. Mean value of pred.VO_2max and VO_2@VT were 25.8ml/kg/...

  1. How to Sync to the Beat of a Persistent Fractal Metronome without Falling Off the Treadmill?

    Directory of Open Access Journals (Sweden)

    Melvyn Roerdink

    Full Text Available In rehabilitation, rhythmic acoustic cues are often used to improve gait. However, stride-time fluctuations become anti-persistent with such pacing, thereby deviating from the characteristic persistent long-range correlations in stride times of self-paced walking healthy adults. Recent studies therefore experimented with metronomes with persistence in interbeat intervals and successfully evoked persistent stride-time fluctuations. The objective of this study was to examine how participants couple their gait to a persistent metronome, evoking persistently longer or shorter stride times over multiple consecutive strides, without wandering off the treadmill. Twelve healthy participants walked on a treadmill in self-paced, isochronously paced and non-isochronously paced conditions, the latter with anti-persistent, uncorrelated and persistent correlations in interbeat intervals. Stride-to-stride fluctuations of stride times, stride lengths and stride speeds were assessed with detrended fluctuation analysis, in conjunction with an examination of the coupling between stride times and stride lengths. Stride-speed fluctuations were anti-persistent for all conditions. Stride-time and stride-length fluctuations were persistent for self-paced walking and anti-persistent for isochronous pacing. Both stride times and stride lengths changed from anti-persistence to persistence over the four non-isochronous metronome conditions, accompanied by an increasingly stronger coupling between these gait parameters, with peak values for the persistent metronomes. These results revealed that participants were able to follow the beat of a persistent metronome without falling off the treadmill by strongly coupling stride-length fluctuations to the stride-time fluctuations elicited by persistent metronomes, so as to prevent large positional displacements along the treadmill. For self-paced walking, in contrast, this coupling was very weak. In combination, these results

  2. Treadmill training as an augmentation treatment for Alzheimer?s disease: a pilot randomized controlled study

    Directory of Open Access Journals (Sweden)

    Cynthia Arcoverde

    2014-03-01

    Full Text Available Objective To assess the effect of aerobic exercise on the cognition and functional capacity in Alzheimer’s disease (AD patients. Method Elderly (n=20 with mild dementia (NINCDS-ADRDA/CDR1 were randomly assigned to an exercise group (EG on a treadmill (30 minutes, twice a week and moderate intensity of 60% VO2max and control group (GC 10 patients. The primary outcome measure was the cognitive function using Cambridge Cognitive Examination (CAMCOG. Specifics instruments were also applied to evaluate executive function, memory, attention and concentration, cognitive flexibility, inhibitory control and functional capacity. Results After 16 weeks, the EG showed improvement in cognition CAMCOG whereas the CG declined. Compared to the CG, the EG presented significant improvement on the functional capacity. The analysis of the effect size has shown a favorable response to the physical exercise in all dependent variables. Conclusion Walking on treadmill may be recommended as an augmentation treatment for patients with AD.

  3. Experiential exposure to texting and walking in virtual reality: A randomized trial to reduce distracted pedestrian behavior.

    Science.gov (United States)

    Schwebel, David C; McClure, Leslie A; Porter, Bryan E

    2017-05-01

    Distracted pedestrian behavior is a significant public health concern, as research suggests distracted pedestrians have significantly higher risk of injury compared to fully attentive pedestrians. Despite this, efforts to reduce distracted pedestrian behavior are scant. Using a repeated measures experimental research design, we implemented a behavioral intervention to reduce distracted pedestrian behavior in the high-risk environment of an urban college campus and simultaneously monitored behavior on a control urban college campus not exposed to the intervention. We had two primary aims: reduce perceived vulnerability to injury among individual pedestrians and reduce distracted pedestrian behavior in the environment through a change in community-based norms. The hallmark of the behavioral intervention was a week-long opportunity for community members to experience personally the risks of distracted pedestrian behavior by attempting to cross a virtual pedestrian environment street while text-messaging. This was supplemented by traditional and social marketing and publicity through various campus partners. A sample of 219 individuals completed self-report surveys about perceived vulnerability to distracted pedestrian injury before experiencing the distracted virtual street-crossing and again after 2 weeks and 5 months. Observational assessment of distracted pedestrian behavior was conducted at a busy intersection on the campus as well as at a control campus not exposed to the intervention at baseline, post-intervention, 10 weeks, and 6 months. The intervention achieved mixed results. Individuals exposed to texting within a simulated pedestrian environment reported changes in their intentions to cross streets while distracted and in perceived vulnerability to risk while crossing streets, but we did not witness evidence of changed community norms based on observed rates of distracted pedestrian behavior before and after the intervention compared to a control campus not

  4. Random walk polynomials and random walk measures

    NARCIS (Netherlands)

    van Doorn, Erik A.; Schrijner, Pauline

    1993-01-01

    Random walk polynomials and random walk measures play a prominent role in the analysis of a class of Markov chains called random walks. Without any reference to random walks, however, a random walk polynomial sequence can be defined (and will be defined in this paper) as a polynomial sequence{Pn(x)}

  5. Effect of treadmill training based real-world video recording on balance and gait in chronic stroke patients: a randomized controlled trial.

    Science.gov (United States)

    Cho, Ki Hun; Lee, Wan Hee

    2014-01-01

    The purpose of this study was to determine the role of treadmill training based real-world video recording (TRWVR) for balance and gait ability in chronic stroke patients. Thirty chronic stroke patients were randomly assigned to either the TRWVR group (n=15) or the control group (n=15). Both groups participated in a standard rehabilitation program; in addition, the TRWVR group participated in TRWVR for 30 min per day, three times per week, for 6 weeks, and the control group participated in treadmill walking training for 30 min per day, three times per week, for 6 weeks. Balance ability was measured using the Berg Balance Scale (BBS), Timed Up and Go test (TUG) and the postural sway by force platform system. Gait performance was measured using a pressure sensitive walkway. Significant differences in the time factor for dynamic balance and gait (Pgait (Pgait in chronic stroke patients when added to treadmill walking. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Facilitators and barriers to using treadmill workstations under real working conditions: a qualitative study in female office workers.

    Science.gov (United States)

    Cifuentes, Manuel; Qin, Jin; Fulmer, Scott; Bello, Anila

    2015-01-01

    Characterize barriers and facilitators to use treadmill workstations in real work sites. For 6 months, workers tried a sit-stand-walk treadmill workstation at will with expert ergonomic support. Qualitative data were collected monthly. Administrative and academic departments at a higher education institution in Massachusetts, United States. Five female administrative office workers. One monthly group interview and one personal interview per participant during 6 months. Emerging topics from previous interviews were used in successive data gatherings. Transcribed data were manually coded according to the predefined topics of usability, comfort, safety, and productivity. The setup of the work station, communication difficulties while walking (disrespectful, noisy), and peer pressure to maximize use were the main usability barriers. There was no event of falls. Trips were minimized. About comfort, subjects reported it hard to get used to prolonged standing position during the first month. Treadmill speed affected productivity mostly while drawing and working in spreadsheets. Lack of job autonomy was revealed as a generic barrier. In this female group, treadmill workstations had serious design problems for workers with not enough control of their jobs. The early identification and removal of barriers likely needs to be considered when offering these workstations to workers with low job autonomy.

  7. Body Weight–Supported Treadmill Training for Patients With Hip Fracture: A Feasibility Study

    Science.gov (United States)

    Giangregorio, Lora M.; Thabane, Lehana; deBeer, Justin; Farrauto, Leonardo; McCartney, Neil; Adachi, Jonathan D.; Papaioannou, Alexandra

    2016-01-01

    Objective To determine the feasibility of body weight–supported treadmill training (BWSTT) as a strategy for improving independent ambulation among patients who had sustained a hip fracture. Design Nonrandomized controlled trial. Setting Inpatient rehabilitation. Participants Patients with a stable hip fracture and at least 50% weight-bearing. Intervention BWSTT in lieu of standard walking exercises throughout stay in rehabilitation. Main Outcomes Measures Feasibility outcomes included the number of patients agreeing to participate in treadmill walking, the number who returned for follow-up assessments, compliance, and the number of adverse events. Secondary outcomes included the Lower Extremity Functional Scale, the Timed Up & Go test, a 2-minute walk test, and the Falls Self-Efficacy Scale. Univariate regression was used to assess the group effect on score changes from baseline to discharge and from baseline to follow-up. Results Among 41 potentially eligible patients, 21 (51%) agreed to participate and 14 returned for follow-up assessments. The recruitment goal of 12 patients agreeing to BWSTT was achieved; however, retention by 3-month follow-up was 67%. The average compliance was 3 sessions a week; however, several patients were below average. No adverse events of BWSTT were reported. There were no significant differences between groups with respect to secondary outcomes. Conclusions BWSTT may be a feasible method for retraining gait among patients with hip fracture. However, future studies evaluating its efficacy need rigorous methods for ensuring compliance and retention. PMID:19969179

  8. Treadmill training with partial body weight support after stroke: a review.

    Science.gov (United States)

    Hesse, Stefan

    2008-01-01

    Restoration and improvement of gait after stroke are major aspects of neurorehabilitation. Mobilization out of the bed into the wheelchair and verticalisation with the help of a standing frame are first steps. With the patient cardiovascular stable, gait restoration is put on the agenda. Instead of tone-inhibiting and gait preparatory maneuvers, patients should practice complex gait cycles repetitively. Treadmill training with partial body weight support enables the harness-secured patients to practice numerous steps assisted by two or three therapists. In controlled studies, it proved equally effective as walking on the floor. Gait machines, as the Lokomat or the Gait Trainer GTI, intend to relieve the strenuous effort for the therapists. For the GTI, several controlled trials showed a superior effect in acute stroke patients with respect to walking ability and velocity. For the ambulatory patient, aerobic treadmill training is effective to improve speed and endurance without worsening gait quality. Belt velocity and inclination are gradually increased so that the patients reach a predefined target heart rate. On the belt, patients walk more symmetrically, and higher velocities result in a facilitation of paretic muscles and render gait more efficient. In summary, gait rehabilitation has seen dramatic changes over the last years. More is to be expected.

  9. Robot-assisted gait training versus equal intensity treadmill training in patients with mild to moderate Parkinson's disease: a randomized controlled trial.

    Science.gov (United States)

    Picelli, Alessandro; Melotti, Camilla; Origano, Francesca; Neri, Roberta; Waldner, Andreas; Smania, Nicola

    2013-06-01

    There is a lack of evidence about the most effective strategy for training gait in mild to moderate Parkinson's disease. The aim of this study was to compare the effects of robotic gait training versus equal intensity treadmill training and conventional physiotherapy on walking ability in patients with mild to moderate Parkinson's disease. Sixty patients with mild to moderate Parkinson's disease (Hoehn & Yahr stage 3) were randomly assigned into three groups. All patients received twelve, 45-min treatment sessions, three days a week, for four consecutive weeks. The Robotic Gait Training group (n = 20) underwent robot-assisted gait training. The Treadmill Training group (n = 20) performed equal intensity treadmill training without body-weight support. The Physical Therapy group (n = 20) underwent conventional gait therapy according to the proprioceptive neuromuscular facilitation concept. Patients were evaluated before, after and 3 months post-treatment. Primary outcomes were the following timed tasks: 10-m walking test, 6-min walking test. No statistically significant difference was found on the primary outcome measures between the Robotic Gait Training group and the Treadmill Training group at the after treatment evaluation. A statistically significant improvement was found after treatment on the primary outcomes in favor of the Robotic Gait Training group and Treadmill Training group compared to the Physical Therapy group. Findings were confirmed at the 3-month follow-up evaluation. Our findings support the hypothesis that robotic gait training is not superior to equal intensity treadmill training for improving walking ability in patients with mild to moderate Parkinson's disease. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Reliability of spatiotemporal and kinetic gait parameters determined by a new instrumented treadmill system.

    Science.gov (United States)

    Reed, Lloyd F; Urry, Stephen R; Wearing, Scott C

    2013-08-21

    Despite the emerging use of treadmills integrated with pressure platforms as outcome tools in both clinical and research settings, published evidence regarding the measurement properties of these new systems is limited. This study evaluated the within- and between-day repeatability of spatial, temporal and vertical ground reaction force parameters measured by a treadmill system instrumented with a capacitance-based pressure platform. Thirty three healthy adults (mean age, 21.5 ± 2.8 years; height, 168.4 ± 9.9 cm; and mass, 67.8 ± 18.6 kg), walked barefoot on a treadmill system (FDM-THM-S, Zebris Medical GmbH) on three separate occasions. For each testing session, participants set their preferred pace but were blinded to treadmill speed. Spatial (foot rotation, step width, stride and step length), temporal (stride and step times, duration of stance, swing and single and double support) and peak vertical ground reaction force variables were collected over a 30-second capture period, equating to an average of 52 ± 5 steps of steady-state walking. Testing was repeated one week following the initial trial and again, for a third time, 20 minutes later. Repeated measures ANOVAs within a generalized linear modelling framework were used to assess between-session differences in gait parameters. Agreement between gait parameters measured within the same day (session 2 and 3) and between days (session 1 and 2; 1 and 3) were evaluated using the 95% repeatability coefficient. There were statistically significant differences in the majority (14/16) of temporal, spatial and kinetic gait parameters over the three test sessions (P kinetic parameters between days. Within-day repeatability was similar to that observed between days. Temporal and kinetic gait parameters were typically more consistent than spatial parameters. The 95% repeatability coefficient for vertical force peaks ranged between ± 53 and ± 63 N. The limits of agreement in spatial

  11. Effects of progressive backward body weight suppoted treadmill training on gait ability in chronic stroke patients: A randomized controlled trial.

    Science.gov (United States)

    Kim, Kyung Hun; Lee, Kyoung Bo; Bae, Young-Hyeon; Fong, Shirley S M; Lee, Suk Min

    2017-10-23

    A stroke patient with hemiplegic gait is generally described as being slow and asymmetric. Body weight-supported treadmill training and backward gait training are recent additions to therapeutic gait trainings that may help improve gait in stroke patient with hemiplegic gait. Therefore, we examined the effect of progressive backward body weight-supported treadmill training on gait in chronic stroke patients with hemiplegic gait. Thirty subjects were divided to the experimental and control groups. The experimental group consisted of 15 patients and underwent progressive backward body weight-supported treadmill training. The control group consisted of 15 patients and underwent general treadmill gait training five times per week, for a total of four weeks. The OptoGait was used to analyze gait kinematics, and the dynamic gait index (DGI) and results of the 6-minute walk test were used as the clinical evaluation indicators. A follow-up test was carried out four weeks later to examine persistence of exercise effects. The experimental group showed statistically significant results in all dependent variables week four compared to the control group. However, until the eighth week, only the dependent variables, of affected step length (ASL), stride length (SL), and DGI differed significantly between the two groups. This study verified that progressive bodyweight-supported treadmill training had a positive influence on the temporospatial characteristics of gait and clinical gait evaluation index in chronic stroke patients.

  12. RIVERSIDE WALK

    Directory of Open Access Journals (Sweden)

    Pablo Fernández Marmisole

    2015-06-01

    Full Text Available Since 2009, and as part of the Neighborhood Law (Ley de Barrios of Catalonia there is a strategic plan to integrate neighborhoods Baró de Viver and Bon Pastor in the city of Barcelona. The guidelines of the plan are to improve public space and to better connect neighborhoods to each other and the adjoining districts and municipalities. Within the strategy includes opening the Besos River to the urban territory through green corridors and installation of equipment. In this sense, the argument is to provide qualified public space to encourage the urban cohesiveness of the neighborhoods through the creation of a new Riverside Walk. The project consists in converting an urban highway into a pacified walk. The stroll also attempts to pacify the area by removing the visual and acoustic pollution caused by the Ronda Litoral (Highway next to the Besos River. In response to this problem the project consists in covering the Ronda Litoral, creating 1.5km of qualified public space, where a set of vegetation and the generation of sun areas will create different spaces that invigorate the territory and connect the neighborhoods. The platform covering the Ronda Litoral includes peaceful meetings with each and every one of the streets that are right with it. The Riverside Walk will be found within less than 400m from 4 metro stations and will have three pedestrian walkways as an access to Barcelona from the neighboring municipality of Santa Coloma. The installation of common equipment, to be shared by the two neighborhoods in the central part of the Riverside Walk is a guiding principle of the integrated strategy. Within the guidelines of the plan for the area of Ley de Barrios lies the importance of public participation; in that sense it is contemplated a participatory process from the initial design phase of the stroll, where subject for debate, reflection and proposal neighbors will design the walk and their equipment. The process will contemplate since the

  13. Gait improvement after treadmill training in ischemic stroke survivors: A critical review of functional MRI studies ☆

    OpenAIRE

    Xiao, Xiang; Huang, Dongfeng; O’Young, Bryan

    2012-01-01

    Stroke survivors often present with abnormal gait, movement training can improve the walking performance post-stroke, and functional MRI can objectively evaluate the brain functions before and after movement training. This paper analyzes the functional MRI changes in patients with ischemic stroke after treadmill training with voluntary and passive ankle dorsiflexion. Functional MRI showed that there are some changes in some regions of patients with ischemic stroke including primary sensorimot...

  14. Biomechanical and Physiological Validation of the Omni-Directional Treadmill Upgrade as a Mobility Platform for Immersive Environments

    Science.gov (United States)

    2011-04-01

    electromyographic ( EMG ) signal over the entire gait cycle for several muscle groups and found activity in the quadriceps alone to be increased during the...through the three- dimensional (3-D) environments. A simulation environment that provides a realistic perception of movement and the effects of fatigue ...moment and braking ground reaction force were the only similar findings between the two studies. The effect of treadmill walking on muscle activity

  15. Cardiovascular responses to treadmill exercise in Nigerian ...

    African Journals Online (AJOL)

    Background: Left ventricular hypertrophy (LVH) is an independent risk factor for adverse cardiac outcomes in hypertensive patients. Objective: This study is designed to assess the cardiovascular responses to treadmill exercise among Nigerian hypertensives with echocardiographically proven LVH. Materials and Methods: ...

  16. Toe Walking in Children

    Science.gov (United States)

    ... normally, toe walking is unlikely to be a cause for concern. Toe walking sometimes can result from certain conditions, including cerebral palsy, muscular dystrophy and autism spectrum disorder. Symptoms Toe walking is walking on the toes ...

  17. Body weight-supported treadmill training for patients with hip fracture: a feasibility study.

    Science.gov (United States)

    Giangregorio, Lora M; Thabane, Lehana; Debeer, Justin; Farrauto, Leonardo; McCartney, Neil; Adachi, Jonathan D; Papaioannou, Alexandra

    2009-12-01

    Giangregorio LM, Thabane L, deBeer J, Farrauto L, McCartney N, Adachi JD, Papaioannou A. Body weight-supported treadmill training for patients with hip fracture: a feasibility study. To determine the feasibility of body weight-supported treadmill training (BWSTT) as a strategy for improving independent ambulation among patients who had sustained a hip fracture. Nonrandomized controlled trial. Inpatient rehabilitation. Patients with a stable hip fracture and at least 50% weight-bearing. BWSTT in lieu of standard walking exercises throughout stay in rehabilitation. Feasibility outcomes included the number of patients agreeing to participate in treadmill walking, the number who returned for follow-up assessments, compliance, and the number of adverse events. Secondary outcomes included the Lower Extremity Functional Scale, the Timed Up & Go test, a 2-minute walk test, and the Falls Self-Efficacy Scale. Univariate regression was used to assess the group effect on score changes from baseline to discharge and from baseline to follow-up. Among 41 potentially eligible patients, 21 (51%) agreed to participate and 14 returned for follow-up assessments. The recruitment goal of 12 patients agreeing to BWSTT was achieved; however, retention by 3-month follow-up was 67%. The average compliance was 3 sessions a week; however, several patients were below average. No adverse events of BWSTT were reported. There were no significant differences between groups with respect to secondary outcomes. BWSTT may be a feasible method for retraining gait among patients with hip fracture. However, future studies evaluating its efficacy need rigorous methods for ensuring compliance and retention.

  18. Influence of the diabetic neuropathy on the behavior of electromyographic and sensorial responses in treadmill gait.

    Science.gov (United States)

    Sacco, I C N; Amadio, A C

    2003-06-01

    We describe and interpret self-cadence treadmill walking by neuropathic diabetic subjects under biomechanical and somatosensorial considerations. EMG variables during stance phase of neuropathic diabetic subjects were acquired and analyzed. We also evaluated sensorial and motor aspects of the feet and legs. The experimental procedures are divided as follows: (a) determination of the sensitive cronaxie and pain tolerance in selected plantar areas, (b) determination and description of temporal aspects of EMG patterns of the vastus lateralis, tibialis anterior and lateral gastrocnemius of both sides during treadmill walking. We analyze and compare the results of the sensitive cronaxie, pain tolerance and the EMG parameters obtained by two experimental groups: diabetic neuropathic (n=20) and non-diabetic control subjects (n=20). The somatosensorial responses and pain tolerance threshold in the diabetic neuropathic group were significantly higher and considered far from the normal patterns. The EMG responses of the thigh and leg muscles in the diabetic neuropathic group were delayed if compared to the normal recruitment pattern, especially the tibialis anterior and vastus lateralis. These findings lead us to conclude that probably central and/or peripheral control mechanisms of the gait of neuropathic diabetic patients are altered due to somatosensorial and motor deficits. The mechanism of load reduction during walking was considered inefficient because of the activation delay of the vastus lateralis and tibialis anterior. We have concluded that the peripheral diabetic neuropathy damages not only somatosensorial and motor sources but also intrinsic mechanisms of motor control leading to alterations in the ankle efficiency in gait. This resulting distal inefficiency compromises some of the principal requirements for gait, such as progression and balance. This investigation is based on an innovating thematic approach involving the diabetic peripheral neuropathy. This

  19. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up.

    Science.gov (United States)

    Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D

    2015-01-01

    About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive-physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (Pcognitive-physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning.

  20. Robot-Assisted Body-Weight-Supported Treadmill Training in Gait Impairment in Multiple Sclerosis Patients: A Pilot Study.

    Science.gov (United States)

    Łyp, Marek; Stanisławska, Iwona; Witek, Bożena; Olszewska-Żaczek, Ewelina; Czarny-Działak, Małgorzata; Kaczor, Ryszard

    2018-02-13

    This study deals with the use of a robot-assisted body-weight-supported treadmill training in multiple sclerosis (MS) patients with gait dysfunction. Twenty MS patients (10 men and 10 women) of the mean of 46.3 ± 8.5 years were assigned to a six-week-long training period with the use of robot-assisted treadmill training of increasing intensity of the Lokomat type. The outcome measure consisted of the difference in motion-dependent torque of lower extremity joint muscles after training compared with baseline before training. We found that the training uniformly and significantly augmented the torque of both extensors and flexors of the hip and knee joints. The muscle power in the lower limbs of SM patients was improved, leading to corrective changes of disordered walking movements, which enabled the patients to walk with less effort and less assistance of care givers. The torque augmentation could have its role in affecting the function of the lower extremity muscle groups during walking. The results of this pilot study suggest that the robot-assisted body-weight-supported treadmill training may be a potential adjunct measure in the rehabilitation paradigm of 'gait reeducation' in peripheral neuropathies.

  1. Effect of body-weight suspension training versus treadmill training on gross motor abilities of children with spastic diplegic cerebral palsy.

    Science.gov (United States)

    Emara, Hatem A; El-Gohary, Tarek M; Al-Johany, Ahmed A

    2016-06-01

    Suspension training and treadmill training are commonly used for promoting functional gross motor skills in children with cerebral palsy. The aim of this study was to compare the effect of body-weight suspension training versus treadmill training on gross motor functional skills. Assessor-blinded, randomized, controlled intervention study. Outpatient rehabilitation facility. Twenty children with spastic diplegia (7 boys and 13 girls) in the age ranged from 6 to 8 years old were randomly allocated into two equal groups. All children were assessed at baseline, after 18-session and after 36-session. During the twelve-week outpatient rehabilitation program, both groups received traditional therapeutic exercises. Additionally, one group received locomotor training using the treadmill while the other group received locomotor training using body-weight suspension through the dynamic spider cage. Assessment included dimensions "D" standing and "E" walking of the gross motor function measure, in addition to the 10-m Walking Test and the five times sit to stand test. Training was applied three times per week for twelve consecutive weeks. No significant difference was found in standing or walking ability for measurements taken at baseline or after 18-session of therapy. Measurements taken at 36-session showed that suspension training achieved significantly (Ptraining for dimension D as well as for dimension E. No significant difference was found between suspension training and treadmill training regarding walking speed or sit to stand transitional skills. Body-weight suspension training is effective in improving walking and locomotor capabilities in children with spastic diplegia. After three month suspension training was superior to treadmill training. Body-weight suspension training promotes adequate postural stability, good balance control, and less exertion which facilitates efficient and safe gait.

  2. Modulation of walking speed by changing optic flow in persons with stroke.

    Science.gov (United States)

    Lamontagne, Anouk; Fung, Joyce; McFadyen, Bradford J; Faubert, Jocelyn

    2007-06-26

    Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF) speed. The present study aims to: 1) compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2) investigate whether virtual environments (VE) manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s), from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek). Instantaneous changes in gait speed (experiment 1) and the ratio of speed changes in the test trial over the control trial (experiment 2) were contrasted between the two groups of subjects. When OF speed was changing continuously (experiment 1), an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p gait speed and OF speed, due to less pronounced changes and an altered phasing of gait speed modulation. When OF speed was manipulated discretely (experiment 2), a negative linear relationship was generally observed between the test-control ratio of gait speed and OF speed in healthy and stroke individuals. The slope of this

  3. Modulation of walking speed by changing optic flow in persons with stroke

    Directory of Open Access Journals (Sweden)

    Lamontagne Anouk

    2007-06-01

    Full Text Available Abstract Background Walking speed, which is often reduced after stroke, can be influenced by the perception of optic flow (OF speed. The present study aims to: 1 compare the modulation of walking speed in response to OF speed changes between persons with stroke and healthy controls and 2 investigate whether virtual environments (VE manipulating OF speed can be used to promote volitional changes in walking speed post stroke. Methods Twelve persons with stroke and 12 healthy individuals walked on a self-paced treadmill while viewing a virtual corridor in a helmet-mounted display. Two experiments were carried out on the same day. In experiment 1, the speed of an expanding OF was varied sinusoidally at 0.017 Hz (sine duration = 60 s, from 0 to 2 times the subject's comfortable walking speed, for a total duration of 5 minutes. In experiment 2, subjects were exposed to expanding OFs at discrete speeds that ranged from 0.25 to 2 times their comfortable speed. Each test trial was paired with a control trial performed at comfortable speed with matching OF. For each of the test trials, subjects were instructed to walk the distance within the same time as during the immediately preceding control trial. VEs were controlled by the CAREN-2 system (Motek. Instantaneous changes in gait speed (experiment 1 and the ratio of speed changes in the test trial over the control trial (experiment 2 were contrasted between the two groups of subjects. Results When OF speed was changing continuously (experiment 1, an out-of-phase modulation was observed in the gait speed of healthy subjects, such that slower OFs induced faster walking speeds, and vice versa. Persons with stroke displayed weaker (p 0.05, T-test. Conclusion Stroke affects the modulation of gait speed in response to changes in the perception of movement through different OF speeds. Nevertheless, the preservation of even a modest modulation enabled the persons with stroke to increase walking speed when

  4. Treadmill Training with HAL Exoskeleton—A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy—Preliminary Study

    Directory of Open Access Journals (Sweden)

    Matthias Sczesny-Kaiser

    2017-08-01

    Full Text Available Purpose: Exoskeletons have been developed for rehabilitation of patients with walking impairment due to neurological disorders. Recent studies have shown that the voluntary-driven exoskeleton HAL® (hybrid assistive limb can improve walking functions in spinal cord injury and stroke. The aim of this study was to assess safety and effects on walking function of HAL® supported treadmill therapy in patients with limb-girdle muscular dystrophy (LGMD.Materials and Methods: Three LGMD patients received 8 weeks of treadmill training with HAL® 3 times a week. Outcome parameters were 10-meter walk test (10 MWT, 6-minute walk test, and timed-up-and-go test (TUG. Parameters were assessed pre and post training and 6 weeks later (follow-up.Results: All patients completed the therapy without adverse reactions and reported about improvement in endurance. Improvements in outcome parameters after 8 weeks could be demonstrated. Persisting effects were observed after 6 weeks for the 10 MWT and TUG test (follow-up.Conclusions: HAL® treadmill training in LGMD patients can be performed safely and enables an intensive highly repetitive locomotor training. All patients benefitted from this innovative method. Upcoming controlled studies with larger cohorts should prove its effects in different types of LGMD and other myopathies.

  5. Prostaglandin E1 -containing nanoparticles improve walking activity in an experimental rat model of intermittent claudication.

    Science.gov (United States)

    Ishihara, Tomoaki; Yamashita, Yasunobu; Takasaki, Naoko; Yamamoto, Shuhei; Hayashi, Erika; Tahara, Kayoko; Takenaga, Mitsuko; Yamakawa, Naoki; Ishihara, Tsutomu; Kasahara, Tadashi; Mizushima, Tohru

    2013-08-01

    Due to the low stability of lipid emulsions, a lipid emulsion of prostaglandin E1 (Lipo-PGE1 ) necessitates daily intravenous drip infusions. To overcome this issue, we developed nanoparticles containing PGE1 (Nano-PGE1 ). Nano-PGE1 showed a good sustained-release profile of PGE1 from the nanoparticles in vitro, which may permit a longer-lasting therapeutic effect to be achieved. We here examined the pharmacological activity of Nano-PGE1 in a rat experimental model of intermittent claudication induced by femoral artery ligation. The walking activity of the rat was tested on a rodent treadmill. Tissue levels of PGE1 were determined by enzyme immunoassay, and skeletal muscle angiogenesis (capillary growth) was monitored by immunohistochemical analysis. PGE1 could be detected in the lesion site one day after the intravenous administration of Nano-PGE1 but not of Lipo-PGE1 . An increased accumulation of Nano-PGE1 in the lesion site compared with control (unlesioned) site was also observed. The ligation procedure reduced the walking activity, which in turn was improved by a single administration of Nano-PGE1 but not of Lipo-PGE1 . The single administration of Nano-PGE1 also stimulated angiogenesis in the skeletal muscle around the ligated artery. The findings of this study suggest that Nano-PGE1 improves the walking activity of femoral artery-ligated rats through the accumulation and sustained release of PGE1 . © 2013 Royal Pharmaceutical Society.

  6. Postural stability when walking and exposed to lateral oscillatory motion: benefits from hand supports.

    Science.gov (United States)

    Ayık, Hatice Müjde; Griffin, Michael J

    2015-01-01

    While walking on a treadmill, 20 subjects experienced lateral oscillations: frequencies from 0.5 to 2 Hz and velocities from 0.05 to 0.16 m s(- 1) rms. Postural stability was indicated by ratings of 'discomfort or difficulty in walking', the movement of the centre of pressure beneath the feet and lateral forces applied to a hand support. Hand support improved postural stability with all frequencies and all velocities of oscillatory motion: the lateral velocity of the centre of pressure reduced by 30-50% when using support throughout motion, by 20-30% when instructed to use the support only when required and by 15% during normal walking without oscillation. Improvements in stability, and the forces applied to the hand support, were independent of support height when used continuously throughout motion. When support was used only when required, subjects preferred to hold it 118-134 cm above the surface supporting the feet.

  7. Influence of contextual task constraints on preferred stride parameters and their variabilities during human walking.

    Science.gov (United States)

    Ojeda, Lauro V; Rebula, John R; Kuo, Arthur D; Adamczyk, Peter G

    2015-10-01

    Walking is not always a free and unencumbered task. Everyday activities such as walking in pairs, in groups, or on structured walkways can limit the acceptable gait patterns, leading to motor behavior that differs from that observed in more self-selected gait. Such different contexts may lead to gait performance different than observed in typical laboratory experiments, for example, during treadmill walking. We sought to systematically measure the impact of such task constraints by comparing gait parameters and their variability during walking in different conditions over-ground, and on a treadmill. We reconstructed foot motion from foot-mounted inertial sensors, and characterized forward, lateral and angular foot placement while subjects walked over-ground in a straight hallway and on a treadmill. Over-ground walking was performed in three variations: with no constraints (self-selected, SS); while deliberately varying walking speed (self-varied, SV); and while following a toy pace car programmed to vary speed (externally-varied, EV). We expected that these conditions would exhibit a statistically similar relationship between stride length and speed, and between stride length and stride period. We also expected treadmill walking (TM) would differ in two ways: first, that variability in stride length and stride period would conform to a constant-speed constraint opposite in slope from the normal relationship; and second, that stride length would decrease, leading to combinations of stride length and speed not observed in over-ground conditions. Results showed that all over-ground conditions used similar stride length-speed relationships, and that variability in treadmill walking conformed to a constant-speed constraint line, as expected. Decreased stride length was observed in both TM and EV conditions, suggesting adaptations due to heightened awareness or to prepare for unexpected changes or problems. We also evaluated stride variability in constrained and

  8. Changes in joint coupling and variability during walking following tibialis posterior muscle fatigue

    Directory of Open Access Journals (Sweden)

    Ferber Reed

    2011-02-01

    Full Text Available Abstract Background The tibialis posterior muscle is believed to play a key role in controlling foot mechanics during the stance phase of gait. However, an experiment involving localised tibialis posterior muscle fatigue, and analysis of discrete rearfoot and forefoot kinematic variables, indicated that reduced force output of the tibialis posterior muscle did not alter rearfoot and forefoot motion during gait. Thus, to better understand how muscle fatigue affects foot kinematics and injury potential, the purpose of this study was to reanalyze the data and investigate shank, rearfoot and forefoot joint coupling and coupling variability during walking. Methods Twenty-nine participants underwent an exercise fatigue protocol aimed at reducing the force output of tibialis posterior. An eight camera motion analysis system was used to evaluate 3 D shank and foot joint coupling and coupling variability during treadmill walking both pre- and post-fatigue. Results The fatigue protocol was successful in reducing the maximal isometric force by over 30% and a concomitant increase in coupling motion of the shank in the transverse plane and forefoot in the sagittal and transverse planes relative to frontal plane motion of the rearfoot. In addition, an increase in joint coupling variability was measured between the shank and rearfoot and between the rearfoot and forefoot during the fatigue condition. Conclusions The reduced function of the tibialis posterior muscle following fatigue resulted in a disruption in typical shank and foot joint coupling patterns and an increased variability in joint coupling. These results could help explain tibialis posterior injury aetiology.

  9. Sex Differences in Incline-Walking among Humans.

    Science.gov (United States)

    Wall-Scheffler, Cara M

    2015-12-01

    Previous research has shown that people tend to walk around the speed that minimizes energy consumption when traveling a given distance. It has further been shown that men and women have different speeds that minimize energy and that women will choose slower speeds when the activity itself is a high-rate activity (e.g. carrying a load). Here we investigate what men and women will do when given a high rate walking activity, namely walking on an inclined surface. Fourteen people (nine men and five women) walked at four speeds on a level treadmill and four speeds on an inclined treadmill while their metabolic rate, kinematics and core temperature were monitored. Following the data collection, participants were asked to identify their ‘preferred’ walking speed at each of the conditions. Cost of transport (CoT) curves were calculated for each individual, and the delta between the preferred and the ‘optimal’ speeds were calculated. People chose to walk at slightly slower speeds on the level; there was minimal change in the cost to walk at these slower speeds. Women walked at absolutely slower speeds on the incline than men (P=0.06) and had significantly larger speed deltas (P=0.02), thus choosing to walk at slower rate speeds. Women also showed a significant relationship between the rate of activity and core temperature, whereas men did not. This is consistent with other research showing that women choose behavioral strategies to minimize body temperature changes. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  10. Does dynamic stability govern propulsive force generation in human walking?

    Science.gov (United States)

    Browne, Michael G; Franz, Jason R

    2017-11-01

    Before succumbing to slower speeds, older adults may walk with a diminished push-off to prioritize stability over mobility. However, direct evidence for trade-offs between push-off intensity and balance control in human walking, independent of changes in speed, has remained elusive. As a critical first step, we conducted two experiments to investigate: (i) the independent effects of walking speed and propulsive force ( F P ) generation on dynamic stability in young adults, and (ii) the extent to which young adults prioritize dynamic stability in selecting their preferred combination of walking speed and F P generation. Subjects walked on a force-measuring treadmill across a range of speeds as well as at constant speeds while modulating their F P according to a visual biofeedback paradigm based on real-time force measurements. In contrast to improvements when walking slower, walking with a diminished push-off worsened dynamic stability by up to 32%. Rather, we find that young adults adopt an F P at their preferred walking speed that maximizes dynamic stability. One implication of these findings is that the onset of a diminished push-off in old age may independently contribute to poorer balance control and precipitate slower walking speeds.

  11. Effects of Gait Training With Body Weight Support on a Treadmill Versus Overground in Individuals With Stroke.

    Science.gov (United States)

    Gama, Gabriela L; Celestino, Melissa L; Barela, José A; Forrester, Larry; Whitall, Jill; Barela, Ana M

    2017-04-01

    To investigate the effects of gait training with body weight support (BWS) on a treadmill versus overground in individuals with chronic stroke. Randomized controlled trial. University research laboratory. Individuals (N=28) with chronic stroke (>6mo from the stroke event). Participants were randomly assigned to receive gait training with BWS on a treadmill (n=14) or overground (n=14) 3 times a week for 6 weeks. Gait speed measured using the 10-meter walk test, endurance measured using the 6-minute walk test, functional independence measured using the motor domain of the FIM, lower limb recovery measured using the lower extremity domain of the Fugl-Meyer assessment, step length, step length symmetry ratio, and single-limb support duration. Measurements were obtained at baseline, immediately after the training session, and 6 weeks after the training session. At 1 week after the last training session, both groups improved in all outcome measures except paretic step length and step length symmetry ratio, which were improved only in the overground group (P=.01 and P=.01, respectively). At 6 weeks after the last training session, all improvements remained and the treadmill group also improved paretic step length (P.05). Individuals with chronic stroke equally improve gait speed and other gait parameters after 18 sessions of BWS gait training on either a treadmill or overground. Only the overground group improved step length symmetry ratio, suggesting a role of integrating overground walking into BWS interventions poststroke. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  12. Effects of body-weight supported treadmill training on kinetic symmetry in persons with chronic stroke.

    Science.gov (United States)

    Combs, Stephanie A; Dugan, Eric L; Ozimek, Elicia N; Curtis, Amy B

    2012-11-01

    The purpose was to examine changes in kinetic symmetry in persons with chronic stroke immediately and 6-months after body-weight supported treadmill training. Fifteen participants at least six-months post stroke and able to ambulate between 0.4 and 0.8m/s and 20 participants without neurological conditions completed all phases of the study and were included in the analysis. The non-disabled group served as a comparison for describing changes in kinetic symmetry. The stroke group completed 24 sessions of body-weight supported treadmill training over 8-weeks with 20 minutes of total walking per session. Bilateral 3-dimensional motion analysis and gait speed were assessed 1-week before training (pre-test), 1-week after training (post-test) and 6-months after training (retention) in a repeated measures design. Relative propulsion of the paretic leg and relative positive work of the hip, knee and ankle joints of both legs were calculated to evaluate symmetry of kinetic forces. Statistically significant differences in relative propulsion and positive joint work within the paretic and non-paretic legs were not found over time. The stroke group significantly improved gait speed from pre- to post-test (p=.001) and pre-test to retention (p=.008). In comparison to the non-disabled group, forces produced by the stroke group were asymmetrical demonstrating compensatory adaptation. Although the participants with chronic stroke walked faster after body-weight supported treadmill training, the relative percentages of propulsion and positive work remained unchanged. These findings suggest that the increase in speed was likely due to strengthening existing compensatory strategies rather than through recovery of normal kinetic symmetry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Predictors of Improved Walking after a Supervised Walking Exercise Program in Men and Women with Peripheral Artery Disease

    OpenAIRE

    Gardner, Andrew W.; Parker, Donald E.; Montgomery, Polly S.

    2016-01-01

    We compared the changes in ambulatory outcomes between men and women with symptomatic peripheral arterial disease (PAD) following completion of a supervised, on-site, treadmill exercise program, and we determined whether exercise training variables and baseline clinical characteristics were predictive of changes in ambulatory outcomes in men and women. Twenty-three men and 25 women completed the supervised exercise program, consisting of intermittent walking to mild-to-moderate claudication p...

  14. Interindividual differences in H reflex modulation during normal walking

    DEFF Research Database (Denmark)

    Simonsen, Erik B; Dyhre-Poulsen, Poul; Alkjaer, T

    2002-01-01

    Based on previous studies, at least two different types of soleus Hoffmann (H) reflex modulation were likely to be found during normal human walking. Accordingly, the aim of the present study was to identify different patterns of modulation of the soleus H reflex and to examine whether...... or not subjects with different H reflex modulation would exhibit different walking mechanics and different EMG activity. Fifteen subjects walked across two force platforms at 4.5 km/h (+/-10%) while the movements were recorded on video. The soleus H reflex and EMG activity were recorded separately during...... treadmill walking at 4.5 km/h. Using a two-dimensional analysis joint angles, angular velocities, accelerations, linear velocities and accelerations were calculated, and net joint moments about the ankle, knee and hip joint were computed by inverse dynamics from the video and force plate data. Six subjects...

  15. Allegheny County Walk Scores

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Walk Score measures the walkability of any address using a patented system developed by the Walk Score company. For each 2010 Census Tract centroid, Walk Score...

  16. An innovative training program based on virtual reality and treadmill: effects on gait of persons with multiple sclerosis.

    Science.gov (United States)

    Peruzzi, Agnese; Zarbo, Ignazio Roberto; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2017-07-01

    In this single blind randomized controlled trial, we examined the effect of a virtual reality-based training on gait of people with multiple sclerosis. Twenty-five individuals with multiple sclerosis with mild to moderate disability were randomly assigned to either the control group (n = 11) or the experimental group (n = 14). The subjects in the control group received treadmill training. Subjects in the experimental group received virtual reality based treadmill training. Clinical measures and gait parameters were evaluated. Subjects in both the groups significantly improved the walking endurance and speed, cadence and stride length, lower limb joint ranges of motion and powers, during single and dual task gait. Moreover, subjects in the experimental group also improved balance, as indicated by the results of the clinical motor tests (p gait measures in individuals with multiple sclerosis. Implication of rehabilitation Gait deficits are common in multiple sclerosis (85%) and worsen during dual task activities. Intensive and progressive treadmill training, with and without virtual reality, is effective on dual task gait in persons with multiple sclerosis. Virtual reality-based treadmill training requiring obstacle negotiation increases the range of motion and the power generated at the hip, consequently allowing longer stride length and, consequently, higher gait speed.

  17. Pre-Ischemic Treadmill Training for Prevention of Ischemic Brain Injury via Regulation of Glutamate and Its Transporter GLT-1

    Directory of Open Access Journals (Sweden)

    Jingchun Guo

    2012-07-01

    Full Text Available Pre-ischemic treadmill training exerts cerebral protection in the prevention of cerebral ischemia by alleviating neurotoxicity induced by excessive glutamate release following ischemic stroke. However, the underlying mechanism of this process remains unclear. Cerebral ischemia-reperfusion injury was observed in a rat model after 2 weeks of pre-ischemic treadmill training. Cerebrospinal fluid was collected using the microdialysis sampling method, and the concentration of glutamate was determined every 40 min from the beginning of ischemia to 4 h after reperfusion with high-performance liquid chromatography (HPLC-fluorescence detection. At 3, 12, 24, and 48 h after ischemia, the expression of the glutamate transporter-1 (GLT-1 protein in brain tissues was determined by Western blot respectively. The effect of pre-ischemic treadmill training on glutamate concentration and GLT-1 expression after cerebral ischemia in rats along with changes in neurobehavioral score and cerebral infarct volume after 24 h ischemia yields critical information necessary to understand the protection mechanism exhibited by pre-ischemic treadmill training. The results demonstrated that pre-ischemic treadmill training up-regulates GLT-1 expression, decreases extracellular glutamate concentration, reduces cerebral infarct volume, and improves neurobehavioral score. Pre-ischemic treadmill training is likely to induce neuroprotection after cerebral ischemia by regulating GLT-1 expression, which results in re-uptake of excessive glutamate.

  18. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton.

    Science.gov (United States)

    Koller, Jeffrey R; Jacobs, Daniel A; Ferris, Daniel P; Remy, C David

    2015-11-04

    Robotic ankle exoskeletons can provide assistance to users and reduce metabolic power during walking. Our research group has investigated the use of proportional myoelectric control for controlling robotic ankle exoskeletons. Previously, these controllers have relied on a constant gain to map user's muscle activity to actuation control signals. A constant gain may act as a constraint on the user, so we designed a controller that dynamically adapts the gain to the user's myoelectric amplitude. We hypothesized that an adaptive gain proportional myoelectric controller would reduce metabolic energy expenditure compared to walking with the ankle exoskeleton unpowered because users could choose their preferred control gain. We tested eight healthy subjects walking with the adaptive gain proportional myoelectric controller with bilateral ankle exoskeletons. The adaptive gain was updated each stride such that on average the user's peak muscle activity was mapped to maximal power output of the exoskeleton. All subjects participated in three identical training sessions where they walked on a treadmill for 50 minutes (30 minutes of which the exoskeleton was powered) at 1.2 ms(-1). We calculated and analyzed metabolic energy consumption, muscle recruitment, inverse kinematics, inverse dynamics, and exoskeleton mechanics. Using our controller, subjects achieved a metabolic reduction similar to that seen in previous work in about a third of the training time. The resulting controller gain was lower than that seen in previous work (β=1.50±0.14 versus a constant β=2). The adapted gain allowed users more total ankle joint power than that of unassisted walking, increasing ankle power in exchange for a decrease in hip power. Our findings indicate that humans prefer to walk with greater ankle mechanical power output than their unassisted gait when provided with an ankle exoskeleton using an adaptive controller. This suggests that robotic assistance from an exoskeleton can allow

  19. Nonlinear time series analysis of normal and pathological human walking

    Science.gov (United States)

    Dingwell, Jonathan B.; Cusumano, Joseph P.

    2000-12-01

    Characterizing locomotor dynamics is essential for understanding the neuromuscular control of locomotion. In particular, quantifying dynamic stability during walking is important for assessing people who have a greater risk of falling. However, traditional biomechanical methods of defining stability have not quantified the resistance of the neuromuscular system to perturbations, suggesting that more precise definitions are required. For the present study, average maximum finite-time Lyapunov exponents were estimated to quantify the local dynamic stability of human walking kinematics. Local scaling exponents, defined as the local slopes of the correlation sum curves, were also calculated to quantify the local scaling structure of each embedded time series. Comparisons were made between overground and motorized treadmill walking in young healthy subjects and between diabetic neuropathic (NP) patients and healthy controls (CO) during overground walking. A modification of the method of surrogate data was developed to examine the stochastic nature of the fluctuations overlying the nominally periodic patterns in these data sets. Results demonstrated that having subjects walk on a motorized treadmill artificially stabilized their natural locomotor kinematics by small but statistically significant amounts. Furthermore, a paradox previously present in the biomechanical literature that resulted from mistakenly equating variability with dynamic stability was resolved. By slowing their self-selected walking speeds, NP patients adopted more locally stable gait patterns, even though they simultaneously exhibited greater kinematic variability than CO subjects. Additionally, the loss of peripheral sensation in NP patients was associated with statistically significant differences in the local scaling structure of their walking kinematics at those length scales where it was anticipated that sensory feedback would play the greatest role. Lastly, stride-to-stride fluctuations in the

  20. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up

    Science.gov (United States)

    Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D

    2015-01-01

    Background About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive–physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Methods Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Results Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (−77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or

  1. Nordic walking and chronic low back pain

    DEFF Research Database (Denmark)

    Morsø, Lars; Hartvigsen, Jan; Puggaard, Lis

    2006-01-01

    activity provide similar benefits. Nordic Walking is a popular and fast growing type of exercise in Northern Europe. Initial studies have demonstrated that persons performing Nordic Walking are able to exercise longer and harder compared to normal walking thereby increasing their cardiovascular metabolism....... Until now no studies have been performed to investigate whether Nordic Walking has beneficial effects in relation to low back pain. The primary aim of this study is to investigate whether supervised Nordic Walking can reduce pain and improve function in a population of chronic low back pain patients...... when compared to unsupervised Nordic Walking and advice to stay active. In addition we investigate whether there is an increase in the cardiovascular metabolism in persons performing supervised Nordic Walking compared to persons who are advised to stay active. Finally, we investigate whether...

  2. Overground vs. treadmill-based robotic gait training to improve seated balance in people with motor-complete spinal cord injury: a case report.

    Science.gov (United States)

    Chisholm, Amanda E; Alamro, Raed A; Williams, Alison M M; Lam, Tania

    2017-04-11

    Robotic overground gait training devices, such as the Ekso, require users to actively participate in triggering steps through weight-shifting movements. It remains unknown how much the trunk muscles are activated during these movements, and if it is possible to transfer training effects to seated balance control. This study was conducted to compare the activity of postural control muscles of the trunk during overground (Ekso) vs. treadmill-based (Lokomat) robotic gait training, and evaluate changes in seated balance control in people with high-thoracic motor-complete spinal cord injury (SCI). Three individuals with motor-complete SCI from C7-T4, assumed to have no voluntary motor function below the chest, underwent robotic gait training. The participants were randomly assigned to Ekso-Lokomat-Ekso or Lokomat-Ekso-Lokomat for 10 sessions within each intervention phase for a total of 30 sessions. We evaluated static and dynamic balance control through analysis of center of pressure (COP) movements after each intervention phase. Surface electromyography was used to compare activity of the abdominal and erector spinae muscles during Ekso and Lokomat walking. We observed improved postural stability after training with Ekso compared to Lokomat during static balance tasks, indicated by reduced COP root mean square distance and ellipse area. In addition, Ekso training increased total distance of COP movements during a dynamic balance task. The trunk muscles showed increased activation during Ekso overground walking compared to Lokomat walking. Our findings suggest that the Ekso actively recruits trunk muscles through postural control mechanisms, which may lead to improved balance during sitting. Developing effective training strategies to reactivate the trunk muscles is important to facilitate independence during seated balance activity in people with SCI.

  3. Mini-Treadmill for Musculoskeletal Health, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — ZIN Technologies, Inc. proposes a novel Miniature Treadmill with resistive exercise capability for use in spaceflight exercise countermeasures and broad terrestrial...

  4. Mini-Treadmill for Musculoskeletal Health, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — ZIN Technologies, Inc. is developing a novel Miniature Treadmill with resistive exercise capability for use in spaceflight exercise countermeasures and broad...

  5. Functionality of the contralateral biceps femoris reflex response during human walking

    DEFF Research Database (Denmark)

    Stevenson, Andrew James Thomas; Geertsen, Svend S.; Sinkjær, Thomas

    2014-01-01

    the treadmill velocity was altered concurrently or 50 ms after knee perturbation onset. These results, together with the finding that the cBF reflex response is under some cortical control [1], strongly suggest a functional role for the cBF reflex during walking that is adaptable to the environmental situation....

  6. A botanical compound, Padma 28, increases walking distance in stable intermittent claudication

    DEFF Research Database (Denmark)

    Drabaek, H; Mehlsen, J; Himmelstrup, H

    1993-01-01

    and by measurements of the pain-free and the maximal walking distance on a treadmill. The ankle pressure index (ankle systolic pressure/arm systolic pressure) was calculated. The group randomized to active treatment received two tablets bid containing 340 mg of a dried herbal mixture composed according to an ancient...

  7. Responses of human hip abductor muscles to lateral balance perturbations during walking

    NARCIS (Netherlands)

    Hof, A.L.; Duysens, J.E.J.

    2013-01-01

    Lateral stability during gait is of utmost importance to maintain balance. This was studied on human subjects walking on a treadmill who were given 100-ms perturbations of known magnitude and timing with respect to the gait cycle by means of a computer-controlled pneumatic device. This method has

  8. Treadmill exercise decreases amyloid-β burden possibly via activation of SIRT-1 signaling in a mouse model of Alzheimer's disease.

    Science.gov (United States)

    Koo, Jung-Hoon; Kang, Eun-Bum; Oh, Yoo-Sung; Yang, Dae-Seung; Cho, Joon-Yong

    2017-02-01

    Accumulation of amyloid-β (Aβ) correlates significantly with progressive cognitive deficits, a main symptom of Alzheimer's disease (AD). Although treadmill exercise reduces Aβ levels, the molecular mechanisms underlying the effects are not fully understood. We hypothesize that treadmill exercise decreases Aβ production and alleviates cognitive deficits by activating the non-amyloidogenic pathway via SIRT-1 signaling. Treadmill exercise improved cognitive deficits and alleviated neurotoxicity. Most importantly, treadmill exercise increased SIRT-1 level, which subsequently resulted in increased ADAM-10 level by down-regulation of ROCK-1 and upregulation of RARβ, ultimately facilitating the non-amyloidogenic pathway. Treadmill exercise-induced activation in SIRT-1 level also elevated PGC-1α level and reduced BACE-1 and C-99 level, resulting in inhibition of the amyloidogenic pathway. Treadmill exercise may thus inhibit Aβ production via upregulation of SIRT-1, which biases amyloid precursor protein processing toward the non-amyloidogenic pathway. This study provides novel and valuable insight into the molecular mechanisms possibly by which treadmill exercise reduces Aβ production. Copyright © 2016. Published by Elsevier Inc.

  9. Celestial Walk: A Terminating Oblivious Walk for Convex Subdivisions

    OpenAIRE

    Kuijper, Wouter; Ermolaev, Victor; Devillers, Olivier

    2017-01-01

    We present a new oblivious walking strategy for convex subdivisions. Our walk is faster than the straight walk and more generally applicable than the visibility walk. To prove termination of our walk we use a novel monotonically decreasing distance measure.

  10. Pediatric Treadmill Burns: Assessing the effectiveness of prevention strategies.

    Science.gov (United States)

    Goltsman, David; Li, Zhe; Connolly, Siobhan; Meyerowitz-Katz, Daniel; Allan, James; Maitz, Peter K M

    2016-11-01

    Legislative changes in 2008 in Australia mandated that all new treadmills display a warning sticker about the risk of friction burns in children. This was accompanied by a health promotion campaign advising of the risks of treadmills to children. Analyses of pediatric burns data identified all cases of treadmill burns occurring between 2005 and 2014. The incidence of treadmill burns, associations with age and gender, characteristics of the burns and the adequacy of first aid provided immediately after the burn was examined. There were 298 cases of treadmill burns over the 10-year period (3.5% of all pediatric burns). The incidence rose until the introduction of legislation and health promotion in 2008, and then declined over the remaining study period. The majority of treadmill burns in children were inflicted on the upper limbs (91%), and 93% involved the hands. Most burns were full thickness (62%, n=182) and 49% (n=148) required skin grafts. Approximately one-third of treadmill burns (35%, n=105) occurred while someone else was using the treadmill. In the vast majority of treadmill burn injuries (74%, n=223), there was either no first aid or inadequate first aid provided immediately after the injury. A significant number of treadmill burns occur in children, and these often result in serious injuries that are not treated with appropriate first aid. A reduction in the incidence of these burns was associated with the introduction of legislation and health promotion targeted at child safety around treadmills. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  11. Increasing cognitive load attenuates right arm swing in healthy human walking

    Science.gov (United States)

    Killeen, Tim; Easthope, Christopher S.; Filli, Linard; Lőrincz, Lilla; Schrafl-Altermatt, Miriam; Brugger, Peter; Linnebank, Michael; Curt, Armin; Zörner, Björn; Bolliger, Marc

    2017-01-01

    Human arm swing looks and feels highly automated, yet it is increasingly apparent that higher centres, including the cortex, are involved in many aspects of locomotor control. The addition of a cognitive task increases arm swing asymmetry during walking, but the characteristics and mechanism of this asymmetry are unclear. We hypothesized that this effect is lateralized and a Stroop word-colour naming task-primarily involving left hemisphere structures-would reduce right arm swing only. We recorded gait in 83 healthy subjects aged 18-80 walking normally on a treadmill and while performing a congruent and incongruent Stroop task. The primary measure of arm swing asymmetry-an index based on both three-dimensional wrist trajectories in which positive values indicate proportionally smaller movements on the right-increased significantly under dual-task conditions in those aged 40-59 and further still in the over-60s, driven by reduced right arm flexion. Right arm swing attenuation appears to be the norm in humans performing a locomotor-cognitive dual-task, confirming a prominent role of the brain in locomotor behaviour. Women under 60 are surprisingly resistant to this effect, revealing unexpected gender differences atop the hierarchical chain of locomotor control.

  12. Feedback-controlled robotics-assisted treadmill exercise to assess and influence aerobic capacity early after stroke: a proof-of-concept study.

    Science.gov (United States)

    Stoller, Oliver; Schindelholz, Matthias; Bichsel, Lukas; Schuster, Corina; de Bie, Rob A; de Bruin, Eling D; Hunt, Kenneth J

    2014-07-01

    The majority of post-stroke individuals suffer from low exercise capacity as a secondary reaction to immobility. The aim of this study was to prove the concept of feedback-controlled robotics-assisted treadmill exercise (RATE) to assess aerobic capacity and guide cardiovascular exercise in severely impaired individuals early after stroke. Subjects underwent constant load and incremental exercise testing using a human-in-the-loop feedback system within a robotics-assisted exoskeleton (Lokomat, Hocoma AG, CH). Inclusion criteria were: stroke onset ≤8 weeks, stable medical condition, non-ambulatory status, moderate motor control of the lower limbs and appropriate cognitive function. Outcome measures included oxygen uptake kinetics, peak oxygen uptake (VO2peak), gas exchange threshold (GET), peak heart rate (HRpeak), peak work rate (Ppeak) and accuracy of reaching target work rate (P-RMSE). Three subjects (18-42 d post-stroke) were included. Oxygen uptake kinetics during constant load ranged from 42.0 to 60.2 s. Incremental exercise testing showed: VO2peak range 19.7-28.8 ml/min/kg, GET range 11.6-12.7 ml/min/kg, and HRpeak range 115-161 bpm. Ppeak range was 55.2-110.9 W and P-RMSE range was 3.8-7.5 W. The concept of feedback-controlled RATE for assessment of aerobic capacity and guidance of cardiovascular exercise is feasible. Further research is warranted to validate the method on a larger scale. Aerobic capacity is seriously reduced in post-stroke individuals as a secondary reaction to immobility. Robotics-assisted walking devices may have substantial clinical relevance regarding assessment and improvement of aerobic capacity early after stroke. Feedback-controlled robotics-assisted treadmill exercise represents a new concept for cardiovascular assessment and intervention protocols for severely impaired individuals.

  13. Six-minute walk test closely correlates to "real-life" outdoor walking capacity and quality of life in patients with intermittent claudication.

    Science.gov (United States)

    Nordanstig, Joakim; Broeren, Monica; Hensäter, Marlene; Perlander, Angelica; Osterberg, Klas; Jivegård, Lennart

    2014-08-01

    We used outdoor walking distance measured during 40 minutes as "real-life" outdoor walking capacity in 49 patients with intermittent claudication (IC). The outdoor walking distance was measured by a global positioning system application for a smartphone. The relationships of self-reported maximum walking distance (SR-MWD), the MWD on a graded treadmill test, and the 6-minute maximum walk distance (6MWD) vs outdoors walking capacity were investigated. Also studied were the associations of SR-MWD, MWD, and 6MWD with health-related quality of life assessed with the disease-specific instrument the Vascular Quality of Life Questionnaire (VascuQoL). In this prospective observational cohort study, 49 IC patients underwent an outdoor walking capacity test for 40 minutes, and MWD and 6MWD were measured. SR-MWD was recorded, and all subjects completed the VascuQoL questionnaire. Associations between the different walk estimates and outdoor walking capacity and health-related quality of life were investigated by correlation analysis (Spearman ρ). Outdoor walking distance during 40 minutes was a median 2495 m (range, 1110-3300 m). SR-MWD correlated moderately and MWD correlated strongly to outdoor walking capacity (r = 0.56 and r = 0.65; P walking capacity (r = 0.78; P walked during the 6-minute walk test is closely correlated to outdoor walking capacity and health-related quality of life in IC patients. Our data support the use of 6MWD for routine clinical evaluation of walking capacity in IC patients. Copyright © 2014 Society for Vascular Surgery. Published by Mosby, Inc. All rights reserved.

  14. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    F.C. Nicola

    2016-01-01

    Full Text Available Spinal cord injury (SCI is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10; SCI (laminectomy followed by SCI, n=12; SHEDs (SCI treated with SHEDs, n=11; TT (SCI treated with treadmill training, n=11; SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10. Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.

  15. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury.

    Science.gov (United States)

    Nicola, F C; Rodrigues, L P; Crestani, T; Quintiliano, K; Sanches, E F; Willborn, S; Aristimunha, D; Boisserand, L; Pranke, P; Netto, C A

    2016-08-08

    Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.

  16. Relative Therapeutic Efficacy of the Treadmill and Step Bench in ...

    African Journals Online (AJOL)

    The aim of this research is to compare the efficacy of treadmill and step bench exercises in hemiparetic gait rehabilitation. Previous studies have supported the use of treadmill and step bench exercises in gait rehabilitation. Nineteen patients were recruited for an 8-week, 2-group quasi-experimental study which was ...

  17. Integrated effect of treadmill training combined with dynamic ankle ...

    African Journals Online (AJOL)

    Abd El Aziz Ali Sherief

    2015-01-13

    Jan 13, 2015 ... palsy children for 60 min, in addition group B received treadmill training with dynamic ankle foot orthoses for 30 min. ... treadmill training as an additional procedure to the treatment program of hemiplegic cerebral palsy children. .... ture (2) cardiovascular diseases, (3) surgery within the previous. 24 months ...

  18. Ghost crabs on a treadmill: Oxygen uptake and haemocyanin ...

    African Journals Online (AJOL)

    1990-04-17

    Apr 17, 1990 ... 1991,26(2). Ghost crabs on a treadmill: Oxygen uptake and haemocyanin oxygen affinity. W.J, Van Aardt ... Ghost crabs Ocypode ceratophthalmus were exercised on a specially constructed treadmill. At a running speed of 13 ...... associated exchange of respiratory gasses in the land hermit crab (Coenobila.

  19. Does walking improve disability status, function, or quality of life in adults with chronic low back pain? A systematic review.

    Science.gov (United States)

    Lawford, Belinda J; Walters, Julie; Ferrar, Katia

    2016-06-01

    To establish the effectiveness of walking alone and walking compared to other non-pharmacological management methods to improve disability, quality of life, or function in adults with chronic low back pain. A systematic search of the following databases was undertaken: Medline, Embase, CINAHL, Scopus, Pedro, SportDiscus, Cochrane Central Register of Controlled Trials. The following keywords were used: 'back pain' or 'low back pain' or 'chronic low back pain' and 'walk*' or 'ambulation' or 'treadmill*' or 'pedometer*' or 'acceleromet*' or 'recreational' and 'disability' or 'quality of life' or 'function*'. Primary research studies with an intervention focus that investigated walking as the primary intervention compared to no intervention or any other non-pharmacological method in adults with chronic low back pain (duration >3 months). Seven randomised controlled trials involving 869 participants were included in the review. There was no evidence that walking was more effective than other management methods such as usual care, specific strength exercises, medical exercise therapy, or supervised exercise classes. One study found over-ground walking to be superior to treadmill walking, and another found internet-mediated walking to be more beneficial than non-internet-mediated walking in the short term. There is low quality evidence to suggest that walking is as effective as other non-pharmacological management methods at improving disability, function, and quality of life in adults with chronic low back pain. © The Author(s) 2015.

  20. Fire-Walking

    Science.gov (United States)

    Willey, David

    2010-01-01

    This article gives a brief history of fire-walking and then deals with the physics behind fire-walking. The author has performed approximately 50 fire-walks, took the data for the world's hottest fire-walk and was, at one time, a world record holder for the longest fire-walk (www.dwilley.com/HDATLTW/Record_Making_Firewalks.html). He currently…

  1. Modifications in ankle dorsiflexor activation by applying a torque perturbation during walking in persons post-stroke: a case series.

    Science.gov (United States)

    Blanchette, Andreanne K; Noël, Martin; Richards, Carol L; Nadeau, Sylvie; Bouyer, Laurent J

    2014-06-09

    Results obtained in a previous study (Gait Posture 34:358-363, 2011) have shown that, in non-disabled participants, a specific increase in ankle dorsiflexor (Tibialis anterior [TA]) activation can be induced by walking with a torque perturbation that plantarflexes the ankle during the swing phase. After perturbation removal, the increased TA activation persisted temporarily and was associated with a more dorsiflexed ankle during swing. The objective of the present case-series study was to verify if these results can be reproduced in persons post-stroke. Six participants who sustained a stroke walked on a treadmill before, during and after exposure to a torque perturbation applied at the ankle by a robotized ankle-foot orthosis. Spatiotemporal gait parameters, ankle and knee kinematics, and the electromyographic activity of TA and Soleus were recorded. Mean amplitude of the TA burst located around toe off and peak ankle dorsiflexion angle during swing were compared across the 3 walking periods for each participant. At the end of the walking period with the perturbation, TA mean amplitude was significantly increased in 4 of the 6 participants. Among these 4 participants, modifications in TA activation persisted after perturbation removal in 3 of them, and led to a statistically significant increase in peak dorsiflexion during swing. This approach may be helpful to evaluate the residual adaptive capacity in the ankle dorsiflexors after a stroke and guide decision-making for the selection of optimal rehabilitation interventions. Future work will investigate the clinical impact of a multiple-session gait training based on this approach in persons presenting a reduced ankle dorsiflexion during the swing phase of walking.

  2. Split-belt adaptation and gait symmetry in transtibial amputees walking with a hybrid EMG controlled ankle-foot prosthesis.

    Science.gov (United States)

    Kannape, Oliver A; Herr, Hugh M

    2016-08-01

    Our ability to automatically adapt our walking pattern to the demands of our environment is central to maintaining a steady gait. Accordingly, a large effort is being made to extend and integrate this adaptability to lower-limb prostheses. To date, the main focus of this research has been on short term adaptation, such as in response to a terrain transition or a sudden change in the environment. However, long term adaptation and underlying sensorimotor learning processes are critical to optimizing walking patterns and predictively changing our gait when faced with continued perturbations. Furthermore, investigating these processes in lower-limb amputees may provide a unique window into the interplay between sensory driven adaptation and top-down cerebellar modulation of locomotor reflexes and may potentially help alleviate gait asymmetries. In the current exploratory study, we therefore investigated adaptation, sensorimotor learning, and gait symmetry in a group of transtibial amputees walking with a hybrid-EMG controlled powered prosthesis and matched controls (both groups N=3). Participants were asked to perform a split-belt walking trial during which the belt on the affected side ran at twice the speed of the contralateral belt (1.0m/s and 0.5m/s respectively). Adaptation, sensorimotor learning, and symmetry are compared to two baseline conditions. Initial results illustrate that the amputees were readily able to use the hybrid controller, modulated their EMG depending on treadmill speed, and successfully adapted their gait during split-belt walking. However, the temporal gait parameters suggest that amputees used a different adaptation technique and showed reduced sensorimotor learning, while gait symmetry was improved, in the short term, post-adaptation.

  3. Evaluation of the six-minute walk test in dogs.

    Science.gov (United States)

    Boddy, Kirstin N; Roche, Brian M; Schwartz, Denise S; Nakayama, Tomohiro; Hamlin, Robert L

    2004-03-01

    To determine the feasibility for use of a 6-minute walk test (6-MWT) in dogs with congestive heart failure (CHF) and document that the distance walked in 6 minutes decreases when a dog has CHF. 16 young mature male hound-crossbred dogs weighing between 25 and 37 kg. An unobstructed path (22.73 m) was measured in a hallway. Each dog was walked on a leash for 6 minutes; each dog was allowed to set its own pace. At the end of 6 minutes (as measured by use of a stopwatch), the total distance walked was measured. Heart rate (HR) obtained by auscultation and mean systemic arterial pressure (MAP) obtained by oscillometry were recorded before and after the 6-MWT. Heart failure was induced by use of rapid ventricular pacing. Mean of the distance walked, HR, and MAP before and after the 6-MWT were compared between the control period and after dogs developed induced CHF. Dogs with CHF had a significant increase in resting HR, significant decrease in MAP, and a significant decrease in the distance walked in 6 minutes. The MAP increased slightly after exercise during the control period but decreased slightly after exercise during the CHF period. Fractional shortening decreased significantly when dogs had CHF. Analysis of these results indicated that the distance walked in 6 minutes decreased significantly when a dog had CHF. The 6-MWT requires little time, space, or equipment and may replace the treadmill exercise test.

  4. Effectiveness of an innovative hip energy storage walking orthosis for improving paraplegic walking: A pilot randomized controlled study.

    Science.gov (United States)

    Yang, Mingliang; Li, Jianjun; Guan, Xinyu; Gao, Lianjun; Gao, Feng; Du, Liangjie; Zhao, Hongmei; Yang, Degang; Yu, Yan; Wang, Qimin; Wang, Rencheng; Ji, Linhong

    2017-09-01

    The high energy cost of paraplegic walking using a reciprocating gait orthosis (RGO) is attributed to limited hip motion and excessive upper limb loading for support. To address the limitation, we designed the hip energy storage walking orthosis (HESWO) which uses a spring assembly on the pelvic shell to store energy from the movements of the healthy upper limbs and flexion-extension of the lumbar spine and hip and returns this energy to lift the pelvis and lower limb to assist with the swing and stance components of a stride. Our aim was to evaluate gait and energy cost indices for the HESWO compared to the RGO in patients with paraplegia. The cross-over design was used in the pilot study. Twelve patients with a complete T4-L5 chronic spinal cord injury underwent gait training using the HESWO and RGO. Gait performance (continuous walking distance, as well as the maximum and comfortable walking speeds) and energy expenditure (at a walking speed of 3.3m/min on a treadmill) were measured at the end of the 4-week training session. Compared to the RGO, the HESWO increased continuous walking distance by 24.7% (Penergy expenditure by 13.9% (Puse of the HESWO as an alternative support for paraplegic walking. Copyright © 2017. Published by Elsevier B.V.

  5. Gait as a biomarker? Accelerometers reveal that reduced movement quality while walking is associated with Parkinson's disease, ageing and fall risk.

    Science.gov (United States)

    Brodie, Matthew A; Lovell, Nigel H; Canning, Colleen G; Menz, Hylton B; Delbaere, Kim; Redmond, Stephen J; Latt, Mark; Sturnieks, Daina L; Menant, Jasmine; Smith, Stuart T; Lord, Stephen R

    2014-01-01

    Humans are living longer but morbidity has also increased; threatening to create a serious global burden. Our approach is to monitor gait for early warning signs of morbidity. Here we present highlights from a series of experiments into gait as a potential biomarker for Parkinson's disease (PD), ageing and fall risk. Using body-worn accelerometers, we developed several novel camera-less methods to analyze head and pelvis movements while walking. Signal processing algorithms were developed to extract gait parameters that represented the principal components of vigor, head jerk, lateral harmonic stability, and oscillation range. The new gait parameters were compared to accidental falls, mental state and co-morbidities. We observed: 1) People with PD had significantly larger and uncontrolled anterioposterior (AP) oscillations of the head; 2) Older people walked with more lateral head jerk; and, 3) the combination of vigorous and harmonically stable gait was demonstrated by non-fallers. Our findings agree with research from other groups; changes in human gait reflect changes to well-being. We observed; different aspects of gait reflected different functional outcomes. The new gait parameters therefore may be complementary to existing methods and may have potential as biomarkers for specific disorders. However, further research is required to validate our observations, and establish clinical utility.

  6. What Did We Learn from the Animal Studies of Body Weight-Supported Treadmill Training and Where Do We Go from Here?

    Science.gov (United States)

    de Leon, Ray D; Dy, Christine J

    2017-05-01

    Body weight-supported treadmill training (BWSTT) developed from animal studies of spinal cord injury (SCI). Evidence that spinal cats (i.e., cats that have a complete surgical transection of the cord) could regain the ability to step on a moving treadmill indicated a vast potential for spinal circuits to generate walking without the brain. BWSTT represented a means to unlock that potential. As the technique was adapted as a rehabilitation intervention for humans with SCI, shortcomings in the translation to walking in the real world were exposed. Evidence that BWSTT has not been as successful for humans with SCI leads us to revisit key animal studies. In this short review, we describe the task-specific nature of BWSTT and discuss how this specificity may pose limits on the recovery of overground walking. Also discussed are more recent studies that have introduced new strategies and tools that adapt BWSTT ideas to more functionally-relevant tasks. We introduce a new device for weight-supported overground walking in rats called Circular BART (Body weight supported Ambulatory Rat Trainer) and demonstrate that it is relatively easy and inexpensive to produce. Future animal studies will benefit from the development of simple tools that facilitate training and testing of overground walking.

  7. Running for exercise mitigates age-related deterioration of walking economy.

    Science.gov (United States)

    Ortega, Justus D; Beck, Owen N; Roby, Jaclyn M; Turney, Aria L; Kram, Rodger

    2014-01-01

    Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. 15 older adults (69 ± 3 years) who walk ≥ 30 min, 3x/week for exercise, "walkers" and 15 older adults (69 ± 5 years) who run ≥ 30 min, 3x/week, "runners" walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Older runners had a 7-10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p =  .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p =  .461) and ∼ 26% worse walking economy than young adults (peconomy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy.

  8. Exploiting Interlimb Arm and Leg Connections for Walking Rehabilitation: A Training Intervention in Stroke

    Directory of Open Access Journals (Sweden)

    Taryn Klarner

    2016-01-01

    Full Text Available Rhythmic arm and leg (A&L movements share common elements of neural control. The extent to which A&L cycling training can lead to training adaptations which transfer to improved walking function remains untested. The purpose of this study was to test the efficacy of A&L cycling training as a modality to improve locomotor function after stroke. Nineteen chronic stroke (>six months participants were recruited and performed 30 minutes of A&L cycling training three times a week for five weeks. Changes in walking function were assessed with (1 clinical tests; (2 strength during isometric contractions; and (3 treadmill walking performance and cutaneous reflex modulation. A multiple baseline (3 pretests within-subject control design was used. Data show that A&L cycling training improved clinical walking status increased strength by ~25%, improved modulation of muscle activity by ~25%, increased range of motion by ~20%, decreased stride duration, increased frequency, and improved modulation of cutaneous reflexes during treadmill walking. On most variables, the majority of participants showed a significant improvement in walking ability. These results suggest that exploiting arm and leg connections with A&L cycling training, an accessible and cost-effective training modality, could be used to improve walking ability after stroke.

  9. Efficacy of Aquatic Treadmill Training on Gait Symmetry and Balance in Subacute Stroke Patients.

    Science.gov (United States)

    Lee, Mi Eun; Jo, Geun Yeol; Do, Hwan Kwon; Choi, Hee Eun; Kim, Woo Jin

    2017-06-01

    To determine the efficacy of aquatic treadmill training (ATT) as a new modality for stroke rehabilitation, by assessing changes in gait symmetry, balance function, and subjective balance confidence for the paretic and non-paretic leg in stroke patients. Twenty-one subacute stroke patients participated in 15 intervention sessions of aquatic treadmill training. The Comfortable 10-Meter Walk Test (CWT), spatiotemporal gait parameters, Berg Balance Scale (BBS), and Activities-specific Balance Confidence scale (ABC) were assessed pre- and post-interventions. From pre- to post-intervention, statistically significant improvements were observed in the CWT (0.471±0.21 to 0.558±0.23, psymmetry (1.017±0.25 to 0.990±0.19, p=0.720) and overall temporal symmetry (1.404±0.36 to 1.314±0.34, p=0.218) showed improvement without statistical significance. ATT improves the functional aspects of gait, including CWT, BBS and ABC, and spatiotemporal gait symmetry, though without statistical significance. Further studies are required to examine and compare the potential benefits of ATT as a new modality for stroke therapy, with other modalities.

  10. Biomechanical parameters in lower limbs during natural walking and Nordic walking at different speeds.

    Science.gov (United States)

    Dziuba, Alicja K; Żurek, Grzegorz; Garrard, Ian; Wierzbicka-Damska, Iwona

    2015-01-01

    Nordic Walking (NW) is a sport that has a number of benefits as a rehabilitation method. It is performed with specially designed poles and has been often recommended as a physical activity that helps reduce the load to limbs. However, some studies have suggested that these findings might be erroneous. The aim of this paper was to compare the kinematic, kinetic and dynamic parameters of lower limbs between Natural Walking (W) and Nordic Walking (NW) at both low and high walking speeds. The study used a registration system, BTS Smart software and Kistler platform. Eleven subjects walked along a 15-metre path at low (below 2 m⋅s-1) and high (over 2 m⋅s-1) walking speeds. The Davis model was employed for calculations of kinematic, kinetic and dynamic parameters of lower limbs. With constant speed, the support given by Nordic Walking poles does not make the stroke longer and there is no change in pelvic rotation either. The only change observed was much bigger pelvic anteversion in the sagittal plane during fast NW. There were no changes in forces, power and muscle torques in lower limbs. The study found no differences in kinematic, kinetic and dynamic parameters between Natural Walking (W) and Nordic Walking (NW). Higher speeds generate greater ground reaction forces and muscle torques in lower limbs. Gait parameters depend on walking speed rather than on walking style.

  11. Body Weight Support Treadmill Training for Children With Developmental Delay Who Are Ambulatory

    Science.gov (United States)

    Lowe, Leah; McMillan, Amy Gross; Yates, Charlotte

    2015-01-01

    Purpose To examine the effect of body weight supported treadmill training (BWSTT) on gait and gross motor skill development in children (2–5 years old) with developmental delay who are ambulatory. Methods Twenty-four subjects (12 control, 12 BWSTT) were enrolled in this randomized control trial. All subjects continued to receive physical therapy. Subjects were tested at baseline, 4 weeks, 6 weeks, and at 6 weeks following completion of BWSTT. Outcomes were assessed using the 10 Meter Walk Test (10MWT) and Gross Motor Function Measure- D and E. Results Significant improvements were seen in gait velocity and gross motor skill attainment. With positive interactions in both the 10MWT and GMFM-E, the BWSTT group as compared to the control group demonstrated functional gains in gait velocity and gross motor skills, P = .033 and.017, respectively. Conclusions A 6-week high intensity BWSTT program can improve gait velocity and influence functional gains. PMID:26397083

  12. Reliability and Validity of Ten Consumer Activity Trackers Depend on Walking Speed.

    Science.gov (United States)

    Fokkema, Tryntsje; Kooiman, Thea J M; Krijnen, Wim P; VAN DER Schans, Cees P; DE Groot, Martijn

    2017-04-01

    To examine the test-retest reliability and validity of ten activity trackers for step counting at three different walking speeds. Thirty-one healthy participants walked twice on a treadmill for 30 min while wearing 10 activity trackers (Polar Loop, Garmin Vivosmart, Fitbit Charge HR, Apple Watch Sport, Pebble Smartwatch, Samsung Gear S, Misfit Flash, Jawbone Up Move, Flyfit, and Moves). Participants walked three walking speeds for 10 min each; slow (3.2 km·h), average (4.8 km·h), and vigorous (6.4 km·h). To measure test-retest reliability, intraclass correlations (ICC) were determined between the first and second treadmill test. Validity was determined by comparing the trackers with the gold standard (hand counting), using mean differences, mean absolute percentage errors, and ICC. Statistical differences were calculated by paired-sample t tests, Wilcoxon signed-rank tests, and by constructing Bland-Altman plots. Test-retest reliability varied with ICC ranging from -0.02 to 0.97. Validity varied between trackers and different walking speeds with mean differences between the gold standard and activity trackers ranging from 0.0 to 26.4%. Most trackers showed relatively low ICC and broad limits of agreement of the Bland-Altman plots at the different speeds. For the slow walking speed, the Garmin Vivosmart and Fitbit Charge HR showed the most accurate results. The Garmin Vivosmart and Apple Watch Sport demonstrated the best accuracy at an average walking speed. For vigorous walking, the Apple Watch Sport, Pebble Smartwatch, and Samsung Gear S exhibited the most accurate results. Test-retest reliability and validity of activity trackers depends on walking speed. In general, consumer activity trackers perform better at an average and vigorous walking speed than at a slower walking speed.

  13. Split-arm swinging: the effect of arm swinging manipulation on interlimb coordination during walking.

    Science.gov (United States)

    Bondi, Moshe; Zeilig, Gabi; Bloch, Ayala; Fasano, Alfonso; Plotnik, Meir

    2017-08-01

    Human locomotion is defined by bilateral coordination of gait (BCG) and shared features with the fore-hindlimb coordination of quadrupeds. The objective of the present study is to explore the influence of arm swinging (AS) on BCG. Sixteen young, healthy individuals (eight women; eight right motor-dominant, eight left-motor dominant) participated. Participants performed 10 walking trials (2 min). In each of the trials AS was unilaterally manipulated (e.g., arm restriction, weight on the wrist), bilaterally manipulated, or not manipulated. The order of trials was random. Walking trials were performed on a treadmill. Gait kinematics were recorded by a motion capture system. Using feedback-controlled belt speed allowed the participants to walk at a self-determined gait speed. Effects of the manipulations were assessed by AS amplitudes and the phase coordination index (PCI), which quantifies the left-right anti-phased stepping pattern. Most of the AS manipulations caused an increase in PCI values (i.e., reduced lower limb coordination). Unilateral AS manipulation had a reciprocal effect on the AS amplitude of the other arm such that, for example, over-swinging of the right arm led to a decrease in the AS amplitude of the left arm. Side of motor dominance was not found to have a significant impact on PCI and AS amplitude. The present findings suggest that lower limb BCG is markedly influenced by the rhythmic AS during walking. It may thus be important for gait rehabilitation programs targeting BCG to take AS into account. NEW & NOTEWORTHY Control mechanisms for four-limb coordination in human locomotion are not fully known. To study the influence of arm swinging (AS) on bilateral coordination of the lower limbs during walking, we introduced a split-AS paradigm in young, healthy adults. AS manipulations caused deterioration in the anti-phased stepping pattern and impacted the AS amplitudes for the contralateral arm, suggesting that lower limb coordination is markedly

  14. Visual evoked responses during standing and walking

    Directory of Open Access Journals (Sweden)

    Klaus Gramann

    2010-10-01

    Full Text Available Human cognition has been shaped both by our body structure and by its complex interactionswith its environment. Our cognition is thus inextricably linked to our own and others’ motorbehavior. To model brain activity associated with natural cognition, we propose recording theconcurrent brain dynamics and body movements of human subjects performing normal actions.Here we tested the feasibility of such a mobile brain/body (MoBI imaging approach byrecording high-density electroencephalographic (EEG activity and body movements of subjectsstanding or walking on a treadmill while performing a visual oddball response task. Independentcomponent analysis (ICA of the EEG data revealed visual event-related potentials (ERPs thatduring standing, slow walking, and fast walking did not differ across movement conditions,demonstrating the viability of recording brain activity accompanying cognitive processes duringwhole body movement. Non-invasive and relatively low-cost MoBI studies of normal, motivatedactions might improve understanding of interactions between brain and body dynamics leadingto more complete biological models of cognition.

  15. A randomized trial of functional electrical stimulation for walking in incomplete spinal cord injury: Effects on walking competency.

    Science.gov (United States)

    Kapadia, Naaz; Masani, Kei; Catharine Craven, B; Giangregorio, Lora M; Hitzig, Sander L; Richards, Kieva; Popovic, Milos R

    2014-09-01

    Multi-channel surface functional electrical stimulation (FES) for walking has been used to improve voluntary walking and balance in individuals with spinal cord injury (SCI). To investigate short- and long-term benefits of 16 weeks of thrice-weekly FES-assisted walking program, while ambulating on a body weight support treadmill and harness system, versus a non-FES exercise program, on improvements in gait and balance in individuals with chronic incomplete traumatic SCI, in a randomized controlled trial design. Individuals with traumatic and chronic (≥18 months) motor incomplete SCI (level C2 to T12, American Spinal Cord Injury Association Impairment Scale C or D) were recruited from an outpatient SCI rehabilitation hospital, and randomized to FES-assisted walking therapy (intervention group) or aerobic and resistance training program (control group). Outcomes were assessed at baseline, and after 4, 6, and 12 months. Gait, balance, spasticity, and functional measures were collected. Spinal cord independence measure (SCIM) mobility sub-score improved over time in the intervention group compared with the control group (baseline/12 months: 17.27/21.33 vs. 19.09/17.36, respectively). On all other outcome measures the intervention and control groups had similar improvements. Irrespective of group allocation walking speed, endurance, and balance during ambulation all improved upon completion of therapy, and majority of participants retained these gains at long-term follow-ups. Task-oriented training improves walking ability in individuals with incomplete SCI, even in the chronic stage. Further randomized controlled trials, involving a large number of participants are needed, to verify if FES-assisted treadmill training is superior to aerobic and strength training.

  16. Gait or Walking Problems

    Science.gov (United States)

    Gait or Walking Problems the basic facts multiple sclerosis Many people with MS will experience difficulty with walking, which is also called ambulation. The term “gait” refers more specifically to the manner or pattern ...

  17. What Is Walking Pneumonia?

    Science.gov (United States)

    ... pneumonia: What does it mean? What is walking pneumonia? How is it different from regular pneumonia? Answers from Eric J. Olson, M.D. Walking pneumonia is an informal term for pneumonia that isn' ...

  18. Underwater walking.

    Science.gov (United States)

    Ayers, Joseph

    2004-07-01

    Lobsters are generalist decapods that evolved in a broad variety of niches in the Northwestern Atlantic. Due to their inherent buoyancy they have acquired adaptations to reduced traction and surge. We have developed a biomimetic robot based on the lobster that features artificial muscle actuators and sensors employing labeled-line codes. The central controller for this robot is based on the command neuron, coordinating neuron central pattern generator model. A library of commands is released by sensor feedback to mediate adaptive sequences and goal achieving behavior. Rheotaxic behaviors can mediate adaptations to achieve some of the advantages of the biological models.

  19. Multicomponent Fitness Training Improves Walking Economy in Older Adults.

    Science.gov (United States)

    Valenti, Giulio; Bonomi, Alberto Giovanni; Westerterp, Klaas Roelof

    2016-07-01

    Walking economy declines with increasing age, possibly leading to mobility limitation in older adults. Multicomponent fitness training could delay the decline in walking economy. This study aimed to determine the effect of multicomponent fitness training on walking economy in older adults. Participants were untrained adults, age 50 to 83 yr (N = 26, 10 males, age = 63 ± 6 yr, BMI = 25.6 ± 2.1 kg·m, mean ± SD). A control group was also recruited (N = 16, 9 males, age = 66 ± 10 yr, BMI = 25.4 ± 3.0 kg·m), matching the intervention group for age, weight, body composition, and fitness. The intervention group followed a multicomponent fitness program of 1 h, twice per week during 1 yr. The control group did not take part in any physical training. Fat-free mass, walking economy, and maximal oxygen uptake (V˙O2max) were measured in both groups before and after the year. Walking economy was measured with indirect calorimetry as the lowest energy needed to displace 1 kg of body mass for 1 m while walking on a treadmill. The data were compared between the two groups with repeated-measures ANOVA. Thirty-two subjects completed all measurements. There was an interaction between the effects of time and group on V˙O2max (P economy (P economy. Thus, training programs could delay mobility limitation with increasing age.

  20. Treadmill training with partial body-weight support after anterior cruciate ligament reconstruction: a randomized controlled trial.

    Science.gov (United States)

    Luo, Yuan; Shen, Weizhong; Jiang, Zhong; Sha, Jiao

    2016-12-01

    [Purpose] To compare the effects of treadmill training with partial body weight support (TTPBWS) and conventional physical therapy (PT) on subjects with anterior cruciate ligament reconstructions. [Subjects and Methods] A total of 40 subjects were randomly allocated to either a treatment group or a control group. Subjects received either treadmill training with partial body weight support (treatment group) or conventional physical therapy (control group). The circumferences of the lower extremities, Holden classifications, 10-meter walking times and the International Knee Documentation Committee (IKDC) scores were compared at 12 and 24 weeks post-operation. The knee joint stability was tested at 24 weeks post-operation using a KT-1000. [Results] Significant differences were found between the two groups at the 12 weeks post-operation. For most of the measures, there was no significant difference between the groups at 24 weeks post-operation. Interestingly, for most of the measures, there was no significant difference between their values in the treatment group at 12 weeks and their values in the control group at 24 weeks post-operation. [Conclusion] The function of a subject's lower extremities can be improved and the improvement was clearly accelerated by the intervention of treadmill training with partial body weight support, without compromising the stability of the knee joints in a given follow-up period.

  1. Quantum walk computation

    International Nuclear Information System (INIS)

    Kendon, Viv

    2014-01-01

    Quantum versions of random walks have diverse applications that are motivating experimental implementations as well as theoretical studies. Recent results showing quantum walks are “universal for quantum computation” relate to algorithms, to be run on quantum computers. We consider whether an experimental implementation of a quantum walk could provide useful computation before we have a universal quantum computer

  2. Sensitivity of Local Dynamic Stability of Over-Ground Walking to Balance Impairment Due to Galvanic Vestibular Stimulation.

    NARCIS (Netherlands)

    Sloot, L.H.; van Schooten, K.S.; Bruijn, S.M.; Kingma, H; Pijnappels, M.A.G.M.; van Dieen, J.H.

    2011-01-01

    Impaired balance control during gait can be detected by local dynamic stability measures. For clinical applications, the use of a treadmill may be limiting. Therefore, the aim of this study was to test sensitivity of these stability measures collected during short episodes of over-ground walking by

  3. Self-paced versus fixed speed walking and the effect of virtual reality in children with cerebral palsy

    NARCIS (Netherlands)

    Sloot, L.H.; Harlaar, J.; van der Krogt, M.M.

    2015-01-01

    While feedback-controlled treadmills with a virtual reality could potentially offer advantages for clinical gait analysis and training, the effect of self-paced walking and the virtual environment on the gait pattern of children and different patient groups remains unknown. This study examined the

  4. Arctigenin efficiently enhanced sedentary mice treadmill endurance.

    Directory of Open Access Journals (Sweden)

    Xuan Tang

    Full Text Available Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK and serine/threonine kinase 11(LKB1-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases.

  5. Arctigenin Efficiently Enhanced Sedentary Mice Treadmill Endurance

    Science.gov (United States)

    Chen, Jing; Yu, Liang; Hu, Lihong; Jiang, Hualiang; Shen, Xu

    2011-01-01

    Physical inactivity is considered as one of the potential risk factors for the development of type 2 diabetes and other metabolic diseases, while endurance exercise training could enhance fat oxidation that is associated with insulin sensitivity improvement in obesity. AMP-activated protein kinase (AMPK) as an energy sensor plays pivotal roles in the regulation of energy homeostasis, and its activation could improve glucose uptake, promote mitochondrial biogenesis and increase glycolysis. Recent research has even suggested that AMPK activation contributed to endurance enhancement without exercise. Here we report that the natural product arctigenin from the traditional herb Arctium lappa L. (Compositae) strongly increased AMPK phosphorylation and subsequently up-regulated its downstream pathway in both H9C2 and C2C12 cells. It was discovered that arctigenin phosphorylated AMPK via calmodulin-dependent protein kinase kinase (CaMKK) and serine/threonine kinase 11(LKB1)-dependent pathways. Mice treadmill based in vivo assay further indicated that administration of arctigenin improved efficiently mice endurance as reflected by the increased fatigue time and distance, and potently enhanced mitochondrial biogenesis and fatty acid oxidation (FAO) related genes expression in muscle tissues. Our results thus suggested that arctigenin might be used as a potential lead compound for the discovery of the agents with mimic exercise training effects to treat metabolic diseases. PMID:21887385

  6. Combining Fast-Walking Training and a Step Activity Monitoring Program to Improve Daily Walking Activity After Stroke: A Preliminary Study.

    Science.gov (United States)

    Danks, Kelly A; Pohlig, Ryan; Reisman, Darcy S

    2016-09-01

    To determine preliminary efficacy and to identify baseline characteristics predicting who would benefit most from fast walking training plus a step activity monitoring program (FAST+SAM) compared with fast walking training (FAST) alone in persons with chronic stroke. Randomized controlled trial with blinded assessors. Outpatient clinical research laboratory. Individuals (N=37) >6 months poststroke. Subjects were assigned to either FAST, which was walking training at their fastest possible speed on the treadmill (30min) and overground 3 times per week for 12 weeks, or FAST+SAM. The step activity monitoring program consisted of daily step monitoring with an activity monitor, goal setting, and identification of barriers to activity and strategies to overcome barriers. Daily step activity metrics (steps/day [SPD], time walking per day), walking speed, and 6-minute walk test (6MWT) distance. There was a significant effect of time for both groups, with all outcomes improving from pre- to posttraining (all P values program to a fast walking training intervention may be most effective in persons with chronic stroke who have initial low levels of walking endurance and activity. Regardless of baseline performance, the FAST+SAM intervention was more effective for improving walking endurance. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  7. Gait parameters associated with responsiveness to treadmill training with body-weight support after stroke: an exploratory study.

    Science.gov (United States)

    Mulroy, Sara J; Klassen, Tara; Gronley, JoAnne K; Eberly, Valerie J; Brown, David A; Sullivan, Katherine J

    2010-02-01

    Task-specific training programs after stroke improve walking function, but it is not clear which biomechanical parameters of gait are most associated with improved walking speed. The purpose of this study was to identify gait parameters associated with improved walking speed after a locomotor training program that included body-weight-supported treadmill training (BWSTT). A prospective, between-subjects design was used. Fifteen people, ranging from approximately 9 months to 5 years after stroke, completed 1 of 3 different 6-week training regimens. These regimens consisted of 12 sessions of BWSTT alternated with 12 sessions of: lower-extremity resistive cycling; lower-extremity progressive, resistive strengthening; or a sham condition of arm ergometry. Gait analysis was conducted before and after the 6-week intervention program. Kinematics, kinetics, and electromyographic (EMG) activity were recorded from the hemiparetic lower extremity while participants walked at a self-selected pace. Changes in gait parameters were compared in participants who showed an increase in self-selected walking speed of greater than 0.08 m/s (high-response group) and in those with less improvement (low-response group). Compared with participants in the low-response group, those in the high-response group displayed greater increases in terminal stance hip extension angle and hip flexion power (product of net joint moment and angular velocity) after the intervention. The intensity of soleus muscle EMG activity during walking also was significantly higher in participants in the high-response group after the intervention. Only sagittal-plane parameters were assessed, and the sample size was small. Task-specific locomotor training alternated with strength training resulted in kinematic, kinetic, and muscle activation adaptations that were strongly associated with improved walking speed. Changes in both hip and ankle biomechanics during late stance were associated with greater increases in

  8. Walking with robot assistance: the influence of body weight support on the trunk and pelvis kinematics.

    Science.gov (United States)

    Swinnen, Eva; Baeyens, Jean-Pierre; Knaepen, Kristel; Michielsen, Marc; Hens, Gerrit; Clijsen, Ron; Goossens, Maggie; Buyl, Ronald; Meeusen, Romain; Kerckhofs, Eric

    2015-05-01

    The goal was to assess in healthy participants the three-dimensional kinematics of the pelvis and the trunk during robot-assisted treadmill walking (RATW) at 0%, 30% and 50% body weight support (BWS), compared with treadmill walking (TW). 18 healthy participants walked (2 kmph) on a treadmill with and without robot assistance (Lokomat; 60% guidance force; 0%, 30% and 50% BWS). After an acclimatisation period (four minutes), trunk and pelvis kinematics were registered in each condition (Polhemus Liberty [240 Hz]). The results were analysed using a repeated measures analysis of variance with Bonferroni correction, with the level of suspension as within-subject factor. During RATW with BWS, there were significantly (1) smaller antero-posterior and lateral translations of the trunk and the pelvis; (2) smaller antero-posterior flexion and axial rotation of the trunk; (3) larger lateral flexion of the trunk; and (4) larger antero-posterior tilting of the pelvis compared with TW. There are significant differences in trunk and pelvis kinematics in healthy persons during TW with and without robot assistance. These data are relevant in gait rehabilitation, relating to normal balance regulation. Additional research is recommended to further assess the influence of robot assistance on human gait. The trunk and pelvis moves in a different way during walking with robot assistance. The data suggest that the change in movement is due to the robot device and the harness of the suspension system more than due to the level of suspension itself.

  9. Outcome of aerobic exercises on 6-minute walk test in post-stroke patients

    International Nuclear Information System (INIS)

    Andleeb, U.; Qamar, M.M.; Afridi, M.S.; Asim, H.M.; Basharat, A.

    2017-01-01

    Objectives: To determine the outcome of aerobic exercises on 6MWT in stroke survivors Methodology: This study is quasi-experimental done in a tertiary care hospital and included a total of 104 ambulatory stroke patients. Subjects walked on self-selected speed on a treadmill along a prescribed course for 10 weeks. Results: The ratio of male patients was more as compared to females (67.31% vs. 32.69). Only 3 out of total 104 patients were lost to follow-up. No difference was observed post exercise in the mean HR beats/minute (P=0.432). Moreover, no difference was observed in the mean systolic (P=0.543) and diastolic BP of the patients with treadmill training (P=0.367). However, aerobic exercises improved walking and endurance in stroke survivors from 196+-120m at baseline to 230 +-132m after aerobic training (P=0.001). Conclusions: Treadmill walking improved patients walking ability for long distances and if they retain and improve it further, they can ambulate functionally and independently. (author)

  10. Walking economy before and after the onset of claudication pain in patients with peripheral arterial disease.

    Science.gov (United States)

    Gardner, Andrew W; Ritti-Dias, Raphael M; Stoner, Julie A; Montgomery, Polly S; Scott, Kristy J; Blevins, Steve M

    2010-03-01

    To determine the walking economy before and after the onset of claudication pain in patients with peripheral arterial disease (PAD), and to identify predictors of the change in walking economy following the onset of claudication pain. A total of 39 patients with PAD were studied, in which 29 experienced claudication (Pain group) during a constant load, walking economy treadmill test (speed = 2.0 mph, grade = 0%) and 10 were pain-free during this test (Pain-Free group). Patients were characterized on walking economy (ie, oxygen uptake during ambulation), as well as on demographic characteristics, cardiovascular risk factors, baseline exercise performance measures, and the ischemic window calculated from the decrease in ankle systolic blood pressure following exercise. During the constant load treadmill test, the Pain group experienced onset of claudication pain at 323 +/- 195 seconds (mean +/- standard deviation) and continued to walk until maximal pain was attained at 759 +/- 332 seconds. Walking economy during pain-free ambulation (9.54 +/- 1.42 ml x kg(-1) x min(-1)) changed (P change in walking economy after the onset of pain was associated with ischemic window (P change in walking economy (P = .36) from the second minute of exercise (9.20 +/- 1.62 ml x kg(-1) x min(-1)) to the nineteenth minute of exercise (9.07 +/- 1.54 ml x kg(-1) x min(-1)). Painful ambulation at a constant speed is associated with impaired walking economy, as measured by an increase in oxygen uptake in patients limited by intermittent claudication, and the change in walking economy is explained, in part, by severity of PAD, diabetes, and hypertension.

  11. Effects of a Flexibility and Relaxation Programme, Walking, and Nordic Walking on Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    I. Reuter

    2011-01-01

    Full Text Available Symptoms of Parkinson's disease (PD progress despite optimized medical treatment. The present study investigated the effects of a flexibility and relaxation programme, walking, and Nordic walking (NW on walking speed, stride length, stride length variability, Parkinson-specific disability (UPDRS, and health-related quality of life (PDQ 39. 90 PD patients were randomly allocated to the 3 treatment groups. Patients participated in a 6-month study with 3 exercise sessions per week, each lasting 70 min. Assessment after completion of the training showed that pain was reduced in all groups, and balance and health-related quality of life were improved. Furthermore, walking, and Nordic walking improved stride length, gait variability, maximal walking speed, exercise capacity at submaximal level, and PD disease-specific disability on the UPDRS in addition. Nordic walking was superior to the flexibility and relaxation programme and walking in improving postural stability, stride length, gait pattern and gait variability. No significant injuries occurred during the training. All patients of the Nordic walking group continued Nordic walking after completing the study.

  12. Partial Body Weight-Supported Treadmill Training in Patients With Parkinson Disease: Impact on Gait and Clinical Manifestation.

    Science.gov (United States)

    Ganesan, Mohan; Sathyaprabha, Talakad N; Pal, Pramod Kumar; Gupta, Anupam

    2015-09-01

    To evaluate the effect of conventional gait training (CGT) and partial weight-supported treadmill training (PWSTT) on gait and clinical manifestation. Prospective experimental research design. Hospital. Patients with idiopathic Parkinson disease (PD) (N=60; mean age, 58.15±8.7y) on stable dosage of dopaminomimetic drugs were randomly assigned into the 3 following groups (20 patients in each group): (1) nonexercising PD group, (2) CGT group, and (3) PWSTT group. The interventions included in the study were CGT and PWSTT. The sessions of the CGT and PWSTT groups were given in patient's self-reported best on status after regular medications. The interventions were given for 30min/d, 4d/wk, for 4 weeks (16 sessions). Clinical severity was measured by the Unified Parkinson Disease Rating Scale (UPDRS) and its subscores. Gait was measured by 2 minutes of treadmill walking and the 10-m walk test. Outcome measures were evaluated in their best on status at baseline and after the second and fourth weeks. Four weeks of CGT and PWSTT gait training showed significant improvements of UPDRS scores, its subscores, and gait performance measures. Moreover, the effects of PWSTT were significantly better than CGT on most measures. PWSTT is a promising intervention tool to improve the clinical and gait outcome measures in patients with PD. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. Individual Leg and Joint Work during Sloped Walking for People with a Transtibial Amputation Using Passive and Powered Prostheses

    Directory of Open Access Journals (Sweden)

    Jana R. Jeffers

    2017-12-01

    Full Text Available People with a transtibial amputation using passive-elastic prostheses exhibit reduced prosthetic ankle power and push-off work compared to non-amputees and compensate by increasing their affected leg (AL hip joint work and unaffected leg (UL ankle, knee, and hip joint and leg work during level-ground walking. Use of a powered ankle–foot prosthesis normalizes step-to-step transition work during level-ground walking over a range of speeds for people with a transtibial amputation, but the effects on joint work during level-ground, uphill, and downhill walking have not been assessed. We investigated how use of passive-elastic and powered ankle–foot prostheses affect leg joint biomechanics during level-ground and sloped walking. 10 people with a unilateral transtibial amputation walked at 1.25 m/s on a dual-belt force-measuring treadmill at 0°, ±3°, ±6°, and ±9° using their own passive-elastic and a powered prosthesis (BiOM T2, BionX Medical Technologies, Inc., Bedford, MA, USA while we measured kinematic and kinetic data. We calculated AL and UL prosthetic, ankle, knee, hip, and individual leg positive, negative, and net work. Use of a powered compared to passive-elastic ankle–foot prosthesis resulted in greater AL prosthetic and individual leg net work on uphill and downhill slopes. Over a stride, AL prosthetic positive work was 23–30% greater (p < 0.05 during walking on uphill slopes of +6°, and +9°, prosthetic net work was up to 10 times greater (more positive (p ≤ 0.005 on all uphill and downhill slopes and individual leg net work was 146 and 82% more positive (p < 0.05 at uphill slopes of +6° and +9°, respectively, with use of the powered compared to passive-elastic prosthesis. Greater prosthetic positive and net work through use of a powered ankle–foot prosthesis during uphill and downhill walking improves mechanical work symmetry between the legs, which could decrease metabolic cost and improve functional

  14. Effects of obesity on dynamic stability control during recovery from a treadmill-induced slip among young adults.

    Science.gov (United States)

    Yang, Feng; Kim, JaeEun; Yang, Fei

    2017-02-28

    This study sought to investigate the effects of obesity on falls and dynamic stability control in young adults when subject to a standardized treadmill-induced gait-slip. Forty-four young adults (21 normal-weight and 23 obese) participated in this study. After their muscle strength was assessed at the right knee under maximum voluntary isometric (flexion and extension) contractions, participants were moved to an ActiveStep treadmill. Following 5 normal walking trials on the treadmill, all participants encountered an identical and unexpected slip defined as a perturbation in the anterior direction with the magnitude of 24-cm slip distance and 2.4-m/s peak slip velocity. The trials were categorized as a fall or recovery based on the reliance of the subject on external support following the slip. Compared with the normal-weight group, the obese group demonstrated less relative muscle strength and fell more responding to the slip (78.3% vs. 40.0%, p=0.009). After adjusting the body height and gender, the results indicated that the obese group was 19.1-time (95% confidence interval: [2.06, 177.36]) more prone to a fall than the normal-weight group when experiencing the same treadmill-induced slip. The obese group showed significantly impaired dynamic stability after slip possibly due to the inability of controlling the trunk segment׳s backward lean movement. Obesity measurements explained more slip outcome variance than did the strength measurements (53.4% vs. 18.1%). This study indicates that obesity most likely influences the ability to recover from slip perturbations. It is important to develop interventions to improve the capability of balance recovery among individuals with obesity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. A quantification of the treadmill 6-min walk test using the MyWellness Key™ accelerometer

    Directory of Open Access Journals (Sweden)

    S. Andy Sparks

    2015-06-01

    Conclusion: Estimated energy expenditure provided by the MWK was strongly correlated to 6MWW; however, MWK underestimated energy expenditure as measured by gas analysis. The MWK may provide outcome data that supplement those currently provided by the 6MWD for functional capacity assessment during the t-6MWT.

  16. Local dynamic stability during treadmill walking can detect children with developmental coordination disorder

    DEFF Research Database (Denmark)

    Speedtsberg, Merete Brink; Christensen, Sofie Bouschinger; Stenum, Jan

    2018-01-01

    -posterior directions were recorded with a sternum mounted accelerometer at 256Hz. Short term local dynamic stability (λs), root mean square (RMS) and relative root mean square (RMSR) were calculated from measures of orthogonal trunk accelerations. Receiver operating characteristic curve (ROC) analysis was performed...... between children with DCD and TD children in any direction. The ROC analysis of λs in separate directions and in two dimensions showed an excellent accuracy of discriminating between children with DCD and TD children. Anterior-posterior direction in combination with medio-lateral or vertical showed best...

  17. Effects of Walking with Blood Flow Restriction on Excess Post-exercise Oxygen Consumption.

    Science.gov (United States)

    Mendonca, G V; Vaz, J R; Pezarat-Correia, P; Fernhall, B

    2015-02-09

    This study determined the influence of walking with blood flow restriction (BFR) on the excess post-exercise oxygen consumption (EPOC) of healthy young men. 17 healthy young men (22.1±2.9 years) performed graded treadmill exercise to assess VO 2peak . In a randomized fashion, each participant performed 5 sets of 3-min treadmill exercise at their optimal walking speed with 1-min interval either with or without BFR. Participants were then seated in a chair and remained there for 30 min of recovery. Expired gases were continuously monitored during exercise and recovery. BFR increased the O 2 cost of walking as well as its relative intensity and cumulative O 2 deficit (pEPOC magnitude after walking with BFR was greater than in the non-BFR condition (pEPOC. The EPOC magnitude was no longer different between conditions after controlling for the differences in relative intensity and in the cumulative O 2 deficit (p>0.05). These data indicate that walking with BFR increases the magnitude of EPOC. Moreover, they also demonstrate that such increment in EPOC is likely explained by the effects of BFR on walking relative intensity and cumulative O 2 deficit. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Effects of Buddhist walking meditation on glycemic control and vascular function in patients with type 2 diabetes.

    Science.gov (United States)

    Gainey, Atikarn; Himathongkam, Thep; Tanaka, Hirofumi; Suksom, Daroonwan

    2016-06-01

    To investigate and compare the effects of Buddhist walking meditation and traditional walking on glycemic control and vascular function in patients with type 2 diabetes mellitus. Twenty three patients with type 2 diabetes (50-75 years) were randomly allocated into traditional walking exercise (WE; n=11) or Buddhism-based walking meditation exercise (WM; n=12). Both groups performed a 12-week exercise program that consisted of walking on the treadmill at exercise intensity of 50-70% maximum heart rate for 30min/session, 3 times/week. In the WM training program, the participants performed walking on the treadmill while concentrated on foot stepping by voiced "Budd" and "Dha" with each foot step that contacted the floor to practice mindfulness while walking. After 12 weeks, maximal oxygen consumption increased and fasting blood glucose level decreased significantly in both groups (pmeditation exercise produced a multitude of favorable effects, often superior to traditional walking program, in patients with type 2 diabetes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Different Intensities of Treadmill Running Exercise do Not Alter Melatonin Levels in Rats

    Directory of Open Access Journals (Sweden)

    Ionara Rodrigues Siqueira

    2011-04-01

    Full Text Available Background: Regular and moderate exercise has been considered an interesting neuroprotective strategy. Our research group demonstrated that a protocol of moderate exercise on a treadmill reduced, while a protocol of high-intensity exercise increased in vitro ischemic cell damage in Wistar rats. The molecular mechanisms by which physical exercise exerts neuroprotective effects remain unclear. Accumulating evidence suggests that exercise may have short- and long-term effects on melatonin secretion in humans. Melatonin, the main product of the pineal gland, has been shown to have neuroprotective effects in models of brain and spinal cord injury and cerebral ischemia. A dual modulation of melatonin secretion by physical activity has also been demonstrated. This study aimed to investigate the effect of different exercise intensities, moderate- and high-intensity exercise, on serum melatonin levels in rats. Methods: Thirty-five adult male Wistar rats were divided into non-exercised (sedentary and exercised (20- or 60-min sessions groups. The exercise protocols consisted of two weeks of daily treadmill training. Blood samples were collected approximately 16 hours after the last training session (8:00-10:00 and melatonin levels were assayed by ELISA. Results: The exercise protocols, two weeks of 20 min/day or 60 min/day of treadmill running, did not affect serum melatonin levels. Conclusion: Our data demonstrated that melatonin levels may not be directly involved in the exercise-induced, intensity-dependent dual effect on in vitro ischemia.

  20. COMPARATIVE KINEMATIC MEASURES OF TREADMILL RUNNING WITH OR WITHOUT BODY WEIGHT SUPPORT IN RUNNERS

    Directory of Open Access Journals (Sweden)

    Duane Millslagle

    2005-12-01

    Full Text Available Treadmill walking and running using a supportive harness has been used as a training method to rehabilitate injured patients' walking or running gait. Comparison of full weight support (FWS and body weight support (BWS kinematic measures in competitive runners has received little attention. The purpose of this study was to compare selected FWS to BWS kinematic measures in healthy competitive runners. Ten male runners (age = 21.4 ± 1.5 years with a training regimen averaging 64 km per week at 3.8 m·s-1 participated. All participants ran three 3-minute trials. The randomized trial conditions were: FWS, 20% BWS, and 40% BWS. All conditions were videotaped with 2 cameras and a 21-point, 3-D model was generated for analysis. From the position-time data, cycle length (CL, cycle frequency (CF, time of contact (TC, hip-, knee-, ankle- range of motion in degrees (H-ROM, K-ROM, and A-ROM, respectively, and vertical displacement of the center of mass (COM were derived and compared. With increasing support conditions, cycle length increased. Cycle frequency, hip and ankle angle ranges, and COM vertical displacement decreased (p 0.05. BWS running produced significant changes in selected kinematic measures. These changes may provide insight into runners' behavior when using BWS in training or recovery from competition. Additional investigation of BWS training affect with competitive runners would be recommended

  1. Influence of visual and auditory biofeedback on partial body weight support treadmill training of individuals with chronic hemiparesis: a randomized controlled clinical trial.

    Science.gov (United States)

    Brasileiro, A; Gama, G; Trigueiro, L; Ribeiro, T; Silva, E; Galvão, É; Lindquist, A

    2015-02-01

    Stroke is an important causal factor of deficiency and functional dependence worldwide. To determine the immediate effects of visual and auditory biofeedback, combined with partial body weight supported (PBWS) treadmill training on the gait of individuals with chronic hemiparesis. Randomized controlled trial. Outpatient rehabilitation hospital. Thirty subjects with chronic hemiparesis and ability to walk with some help. Participants were randomized to a control group that underwent only PBWS treadmill training; or experimental I group with visual biofeedback from the display monitor, in the form of symbolic feet as the subject took a step; or experimental group II with auditory biofeedback associated display, using a metronome at 115% of the individual's preferred cadence. They trained for 20 minutes and were evaluated before and after training. Spatio-temporal and angular gait variables were obtained by kinematics from the Qualisys Motion Analysis system. Increases in speed and stride length were observed for all groups over time (speed: F=25.63; Ptraining of individuals with chronic hemiparesis, in short term. Additional studies are needed to determine whether, in long term, the biofeedback will promote additional benefit to the PBWS treadmill training. The findings of this study indicate that visual and auditory biofeedback does not bring immediate benefits on PBWS treadmill training of individuals with chronic hemiparesis. This suggest that, for additional benefits are achieved with biofeedback, effects should be investigated after long-term training, which may determine if some kind of biofeedback is superior to another to improve the hemiparetic gait.

  2. Long-term treadmill exercise inhibits the progression of Alzheimer's disease-like neuropathology in the hippocampus of APP/PS1 transgenic mice.

    Science.gov (United States)

    Liu, Hui-li; Zhao, Gang; Zhang, He; Shi, Li-de

    2013-11-01

    Previously our study has demonstrated that long-term treadmill exercise improved cognitive deficit in APP/PS1 transgenic mice of Alzheimer's disease (AD) paralleled by enhanced long-term potentiation (LTP). The present study was undertaken to further investigate whether the treadmill running could inhibit the progression of Alzheimer's disease (AD)-like neuropathology in hippocampus of the APP/PS1 mouse models of AD, and to define a potential molecular mechanism underlying the exercise-induced reduction in AD-like neuropathology. Five months of treadmill exercise resulted in a robust reduction in β-amyloid (Aβ) deposition and tau phosphorylation in the hippocampus of APP/PS1 mice. This was accompanied by a significant decrease in APP phosphorylation and PS1 expression. We also observed GSK3, rather than CDK5, was inhibited by treadmill exercise. These results indicate that treadmill exercise is sufficient to inhibit the progression of AD-like neuropathology in the hippocampus of APP/PS1 transgenic mouse model, and may mediate APP processing in favor of reduced Aβ deposition. In addition, we demonstrate that treadmill exercise attenuates AD-like neuropathology in AD transgenic mice via a GSK3 dependent signaling pathway. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. The Impact of Cell Phone Use on the Intensity and Liking of a Bout of Treadmill Exercise

    Science.gov (United States)

    Rebold, Michael J.; Lepp, Andrew; Sanders, Gabriel J.; Barkley, Jacob E.

    2015-01-01

    This study used a within-subjects design to assess the effect of three common cellular telephone (cell phone) functions (texting, talking, listening to music) on planned exercise. Forty-four young adults (n = 33 females, 21.8 ± 1.3 years) each participated in four, separate, 30-minute exercise conditions on a treadmill in a random order. During each condition, the treadmill speed display was covered and grade was fixed at zero. However, participants were able to alter treadmill speed as desired. Throughout the texting and talking conditions, research personnel used a pre-determined script to simulate cell phone conversations. During the music condition, participants used their cell phone to listen to music of their choice. Finally, participants completed a control condition with no cell phone access. For each condition, average treadmill speed, heart rate and liking (via visual analog scale) were assessed. Treadmill speed (3.4 ± 1.3 miles∙hour-1), heart rate (122.3 ± 24.3 beats∙min-1) and liking (7.5 ± 1.5 cm) in the music condition were significantly (p ≤ 0.014) greater than all other conditions. Treadmill speed in the control condition (3.1 ± 1.2 miles∙hour-1) was significantly (p = 0.04) greater than both texting and talking (2.8 ± 1.1 miles∙hour-1 each). Heart rate during the control condition (115.4 ± 22.8 beats∙min-1) was significantly (p = 0.04) greater than texting (109.9 ± 16.4 beats∙min-1) but not talking (112.6 ± 16.1 beats∙min-1). Finally, liking during the talking condition (5.4 ± 2.2 cm) was greater (p = 0.05) than the control (4.3 ± 2.2 cm) but not the texting (5.1 ± 2.2 cm) conditions. In conclusion, using a cell phone for listening to music can increase the intensity (speed and heart rate) and liking of a bout of treadmill exercise. However, other common cell phone uses (texting and talking) can interfere with treadmill exercise and reduce intensity. PMID:25970553

  4. The impact of cell phone use on the intensity and liking of a bout of treadmill exercise.

    Directory of Open Access Journals (Sweden)

    Michael J Rebold

    Full Text Available This study used a within-subjects design to assess the effect of three common cellular telephone (cell phone functions (texting, talking, listening to music on planned exercise. Forty-four young adults (n = 33 females, 21.8 ± 1.3 years each participated in four, separate, 30-minute exercise conditions on a treadmill in a random order. During each condition, the treadmill speed display was covered and grade was fixed at zero. However, participants were able to alter treadmill speed as desired. Throughout the texting and talking conditions, research personnel used a pre-determined script to simulate cell phone conversations. During the music condition, participants used their cell phone to listen to music of their choice. Finally, participants completed a control condition with no cell phone access. For each condition, average treadmill speed, heart rate and liking (via visual analog scale were assessed. Treadmill speed (3.4 ± 1.3 miles∙hour(-1, heart rate (122.3 ± 24.3 beats∙min(-1 and liking (7.5 ± 1.5 cm in the music condition were significantly (p ≤ 0.014 greater than all other conditions. Treadmill speed in the control condition (3.1 ± 1.2 miles∙hour(-1 was significantly (p = 0.04 greater than both texting and talking (2.8 ± 1.1 miles∙hour(-1 each. Heart rate during the control condition (115.4 ± 22.8 beats∙min(-1 was significantly (p = 0.04 greater than texting (109.9 ± 16.4 beats∙min(-1 but not talking (112.6 ± 16.1 beats∙min(-1. Finally, liking during the talking condition (5.4 ± 2.2 cm was greater (p = 0.05 than the control (4.3 ± 2.2 cm but not the texting (5.1 ± 2.2 cm conditions. In conclusion, using a cell phone for listening to music can increase the intensity (speed and heart rate and liking of a bout of treadmill exercise. However, other common cell phone uses (texting and talking can interfere with treadmill exercise and reduce intensity.

  5. Comparison of body weight-supported treadmill training versus body weight-supported overground training in people with incomplete tetraplegia: a pilot randomized trial.

    Science.gov (United States)

    Senthilvelkumar, Thangavelu; Magimairaj, Henry; Fletcher, Jebaraj; Tharion, George; George, Jacob

    2015-01-01

    To compare the effectiveness of body weight-supported treadmill training and body weight-supported overground training for improving gait and strength in people with traumatic incomplete tetraplegia. Assessor blinded randomized trial. Rehabilitation institute of a tertiary care teaching hospital in India. Sixteen participants with traumatic motor incomplete tetraplegia and within two years of injury. Participants were randomised to one of two groups: body weight-supported overground training on level ground and body weight-supported treadmill training. Both groups received 30 minutes of gait training per day, five days a week for eight weeks. In addition, both groups received regular rehabilitation which included flexibility, strength, balance, self care and functional training. The primary outcome measure was the Walking Index for Spinal Cord Injury (/20 points) and the secondary outcome was the Lower Extremity Muscle Score (/50 points). There was no statistically significant between group differences in the Walking Index for Spinal Cord Injury [mean difference=0.3points; 95% CI (-4.8 to 5.4); p=0.748] or the Lower Extremity Muscle Score [mean difference=0.2 points; 95% CI (-3.8 to 5.1); p=0.749]. Gait training with body weight-supported overground training is comparable to treadmill training for improving locomotion in people with traumatic incomplete tetraplegia. © The Author(s) 2014.

  6. Effect of a single session of aerobic walking exercise on arterial pressure in community-living elderly individuals.

    Science.gov (United States)

    Lima, Leandra G; Moriguti, Júlio C; Ferriolli, Eduardo; Lima, Nereida K C

    2012-04-01

    Several studies have demonstrated that one exercise session (ES) on a cycloergometer or ergometric treadmill causes a reduction in blood pressure (BP). However, there are few similar studies on walking, which is the exercise modality most available to the elderly. We investigated the immediate and 24-h effects of walking on BP in independent, community-living elderly individuals. Volunteers participated in a single ES and resting control session (CS). Before and after each session, BP was measured by auscultatory and oscillometric methods. After each session, 24-h ambulatory blood pressure monitoring was conducted. An accelerometer was installed 48 h before the sessions and left in place for 5 days. The mean volunteer age was 67.7±3.5 years; 11 were hypertensive patients under treatment, and 12 were normotensive. In the total sample, there were immediate 14mm Hg and 12 mm Hg reductions in systolic BP (SBP) after the ES according to the auscultatory and oscillometric methods, respectively. Diastolic BP (DBP) was reduced by 4 mm Hg after the ES according to both methods. SBP during wakefulness and sleep and DBP during wakefulness were lower after the ES than after the CS (Psleep were determined individually (variable-time pattern) using data from the activity monitors and provided by the volunteers. The variable-time pattern was more effective in detecting reductions in BP than the fixed-time pattern.

  7. 'Walk This Way' - a pilot of a health coaching intervention to reduce sedentary behaviour and increase low intensity exercise in people with serious mental illness: study protocol for a randomised controlled trial.

    Science.gov (United States)

    Williams, Julie; Stubbs, Brendon; Gaughran, Fiona; Craig, Tom

    2016-12-12

    People with serious mental illness (SMI) (psychosis, bipolar disorder and major depressive disorder) experience a considerable risk of premature mortality because of cardiovascular disease. Recent research has demonstrated that this population spends almost 13 h per day being sedentary. Sedentary behaviour is an independent risk factor for cardiovascular disease and mortality. Given the potential for physical activity to improve health and well-being in people with SMI, we developed a pilot randomised controlled trial (RCT) to evaluate a coaching intervention aimed at reducing sedentary behaviour and increasing physical activity in people with SMI. Our primary aim was to assess the acceptability and feasibility of the intervention. Secondary aims were to see if the Walk This Way (WTW) intervention decreased sedentary behaviour and increased activity levels. People with SMI who met any of the following criteria were recruited by two community mental health teams in South London: (1) overweight, (2) at risk for or have diabetes, (3) smoke tobacco or (4) have a sedentary lifestyle. Care co-coordinators (clinical case managers) identified potentially eligible participants within their caseload, and these individuals were subsequently invited to participate. All participants' physical activity (self-reported and accelerometer-recorded), health status (including metabolic blood tests) and motivation to exercise were assessed at baseline. Participants were randomised to receive treatment as usual or the WTW intervention. WTW consisted of an educational intervention at baseline on the benefits of an active lifestyle. Participants were then given a pedometer and received fortnightly coaching from a staff member trained in coaching skills to help them to set daily walking targets, and they were invited to a weekly walking group. The WTW intervention lasted 17 weeks in total. To our knowledge, WTW is the first RCT to investigate the impact of a health coaching intervention

  8. Experiencing Nature through Immersive Virtual Environments: Environmental Perceptions, Physical Engagement, and Affective Responses during a Simulated Nature Walk

    Directory of Open Access Journals (Sweden)

    Giovanna Calogiuri

    2018-01-01

    Full Text Available By combining physical activity and exposure to nature, green exercise can provide additional health benefits compared to physical activity alone. Immersive Virtual Environments (IVE have emerged as a potentially valuable supplement to environmental and behavioral research, and might also provide new approaches to green exercise promotion. However, it is unknown to what extent green exercise in IVE can provide psychophysiological responses similar to those experienced in real natural environments. In this study, 26 healthy adults underwent three experimental conditions: nature walk, sitting-IVE, and treadmill-IVE. The nature walk took place on a paved trail along a large river. In the IVE conditions, the participants wore a head-mounted display with headphones reproducing a 360° video and audio of the nature walk, either sitting on a chair or walking on a manually driven treadmill. Measurements included environmental perceptions (presence and perceived environmental restorativeness – PER, physical engagement (walking speed, heart rate, and perceived exertion, and affective responses (enjoyment and affect. Additionally, qualitative information was collected through open-ended questions. The participants rated the IVEs with satisfactory levels of ‘being there’ and ‘sense of reality,’ but also reported discomforts such as ‘flatness,’ ‘movement lag’ and ‘cyber sickness.’ With equivalent heart rate and walking speed, participants reported higher perceived exertion in the IVEs than in the nature walk. The nature walk was associated with high enjoyment and enhanced affect. However, despite equivalent ratings of PER in the nature walk and in the IVEs, the latter were perceived as less enjoyable and gave rise to a poorer affect. Presence and PER did not differ between the two IVEs, although in the treadmill-IVE the negative affective responses had slightly smaller magnitude than in the sitting-IVE. In both the IVEs, the negative

  9. Utility of electromyographic fatigue threshold during treadmill running.

    Science.gov (United States)

    Crozara, Luciano F; Castro, Alex; De Almeida Neto, Antonio F; Laroche, Dain P; Cardozo, Adalgiso C; Gonçalves, Mauro

    2015-12-01

    We investigated 2 different methods for determining muscle fatigue threshold by electromyography (EMG). Thirteen subjects completed an incremental treadmill running protocol for EMG fatigue threshold (EMGFT ) determination based on the critical power concept (EMGFT 1) and the breakpoint in the linear relationship between EMG amplitude and exercise intensity (EMGFT 2). Then, both the EMGFT 1 and EMGFT 2 were tested in a continuous treadmill running protocol. EMG was recorded from the rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF), and lateral gastrocnemius (LG) muscles. For BF, EMGFT 2 was higher than EMGFT 1, and EMGFT 1 for BF was lower than EMGFT 1 for LG. EMG of RF was higher at EMGFT 2 than at EMGFT 1, and LG EMG was lower at EMGFT 2. EMGFT can be determined during a single treadmill running test, and EMGFT 1 may be the most appropriate method to estimate the muscle fatigue threshold during running. © 2015 Wiley Periodicals, Inc.

  10. Reliability of peak treadmill exercise tests in mild Alzheimer disease.

    Science.gov (United States)

    Anderson, Heather S; Kluding, Patricia M; Gajewski, Byron J; Donnelly, Joseph E; Burns, Jeffrey M

    2011-08-01

    The purpose of this study was to determine the reliability of treadmill peak exercise testing in people with very mild-to-mild Alzheimer disease (AD). Sixteen subjects with very mild-to-mild AD performed graded peak treadmill exercise tests twice within a 14-day period. Heart rate, oxygen consumption, and respiratory exchange ratio (RER) were continuously monitored. Peak values were analyzed for absolute level of agreement. Fourteen participants (87.5%) completed testing. Reliability was excellent with total peak oxygen consumption (VO2peak) (ml/kg/min) highly correlated across the two tests (r = 0.94, p exercise testing on a treadmill is reliable in the early stages of AD.

  11. The Treadmill of Production and the Positional Economy of Consumption.

    Science.gov (United States)

    Curran, Dean

    2017-02-01

    The theory of the treadmill of production highlights how the constant search for economic growth leads to advanced economies being stuck on a "treadmill," where their well-being is not improved by economic growth, yet the impacts of this pursuit of growth causes massive, unsustainable environmental damages. In interrogating the specific driving force that keeps the irrational system of the treadmill so powerfully in place, the theory of the treadmill of production focuses on how those who control the production process, corporations, are the primary agents driving the treadmill, while also highlighting how the state and workers generally continue to provide support for the treadmill's continued reproduction. In thinking about ways to begin to unwind the treadmill, there is a clear need to explore why workers, who are also consumers and citizens, continue to support (reluctantly or not) the treadmill of production. Through an analysis of the positional economy of consumption, this paper identifies key stakes that individual consumers have in expanding their income and consumption levels through the treadmill of production, despite the widespread inefficacy of the treadmill to increase aggregate satisfaction levels. This theory of the positional economy of consumption identifies the structural forces that lock individuals into increasing their income and levels of "defensive consumption" merely to maintain their existing levels of social practices and the well-being generated from them, thus further supporting the reproduction of the treadmill of production. La théorie de l''engrenage de la production' ('treadmill of production') démontre en quoi la recherche constante de croissance économique enferme les économies avancées dans un 'engrenage', où leur bien-être n'est pas amélioré par la croissance économique, mais où les impacts de la poursuite de la croissance se traduisent par des dommages environnementaux massifs et irréparables. En analysant les

  12. Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy

    DEFF Research Database (Denmark)

    Berthelsen, Martin Peter; Husu, Edith; Christensen, Sofie Bouschinger

    2014-01-01

    -gravity treadmill, which offered weight support up to 80% of their body weight. Six minute walking distance, dynamic postural balance, and plasma creatine kinase were assessed 10weeks prior to training, immediately before training and after 10weeks of training. Training elicited an improvement of walking distance...... by 8±2% and dynamic postural balance by 13±4%, indicating an improved physical function. Plasma creatine kinase remained unchanged. These results provide evidence that a combination of aerobic and strength training during anti-gravity has the potential to safely improve functional ability in severely...

  13. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer’s Disease

    Science.gov (United States)

    Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang

    2017-01-01

    Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer’s disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment. PMID:28157094

  14. Treadmill Exercise Exerts Neuroprotection and Regulates Microglial Polarization and Oxidative Stress in a Streptozotocin-Induced Rat Model of Sporadic Alzheimer's Disease.

    Science.gov (United States)

    Lu, Yujiao; Dong, Yan; Tucker, Donovan; Wang, Ruimin; Ahmed, Mohammad Ejaz; Brann, Darrell; Zhang, Quanguang

    2017-01-01

    Recent work has suggested that exercise may be beneficial in preventing or ameliorating symptoms of several neurological disorders, although the mechanism is not entirely understood. The current study was designed to examine the potential beneficial effect of treadmill exercise upon cognitive function in a streptozotocin (STZ)-induced rat model of Alzheimer's disease (AD). Animals underwent treadmill exercise (30 min/day, 5 days/week) for 4 weeks after bilateral STZ intracerebroventricular injection (2.4 mg/kg). We demonstrated that treadmill exercise significantly attenuated STZ-induced neurodegeneration in the rat hippocampal CA1 region and strongly preserved hippocampal-dependent cognitive functioning. Further mechanistic investigation displayed a marked suppression of STZ-induced amyloid-β accumulation and tau phosphorylation. Intriguingly, treadmill exercise remarkably inhibited reactive gliosis following STZ insult and effectively shifted activated microglia from a pro-inflammatory M1 to an anti-inflammatory M2 phenotype, which was correlated with a significantly reduced expression of pro-inflammatory mediators and a corresponding enhancement of anti-inflammatory cytokine expression in the hippocampus. Furthermore, treadmill exercise caused a robust suppression of oxidative damage as evidenced by significantly reduced peroxynitrite production, lipid peroxidation, and oxidized DNA damage. Finally, treadmill exercise strongly attenuated STZ-induced mitochondrial dysfunction manifested by a dramatically elevated intra-mitochondrial cytochrome c oxidase activity and ATP synthesis, and markedly inhibited neuronal apoptosis in the hippocampus. These findings demonstrate that treadmill exercise has a multifactorial effect to attenuate many of the pathological processes that play a key role in AD, and provide further support for the beneficial role of exercise as a potential therapeutic option in AD treatment.

  15. Validity of a trunk-mounted accelerometer to assess peak accelerations during walking, jogging and running.

    Science.gov (United States)

    Wundersitz, Daniel W T; Gastin, Paul B; Richter, Chris; Robertson, Samuel J; Netto, Kevin J

    2015-01-01

    The purpose of this study was to validate peak acceleration data from an accelerometer contained within a wearable tracking device while walking, jogging and running. Thirty-nine participants walked, jogged and ran on a treadmill while 10 peak accelerations per movement were obtained (n = 390). A single triaxial accelerometer measured resultant acceleration during all movements. To provide a criterion measure of acceleration, a 12-camera motion analysis (MA) system tracked the position of a retro-reflective marker affixed to the wearable tracking device. Peak raw acceleration recorded by the accelerometer significantly overestimated peak MA acceleration (P jog compared with walk and for run compared to both other movements. As the magnitude of acceleration increased, the strength of the relationship between the accelerometer and the criterion measure decreased. These results indicate that filtered accelerometer data provide an acceptable means of assessing peak accelerations, in particular for walking and jogging.

  16. Human-Robot Interaction during Walking with a Powered Compliant Knee Exoskeleton

    Directory of Open Access Journals (Sweden)

    Meeusen Romain

    2011-12-01

    Full Text Available Determinants of locomotor training involve taskspecificity, repeatability, variability, intensity and self-initiative. KNEXO, a unilateral knee exoskeleton has been developed to study the effects of compliant assistance during treadmill gait. Overall, walking within KNEXO, leads to asymmetric kinematics (Figure 1 and changes in naturally occurring muscle activity. Walking without KNEXO and with KNEXO in unassisted mode is difficult to compare as the device is unilateral and the pneumatic muscles give, although weight-compensated, a certain amount of inertia to the movement. Walking with KNEXO in high compliance resembles walking with KNEXO in unassisted mode. Overall, kinematic and EMG data show that the device has its shortcomings (unilateral, 1 DoF, 1 joint when assisting healthy gait, yet it gives opportunities to study the effects of assistanceas-needed on gait biomechanics.

  17. The effect of walking speed on local dynamic stability is sensitive to calculation methods

    DEFF Research Database (Denmark)

    Stenum, Jan; Bruijn, Sjoerd M; Jensen, Bente Rona

    2014-01-01

    Local dynamic stability has been assessed by the short-term local divergence exponent (λS), which quantifies the average rate of logarithmic divergence of infinitesimally close trajectories in state space. Both increased and decreased local dynamic stability at faster walking speeds have been...... reported. This might pertain to methodological differences in calculating λS. Therefore, the aim was to test if different calculation methods would induce different effects of walking speed on local dynamic stability. Ten young healthy participants walked on a treadmill at five speeds (60%, 80%, 100%, 120......% and 140% of preferred walking speed) for 3min each, while upper body accelerations in three directions were sampled. From these time-series, λS was calculated by three different methods using: (a) a fixed time interval and expressed as logarithmic divergence per stride-time (λS-a), (b) a fixed number...

  18. Effects of a 6-month exercise program pilot study on walking economy, peak physiological characteristics, and walking performance in patients with peripheral arterial disease

    Directory of Open Access Journals (Sweden)

    Crowther RG

    2012-04-01

    Full Text Available Robert G Crowther1, Anthony S Leicht1, Warwick L Spinks1, Kunwarjit Sangla2, Frank Quigley2, Jonathan Golledge2,31Institute of Sport and Exercise Science, James Cook University, Townsville, Queensland, Australia; 2Townsville Hospital, Townsville, Queensland, Australia; 3The Vascular Biology Unit, James Cook University, Townsville, Queensland, AustraliaAbstract : The purpose of this study was to examine the effects of a 6-month exercise program on submaximal walking economy in individuals with peripheral arterial disease and intermittent claudication (PAD-IC. Participants (n = 16 were randomly allocated to either a control PAD-IC group (CPAD-IC, n = 6 which received standard medical therapy, or a treatment PAD-IC group (TPAD-IC; n = 10 which took part in a supervised exercise program. During a graded treadmill test, physiological responses, including oxygen consumption, were assessed to calculate walking economy during submaximal and maximal walking performance. Differences between groups at baseline and post-intervention were analyzed via Kruskal–Wallis tests. At baseline, CPAD-IC and TPAD-IC groups demonstrated similar walking performance and physiological responses. Postintervention, TPAD-IC patients demonstrated significantly lower oxygen consumption during the graded exercise test, and greater maximal walking performance compared to CPAD-IC. These preliminary results indicate that 6 months of regular exercise improves both submaximal walking economy and maximal walking performance, without significant changes in maximal walking economy. Enhanced walking economy may contribute to physiological efficiency, which in turn may improve walking performance as demonstrated by PAD-IC patients following regular exercise programs.Keywords: vascular disease, peripheral vascular disease, walking economy

  19. More Adults Are Walking

    Centers for Disease Control (CDC) Podcasts

    2012-07-31

    This podcast is based on the August 2012 CDC Vital Signs report. While more adults are walking, only half get the recommended amount of physical activity. Listen to learn how communities, employers, and individuals may help increase walking.  Created: 7/31/2012 by Centers for Disease Control and Prevention (CDC).   Date Released: 8/7/2012.

  20. Learning-Walk Continuum

    Science.gov (United States)

    Finch, Peter Dallas

    2010-01-01

    The continuum of learning walks can be viewed in stages with various dimensions including frequency, participants, purpose and the presence of an instructional framework within which the instructional practice is viewed. Steps in the continuum progress as the learning walks are conducted more frequently. One way to ensure this is accomplished is…

  1. walk in CAIRO

    DEFF Research Database (Denmark)

    2011-01-01

    Research-baseret audio walk om revolutionen i Cairo med start på Teater Grob (første version, 2011) og Helsingør Teater (anden version, 2012).......Research-baseret audio walk om revolutionen i Cairo med start på Teater Grob (første version, 2011) og Helsingør Teater (anden version, 2012)....

  2. Lévy walks

    Science.gov (United States)

    Zaburdaev, V.; Denisov, S.; Klafter, J.

    2015-04-01

    Random walk is a fundamental concept with applications ranging from quantum physics to econometrics. Remarkably, one specific model of random walks appears to be ubiquitous across many fields as a tool to analyze transport phenomena in which the dispersal process is faster than dictated by Brownian diffusion. The Lévy-walk model combines two key features, the ability to generate anomalously fast diffusion and a finite velocity of a random walker. Recent results in optics, Hamiltonian chaos, cold atom dynamics, biophysics, and behavioral science demonstrate that this particular type of random walk provides significant insight into complex transport phenomena. This review gives a self-consistent introduction to Lévy walks, surveys their existing applications, including latest advances, and outlines further perspectives.

  3. Biomechanical analysis of rollator walking

    DEFF Research Database (Denmark)

    Alkjaer, T; Larsen, Peter K; Pedersen, Gitte

    2006-01-01

    The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects.......The rollator is a very popular walking aid. However, knowledge about how a rollator affects the walking patterns is limited. Thus, the purpose of the study was to investigate the biomechanical effects of walking with and without a rollator on the walking pattern in healthy subjects....

  4. Effects of smartphone texting on the visual perception and dynamic walking stability.

    Science.gov (United States)

    Lim, Jongil; Chang, Seung Ho; Lee, Jihyun; Kim, Kijeong

    2017-02-01

    Mobile phone use while walking can cause dual-task interference and increases safety risks by increasing attentional and cognitive demands. While the interference effect on cognitive function has been examined extensively, how perception of the environment and walking dynamics are affected by mobile phone use while walking is not well understood. The amount of visual information loss and its consequent impact on dynamic walking stability was examined in this study. Young adults (mean, 20.3 years) volunteered and walked on a treadmill while texting and attending to visual tasks simultaneously. Performance of visual task, field of regard loss, and margin of stability under dual-task conditions were compared with those of single-task conditions (i.e., visual task only). The results revealed that the size of visual field and visual acuity demand were varied across the visual task conditions. Approximately half of the visual cues provided during texting while walking were not perceived as compared to the visual task only condition. The field of regard loss also increased with increased dual-task cost of mobile phone use. Dynamic walking stability, however, showed no significant differences between the conditions. Taken together, the results demonstrate that the loss of situational awareness is unavoidable and occurs simultaneously with decrements in concurrent task performance. The study indicates the importance of considering the nature of attentional resources for the studies in dual-task paradigm and may provide practical information to improve the safe use of mobile phones while walking.

  5. Treadmill Exercise Improves Motor Dysfunction and Hyperactivity of the Corticostriatal Glutamatergic Pathway in Rats with 6-OHDA-Induced Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2017-01-01

    Full Text Available Hyperactivity in the corticostriatal glutamatergic pathway (CGP induces basal ganglia dysfunction, contributing to parkinsonian syndrome (PS. Physical exercise can improve PS. However, the effect of exercise on the CGP, and whether this pathway is involved in the improvement of PS, remains unclear. Parkinson’s disease (PD was induced in rats by 6-hydroxydopamine injection into the right medial forebrain bundle. Motor function was assessed using the cylinder test. Striatal neuron (SN spontaneous and evoked firing activity was recorded, and the expression levels of Cav1.3 and CaMKII in the striatum were measured after 4 weeks of treadmill exercise. The motor function in PD rats was improved by treadmill exercise. SN showed significantly enhanced excitability, and treadmill exercise reduced SN excitability in PD rats. In addition, firing activity was evoked in SNs by stimulation of the primary motor cortex, and SNs exhibited significantly decreased stimulus threshold, increased firing rates, and reduced latency. The expression of Cav1.3 and p-CaMKII (Thr286 in the striatum were enhanced in PD rats. However, these effects were reversed by treadmill exercise. These findings suggest that treadmill exercise inhibits CGP hyperactivity in PD rats, which may be related to improvement of PS.

  6. Neuronal correlates of ketamine and walking induced gamma oscillations in the medial prefrontal cortex and mediodorsal thalamus.

    Directory of Open Access Journals (Sweden)

    Katrina E Furth

    Full Text Available Alterations in the function of the medial prefrontal cortex (mPFC and its major thalamic source of innervation, the mediodorsal (MD thalamus, have been hypothesized to contribute to the symptoms of schizophrenia. The NMDAR antagonist ketamine, used to model schizophrenia, elicits a brain state resembling early stage schizophrenia characterized by cognitive deficits and increases in cortical low gamma (40-70 Hz power. Here we sought to determine how ketamine differentially affects spiking and gamma local field potential (LFP activity in the rat mPFC and MD thalamus. Additionally, we investigated the ability of drugs targeting the dopamine D4 receptor (D4R to modify the effects of ketamine on gamma activity as a measure of potential cognitive therapeutic efficacy. Rats were trained to walk on a treadmill to reduce confounds related to hyperactivity after ketamine administration (10 mg/kg s.c. while recordings were obtained from electrodes chronically implanted in the mPFC and MD thalamus. Ketamine increased gamma LFP power in mPFC and MD thalamus in a similar frequency range, yet did not increase thalamocortical synchronization. Ketamine also increased firing rates and spike synchronization to gamma oscillations in the mPFC but decreased both measures in MD thalamus. Conversely, walking alone increased both firing rates and spike-gamma LFP correlations in both mPFC and MD thalamus. The D4R antagonist alone (L-745,870 had no effect on gamma LFP power during treadmill walking, although it reversed increases induced by the D4R agonist (A-412997 in both mPFC and MD thalamus. Neither drug altered ketamine-induced changes in gamma power or firing rates in the mPFC. However, in MD thalamus, the D4R agonist increased ketamine-induced gamma power and prevented ketamine's inhibitory effect on firing rates. Results provide new evidence that ketamine differentially modulates spiking and gamma power in MD thalamus and mPFC, supporting a potential role for both

  7. The effects of exercise training on walking function and perception of health status in elderly patients with peripheral arterial occlusive disease.

    Science.gov (United States)

    Tsai, J C; Chan, P; Wang, C H; Jeng, C; Hsieh, M H; Kao, P F; Chen, Y J; Liu, J C

    2002-11-01

    To determine the effects of 12-week exercise programme on ambulatory function, free-living daily physical activity and health-related quality of life in disabled older patients with intermittent claudication. Prospective, randomized controlled trial. University Medical Center and Veterans Affairs Medical Center, Taipei, Taiwan. Thirty-two of 64 patients with Fontaine stage II peripheral arterial occlusive disease (PAOD) were randomized to exercise training and 32 to usual care control. Five patients from the exercise group and six patients from the control group dropped out, leaving 27 and 26 patients, respectively, completing the study in each group. Twelve weeks of treadmill exercise training. Treadmill walking time to onset of claudication pain and to maximal claudication pain, 6-min walk distance, self-reported ambulatory ability and perceived health-related quality of life (QOL). Compliance of exercise programme was 83% of the possible sessions. Exercise training increased treadmill walking time to onset of claudication pain by 88% (P training in elderly PAOD patients were observed. Increase in treadmill walking time to maximal claudication pain in these patients translated into the improvement of perceived physical health, which enabled the patients to become more functionally independent.

  8. Treadmilling of actin filaments via Brownian dynamics simulations

    DEFF Research Database (Denmark)

    Guo, Kunkun; Shillcock, Julian C.; Lipowsky, Reinhard

    2010-01-01

    . For concentrations close to the critical concentration CT = CT,cr, the filaments undergo treadmilling, i.e., they grow at the barbed and shrink at the pointed end, which leads to directed translational motion of the whole filament. The corresponding nonequilibrium states are characterized by several global fluxes...

  9. Ghost crabs on a treadmill: Oxygen Uptake and Haemocyanin ...

    African Journals Online (AJOL)

    Ghost crabs Ocypode ceratophthalmus were exercised on a specially constructed treadmill. At a running speed of 13,3 cm s-1, most crabs ran for 2 h before getting fatigued. At this speed the oxygen consumption rate (MO2) was measured in time intervals for a total of 52 min. For exercised crabs the MO2 values are about ...

  10. Bicycle ergometer versus treadmill on balance and gait parameters ...

    African Journals Online (AJOL)

    So, the purpose of this study was to compare between the effects of bicycle ergometer and treadmill on balance and gait parameters in children with hemophilia. Materials and methods: Thirty hemophilic boys with the ages ranging from 10 to 14 years had participated in this study. They were assigned randomly into two ...

  11. Running on a lower-body positive pressure treadmill

    DEFF Research Database (Denmark)

    Raffalt, Peter C; Hovgaard-Hansen, Line; Jensen, Bente Rona

    2013-01-01

    This study investigated maximal oxygen consumption (VO2max) and time to exhaustion while running on a lower-body positive pressure treadmill (LBPPT) at normal body weight (BW) as well as how BW support affects respiratory responses, ground reaction forces, and stride characteristics....

  12. Role of treadmill training versus suspension therapy on balance in ...

    African Journals Online (AJOL)

    So, it is essential to seek an ideal physical therapy program to help in solving such a widespread problem. The present study was conducted to compare between the effect of treadmill training and suspension therapy on balance in children with DS. Subjects and methods: Thirty children born with DS from both sexes ...

  13. Intensive treadmill training in the acute phase after ischemic stroke

    DEFF Research Database (Denmark)

    Strømmen, Anna Maria; Christensen, Thomas; Jensen, Kai

    2016-01-01

    The aim of the study was to (a) assess the feasibility of intensive treadmill training in patients with acute ischemic stroke, (b) test whether physical activity of the legs during training increases with time, and (c) evaluate to what extent training sessions contribute toward the overall physic...

  14. Long term treadmill exercise performed to chronic social isolated rats regulate anxiety behavior without improving learning.

    Science.gov (United States)

    Cevik, Ozge Selin; Sahin, Leyla; Tamer, Lulufer

    2018-05-01

    The type and duration of exposure to stress is an important influence on emotional and cognitive functions. Learning is the adaptive response of the central nervous system that occurs in hippocampus which affects from environmental factors like exercise. In this study, we investigated effects of long term treadmill exercise on learning and behavior on chronic social isolated rat. Male Wistar rats (n = 32) randomly assigned into four groups: control, exercised, social isolation, social isolation + exercise during postnatal days (PNDs) 21-34. Social isolation protocol was applied during 14 days by placing rat in a cage one by one. Rats were exercised during 5 days, days were chosen randomly for overall 4 weeks (20, 30, 50, 60 min respectively). Finally, learning performance was evaluated by Morris water maze (MWM). Anxiety behavior was evaluated by Open field and elevated plus maze test. At the end of learning and behavior tests, the rats were decapitated to collect blood samples via intracardiac puncture and corticosterone analysis was performed with ELISA method. Animal weights and water consumption did not change significantly but food intake differed among groups. Corticosterone level did not change between groups. The frequency of entering to the target quadrant increased in exercised rat significantly. However, there was no difference in learning and memory in rats. Treadmill exercise reduced anxiety behavior significantly. Taken together these findings may point out that, long term treadmill exercise did not change learning and memory but reduced anxiety level of rat without changing corticosterone level. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. The random walk model of intrafraction movement

    International Nuclear Information System (INIS)

    Ballhausen, H; Reiner, M; Kantz, S; Belka, C; Söhn, M

    2013-01-01

    The purpose of this paper is to understand intrafraction movement as a stochastic process driven by random external forces. The hypothetically proposed three-dimensional random walk model has significant impact on optimal PTV margins and offers a quantitatively correct explanation of experimental findings. Properties of the random walk are calculated from first principles, in particular fraction-average population density distributions for displacements along the principal axes. When substituted into the established optimal margin recipes these fraction-average distributions yield safety margins about 30% smaller as compared to the suggested values from end-of-fraction Gaussian fits. Stylized facts of a random walk are identified in clinical data, such as the increase of the standard deviation of displacements with the square root of time. Least squares errors in the comparison to experimental results are reduced by about 50% when accounting for non-Gaussian corrections from the random walk model. (paper)

  16. The random walk model of intrafraction movement.

    Science.gov (United States)

    Ballhausen, H; Reiner, M; Kantz, S; Belka, C; Söhn, M

    2013-04-07

    The purpose of this paper is to understand intrafraction movement as a stochastic process driven by random external forces. The hypothetically proposed three-dimensional random walk model has significant impact on optimal PTV margins and offers a quantitatively correct explanation of experimental findings. Properties of the random walk are calculated from first principles, in particular fraction-average population density distributions for displacements along the principal axes. When substituted into the established optimal margin recipes these fraction-average distributions yield safety margins about 30% smaller as compared to the suggested values from end-of-fraction gaussian fits. Stylized facts of a random walk are identified in clinical data, such as the increase of the standard deviation of displacements with the square root of time. Least squares errors in the comparison to experimental results are reduced by about 50% when accounting for non-gaussian corrections from the random walk model.

  17. Peak Cardiorespiratory Responses of Patients with Subacute Stroke During Land and Aquatic Treadmill Exercise.

    Science.gov (United States)

    Lee, Yong Ki; Kim, Bo Ryun; Han, Eun Young

    2017-05-01

    The aim of this work was to investigate the cardiorespiratory responses of patients with subacute stroke to exercise stress tests with aquatic and land treadmills. Twenty-one consecutive patients who presented with first-ever subacute stroke in 2013-2015. All subjects underwent symptom-limited incremental exercise testing with aquatic and land treadmills. Land treadmill speed started at 1.5 km/h and increased 0.5 km/h every 1 to 2 minutes until maximal tolerable speed was achieved. Thereafter, the grade was elevated by 2% every 2 minutes. In the aquatic treadmill test, subjects were submerged to the xiphoid in 28°C water. Treadmill speed started at 1.5 km/h and was increased 0.5 km/h every 2 minutes thereafter. Cardiorespiratory responses were recorded with aquatic and land treadmills. Compared to land treadmill exercise, aquatic treadmill exercise achieved significantly better peak VO2 (22.0 vs 20.0; P = 0.02), peak metabolic equivalents (6.3 vs 5.8; P = 0.02), and peak rating of perceived exertion (17.6 vs 18.4, P = 0.01). Heart rate and VO2 correlated significantly during both tests (land treadmill: r = 0.96, P aquatic treadmill: r = 0.99, P Aquatic treadmill exercise elicited significantly better peak cardiorespiratory responses than land treadmill exercise and may be as effective for early intensive aerobic training in subacute stroke patients.

  18. Sustainability of motor performance after robotic-assisted treadmill therapy in children: an open, non-randomized baseline-treatment study.

    Science.gov (United States)

    Borggraefe, I; Kiwull, L; Schaefer, J S; Koerte, I; Blaschek, A; Meyer-Heim, A; Heinen, F

    2010-06-01

    The aim of the study was to investigate the sustainability of motor improvements achieved after a three week trial of robotic assisted treadmill therapy in children and adolescents with central gait disorders within a follow up period of about six months. Open, non-randomized, baseline-treatment study. Fourteen patients (mean age 8.2+/-5.4) underwent a trial of 12 sessions of robotic-assisted treadmill therapy using the Lokomat over a period of three weeks. Outcome measures were the dimensions D (standing) and E (walking) of the Gross Motor Function Measure, the ten meter walking test and the six minute walking test. Outcome variables were evaluated immediately before and after the trial and at a follow up of about six months. Improvements after the trial in the dimension D from 49.5% to 54.4% (P=0.008) and from 38.9% to 42.3% (P=0.012) in the dimension E of the GMFM were seen and are within the same range of previously published results. The mean score at the follow up after six months was 56.8% and 43.3% for dimension D and E, respectively. Gait speed improved from 0.80 m/s to 1.01 m/s (P=0.006) after the trial and was 1.11 m/s at the follow-up visit at six months. Similar results were obtained for endurance. The improvements of motor function after a three-week trial of robotic-assisted treadmill therapy appear to be sustained after a mean period of six months.

  19. Alzheimer random walk

    Science.gov (United States)

    Odagaki, Takashi; Kasuya, Keisuke

    2017-09-01

    Using the Monte Carlo simulation, we investigate a memory-impaired self-avoiding walk on a square lattice in which a random walker marks each of sites visited with a given probability p and makes a random walk avoiding the marked sites. Namely, p = 0 and p = 1 correspond to the simple random walk and the self-avoiding walk, respectively. When p> 0, there is a finite probability that the walker is trapped. We show that the trap time distribution can well be fitted by Stacy's Weibull distribution b(a/b){a+1}/{b}[Γ({a+1}/{b})]-1x^a\\exp(-a/bx^b)} where a and b are fitting parameters depending on p. We also find that the mean trap time diverges at p = 0 as p- α with α = 1.89. In order to produce sufficient number of long walks, we exploit the pivot algorithm and obtain the mean square displacement and its Flory exponent ν(p) as functions of p. We find that the exponent determined for 1000 step walks interpolates both limits ν(0) for the simple random walk and ν(1) for the self-avoiding walk as [ ν(p) - ν(0) ] / [ ν(1) - ν(0) ] = pβ with β = 0.388 when p ≪ 0.1 and β = 0.0822 when p ≫ 0.1. Contribution to the Topical Issue "Continuous Time Random Walk Still Trendy: Fifty-year History, Current State and Outlook", edited by Ryszard Kutner and Jaume Masoliver.

  20. Walking, running, and resting under time, distance, and average speed constraints: optimality of walk–run–rest mixtures

    Science.gov (United States)

    Long, Leroy L.; Srinivasan, Manoj

    2013-01-01

    On a treadmill, humans switch from walking to running beyond a characteristic transition speed. Here, we study human choice between walking and running in a more ecological (non-treadmill) setting. We asked subjects to travel a given distance overground in a given allowed time duration. During this task, the subjects carried, and could look at, a stopwatch that counted down to zero. As expected, if the total time available were large, humans walk the whole distance. If the time available were small, humans mostly run. For an intermediate total time, humans often use a mixture of walking at a slow speed and running at a higher speed. With analytical and computational optimization, we show that using a walk–run mixture at intermediate speeds and a walk–rest mixture at the lowest average speeds is predicted by metabolic energy minimization, even with costs for transients—a consequence of non-convex energy curves. Thus, sometimes, steady locomotion may not be energy optimal, and not preferred, even in the absence of fatigue. Assuming similar non-convex energy curves, we conjecture that similar walk–run mixtures may be energetically beneficial to children following a parent and animals on long leashes. Humans and other animals might also benefit energetically from alternating between moving forward and standing still on a slow and sufficiently long treadmill. PMID:23365192

  1. Treadmill Running Reverses Cognitive Declines due to Alzheimer Disease.

    Science.gov (United States)

    Cho, Jinkyung; Shin, Min-Kyoo; Kim, Donghyun; Lee, Inhwan; Kim, Shinuk; Kang, Hyunsik

    2015-09-01

    This study investigated the effect of treadmill running on cognitive declines in the early and advanced stages of Alzheimer disease (AD) in 3xTg-AD mice. At 4 months of age, 3xTg-AD mice (N = 24) were assigned to control (AD + CON, n = 12) or exercise (AD + EX, n = 12) group. At 24 months of age, 3xTg-AD mice (N = 16) were assigned to AD + CON (n = 8) or AD + EX (n = 8) group. The AD + EX mice were subjected to treadmill running for 12 wk. At each pathological stage, the background strain mice were included as wild-type control (WT + CON, n = 8-12). At the early stage of AD, 3xTg-AD mice had impaired short- and long-term memory based on Morris water maze along with higher cortical Aβ deposition, higher hippocampal and cortical tau pathology, and lower hippocampal and cortical PSD-95 and synaptophysin. A 12-wk treadmill running reversed the impaired cognitive declines and significantly improved the tau pathology along with suppression of the decreased PSD-95 and synaptophysin in the hippocampus and cortex. At the advanced stage of AD, 3xTg-AD mice had impaired short- and long-term memory along with higher levels of Aβ deposition, soluble Aβ1-40 and Aβ1-42, tau pathology, and lower levels of brain-derived neurotrophic factor, PSD-95, and synaptophysin in the hippocampus and cortex. A 12-wk treadmill running reversed the impaired cognitive declines and significantly improved the Aβ and tau pathology along with suppression of the decreased synaptic proteins and brain-derived neurotrophic factor in the hippocampus and cortex. The current findings suggest that treadmill running provides a nonpharmacological means to combat cognitive declines due to AD pathology.

  2. When Human Walking is a Random Walk

    Science.gov (United States)

    Hausdorff, J. M.

    1998-03-01

    The complex, hierarchical locomotor system normally does a remarkable job of controlling an inherently unstable, multi-joint system. Nevertheless, the stride interval --- the duration of a gait cycle --- fluctuates from one stride to the next, even under stationary conditions. We used random walk analysis to study the dynamical properties of these fluctuations under normal conditions and how they change with disease and aging. Random walk analysis of the stride-to-stride fluctuations of healthy, young adult men surprisingly reveals a self-similar pattern: fluctuations at one time scale are statistically similar to those at multiple other time scales (Hausdorff et al, J Appl Phsyiol, 1995). To study the stability of this fractal property, we analyzed data obtained from healthy subjects who walked for 1 hour at their usual pace, as well as at slower and faster speeds. The stride interval fluctuations exhibited long-range correlations with power-law decay for up to a thousand strides at all three walking rates. In contrast, during metronomically-paced walking, these long-range correlations disappeared; variations in the stride interval were uncorrelated and non-fractal (Hausdorff et al, J Appl Phsyiol, 1996). To gain insight into the mechanism(s) responsible for this fractal property, we examined the effects of aging and neurological impairment. Using detrended fluctuation analysis (DFA), we computed α, a measure of the degree to which one stride interval is correlated with previous and subsequent intervals over different time scales. α was significantly lower in healthy elderly subjects compared to young adults (p < .003) and in subjects with Huntington's disease, a neuro-degenerative disorder of the central nervous system, compared to disease-free controls (p < 0.005) (Hausdorff et al, J Appl Phsyiol, 1997). α was also significantly related to degree of functional impairment in subjects with Huntington's disease (r=0.78). Recently, we have observed that just as

  3. The Effects of Two Months Body Weight Supported Treadmill Training on Balance and Quality of Life of Patients With Incomplete Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Hamid Zamani

    2018-01-01

    Conclusion According to achieved results, eight weeks body weight supported treadmill training can improve the balance of the patients with spinal cord injury. It was observed that the gait training with stimulation and use of proprioceptors and increase of patient’s confidence in walking and standing positions improve the patient’s balance. The patients were also able to control the internal and external perturbations and maintain the better balance. But eight weeks gait training had no significant effect on the quality of life in patients with spinal cord injury which suggest that more extended rehabilitation is required.

  4. On the effect of walking surface stiffness on inter-limb coordination in human walking: toward bilaterally informed robotic gait rehabilitation.

    Science.gov (United States)

    Skidmore, Jeffrey; Artemiadis, Panagiotis

    2016-03-22

    Robotic devices have been utilized in gait rehabilitation but have only produced moderate results when compared to conventional physiotherapy. Because bipedal walking requires neural coupling and dynamic interactions between the legs, a fundamental understanding of the sensorimotor mechanisms of inter-leg coordination during walking, which are not well understood but are systematically explored in this study, is needed to inform robotic interventions in gait therapy. In this study we investigate mechanisms of inter-leg coordination by utilizing novel sensory perturbations created by real-time control of floor stiffness on a split-belt treadmill. We systematically alter the unilateral magnitude of the walking surface stiffness and the timing of these perturbations within the stance phase of the gait cycle, along with the level of body-weight support, while recording the kinematic and muscular response of the uperturbed leg. This provides new insight into the role of walking surface stiffness in inter-leg coordination during human walking. Both paired and unpaired unadjusted t-tests at the 95 % confidence level are used in the approriate scernario to determine statistical significance of the results. We present results of increased hip, knee, and ankle flexion, as well as increased tibialis anterior and soleus activation, in the unperturbed leg of healthy subjects that is repeatable and scalable with walking surface stiffness. The observed response was not impacted by the level of body-weight support provided, which suggests that walking surface stiffness is a unique stimulus in gait. In addition, we show that the activation of the tibialis anterior and soleus muscles is altered by the timing of the perturbations within the gait cycle. This paper characterizes the contralateral leg's response to ipsilateral manipulations of the walking surface and establishes the importance of walking surface stiffness in inter-leg coordination during human walking.

  5. Alveolar gas exchange and tissue oxygenation during incremental treadmill exercise, and their associations with blood O2 carrying capacity

    Directory of Open Access Journals (Sweden)

    Antti-Pekka E. Rissanen

    2012-07-01

    Full Text Available The magnitude and timing of oxygenation responses in highly active leg muscle, less active arm muscle, and cerebral tissue, have not been studied with simultaneous alveolar gas exchange measurement during incremental treadmill exercise. Nor is it known, if blood O2 carrying capacity affects the tissue-specific oxygenation responses. Thus, we investigated alveolar gas exchange and tissue (m. vastus lateralis, m. biceps brachii, cerebral cortex oxygenation during incremental treadmill exercise until volitional fatigue, and their associations with blood O2 carrying capacity in 22 healthy men. Alveolar gas exchange was measured, and near-infrared spectroscopy (NIRS was used to monitor relative concentration changes in oxy- (Δ[O2Hb], deoxy- (Δ[HHb] and total hemoglobin (Δ[tHb], and tissue saturation index (TSI. NIRS inflection points (NIP, reflecting changes in tissue-specific oxygenation, were determined and their coincidence with ventilatory thresholds (anaerobic threshold (AT, respiratory compensation point (RC; V-slope method was examined. Blood O2 carrying capacity (total hemoglobin mass (tHb-mass was determined with the CO-rebreathing method. In all tissues, NIPs coincided with AT, whereas RC was followed by NIPs. High tHb-mass associated with leg muscle deoxygenation at peak exercise (e.g., Δ[HHb] from baseline walking to peak exercise vs. tHb-mass: r = 0.64, p < 0.01, but not with arm muscle- or cerebral deoxygenation. In conclusion, regional tissue oxygenation was characterized by inflection points, and tissue oxygenation in relation to alveolar gas exchange during incremental treadmill exercise resembled previous findings made during incremental cycling. It was also found out, that O2 delivery to less active m. biceps brachii may be limited by an accelerated increase in ventilation at high running intensities. In addition, high capacity for blood O2 carrying was associated with a high level of m. vastus lateralis deoxygenation at peak

  6. Walking - Sensing - Participation

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam; Browning, David

    2014-01-01

    Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider ...... set of experiential or ‘felt’ qualities of living with mobile technologies. Moving from reflections on the value of walking with people, the paper outlines some affordances of a smartphone application built to capture place experiences through walking.......Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider...

  7. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Foadi, Roshan; Frandsen, Mads Toudal; A. Ryttov, T.

    2007-01-01

    Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars, pseudoscal......Different theoretical and phenomenological aspects of the Minimal and Nonminimal Walking Technicolor theories have recently been studied. The goal here is to make the models ready for collider phenomenology. We do this by constructing the low energy effective theory containing scalars......, pseudoscalars, vector mesons and other fields predicted by the minimal walking theory. We construct their self-interactions and interactions with standard model fields. Using the Weinberg sum rules, opportunely modified to take into account the walking behavior of the underlying gauge theory, we find...

  8. Walking stability during cell phone use in healthy adults.

    Science.gov (United States)

    Kao, Pei-Chun; Higginson, Christopher I; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S

    2015-05-01

    The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. The Effect of Treadmill Exercise on Antioxidant Status in the Hearts of the Diabetic Rats

    Directory of Open Access Journals (Sweden)

    I. Salehi

    2009-07-01

    Full Text Available Introduction & Objective: Diabetes is a metabolic disorder caused by low secretion or resistance to the insulin action. Oxidative stress, as a result of imbalance between the free radical production and antioxidant defense systems is strongly related to diabetes and its complications. The aim of the present study is to evaluate the effect of experimental diabetes and forced treadmill exercise on oxidative stress indexes in heart tissue.Materials & Methods: 40 male wistar rats (20020g were divided into four groups(n=10: control, control with exercise, diabetic, diabetic with exercise. Diabetes was induced by a single dose injection of streptozotocin (50 mg/Kg-1, i.p. Treadmill was performed for 1 hour, 5 days in 8 weeks. At the end of the experiments, the rats were anesthetized by sodium pentobarbital (50 mg/Kg-1, i.p and left ventricle dissociate from heart and maintenance in -80 ºC. Supernatant from homogenization were used to determine the superoxide dismutase (SOD, gluthatione peroxidase (GPX, gluthatione reductase (GR and catalase (CAT activities as enzymatic antioxidant status. Also Maolnyldealdehyde (MDA level as index of lipid peroxidation and total glutathione (T.GSH of the heart tissue were measured.Results: Diabetes significantly reduced CAT and GR activities in diabetic rats compared with control rats. SOD and GPX activities weren't changed in the hearts of the diabetic rats. MDA level, as a lipid peroxidation index, increased in non exercised diabetic rats. In response to exercise, MDA level, CAT, GR and SOD activities showed a significant increase in exercise diabetic rats compared with non exercise diabetic rats.Conclusion: Forced treadmill with moderate severity has harmful effects on cardiovascular system in diabetes because it increases MDA level of heart tissue in exercised diabetic rats.

  10. Locomotor training using body weight support on a treadmill improves mobility in persons with multiple sclerosis: a pilot study.

    Science.gov (United States)

    Giesser, Barbara; Beres-Jones, Janell; Budovitch, Amy; Herlihy, Elise; Harkema, Susan

    2007-03-01

    The purpose of this protocol was to investigate the potential benefits and tolerability of locomotor training using body weight support on a treadmill (LTBWST) in persons with multiple sclerosis (MS). Four persons with primarily spinal cord MS and severely impaired ambulation (Expanded Disability Status Scale score 7.0-7.5) were enrolled in LTBWST. Subjects completed an average of 40 training sessions over several months. Subjects showed improvement in muscle strength, spasticity, endurance, balance, walking speed, and quality of life at the end of the training sessions, and could tolerate training without fatigue or other adverse effects. LTBWST is well tolerated by persons with MS and may produce improvements in parameters related to functional mobility.

  11. Novel spatiotemporal analysis of gait changes in body weight supported treadmill trained rats following cervical spinal cord injury.

    Science.gov (United States)

    Neckel, Nathan D

    2017-09-13

    Common gait measures such as stride length, cycle time, and step height are not independent variables, but different aspects of the same multidimensional step. This complicates comparisons between experimental groups. Here we present a novel multidimensional gait analysis method and use this method to assess the ability of body weight supported treadmill training (BWSTT) to improve rodent stepping after spinal cord injury (SCI). In lieu of reducing a step to a collection of gait measures and comparing the means of several of these, we developed a multidimensional analysis technique that compares the step as a whole. While in a passive robotic gait training device, the pre-injury hindlimb stepping of 108 rats was recorded while they walked in a quadrupedal posture at 8 cm/s. Following a C4/5 over-hemisection spinal cord injury the weekly changes in stepping were tracked for 17 untrained and 10 BWSTT animals for 7 weeks. The performance of trained rats was recorded during training with BWS, as well as at the end of the training week without BWS. An additional six uninjured rats were trained for 5 weeks. Our novel multidimensional analysis shows that stepping is asymmetrically altered 1 week after SCI. The differences in stepping change over the following weeks, with the less impaired left hindlimb deviating further away from pre-injury than the more impaired right hindlimb. Uninjured rats do not significantly alter their stepping over 5 weeks. BWSTT improves the stepping of the right hindlimb, but only when the BWS is active. If the BWS is not present, the performance of trained animals is worse than untrained rats. The left hindlimb performance of BWSTT rats is worse than untrained rats, during both training sessions and weekly assessments. We feel that our novel multidimensional analysis is a more appropriate method to address the inter-dependencies of gait measures. Untrained rats exhibit both initial impairments as well as the development of compensatory

  12. Validity of activity trackers, smartphones, and phone applications to measure steps in various walking conditions.

    Science.gov (United States)

    Höchsmann, C; Knaier, R; Eymann, J; Hintermann, J; Infanger, D; Schmidt-Trucksäss, A

    2018-02-20

    To examine the validity of popular smartphone accelerometer applications and a consumer activity wristband compared to a widely used research accelerometer while assessing the impact of the phone's position on the accuracy of step detection. Twenty volunteers from 2 different age groups (Group A: 18-25 years, n = 10; Group B 45-70 years, n = 10) were equipped with 3 iPhone SE smartphones (placed in pants pocket, shoulder bag, and backpack), 1 Samsung Galaxy S6 Edge (pants pocket), 1 Garmin Vivofit 2 wristband, and 2 ActiGraph wGTX+ devices (worn at wrist and hip) while walking on a treadmill (1.6, 3.2, 4.8, and 6.0 km/h) and completing a walking course. All smartphones included 6 accelerometer applications. Video observation was used as gold standard. Validity was evaluated by comparing each device with the gold standard using mean absolute percentage errors (MAPE). The MAPE of the iPhone SE (all positions) and the Garmin Vivofit was small (Samsung Galaxy and hip-worn ActiGraph showed small MAPE only for treadmill walking at 4.8 and 6.0 km/h and for free walking. The wrist-worn ActiGraph showed high MAPE (17-47) for all walking conditions. The iPhone SE and the Garmin Vivofit 2 are accurate tools for step counting in different age groups and during various walking conditions, even during slow walking. The phone's position does not impact the accuracy of step detection, which substantially improves the versatility for physical activity assessment in clinical and research settings. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Understanding Walking Behavior: Its Benefits and Barriers

    Directory of Open Access Journals (Sweden)

    Fatmawati

    2016-12-01

    Full Text Available Health survey demonstrates that 5.3 million people each year experienced a premature death due to physical inactivity (Lee et al., 2012. Data from Department of Health (2004 revealed that in the United Kingdom more than 60% of adult males and 75% of adult females did not perform enough physical activity. Hence, to minimize this problem, currently, health practitioners are trying to encourage people to be more physically active, especially by promoting several types of exercise, including walking (Marshall et al., 2009; Hallal et al., 2012. Regular walking is one of the essential predictors for long-term physical and mental health benefit. Some recent studies mention that there are lots of advantages if adults can maintain their regular walking (Gunnell, Knuiman, Divitini, & Cormie, 2014; Morgan, Tobar, & Synder, 2010; Roe & Aspinall, 2011; Shiue, 2015; Nagai et al., 2011. Regular walking minimum 10,000 steps each day can burn as much as 400 calories so that it may help overweight or obesity people to reduce their weight (NHS, 2014. However, most of the people perceive walking as one form of transport rather than exercise; therefore, this reason discourages them to walk sufficiently for healthy life purpose (Darker et al., 2007.

  14. Influence of Neuromuscular Noise and Walking Speed on Fall Risk and Dynamic Stability in a 3D Dynamic Walking Model

    OpenAIRE

    Roos, Paulien E.; Dingwell, Jonathan B.

    2013-01-01

    Older adults and those with increased fall risk tend to walk slower. They may do this voluntarily to reduce their fall risk. However, both slower and faster walking speeds can predict increased risk of different types of falls. The mechanisms that contribute to fall risk across speeds are not well known. Faster walking requires greater forward propulsion, generated by larger muscle forces. However, greater muscle activation induces increased signal-dependent neuromuscular noise. These speed-r...

  15. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  16. LEGS AND TRUNK MUSCLE HYPERTROPHY FOLLOWING WALK TRAINING WITH RESTRICTED LEG MUSCLE BLOOD FLOW

    Directory of Open Access Journals (Sweden)

    Mikako Sakamaki

    2011-06-01

    Full Text Available We examined the effect of walk training combined with blood flow restriction (BFR on the size of blood flow-restricted distal muscles, as well as, on the size of non-restricted muscles in the proximal limb and trunk. Nine men performed walk training with BFR and 8 men performed walk training alone. Training was conducted two times a day, 6 days/wk, for 3 wk using five sets of 2-min bouts (treadmill speed at 50 m/min, with a 1-min rest between bouts. After walk training with BFR, MRI-measured upper (3.8%, P < 0.05 and lower leg (3.2%, P < 0. 05 muscle volume increased significantly, whereas the muscle volume of the gluteus maximus (-0.6% and iliopsoas (1.8% and the muscle CSA of the lumber L4-L5 (-1.0 did not change. There was no significant change in muscle volume in the walk training alone. Our results suggest that the combination of leg muscle blood flow restriction with slow walk training elicits hypertrophy only in the distal blood flow restricted leg muscles. Exercise intensity may be too low during BFR walk training to increase muscle mass in the non- blood flow restricted muscles (gluteus maximus and other trunk muscles.

  17. Body Acceleration as Indicator for Walking Economy in an Ageing Population.

    Science.gov (United States)

    Valenti, Giulio; Bonomi, Alberto G; Westerterp, Klaas R

    2015-01-01

    In adults, walking economy declines with increasing age and negatively influences walking speed. This study aims at detecting determinants of walking economy from body acceleration during walking in an ageing population. 35 healthy elderly (18 males, age 51 to 83 y, BMI 25.5±2.4 kg/m2) walked on a treadmill. Energy expenditure was measured with indirect calorimetry while body acceleration was sampled at 60Hz with a tri-axial accelerometer (GT3X+, ActiGraph), positioned on the lower back. Walking economy was measured as lowest energy needed to displace one kilogram of body mass for one meter while walking (WCostmin, J/m/kg). Gait features were extracted from the acceleration signal and included in a model to predict WCostmin. On average WCostmin was 2.43±0.42 J/m/kg and correlated significantly with gait rate (r2 = 0.21, peconomy is induced by the adoption of an increased gait rate and by irregular body acceleration in the horizontal plane.

  18. Treadmill training with partial body-weight support in children with cerebral palsy: a systematic review.

    Science.gov (United States)

    Mutlu, Akmer; Krosschell, Kristin; Spira, Deborah Gaebler

    2009-04-01

    The aim of this systematic review was to examine the literature on the effects of partial body-weight support treadmill training (PBWSTT) in children with cerebral palsy (CP) on functional outcomes and attainment of ambulation. We searched the relevant literature from 1950 to July 2007. We found eight studies on the use of PWSBTT on functional outcomes in children with CP. The methodology to develop systematic reviews of treatment interventions as suggested by the American Academy of Cerebral Palsy and Developmental Medicine and the Critical Review Form-Quantitative Studies Methodological Quality was used to evaluate each article. As two of the eight published articles reported on different outcomes of the same study, this review reports on seven studies with a total of 41 children. The evidence for the functional effects is limited. Statistical significance is not demonstrated in several of the studies, despite reported improvements in gross motor function, functional status, walking performance, and gait parameters. This systematic review is limited by the small number of participants, the heterogeneous level of abilities of participants from Gross Motor Function Classification System levels I to IV, and the low quality of trials. Because of these limitations, we cannot conclude that PBWSTT results in improvements for children with CP. Additional studies and well-established randomized controlled (or clinical) trials are clearly needed before determining the benefits and efficacy that would support continued use of this intervention in the clinical setting.

  19. Walking the Everyday

    Directory of Open Access Journals (Sweden)

    Matthew Bissen

    2014-11-01

    Full Text Available Since 2010, @matthewalking (Bissen, 2013 has published real-time public texts of walks in the city. This text-based Twitter feed has developed a narrative of a particular everyday life and developed a space of interface with others that represents a centering of perspective within an urban landscape. Walking the city provides a spatial, tactile, social, and embodied knowledge of the environment as each of us emerges into a space, orients ourselves, and determines a path that is highly localized, but is in connection with distant spaces and cultures. According to Ben Jacks in “Walking the City: Manhattan Projects,” “for urban dwellers and designers, walking is a fundamental tool for laying claim to, understanding, and shaping a livable city. Walking yields bodily knowing, recovers place memory, creates narrative, prioritizes human scale, and reconnects people to places” (75. @matthewalking’s walks, at times for as long as 5 hours, attempt to center an experience of an urban existence in a spatial narrative of the city that at once prioritizes a connection to place, but also is projected outward into a mediated relationship with others. The project is a series of unbounded walks, or dérives (drift, through the city that are logged on Twitter and traced to create an archive map of a set of particular urban experiences. The dérive concept as outlined in “The Theory of the Dérive,” by Guy Debord is when “one or more persons during a certain period drop their relations, their work and leisure activities, and all their other usual motives for movement and action, and let themselves be drawn by the attractions of the terrain and the encounters they find there” (62.

  20. Comparison of Power Output Estimates in Treadmill Roller-Skiing

    Directory of Open Access Journals (Sweden)

    David Sundström

    2018-02-01

    Full Text Available The purpose of this study was to evaluate and compare various power output estimates and estimate anaerobic energy supply during treadmill roller-skiing. Roller-skiing sprint time-trial performance on a treadmill was compared to numerical simulations of three different power output estimates; non-inertial power estimate (NIP, inertial power estimate (IP, and optimization power estimate (OP. The OP was in best agreement with the measured speed of the skier. However, the IP was in better agreement with the measured finishing time of the real time trial, which may suggest that the IP better approximated the mean power than the other two estimates. Moreover, the NIP and IP are more simplistic than the OP and thereby more practical from a scientific standpoint. Based on this we recommend the use of the IP estimate.

  1. Burning more than calories: treadmill friction injuries in children.

    LENUS (Irish Health Repository)

    Davidson, C C

    2012-02-01

    Treadmill injuries in young children are a serious but little documented problem. Friction burns occur when the hands come into contact with the moving belt resulting in deep burns that often require hospital admission and surgery. The aim of this study was to assess the nature and prevalence of injuries sustained and to highlight treadmill friction burns as a public health issue previously undocumented in Ireland. A retrospective chart review from January 2006 until March 2008 was performed and functional outcome was assessed by the modified Michigan Hand Outcomes Questionnaire. Eight girls and four boys from one year and seven months to seven years and five months were treated. Eight children required admission to hospital and to date three have required surgery for their injuries. This is a new and increasing problem in Ireland which must be highlighted.

  2. Increased H(max):M(max) ratio in community walkers poststroke without increase in ankle plantarflexion during walking.

    Science.gov (United States)

    Garrett, M; Caulfield, B

    2001-08-01

    To investigate whether changes in H-reflex response at midswing and midstance are related to excessive plantarflexion during walking in community walkers poststroke compared with control subjects without stroke. Survey of functional walking handicap in a random sample of an annual stroke cohort followed by H-reflex and M(max) testing of a smaller sample. Community and laboratory testing. Forty individuals with stroke (IWS group) completed the functional walking handicap survey, 10 of whom agreed (with 10 age-matched controls) to enroll in a study of of the H(max):M(max) ratio in soleus during walking. Electromyography during treadmill walking. Functional Walking Handicap Scale, soleus H(max):M(max) ratio, and the ankle joint's angle of displacement. Nine of the 10 stroke patients were community walkers. All had significantly (p .05) increase in H(max) response. Individuals with community-level walking ability after stroke have significantly (p <.05) less repeatability of ankle joint movement than controls at both midswing and midstance. Simultaneous soleus H(max) and M(max) testing showed a significant (p <.01) reduction in the H(max) and H(max):M(max) ratio at midswing in controls only. This inhibition at midswing was lost by the IWS group without significant increase in H(max), suggesting that central synaptic excitability was within the normal range, and possibly accounting for the absence of excessive ankle plantarflexion during walking in the IWS group with community level walking ability.

  3. Race walking gait and its influence on race walking economy in world-class race walkers.

    Science.gov (United States)

    Gomez-Ezeiza, Josu; Torres-Unda, Jon; Tam, Nicholas; Irazusta, Jon; Granados, Cristina; Santos-Concejero, Jordan

    2018-03-06

    The aim of this study was to determine the relationships between biomechanical parameters of the gait cycle and race walking economy in world-class Olympic race walkers. Twenty-One world-class race walkers possessing the Olympic qualifying standard participated in this study. Participants completed an incremental race walking test starting at 10 km·h -1 , where race walking economy (ml·kg -1 ·km -1 ) and spatiotemporal gait variables were analysed at different speeds. 20-km race walking performance was related to race walking economy, being the fastest race walkers those displaying reduced oxygen cost at a given speed (R = 0.760, p economy (moderate effect, p economi cal than the lesser performers. Similarly, shorter flight times are associated with a more efficient race walking economy. Coaches and race walkers should avoid modifying their race walking style by increasing flight times, as it may not only impair economy, but also lead to disqualification.

  4. Entropy Analysis of Short-Term Heartbeat Interval Time Series during Regular Walking

    Directory of Open Access Journals (Sweden)

    Bo Shi

    2017-10-01

    Full Text Available Entropy measures have been extensively used to assess heart rate variability (HRV, a noninvasive marker of cardiovascular autonomic regulation. It is yet to be elucidated whether those entropy measures can sensitively respond to changes of autonomic balance and whether the responses, if there are any, are consistent across different entropy measures. Sixteen healthy subjects were enrolled in this study. Each subject undertook two 5-min ECG measurements, one in a resting seated position and another while walking on a treadmill at a regular speed of 5 km/h. For each subject, the two measurements were conducted in a randomized order and a 30-min rest was required between them. HRV time series were derived and were analyzed by eight entropy measures, i.e., approximate entropy (ApEn, corrected ApEn (cApEn, sample entropy (SampEn, fuzzy entropy without removing local trend (FuzzyEn-g, fuzzy entropy with local trend removal (FuzzyEn-l, permutation entropy (PermEn, conditional entropy (CE, and distribution entropy (DistEn. Compared to resting seated position, regular walking led to significantly reduced CE and DistEn (both p ≤ 0.006; Cohen’s d = 0.9 for CE, d = 1.7 for DistEn, and increased PermEn (p < 0.0001; d = 1.9, while all these changes disappeared after performing a linear detrend or a wavelet detrend (<~0.03 Hz on HRV. In addition, cApEn, SampEn, FuzzyEn-g, and FuzzyEn-l showed significant decreases during regular walking after linear detrending (all p < 0.006; 0.8 < d < 1, while a significantly increased ApEn (p < 0.0001; d = 1.9 and a significantly reduced cApEn (p = 0.0006; d = 0.8 were observed after wavelet detrending. To conclude, multiple entropy analyses should be performed to assess HRV in order for objective results and caution should be paid when drawing conclusions based on observations from a single measure. Besides, results from different studies will not be comparable unless it is clearly stated whether data have been

  5. Treadmill Exercise Induces Hippocampal Astroglial Alterations in Rats

    Directory of Open Access Journals (Sweden)

    Caren Bernardi

    2013-01-01

    Full Text Available Physical exercise effects on brain health and cognitive performance have been described. Synaptic remodeling in hippocampus induced by physical exercise has been described in animal models, but the underlying mechanisms remain poorly understood. Changes in astrocytes, the glial cells involved in synaptic remodeling, need more characterization. We investigated the effect of moderate treadmill exercise (20 min/day for 4 weeks on some parameters of astrocytic activity in rat hippocampal slices, namely, glial fibrillary acidic protein (GFAP, glutamate uptake and glutamine synthetase (GS activities, glutathione content, and S100B protein content and secretion, as well as brain-derived neurotrophic factor (BDNF levels and glucose uptake activity in this tissue. Results show that moderate treadmill exercise was able to induce a decrease in GFAP content (evaluated by ELISA and immunohistochemistry and an increase in GS activity. These changes could be mediated by corticosterone, whose levels were elevated in serum. BDNF, another putative mediator, was not altered in hippocampal tissue. Moreover, treadmill exercise caused a decrease in NO content. Our data indicate specific changes in astrocyte markers induced by physical exercise, the importance of studying astrocytes for understanding brain plasticity, as well as reinforce the relevance of physical exercise as a neuroprotective strategy.

  6. Unitary equivalence of quantum walks

    International Nuclear Information System (INIS)

    Goyal, Sandeep K.; Konrad, Thomas; Diósi, Lajos

    2015-01-01

    Highlights: • We have found unitary equivalent classes in coined quantum walks. • A single parameter family of coin operators is sufficient to realize all simple one-dimensional quantum walks. • Electric quantum walks are unitarily equivalent to time dependent quantum walks. - Abstract: A simple coined quantum walk in one dimension can be characterized by a SU(2) operator with three parameters which represents the coin toss. However, different such coin toss operators lead to equivalent dynamics of the quantum walker. In this manuscript we present the unitary equivalence classes of quantum walks and show that all the nonequivalent quantum walks can be distinguished by a single parameter. Moreover, we argue that the electric quantum walks are equivalent to quantum walks with time dependent coin toss operator

  7. Forced Use of the Paretic Leg Induced by a Constraint Force Applied to the Nonparetic Leg in Individuals Poststroke During Walking.

    Science.gov (United States)

    Hsu, Chao-Jung; Kim, Janis; Roth, Elliot J; Rymer, William Z; Wu, Ming

    2017-12-01

    Individuals with stroke usually show reduced muscle activities of the paretic leg and asymmetrical gait pattern during walking. To determine whether applying a resistance force to the nonparetic leg would enhance the muscle activities of the paretic leg and improve the symmetry of spatiotemporal gait parameters in individuals with poststroke hemiparesis. Fifteen individuals with chronic poststroke hemiparesis participated in this study. A controlled resistance force was applied to the nonparetic leg using a customized cable-driven robotic system while subjects walked on a treadmill. Subjects completed 2 test sections with the resistance force applied at different phases of gait (ie, early and late swing phases) and different magnitudes (10%, 20%, and 30% of maximum voluntary contraction [MVC] of nonparetic leg hip flexors). Electromyographic (EMG) activity of the muscles of the paretic leg and spatiotemporal gait parameters were collected. Significant increases in integrated EMG of medial gastrocnemius, medial hamstrings, vastus medialis, and tibialis anterior of the paretic leg were observed when the resistance was applied during the early swing phase of the nonparetic leg, compared with baseline. Additionally, resistance with 30% of MVC induced the greatest level of muscle activity than that with 10% or 20% of MVC. The symmetry index of gait parameters also improved with resistance applied during the early swing phase. Applying a controlled resistance force to the nonparetic leg during early swing phase may induce forced use on the paretic leg and improve the spatiotemporal symmetry of gait in individuals with poststroke hemiparesis.

  8. Muscle contributions to propulsion and braking during walking and running: insight from external force perturbations.

    Science.gov (United States)

    Ellis, Richard G; Sumner, Bonnie J; Kram, Rodger

    2014-09-01

    There remains substantial debate as to the specific contributions of individual muscles to center of mass accelerations during walking and running. To gain insight, we altered the demand for muscular propulsion and braking by applying external horizontal impeding and aiding forces near the center of mass as subjects walked and ran on a treadmill. We recorded electromyographic activity of the gluteus maximus (superior and inferior portions), the gluteus medius, biceps femoris, semitendinosus/membrinosus, vastus medialis, lateral and medial gastrocnemius and soleus. We reasoned that activity in a propulsive muscle would increase with external impeding force and decrease with external aiding force whereas activity in a braking muscle would show the opposite. We found that during walking the gastrocnemius and gluteus maximus provide propulsion while the vasti are central in providing braking. During running, we found that the gluteus maximus, vastus medialis, gastrocnemius and soleus all contribute to propulsion. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Plantar flexor stretch reflex responses to whole body loading/unloading during human walking

    DEFF Research Database (Denmark)

    Grey, Michael James; van Doornik, Johannes; Sinkjær, Thomas

    2002-01-01

    perturbation during human walking. Three body load conditions were investigated: normal body load, a 30% increase in body load, and a 30% decrease in body load. Healthy subjects walked on a treadmill at approximately 3.6 km/h with the left ankle attached to a portable stretching device. Dorsiflexion......Numerous animal and human studies have shown that afferent information from the periphery contributes to the control of walking. In particular, recent studies have consistently shown that load receptor input is an important element of the locomotion control mechanism. The objective of this study...... electrodes. Stretch reflex responses were observed in the soleus and gastrocnemius muscles for all of the body load conditions; however, increasing or decreasing the body load did not affect the timing and magnitude of the responses. This study provides evidence that load receptor input does not contribute...

  10. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up

    Directory of Open Access Journals (Sweden)

    Eggenberger P

    2015-10-01

    Full Text Available Patrick Eggenberger,1 Nathan Theill,2,3 Stefan Holenstein,1 Vera Schumacher,4,5 Eling D de Bruin1,6,7 1Department of Health Sciences and Technology, Institute of Human Movement Sciences and Sport, ETH Zurich, 2Division of Psychiatry Research, 3Center for Gerontology, 4Department of Gerontopsychology and Gerontology, 5University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland; 6Department of Epidemiology, CAPHRI School for Public Health and Primary Care, 7Centre for Evidence Based Physiotherapy, Maastricht University, Maastricht, the Netherlands Background: About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive–physical training would lead to greater improvements in dual-task (DT gait compared to exclusive physical training.Methods: Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1 virtual reality video game dancing (DANCE, 2 treadmill walking with simultaneous verbal memory training (MEMORY, or 3 treadmill walking (PHYS. Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk, and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out.Results: Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a

  11. Mechanical Perturbations of the Walking Surface Reveal Unaltered Axial Trunk Stiffness in Chronic Low Back Pain Patients

    OpenAIRE

    Prins, Maarten R.; van der Wurff, Peter; Meijer, Onno G.; Bruijn, Sjoerd M.; van Die?n, Jaap H.

    2016-01-01

    Introduction Patients with chronic low back pain (CLBP) often demonstrate altered timing of thorax rotations in the transverse plane during gait. Increased axial trunk stiffness has been claimed to cause this movement pattern. Objectives The objective of this study was to assess whether axial trunk stiffness is increased in gait in CLBP patients. Methods 15 CLBP patients and 15 healthy controls walked on a treadmill that imposed rotational perturbations in the transverse plane. The effect of ...

  12. The Act of Walking

    DEFF Research Database (Denmark)

    Vestergaard, Maria Quvang Harck; Olesen, Mette; Helmer, Pernille Falborg

    2014-01-01

    perception of ‘walkability’ is based upon a subjective judgement of different physical factors, such as sidewalk width, traffic volumes and building height (Ewing and Handy 2009:67). And iIn order to understand the act of walking it is therefore necessary to create a vocabulary to understand how and why...... the individuals evaluate, interpret and act (Bourdieu 1984), and how this affects their choice to walk. Therefore it could be questioned if whether an assessment of the physical environment is sufficient to identify all the factors that influence the individual perception of ‘walkability’, or if other influencing...... factors like lifestyle and life situation should be addressed in order to understand ‘walkability’ fully. The challenge is to approach issues linked to the ‘more-than representational’ (Thrift 2007; Vannini 2012) act of walking and thereby understand pedestrian behaviour in general, but also...

  13. Walks on SPR neighborhoods.

    Science.gov (United States)

    Caceres, Alan Joseph J; Castillo, Juan; Lee, Jinnie; St John, Katherine

    2013-01-01

    A nearest-neighbor-interchange (NNI)-walk is a sequence of unrooted phylogenetic trees, T1, T2, . . . , T(k) where each consecutive pair of trees differs by a single NNI move. We give tight bounds on the length of the shortest NNI-walks that visit all trees in a subtree-prune-and-regraft (SPR) neighborhood of a given tree. For any unrooted, binary tree, T, on n leaves, the shortest walk takes Θ(n²) additional steps more than the number of trees in the SPR neighborhood. This answers Bryant’s Second Combinatorial Challenge from the Phylogenetics Challenges List, the Isaac Newton Institute, 2011, and the Penny Ante Problem List, 2009.

  14. Ways of Walking

    DEFF Research Database (Denmark)

    Eslambolchilar, Parisa; Bødker, Mads; Chamberlain, Alan

    2016-01-01

    technologies. Drawing on insights from non-representational theory, we develop a partial vocabulary with which to engage with qualities of pedestrian mobility, and we outline how taking more mindful approaches to walking may enrich and inform the design space of handheld technologies.......It seems logical to argue that mobile computing technologies are intended for use "on-the-go." However, on closer inspection, the use of mobile technologies pose a number of challenges for users who are mobile, particularly moving around on foot. In engaging with such mobile technologies...... and their envisaged development, we argue that interaction designers must increasingly consider a multitude of perspectives that relate to walking in order to frame design problems appropriately. In this paper, we consider a number of perspectives on walking, and we discuss how these may inspire the design of mobile...

  15. Impaired gait function in adults with cerebral palsy is associated with reduced rapid force generation and increased passive stiffness

    DEFF Research Database (Denmark)

    Geertsen, Svend Sparre; Kirk, Henrik; Lorentzen, Jakob

    2015-01-01

    OBJECTIVE: It is still not clarified whether spasticity contributes to impairments of gait function. Here we compared biomechanical measures of muscle weakness and stiffness of ankle muscles to impairments of gait function in adults with cerebral palsy (CP). METHODS: Twenty-four adults with CP...... analysis of the ankle joint during treadmill walking was obtained by 3-D motion analysis. RESULTS: Passive stiffness was significantly increased in adults with CP compared to controls. Passive stiffness and RFDdf were correlated to reduced toe lift. RFDpf provided the best correlation to push-off velocity......, range of movement in the ankle joint and gait speed. Reflex-mediated stiffness was not correlated to any parameters of impaired gait. CONCLUSIONS: Impaired gait function in adults with CP is associated with reduced RFD and increased passive stiffness of ankle muscles. SIGNIFICANCE: These findings...

  16. Cardiorespiratory responses during aquatic treadmill exercise and land treadmill exercise in older adults with type 2 diabetes.

    Science.gov (United States)

    Rigby, Brandon R; Bolte, Janie; Biggerstaff, Kyle D; Nichols, David L; Castleberry, Todd J

    2017-07-05

    The purpose of this study was to compare the effect of aquatic treadmill exercise (ATM) to land treadmill exercise (LTM) in adults with and without type 2 diabetes (T2D). Five participants with T2D (4 females, 1 male; age = 51±3 years; height = 170±3 cm; weight = 96±11 kg; body fat = 32±1%) and five participants without T2D (4 females, 1 male; age = 51±3 years; height = 170±3 cm; weight = 71±15 kg; body fat = 27±2%) completed the study. Participants completed three, 5-minute stages of exercise at 3.2 km/h, 4.8 km/h and 6.4 km/h with 0% grade on land and aquatic treadmills. Heart rate (HR), systolic and diastolic blood pressure (SBP and DBP), absolute and relative oxygen consumption (VO2), and energy expenditure were measured at rest and during steady-state exercise at each intensity. A 2x2x4 Mixed Factorial ANOVA and Bonferroni post hoc test with a significance level of 0.05 was used. All variables increased as speed increased (p aquatic and land exercise when comparing those with and without T2D, cardiorespiratory and metabolic variables are similar in both groups during locomotion on land and in an aquatic environment.

  17. Walking for data

    DEFF Research Database (Denmark)

    Bødker, Mads; Browning, David; Meinhardt, Nina Dam

    We suggest that ‘walking’ in ethnographic work sensitizes researchers to a particular means of making sense of place. Following a brief conceptual exposition, we present our research tool iMaCam) that supports capturing and representing activities such as walking.......We suggest that ‘walking’ in ethnographic work sensitizes researchers to a particular means of making sense of place. Following a brief conceptual exposition, we present our research tool iMaCam) that supports capturing and representing activities such as walking....

  18. Minimal Walking Technicolor

    DEFF Research Database (Denmark)

    Frandsen, Mads Toudal

    2007-01-01

    I report on our construction and analysis of the effective low energy Lagrangian for the Minimal Walking Technicolor (MWT) model. The parameters of the effective Lagrangian are constrained by imposing modified Weinberg sum rules and by imposing a value for the S parameter estimated from the under......I report on our construction and analysis of the effective low energy Lagrangian for the Minimal Walking Technicolor (MWT) model. The parameters of the effective Lagrangian are constrained by imposing modified Weinberg sum rules and by imposing a value for the S parameter estimated from...

  19. Fitness Club / Nordic Walking

    CERN Multimedia

    Fitness Club

    2011-01-01

    Nordic Walking at CERN Enrollments are open for Nordic Walking courses and outings at CERN. Classes will be on Tuesdays as of 20 September, and outings for the more experienced will be on Thursdays as of 15 September. We meet at the CERN Club barracks car park (near entrance A). • 18:00 to 19:00 on 20 & 27 September, as well as 4 & 11 October. Check out our schedule and rates and enroll at: http://cern.ch/club-fitness Hope to see you among us! CERN Fitness Club fitness.club@cern.ch  

  20. Effects of treadmill training with load addition on non-paretic lower limb on gait parameters after stroke: A randomized controlled clinical trial.

    Science.gov (United States)

    Ribeiro, Tatiana S; Silva, Emília M G S; Silva, Isaíra A P; Costa, Mayara F P; Cavalcanti, Fabrícia A C; Lindquist, Ana R

    2017-05-01

    The addition of load on the non-paretic lower limb for the purpose of restraining this limb and stimulating the use of the paretic limb has been suggested to improve hemiparetic gait. However, the results are conflicting and only short-term effects have been observed. This study aims to investigate the effects of adding load on non-paretic lower limb during treadmill gait training as a multisession intervention on kinematic gait parameters after stroke. With this aim, 38 subacute stroke patients (mean time since stroke: 4.5 months) were randomly divided into two groups: treadmill training with load (equivalent to 5% of body weight) on the non-paretic ankle (experimental group) and treadmill training without load (control group). Both groups performed treadmill training during 30min per day, for two consecutive weeks (nine sessions). Spatiotemporal and angular gait parameters were assessed by a motion system analysis at baseline, post-training (at the end of 9days of interventions) and follow-up (40days after the end of interventions). Several post-training effects were demonstrated: patients walked faster and with longer paretic and non-paretic steps compared to baseline, and maintained these gains at follow-up. In addition, patients exhibited greater hip and knee joint excursion in both limbs at post-training, while maintaining most of these benefits at follow-up. All these improvements were observed in both groups. Although the proposal gait training program has provided better gait parameters for these subacute stroke patients, our data indicate that load addition used as a restraint may not provide additional benefits to gait training. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Combination of robot-assisted and conventional body-weight-supported treadmill training improves gait in persons with multiple sclerosis: a pilot study.

    Science.gov (United States)

    Ruiz, Jennifer; Labas, Michele P; Triche, Elizabeth W; Lo, Albert C

    2013-12-01

    The majority of persons with multiple sclerosis (MS) experience problems with gait, which they characterize as highly disabling impairments that adversely impact their quality of life. Thus, it is crucial to develop effective therapies to improve mobility for these individuals. The purpose of this study was to determine whether combination gait training, using robot-assisted treadmill training followed by conventional body-weight-supported treadmill training within the same session, improved gait and balance in individuals with MS. This study tested combination gait training in 7 persons with MS. The participants were randomized into the immediate therapy group (IT group) or the delayed therapy group (DT group). In phase I of the trial, the IT group received treatment while the DT group served as a concurrent comparison group. In phase II of the trial, the DT group received treatment identical to the treatment received by the IT group in phase I. Outcome measures included the 6-Minute Walk Test (6MWT), the Timed 25-Foot Walk Test, velocity, cadence, and the Functional Reach Test (FRT). Nonparametric statistical techniques were used for analysis. Combination gait training resulted in significantly greater improvements in the 6MWT for the IT group (median change = +59 m) compared with Phase I DT group (median change = -8 m) (P = 0.08) and FRT (median change = +3.3 cm in IT vs -0.8 cm in the DT group phase I; P = 0.03). Significant overall pre-post improvements following combination gait training were found in 6MWT (+32 m; P = 0.02) and FRT (+3.3 cm; P = 0.06) for IT and Phase II DT groups combined. Combination of robot with body-weight-supported treadmill training gait training is feasible and improved 6MWT and FRT distances in persons with MS.Video Abstract available (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A62) for more insights from the authors.

  2. Iterated random walks with shape prior

    DEFF Research Database (Denmark)

    Pujadas, Esmeralda Ruiz; Kjer, Hans Martin; Piella, Gemma

    2016-01-01

    We propose a new framework for image segmentation using random walks where a distance shape prior is combined with a region term. The shape prior is weighted by a confidence map to reduce the influence of the prior in high gradient areas and the region term is computed with k-means to estimate th...

  3. Physiological aspect walking and Nordic walking as adequate kinetic activities.

    OpenAIRE

    BENEŠ, Václav

    2010-01-01

    This bachelor thesis on the topic of The Physiological Aspect of Walking and Nordic Walking as an adequate physical activity focuses on chosen physiological changes of an organism during a five-month training cycle. In the theoretical part I describe the physiological changes of organism during a regularly repeated strain, and also the technique of walking, Nordic walking and health benefits of these activities are defined here. The research part of the thesis describes the measurement method...

  4. 10 CFR 431.302 - Definitions concerning walk-in coolers and walk-in freezers.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning walk-in coolers and walk-in... FOR CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Walk-in Coolers and Walk-in Freezers § 431.302 Definitions concerning walk-in coolers and walk-in freezers. Walk-in cooler and walk-in freezer mean an...

  5. Single Session of Functional Electrical Stimulation-Assisted Walking Produces Corticomotor Symmetry Changes Related to Changes in Poststroke Walking Mechanics.

    Science.gov (United States)

    Palmer, Jacqueline A; Hsiao, HaoYuan; Wright, Tamara; Binder-Macleod, Stuart A

    2017-05-01

    Recent research demonstrated that the symmetry of corticomotor drive with the paretic and nonparetic plantarflexor muscles was related to the biomechanical ankle moment strategy that people with chronic stroke used to achieve their greatest walking speeds. Rehabilitation strategies that promote corticomotor balance might improve poststroke walking mechanics and enhance functional ambulation. The study objectives were to test the effectiveness of a single session of gait training using functional electrical stimulation (FES) to improve plantarflexor corticomotor symmetry and plantarflexion ankle moment symmetry and to determine whether changes in corticomotor symmetry were related to changes in ankle moment symmetry within the session. This was a repeated-measures crossover study. On separate days, 20 people with chronic stroke completed a session of treadmill walking either with or without the use of FES of their ankle dorsi- and plantarflexor muscles. We calculated plantarflexor corticomotor symmetry using transcranial magnetic stimulation and plantarflexion ankle moment symmetry during walking between the paretic and the nonparetic limbs before and after each session. We compared changes and tested relationships between corticomotor symmetry and ankle moment symmetry following each session. Following the session with FES, there was an increase in plantarflexor corticomotor symmetry that was related to the observed increase in ankle moment symmetry. In contrast, following the session without FES, there were no changes in corticomotor symmetry or ankle moment symmetry. No stratification was made on the basis of lesion size, location, or clinical severity. These findings demonstrate, for the first time (to our knowledge), the ability of a single session of gait training with FES to induce positive corticomotor plasticity in people in the chronic stage of stroke recovery. They also provide insight into the neurophysiologic mechanisms underlying improvements in

  6. Optimizing a Treadmill Ramp Protocol to Evaluate Aerobic Capacity of Hemiparetic Poststroke Patients.

    Science.gov (United States)

    Bernardes, Wendell L; Montenegro, Rafael A; Monteiro, Walace D; de Almeida Freire, Raul; Massaferri, Renato; Farinatti, Paulo

    2018-03-01

    Bernardes, WL, Montenegro, RA, Monteiro, WD, de Almeida Freire, R, Massaferri, R, and Farinatti, P. Optimizing a treadmill ramp protocol to evaluate aerobic capacity of hemiparetic poststroke patients. J Strength Cond Res 32(3): 876-884, 2018-A correct assessment of cardiopulmonary capacity is important for aerobic training within motor rehabilitation of poststroke hemiparetic patients (PSHPs). However, specific cardiopulmonary exercise testing (CPET) for these patients are scarce. We proposed adaptations in a protocol originally developed for PSHPs by Ovando et al. (CPET1). We hypothesized that our adapted protocol (CPET2) would improve the original test, by preventing early fatigue and increasing patients' peak performance. Eleven PSHPs (52 ± 14 years, 10 men) performed both protocols. CPET2 integrated changes in final speed (100-120% vs. 140% maximal speed in 10-m walking test), treadmill inclination (final inclination of 5 vs. 10%), and estimated test duration (10 vs. 8 minutes) to smooth the rate of workload increment of CPET1. Peak oxygen uptake (V[Combining Dot Above]O2peak) (20.3 ± 6.1 vs. 18.6 ± 5.0 ml·kg·min; p = 0.04), V[Combining Dot Above]O2 at gas exchange transition (V[Combining Dot Above]O2-GET) (11.5 ± 2.9 vs. 9.8 ± 2.0 ml·kg·min; p = 0.04), and time to exhaustion (10 ± 3 vs. 6 ± 2 minutes; p higher in CPET2 than in CPET1. Slopes and intercepts of regressions describing relationships between V[Combining Dot Above]O2 vs. workload, heart rate vs. workload, and V[Combining Dot Above]O2 vs. heart rate were similar between CPETs. However, standard errors of estimates obtained for regressions between heart rate vs. workload (3.0 ± 1.3 vs. 3.8 ± 1.0 b·min; p = 0.004) and V[Combining Dot Above]O2 vs. heart rate (6.0 ± 2.1 vs. 4.8 ± 2.4 ml·kg·min; p = 0.05) were lower in CPET2 than in CPET1. In conclusion, the present adaptations in Ovando's CPET protocol increased exercise tolerance of PSHPs, eliciting higher V[Combining Dot Above]O2peak

  7. Effect of treadmill versus overground running on the structure of variability of stride timing.

    Science.gov (United States)

    Lindsay, Timothy R; Noakes, Timothy D; McGregor, Stephen J

    2014-04-01

    Gait timing dynamics of treadmill and overground running were compared. Nine trained runners ran treadmill and track trials at 80, 100, and 120% of preferred pace for 8 min. each. Stride time series were generated for each trial. To each series, detrended fluctuation analysis (DFA), power spectral density (PSD), and multiscale entropy (MSE) analysis were applied to infer the regime of control along the randomness-regularity axis. Compared to overground running, treadmill running exhibited a higher DFA and PSD scaling exponent, as well as lower entropy at non-preferred speeds. This indicates a more ordered control for treadmill running, especially at non-preferred speeds. The results suggest that the treadmill itself brings about greater constraints and requires increased voluntary control. Thus, the quantification of treadmill running gait dynamics does not necessarily reflect movement in overground settings.

  8. Walking along water

    DEFF Research Database (Denmark)

    Rasmussen, Mattias Borg

    2014-01-01

    Steep slopes, white peaks and deep valleys make up the Andes. As phenomenologists of landscape have told us, different people have different landscapes. By moving across the terrain, walking along, we might get a sense of how this has been carved out by the movement of wind and water, tectonics...

  9. Walking to transit.

    Science.gov (United States)

    2011-12-01

    Using a real-life setting, WalkBostons project focused on developing and testing techniques to broaden the scope and range of public participation in transportation planning in a large neighborhood in Boston. The team explored methods of seeking o...

  10. Walking - Sensing - Participation

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam; Browning, David

    Building on ethnographic research and social theory in the field of ‘mobilities’, this workshop paper suggests that field work based on simply walking with people entails a form of embodied participation that informs technological interventions by creating a space within which to address a wider...

  11. Effects of a virtual reality and treadmill training on gait of subjects with multiple sclerosis: a pilot study.

    Science.gov (United States)

    Peruzzi, Agnese; Cereatti, Andrea; Della Croce, Ugo; Mirelman, Anat

    2016-01-01

    Gait and cognitive deficits are common in multiple sclerosis (MS) and are negatively affected during dual-task walking. Treadmill (TM) training has been previously used to preserve locomotor activity in MS. Virtual reality (VR) engages the user in cognitive and motor activities simultaneously. A training combining TM and VR has been successfully adopted in several neurological diseases, but not in MS. This study aims at investigating the feasibility of a VR-based TM training program on gait of subjects with MS. Eight persons with relapsing-remitting MS were recruited to participate in a six-week VR-based TM training program. Gait analysis was performed both in single and dual task conditions. Clinical tests were used to assess walking endurance and obstacle negotiation. All the evaluations were performed before, immediately and one month after the training. Gait speed and stride length improved in dual task post-intervention and were retained at follow-up. An improved ability in negotiating obstacles was found across the evaluations. VR-based TM training program is feasible and safe for MS subjects with moderate disabilities and may positively affect gait under complex conditions, such as dual tasking and obstacle negotiation. Copyright © 2015. Published by Elsevier B.V.

  12. Effects of a group circuit progressive resistance training program compared with a treadmill training program for adolescents with cerebral palsy.

    Science.gov (United States)

    Aviram, Ronit; Harries, Netta; Namourah, Ibtisam; Amro, Akram; Bar-Haim, Simona

    2017-08-01

    To determine whether goal-directed group circuit progressive resistance exercise training (GT) can improve motor function in adolescents with cerebral palsy (CP) and to compare outcomes with a treadmill training (TT) intervention. In a multi-centered matched pairs study, 95 adolescents with spastic CP (GMFCS II-III) were allocated to GT or TT interventions for 30 bi-weekly one hour training. Outcome measures of GMFM-66, GMFM-D%, GMFM-E%, TUG, 10 meter walk test (10 MWT), and 6 minute walk test (6 MWT) were made at baseline (T1), after interventions (T2) and 6 months post training (T3). Both training programs induced significant improvement in all outcome measures (T2-T1) that were mostly retained at T3. At the end of the intervention, the GT group showed an advantage in all measured changes compared to the TT group and in percentage changes. Differences were significant (p cerebral palsy. The GT program had generally greater benefits based on the functional measures.

  13. Partial body weight support treadmill training speed influences paretic and non-paretic leg muscle activation, stride characteristics, and ratings of perceived exertion during acute stroke rehabilitation.

    Science.gov (United States)

    Burnfield, Judith M; Buster, Thad W; Goldman, Amy J; Corbridge, Laura M; Harper-Hanigan, Kellee

    2016-06-01

    Intensive task-specific training is promoted as one approach for facilitating neural plastic brain changes and associated motor behavior gains following neurologic injury. Partial body weight support treadmill training (PBWSTT), is one task-specific approach frequently used to improve walking during the acute period of stroke recovery (training parameters and physiologic demands during this early recovery phase. To examine the impact of four walking speeds on stride characteristics, lower extremity muscle demands (both paretic and non-paretic), Borg ratings of perceived exertion (RPE), and blood pressure. A prospective, repeated measures design was used. Ten inpatients post unilateral stroke participated. Following three familiarization sessions, participants engaged in PBWSTT at four predetermined speeds (0.5, 1.0, 1.5 and 2.0mph) while bilateral electromyographic and stride characteristic data were recorded. RPE was evaluated immediately following each trial. Stride length, cadence, and paretic single limb support increased with faster walking speeds (p⩽0.001), while non-paretic single limb support remained nearly constant. Faster walking resulted in greater peak and mean muscle activation in the paretic medial hamstrings, vastus lateralis and medial gastrocnemius, and non-paretic medial gastrocnemius (p⩽0.001). RPE also was greatest at the fastest compared to two slowest speeds (ptraining at the slowest speeds. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Walking and Sensing Mobile Lives

    DEFF Research Database (Denmark)

    Bødker, Mads; Meinhardt, Nina Dam

    In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk.......In this position paper, we discuss how mindful walking with people allow us to explore sensory aspects of mobile lives that are typically absent from research. We present an app that aids researchers collect impressions from a walk....

  15. Kineziologická charakteristika Nordic Walking

    OpenAIRE

    Pospíšilová, Petra

    2009-01-01

    Title: Functional a physiological characteristics of Nordic Walking Purposes: The aim of the thesis is to describe and summarize current knowledge about Nordic Walking Methods: Literature analysis Key words: Nordic Walking, free bipedal walk, health benefits, functional indicator changes

  16. Quantum walks induced by Dirichlet random walks on infinite trees

    Science.gov (United States)

    Higuchi, Yusuke; Segawa, Etsuo

    2018-02-01

    We consider the Grover walk on infinite trees from the viewpoint of spectral analysis. From the previous work, infinite regular trees provide localization. In this paper, we give the complete characterization of the eigenspace of this Grover walk, which involves localization of its behavior and recovers the previous work. Our result suggests that the Grover walk on infinite trees may be regarded as a limit of the quantum walk induced by the isotropic random walk with the Dirichlet boundary condition at the n-th depth rather than one with the Neumann boundary condition.

  17. Integrating a hip belt with body armour reduces the magnitude and changes the location of shoulder pressure and perceived discomfort in soldiers.

    Science.gov (United States)

    Lenton, Gavin K; Doyle, Tim L A; Saxby, David J; Billing, Dan; Higgs, Jeremy; Lloyd, David G

    2018-04-01

    Soldiers carry heavy loads that may cause general discomfort, shoulder pain and injury. This study assessed if new body armour designs that incorporated a hip belt reduced shoulder pressures and improved comfort. Twenty-one Australian soldiers completed treadmill walking trials wearing six different body armours with two different loads (15 and 30 kg). Contact pressures applied to the shoulders were measured using pressure pads, and qualitative assessment of comfort and usability were acquired from questionnaires administered after walking trials. Walking with hip belt compared to no hip belt armour resulted in decreased mean and maximum shoulder pressures (p armour and backpack designs should integrate a hip belt and distribute load closer to shoulder midline to reduce load carriage discomfort and, potentially, injury risk. Practitioner Summary: Soldiers carry heavy loads that increase their risk of discomfort and injury. New body armour designs are thought to ease this burden by transferring the load to the hips. This study demonstrated that designs incorporating a hip belt reduced shoulder pressure and shoulder discomfort compared to the current armour design.

  18. Brain BDNF levels elevation induced by physical training is reduced after unilateral common carotid artery occlusion in rats.

    Science.gov (United States)

    Banoujaafar, Hayat; Van Hoecke, Jacques; Mossiat, Claude M; Marie, Christine

    2014-10-01

    We investigated the contribution of blood flow elevation in the cerebrovasculature to physical training-induced brain-derived neurotrophic factor (BDNF) levels elevation in the brain. Brain-derived neurotrophic factor protein levels were measured in the motor cortex 24 h after the last session of a forced treadmill walking (30 minutes a day, 18 m/minute for 7 consecutive days). Unilateral common carotid artery occlusion and modulation of exercise intensity (0 versus -10% inclination of the treadmill) were used as strategies to reduce the (normal) elevation of flow in the cerebrovasculature occurring during exercise. Administration of N-nitro-L-arginine methyl ester (L-NAME, 60 mg/kg before each exercise sessions) and genetic hypertension (spontaneously hypertensive rats) were used as approaches to reduce stimulation of nitric oxide production in response to shear stress elevation. Vascular occlusion totally and partially abolished the effect of physical training on BDNF levels in the hemisphere ipsilateral and contralateral to occlusion, respectively. BDNF levels were higher after high than low exercise intensity. In addition, both genetic hypertension and L-NAME treatment blunted the effects of physical training on BDNF. From these results, we propose that elevation of brain BDNF levels elicited by physical training involves changes in cerebral hemodynamics.

  19. Using robot-applied resistance to augment body-weight-supported treadmill training in an individual with incomplete spinal cord injury.

    Science.gov (United States)

    Lam, Tania; Pauhl, Katherine; Krassioukov, Andrei; Eng, Janice J

    2011-01-01

    The efficacy of task-specific gait training for people with spinal cord injury (SCI) is premised on evidence that the provision of gait-related afferent feedback is key for the recovery of stepping movements. Recent findings have shown that sensory feedback from flexor muscle afferents can facilitate flexor muscle activity during the swing phase of walking. This case report was undertaken to determine the feasibility of using robot-applied forces to resist leg movements during body-weight-supported treadmill training (BWSTT) and to measure its effect on gait and other health-related outcomes. The patient described in this case report was a 43-year-old man with a T11 incomplete chronic SCI. He underwent 36 sessions of BWSTT using a robotic gait orthosis to provide forces that resist hip and knee flexion. Tolerance to the training program was monitored using the Borg CR10 scale and heart rate and blood pressure changes during each training session. Outcome measures (ie, 10-Meter Walk Test, Six-Minute Walk Test, modified Emory Functional Ambulation Profile [mEFAP], Activities-specific Balance Confidence Scale, and Canadian Occupational Performance Measure) were completed and kinematic parameters of gait, lower-extremity muscle strength (force-generating capacity), lower-limb girth, and tolerance to orthostatic stress were measured before and after the training program. The patient could tolerate the training. Overground walking speed, endurance, and performance on all subtasks of the mEFAP improved and were accompanied by increased lower-limb joint flexion and toe clearance during gait. The patient's ambulatory self-confidence and self-perceived performance in walking also improved. These findings suggest that this new approach to BWSTT is a feasible and potentially effective therapy for improving skilled overground walking performance.

  20. Biomechanics of the Treadmill Locomotion on the International Space Station

    Science.gov (United States)

    DeWitt, John; Cromwell, R. L.; Ploutz-Snyder, L. L.

    2014-01-01

    Exercise prescriptions completed by International Space Station (ISS) crewmembers are typically based upon evidence obtained during ground-based investigations, with the assumption that the results of long-term training in weightlessness will be similar to that attained in normal gravity. Coupled with this supposition are the assumptions that exercise motions and external loading are also similar between gravitational environments. Normal control of locomotion is dependent upon learning patterns of muscular activation and requires continual monitoring of internal and external sensory input [1]. Internal sensory input includes signals that may be dependent on or independent of gravity. Bernstein hypothesized that movement strategy planning and execution must include the consideration of segmental weights and inertia [2]. Studies of arm movements in microgravity showed that individuals tend to make errors but that compensation strategies result in adaptations, suggesting that control mechanisms must include peripheral information [3-5]. To date, however, there have been no studies examining a gross motor activity such as running in weightlessness other than using microgravity analogs [6-8]. The objective of this evaluation was to collect biomechanical data from crewmembers during treadmill exercise before and during flight. The goal was to determine locomotive biomechanics similarities and differences between normal and weightless environments. The data will be used to optimize future exercise prescriptions. This project addresses the Critical Path Roadmap risks 1 (Accelerated Bone Loss and Fracture Risk) and 11 (Reduced Muscle Mass, Strength, and Endurance). Data were collected from 7 crewmembers before flight and during their ISS missions. Before launch, crewmembers performed a single data collection session at the NASA Johnson Space Center. Three-dimensional motion capture data were collected for 30 s at speeds ranging from 1.5 to 9.5 mph in 0.5 mph increments

  1. The cost of transport of human running is not affected, as in walking, by wide acceleration/deceleration cycles.

    Science.gov (United States)

    Minetti, Alberto E; Gaudino, Paolo; Seminati, Elena; Cazzola, Dario

    2013-02-15

    Although most of the literature on locomotion energetics and biomechanics is about constant-speed experiments, humans and animals tend to move at variable speeds in their daily life. This study addresses the following questions: 1) how much extra metabolic energy is associated with traveling a unit distance by adopting acceleration/deceleration cycles in walking and running, with respect to constant speed, and 2) how can biomechanics explain those metabolic findings. Ten males and ten females walked and ran at fluctuating speeds (5 ± 0, ± 1, ± 1.5, ± 2, ± 2.5 km/h for treadmill walking, 11 ± 0, ± 1, ± 2, ± 3, ± 4 km/h for treadmill and field running) in cycles lasting 6 s. Field experiments, consisting of subjects following a laser spot projected from a computer-controlled astronomic telescope, were necessary to check the noninertial bias of the oscillating-speed treadmill. Metabolic cost of transport was found to be almost constant at all speed oscillations for running and up to ±2 km/h for walking, with no remarkable differences between laboratory and field results. The substantial constancy of the metabolic cost is not explained by the predicted cost of pure acceleration/deceleration. As for walking, results from speed-oscillation running suggest that the inherent within-stride, elastic energy-free accelerations/decelerations when moving at constant speed work as a mechanical buffer for among-stride speed fluctuations, with no extra metabolic cost. Also, a recent theory about the analogy between sprint (level) running and constant-speed running on gradients, together with the mechanical determinants of gradient locomotion, helps to interpret the present findings.

  2. Linear and Nonlinear Gait Features in Older Adults Walking on Inclined Surfaces at Different Speeds.

    Science.gov (United States)

    Vieira, Marcus Fraga; Rodrigues, Fábio Barbosa; de Sá E Souza, Gustavo Souto; Magnani, Rina Márcia; Lehnen, Georgia Cristina; Andrade, Adriano O

    2017-06-01

    This study evaluated linear and nonlinear gait features in healthy older adults walking on inclined surfaces at different speeds. Thirty-seven active older adults (experimental group) and fifty young adults (control group) walked on a treadmill at 100% and ±20% of their preferred walking speed for 4 min under horizontal (0%), upward (UP) (+8%), and downward (DOWN) (-8%) conditions. Linear gait variability was assessed using the average standard deviation of trunk acceleration between strides (VAR). Gait stability was assessed using the margin of stability (MoS). Nonlinear gait features were assessed by using the maximum Lyapunov exponent, as a measure of local dynamic stability (LDS), and sample entropy (SEn), as a measure of regularity. VAR increased for all conditions, but the interaction effects between treadmill inclination and age, and speed and age were higher for young adults. DOWN conditions showed the lowest stability in the medial-lateral MoS, but not in LDS. LDS was smaller in UP conditions. However, there were no effects of age for either MoS or LDS. The values of SEn decreased almost linearly from the DOWN to the UP conditions, with significant interaction effects of age for anterior-posterior SEn. The overall results supported the hypothesis that inclined surfaces modulate nonlinear gait features and alter linear gait variability, particularly in UP conditions, but there were no significant effects of age for active older adults.

  3. Reproducibility and Validity of the 6-Minute Walk Test Using the Gait Real-Time Analysis Interactive Lab in Patients with COPD and Healthy Elderly.

    Science.gov (United States)

    Liu, Wai-Yan; Meijer, Kenneth; Delbressine, Jeannet M; Willems, Paul J; Franssen, Frits M E; Wouters, Emiel F M; Spruit, Martijn A

    2016-01-01

    The 6-minute walk test (6MWT) in a regular hallway is commonly used to assess functional exercise capacity in patients with chronic obstructive pulmonary disease (COPD). However, treadmill walking might provide additional advantages over overground walking, especially if virtual reality and self-paced treadmill walking are combined. Therefore, this study aimed to assess the reproducibility and validity of the 6MWT using the Gait Real-time Analysis Interactive Lab (GRAIL) in patients with COPD and healthy elderly. Sixty-one patients with COPD and 48 healthy elderly performed two 6MWTs on the GRAIL. Patients performed two overground 6MWTs and healthy elderly performed one overground test. Differences between consecutive 6MWTs and the test conditions (GRAIL vs. overground) were analysed. Patients walked further in the second overground test (24.8 m, 95% CI 15.2-34.4 m, pelderly improved their second GRAIL test (49.6 m, 95% CI 37.0-62.3 m). The GRAIL 6MWT was reproducible (intra-class coefficients = 0.65-0.80). The best GRAIL 6-minute walk distance (6MWD) in patients was shorter than the best overground 6MWD (-27.3 ± 49.1 m, pelderly walked further on the GRAIL than in the overground condition (23.6 ± 41.4 m, pelderly. The GRAIL 6MWD seems to be more comparable to the 6MWDs assessed overground than previous studies on treadmills have reported. Furthermore, good construct validity and reproducibility were established in assessing the 6MWD using the GRAIL in patients with COPD and healthy elderly.

  4. Comparison of cardiorespiratory responses during aquatic and land treadmill exercise in patients with coronary artery disease.

    Science.gov (United States)

    Choi, Jun Hwan; Kim, Bo Ryun; Joo, Seung Jae; Han, Eun Young; Kim, Song Yi; Kim, Sun Mi; Lee, So Young; Yoon, Ho Min

    2015-01-01

    To investigate cardiorespiratory responses during exercise stress tests using an aquatic treadmill and a land-based treadmill in patients with coronary artery disease (CAD). Twenty-one stable CAD patients were enrolled. All patients participated in 2 symptom-limited incremental exercise tests, using both an aquatic and a land treadmill. For the aquatic treadmill protocol, patients were submerged to the upper waist in 28°C water. The treadmill speed started at 2.0 km/h and increased 0.5 km/h every minute thereafter. For the land treadmill protocol, the speed and gradient were started at 2.4 km/h and 1.5%, respectively. The speed was increased by 0.3 km/h and grade by 1% every minute thereafter. Oxygen consumption ((Equation is included in full-text article.)O2), heart rate (HR), and respiratory exchange ratio were measured continuously and peak values recorded. Rating of perceived exertion, percentage of age-predicted maximal HR, and total exercise duration were also recorded. Peak cardiorespiratory responses during both protocols were compared. The peak (Equation is included in full-text article.)O2 and peak HR did not show any significant differences. The peak respiratory exchange ratio was significantly greater using the land treadmill than the aquatic treadmill protocol. Rating of perceived exertion, age-predicted maximal HR percentage, and total exercise duration were similar for both protocols. There was a significant linear relationship between HR and (Equation is included in full-text article.)O2 with both protocols. This study demonstrated that aquatic treadmill exercise elicits similar peak cardiorespiratory responses compared with land treadmill exercise, suggesting that aquatic treadmill exercise may be effective for CAD patients in cardiac rehabilitation.

  5. Nordic Walking Classes

    CERN Multimedia

    Fitness Club

    2015-01-01

    Four classes of one hour each are held on Tuesdays. RDV barracks parking at Entrance A, 10 minutes before class time. Spring Course 2015: 05.05/12.05/19.05/26.05 Prices 40 CHF per session + 10 CHF club membership 5 CHF/hour pole rental Check out our schedule and enroll at: https://espace.cern.ch/club-fitness/Lists/Nordic%20Walking/NewForm.aspx? Hope to see you among us! fitness.club@cern.ch

  6. A nomogram for assessment of breathing patterns during treadmill exercise.

    Science.gov (United States)

    Naranjo, J; Centeno, R A; Galiano, D; Beaus, M

    2005-02-01

    To assess the breathing patterns of trained athletes under different conditions. The hypothesis is that the breathing pattern during a progressive treadmill exercise is independent of the protocol, at least in healthy people, and can be assessed using a nomogram. A total of 43 male and 21 female athletes from different sports were studied. They performed one of two different protocols (steps or ramp) on a treadmill. The two protocols started at the same speed and had the same rate of increase in work. During the test, the expired air was analysed for CO2 and O2. Ventilation (VE) was continuously recorded, and tidal volume (Vt) and breathing frequency (BF) at the same intensity were analysed for both protocols, as well as Vt/T(i) and T(i)/T(tot). No significant differences were observed in Vt and BF between the two protocols in either the men or women at any level (confidence intervals up to 0.958 in all the groups). T(i)/T(tot) remained constant, and all increases in VE were strongly related to the respective increases in Vt/T(i). Plots of data for men and women showed a curvilinear relation between Vt and BF which could be fitted with an exponential function with a strong correlation (R2 = 0.98 for men and 0.97 for women). Graphic expression of Vt v BF is a useful nomogram for the routine assessment of ventilatory response during exercise in healthy trained subjects.

  7. Treadmilling of actin filaments via Brownian dynamics simulations