WorldWideScience

Sample records for transverse field ising

  1. Phase transitions in the random field Ising model in the presence of a transverse field

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, A.; Chakrabarti, B.K. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Stinchcombe, R.B. [Saha Institute of Nuclear Physics, Bidhannagar, Calcutta (India); Department of Physics, Oxford (United Kingdom)

    1996-09-07

    We have studied the phase transition behaviour of the random field Ising model in the presence of a transverse (or tunnelling) field. The mean field phase diagram has been studied in detail, and in particular the nature of the transition induced by the tunnelling (transverse) field at zero temperature. Modified hyper-scaling relation for the zero-temperature transition has been derived using the Suzuki-Trotter formalism and a modified 'Harris criterion'. Mapping of the model to a randomly diluted antiferromagnetic Ising model in uniform longitudinal and transverse field is also given. (author)

  2. Effective field treatment of the annealed bond-dilute transverse Ising model

    International Nuclear Information System (INIS)

    Silva, P.R.; Sa Barreto, F.C. de

    1983-01-01

    The dilution of the spin-1/2 transverse Ising Model is studied by means of an effective field type treatment based on an extension of Callen's relation to the present model. The thermodynamics of the diluted model is obtained and the results are shown to be an improvement over the standard mean field treatment. The results are also compared with the Monte Carlo calculation for the spin-infinite transverse Ising Model. (Author) [pt

  3. Antiferromagnetic Ising model with transverse and longitudinal field

    International Nuclear Information System (INIS)

    Kischinhevsky, M.

    1985-01-01

    We study the quantum hamiltonian version of the Ising Model in one spacial dimension under an external longitudinal (uniform) field at zero temperature. A phenomenological renormalization group procedure is used to obtain the phase diagram; the transverse and longitudinal zero field limits are studied and we verify the validity of universality at non zero transverse fields, where two-dimensional critical behaviour is obtained. To perform the numerical calculations we use the Lanczos scheme, which gives highly precise results with rather short processing times. We also analyse the possibility of using these techniques to extend the present work to the quantum hamiltonian version of the q-state Potts Model (q>2) in larger system. (author) [pt

  4. The square Ising model with second-neighbor interactions and the Ising chain in a transverse field

    International Nuclear Information System (INIS)

    Grynberg, M.D.; Tanatar, B.

    1991-06-01

    We consider the thermal and critical behaviour of the square Ising lattice with frustrated first - and second-neighbor interactions. A low-temperature domain wall analysis including kinks and dislocations shows that there is a close relation between this classical model and the Hamiltonian of an Ising chain in a transverse field provided that the ratio of the next-nearest to nearest-neighbor coupling, is close to 1/2. Due to the field inversion symmetry of the Ising chain Hamiltonian, the thermal properties of the classical system are symmetrical with respect to this coupling ratio. In the neighborhood of this regime critical exponents of the model turn out to belong to the Ising universality class. Our results are compared with previous Monte Carlo simulations. (author). 23 refs, 6 figs

  5. Transverse spin correlations of the random transverse-field Ising model

    Science.gov (United States)

    Iglói, Ferenc; Kovács, István A.

    2018-03-01

    The critical behavior of the random transverse-field Ising model in finite-dimensional lattices is governed by infinite disorder fixed points, several properties of which have already been calculated by the use of the strong disorder renormalization-group (SDRG) method. Here we extend these studies and calculate the connected transverse-spin correlation function by a numerical implementation of the SDRG method in d =1 ,2 , and 3 dimensions. At the critical point an algebraic decay of the form ˜r-ηt is found, with a decay exponent being approximately ηt≈2 +2 d . In d =1 the results are related to dimer-dimer correlations in the random antiferromagnetic X X chain and have been tested by numerical calculations using free-fermionic techniques.

  6. Phase diagrams of diluted transverse Ising nanowire

    International Nuclear Information System (INIS)

    Bouhou, S.; Essaoudi, I.; Ainane, A.; Saber, M.; Ahuja, R.; Dujardin, F.

    2013-01-01

    In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J cs exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given

  7. Ferromagnetic transitions of a spin-one Ising film in a surface and bulk transverse fields

    International Nuclear Information System (INIS)

    Saber, A.; Lo Russo, S.; Mattei, G.; Mattoni, A.

    2002-01-01

    Using the effective field theory method, we have calculated the Curie temperature of a spin-one Ising ferromagnetic film in a surface and bulk transverse fields. Numerical calculations give phase diagrams under various parameters. Surface exchange enhancement is considered. The dependence of the critical transverse field on film thickness, and phase diagrams in the fields, critical surface transverse field versus the bulk one are presented

  8. Phase diagrams of diluted transverse Ising nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Bouhou, S.; Essaoudi, I. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Ainane, A., E-mail: ainane@pks.mpg.de [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Saber, M. [Laboratoire de Physique des Matériaux et Modélisation, des Systèmes, (LP2MS), Unité Associée au CNRST-URAC 08, University of Moulay Ismail, Physics Department, Faculty of Sciences, B.P. 11201 Meknes (Morocco); Max-Planck-Institut für Physik Complexer Systeme, Nöthnitzer Str. 38 D-01187 Dresden (Germany); Ahuja, R. [Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala (Sweden); Dujardin, F. [Laboratoire de Chimie et Physique des Milieux Complexes (LCPMC), Institut de Chimie, Physique et Matériaux (ICPM), 1 Bd. Arago, 57070 Metz (France)

    2013-06-15

    In this paper, the phase diagrams of diluted Ising nanowire consisting of core and surface shell coupling by J{sub cs} exchange interaction are studied using the effective field theory with a probability distribution technique, in the presence of transverse fields in the core and in the surface shell. We find a number of characteristic phenomena. In particular, the effect of concentration c of magnetic atoms, the exchange interaction core/shell, the exchange in surface and the transverse fields in core and in surface shell of phase diagrams are investigated. - Highlights: ► We use the EFT to investigate the phase diagrams of Ising transverse nanowire. ► Ferrimagnetic and ferromagnetic cases are investigated. ► The effects of the dilution and the transverse fields in core and shell are studied. ► Behavior of the transition temperature with the exchange interaction is given.

  9. The ferromagnet spin-1/2 Ising superlattice in a transverse field

    International Nuclear Information System (INIS)

    Bouziane, T.; Saber, M.; Belaaraj, A.; Ainane, A.

    1998-09-01

    The phase transitions of a ferromagnet spin-1/2 Ising superlattice consisting of two different materials in a transverse field is examined with the use of effective field theory that accounts for the self-spin function correlation. The critical temperature of the system is studied as a function of the thickness of the constituents in a unit cell and of exchange interactions in each material. A critical interface exchange interaction above which the interface magnetism appears is found. The effects of a uniform transverse field and the interface exchange interaction on the parameters of the system are also investigated. (author)

  10. Phase diagrams of a spin-1 Ising superlattice with alternating transverse field

    International Nuclear Information System (INIS)

    Saber, A.; Ez-Zahraouy, H.; Lo Russo, S.; Mattei, G.; Ainane, A.

    2003-01-01

    The effects of alternating transverse fields Ω a and Ω b on the critical behavior of an alternating spin-1 Ising superlattice are studied within an effective field theory with a probability distribution technique that accounts for the single-site spin correlation. Critical temperatures are calculated as a function of the thickness of the superlattice and the strength of the transverse field. Depending on the values of the transverse fields Ω a and Ω b , the critical temperature can increase or decrease with increasing the thickness of the film, such result is not obtained in the uniform transverse field case (Ω a = Ω b ). Furthermore, for each thickness L of the film, a long range ordered phase persist at low temperature for selected values of the transverse field Ω a and arbitrary values of Ω b . The effects of interlayer and intralayer exchange interactions are also examined

  11. Phase diagrams of a spin-1 Ising superlattice with alternating transverse field

    International Nuclear Information System (INIS)

    Saber, A.; Ez-Zahraouy, H.

    2000-09-01

    The effects of alternating transverse fields Ω a and Ω b on the critical behavior of an alternating spin-1 Ising superlattice are studied within an effective field theory with a probability distribution technique that accounts for the single-site spin correlations. Critical temperatures are calculated as a function of the thickness of the superlattice and the strength of the transverse field. Depending on the values of the transverse fields Ω a and Ω b , the critical temperature can increase or decrease with increasing the thickness of the film, such result is not obtained in the uniform transverse field case (Ω a = Ω b ). Furthermore, for each thickness L of the film, a long range ordered phase persists at low temperature for selected values of the transverse field Ω a and arbitrary values of Ω b . The effects of interlayer and intralayer exchange interactions are also examined. (author)

  12. Effective field approach to the Ising film in a transverse field

    International Nuclear Information System (INIS)

    Peliti, L.; Saber, M.

    1998-05-01

    Within the framework of the effective field theory, we examine the phase transitions of the spin -1/2 Ising film in a transverse field. We study the critical temperature of the film as a function of the exchange interactions, the transverse field and the film thickness. We find that, if the ratio of the surface exchange interactions to the bulk ones R=J s /J is smaller that a critical value R c , the critical temperature T c /J of the film is smaller that the bulk critical temperature T B c /J and as R is increased further, T c /J approaches T B c /J. On the other hand, if R>R c ,T c /J is larger than the bulk T B c /J and the surface T S c /J critical temperatures of the corresponding semi-infinite system and as R is increased further, T c /J approaches the surface critical temperature T S c /J. (author)

  13. A mean field approach to the Ising chain in a transverse magnetic field

    Science.gov (United States)

    Osácar, C.; Pacheco, A. F.

    2017-07-01

    We evaluate a mean field method to describe the properties of the ground state of the Ising chain in a transverse magnetic field. Specifically, a method of the Bethe-Peierls type is used by solving spin blocks with a self-consistency condition at the borders. The computations include the critical point for the phase transition, exponent of magnetisation and energy density. All results are obtained using basic quantum mechanics at an undergraduate level. The advantages and the limitations of the approach are emphasised.

  14. Wetting and layering transitions of a spin-1/2 Ising model in a random transverse field

    International Nuclear Information System (INIS)

    Bahmad, L.; Benyoussef, A.; El-Kenz, A.; Ez-Zahraouy, H.

    2000-09-01

    The effect of a random transverse field (RTF) on the wetting and layering transitions of a spin-1/2 Ising model, in the presence of bulk and surface fields, is studied within an effective field theory by using the differential operator technique. Indeed, the dependencies of the wetting temperature and wetting transverse field on the probability of the presence of a transverse field are established. For specific values of the surface field we show the existence of a critical probability p, above which wetting and layering transitions disappear. (author)

  15. Detect genuine multipartite entanglement in the one-dimensional transverse-field Ising model

    International Nuclear Information System (INIS)

    Deng Dongling; Gu Shijian; Chen Jingling

    2010-01-01

    Recently Seevinck and Uffink argued that genuine multipartite entanglement (GME) had not been established in the experiments designed to confirm GME. In this paper, we use the Bell-type inequalities introduced by Seevinck and Svetlichny [M. Seevinck, G. Svetlichny, Phys. Rev. Lett. 89 (2002) 060401] to investigate the GME problem in the one-dimensional transverse-field Ising model. We show explicitly that the ground states of this model violate the inequality when the external transverse magnetic field is weak, which indicate that the ground states in this model with weak magnetic field are fully entangled. Since this model can be simulated with nuclear magnetic resonance, our results provide a fresh approach to experimental test of GME.

  16. Long-range transverse Ising model built with dipolar condensates in two-well arrays

    International Nuclear Information System (INIS)

    Li, Yongyao; Pang, Wei; Xu, Jun; Lee, Chaohong; Malomed, Boris A; Santos, Luis

    2017-01-01

    Dipolar Bose–Einstein condensates in an array of double-well potentials realize an effective transverse Ising model with peculiar inter-layer interactions, that may result under proper conditions in an anomalous first-order ferromagnetic–antiferromagnetic phase transition, and non-trivial phases due to frustration. The considered setup allows as well for the study of Kibble–Zurek defect formation, whose kink statistics follows that expected from the universality class of the mean-field one-dimensional transverse Ising model. Furthermore, random occupation of each layer of the stack leads to random effective Ising interactions and local transverse fields, that may lead to the Anderson-like localization of imbalance perturbations. (paper)

  17. The order parameters of a spin-1 Ising film in a transverse field

    International Nuclear Information System (INIS)

    Saber, A.; Ainane, A.; Dujardin, F.; Saber, M.; Stebe, B.

    1998-08-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the layer longitudinal magnetizations and quadrupolar moments of a spin-1 Ising film and their averages are examined. These quantities as functions of the temperature, the ratio of the surface exchange interactions to the bulk ones, the strength of the transverse field and the film thickness are calculated numerically and some interesting results are obtained. (author)

  18. Antiferromagnetic Ising model decorated with D-vector spins: Transversal and longitudinal local fields effects

    International Nuclear Information System (INIS)

    Vasconcelos Dos Santos, R.J.; Coutinho, S.

    1995-01-01

    The effect of a local field acting on decorating classical D-vector bond spins of an antiferromagnetic Ising model on the square lattice is studied for both the annealed isotropic and the axial decorated cases. In both models the effect on the phase diagrams of the transversal and the longitudinal components of the local field acting on the decorating spins are fully analyzed and discussed

  19. Phase diagrams of a spin-1/2 transverse Ising model with three-peak random field distribution

    International Nuclear Information System (INIS)

    Bassir, A.; Bassir, C.E.; Benyoussef, A.; Ez-Zahraouy, H.

    1996-07-01

    The effect of the transverse magnetic field on the phase diagrams structures of the Ising model in a random longitudinal magnetic field with a trimodal symmetric distribution is investigated within a finite cluster approximation. We find that a small magnetizations ordered phase (small ordered phase) disappears completely for a sufficiently large value of the transverse field or/and large value of the concentration of the disorder of the magnetic field. Multicritical behaviour and reentrant phenomena are discussed. The regions where the tricritical, reentrant phenomena and the small ordered phase persist are delimited as a function of the transverse field and the concentration p. Longitudinal magnetizations are also presented. (author). 33 refs, 6 figs

  20. Zero-temperature renormalization of the 2D transverse Ising model

    International Nuclear Information System (INIS)

    Kamieniarz, G.

    1982-08-01

    A zero-temperature real-space renormalization-group method is applied to the transverse Ising model on planar hexagonal, triangular and quadratic lattices. The critical fields and the critical exponents describing low-field large-field transition are calculated. (author)

  1. The quantum transverse spin-2 Ising model with a bimodal random-field in the pair approximation

    International Nuclear Information System (INIS)

    Canko, O.; Albayrak, E.; Keskin, M.

    2005-01-01

    In this paper, we have investigated the bimodal random-field spin-2 Ising system in a transverse field by combining the pair approximation with the discretized path-integral representation. The exact equations for the second-order phase transition lines and tricritical points are obtained in terms of the random field H, the transverse field G and the coordination number z. It is found that there are some critical values for H and G where the tricritical points disappear for given z. We have also observed that the system presents reentrant behavior which may be caused by the quantum effects and randomness. The phase diagram with respect to the random field and the second-order phase transition temperature are studied extensively for given values of the transverse field and the coordination number

  2. Dynamic of Ising model with transverse field for two coupled sublattices in disordered phase

    International Nuclear Information System (INIS)

    Sa Motta, C.E.H. de.

    1984-02-01

    The dynamics of the two coupled sublattices tridimensional Ising model in a transverse field was studied by means of a continued fraction expansion for coupled operators. The static Correlation Functions necessary for studying the dynamics were calculated with the Green's Functions Method in the Random Phase Approximation (RPA). The spectral function was calculated in the region T c → . (Author) [pt

  3. Quantum Criticality of an Ising-like Spin-1 /2 Antiferromagnetic Chain in a Transverse Magnetic Field

    Science.gov (United States)

    Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.

    2018-05-01

    We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.

  4. Tricritical behavior in the diluted transverse spin-1 Ising model with a longitudinal crystal field

    International Nuclear Information System (INIS)

    Htoutou, K.; Oubelkacem, A.; Ainane, A.; Saber, M.

    2005-01-01

    The transverse spin-1 Ising model with a longitudinal crystal field exhibits a tricritical behavior. Within the effective field theory with a probability distribution technique that accounts for the self-spin correlations, we have studied the influence of site dilution on this behavior and have calculated the temperature-transverse field-longitudinal crystal field-concentration phase diagrams and determined, in particular, the influence of the concentration of magnetic atoms c on the tricritical behavior. We have found that the tricritical point appears for large values of the concentration c of magnetic atoms and disappears with the increase in dilution (small values of c). Results for square lattice are calculated numerically and some interesting results are obtained. In certain ranges of values of the strength of the longitudinal crystal field D/J when it becomes sufficiently negative, we found re-entrant phenomenon, which disappears with increase in the value of the strength of the transverse field

  5. Inhomogeneous quenches in the transverse field Ising chain: scaling and front dynamics

    Directory of Open Access Journals (Sweden)

    Márton Kormos

    2017-09-01

    Full Text Available We investigate the non-equilibrium dynamics of the transverse field quantum Ising chain evolving from an inhomogeneous initial state given by joining two macroscopically different semi-infinite chains. We obtain integral expressions for all two-point correlation functions of the Jordan-Wigner Majorana fermions at any time and for any value of the transverse field. Using this result, we compute analytically the profiles of various physical observables in the space-time scaling limit and show that they can be obtained from a hydrodynamic picture based on ballistically propagating quasiparticles. Going beyond the hydrodynamic limit, we analyze the approach to the non-equilibrium steady state and find that the leading late time corrections display a lattice effect. We also study the fine structure of the propagating fronts which are found to be described by the Airy kernel and its derivatives. Near the front we observe the phenomenon of energy back-flow where the energy locally flows from the colder to the hotter region.

  6. Transverse Ising spin-glass model

    International Nuclear Information System (INIS)

    Santos, Raimundo R. dos; Santos, R.M.Z. dos.

    1984-01-01

    The zero temperature behavior of the Transverse Ising spin-glass (+-J 0 ) model is discussed. The d-dimensional quantum model is shown to be equivalent to a classical (d + 1)- dimensional Ising spin-glass with correlated disorder. An exact Renormalization Group treatment of the one-dimensional quantum model indicates the existence of a spin-glass phase. The Migdal-Kadanoff approximation is used to obtain the phase diagram of the quantum spin-glass in two-dimensions. (Author) [pt

  7. Quantum simulation of transverse Ising models with Rydberg atoms

    Science.gov (United States)

    Schauss, Peter

    2018-04-01

    Quantum Ising models are canonical models for the study of quantum phase transitions (Sachdev 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)) and are the underlying concept for many analogue quantum computing and quantum annealing ideas (Tanaka et al Quantum Spin Glasses, Annealing and Computation (Cambridge: Cambridge University Press)). Here we focus on the implementation of finite-range interacting Ising spin models, which are barely tractable numerically. Recent experiments with cold atoms have reached the interaction-dominated regime in quantum Ising magnets via optical coupling of trapped neutral atoms to Rydberg states. This approach allows for the tunability of all relevant terms in an Ising spin Hamiltonian with 1/{r}6 interactions in transverse and longitudinal fields. This review summarizes the recent progress of these implementations in Rydberg lattices with site-resolved detection. Strong correlations in quantum Ising models have been observed in several experiments, starting from a single excitation in the superatom regime up to the point of crystallization. The rapid progress in this field makes spin systems based on Rydberg atoms a promising platform for quantum simulation because of the unmatched flexibility and strength of interactions combined with high control and good isolation from the environment.

  8. Zero-temperature renormalization method for quantum systems. I. Ising model in a transverse field in one dimension

    International Nuclear Information System (INIS)

    Jullien, R.; Pfeuty, P.; Fields, J.N.; Doniach, S.

    1978-01-01

    A zero-temperature real-space renormalization-group method is presented and applied to the quantum Ising model with a transverse field in one dimension. The transition between the low-field and high-field regimes is studied. Magnetization components, spin correlation functions, and critical exponents are derived and checked against the exact results. It is shown that increasing the size of the blocks in the iterative procedure yields more accurate results, especially for the critical ''magnetic'' exponents near the transition

  9. Quantum phase transition of the transverse-field quantum Ising model on scale-free networks.

    Science.gov (United States)

    Yi, Hangmo

    2015-01-01

    I investigate the quantum phase transition of the transverse-field quantum Ising model in which nearest neighbors are defined according to the connectivity of scale-free networks. Using a continuous-time quantum Monte Carlo simulation method and the finite-size scaling analysis, I identify the quantum critical point and study its scaling characteristics. For the degree exponent λ=6, I obtain results that are consistent with the mean-field theory. For λ=4.5 and 4, however, the results suggest that the quantum critical point belongs to a non-mean-field universality class. Further simulations indicate that the quantum critical point remains mean-field-like if λ>5, but it continuously deviates from the mean-field theory as λ becomes smaller.

  10. Quantum dynamics in transverse-field Ising models from classical networks

    Directory of Open Access Journals (Sweden)

    Markus Schmitt, Markus Heyl

    2018-02-01

    Full Text Available The efficient representation of quantum many-body states with classical resources is a key challenge in quantum many-body theory. In this work we analytically construct classical networks for the description of the quantum dynamics in transverse-field Ising models that can be solved efficiently using Monte Carlo techniques. Our perturbative construction encodes time-evolved quantum states of spin-1/2 systems in a network of classical spins with local couplings and can be directly generalized to other spin systems and higher spins. Using this construction we compute the transient dynamics in one, two, and three dimensions including local observables, entanglement production, and Loschmidt amplitudes using Monte Carlo algorithms and demonstrate the accuracy of this approach by comparisons to exact results. We include a mapping to equivalent artificial neural networks, which were recently introduced to provide a universal structure for classical network wave functions.

  11. Quantum Ising model in transverse and longitudinal fields: chaotic wave functions

    International Nuclear Information System (INIS)

    Atas, Y Y; Bogomolny, E

    2017-01-01

    The construction of a statistical model for eigenfunctions of the Ising model in transverse and longitudinal fields is discussed in detail for the chaotic case. When the number of spins is large, each wave function coefficient has the Gaussian distribution with zero mean and variance calculated from the first two moments of the Hamiltonian. The main part of the paper is devoted to the discussion of various corrections to the asymptotic result. One type of correction is related to higher order moments of the Hamiltonian, and can be taken into account by Gibbs-like formulae. Other corrections are due to symmetry contributions, which manifest as different numbers of non-zero real and complex coefficients. The statistical model with these corrections included agrees well with numerical calculations of wave function moments. (paper)

  12. Quantum correlated cluster mean-field theory applied to the transverse Ising model.

    Science.gov (United States)

    Zimmer, F M; Schmidt, M; Maziero, Jonas

    2016-06-01

    Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.

  13. Relationship between the transverse-field Ising model and the X Y model via the rotating-wave approximation

    Science.gov (United States)

    Kiely, Thomas G.; Freericks, J. K.

    2018-02-01

    In a large transverse field, there is an energy cost associated with flipping spins along the axis of the field. This penalty can be employed to relate the transverse-field Ising model in a large field to the X Y model in no field (when measurements are performed at the proper stroboscopic times). We describe the details for how this relationship works and, in particular, we also show under what circumstances it fails. We examine wave-function overlap between the two models and observables, such as spin-spin Green's functions. In general, the mapping is quite robust at short times, but will ultimately fail if the run time becomes too long. There is also a tradeoff between the length of time one can run a simulation out to and the time jitter of the stroboscopic measurements that must be balanced when planning to employ this mapping.

  14. Concurrence of dynamical phase transitions at finite temperature in the fully connected transverse-field Ising model

    Science.gov (United States)

    Lang, Johannes; Frank, Bernhard; Halimeh, Jad C.

    2018-05-01

    We construct the finite-temperature dynamical phase diagram of the fully connected transverse-field Ising model from the vantage point of two disparate concepts of dynamical criticality. An analytical derivation of the classical dynamics and exact diagonalization simulations are used to study the dynamics after a quantum quench in the system prepared in a thermal equilibrium state. The different dynamical phases characterized by the type of nonanalyticities that emerge in an appropriately defined Loschmidt-echo return rate directly correspond to the dynamical phases determined by the spontaneous breaking of Z2 symmetry in the long-time steady state. The dynamical phase diagram is qualitatively different depending on whether the initial thermal state is ferromagnetic or paramagnetic. Whereas the former leads to a dynamical phase diagram that can be directly related to its equilibrium counterpart, the latter gives rise to a divergent dynamical critical temperature at vanishing final transverse-field strength.

  15. Quantum Ising chains with boundary fields

    International Nuclear Information System (INIS)

    Campostrini, Massimo; Vicari, Ettore; Pelissetto, Andrea

    2015-01-01

    We present a detailed study of the finite one-dimensional quantum Ising chain in a transverse field in the presence of boundary magnetic fields coupled with the order-parameter spin operator. We consider two magnetic fields located at the boundaries of the chain that have the same strength and that are aligned in the same or in the opposite direction. We derive analytic expressions for the gap in all phases for large values of the chain length L, as a function of the boundary field strength. We also investigate the behaviour of the chain in the quantum ferromagnetic phase for oppositely aligned fields, focusing on the magnet-to-kink transition that occurs at a finite value of the magnetic field strength. At this transition we compute analytically the finite-size crossover functions for the gap, the magnetisation profile, the two-point correlation function, and the density of fermionic modes. As the magnet-to-kink transition is equivalent to the wetting transition in two-dimensional classical Ising models, our results provide new analytic predictions for the finite-size behaviour of Ising systems in a strip geometry at this transition. (paper)

  16. Inverse freezing in the Hopfield fermionic Ising spin glass with a transverse magnetic field

    International Nuclear Information System (INIS)

    Morais, C.V.; Zimmer, F.M.; Magalhaes, S.G.

    2011-01-01

    The Hopfield fermionic Ising spin glass (HFISG) model in the presence of a magnetic transverse field Γ is used to study the inverse freezing transition. The mean field solution of this model allows introducing a parameter a that controls the frustration level. Particularly, in the present fermionic formalism, the chemical potential μ and the Γ provide a magnetic dilution and quantum spin flip mechanism, respectively. Within the one step replica symmetry solution and the static approximation, the results show that the reentrant transition between the spin glass and the paramagnetic phases, which is related to the inverse freezing for a certain range of μ, is gradually suppressed when the level of frustration a is decreased. Nevertheless, the quantum fluctuations caused by Γ can destroy this inverse freezing for any value of a.

  17. The transverse spin-1 Ising model with random interactions

    Energy Technology Data Exchange (ETDEWEB)

    Bouziane, Touria [Department of Physics, Faculty of Sciences, University of Moulay Ismail, B.P. 11201 Meknes (Morocco)], E-mail: touria582004@yahoo.fr; Saber, Mohammed [Department of Physics, Faculty of Sciences, University of Moulay Ismail, B.P. 11201 Meknes (Morocco); Dpto. Fisica Aplicada I, EUPDS (EUPDS), Plaza Europa, 1, San Sebastian 20018 (Spain)

    2009-01-15

    The phase diagrams of the transverse spin-1 Ising model with random interactions are investigated using a new technique in the effective field theory that employs a probability distribution within the framework of the single-site cluster theory based on the use of exact Ising spin identities. A model is adopted in which the nearest-neighbor exchange couplings are independent random variables distributed according to the law P(J{sub ij})=p{delta}(J{sub ij}-J)+(1-p){delta}(J{sub ij}-{alpha}J). General formulae, applicable to lattices with coordination number N, are given. Numerical results are presented for a simple cubic lattice. The possible reentrant phenomenon displayed by the system due to the competitive effects between exchange interactions occurs for the appropriate range of the parameter {alpha}.

  18. Test of quantum thermalization in the two-dimensional transverse-field Ising model.

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-12-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems.

  19. Replica symmetry breaking solution for two-sublattice fermionic Ising spin glass models in a transverse field

    International Nuclear Information System (INIS)

    Zimmer, F.M.; Magalhaes, S.G.

    2007-01-01

    The one-step replica symmetry breaking is used to study the competition between spin glass (SG) and antiferromagnetic order (AF) in two-sublattice fermionic Ising SG models in the presence of a transverse Γ and a parallel H magnetic fields. Inter- and intra-sublattice exchange interactions following Gaussian distributions are considered. The problem is formulated in a Grassmann path integral formalism within the static ansatz. Results show that H favors the non-ergodic mixed phase (AF+SG) and it destroys the AF. The Γ suppresses the magnetic orders, and the intra-sublattice interaction can introduce a discontinuous phase transition

  20. Magnetic properties of a single transverse Ising ferrimagnetic nanoparticle

    International Nuclear Information System (INIS)

    Bouhou, S.; El Hamri, M.; Essaoudi, I.; Ainane, A.; Ahuja, R.

    2015-01-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation function, the thermal and the magnetic properties of a single Ising nanoparticle consisting of a ferromagnetic core, a ferromagnetic surface shell and a ferrimagnetic interface coupling are examined. The effect of the transverse field in the surface shell, the exchange interactions between core/shell and in surface shell on the free energy, thermal magnetization, specific heat and susceptibility are studied. A number of interesting phenomena have been found such as the existence of the compensation phenomenon and the magnetization profiles exhibit P-type, N-type and Q-type behaviors

  1. Finite-size scaling theory and quantum hamiltonian Field theory: the transverse Ising model

    International Nuclear Information System (INIS)

    Hamer, C.J.; Barber, M.N.

    1979-01-01

    Exact results for the mass gap, specific heat and susceptibility of the one-dimensional transverse Ising model on a finite lattice are generated by constructing a finite matrix representation of the Hamiltonian using strong-coupling eigenstates. The critical behaviour of the limiting infinite chain is analysed using finite-size scaling theory. In this way, excellent estimates (to within 1/2% accuracy) are found for the critical coupling and the exponents α, ν and γ

  2. Test of quantum thermalization in the two-dimensional transverse-field Ising model

    Science.gov (United States)

    Blaß, Benjamin; Rieger, Heiko

    2016-01-01

    We study the quantum relaxation of the two-dimensional transverse-field Ising model after global quenches with a real-time variational Monte Carlo method and address the question whether this non-integrable, two-dimensional system thermalizes or not. We consider both interaction quenches in the paramagnetic phase and field quenches in the ferromagnetic phase and compare the time-averaged probability distributions of non-conserved quantities like magnetization and correlation functions to the thermal distributions according to the canonical Gibbs ensemble obtained with quantum Monte Carlo simulations at temperatures defined by the excess energy in the system. We find that the occurrence of thermalization crucially depends on the quench parameters: While after the interaction quenches in the paramagnetic phase thermalization can be observed, our results for the field quenches in the ferromagnetic phase show clear deviations from the thermal system. These deviations increase with the quench strength and become especially clear comparing the shape of the thermal and the time-averaged distributions, the latter ones indicating that the system does not completely lose the memory of its initial state even for strong quenches. We discuss our results with respect to a recently formulated theorem on generalized thermalization in quantum systems. PMID:27905523

  3. Singular ferromagnetic susceptibility of the transverse-field Ising antiferromagnet on the triangular lattice

    Science.gov (United States)

    Biswas, Sounak; Damle, Kedar

    2018-02-01

    A transverse magnetic field Γ is known to induce antiferromagnetic three-sublattice order of the Ising spins σz in the triangular lattice Ising antiferromagnet at low enough temperature. This low-temperature order is known to melt on heating in a two-step manner, with a power-law ordered intermediate temperature phase characterized by power-law correlations at the three-sublattice wave vector Q : ˜cos(Q .R ⃗) /|R⃗| η (T ) with the temperature-dependent power-law exponent η (T )∈(1 /9 ,1 /4 ) . Here, we use a quantum cluster algorithm to study the ferromagnetic easy-axis susceptibility χu(L ) of an L ×L sample in this power-law ordered phase. Our numerical results are consistent with a recent prediction of a singular L dependence χu(L ) ˜L2 -9 η when η (T ) is in the range (1 /9 ,2 /9 ) . This finite-size result implies, via standard scaling arguments, that the ferromagnetic susceptibility χu(B ) to a uniform field B along the easy axis is singular at intermediate temperatures in the small B limit, χu(B ) ˜|B| -4/-18 η 4 -9 η for η (T )∈(1 /9 ,2 /9 ) , although there is no ferromagnetic long-range order in the low temperature state. Additionally we establish similar two-step melting behavior (via a study of the order parameter susceptibility χQ) in the case of the ferrimagnetic three-sublattice ordered phase which is stabilized by ferromagnetic next-neighbor couplings (J2) and confirm that the ferromagnetic susceptibility obeys the predicted singular form in the associated power-law ordered phase.

  4. Critical properties of a ferroelectric superlattice described by a transverse spin-1/2 Ising model

    International Nuclear Information System (INIS)

    Tabyaoui, A; Saber, M; Baerner, K; Ainane, A

    2007-01-01

    The phase transition properties of a ferroelectric superlattice with two alternating layers A and B described by a transverse spin-1/2 Ising model have been investigated using the effective field theory within a probability distribution technique that accounts for the self spin correlation functions. The Curie temperature T c , polarization and susceptibility have been obtained. The effects of the transverse field and the ferroelectric and antiferroelectric interfacial coupling strength between two ferroelectric materials are discussed. They relate to the physical properties of antiferroelectric/ferroelectric superlattices

  5. Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures

    Science.gov (United States)

    Abeling, Nils; Kehrein, Stefan

    The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).

  6. Boson-mediated quantum spin simulators in transverse fields: X Y model and spin-boson entanglement

    Science.gov (United States)

    Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria

    2017-01-01

    The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations to other spin models are highly desirable. In this work, we explore a previously unappreciated connection between the realization of an X Y model by off-resonant driving of a single sideband of boson excitation (i.e., a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined rotating frames, and analyze the emergent effective X Y spin model through a truncated Magnus series and numerical simulations. In addition to X Y spin-spin interactions that can be nonperturbatively renormalized from the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from transverse field Ising-like to X Y -like spin behavior as a function of field strength.

  7. Spin excitations and quantum criticality in the quasi-one-dimensional Ising-like ferromagnet CoCl2·2D2O in a transverse field

    DEFF Research Database (Denmark)

    Larsen, J.; Schäffer, T. K.; Hansen, U. B.

    2017-01-01

    We present experimental evidence for a quantum phase transition in the easy-axis S = 3/2 anisotropic quasione-dimensional ferromagnet CoCl2 · 2D2O in a transverse field. Elastic neutron scattering shows that the magnetic order parameter vanishes at a transverse critical field μ0Hc = 16.05(4) T......, while inelastic neutron scattering shows that the gap in the magnetic excitation spectrum vanishes at the same field value, and reopens for H>Hc. The field dependence of the order parameter and the gap are well described by critical exponents β = 0.45 ± 0.09 and zν close to 1/2, implying...... that the quantum phase transition in CoCl2 · 2D2O differs significantly from the textbook version of a S = 1/2 Ising chain in a transverse field. We attribute the difference to weak but finite three-dimensionality of the magnetic interactions....

  8. Dynamics of the Random Field Ising Model

    Science.gov (United States)

    Xu, Jian

    The Random Field Ising Model (RFIM) is a general tool to study disordered systems. Crackling noise is generated when disordered systems are driven by external forces, spanning a broad range of sizes. Systems with different microscopic structures such as disordered mag- nets and Earth's crust have been studied under the RFIM. In this thesis, we investigated the domain dynamics and critical behavior in two dipole-coupled Ising ferromagnets Nd2Fe14B and LiHoxY 1-xF4. With Tc well above room temperature, Nd2Fe14B has shown reversible disorder when exposed to an external transverse field and crosses between two universality classes in the strong and weak disorder limits. Besides tunable disorder, LiHoxY1-xF4 has shown quantum tunneling effects arising from quantum fluctuations, providing another mechanism for domain reversal. Universality within and beyond power law dependence on avalanche size and energy were studied in LiHo0.65Y0.35 F4.

  9. Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire

    International Nuclear Information System (INIS)

    Deviren, Bayram; Ertaş, Mehmet; Keskin, Mustafa

    2012-01-01

    In this paper, we extend the paper of Kaneyoshi (2010 J. Magn. Magn. Mater. 322 3410-5) to investigate the dynamic magnetizations and dynamic phase transitions of a transverse cylindrical Ising nanowire system by using the effective field theory with correlations and the Glauber-type stochastic dynamics under a time-dependent oscillating external magnetic field. The dynamic effective field equations for the average longitudinal and transverse magnetizations on the surface shell and core are derived by using the Glauber transition rates. Temperature dependences of the dynamic longitudinal magnetizations, the transverse magnetizations and the total magnetizations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system is strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, four different types of compensation behaviors in the Néel classification nomenclature exist in the system. The results are compared with some theoretical works and good overall agreement is observed. (paper)

  10. Effects of surface and bulk transverse fields on critical behaviour of ferromagnetic films

    International Nuclear Information System (INIS)

    Saber, A.; Lo Russo, S.; Mattei, G.

    2002-02-01

    The influence of surface and bulk transverse fields on the critical behaviour of a ferromagnetic Ising film is studied using the effective field theory based on a single-site cluster method. Surface exchange enhancement is considered and a critical value is obtained. The dependence of the critical uniform transverse field on film thickness, phase diagrams in the fields, critical surface transverse field versus the bulk one, and exchange coupling ratio are presented. (author)

  11. Zero temperature renormalisation group study of the random systems: The Ising model in a transverse field in two dimensions

    International Nuclear Information System (INIS)

    Kamieniarz, G.

    1984-12-01

    A zero temperature real space renormalization group block method is applied to the random quantum Ising model with a transverse field on the planar honeycomb and square lattices. For the bond diluted system the magnetisation and the separation of the ground state energy level (in the paramagnetic phase) are presented for several bond concentrations p. The critical exponents extracted both from the fixed-points and from direct numerical computations preserve some scaling relations, and the critical curve displays a characteristic discontinuity at the percolation concentration. For the McCoy and Wu distribution the random fields and bonds are found to introduce a strong relevant disorder. The order parameter still falls off continuously to zero for well-defined values of the parameters, but a new fixed point yields a slight change in the critical exponents. (author)

  12. The random transverse field Ising model in d = 2: analysis via boundary strong disorder renormalization

    International Nuclear Information System (INIS)

    Monthus, Cécile; Garel, Thomas

    2012-01-01

    To avoid the complicated topology of surviving clusters induced by standard strong disorder RG in dimension d > 1, we introduce a modified procedure called ‘boundary strong disorder RG’ where the order of decimations is chosen a priori. We apply this modified procedure numerically to the random transverse field Ising model in dimension d = 2. We find that the location of the critical point, the activated exponent ψ ≃ 0.5 of the infinite-disorder scaling, and the finite-size correlation exponent ν FS ≃ 1.3 are compatible with the values obtained previously using standard strong disorder RG. Our conclusion is thus that strong disorder RG is very robust with respect to changes in the order of decimations. In addition, we analyze the RG flows within the two phases in more detail, to show explicitly the presence of various correlation length exponents: we measure the typical correlation exponent ν typ ≃ 0.64 for the disordered phase (this value is very close to the correlation exponent ν pure Q (d=2)≅0.6 3 of the pure two-dimensional quantum Ising model), and the typical exponent ν h ≃ 1 for the ordered phase. These values satisfy the relations between critical exponents imposed by the expected finite-size scaling properties at infinite-disorder critical points. We also measure, within the disordered phase, the fluctuation exponent ω ≃ 0.35 which is compatible with the directed polymer exponent ω DP (1+1)= 1/3 in (1 + 1) dimensions. (paper)

  13. Decoherence in a dynamical quantum phase transition of the transverse Ising chain

    International Nuclear Information System (INIS)

    Mostame, Sarah; Schaller, Gernot; Schuetzhold, Ralf

    2007-01-01

    For the prototypical example of the Ising chain in a transverse field, we study the impact of decoherence on the sweep through a second-order quantum phase transition. Apart from the advance in the general understanding of the dynamics of quantum phase transitions, these findings are relevant for adiabatic quantum algorithms due to the similarities between them. It turns out that (in contrast to first-order transitions studied previously) the impact of decoherence caused by a weak coupling to a rather general environment increases with system size (i.e., number of spins or qubits), which might limit the scalability of the system

  14. d = 2 transverse-field Ising model under the screw-boundary condition: an optimization of the screw pitch

    International Nuclear Information System (INIS)

    Nishiyama, Yoshihiro

    2011-01-01

    A length-N spin chain with the √N(=v)th neighbor interaction is identical to a two-dimensional (d = 2) model under the screw-boundary (SB) condition. The SB condition provides a flexible scheme to construct a d ≥ 2 cluster from an arbitrary number of spins; the numerical diagonalization combined with the SB condition admits a potential applicability to a class of systems intractable with the quantum Monte Carlo method due to the negative-sign problem. However, the simulation results suffer from characteristic finite-size corrections inherent in SB. In order to suppress these corrections, we adjust the screw pitch v(N) so as to minimize the excitation gap for each N. This idea is adapted to the transverse-field Ising model on the triangular lattice with N ≤ 32 spins. As a demonstration, the correlation-length critical exponent ν is analyzed in some detail

  15. Localized magnetic excitations for a line of magnetic impurities in a transverse Ising thin film ferromagnet

    International Nuclear Information System (INIS)

    Leite, R.V.; Oliveira Filho, L.O. de; Milton Pereira, J.; Cottam, M.G.; Costa Filho, R.N.

    2009-01-01

    A Green's function method is used to obtain the spectrum of spin excitations associated with a linear array of magnetic impurities implanted in a ferromagnetic thin film. The equations of motion for the Green's functions of the anisotropic film are written in the framework of the Ising model in a transverse field. The frequencies of localized modes are calculated as a function of the interaction parameters for the exchange coupling between impurity-spin pairs, host-spin pairs, and impurity-host neighbors, as well as the effective field parameter at the impurity sites.

  16. Nonequilibrium dynamical renormalization group: Dynamical crossover from weak to infinite randomness in the transverse-field Ising chain

    Science.gov (United States)

    Heyl, Markus; Vojta, Matthias

    2015-09-01

    In this work we formulate the nonequilibrium dynamical renormalization group (ndRG). The ndRG represents a general renormalization-group scheme for the analytical description of the real-time dynamics of complex quantum many-body systems. In particular, the ndRG incorporates time as an additional scale which turns out to be important for the description of the long-time dynamics. It can be applied to both translational-invariant and disordered systems. As a concrete application, we study the real-time dynamics after a quench between two quantum critical points of different universality classes. We achieve this by switching on weak disorder in a one-dimensional transverse-field Ising model initially prepared at its clean quantum critical point. By comparing to numerically exact simulations for large systems, we show that the ndRG is capable of analytically capturing the full crossover from weak to infinite randomness. We analytically study signatures of localization in both real space and Fock space.

  17. BCS wave function, matrix product states, and the Ising conformal field theory

    Science.gov (United States)

    Montes, Sebastián; Rodríguez-Laguna, Javier; Sierra, Germán

    2017-11-01

    We present a characterization of the many-body lattice wave functions obtained from the conformal blocks (CBs) of the Ising conformal field theory (CFT). The formalism is interpreted as a matrix product state using continuous ancillary degrees of freedom. We provide analytic and numerical evidence that the resulting states can be written as BCS states. We give a complete proof that the translationally invariant 1D configurations have a BCS form and we find suitable parent Hamiltonians. In particular, we prove that the ground state of the finite-size critical Ising transverse field (ITF) Hamiltonian can be obtained with this construction. Finally, we study 2D configurations using an operator product expansion (OPE) approximation. We associate these states to the weak pairing phase of the p +i p superconductor via the scaling of the pairing function and the entanglement spectrum.

  18. Quantum Ising model on hierarchical structures

    International Nuclear Information System (INIS)

    Lin Zhifang; Tao Ruibao.

    1989-11-01

    A quantum Ising chain with both the exchange couplings and the transverse fields arranged in a hierarchical way is considered. Exact analytical results for the critical line and energy gap are obtained. It is shown that when R 1 not= R 2 , where R 1 and R 2 are the hierarchical parameters for the exchange couplings and the transverse fields, respectively, the system undergoes a phase transition in a different universality class from the pure quantum Ising chain with R 1 =R 2 =1. On the other hand, when R 1 =R 2 =R, there exists a critical value R c dependent on the furcating number of the hierarchy. In case of R > R c , the system is shown to exhibit as Ising-like critical point with the critical behaviour the same as in the pure case, while for R c the system belongs to another universality class. (author). 19 refs, 2 figs

  19. On Ising - Onsager problem in external magnetic field

    International Nuclear Information System (INIS)

    Kochmanski, M.S.

    1997-01-01

    In this paper a new approach to solving the Ising - Onsager problem in external magnetic field is investigated. The expression for free energy on one Ising spin in external field both for the two dimensional and three dimensional Ising model with interaction of the nearest neighbors are derived. The representations of free energy being expressed by multidimensional integrals of Gauss type with the appropriate dimensionality are shown. Possibility of calculating the integrals and the critical indices on the base of the derived representations for free energy is investigated

  20. New relation for critical exponents in the Ising model

    International Nuclear Information System (INIS)

    Pishtshev, A.

    2007-01-01

    The Ising model in a transverse field is considered at T=0. From the analysis of the power low behaviors of the energy gap and the order parameter as functions of the field a new relation between the respective critical exponents, β>=1/(8s 2 ), is derived. By using the Suzuki equivalence from this inequality a new relation for critical exponents in the Ising model, β>=1/(8ν 2 ), is obtained. A number of numerical examples for different cases illustrates the generality and validity of the relation. By applying this relation the estimation ν=(1/4) 1/3 ∼0.62996 for the 3D-Ising model is proposed

  1. Study of the time evolution of correlation functions of the transverse Ising chain with ring frustration by perturbative theory

    Science.gov (United States)

    Zheng, Zhen-Yu; Li, Peng

    2018-04-01

    We consider the time evolution of two-point correlation function in the transverse-field Ising chain (TFIC) with ring frustration. The time-evolution procedure we investigated is equivalent to a quench process in which the system is initially prepared in a classical kink state and evolves according to the time-dependent Schrödinger equation. Within a framework of perturbative theory (PT) in the strong kink phase, the evolution of the correlation function is disclosed to demonstrate a qualitatively new behavior in contrast to the traditional case without ring frustration.

  2. Excitations in the quantum paramagnetic phase of the quasi-one-dimensional Ising magnet CoNb2O6 in a transverse field: Geometric frustration and quantum renormalization effects

    Science.gov (United States)

    Cabrera, I.; Thompson, J. D.; Coldea, R.; Prabhakaran, D.; Bewley, R. I.; Guidi, T.; Rodriguez-Rivera, J. A.; Stock, C.

    2014-07-01

    The quasi-one-dimensional (1D) Ising ferromagnet CoNb2O6 has recently been driven via applied transverse magnetic fields through a continuous quantum phase transition from spontaneous magnetic order to a quantum paramagnet, and dramatic changes were observed in the spin dynamics, characteristic of weakly perturbed 1D Ising quantum criticality. We report here extensive single-crystal inelastic neutron scattering measurements of the magnetic excitations throughout the three-dimensional (3D) Brillouin zone in the quantum paramagnetic phase just above the critical field to characterize the effects of the finite interchain couplings. In this phase, we observe that excitations have a sharp, resolution-limited line shape at low energies and over most of the dispersion bandwidth, as expected for spin-flip quasiparticles. We map the full bandwidth along the strongly dispersive chain direction and resolve clear modulations of the dispersions in the plane normal to the chains, characteristic of frustrated interchain couplings in an antiferromagnetic isosceles triangular lattice. The dispersions can be well parametrized using a linear spin-wave model that includes interchain couplings and further neighbor exchanges. The observed dispersion bandwidth along the chain direction is smaller than that predicted by a linear spin-wave model using exchange values determined at zero field, and this effect is attributed to quantum renormalization of the dispersion beyond the spin-wave approximation in fields slightly above the critical field, where quantum fluctuations are still significant.

  3. Thue-Morse quantum Ising model

    International Nuclear Information System (INIS)

    Doria, M.M.; Nori, F.; Satija, I.I.

    1989-01-01

    We study the one-dimensional quantum Ising model in a transverse magnetic field where the exchange couplings are ordered according to the Thue-Morse (TM) sequence. At zero temperature, this model is equivalent to a two-dimensional classical Ising model in a magnetic field with TM aperiodicity along one direction. We compute the order parameter (magnetization) of the chain and the scaling behavior of the energy spectrum when the system undergoes a phase transition. Analogous to the quasiperiodic (QP) quantum Ising chain, the onset of long-range order is signaled by a nonanaliticity in the exponent δ which describes the scaling of the total bandwidth with the size of the chain. The critical spin-coupling can be computed analytically and it is found to be lower than the QP case. Furthermore, the energy bands are found to be narrower than the corresponding QP chain. The former and latter results are consistent with the fact that the present structure has a degree of ordering intermediate between QP and random

  4. Universal scaling for the quantum Ising chain with a classical impurity

    Science.gov (United States)

    Apollaro, Tony J. G.; Francica, Gianluca; Giuliano, Domenico; Falcone, Giovanni; Palma, G. Massimo; Plastina, Francesco

    2017-10-01

    We study finite-size scaling for the magnetic observables of an impurity residing at the end point of an open quantum Ising chain with transverse magnetic field, realized by locally rescaling the field by a factor μ ≠1 . In the homogeneous chain limit at μ =1 , we find the expected finite-size scaling for the longitudinal impurity magnetization, with no specific scaling for the transverse magnetization. At variance, in the classical impurity limit μ =0 , we recover finite scaling for the longitudinal magnetization, while the transverse one basically does not scale. We provide both analytic approximate expressions for the magnetization and the susceptibility as well as numerical evidences for the scaling behavior. At intermediate values of μ , finite-size scaling is violated, and we provide a possible explanation of this result in terms of the appearance of a second, impurity-related length scale. Finally, by going along the standard quantum-to-classical mapping between statistical models, we derive the classical counterpart of the quantum Ising chain with an end-point impurity as a classical Ising model on a square lattice wrapped on a half-infinite cylinder, with the links along the first circle modified as a function of μ .

  5. The spin S quantum Ising model at T=0

    International Nuclear Information System (INIS)

    Kamieniarz, G.; Kowalewski, L.; Piechocki, W.

    1982-09-01

    The Ising model with a transverse field for a general spin S is investigated within the framework of the Green-function method in the paramagnetic region at T=0. The analysis of selfconsistent equations gives a description of softmode phase transition as well as extrapolated values of critical fields and critical energy gap exponents. (author)

  6. Effective-field renormalization-group method for Ising systems

    Science.gov (United States)

    Fittipaldi, I. P.; De Albuquerque, D. F.

    1992-02-01

    A new applicable effective-field renormalization-group (ERFG) scheme for computing critical properties of Ising spins systems is proposed and used to study the phase diagrams of a quenched bond-mixed spin Ising model on square and Kagomé lattices. The present EFRG approach yields results which improves substantially on those obtained from standard mean-field renormalization-group (MFRG) method. In particular, it is shown that the EFRG scheme correctly distinguishes the geometry of the lattice structure even when working with the smallest possible clusters, namely N'=1 and N=2.

  7. Magnetic structure and dispersion relation of the S =1/2 quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8 in a transverse magnetic field

    Science.gov (United States)

    Matsuda, M.; Onishi, H.; Okutani, A.; Ma, J.; Agrawal, H.; Hong, T.; Pajerowski, D. M.; Copley, J. R. D.; Okunishi, K.; Mori, M.; Kimura, S.; Hagiwara, M.

    2017-07-01

    BaCo2V2O8 consists of Co chains in which a Co2 + ion carries a fictitious spin 1/2 with Ising anisotropy. We performed elastic and inelastic neutron scattering experiments in BaCo2V2O8 in a magnetic field perpendicular to the c axis which is the chain direction. With applying magnetic field along the a axis at 3.5 K, the antiferromagnetic order with the easy axis along the c axis, observed in zero magnetic field, is completely suppressed at 8 T, while the magnetic field gradually induces an antiferromagnetic order with the spin component along the b axis. We also studied magnetic excitations as a function of transverse magnetic field. The lower boundary of the spinon excitations splits gradually with increasing magnetic field. The overall feature of the magnetic excitation spectra in the magnetic field is reproduced by the theoretical calculation based on the spin 1/2 X X Z antiferromagnetic chain model, which predicts that the dynamic magnetic structure factor of the spin component along the chain direction is enhanced and that along the field direction has clear incommensurate correlations.

  8. Restoration of dimensional reduction in the random-field Ising model at five dimensions

    Science.gov (United States)

    Fytas, Nikolaos G.; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas

    2017-04-01

    The random-field Ising model is one of the few disordered systems where the perturbative renormalization group can be carried out to all orders of perturbation theory. This analysis predicts dimensional reduction, i.e., that the critical properties of the random-field Ising model in D dimensions are identical to those of the pure Ising ferromagnet in D -2 dimensions. It is well known that dimensional reduction is not true in three dimensions, thus invalidating the perturbative renormalization group prediction. Here, we report high-precision numerical simulations of the 5D random-field Ising model at zero temperature. We illustrate universality by comparing different probability distributions for the random fields. We compute all the relevant critical exponents (including the critical slowing down exponent for the ground-state finding algorithm), as well as several other renormalization-group invariants. The estimated values of the critical exponents of the 5D random-field Ising model are statistically compatible to those of the pure 3D Ising ferromagnet. These results support the restoration of dimensional reduction at D =5 . We thus conclude that the failure of the perturbative renormalization group is a low-dimensional phenomenon. We close our contribution by comparing universal quantities for the random-field problem at dimensions 3 ≤D equality at all studied dimensions.

  9. Stimulated wave of polarization in a one-dimensional Ising chain

    International Nuclear Information System (INIS)

    Lee, Jae-Seung; Khitrin, A.K.

    2005-01-01

    It is demonstrated that in a one-dimensional Ising chain with nearest-neighbor interactions, irradiated by a weak resonant transverse field, a stimulated wave of flipped spins can be triggered by a flip of a single spin. This analytically solvable model illustrates mechanisms of quantum amplification and quantum measurement

  10. Particles and scaling for lattice fields and Ising models

    International Nuclear Information System (INIS)

    Glimm, J.; Jaffe, A.

    1976-01-01

    The conjectured inequality GAMMA 6 4 -fields and the scaling limit for d-dimensional Ising models. Assuming GAMMA 6 = 6 these phi 4 fields are free fields unless the field strength renormalization Z -1 diverges. (orig./BJ) [de

  11. Effective-field treatment of an anisotropic Ising ferromagnet: thermodynamical properties

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Honmura, R.; Tsallis, C.

    1982-01-01

    The anisotropic square lattice spin -1/2 Ising ferromagnet is discussed. Through this system it is illustrated how all relevant thermodynamical quantities (phase diagram, magnetization, short range order parameter, specific heat and susceptibility) can be approximatively calculated within an effective-field unified procedure (which substantially improves the Mean Field Approximation). Two slightly different approximations for the susceptibility (whose exact computation is still lacking) are presented. The (square lattice) - (linear chain) crossover is exhibited. The present (mathematically simple) procedures could be useful in the study of complex Ising problems. (Author) [pt

  12. Entanglement of two blocks of spins in the critical Ising model

    Science.gov (United States)

    Facchi, P.; Florio, G.; Invernizzi, C.; Pascazio, S.

    2008-11-01

    We compute the entropy of entanglement of two blocks of L spins at a distance d in the ground state of an Ising chain in an external transverse magnetic field. We numerically study the von Neumann entropy for different values of the transverse field. At the critical point we obtain analytical results for blocks of size L=1 and 2. In the general case, the critical entropy is shown to be additive when d→∞ . Finally, based on simple arguments, we derive an expression for the entropy at the critical point as a function of both L and d . This formula is in excellent agreement with numerical results.

  13. Complex-network description of thermal quantum states in the Ising spin chain

    Science.gov (United States)

    Sundar, Bhuvanesh; Valdez, Marc Andrew; Carr, Lincoln D.; Hazzard, Kaden R. A.

    2018-05-01

    We use network analysis to describe and characterize an archetypal quantum system—an Ising spin chain in a transverse magnetic field. We analyze weighted networks for this quantum system, with link weights given by various measures of spin-spin correlations such as the von Neumann and Rényi mutual information, concurrence, and negativity. We analytically calculate the spin-spin correlations in the system at an arbitrary temperature by mapping the Ising spin chain to fermions, as well as numerically calculate the correlations in the ground state using matrix product state methods, and then analyze the resulting networks using a variety of network measures. We demonstrate that the network measures show some traits of complex networks already in this spin chain, arguably the simplest quantum many-body system. The network measures give insight into the phase diagram not easily captured by more typical quantities, such as the order parameter or correlation length. For example, the network structure varies with transverse field and temperature, and the structure in the quantum critical fan is different from the ordered and disordered phases.

  14. Effective field renormalization group approach for Ising lattice spin systems

    Science.gov (United States)

    Fittipaldi, Ivon P.

    1994-03-01

    A new applicable real-space renormalization group framework (EFRG) for computing the critical properties of Ising lattice spin systems is presented. The method, which follows up the same strategy of the mean-field renormalization group scheme (MFRG), is based on rigorous Ising spin identities and utilizes a convenient differential operator expansion technique. Within this scheme, in contrast with the usual mean-field type of equation of state, all the relevant self-spin correlations are taken exactly into account. The results for the critical coupling and the critical exponent v, for the correlation length, are very satisfactory and it is shown that this technique leads to rather accurate results which represent a remarkable improvement on those obtained from the standard MFRG method. In particular, it is shown that the present EFRG approach correctly distinguishes the geometry of the lattice structure even when employing its simplest size-cluster version. Owing to its simplicity we also comment on the wide applicability of the present method to problems in crystalline and disordered Ising spin systems.

  15. Q-deformed Grassmann field and the two-dimensional Ising model

    International Nuclear Information System (INIS)

    Bugrij, A.I.; Shadura, V.N.

    1994-01-01

    In this paper we construct the exact representation of the Ising partition function in form of the SL q (2,R)-invariant functional integral for the lattice free q-fermion field theory (q=-1). It is shown that the proposed method of q-fermionization allows one to re-express the partition function of the eight vertex model in external field through the functional integral with four-fermion interaction. For the construction of these representation we define a lattice (l,q,s)-deformed Grassmann bi spinor field and extend the Berezin integration rules for this field. At q = - 1, l = s 1 we obtain the lattice q-fermion field which allows to fermionize the two-dimensional Ising model. We show that Gaussian integral over (q,s)-Grassmann variables is expressed through the (q,s)-deformed Pfaffian which is equal to square root of the determinant of some matrix at q = ± 1, s = ±1. (author). 39 refs

  16. Nonequilibrium dynamic critical scaling of the quantum Ising chain.

    Science.gov (United States)

    Kolodrubetz, Michael; Clark, Bryan K; Huse, David A

    2012-07-06

    We solve for the time-dependent finite-size scaling functions of the one-dimensional transverse-field Ising chain during a linear-in-time ramp of the field through the quantum critical point. We then simulate Mott-insulating bosons in a tilted potential, an experimentally studied system in the same equilibrium universality class, and demonstrate that universality holds for the dynamics as well. We find qualitatively athermal features of the scaling functions, such as negative spin correlations, and we show that they should be robustly observable within present cold atom experiments.

  17. Loschmidt echo of a two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field

    International Nuclear Information System (INIS)

    Zhong Ming; Tong Peiqing

    2011-01-01

    The Loschmidt echo (LE) of a central two-level qubit coupled to nonuniform anisotropic XY chains in a transverse field is studied. A general formula for LE is derived, which we use to discuss the influence of the criticality of the environment on LE. It is found that for the periodic XY chain the behaviors of LE in the vicinity of the critical points are similar to those of the uniform case. It is different for the disordered transverse Ising chains. For the aperiodic chains, if the surrounding systems are bounded chains, the behaviors of LE are similar to those of the uniform case, while if the surrounding systems are unbounded chains, they are similar to those of the disordered case.

  18. Phi4 lattice field theory as an asymptotic expansion about the Ising limit

    International Nuclear Information System (INIS)

    Caginalp, G.

    1980-01-01

    For a d-dimensional phi 4 lattice field theory consisting of N spins, an asymptotic expansion of expectations about the Ising limit is established in inverse powers of the bare coupling constant lambda. In the thermodynamic limit (N→infinity), the expansion is expected to be valid in the noncritical region of the Ising system

  19. Effects of the amorphization on hysteresis loops of the amorphous spin-1/2 Ising system

    International Nuclear Information System (INIS)

    Essaoudi, I.; Ainane, A.; Saber, M.; Miguel, J.J. de

    2009-01-01

    We examine the effects of the amorphization on the hysteresis loops of the amorphous spin-1/2 Ising system using the effective field theory within a probability distribution technique that accounts for the self-spin correlation functions. The magnetization, the transverse and longitudinal susceptibilities, and pyromagnetic coefficient are also studied in detail

  20. Effective field study of ising model on a double perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Ngantso, G. Dimitri; El Amraoui, Y. [LMPHE, (URAC 12), Faculté des Sciences, Université Mohammed V, Rabat (Morocco); Benyoussef, A. [LMPHE, (URAC 12), Faculté des Sciences, Université Mohammed V, Rabat (Morocco); Center of Materials and Nanomaterials, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); El Kenz, A., E-mail: elkenz@fsr.ac.ma [LMPHE, (URAC 12), Faculté des Sciences, Université Mohammed V, Rabat (Morocco)

    2017-02-01

    By using the effective field theory (EFT), the mixed spin-1/2 and spin-3/2 Ising ferrimagnetic model adapted to a double perovskite structure has been studied. The EFT calculations have been carried out from Ising Hamiltonian by taking into account first and second nearest-neighbors interactions and the crystal and external magnetic fields. Both first- and second-order phase transitions have been found in phase diagrams of interest. Depending on crystal-field values, the thermodynamic behavior of total magnetization indicated the compensation phenomenon existence. The hysteresis behaviors are studied by investigating the reduced magnetic field dependence of total magnetization and a series of hysteresis loops are shown for different reduced temperatures around the critical one. - Highlights: • Magnetic properties of double perovskite Structure have been studied. • Compensation temperature has been observed below the critical temperature. • Hysteresis behaviors have been studied.

  1. Effective field study of ising model on a double perovskite structure

    International Nuclear Information System (INIS)

    Ngantso, G. Dimitri; El Amraoui, Y.; Benyoussef, A.; El Kenz, A.

    2017-01-01

    By using the effective field theory (EFT), the mixed spin-1/2 and spin-3/2 Ising ferrimagnetic model adapted to a double perovskite structure has been studied. The EFT calculations have been carried out from Ising Hamiltonian by taking into account first and second nearest-neighbors interactions and the crystal and external magnetic fields. Both first- and second-order phase transitions have been found in phase diagrams of interest. Depending on crystal-field values, the thermodynamic behavior of total magnetization indicated the compensation phenomenon existence. The hysteresis behaviors are studied by investigating the reduced magnetic field dependence of total magnetization and a series of hysteresis loops are shown for different reduced temperatures around the critical one. - Highlights: • Magnetic properties of double perovskite Structure have been studied. • Compensation temperature has been observed below the critical temperature. • Hysteresis behaviors have been studied.

  2. Dynamical quantum phase transitions in extended transverse Ising models

    Science.gov (United States)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  3. Efficient generation of series expansions for ±J Ising spin glasses in a classical or a quantum field

    Science.gov (United States)

    Singh, R. R. P.; Young, A. P.

    2017-12-01

    We discuss generation of series expansions for Ising spin glasses with a symmetric ±J (i.e., bimodal) distribution on d -dimensional hypercubic lattices using linked-cluster methods. Simplifications for the bimodal distribution allow us to go to higher order than for a general distribution. We discuss two types of problems, one classical and one quantum. The classical problem is that of the Ising spin glass in a longitudinal magnetic field h , for which we obtain high temperature series expansions in variables tanh(J /T ) and tanh(h /T ) . The quantum problem is a T =0 study of the Ising spin glass in a transverse magnetic field hT for which we obtain a perturbation theory in powers of J /hT . These methods require (i) enumeration and counting of all connected clusters that can be embedded in the lattice up to some order n , and (ii) an evaluation of the contribution of each cluster for the quantity being calculated, known as the weight. We discuss a general method that takes the much smaller list (and count) of all no free-end (NFE) clusters on a lattice up to some order n and automatically generates all other clusters and their counts up to the same order. The weights for finite clusters in both cases have a simple graphical interpretation that allows us to proceed efficiently for a general configuration of the ±J bonds and at the end perform suitable disorder averaging. The order of our computations is limited by the weight calculations for the high-temperature expansions of the classical model, while they are limited by graph counting for the T =0 quantum system. Details of the calculational methods are presented.

  4. Specific heat of the Ising linear chain in a Random field

    International Nuclear Information System (INIS)

    Silva, P.R.; Sa Barreto, F.C. de

    1984-01-01

    Starting from correlation identities for the Ising model the effect of a random field on the one dimension version of the model is studied. Explicit results for the magnetization, the two-particle correlation function and the specific heat are obtained for an uncorrelated distribution of the random fields. (Author) [pt

  5. Effective-field theory on the kinetic Ising model

    International Nuclear Information System (INIS)

    Shi Xiaoling; Wei Guozhu; Li Lin

    2008-01-01

    As an analytical method, the effective-field theory (EFT) is used to study the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field. The effective-field equations of motion of the average magnetization are given for the square lattice (Z=4) and the simple cubic lattice (Z=6), respectively. The dynamic order parameter, the hysteresis loop area and the dynamic correlation are calculated. In the field amplitude h 0 /ZJ-temperature T/ZJ plane, the phase boundary separating the dynamic ordered and the disordered phase has been drawn, and the dynamical tricritical point has been observed. We also make the compare results of EFT with that given by using the mean field theory (MFT)

  6. The dilute random field Ising model by finite cluster approximation

    International Nuclear Information System (INIS)

    Benyoussef, A.; Saber, M.

    1987-09-01

    Using the finite cluster approximation, phase diagrams of bond and site diluted three-dimensional simple cubic Ising models with a random field have been determined. The resulting phase diagrams have the same general features for both bond and site dilution. (author). 7 refs, 4 figs

  7. Quasi-realistic distribution of interaction fields leading to a variant of Ising spin glass model

    International Nuclear Information System (INIS)

    Tanasa, Radu; Enachescu, Cristian; Stancu, Alexandru; Linares, Jorge; Varret, Francois

    2004-01-01

    The distribution of interaction fields of an Ising-like system, obtained by Monte Carlo entropic sampling is used for modeling the hysteretic behavior of patterned media made of magnetic particles with a common anisotropy axis; a variant of the canonical Edwards-Anderson Ising spin glass model is introduced

  8. Correlation effects in the Ising model in an external field

    International Nuclear Information System (INIS)

    Borges, H.E.; Silva, P.R.

    1983-01-01

    The thermodynamic properties of the spin-1/2 Ising Model in an external field are evaluated through the use of the exponential differential operator method and Callen's exact relations. The correlations effects are treated in a phenomenological approach and the results are compared with other treatments. (Author) [pt

  9. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  10. Factors controlling degree of correlation between ISEE 1 and ISEE 3 interplanetary magnetic field measurements

    International Nuclear Information System (INIS)

    Crooker, N.U.; Siscoe, G.L.; Russell, C.T.; Smith, E.J.

    1982-01-01

    The degree of correlation between ISEE 1 and ISEE 3 IMF measurements is highly variable. Approximately 200 two-hour periods when the correlation was good and 200 more when the correlation was poor are used to determine the relative control of several factors over the degree of correlation. Both IMF variance and spacecraft separation distance in the plane perpendicular to the earth-sun line exert substantial control. Good correlations are associated with high variance and distances less than 90 R/sub E/. During periods of highest variance, good correlations occur at distances beyond 90 R/sub E/ up to 120 R/sub E/, the maximum range of ISEE 1-ISEE 3 separation. Thus it appears that the scale size of magnetic features is larger when the variance is high. Abrupt changes in the correlation coefficient from poor to good or good to poor in adjacent two-hour intervals appear to be governed by the sense of change of IMF variance: changes in correlation from poor to good correspond to increasing variance and vice versa. The IMF orientation also exerts control over the degree of correlation. During periods of low variance, good correlations are most likely to occur when the distance between ISEE 1 and ISEE 3 perpendicular to the IMF is less than 20 R/sub E/. This scale size expands to approx.50 R/sub E/ during periods of high variance. Solar wind speed shows little control over the degree of correlation in the speed range 300--500 km/s

  11. Phase transitions and Heisenberg limited metrology in an Ising chain interacting with a single-mode cavity field

    DEFF Research Database (Denmark)

    Gammelmark, Søren; Mølmer, Klaus

    2011-01-01

    We investigate the thermodynamics of a combined Dicke and Ising model that exhibits a rich phenomenology arising from the second-order and quantum phase transitions from the respective models. The partition function is calculated using mean-field theory, and the free energy is analyzed in detail...... to determine the complete phase diagram of the system. The analysis reveals both first- and second-order Dicke phase transitions into a super-radiant state, and the cavity mean field in this regime acts as an effective magnetic field, which restricts the Ising chain dynamics to parameter ranges away from...... the Ising phase transition. Physical systems with first-order phase transitions are natural candidates for metrology and calibration purposes, and we apply filter theory to show that the sensitivity of the physical system to temperature and external fields reaches the 1/N Heisenberg limit....

  12. First steps towards a state classification in the random-field Ising model

    International Nuclear Information System (INIS)

    Basso, Vittorio; Magni, Alessandro; Bertotti, Giorgio

    2006-01-01

    The properties of locally stable states of the random-field Ising model are studied. A map is defined for the dynamics driven by the field starting from a locally stable state. The fixed points of the map are connected with the limit hysteresis loops that appear in the classification of the states

  13. Finite-temperature spin dynamics in a perturbed quantum critical Ising chain with an E₈ symmetry.

    Science.gov (United States)

    Wu, Jianda; Kormos, Márton; Si, Qimiao

    2014-12-12

    A spectrum exhibiting E₈ symmetry is expected to arise when a small longitudinal field is introduced in the transverse-field Ising chain at its quantum critical point. Evidence for this spectrum has recently come from neutron scattering measurements in cobalt niobate, a quasi-one-dimensional Ising ferromagnet. Unlike its zero-temperature counterpart, the finite-temperature dynamics of the model has not yet been determined. We study the dynamical spin structure factor of the model at low frequencies and nonzero temperatures, using the form factor method. Its frequency dependence is singular, but differs from the diffusion form. The temperature dependence of the nuclear magnetic resonance (NMR) relaxation rate has an activated form, whose prefactor we also determine. We propose NMR experiments as a means to further test the applicability of the E₈ description for CoNb₂O₆.

  14. Exact form factors for the scaling ZN-Ising and the affine AN-1-Toda quantum field theories

    International Nuclear Information System (INIS)

    Babujian, H.; Karowski, M.

    2003-01-01

    Previous results on form factors for the scaling Ising and the sinh-Gordon models are extended to general Z N -Ising and affine A N-1 -Toda quantum field theories. In particular result for order, disorder parameters and para-Fermi fields σ Q (x), μ Q-tilde (x) and ψ Q (x) are presented for the Z N -model. For the A N-1 -Toda model form factors for exponentials of the Toda fields are proposed. The quantum field equation of motion is proved and the mass and wave function renormalization are calculated exactly

  15. Form factors of Ising spin and disorder fields on the Poincare disc

    International Nuclear Information System (INIS)

    Doyon, Benjamin

    2004-01-01

    Using recent results concerning form factors of certain scaling fields in the massive Dirac theory on the Poincare disc, we find expressions for the form factors of Ising spin and disorder fields in the massive Majorana theory on the Poincare disc. In particular, we verify that these recent results agree with the factorization properties of the fields in the Dirac theory representing tensor products of spin and of disorder fields in the Majorana theory

  16. Global mean-field phase diagram of the spin-1 Ising ferromagnet in a random crystal field

    Science.gov (United States)

    Borelli, M. E. S.; Carneiro, C. E. I.

    1996-02-01

    We study the phase diagram of the mean-field spin-1 Ising ferromagnet in a uniform magnetic field H and a random crystal field Δi, with probability distribution P( Δi) = pδ( Δi - Δ) + (1 - p) δ( Δi). We analyse the effects of randomness on the first-order surfaces of the Δ- T- H phase diagram for different values of the concentration p and show how these surfaces are affected by the dilution of the crystal field.

  17. The diluted tri-dimensional spin-one Ising model with crystal field interactions

    International Nuclear Information System (INIS)

    Saber, M.

    1988-09-01

    3D spin-one Ising models with nearest-neighbour ferromagnetic interactions with crystal-field exhibit tricritical behaviour. A new method that applies to a wide class of random systems is used to study the influence of site and bond dilution on this behaviour. We have calculated temperature-crystal-field-concentration phase diagrams and determined, in particular, the influence of dilution on the zero temperature tricritical temperature. (author). 10 refs, 8 figs

  18. Critical behavior of a quantum chain with four-spin interactions in the presence of longitudinal and transverse magnetic fields.

    Science.gov (United States)

    Boechat, B; Florencio, J; Saguia, A; de Alcantara Bonfim, O F

    2014-03-01

    We study the ground-state properties of a spin-1/2 model on a chain containing four-spin Ising-like interactions in the presence of both transverse and longitudinal magnetic fields. We use entanglement entropy and finite-size scaling methods to obtain the phase diagrams of the model. Our numerical calculations reveal a rich variety of phases and the existence of multicritical points in the system. We identify phases with both ferromagnetic and antiferromagnetic orderings. We also find periodically modulated orderings formed by a cluster of like spins followed by another cluster of opposite like spins. The quantum phases in the model are found to be separated by either first- or second-order transition lines.

  19. Ising model with competing axial interactions in the presence of a field

    International Nuclear Information System (INIS)

    Yokoi, C.S.O.; Salinas, S.R.A.; Coutinho Filho, M.D.

    1980-09-01

    A layered Ising model is studied with competing interactions between nearest and next-nearest layers in the presence of a magnetic field. The analysis is carried out in the mean-field approximation with one effective field for each layer. The high-temperature region is studied analytically. The low-temperature region is studied numerically. T-H phase diagrams are constructed, which exhibit a variety of modulated phases, for various values of the ratio of the strength of the competing interactions. Numerical evidence of the devil's staircase behavior is found either as a function of temperature or applied magnetic field. (Author) [pt

  20. Effect of External Economic-Field Cycle and Market Temperature on Stock-Price Hysteresis: Monte Carlo Simulation on the Ising Spin Model

    Science.gov (United States)

    Punya Jaroenjittichai, Atchara; Laosiritaworn, Yongyut

    2017-09-01

    In this work, the stock-price versus economic-field hysteresis was investigated. The Ising spin Hamiltonian was utilized as the level of ‘disagreement’ in describing investors’ behaviour. The Ising spin directions were referred to an investor’s intention to perform his action on trading his stock. The periodic economic variation was also considered via the external economic-field in the Ising model. The stochastic Monte Carlo simulation was performed on Ising spins, where the steady-state excess demand and supply as well as the stock-price were extracted via the magnetization. From the results, the economic-field parameters and market temperature were found to have significant effect on the dynamic magnetization and stock-price behaviour. Specifically, the hysteresis changes from asymmetric to symmetric loops with increasing market temperature and economic-field strength. However, the hysteresis changes from symmetric to asymmetric loops with increasing the economic-field frequency, when either temperature or economic-field strength is large enough, and returns to symmetric shape at very high frequencies. This suggests competitive effects among field and temperature factors on the hysteresis characteristic, implying multi-dimensional complicated non-trivial relationship among inputs-outputs. As is seen, the results reported (over extensive range) can be used as basis/guideline for further analysis/quantifying how economic-field and market-temperature affect the stock-price distribution on the course of economic cycle.

  1. Analysis of transverse field distributions in Porro prism resonators

    Science.gov (United States)

    Litvin, Igor A.; Burger, Liesl; Forbes, Andrew

    2007-05-01

    A model to describe the transverse field distribution of the output beam from porro prism resonators is proposed. The model allows the prediction of the output transverse field distribution by assuming that the main areas of loss are located at the apexes of the porro prisms. Experimental work on a particular system showed some interested correlations between the time domain behavior of the resonator and the transverse field output. These findings are presented and discussed.

  2. Transversals of Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are generic...

  3. A unified effective-field renormalization-group framework approach for the quenched diluted Ising models

    Science.gov (United States)

    de Albuquerque, Douglas F.; Fittipaldi, I. P.

    1994-05-01

    A unified effective-field renormalization-group framework (EFRG) for both quenched bond- and site-diluted Ising models is herein developed by extending recent works. The method, as in the previous works, follows up the same strategy of the mean-field renormalization-group scheme (MFRG), and is achieved by introducing an alternative way for constructing classical effective-field equations of state, based on rigorous Ising spin identities. The concentration dependence of the critical temperature, Tc(p), and the critical concentrations of magnetic atoms, pc, at which the transition temperature goes to zero, are evaluated for several two- and three-dimensional lattice structures. The obtained values of Tc and pc and the resulting phase diagrams for both bond and site cases are much more accurate than those estimated by the standard MFRG approach. Although preserving the same level of simplicity as the MFRG, it is shown that the present EFRG method, even by considering its simplest size-cluster version, provides results that correctly distinguishes those lattices that have the same coordination number, but differ in dimensionality or geometry.

  4. One-dimensional Ising model with multispin interactions

    Science.gov (United States)

    Turban, Loïc

    2016-09-01

    We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.

  5. The phase diagrams and the order parameters of the diluted transverse superlattice with antiferromagnetic interface coupling

    International Nuclear Information System (INIS)

    Oubelkacem, A.; El Aouad, N.; Benaboud, A.; Saber, M.

    2004-01-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the magnetic properties of the Ising superlattice consisting of two ferromagnetic materials A and B, with L a layers of diluted spins S a =((1)/(2)) and L b layers of diluted spins S b =1 in an applied transverse field Ω with antiferromagnetic interface coupling are examined. For fixed values of the reduced exchange interactions and the concentration c of magnetic atoms, the phase diagrams and the total magnetization for the superlattice are studied as a function of the transverse field and the temperature. We find a number of characteristic phenomena. In particular, the effect of the concentration c of magnetic atoms, the interlayer coupling and the transverse field on both the compensation temperature and the magnetization profiles are clarified. Some of them may be related to the experimental works of rare-earth (RE)/transition metal (TM) multilayer films

  6. Kinetic Ising model in a time-dependent oscillating external magnetic field: effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Canko, Osman; Keskin, Mustafa

    2010-01-01

    Recently, Shi et al. [2008 Phys. Lett. A 372 5922] have studied the dynamical response of the kinetic Ising model in the presence of a sinusoidal oscillating field and presented the dynamic phase diagrams by using an effective-field theory (EFT) and a mean-field theory (MFT). The MFT results are in conflict with those of the earlier work of Tomé and de Oliveira, [1990 Phys. Rev. A 41 4251]. We calculate the dynamic phase diagrams and find that our results are similar to those of the earlier work of Tomé and de Oliveira; hence the dynamic phase diagrams calculated by Shi et al. are incomplete within both theories, except the low values of frequencies for the MFT calculation. We also investigate the influence of external field frequency (ω) and static external field amplitude (h 0 ) for both MFT and EFT calculations. We find that the behaviour of the system strongly depends on the values of ω and h 0 . (general)

  7. Random field Ising chain and neutral networks with synchronous dynamics

    International Nuclear Information System (INIS)

    Skantzos, N.S.; Coolen, A.C.C.

    2001-01-01

    We first present an exact solution of the one-dimensional random-field Ising model in which spin-updates are made fully synchronously, i.e. in parallel (in contrast to the more conventional Glauber-type sequential rules). We find transitions where the support of local observables turns from a continuous interval into a Cantor set and we show that synchronous and sequential random-field models lead asymptotically to the same physical states. We then proceed to an application of these techniques to recurrent neural networks where 1D short-range interactions are combined with infinite-range ones. Due to the competing interactions these models exhibit phase diagrams with first-order transitions and regions with multiple locally stable solutions for the macroscopic order parameters

  8. The anisotropic Ising superantiferromagnet on a simple cubic lattice in the presence of a magnetic field: Effective-field theory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ricardo de Sousa, J. [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A., E-mail: minos@pq.cnpq.br [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Padilha, Igor T.; Salmon, Octavio D.R.; Viana, J. Roberto [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil)

    2013-12-15

    We have studied the anisotropic three-dimensional nearest-neighbor Ising model with competitive interactions in an uniform longitudinal magnetic field H. The model consists of ferromagnetic interactions J{sub z}=λ{sub 2}J{sub x} in the x(z) direction and antiferromagnetic interactions J{sub y}=λ{sub 1}J{sub x} in the y direction (Ising superantiferromagnet). For the particular case λ{sub 1}=λ{sub 2}=1 we obtain the phase diagram in the H−T plane, using the framework of the differential operator technique in the effective-field theory with finite cluster of N=4 spins (EFT-4). It was observed first- and second-order transitions in the low and high temperature limits, respectively, with the presence of a tricritical point and a reentrant behavior is observed at low temperature. The critical curve in the classical approach is also obtained and the results are compared.

  9. Effects of the randomly distributed magnetic field on the phase diagrams of the Ising Nanowire II: Continuous distributions

    International Nuclear Information System (INIS)

    Akıncı, Ümit

    2012-01-01

    The effect of the random magnetic field distribution on the phase diagrams and ground state magnetizations of the Ising nanowire has been investigated with effective field theory with correlations. Gaussian distribution has been chosen as a random magnetic field distribution. The variation of the phase diagrams with that distribution parameters has been obtained and some interesting results have been found such as disappearance of the reentrant behavior and first order transitions which appear in the case of discrete distributions. Also for single and double Gaussian distributions, ground state magnetizations for different distribution parameters have been determined which can be regarded as separate partially ordered phases of the system. - Highlights: ► We give the phase diagrams of the Ising nanowire under the continuous randomly distributed magnetic field. ► Ground state magnetization values obtained. ► Different partially ordered phases observed.

  10. Ising model for packet routing control

    International Nuclear Information System (INIS)

    Horiguchi, Tsuyoshi; Takahashi, Hideyuki; Hayashi, Keisuke; Yamaguchi, Chiaki

    2004-01-01

    For packet routing control in computer networks, we propose an Ising model which is defined in order to express competition among a queue length and a distance from a node with a packet to its destination node. By introducing a dynamics for a mean-field value of an Ising spin, we show by computer simulations that effective control of packet routing through priority links is possible

  11. Ising game: Nonequilibrium steady states of resource-allocation systems

    Science.gov (United States)

    Xin, C.; Yang, G.; Huang, J. P.

    2017-04-01

    Resource-allocation systems are ubiquitous in the human society. But how external fields affect the state of such systems remains poorly explored due to the lack of a suitable model. Because the behavior of spins pursuing energy minimization required by physical laws is similar to that of humans chasing payoff maximization studied in game theory, here we combine the Ising model with the market-directed resource-allocation game, yielding an Ising game. Based on the Ising game, we show theoretical, simulative and experimental evidences for a formula, which offers a clear expression of nonequilibrium steady states (NESSs). Interestingly, the formula also reveals a convertible relationship between the external field (exogenous factor) and resource ratio (endogenous factor), and a class of saturation as the external field exceeds certain limits. This work suggests that the Ising game could be a suitable model for studying external-field effects on resource-allocation systems, and it could provide guidance both for seeking more relations between NESSs and equilibrium states and for regulating human systems by choosing NESSs appropriately.

  12. Transverse Field Effect in Fluxgate Sensors

    DEFF Research Database (Denmark)

    Brauer, Peter; Merayo, José M.G.; Nielsen, Otto V

    1997-01-01

    A model of the fluxgate magnetometer based on the field interactions in the fluxgate core has been derived. The non-linearity of the ringcore sensors due to large uncompensated fields transverse to the measuring axis are calculated and compared with measurements. Measurements of the non-linearity......A model of the fluxgate magnetometer based on the field interactions in the fluxgate core has been derived. The non-linearity of the ringcore sensors due to large uncompensated fields transverse to the measuring axis are calculated and compared with measurements. Measurements of the non......-linearity are made with a spectrum analyser, measuring the higher harmonics of an applied sinusoidal field. For a sensor with a permalloy ringcore of 1" in diameter the deviation from linearity is measured to about 15 nTp-p in the earth's field and the measurements are shown to fit well the calculations. Further......, the measurements and the calculations are also compared with a calibration model of the fluxgate sensor onboard the "MAGSAT" satellite. The later has a deviation from linearity of about 50 nTp-p but shows basically the same form of non-linearity as the measurements....

  13. Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction

    Science.gov (United States)

    Kuzmak, A. R.

    2018-04-01

    The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.

  14. Dynamics of the diluted Ising antiferromagnet Fe0.42Zn0.58F2 at strong fields

    International Nuclear Information System (INIS)

    Rosales-Rivera, A.; Ferreira, J.M.; Montenegro, F.C.

    2001-01-01

    The random-field Ising model (RFIM) system Fe 0.42 Zn 0.58 F 2 is studied by magnetization and AC susceptibility measurements, under finite DC applied fields (H). For weak random fields (corresponding to H c (H) is accompanied by the critical slowing down inherent to the random field problem. For higher H, the PT is destroyed and a glassy dynamics dominates the magnetic behavior

  15. MHD shear flows with non-constant transverse magnetic field

    International Nuclear Information System (INIS)

    Núñez, Manuel

    2012-01-01

    Viscous conducting flows parallel to a fixed plate are studied. In contrast with the Hartmann setting, the problem is not linearized near a fixed transverse magnetic field, although the field tends to be transversal far from the wall. While general solutions may be formally obtained for all cases, their behavior is far more clear when the magnetic Prandtl number equals one. We consider two different instances: a fixed magnetic field at the wall, or an insulating sheet. The evolution of the flow and the magnetic field both near the plate and far from it are detailed, analyzing the possibility of reverse flow and instability of the solutions. -- Highlights: ► A conducting shear flow does not leave a transverse magnetic field invariant. ► Solutions are found for all cases, but these are more useful when kinetic and magnetic diffusivities coincide. ► Dirichlet and Neumann conditions on the magnetic field are studied. ► Reverse flow, and eventual instability, are possible.

  16. Fermions as generalized Ising models

    Directory of Open Access Journals (Sweden)

    C. Wetterich

    2017-04-01

    Full Text Available We establish a general map between Grassmann functionals for fermions and probability or weight distributions for Ising spins. The equivalence between the two formulations is based on identical transfer matrices and expectation values of products of observables. The map preserves locality properties and can be realized for arbitrary dimensions. We present a simple example where a quantum field theory for free massless Dirac fermions in two-dimensional Minkowski space is represented by an asymmetric Ising model on a euclidean square lattice.

  17. Properties of a random bond Ising chain in a magnetic field

    International Nuclear Information System (INIS)

    Landau, D.P.; Blume, M.

    1976-01-01

    The Ising chain with random bonds in a magnetic field H = -Σ/sub i/J/sub i/sigma/sub i/sigma/sub i + l/ - hΣ/sub i/sigma/sub i/, where J/sub i/ = +- 1 at random, and Σ/sub i/J/sub i/ = 0, represents a model of a magnetic glass, or of heteropolymer melting. Calculations of the thermodynamic properties of the chain as a function of field strength and temperature have been performed by Monte Carlo techniques. These results are compared with perturbation calculations for small and large values of h/T. The Monte Carlo results show, in agreement with the perturbation calculations, that the field-induced magnetization is generally smaller for the random bond model than for a chain of noninteracting spins. As T → 0 the magnetization approaches the result for noninteracting spins

  18. The susceptibilities in the spin-S Ising model

    International Nuclear Information System (INIS)

    Ainane, A.; Saber, M.

    1995-08-01

    The susceptibilities of the spin-S Ising model are evaluated using the effective field theory introduced by Tucker et al. for studying general spin-S Ising model. The susceptibilities are studied for all spin values from S = 1/2 to S = 5/2. (author). 12 refs, 4 figs

  19. Quantum-information approach to the Ising model: Entanglement in chains of qubits

    International Nuclear Information System (INIS)

    Stelmachovic, Peter; Buzek, Vladimir

    2004-01-01

    Simple physical interactions between spin-1/2 particles may result in quantum states that exhibit exotic correlations that are difficult to find if one simply explores state spaces of multipartite systems. In particular, we present a detailed investigation of the well-known Ising model of a chain (ring) of spin-1/2 particles (qubits) in a transverse magnetic field. We present explicit expressions for eigenstates of the model Hamiltonian for arbitrary number of spin-1/2 particles in the chain in the standard (computer) basis, and we investigate quantum entanglement between individual qubits. We analyze bipartite as well as multipartite entanglement in the ground state of the model. In particular, we show that bipartite entanglement between pairs of qubits of the Ising chain (measured in terms of a concurrence) as a function of the parameter λ has a maximum around the point λ=1, and it monotonically decreases for large values of λ. We prove that in the limit λ→∞ this state is locally unitary equivalent to an N-partite Greenberger-Horn-Zeilinger state. We also analyze a very specific eigenstate of the Ising Hamiltonian with a zero eigenenergy (we denote this eigenstate as the X-state). This X-state exhibits the 'extreme' entanglement in a sense that an arbitrary subset A of k≤n qubits in the Ising chain composed of N=2n+1 qubits is maximally entangled with the remaining qubits (set B) in the chain. In addition, we prove that by performing a local operation just on the subset B, one can transform the X-state into a direct product of k singlets shared by the parties A and B. This property of the X-state can be utilized for new secure multipartite communication protocols

  20. Dynamic Phase Transitions In The Spin-2 Ising System Under An Oscillating Magnetic Field Within The Effective-Field Theory

    International Nuclear Information System (INIS)

    Ertas, Mehmet; Keskin, Mustafa; Deviren, Bayram

    2010-01-01

    The dynamic phase transitions are studied in the spin-2 Ising model under a time-dependent oscillating magnetic field by using the effective-field theory with correlations. The effective-field dynamic equation is derived by employing the Glauber transition rates and the phases in the system are obtained by solving this dynamic equation. The nature (first- or second-order) of the dynamic phase transition is characterized by investigating the thermal behavior of the dynamic order parameter and the dynamic phase transition temperatures are obtained. The dynamic phase diagrams are presented in (T/zJ, h/zJ) plane.

  1. Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field

    International Nuclear Information System (INIS)

    Kantar, Ersin; Ertaş, Mehmet; Keskin, Mustafa

    2014-01-01

    The dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field are obtained by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics. According to the values of interaction parameters, a number of interesting properties have been found in the dynamic phase diagrams, such as many dynamic critical points (tricritical point, double critical end point, critical end point, zero temperature critical point, multicritical point, tetracritical point, and triple point) as well as reentrant phenomena. - Highlights: • The cylindrical Ising nanowire is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a reentrant behavior

  2. Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kantar, Ersin; Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2014-06-01

    The dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field are obtained by using the effective-field theory with correlations based on the Glauber-type stochastic dynamics. According to the values of interaction parameters, a number of interesting properties have been found in the dynamic phase diagrams, such as many dynamic critical points (tricritical point, double critical end point, critical end point, zero temperature critical point, multicritical point, tetracritical point, and triple point) as well as reentrant phenomena. - Highlights: • The cylindrical Ising nanowire is investigated within the Glauber dynamics based on EFT. • The time variations of average order parameters to find phases are studied. • The dynamic phase diagrams are found for the different interaction parameters. • The system displays the critical points as well as a reentrant behavior.

  3. Interplanetary magnetic field orientations associated with bidirectional electron heat fluxes detected at ISEE 3

    International Nuclear Information System (INIS)

    Stansberry, J.A.; Gosling, J.T.; Thomsen, M.F.; Bame, S.J.; Smith, E.J.

    1988-01-01

    A statistical survey of interplanetary magnetic field orientations associated with bidirectional electron heat fluxes observed at ISEE 3 in orbit about the Sunward Lagrange point indicates that magnetic connection of the spacecraft to the Earth's bow shock was frequently the source of the bidirectionality. When the interplanetary magnetic field was oriented within 5 0 of the Earth-spacecraft line, backstreaming electrons from the bow shock were clearly observed approximately 18% of the time, and connections apparently occurred for angles as large as ∼30 0 --35 0 . copyright American Geophysical Union 1988

  4. Planar Josephson tunnel junctions in a transverse magnetic field

    DEFF Research Database (Denmark)

    Monacoa, R.; Aarøe, Morten; Mygind, Jesper

    2007-01-01

    demagnetization effects imposed by the tunnel barrier and electrodes geometry are important. Measurements of the junction critical current versus magnetic field in planar Nb-based high-quality junctions with different geometry, size, and critical current density show that it is advantageous to use a transverse......Traditionally, since the discovery of the Josephson effect in 1962, the magnetic diffraction pattern of planar Josephson tunnel junctions has been recorded with the field applied in the plane of the junction. Here we discuss the static junction properties in a transverse magnetic field where...

  5. An Ising model for metal-organic frameworks

    Science.gov (United States)

    Höft, Nicolas; Horbach, Jürgen; Martín-Mayor, Victor; Seoane, Beatriz

    2017-08-01

    We present a three-dimensional Ising model where lines of equal spins are frozen such that they form an ordered framework structure. The frame spins impose an external field on the rest of the spins (active spins). We demonstrate that this "porous Ising model" can be seen as a minimal model for condensation transitions of gas molecules in metal-organic frameworks. Using Monte Carlo simulation techniques, we compare the phase behavior of a porous Ising model with that of a particle-based model for the condensation of methane (CH4) in the isoreticular metal-organic framework IRMOF-16. For both models, we find a line of first-order phase transitions that end in a critical point. We show that the critical behavior in both cases belongs to the 3D Ising universality class, in contrast to other phase transitions in confinement such as capillary condensation.

  6. Average configuration of the distant (less than 220-earth-radii) magnetotail - Initial ISEE-3 magnetic field results

    Science.gov (United States)

    Slavin, J. A.; Tsurutani, B. T.; Smith, E. J.; Jones, D. E.; Sibeck, D. G.

    1983-01-01

    Magnetic field measurements from the first two passes of the ISEE-3 GEOTAIL Mission have been used to study the structure of the trans-lunar tail. Good agreement was found between the ISEE-3 magnetopause crossings and the Explorer 33, 35 model of Howe and Binsack (1972). Neutral sheet location was well ordered by the hinged current sheet models based upon near earth measurements. Between X = -20 and -120 earth radii the radius of the tail increases by about 30 percent while the lobe field strength decreases by approximately 60 percent. Beyond X = -100 to -1200 earth radii the tail diameter and lobe field magnitude become nearly constant at terminal values of approximately 60 earth radii and 9 nT, respectively. The distance at which the tail was observed to cease flaring, 100-120 earth radii, is in close agreement with the predictions of the analytic tail model of Coroniti and Kennel (1972). Overall, the findings of this study suggest that the magnetotail retains much of its near earth structure out to X = -220 earth radii.

  7. Finite-size scaling of the entanglement entropy of the quantum Ising chain with homogeneous, periodically modulated and random couplings

    International Nuclear Information System (INIS)

    Iglói, Ferenc; Lin, Yu-Cheng

    2008-01-01

    Using free-fermionic techniques we study the entanglement entropy of a block of contiguous spins in a large finite quantum Ising chain in a transverse field, with couplings of different types: homogeneous, periodically modulated and random. We carry out a systematic study of finite-size effects at the quantum critical point, and evaluate subleading corrections both for open and for periodic boundary conditions. For a block corresponding to a half of a finite chain, the position of the maximum of the entropy as a function of the control parameter (e.g. the transverse field) can define the effective critical point in the finite sample. On the basis of homogeneous chains, we demonstrate that the scaling behavior of the entropy near the quantum phase transition is in agreement with the universality hypothesis, and calculate the shift of the effective critical point, which has different scaling behaviors for open and for periodic boundary conditions

  8. Thermodynamic and critical properties of an antiferromagnetically stacked triangular Ising antiferromagnet in a field

    Science.gov (United States)

    Žukovič, M.; Borovský, M.; Bobák, A.

    2018-05-01

    We study a stacked triangular lattice Ising model with both intra- and inter-plane antiferromagnetic interactions in a field, by Monte Carlo simulation. We find only one phase transition from a paramagnetic to a partially disordered phase, which is of second order and 3D XY universality class. At low temperatures we identify two highly degenerate phases: at smaller (larger) fields the system shows long-range ordering in the stacking direction (within planes) but not in the planes (stacking direction). Nevertheless, crossovers to these phases do not have a character of conventional phase transitions but rather linear-chain-like excitations.

  9. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2010-07-12

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  10. Dynamic phase diagrams of the Ising metamagnet in an oscillating magnetic field within the effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2010-01-01

    Dynamic aspects of a two-sublattice Ising metamagnet on honeycomb, square and hexagonal lattices under the presence of a time-dependent oscillating external magnetic field are studied by using the effective-field theory with correlations. The set of effective-field dynamic equations is derived by employing Glauber transition rates. The phases in the system are obtained by solving these dynamic equations. The thermal behavior of the dynamic staggered magnetization, the hysteresis loop area and correlation are investigated in order to characterize the nature of the dynamic transitions and to obtain dynamic phase transition temperatures. The phase diagrams are constructed in two different planes, and exhibit dynamic tricritical behavior, which strongly depends on interaction parameters. In order to investigate the spin correlation effect on the dynamic phase diagrams of the system, the results are also given within the framework of the dynamic mean-field approximation.

  11. Mixed spin Ising model with four-spin interaction and random crystal field

    International Nuclear Information System (INIS)

    Benayad, N.; Ghliyem, M.

    2012-01-01

    The effects of fluctuations of the crystal field on the phase diagram of the mixed spin-1/2 and spin-1 Ising model with four-spin interactions are investigated within the finite cluster approximation based on a single-site cluster theory. The state equations are derived for the two-dimensional square lattice. It has been found that the system exhibits a variety of interesting features resulting from the fluctuation of the crystal field interactions. In particular, for low mean value D of the crystal field, the critical temperature is not very sensitive to fluctuations and all transitions are of second order for any value of the four-spin interactions. But for relatively high D, the transition temperature depends on the fluctuation of the crystal field, and the system undergoes tricritical behaviour for any strength of the four-spin interactions. We have also found that the model may exhibit reentrance for appropriate values of the system parameters.

  12. Analytical and computational study of magnetization switching in kinetic Ising systems with demagnetizing fields

    DEFF Research Database (Denmark)

    Richards, H.L.; Rikvold, P.A.

    1996-01-01

    particularly promising as materials for high-density magnetic recording media. In this paper we use analytic arguments and Monte Carlo simulations to quantitatively study the effects of the demagnetizing field on the dynamics of magnetization switching in two-dimensional, single-domain, kinetic Ising systems....... For systems in the weak-field ''stochastic region,'' where magnetization switching is on average effected by the nucleation and growth of a single droplet, the simulation results can be explained by a simple model in which the free energy is a function only of magnetization. In the intermediate......-field ''multidroplet region,'' a generalization of Avrami's law involving a magnetization-dependent effective magnetic field gives good agreement with the simulations. The effects of the demagnetizing field do not qualitatively change the droplet-theoretical picture of magnetization switching in highly anisotropic...

  13. Transversity results and computations in symplectic field theory

    International Nuclear Information System (INIS)

    Fabert, Oliver

    2008-01-01

    Although the definition of symplectic field theory suggests that one has to count holomorphic curves in cylindrical manifolds R x V equipped with a cylindrical almost complex structure J, it is already well-known from Gromov-Witten theory that, due to the presence of multiply-covered curves, we in general cannot achieve transversality for all moduli spaces even for generic choices of J. In this thesis we treat the transversality problem of symplectic field theory in two important cases. In the first part of this thesis we are concerned with the rational symplectic field theory of Hamiltonian mapping tori, which is also called the Floer case. For this observe that in the general geometric setup for symplectic field theory, the contact manifolds can be replaced by mapping tori M φ of symplectic manifolds (M,ω M ) with symplectomorphisms φ. While the cylindrical contact homology of M φ is given by the Floer homologies of powers of φ, the other algebraic invariants of symplectic field theory for M φ provide natural generalizations of symplectic Floer homology. For symplectically aspherical M and Hamiltonian φ we study the moduli spaces of rational curves and prove a transversality result, which does not need the polyfold theory by Hofer, Wysocki and Zehnder and allows us to compute the full contact homology of M φ ≅ S 1 x M. The second part of this thesis is devoted to the branched covers of trivial cylinders over closed Reeb orbits, which are the trivial examples of punctured holomorphic curves studied in rational symplectic field theory. Since all moduli spaces of trivial curves with virtual dimension one cannot be regular, we use obstruction bundles in order to find compact perturbations making the Cauchy-Riemann operator transversal to the zero section and show that the algebraic count of elements in the resulting regular moduli spaces is zero. Once the analytical foundations of symplectic field theory are established, our result implies that the

  14. Dimensional expansion for the Ising limit of quantum field theory

    International Nuclear Information System (INIS)

    Bender, C.M.; Boettcher, S.

    1993-01-01

    A recently proposed technique, called dimensional expansion, uses the space-time dimension D as an expansion parameter to extract nonperturbative results in quantum field theory. Here we apply dimensional-expansion methods to examine the Ising limit of a self-interacting scalar field theory. We compute the first few coefficients in the dimensional expansion of γ 2n , the renormalized 2n-point Green's function at zero momentum, for n=2, 3, 4, and 5. Because the exact results for γ 2n are known at D=1 we can compare the predictions of the dimensional expansion at this value of D. We find typical accuracies of less than 5%. The radius of convergence of the dimensional expansion for γ 2n appears to be 2n/(n-1). As a function of the space-time dimension D, γ 2n appears to rise monotonically with increasing D and we conjecture that it becomes infinite at D=2n/(n-1). We presume that for values of D greater than this critical value γ 2n vanishes identically because the corresponding φ 2n scalar quantum field theory is free for D>2n/(n-1)

  15. Design of wide flat-topped low transverse field solenoid magnet

    International Nuclear Information System (INIS)

    Jing Xiaobing; Chen Nan; Li Qin

    2010-01-01

    A wide flat-topped low transverse error field solenoid magnet design for linear induction accelerator is presented. The design features non-uniform winding to reduce field fluctuation due to the magnets' gap, and homogenizer rings within the solenoid to greatly reduce the effects of winding errors. Numerical modeling of several designs for 12 MeV linear induction accelerator (LIA) in China Academy of Engineering Physics has demonstrated that by using these two techniques the magnetic field fluctuations in the accelerator gap can be reduced by 70% and the transverse error field can be reduced by 96.5%. (authors)

  16. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ertaş, Mehmet, E-mail: mehmetertas@erciyes.edu.tr; Keskin, Mustafa

    2015-08-15

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors.

  17. Dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model in an oscillating magnetic field

    International Nuclear Information System (INIS)

    Ertaş, Mehmet; Keskin, Mustafa

    2015-01-01

    Herein we study the dynamic phase transition properties for the mixed spin-(1/2, 1) Ising model on a square lattice under a time-dependent magnetic field by means of the effective-field theory (EFT) with correlations based on Glauber dynamics. We present the dynamic phase diagrams in the reduced magnetic field amplitude and reduced temperature plane and find that the phase diagrams exhibit dynamic tricitical behavior, multicritical and zero-temperature critical points as well as reentrant behavior. We also investigate the influence of frequency (ω) and observe that for small values of ω the mixed phase disappears, but for high values it appears and the system displays reentrant behavior as well as a critical end point. - Highlights: • Dynamic behaviors of a ferrimagnetic mixed spin (1/2, 1) Ising system are studied. • We examined the effects of the Hamiltonian parameters on the dynamic behaviors. • The phase diagrams are obtained in (T-h) plane. • The dynamic phase diagrams exhibit the dynamic tricritical and reentrant behaviors

  18. Size effects in spin-crossover nanoparticles in framework of 2D and 3D Ising-like breathing crystal field model

    International Nuclear Information System (INIS)

    Gudyma, Iu.; Maksymov, A.; Spinu, L.

    2015-01-01

    Highlights: • We study the thermal hysteresis in spin-crossover nanoparticles with stochastic perturbation. • The dependence of system behavior on its dimensionality and size were examined. • The spin-crossover compounds where described by breathing crystal field Ising-like model. • The fluctuations may enlarge the hysteresis width which is dependent on the system size. - Abstract: The spin-crossover nanoparticles of different sizes and stochastic perturbations in external field taking into account the influence of the dimensionality of the lattice was studied. The analytical tools used for the investigation of spin-crossover system are based on an Ising-like model described using of the breathing crystal field concept. The changes of transition temperatures characterizing the systems’ bistable properties for 2D and 3D lattices, and their dependence on its size and fluctuations strength were obtained. The state diagrams with hysteretic and non-hysteretic behavior regions have also been determined.

  19. Size effects in spin-crossover nanoparticles in framework of 2D and 3D Ising-like breathing crystal field model

    Energy Technology Data Exchange (ETDEWEB)

    Gudyma, Iu. [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Maksymov, A., E-mail: maxyartur@gmail.com [Department of General Physics, Chernivtsi National University, Chernivtsi 58012 (Ukraine); Advanced Material Research Institute (AMRI), University of New Orleans, New Orleans, LA 70148 (United States); Spinu, L. [Advanced Material Research Institute (AMRI), University of New Orleans, New Orleans, LA 70148 (United States); Department of Physics, University of New Orleans, New Orleans, LA 70148 (United States)

    2015-10-15

    Highlights: • We study the thermal hysteresis in spin-crossover nanoparticles with stochastic perturbation. • The dependence of system behavior on its dimensionality and size were examined. • The spin-crossover compounds where described by breathing crystal field Ising-like model. • The fluctuations may enlarge the hysteresis width which is dependent on the system size. - Abstract: The spin-crossover nanoparticles of different sizes and stochastic perturbations in external field taking into account the influence of the dimensionality of the lattice was studied. The analytical tools used for the investigation of spin-crossover system are based on an Ising-like model described using of the breathing crystal field concept. The changes of transition temperatures characterizing the systems’ bistable properties for 2D and 3D lattices, and their dependence on its size and fluctuations strength were obtained. The state diagrams with hysteretic and non-hysteretic behavior regions have also been determined.

  20. Reentrant behavior in the nearest-neighbor Ising antiferromagnet in a magnetic field

    Science.gov (United States)

    Neto, Minos A.; de Sousa, J. Ricardo

    2004-12-01

    Motived by the H-T phase diagram in the bcc Ising antiferromagnetic with nearest-neighbor interactions obtained by Monte Carlo simulation [Landau, Phys. Rev. B 16, 4164 (1977)] that shows a reentrant behavior at low temperature, with two critical temperatures in magnetic field about 2% greater than the critical value Hc=8J , we apply the effective field renormalization group (EFRG) approach in this model on three-dimensional lattices (simple cubic-sc and body centered cubic-bcc). We find that the critical curve TN(H) exhibits a maximum point around of H≃Hc only in the bcc lattice case. We also discuss the critical behavior by the effective field theory in clusters with one (EFT-1) and two (EFT-2) spins, and a reentrant behavior is observed for the sc and bcc lattices. We have compared our results of EFRG in the bcc lattice with Monte Carlo and series expansion, and we observe a good accordance between the methods.

  1. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa, E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2010-09-15

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  2. Dynamic compensation temperatures in a mixed spin-1 and spin-3/2 Ising system under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Kantar, Ersin

    2010-01-01

    We study the existence of dynamic compensation temperatures in the mixed spin-1 and spin-3/2 Ising ferrimagnetic system Hamiltonian with bilinear and crystal-field interactions in the presence of a time-dependent oscillating external magnetic field on a hexagonal lattice. We employ the Glauber transitions rates to construct the mean-field dynamic equations. We investigate the time dependence of an average sublattice magnetizations, the thermal behavior of the dynamic sublattice magnetizations and the total magnetization. From these studies, we find the phases in the system, and characterize the nature (continuous or discontinuous) of transitions as well as obtain the dynamic phase transition (DPT) points and the dynamic compensation temperatures. We also present dynamic phase diagrams, including the compensation temperatures, in the five different planes. A comparison is made with the results of the available mixed spin Ising systems.

  3. Variable field-to-normal angles in the shock foreshock boundary observed by ISEE 1 and 2

    International Nuclear Information System (INIS)

    Greenstadt, E.W.; Mellot, M.M.

    1985-01-01

    Saturated ULF waves in the foreshock, with amplitudes comparable to the magnitude of the average field, are convected by the solar wind to the quasi-parallel shock where the average field-normal angle is less than, or about, 45 0 . Several examples from ISEE 1 and 2 magnetometer data show waves that defined local, instantaneous field-normal angles very different periodically from the average. Local geometric conditions at the nominally quasi-parallel shock varied from nearly parallel to nearly perpendicular, at the periods of typical upstream waves. Clear magnetic shock transitions occurred under temporarily quasi-perpendicular geometry

  4. Transversity results and computations in symplectic field theory

    Energy Technology Data Exchange (ETDEWEB)

    Fabert, Oliver

    2008-02-21

    Although the definition of symplectic field theory suggests that one has to count holomorphic curves in cylindrical manifolds R x V equipped with a cylindrical almost complex structure J, it is already well-known from Gromov-Witten theory that, due to the presence of multiply-covered curves, we in general cannot achieve transversality for all moduli spaces even for generic choices of J. In this thesis we treat the transversality problem of symplectic field theory in two important cases. In the first part of this thesis we are concerned with the rational symplectic field theory of Hamiltonian mapping tori, which is also called the Floer case. For this observe that in the general geometric setup for symplectic field theory, the contact manifolds can be replaced by mapping tori M{sub {phi}} of symplectic manifolds (M,{omega}{sub M}) with symplectomorphisms {phi}. While the cylindrical contact homology of M{sub {phi}} is given by the Floer homologies of powers of {phi}, the other algebraic invariants of symplectic field theory for M{sub {phi}} provide natural generalizations of symplectic Floer homology. For symplectically aspherical M and Hamiltonian {phi} we study the moduli spaces of rational curves and prove a transversality result, which does not need the polyfold theory by Hofer, Wysocki and Zehnder and allows us to compute the full contact homology of M{sub {phi}} {approx_equal} S{sup 1} x M. The second part of this thesis is devoted to the branched covers of trivial cylinders over closed Reeb orbits, which are the trivial examples of punctured holomorphic curves studied in rational symplectic field theory. Since all moduli spaces of trivial curves with virtual dimension one cannot be regular, we use obstruction bundles in order to find compact perturbations making the Cauchy-Riemann operator transversal to the zero section and show that the algebraic count of elements in the resulting regular moduli spaces is zero. Once the analytical foundations of symplectic

  5. Electronic transport on the Shastry-Sutherland lattice in Ising-type rare-earth tetraborides

    Science.gov (United States)

    Ye, Linda; Suzuki, Takehito; Checkelsky, Joseph G.

    2017-05-01

    In the presence of a magnetic field frustrated spin systems may exhibit plateaus at fractional values of saturation magnetization. Such plateau states are stabilized by classical and quantum mechanisms including order by disorder, triplon crystallization, and various competing order effects. In the case of electrically conducting systems, free electrons represent an incisive probe for the plateau states. Here we study the electrical transport of Ising-type rare-earth tetraborides R B4 (R =Er , Tm), a metallic Shastry-Sutherland lattice showing magnetization plateaus. We find that the longitudinal and transverse resistivities reflect scattering with both the static and the dynamic plateau structure. We model these results consistently with the expected strong uniaxial anisotropy on a quantitative level, providing a framework for the study of plateau states in metallic frustrated systems.

  6. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2012-01-01

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Néel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: ► The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► We studied both the FM and AFM interactions within the EFT with correlations. ► Some characteristic phenomena are found depending on the interaction parameters. ► We obtained five different types of compensation behaviors and reentrant behavior.

  7. Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-07-15

    The dynamic phase transitions in a cylindrical Ising nanowire system under a time-dependent oscillating external magnetic field for both ferromagnetic and antiferromagnetic interactions are investigated within the effective-field theory with correlations and the Glauber-type stochastic dynamics approach. The effective-field dynamic equations for the average longitudinal magnetizations on the surface shell and core are derived by employing the Glauber transition rates. Temperature dependence of the dynamic magnetizations, the dynamic total magnetization, the hysteresis loop areas and the dynamic correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic transitions as well as the dynamic phase transition temperatures and the compensation behaviors. The system strongly affected by the surface situations. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. According to the values of Hamiltonian parameters, five different types of compensation behaviors in the Neel classification nomenclature exist in the system. The system also exhibits a reentrant behavior. - Highlights: Black-Right-Pointing-Pointer The dynamic aspects of a cylindrical Ising nanowire are investigated in detail. Black-Right-Pointing-Pointer The dynamic magnetizations, hysteresis loop areas and correlations are calculated. Black-Right-Pointing-Pointer We studied both the FM and AFM interactions within the EFT with correlations. Black-Right-Pointing-Pointer Some characteristic phenomena are found depending on the interaction parameters. Black-Right-Pointing-Pointer We obtained five different types of compensation behaviors and reentrant behavior.

  8. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator.

    Science.gov (United States)

    Farajollahpour, T; Jafari, S A

    2018-01-10

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the 'ARPES-dark' state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  9. Semiconductor of spinons: from Ising band insulator to orthogonal band insulator

    Science.gov (United States)

    Farajollahpour, T.; Jafari, S. A.

    2018-01-01

    We use the ionic Hubbard model to study the effects of strong correlations on a two-dimensional semiconductor. The spectral gap in the limit where on-site interactions are zero is set by the staggered ionic potential, while in the strong interaction limit it is set by the Hubbard U. Combining mean field solutions of the slave spin and slave rotor methods, we propose two interesting gapped phases in between: (i) the insulating phase before the Mott phase can be viewed as gapping a non-Fermi liquid state of spinons by the staggered ionic potential. The quasi-particles of underlying spinons are orthogonal to physical electrons, giving rise to the ‘ARPES-dark’ state where the ARPES gap will be larger than the optical and thermal gap. (ii) The Ising insulator corresponding to ordered phase of the Ising variable is characterized by single-particle excitations whose dispersion is controlled by Ising-like temperature and field dependences. The temperature can be conveniently employed to drive a phase transition between these two insulating phases where Ising exponents become measurable by ARPES and cyclotron resonance. The rare earth monochalcogenide semiconductors where the magneto-resistance is anomalously large can be a candidate system for the Ising band insulator. We argue that the Ising and orthogonal insulating phases require strong enough ionic potential to survive the downward renormalization of the ionic potential caused by Hubbard U.

  10. Monte Carlo study of the three-dimensional spatially anisotropic Ising superantiferromagnet in the presence of a magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, Octavio D.R., E-mail: octaviors@gmail.com [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Neto, Minos A., E-mail: minosneto@pq.cnpq.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Viana, J. Roberto, E-mail: vianafisica@bol.com.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Padilha, Igor T., E-mail: igorfis@ufam.edu.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); Sousa, J. Ricardo de, E-mail: jsousa@ufam.edu.br [Departamento de Física, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus-AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, 69077-000 Manaus-AM (Brazil)

    2013-11-01

    The phase transition of the three-dimensional spatially anisotropic Ising antiferromagnetic model in the presence of an uniform longitudinal magnetic field H is studied by using the traditional Monte Carlo (MC) simulation for sizes L=16, 32 and 64. The model consists of ferromagnetic interactions J{sub z}=λ{sub 2}J{sub x} in the x(z) direction and antiferromagnetic interactions J{sub y}=λ{sub 1}J{sub x} in the y direction (Ising superantiferromagnetic). For the particular case λ{sub 1}=λ{sub 2}=1 we obtain the phase diagram in the T–H plane. Was observed first- and second-order transitions in the low and high temperature limits, respectively, with the presence of a tricritical point.

  11. Shielding property for thermal equilibrium states in the quantum Ising model

    Science.gov (United States)

    Móller, N. S.; de Paula, A. L.; Drumond, R. C.

    2018-03-01

    We show that Gibbs states of nonhomogeneous transverse Ising chains satisfy a shielding property. Namely, whatever the fields on each spin and exchange couplings between neighboring spins are, if the field in one particular site is null, then the reduced states of the subchains to the right and to the left of this site are exactly the Gibbs states of each subchain alone. Therefore, even if there is a strong exchange coupling between the extremal sites of each subchain, the Gibbs states of the each subchain behave as if there is no interaction between them. In general, if a lattice can be divided into two disconnected regions separated by an interface of sites with zero applied field, then we can guarantee a similar result only if the surface contains a single site. Already for an interface with two sites we show an example where the property does not hold. When it holds, however, we show that if a perturbation of the Hamiltonian parameters is done in one side of the lattice, then the other side is completely unchanged, with regard to both its equilibrium state and dynamics.

  12. Frustrated lattices of Ising chains

    International Nuclear Information System (INIS)

    Kudasov, Yurii B; Korshunov, Aleksei S; Pavlov, V N; Maslov, Dmitrii A

    2012-01-01

    The magnetic structure and magnetization dynamics of systems of plane frustrated Ising chain lattices are reviewed for three groups of compounds: Ca 3 Co 2 O 6 , CsCoCl 3 , and Sr 5 Rh 4 O 12 . The available experimental data are analyzed and compared in detail. It is shown that a high-temperature magnetic phase on a triangle lattice is normally and universally a partially disordered antiferromagnetic (PDA) structure. The diversity of low-temperature phases results from weak interactions that lift the degeneracy of a 2D antiferromagnetic Ising model on the triangle lattice. Mean-field models, Monte Carlo simulation results on the static magnetization curve, and results on slow magnetization dynamics obtained with Glauber's theory are discussed in detail. (reviews of topical problems)

  13. A 0.5 Tesla Transverse-Field Alternating Magnetic Field Demagnetizer

    Science.gov (United States)

    Schillinger, W. E.; Morris, E. R.; Finn, D. R.; Coe, R. S.

    2015-12-01

    We have built an alternating field demagnetizer that can routinely achieve a maximum field of 0.5 Tesla. It uses an amorphous magnetic core with an air-cooled coil. We have started with a 0.5 T design, which satisfies most of our immediate needs, but we can certainly achieve higher fields. In our design, the magnetic field is transverse to the bore and uniform to 1% over a standard (25 mm) paleomagnetic sample. It is powered by a 1 kW power amplifier and is compatible with our existing sample handler for automated demagnetization and measurement (Morris et al., 2009). It's much higher peak field has enabled us to completely demagnetize many of the samples that previously we could not with commercial equipment. This capability is especially needed for high-coercivity sedimentary and igneous rocks that contain magnetic minerals that alter during thermal demagnetization. It will also enable detailed automated demagnetization of high coercivity phases in extraterrestrial samples, such as native iron, iron-alloy and sulfide minerals that are common in lunar rocks and meteorites. Furthermore, it has opened the door for us to use the rock-magnetic technique of component analysis, using coercivity distributions derived from very detailed AF demagnetization of NRM and remanence produced in the laboratory to characterize the magnetic mineralogy of sedimentary rocks. In addition to the many benefits this instrument has brought to our own research, a much broader potential impact is to replace the transverse coils in automated AF demagnetization systems, which typically are limited to peak fields around 0.1 T.

  14. Scaling behaviour of the correlation length for the two-point correlation function in the random field Ising chain

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Adrian; Stinchcombe, Robin [Theoretical Physics, University of Oxford, Oxford (United Kingdom)

    1996-07-07

    We study the general behaviour of the correlation length {zeta}(kT:h) for two-point correlation function of the local fields in an Ising chain with binary distributed fields. At zero field it is shown that {zeta} is the same as the zero-field correlation length for the spin-spin correlation function. For the field-dominated behaviour of {zeta} we find an exponent for the power-law divergence which is smaller than the exponent for the spin-spin correlation length. The entire behaviour of the correlation length can be described by a single crossover scaling function involving the new critical exponent. (author)

  15. Conformal invariance in the long-range Ising model

    Directory of Open Access Journals (Sweden)

    Miguel F. Paulos

    2016-01-01

    Full Text Available We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  16. Conformal Invariance in the Long-Range Ising Model

    CERN Document Server

    Paulos, Miguel F; van Rees, Balt C; Zan, Bernardo

    2016-01-01

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  17. Conformal invariance in the long-range Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Paulos, Miguel F. [CERN, Theory Group, Geneva (Switzerland); Rychkov, Slava, E-mail: slava.rychkov@lpt.ens.fr [CERN, Theory Group, Geneva (Switzerland); Laboratoire de Physique Théorique de l' École Normale Supérieure (LPTENS), Paris (France); Faculté de Physique, Université Pierre et Marie Curie (UPMC), Paris (France); Rees, Balt C. van [CERN, Theory Group, Geneva (Switzerland); Zan, Bernardo [Institute of Physics, Universiteit van Amsterdam, Amsterdam (Netherlands)

    2016-01-15

    We consider the question of conformal invariance of the long-range Ising model at the critical point. The continuum description is given in terms of a nonlocal field theory, and the absence of a stress tensor invalidates all of the standard arguments for the enhancement of scale invariance to conformal invariance. We however show that several correlation functions, computed to second order in the epsilon expansion, are nontrivially consistent with conformal invariance. We proceed to give a proof of conformal invariance to all orders in the epsilon expansion, based on the description of the long-range Ising model as a defect theory in an auxiliary higher-dimensional space. A detailed review of conformal invariance in the d-dimensional short-range Ising model is also included and may be of independent interest.

  18. Dynamic hysteresis behaviors for the two-dimensional mixed spin (2, 5/2) ferrimagnetic Ising model in an oscillating magnetic field

    Science.gov (United States)

    Ertaş, Mehmet

    2015-09-01

    Keskin and Ertaş (2009) presented a study of the magnetic properties of a mixed spin (2, 5/2) ferrimagnetic Ising model within an oscillating magnetic field. They employed dynamic mean-field calculations to find the dynamic phase transition temperatures, the dynamic compensation points of the model and to present the dynamic phase diagrams. In this work, we extend the study and investigate the dynamic hysteresis behaviors for the two-dimensional (2D) mixed spin (2, 5/2) ferrimagnetic Ising model on a hexagonal lattice in an oscillating magnetic field within the framework of dynamic mean-field calculations. The dynamic hysteresis curves are obtained for both the ferromagnetic and antiferromagnetic interactions and the effects of the Hamiltonian parameters on the dynamic hysteresis behaviors are discussed in detail. The thermal behaviors of the coercivity and remanent magnetizations are also investigated. The results are compared with some theoretical and experimental works and a qualitatively good agreement is found. Finally, the dynamic phase diagrams depending on the frequency of an oscillating magnetic field in the plane of the reduced temperature versus magnetic field amplitude is examined and it is found that the dynamic phase diagrams display richer dynamic critical behavior for higher values of frequency than for lower values.

  19. Hamiltonian truncation approach to quenches in the Ising field theory

    Directory of Open Access Journals (Sweden)

    T. Rakovszky

    2016-10-01

    Full Text Available In contrast to lattice systems where powerful numerical techniques such as matrix product state based methods are available to study the non-equilibrium dynamics, the non-equilibrium behaviour of continuum systems is much harder to simulate. We demonstrate here that Hamiltonian truncation methods can be efficiently applied to this problem, by studying the quantum quench dynamics of the 1+1 dimensional Ising field theory using a truncated free fermionic space approach. After benchmarking the method with integrable quenches corresponding to changing the mass in a free Majorana fermion field theory, we study the effect of an integrability breaking perturbation by the longitudinal magnetic field. In both the ferromagnetic and paramagnetic phases of the model we find persistent oscillations with frequencies set by the low-lying particle excitations not only for small, but even for moderate size quenches. In the ferromagnetic phase these particles are the various non-perturbative confined bound states of the domain wall excitations, while in the paramagnetic phase the single magnon excitation governs the dynamics, allowing us to capture the time evolution of the magnetisation using a combination of known results from perturbation theory and form factor based methods. We point out that the dominance of low lying excitations allows for the numerical or experimental determination of the mass spectra through the study of the quench dynamics.

  20. Heat transfer to liquid sodium in a straight duct in the presence of a transverse magnetic field and a gravity field

    International Nuclear Information System (INIS)

    Majid, A.

    1998-01-01

    Heat transfer to liquid sodium in the presence of a transverse magnetic field and gravity field was analyzed in a square cross section straight duct. The duct had conducting vanadium walls. Magnetohydrodynamic equations in three dimensions and energy equation in three dimensions in cartesian coordinate system were solved. Firstly Nusselt number was calculated with no magnetic field and gravity field. Secondly the Nusselt number was calculated for the case of transverse magnetic field acting on the fluid. Thirdly Nusselt number was calculated for the case of transverse magnetic field and gravity field acting on the fluid. Only one face of the channel was heated. It was found that Nusselt number is not sensitive to application of gravity field and is slightly sensitive to application of transverse magnetic field. The sensitivity of Nusselt number to magnetic field intensity becomes almost negligible after increasing the strength of magnetic field to 0.1 Tesla. (author)

  1. Robust extrapolation scheme for fast estimation of 3D Ising field partition functions: application to within subject fMRI data

    Energy Technology Data Exchange (ETDEWEB)

    Risser, L.; Vincent, T.; Ciuciu, Ph. [NeuroSpin CEA, F-91191 Gif sur Yvette (France); Risser, L.; Vincent, T. [Laboratoire de Neuroimagerie Assistee par Ordinateur (LNAO) CEA - DSV/I2BM/NEUROSPIN (France); Risser, L. [Institut de mecanique des fluides de Toulouse (IMFT), CNRS: UMR5502 - Universite Paul Sabatier - Toulouse III - Institut National Polytechnique de Toulouse - INPT (France); Idier, J. [Institut de Recherche en Communications et en Cybernetique de Nantes (IRCCyN) CNRS - UMR6597 - Universite de Nantes - ecole Centrale de Nantes - Ecole des Mines de Nantes - Ecole Polytechnique de l' Universite de Nantes (France)

    2009-07-01

    In this paper, we present a first numerical scheme to estimate Partition Functions (PF) of 3D Ising fields. Our strategy is applied to the context of the joint detection-estimation of brain activity from functional Magnetic Resonance Imaging (fMRI) data, where the goal is to automatically recover activated regions and estimate region-dependent, hemodynamic filters. For any region, a specific binary Markov random field may embody spatial correlation over the hidden states of the voxels by modeling whether they are activated or not. To make this spatial regularization fully adaptive, our approach is first based upon it, classical path-sampling method to approximate a small subset of reference PFs corresponding to pre-specified regions. Then, file proposed extrapolation method allows its to approximate the PFs associated with the Ising fields defined over the remaining brain regions. In comparison with preexisting approaches, our method is robust; to topological inhomogeneities in the definition of the reference regions. As a result, it strongly alleviates the computational burden and makes spatially adaptive regularization of whole brain fMRI datasets feasible. (authors)

  2. Incompressible Steady Flow with Tensor Conductivity Leaving a Transverse Magnetic Field

    International Nuclear Information System (INIS)

    Witalis, E.A.

    1965-12-01

    The straight channel flow of an inviscid, incompressible fluid with tensor conductivity is considered when the flow leaves a region of constant transverse magnetic field. The channel walls are taken to be insulating, and an eddy current system arises. This is investigated by the method of magnetic field analysis as given by Witalis. The spatial distribution of magnetic field and ohmic power loss, both parallel and transverse to the flow, are given as functions of the Hall parameter with consideration also to the magnetic Reynolds number of the fluid. MHD power generator aspects of this problem and the results are discussed

  3. Incompressible Steady Flow with Tensor Conductivity Leaving a Transverse Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Witalis, E A

    1965-12-15

    The straight channel flow of an inviscid, incompressible fluid with tensor conductivity is considered when the flow leaves a region of constant transverse magnetic field. The channel walls are taken to be insulating, and an eddy current system arises. This is investigated by the method of magnetic field analysis as given by Witalis. The spatial distribution of magnetic field and ohmic power loss, both parallel and transverse to the flow, are given as functions of the Hall parameter with consideration also to the magnetic Reynolds number of the fluid. MHD power generator aspects of this problem and the results are discussed.

  4. An effective correlated mean-field theory applied in the spin-1/2 Ising ferromagnetic model

    Energy Technology Data Exchange (ETDEWEB)

    Roberto Viana, J.; Salmon, Octávio R. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); Ricardo de Sousa, J. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A.; Padilha, Igor T. [Universidade Federal do Amazonas – UFAM, Manaus 69077-000, AM (Brazil)

    2014-11-15

    We developed a new treatment for mean-field theory applied in spins systems, denominated effective correlated mean-field (ECMF). We apply this theory to study the spin-1/2 Ising ferromagnetic model with nearest-neighbor interactions on a square lattice. We use clusters of finite sizes and study the criticality of the ferromagnetic system, where we obtain a convergence of critical temperature for the value k{sub B}T{sub c}/J≃2.27905±0.00141. Also the behavior of magnetic and thermodynamic properties, using the condition of minimum energy of the physical system is obtained. - Highlights: • We developed spin models to study real magnetic systems. • We study the thermodynamic and magnetic properties of the ferromagnetism. • We enhanced a mean-field theory applied in spins models.

  5. OpenCL Implementation of NeuroIsing

    Science.gov (United States)

    Zapart, C. A.

    Recent advances in graphics card hardware combined with anintroduction of the OpenCL standard promise to accelerate numerical simulations across diverse scientific disciplines. One such field benefiting from new hardware/software paradigms is econophysics. The paper describes an OpenCL implementation of a selected econophysics model: NeuroIsing, which has been designed to execute in parallel on a vendor-independent graphics card. Originally introduced in the paper [C.~A.~Zapart, ``Econophysics in Financial Time Series Prediction'', PhD thesis, Graduate University for Advanced Studies, Japan (2009)], at first it was implemented on a CELL processor running inside a SONY PS3 games console. The NeuroIsing framework can be applied to predicting and trading foreign exchange as well as stock market index futures.

  6. Effective field theory with differential operator technique for dynamic phase transition in ferromagnetic Ising model

    International Nuclear Information System (INIS)

    Kinoshita, Takehiro; Fujiyama, Shinya; Idogaki, Toshihiro; Tokita, Masahiko

    2009-01-01

    The non-equilibrium phase transition in a ferromagnetic Ising model is investigated by use of a new type of effective field theory (EFT) which correctly accounts for all the single-site kinematic relations by differential operator technique. In the presence of a time dependent oscillating external field, with decrease of the temperature the system undergoes a dynamic phase transition, which is characterized by the period averaged magnetization Q, from a dynamically disordered state Q = 0 to the dynamically ordered state Q ≠ 0. The results of the dynamic phase transition point T c determined from the behavior of the dynamic magnetization and the Liapunov exponent provided by EFT are improved than that of the standard mean field theory (MFT), especially for the one dimensional lattice where the standard MFT gives incorrect result of T c = 0 even in the case of zero external field.

  7. Electromagnetic waves with frequencies near the local proton gyrofrequency: ISEE-3 1 AU observations

    Science.gov (United States)

    Tsurutani, Bruce T.; Arballo, John K.; Mok, John; Smith, Edward J.; Mason, Glenn M.; Tan, Lun C.

    1994-01-01

    Low Frequency (LF) electromagnetic waves with periods near the local proton gyrofrequency have been detected in interplanetary space by the magnetometer onboard International-Sun-Earth-Explorer-3 (ISEE-3). Transverse peak-to-peak amplitudes as large as delta vector B/absolute value of B approximately 0.4 have been noted with compressional components (Delta absolute value of B/absolute value of B) typically less than or = 0.1. Generally, the waves have even smaller amplitudes, or are not detectable within the solar wind turbulence. The waves are elliptically/linearly polarized and are often, but not always, found to propagate nearly along vector B(sub zero). Both right- and left-hand polarizations in the spacecraft-frame have been detected. The waves are observed during all orientations of the interplanetary magnetic field, with the Parker spiral orientation being the most common case. Because the waves are detected at and near the local proton cyclotron frequency, the generation mechanism must almost certainly be solar wind pickup of freshly created hydrogen ions. Possible sources for the hydrogen are the Earth's atmosphere, coronal mass ejections from the Sun, comets and interstellar neutral atoms. At this time it is not obvious which potential source is the correct one. Statistical tests employing over one year of ISEE-3 data will be done in the near future to eliminate/confirm some of these possibilities.

  8. Modified cable equation incorporating transverse polarization of neuronal membranes for accurate coupling of electric fields.

    Science.gov (United States)

    Wang, Boshuo; Aberra, Aman S; Grill, Warren M; Peterchev, Angel V

    2018-04-01

    We present a theory and computational methods to incorporate transverse polarization of neuronal membranes into the cable equation to account for the secondary electric field generated by the membrane in response to transverse electric fields. The effect of transverse polarization on nonlinear neuronal activation thresholds is quantified and discussed in the context of previous studies using linear membrane models. The response of neuronal membranes to applied electric fields is derived under two time scales and a unified solution of transverse polarization is given for spherical and cylindrical cell geometries. The solution is incorporated into the cable equation re-derived using an asymptotic model that separates the longitudinal and transverse dimensions. Two numerical methods are proposed to implement the modified cable equation. Several common neural stimulation scenarios are tested using two nonlinear membrane models to compare thresholds of the conventional and modified cable equations. The implementations of the modified cable equation incorporating transverse polarization are validated against previous results in the literature. The test cases show that transverse polarization has limited effect on activation thresholds. The transverse field only affects thresholds of unmyelinated axons for short pulses and in low-gradient field distributions, whereas myelinated axons are mostly unaffected. The modified cable equation captures the membrane's behavior on different time scales and models more accurately the coupling between electric fields and neurons. It addresses the limitations of the conventional cable equation and allows sound theoretical interpretations. The implementation provides simple methods that are compatible with current simulation approaches to study the effect of transverse polarization on nonlinear membranes. The minimal influence by transverse polarization on axonal activation thresholds for the nonlinear membrane models indicates that

  9. Mean-Field Studies of a Mixed Spin-3/2 and Spin-2 and a Mixed Spin-3/2 and Spin-5/2 Ising System with Different Anisotropies

    International Nuclear Information System (INIS)

    Wei Guozhu; Miao Hailing

    2009-01-01

    The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromagnetic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and tricritical line. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. ISE and Chemfet sensors in greenhouse cultivation

    NARCIS (Netherlands)

    Gieling, T.H.; Straten, van G.; Janssen, H.J.J.; Wouters, H.

    2005-01-01

    The development and market introduction of ion-specific sensors, like the ion selective electrode (ISE) and ion selective field effect transistor (ISFET) sensor, has paved the way for completely new systems for application of fertilisers to crops in greenhouses. This paper illustrates the usefulness

  11. Electric fields in the magnetosphere - the evidence from ISEE, S3-3, GEOS and Viking

    International Nuclear Information System (INIS)

    Faelthammar, C.G.

    1988-08-01

    Electric field measurements on the satellites S3-3, GEOS-1, GEOS-2, ISEE-1 and Viking have extended the empirical knowledge of electric fields in space so as to include the outer regions of the magnetosphere. While the measurements confirm some of the theoretically expected properties of the electric fields, they also reveal unexpected features and a high degree of complexity and variability. The existence of a magnetospheric dawn-to-dusk electric field, as expected on the basis of extrapolation from low altitude measurements, is confirmed in an average sense. However, the actual field exhibits large spatial and temporal variations, including strong fields of inductive origin. At the magnetopause the average (dawn to dusk directed) tangential electric field component is typically obscured by irregular fluctuations of large amplitude. The magnetic-field aligned component of the electric field, which is of particular importance for ionosphere-magnetosphere coupling and for auroral acceleration is even now very difficult to measure directly. However, the data from electric field measurements provide further support for the conclusion, based on a variety of evidence, that a non-vanishing magnetic-field aligned electric field exists in the auroral acceleration region. (93 refs.) (author)

  12. Dynamical response of the Ising model to the time dependent magnetic field with white noise

    Science.gov (United States)

    Akıncı, Ümit

    2018-03-01

    The effect of the white noise in time dependent magnetic field on the dynamic behavior of the Ising model has been investigated within the effective field theory based on Glauber type of stochastic process. Discrete white noise has been chosen from both Gaussian and uniform probability distributions. Detailed investigation on probability distribution of dynamical order parameter results that, both type of noise distributions yield the same probability distribution related to the dynamical order parameter, namely Gaussian probability distribution. The variation of the parameters that describe the probability distribution of dynamical order parameter (mean value and standard deviation) with temperature and strength of the noise have been inspected. Also, it has been shown that, rising strength of the noise can induce dynamical phase transition in the system.

  13. Variational methods for field theories

    Energy Technology Data Exchange (ETDEWEB)

    Ben-Menahem, S.

    1986-09-01

    Four field theory models are studied: Periodic Quantum Electrodynamics (PQED) in (2 + 1) dimensions, free scalar field theory in (1 + 1) dimensions, the Quantum XY model in (1 + 1) dimensions, and the (1 + 1) dimensional Ising model in a transverse magnetic field. The last three parts deal exclusively with variational methods; the PQED part involves mainly the path-integral approach. The PQED calculation results in a better understanding of the connection between electric confinement through monopole screening, and confinement through tunneling between degenerate vacua. This includes a better quantitative agreement for the string tensions in the two approaches. Free field theory is used as a laboratory for a new variational blocking-truncation approximation, in which the high-frequency modes in a block are truncated to wave functions that depend on the slower background modes (Boron-Oppenheimer approximation). This ''adiabatic truncation'' method gives very accurate results for ground-state energy density and correlation functions. Various adiabatic schemes, with one variable kept per site and then two variables per site, are used. For the XY model, several trial wave functions for the ground state are explored, with an emphasis on the periodic Gaussian. A connection is established with the vortex Coulomb gas of the Euclidean path integral approach. The approximations used are taken from the realms of statistical mechanics (mean field approximation, transfer-matrix methods) and of quantum mechanics (iterative blocking schemes). In developing blocking schemes based on continuous variables, problems due to the periodicity of the model were solved. Our results exhibit an order-disorder phase transition. The transfer-matrix method is used to find a good (non-blocking) trial ground state for the Ising model in a transverse magnetic field in (1 + 1) dimensions.

  14. Wide-field absolute transverse blood flow velocity mapping in vessel centerline

    Science.gov (United States)

    Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang

    2018-02-01

    We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.

  15. The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system

    International Nuclear Information System (INIS)

    Deviren, Bayram; Bati, Mehmet; Keskin, Mustafa

    2009-01-01

    An effective-field theory with correlations is developed for a mixed spin-1 and spin-5/2 Ising ferrimagnetic system on the honeycomb (δ=3) and square (δ=4) lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice magnetizations, and present the phase diagrams in the (Δ/|J|,k B T/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.

  16. The effective-field study of a mixed spin-1 and spin-5/2 Ising ferrimagnetic system

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram; Bati, Mehmet [Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr

    2009-06-15

    An effective-field theory with correlations is developed for a mixed spin-1 and spin-5/2 Ising ferrimagnetic system on the honeycomb ({delta}=3) and square ({delta}=4) lattices in the absence and presence of a longitudinal magnetic field. The ground-state phase diagram of the model is obtained in the longitudinal magnetic field (h) and a single-ion potential or crystal-field interaction ({delta}) plane. We also investigate the thermal variations of the sublattice magnetizations, and present the phase diagrams in the ({delta}/|J|,k{sub B}T/|J|) plane. The susceptibility, internal energy and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the absence and presence of the applied longitudinal magnetic field. Moreover, the system undergoes second- and first-order phase transition; hence, the system gives a tricritical point. The system also exhibits reentrant behavior.

  17. Method and apparatus for scanning a transverse field

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1978-01-01

    A transverse radionuclide scan-field imaging apparatus is described for use in scanning with particular reference to the brain. It comprises a plurality of highly focussed collimators surrounding and being focussed inwardly with respect to the scan-field and means for imparting movement to the collimators. Adjacent collimators can be stepped in radially opposite directions after each tangential scan, so that the focal point of each collimator scans at least one half of the scan-field. Each collimator is associated with a scintillator crystal and photodetector whose output is used to calculate the radioactive emission intensity at a number of points in the scan-field. (author)

  18. Non-Abelian anyons: when Ising meets Fibonacci

    NARCIS (Netherlands)

    Grosfeld, E.; Schoutens, K.

    2009-01-01

    We consider an interface between two non-Abelian quantum Hall states: the Moore-Read state, supporting Ising anyons, and the k=2 non-Abelian spin-singlet state, supporting Fibonacci anyons. It is shown that the interface supports neutral excitations described by a (1+1)-dimensional conformal field

  19. The ternary alloy with a structure of Prussian blue analogs in a transverse field

    International Nuclear Information System (INIS)

    Dely, J.; Bobak, A.

    2007-01-01

    The effects of applied transverse field on transition and compensation temperatures of the AB p C 1-p ternary alloy consisting of spins S A =3/2 , S B =2, and S C =5/2 are investigated by the use of a mean-field theory. The structure and the spin values of the model correspond to the Prussian blue analog of the type (Fe p II Mn 1-p II ) 1.5 [Cr III (CN) 6 ].nH 2 O. We find that two or even three compensation points may be induced by a transverse field for the system with appropriate values of the parameters in the model Hamiltonian. In particular, the influence of a transverse field on the compensation point in the ground state is examined

  20. Numerical estimation of structure constants in the three-dimensional Ising conformal field theory through Markov chain uv sampler

    Science.gov (United States)

    Herdeiro, Victor

    2017-09-01

    Herdeiro and Doyon [Phys. Rev. E 94, 043322 (2016), 10.1103/PhysRevE.94.043322] introduced a numerical recipe, dubbed uv sampler, offering precise estimations of the conformal field theory (CFT) data of the planar two-dimensional (2D) critical Ising model. It made use of scale invariance emerging at the critical point in order to sample finite sublattice marginals of the infinite plane Gibbs measure of the model by producing holographic boundary distributions. The main ingredient of the Markov chain Monte Carlo sampler is the invariance under dilation. This paper presents a generalization to higher dimensions with the critical 3D Ising model. This leads to numerical estimations of a subset of the CFT data—scaling weights and structure constants—through fitting of measured correlation functions. The results are shown to agree with the recent most precise estimations from numerical bootstrap methods [Kos, Poland, Simmons-Duffin, and Vichi, J. High Energy Phys. 08 (2016) 036, 10.1007/JHEP08(2016)036].

  1. Two dimensional kicked quantum Ising model: dynamical phase transitions

    International Nuclear Information System (INIS)

    Pineda, C; Prosen, T; Villaseñor, E

    2014-01-01

    Using an efficient one and two qubit gate simulator operating on graphical processing units, we investigate ergodic properties of a quantum Ising spin 1/2 model on a two-dimensional lattice, which is periodically driven by a δ-pulsed transverse magnetic field. We consider three different dynamical properties: (i) level density, (ii) level spacing distribution of the Floquet quasienergy spectrum, and (iii) time-averaged autocorrelation function of magnetization components. Varying the parameters of the model, we found transitions between ordered (non-ergodic) and quantum chaotic (ergodic) phases, but the transitions between flat and non-flat spectral density do not correspond to transitions between ergodic and non-ergodic local observables. Even more surprisingly, we found good agreement of level spacing distribution with the Wigner surmise of random matrix theory for almost all values of parameters except where the model is essentially non-interacting, even in regions where local observables are not ergodic or where spectral density is non-flat. These findings question the versatility of the interpretation of level spacing distribution in many-body systems and stress the importance of the concept of locality. (paper)

  2. Disorder Identification in Hysteresis Data: Recognition Analysis of the Random-Bond-Random-Field Ising Model

    International Nuclear Information System (INIS)

    Ovchinnikov, O. S.; Jesse, S.; Kalinin, S. V.; Bintacchit, P.; Trolier-McKinstry, S.

    2009-01-01

    An approach for the direct identification of disorder type and strength in physical systems based on recognition analysis of hysteresis loop shape is developed. A large number of theoretical examples uniformly distributed in the parameter space of the system is generated and is decorrelated using principal component analysis (PCA). The PCA components are used to train a feed-forward neural network using the model parameters as targets. The trained network is used to analyze hysteresis loops for the investigated system. The approach is demonstrated using a 2D random-bond-random-field Ising model, and polarization switching in polycrystalline ferroelectric capacitors.

  3. ISE System Development Methodology Manual

    Energy Technology Data Exchange (ETDEWEB)

    Hayhoe, G.F.

    1992-02-17

    The Information Systems Engineering (ISE) System Development Methodology Manual (SDM) is a framework of life cycle management guidelines that provide ISE personnel with direction, organization, consistency, and improved communication when developing and maintaining systems. These guide-lines were designed to allow ISE to build and deliver Total Quality products, and to meet the goals and requirements of the US Department of Energy (DOE), Westinghouse Savannah River Company, and Westinghouse Electric Corporation.

  4. From tricritical Ising to critical Ising by thermodynamic Bethe ansatz

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1991-01-01

    A simple factorized scattering theory is suggested for the massless Goldstone fermions of the trajectory flowing from the tricritical Ising fixed point to the critical Ising one. The thermodynamic Bethe ansatz approach is applied to this scattering theory to support its interpretation both analytically and numerically. As a generalization a sequence of massless TBA systems is proposed which seems relevant for the trajectories interpolating between two successive minimal CFT models M p and M p-1 . (orig.)

  5. Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach

    International Nuclear Information System (INIS)

    Kantar, Ersin; Keskin, Mustafa

    2014-01-01

    We propose a ternary Ising spins (1/2, 1, 3/2) model to investigate the thermal and magnetic properties of magnetic nanoparticles with core–shell structure within the framework of the effective-field theory with correlations. The center site of the core is occupied by σ=±1/2 spin, while those surrounding the center site are occupied by S=±1, 0 spins and the shell sites are occupied by m=±1/2,±3/2 spins. Thermal behaviors of the core and shell magnetizations, susceptibilities and internal energies as well as total magnetization are examined. In order to confirm the stability of the solutions we also investigate the free energy of the system. According to the values of Hamiltonian parameters, the system undergoes first- and second-order phase transitions. Phase diagrams are calculated and discussed in detail. We find that the system exhibits a tricritical point, reentrant and five different type (Q, P, R, S and W) of compensation behaviors that strongly depend on interaction parameters. The results are in good agreement with some experimental and theoretical results. - Highlights: • Thermal and magnetic properties of ternary Ising nanoparticles are studied. • Phase diagrams within the EFT with correlations are calculated and discussed. • The effects of the exchange interactions and crystal field have been studied. • Reentrant phenomena and compensation behaviors have been found

  6. Thermal and magnetic properties of ternary mixed Ising nanoparticles with core–shell structure: Effective-field theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Kantar, Ersin [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Institute of Science, Erciyes University, 38039 Kayseri (Turkey); Keskin, Mustafa, E-mail: keskin@erciyes.edu.tr [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2014-01-15

    We propose a ternary Ising spins (1/2, 1, 3/2) model to investigate the thermal and magnetic properties of magnetic nanoparticles with core–shell structure within the framework of the effective-field theory with correlations. The center site of the core is occupied by σ=±1/2 spin, while those surrounding the center site are occupied by S=±1, 0 spins and the shell sites are occupied by m=±1/2,±3/2 spins. Thermal behaviors of the core and shell magnetizations, susceptibilities and internal energies as well as total magnetization are examined. In order to confirm the stability of the solutions we also investigate the free energy of the system. According to the values of Hamiltonian parameters, the system undergoes first- and second-order phase transitions. Phase diagrams are calculated and discussed in detail. We find that the system exhibits a tricritical point, reentrant and five different type (Q, P, R, S and W) of compensation behaviors that strongly depend on interaction parameters. The results are in good agreement with some experimental and theoretical results. - Highlights: • Thermal and magnetic properties of ternary Ising nanoparticles are studied. • Phase diagrams within the EFT with correlations are calculated and discussed. • The effects of the exchange interactions and crystal field have been studied. • Reentrant phenomena and compensation behaviors have been found.

  7. Field induced phase transition in layered honeycomb spin system α-RuCl3 studied by thermal conductivity

    Science.gov (United States)

    Leahy, Ian; Bornstein, Alex; Choi, Kwang-Yong; Lee, Minhyea

    α -RuCl3, a quasi -two-dimensional honeycomb lattice is known to be a candidate material to realize the Heisenberg-Kitaev spin model of a highly anisotropic bond-dependent exchange interaction. We investigate in-plane thermal conductivity (κ) as a function of temperature (T) and in-plane applied field (H). At H = 0 , the onset of a strong increase in κ marks the spontaneous long range ordering temperature, Tc = 6 . 5 K , corresponding to ``zigzag'' antiferromagnetic ordering. A broad peak appearing below Tc in κ was found to be suppressed significantly as H increases up to ~ 7 T , implying the system undergoes a field-induced transition from ordered to a new spin-disordered state analogous to the transverse-field Ising model. Further increasing H above 7 . 1 T , the large field seems to begin polarizing spins thus increasing the phonon mean free path, resulting in a significant rise in κ. This tendency is clearly shown in the field dependence of κ below Tc, which has a pronounced minimum at Hmin = 7 . 1 T . We will discuss our scaling analysis to characterize this field-induced phase transition and compare to the transverse-field Ising spin system. Work at the University of Colorado was supported by the US DOE Basic Energy Sciences under Award No. DE-SC0006888.

  8. General planar transverse domain walls realized by optimized transverse magnetic field pulses in magnetic biaxial nanowires

    Science.gov (United States)

    Li, Mei; Wang, Jianbo; Lu, Jie

    2017-02-01

    The statics and field-driven dynamics of transverse domain walls (TDWs) in magnetic nanowires (NWs) have attracted continuous interests because of their theoretical significance and application potential in future magnetic logic and memory devices. Recent results demonstrate that uniform transverse magnetic fields (TMFs) can greatly enhance the wall velocity, meantime leave a twisting in the TDW azimuthal distribution. For application in high-density NW devices, it is preferable to erase the twisting so as to minimize magnetization frustrations. Here we report the realization of a completely planar TDW with arbitrary tilting attitude in a magnetic biaxial NW under a TMF pulse with fixed strength and well-designed orientation profile. We smooth any twisting in the TDW azimuthal plane thus completely decouple the polar and azimuthal degrees of freedom. The analytical differential equation describing the polar angle distribution is derived and the resulting solution is not the Walker-ansatz form. With this TMF pulse comoving, the field-driven dynamics of the planar TDW is investigated with the help of the asymptotic expansion method. It turns out the comoving TMF pulse increases the wall velocity under the same axial driving field. These results will help to design a series of modern magnetic devices based on planar TDWs.

  9. Zeros of the partition function for some generalized Ising models

    International Nuclear Information System (INIS)

    Dunlop, F.

    1981-01-01

    The author considers generalized Ising Models with two and four body interactions in a complex external field h such that Re h>=mod(Im h) + C, where C is an explicit function of the interaction parameters. The partition function Z(h) is then shown to satisfy mod(Z(h))>=Z(c), so that the pressure is analytic in h inside the given region. The method is applied to specific examples: the gauge invariant Ising Model, and the Widom Rowlinson model on the lattice. (Auth.)

  10. ISEE-magnetopause observations - workshop results

    International Nuclear Information System (INIS)

    Paschmann, G.

    1982-01-01

    A brief history of ISEE magnetopause workshops held during 1977-1981 is presented, and an assessment of the activity of these workshops is made. Workshop results are surveyed, with attention given to magnetopause thickness and speed, large-scale reconnection, small-scale reconnection, magnetic field topology, plasma waves, boundary layer structure, surface waves, plasma origin, and the relationship between magnetopause and particle boundaries. Finally, a few topics that require particular attention in the future are mentioned

  11. Power laws in Ising nanostripes

    International Nuclear Information System (INIS)

    Drzewinski, A.; Sznajd, J.; Szota, K.

    2005-01-01

    The results of high accuracy density-matrix renormalization-group calculations for infinite Ising stripes of finite widths 100 ≤ L ≤ 400 are presented. It is shown that in the presence of the small external magnetic field the infinite system critical power laws can be observed for L of order hundreds nm. The single power law describes the field dependence of the magnetization or the longitudinal correlation length only on the infinite system critical isotherm independently of the value of L. The approximate power law which describes how the magnetization varies with a distance from the infinite system critical point for several directions in the plane (temperature, external field) is also studied. (author)

  12. Muonium spin exchange as a Poisson process: magnetic field dependence in transverse fields

    International Nuclear Information System (INIS)

    Senba, Masayoshi; British Columbia Univ., Vancouver, BC

    1993-01-01

    The muonium spin exchange has been investigated as a function of transverse magnetic field strength, where the Poisson nature of collisions is exploited to simplify the calculation. In intermediate fields where the so-called two-frequency muonium signal is observed, the muonium relaxation due to spin exchange is 1.5 times faster than in low fields. In even higher fields, the observed relaxation rate drops back to the low field value. Since the relaxation rate due to a chemical reaction is field independent, such a distinct field dependence in spin exchange can be used in distinguishing experimentally spin exchange from chemical reactions. The time evolution of the muon spin polarization in the presence of muonium spin exchange has been expressed in a simple analytical closed form. (author)

  13. Universal amplitude ratios in the 3D Ising model

    International Nuclear Information System (INIS)

    Caselle, M.; Hasenbusch, M.

    1998-01-01

    We present a high precision Monte Carlo study of various universal amplitude ratios of the three dimensional Ising spin model. Using state of the art simulation techniques we studied the model close to criticality in both phases. Great care was taken to control systematic errors due to finite size effects and correction to scaling terms. We obtain C + /C - =4.75(3), f +,2nd /f -,2nd =1.95(2) and u * =14.3(1). Our results are compatible with those obtained by field theoretic methods applied to the φ 4 theory and high and low temperature series expansions of the Ising model. (orig.)

  14. Ising critical behaviour in the one-dimensional frustrated quantum XY model

    International Nuclear Information System (INIS)

    Granato, E.

    1993-06-01

    A generalization of the one-dimensional frustrated quantum XY model is considered in which the inter and intra-chain coupling constants of the two infinite XY (planar rotor) chains have different strengths. The model can describe the superconductor-insulator transition due to charging effects in a ladder of Josephson junctions in a magnetic field with half a flux quantum per plaquette. From a fluctuation-effective action, this transition is expected to be in the universality class of the two-dimensional classical XY-Ising model. The critical behaviour is studied using a Monte Carlo transfer matrix applied to the path-integral representation of the model and a finite-size-scaling analysis of data on small system sizes. It is found that, unlike the previous studied case of equal inter and intra-chain coupling constants, the XY and Ising-like excitations of the quantum model decouple for large interchain coupling, giving rise to pure Ising model critical behaviour for the chirality order parameter in good agreement with the results for the XY-Ising model. (author). 18 refs, 4 figs

  15. Longitudinal and transverse electric field measurements in resonant cavities

    International Nuclear Information System (INIS)

    Tong Dechun; Chen Linfeng; Zheng Xiaoyue

    1994-01-01

    The paper presents a measuring technique for the electric field distribution of high order modes in resonant cavities. A perturbing bead-like cage made with metallic wires are developed for S-band field measurements, which can be used to detect a small electric field component in the presence of other strong electric or magnetic field components (That means high sensitivity and high directivity). In order to avoid orientation error for the cage with very high directivity, two parallel threads were used for supporting the perturbing cage. A simple mechanical set-up is described. The cage can be driven into the cavity on-axis or off-axis in any azimuth for the longitudinal and transverse electric field measurements

  16. Transverse spin and transverse momentum in scattering of plane waves

    OpenAIRE

    Saha, Sudipta; Singh, Ankit K.; Ray, Subir K.; Banerjee, Ayan; Gupta, Subhasish Dutta; Ghosh, Nirmalya

    2016-01-01

    We study the near field to the far field evolution of spin angular momentum (SAM) density and the Poynting vector of the scattered waves from spherical scatterers. The results show that at the near field, the SAM density and the Poynting vector are dominated by their transverse components. While the former (transverse SAM) is independent of the helicity of the incident circular polarization state, the latter (transverse Poynting vector) depends upon the polarization state. It is further demon...

  17. Initial ISEE magnetometer results: shock observation

    International Nuclear Information System (INIS)

    Russell, C.T.

    1979-01-01

    ISEE-1 and -2 magnetic field profiles across 6 terrestrial bow shock and one interplanetary shock are examined. The inteplanetary shock illustrates the behavior of a low Mach number shock. Three examples of low or moderate β, high Mach number, quasi-perpendicular shocks are examined. These did not have upstream waves, but rather had waves growing in the field gradient. Two examples of high β shocks showed little coherence in field variation even though the two vehicles were only a few hundred kilometers apart. The authors present the joint behavior of wave, particle and field data across some of these shocks to show some of the myriad of shock features whose behavior they are now beginning to investigate. (Auth.)

  18. Effective-field theory of the Ising model with three alternative layers on the honeycomb and square lattices

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Institute of Science, Erciyes University, Kayseri 38039 (Turkey); Canko, Osman [Department of Physics, Erciyes University, Kayseri 38039 (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, Kayseri 38039 (Turkey)], E-mail: keskin@erciyes.edu.tr

    2008-09-15

    The Ising model with three alternative layers on the honeycomb and square lattices is studied by using the effective-field theory with correlations. We consider that the nearest-neighbor spins of each layer are coupled ferromagnetically and the adjacent spins of the nearest-neighbor layers are coupled either ferromagnetically or anti-ferromagnetically depending on the sign of the bilinear exchange interactions. We investigate the thermal variations of the magnetizations and present the phase diagrams. The phase diagrams contain the paramagnetic, ferromagnetic and anti-ferromagnetic phases, and the system also exhibits a tricritical behavior.

  19. Effective-field theory of the Ising model with three alternative layers on the honeycomb and square lattices

    International Nuclear Information System (INIS)

    Deviren, Bayram; Canko, Osman; Keskin, Mustafa

    2008-01-01

    The Ising model with three alternative layers on the honeycomb and square lattices is studied by using the effective-field theory with correlations. We consider that the nearest-neighbor spins of each layer are coupled ferromagnetically and the adjacent spins of the nearest-neighbor layers are coupled either ferromagnetically or anti-ferromagnetically depending on the sign of the bilinear exchange interactions. We investigate the thermal variations of the magnetizations and present the phase diagrams. The phase diagrams contain the paramagnetic, ferromagnetic and anti-ferromagnetic phases, and the system also exhibits a tricritical behavior

  20. Heisenberg spin-1/2 XXZ chain in the presence of electric and magnetic fields

    Science.gov (United States)

    Thakur, Pradeep; Durganandini, P.

    2018-02-01

    We study the interplay of electric and magnetic order in the one-dimensional Heisenberg spin-1/2 XXZ chain with large Ising anisotropy in the presence of the Dzyaloshinskii-Moriya (DM) interaction and with longitudinal and transverse magnetic fields, interpreting the DM interaction as a coupling between the local electric polarization and an external electric field. We obtain the ground state phase diagram using the density matrix renormalization group method and compute various ground state quantities like the magnetization, staggered magnetization, electric polarization and spin correlation functions, etc. In the presence of both longitudinal and transverse magnetic fields, there are three different phases corresponding to a gapped Néel phase with antiferromagnetic (AF) order, gapped saturated phase, and a critical incommensurate gapless phase. The external electric field modifies the phase boundaries but does not lead to any new phases. Both external magnetic fields and electric fields can be used to tune between the phases. We also show that the transverse magnetic field induces a vector chiral order in the Néel phase (even in the absence of an electric field) which can be interpreted as an electric polarization in a direction parallel to the AF order.

  1. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    International Nuclear Information System (INIS)

    Deviren, Bayram; Keskin, Mustafa

    2012-01-01

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  2. Thermal behavior of dynamic magnetizations, hysteresis loop areas and correlations of a cylindrical Ising nanotube in an oscillating magnetic field within the effective-field theory and the Glauber-type stochastic dynamics approach

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir University, 50300 Nevsehir (Turkey); Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)

    2012-02-20

    The dynamical aspects of a cylindrical Ising nanotube in the presence of a time-varying magnetic field are investigated within the effective-field theory with correlations and Glauber-type stochastic approach. Temperature dependence of the dynamic magnetizations, dynamic total magnetization, hysteresis loop areas and correlations are investigated in order to characterize the nature of dynamic transitions as well as to obtain the dynamic phase transition temperatures and compensation behaviors. Some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and core, i.e., five different types of compensation behaviors in the Néel classification nomenclature exist in the system. -- Highlights: ► Kinetic cylindrical Ising nanotube is investigated using the effective-field theory. ► The dynamic magnetizations, hysteresis loop areas and correlations are calculated. ► The effects of the exchange interactions have been studied in detail. ► Five different types of compensation behaviors have been found. ► Some characteristic phenomena are found depending on ratio of physical parameters.

  3. On the quantum symmetry of the chiral Ising model

    Science.gov (United States)

    Vecsernyés, Peter

    1994-03-01

    We introduce the notion of rational Hopf algebras that we think are able to describe the superselection symmetries of rational quantum field theories. As an example we show that a six-dimensional rational Hopf algebra H can reproduce the fusion rules, the conformal weights, the quantum dimensions and the representation of the modular group of the chiral Ising model. H plays the role of the global symmetry algebra of the chiral Ising model in the following sense: (1) a simple field algebra F and a representation π on Hπ of it is given, which contains the c = {1}/{2} unitary representations of the Virasoro algebra as subrepresentations; (2) the embedding U: H → B( Hπ) is such that the observable algebra π( A) - is the invariant subalgebra of B( Hπ) with respect to the left adjoint action of H and U(H) is the commutant of π( A); (3) there exist H-covariant primary fields in B( Hπ), which obey generalized Cuntz algebra properties and intertwine between the inequivalent sectors of the observables.

  4. Review of progresses on clinical applications of ion selective electrodes for electrolytic ion tests: from conventional ISEs to graphene-based ISEs

    Directory of Open Access Journals (Sweden)

    Rongguo Yan

    2016-10-01

    Full Text Available There exist several positively and negatively charged electrolytes or ions in human blood, urine, and other body fluids. Tests that measure the concentration of these ions in clinics are performed using a more affordable, portable, and disposable potentiometric sensing method with few sample volumes, which requires the use of ion-selective electrodes (ISEs and reference electrodes. This review summarily descriptively presents progressive developments and applications of ion selective electrodes in medical laboratory electrolytic ion tests, from conventional ISEs, solid-contact ISEs, carbon nanotube based ISEs, to graphene-based ISEs.

  5. Ladder Ising spin configurations. Pt. 1. Heat capacity

    International Nuclear Information System (INIS)

    Mejdani, R.; Lambros, A.

    1996-01-01

    We consider a ladder Ising spin model (with two coupled Ising spin chains), characterized by two couplings (interchain and intrachain couplings), to study in detail, in an analytical way, its thermal behaviour and particularly the variation of the specific heat versus temperature, the ratio of interaction constants, and the magnetic field. It is interesting that when the competition between interchain and intrachain interactions is strong the specific heat exhibits a double peak and when the competition is not so strong the specific heat has a single peak. Further, without entering into details, we give, in a numerical way, some similar results for more complicated ladder configurations (with more than two linear Ising chains). The spin-1/2 ladders or systems of spin chains may be realized in nature by vanadyl pyrophosphate ((VO) 2 P 2 O 7 ) or similar materials. All these intermediate systems are today important to gain further insight into the physics of one-dimensional spin chains and two-dimensional high-T c spin systems, both of which have shown interesting and unusual magnetic and superconducting properties. It is plausible that experimental and theoretical studies of ladders may lead to other interesting physical phenomena. (orig.)

  6. Monte Carlo study of dynamic phase transition in Ising metamagnet driven by oscillating magnetic field

    International Nuclear Information System (INIS)

    Acharyya, Muktish

    2011-01-01

    The dynamical responses of Ising metamagnet (layered antiferromagnet) in the presence of a sinusoidally oscillating magnetic field are studied by Monte Carlo simulation. The time average staggered magnetisation plays the role of dynamic order parameter. A dynamical phase transition was observed and a phase diagram was plotted in the plane formed by field amplitude and temperature. The dynamical phase boundary is observed to shrink inward as the relative antiferromagnetic strength decreases. The results are compared with that obtained from pure ferromagnetic system. The shape of dynamic phase boundary observed to be qualitatively similar to that obtained from previous meanfield calculations. - Highlights: → The time average staggered magnetisation plays the role of dynamic order parameter. → A dynamical phase transition was observed and a phase diagram was plotted in the plane formed by field amplitude and temperature. → The dynamical phase boundary is observed to shrink inward as the relative antiferromagnetic strength decreases. → The results are compared with that obtained from pure ferromagnetic system. → The shape of dynamic phase boundary observed to be qualitatively similar to that obtained from previous meanfield calculation.

  7. Transverse signal decay under the weak field approximation: Theory and validation.

    Science.gov (United States)

    Berman, Avery J L; Pike, G Bruce

    2018-07-01

    To derive an expression for the transverse signal time course from systems in the motional narrowing regime, such as water diffusing in blood. This was validated in silico and experimentally with ex vivo blood samples. A closed-form solution (CFS) for transverse signal decay under any train of refocusing pulses was derived using the weak field approximation. The CFS was validated via simulations of water molecules diffusing in the presence of spherical perturbers, with a range of sizes and under various pulse sequences. The CFS was compared with more conventional fits assuming monoexponential decay, including chemical exchange, using ex vivo blood Carr-Purcell-Meiboom-Gill data. From simulations, the CFS was shown to be valid in the motional narrowing regime and partially into the intermediate dephasing regime, with increased accuracy with increasing Carr-Purcell-Meiboom-Gill refocusing rate. In theoretical calculations of the CFS, fitting for the transverse relaxation rate (R 2 ) gave excellent agreement with the weak field approximation expression for R 2 for Carr-Purcell-Meiboom-Gill sequences, but diverged for free induction decay. These same results were confirmed in the ex vivo analysis. Transverse signal decay in the motional narrowing regime can be accurately described analytically. This theory has applications in areas such as tissue iron imaging, relaxometry of blood, and contrast agent imaging. Magn Reson Med 80:341-350, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  8. Emergent Ising degrees of freedom above a double-stripe magnetic ground state

    Science.gov (United States)

    Zhang, Guanghua; Flint, Rebecca

    2017-12-01

    Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

  9. Fluctuation dynamics near the quantum critical point in the S=1/2 Ising chain CoNb{sub 2}O{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Harms, Steffen; Engelmayer, Johannes; Lorenz, Thomas; Hemberger, Joachim [II. Physikalisches Institut, Koeln Univ. (Germany)

    2016-07-01

    CoNb{sub 2}O{sub 6} is a model system for quantum phase transitions in magnetic field. Its structure consists of layers of CoO{sub 6} octahedrons separated by non-magnetic NbO{sub 6} layers. The edge-sharing oxygen octahedrons link the Co{sup 2+} spins via Co-O-Co superexchange and form 1D ferromagnetic zigzag chains along the orthorhombic c axis. Crystal field effects lead to an easy-axis anisotropy of the Co{sup 2+} moments in the ac plane and to an effective spin-1/2 chain system. The 1D spin system can be described by the Ising model. At T=0 K a transverse magnetic field can induce a quantum phase transition from a long range ferromagnetic state into a quantum paramagnetic state. Employing measurements of the complex AC-susceptibility in the frequency range 10 MHz < ν < 5 GHz for temperatures down to 50 mK we investigate the slowing down of the magnetic fluctuation dynamics in the vicinity of the critical field at μ{sub 0}H=5.25 T.

  10. Testing Efficiency of Derivative Markets: ISE30, ISE100, USD and EURO

    OpenAIRE

    Akal, Mustafa; Birgili, Erhan; Durmuskaya, Sedat

    2012-01-01

    This study attempts to develop new market efficiency tests depending on the spot and future prices, or the differences of them alternative to traditional unit root test build on univariate time series. As a result of the autocorrelation, normality and run tests applied to spot and futures prices or differences of them, and Adopted Purchasing Power Parity test based on a regression the future markets of ISE30, ISE100 index indicators, USD and Euro currencies, all of which have been traded dail...

  11. Frustrated ground state in the metallic Ising antiferromagnet Nd2Ni2In

    Science.gov (United States)

    Sala, G.; Mašková, S.; Stone, M. B.

    2017-10-01

    We used inelastic neutron scattering measurements to examine the intermetallic Ising antiferromagnet Nd2Ni2In . The dynamical structure factor displays a spectrum with multiple crystal field excitations. These crystal field excitations consist of a set of four transitions covering a range of energies between 4 and 80 meV. The spectrum is very sensitive to the temperature, and we observed a softening and a shift in the energies above the transition temperature of the system. The analysis of the crystalline electric field scheme confirms the Ising nature of the spins and their orientation as proposed by previous studies. We characterized Nd2Ni2In as a large moment intermetallic antiferromagnet with the potential to support a geometrically frustrated Shastry-Sutherland lattice.

  12. Strong coupling expansion for scattering phases in hamiltonian lattice field theories. Pt. 1. The (d+1)-dimensional Ising model

    International Nuclear Information System (INIS)

    Dahmen, Bernd

    1994-01-01

    A systematic method to obtain strong coupling expansions for scattering quantities in hamiltonian lattice field theories is presented. I develop the conceptual ideas for the case of the hamiltonian field theory analogue of the Ising model, in d space and one time dimension. The main result is a convergent series representation for the scattering states and the transition matrix. To be explicit, the special cases of d=1 and d=3 spatial dimensions are discussed in detail. I compute the next-to-leading order approximation for the phase shifts. The application of the method to investigate low-energy scattering phenomena in lattice gauge theory and QCD is proposed. ((orig.))

  13. Magnetic properties of a mixed spin-3/2 and spin-2 Ising ferrimagnetic system within the effective-field theory

    International Nuclear Information System (INIS)

    Deviren, Bayram; Kantar, Ersin; Keskin, Mustafa

    2010-01-01

    The magnetic properties of the ferrimagnetic mixed spin-3/2 and spin-2 Ising model with a crystal field in a longitudinal magnetic field on a honeycomb (δ = 3) and a square lattice (δ = 4) are studied by using the effective-field theory with correlations. The ground-state phase diagram of the model is obtained in a longitudinal magnetic field (h) for a single-ion potential or a crystal-field interaction (Δ) plane. We also investigate the thermal variations of the sublattice magnetization, and present the phase diagrams in the (Δ/|J|, k B T/|J|) plane. The susceptibility, internal energy, and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field. Moreover, the system undergoes first- and second-order phase transitions; hence, the system has a tricritical point. The system also exhibits reentrant behaviors.

  14. Magnetic properties of a mixed spin-3/2 and spin-2 Ising ferrimagnetic system within the effective-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram [Nevsehir University, Nevsehir (Turkmenistan); Kantar, Ersin; Keskin, Mustafa [Erciyes University, Kayseri (Turkmenistan)

    2010-06-15

    The magnetic properties of the ferrimagnetic mixed spin-3/2 and spin-2 Ising model with a crystal field in a longitudinal magnetic field on a honeycomb ({delta} = 3) and a square lattice ({delta} = 4) are studied by using the effective-field theory with correlations. The ground-state phase diagram of the model is obtained in a longitudinal magnetic field (h) for a single-ion potential or a crystal-field interaction ({Delta}) plane. We also investigate the thermal variations of the sublattice magnetization, and present the phase diagrams in the ({Delta}/|J|, k{sub B}T/|J|) plane. The susceptibility, internal energy, and specific heat of the system are numerically examined, and some interesting phenomena in these quantities are found due to the applied longitudinal magnetic field. Moreover, the system undergoes first- and second-order phase transitions; hence, the system has a tricritical point. The system also exhibits reentrant behaviors.

  15. A search for upstream pressure pulses associated with flux transfer events: An AMPTE/ISEE case study

    Science.gov (United States)

    Elphic, R. C.; Baumjohann, W.; Cattell, C. A.; Luehr, H.; Smith, M. F.

    1994-01-01

    On September 19, 1984, the Active Magnetospheric Particle Tracers Explorers (AMPTE) United Kingdom Satellite (UKS) and Ion Release Module (IRM) and International Sun Earth Explorers (ISEE) 1 and 2 spacecraft passed outbound through the dayside magnetopause at about the same time. The AMPTE spacecraft pair crossed first and were in the near-subsolar magnetosheath for more than an hour. Meanwhile the ISEE pair, about 5 R(sub E) to the south, observed flux transfer event (FTE) signatures. We use the AMPTE UKS and IRM plasma and field observations of magnetosheath conditions directly upstream of the subsolar magnetopause to check whether pressure pulses are responsible for the FTE signatures seen at ISEE. Pulses in both the ion thermal pressure and the dynamic pressure are observed in the magnetosheath early on when IRM and UKS are close to the magnetopause, but not later. These large pulses appear to be related to reconnection going on at the magnetopause nearby. AMPTE magnetosheath data far from the magnetopause do not show a pressure pulse correlation with FTEs at ISEE. Moreover, the magnetic pressure and tension effects seen in the ISEE FTEs are much larger than any pressure effects seen in the magnetosheath. A superposed epoch analysis based on small-amplitude peaks in the AMPTE magnetosheath total static pressure (nkT + B(exp 2)/2 mu(sub 0)) hint at some boundary effects, less than 5 nT peak-to-peak variations in the ISEE 1 and 2 B(sub N) signature starting about 1 min after the pressure peak epoch. However, these variations are much smaller than the standard deviations of the B(sub N) field component. Thus the evidence from this case study suggests that upstream magnetosheath pressure pulses do not give rise to FTEs, but may produce very small amplitude signatures in the magnetic field at the magnetopause.

  16. Hysteretic features of Ising-type segmented nanostructure with alternating magnetic wires

    International Nuclear Information System (INIS)

    Kantar, Ersin

    2016-01-01

    In the present study, a theoretical approach to investigate the hysteresis behaviors in segmented nanowires is described and applied to spin-1/2 and spin-1 hexagonal nanowire. The hysteresis loop, coercive field and remanent magnetization of a segmented Ising nanowire (SIN) are obtained by using the effective-field theory with correlations. The effects of the temperature, crystal field and geometrical parameters of nanowires on the hysteresis behaviors of the system are investigated. A number of characteristic behaviors are found, such as the occurrence of single and triple hysteresis loops for appropriate values of the crystal field. The hysteresis behaviors are also strongly dependent on geometrical parameters. Comparisons between the obtained theoretical results and some experimental works of segmented nanowire arrays with hysteresis behaviors are made and a very good agreement is obtained. - Highlights: • The hysteresis behaviors of a segmented Ising nanowire are obtained. • The effective-field theory with correlations are used to calculations. • The effects of the temperature and crystal field on the system are investigated. • The geometrical parameters have a significant effect on the system are observed. • The single and triple loops for appropriate values of the crystal field are obtained.

  17. Radiative corrections to the quark masses in the ferromagnetic Ising and Potts field theories

    Directory of Open Access Journals (Sweden)

    Sergei B. Rutkevich

    2017-10-01

    Full Text Available We consider the Ising Field Theory (IFT, and the 3-state Potts Field Theory (PFT, which describe the scaling limits of the two-dimensional lattice q-state Potts model with q=2, and q=3, respectively. At zero magnetic field h=0, both field theories are integrable away from the critical point, have q degenerate vacua in the ferromagnetic phase, and q(q−1 particles of the same mass – the kinks interpolating between two different vacua. Application of a weak magnetic field induces confinement of kinks into bound states – the “mesons” (for q=2,3 consisting predominantly of two kinks, and “baryons” (for q=3, which are essentially the three-kink excitations. The kinks in the confinement regime are also called “the quarks”. We review and refine the Form Factor Perturbation Theory (FFPT, adapting it to the analysis of the confinement problem in the limit of small h, and apply it to calculate the corrections to the kink (quark masses induced by the multi-kink fluctuations caused by the weak magnetic field. It is shown that the subleading third-order ∼h3 correction to the kink mass vanishes in the IFT. The leading second order ∼h2 correction to the kink mass in the 3-state PFT is estimated by truncation the infinite form factor expansion at the first term representing contribution of the two-kink fluctuations into the kink self-energy.

  18. Radiative corrections to the quark masses in the ferromagnetic Ising and Potts field theories

    Science.gov (United States)

    Rutkevich, Sergei B.

    2017-10-01

    We consider the Ising Field Theory (IFT), and the 3-state Potts Field Theory (PFT), which describe the scaling limits of the two-dimensional lattice q-state Potts model with q = 2, and q = 3, respectively. At zero magnetic field h = 0, both field theories are integrable away from the critical point, have q degenerate vacua in the ferromagnetic phase, and q (q - 1) particles of the same mass - the kinks interpolating between two different vacua. Application of a weak magnetic field induces confinement of kinks into bound states - the "mesons" (for q = 2 , 3) consisting predominantly of two kinks, and "baryons" (for q = 3), which are essentially the three-kink excitations. The kinks in the confinement regime are also called "the quarks". We review and refine the Form Factor Perturbation Theory (FFPT), adapting it to the analysis of the confinement problem in the limit of small h, and apply it to calculate the corrections to the kink (quark) masses induced by the multi-kink fluctuations caused by the weak magnetic field. It is shown that the subleading third-order ∼h3 correction to the kink mass vanishes in the IFT. The leading second order ∼h2 correction to the kink mass in the 3-state PFT is estimated by truncation the infinite form factor expansion at the first term representing contribution of the two-kink fluctuations into the kink self-energy.

  19. ISEE observations of radiation at twice the solar wind plasma frequency

    International Nuclear Information System (INIS)

    Lacombe, C.; Harvey, C.C.; Hoang, S.

    1988-01-01

    Radiation produced in the vicinity of the Earth's bow shock at twice the solar wind electron plasma frequency f p is seen by both ISEE-1 and ISEE-3, respectively at about 20 and about 200 R E from the Earth. This electromagnetic radiation is due to the presence, in the electron foreshock, of electrons reflected and accelerated at the Earth's bow shock. We show that the source is near the upstream boundary of the foreshock, the surface where the magnetic field lines are tangent to the bow shock. A typical diameter of the source is 120-150 R E . Emissivity is given. The angular size of the source, seen by ISEE-3, is increased by scattering of the 2f p radio waves on the solar wind density fluctuations. We examine whether the bandwidth and directivity predicted by current source models are consistent with our observations

  20. Effect of transverse magnetic fields on a simulated in-line 6 MV linac

    Science.gov (United States)

    St. Aubin, J.; Steciw, S.; Fallone, B. G.

    2010-08-01

    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.

  1. Effect of transverse magnetic fields on a simulated in-line 6 MV linac

    International Nuclear Information System (INIS)

    St Aubin, J; Fallone, B G; Steciw, S

    2010-01-01

    The effects of a transverse magnetic field on an in-line side-coupled 6 MV linear accelerator are given. The results are directly applicable to a linac-MR system used for real-time image guided adaptive radiotherapy. Our previously designed end-to-end linac simulation incorporated the results from the axisymmetric 2D electron gun program EGN2w. However, since the magnetic fields being investigated are non-axisymmetric in nature for the work presented here, the electron gun simulation was performed using OPERA-3d/SCALA. The simulation results from OPERA-3d/SCALA showed excellent agreement with previous results. Upon the addition of external magnetic fields to our fully 3D linac simulation, it was found that a transverse magnetic field of 6 G resulted in a 45 ± 1% beam loss, and by 14 G, no electrons were incident on the target. Transverse magnetic fields on the linac simulation produced a highly asymmetric focal spot at the target, which translated into a 13% profile asymmetry at 6 G. Upon translating the focal spot with respect to the target coordinates, profile symmetry was regained at the expense of a lateral shift in the dose profiles. It was found that all points in the penumbra failed a 1%/1 mm acceptance criterion for fields between 4 and 6 G. However, it was also found that the lateral profile shifts were corrected by adjusting the jaw positions asymmetrically.

  2. Transverse kinetics of a charged drop in an external electric field

    International Nuclear Information System (INIS)

    Bondarenko, S.; Komoshvili, K.

    2016-01-01

    We investigate a non-equilibrium behavior of a small, dense and charged drop in the transverse plane. A collective motion of the drop’s particles with constant entropy is described. Namely, we solve Vlasov’s equation with non-isotropic initial conditions. Thereby a non-equilibrium distribution function of the process of the droplet evolution in the transverse plane is calculated. An external electric field is included in the initial conditions of the equation that affects on the form of the obtained solution. Applicability of the results to the description of initial states of quark-gluon plasma is also discussed

  3. Transverse kinetics of a charged drop in an external electric field

    Energy Technology Data Exchange (ETDEWEB)

    Bondarenko, S.; Komoshvili, K. [Ariel University (Israel)

    2016-01-22

    We investigate a non-equilibrium behavior of a small, dense and charged drop in the transverse plane. A collective motion of the drop’s particles with constant entropy is described. Namely, we solve Vlasov’s equation with non-isotropic initial conditions. Thereby a non-equilibrium distribution function of the process of the droplet evolution in the transverse plane is calculated. An external electric field is included in the initial conditions of the equation that affects on the form of the obtained solution. Applicability of the results to the description of initial states of quark-gluon plasma is also discussed.

  4. Plasma diagnostics by electron guns and electric field probes on ISEE-1

    International Nuclear Information System (INIS)

    Pedersen, A.

    1982-01-01

    The use of electron guns to control the potential of a satellite with conductive surfaces is discussed with reference to the results of the ISEE-1 satellite experiment. The two electron guns carried by the satellite can emit electrons with energies up to 48 eV, and the emitted electron current has a maximum value of 0.5-1.0 mA. The satellite potential, with or without gun operation, can be measured with reference to one or two spherical electric field probes positioned on booms at a distance of 36 m from the satellite. The probes are biased with a negative current from a high-impedance source to be slightly positive (0.5-1.0 V) relative to the plasma, and the spacecraft is normally several volts more positive and can be further positively charged by operating the electron gun. Plasma diagnostics can be carried out by appropriate sweeps of gun currents and energy of emitted electrons to obtain information about density and characteristic energy of ambient electrons. 9 references

  5. The spin-3/2 Ising model AFM/AFM two-layer lattice with crystal field

    International Nuclear Information System (INIS)

    Yigit, A.; Albayrak, E.

    2010-01-01

    The spin-3/2 Ising model is investigated for the case of antiferromagnetic (AFM/AFM) interactions on the two-layer Bethe lattice by using the exact recursion relations in a pairwise approach for given coordination numbers q=3, 4 and 6 when the layers are under the influences of equal external magnetic and equal crystal fields. The ground state (GS) phase diagrams are obtained on the different planes in detail and then the temperature dependent phase diagrams of the system are calculated accordingly. It is observed that the system presents both second- and first-order phase transitions for all q, therefore, tricritical points. It was also found that the system exhibits double-critical end points and isolated points. The model also presents two Neel temperatures, TN, and the existence of which leads to the reentrant behavior.

  6. General description of transverse mode Bessel beams and construction of basis Bessel fields

    Science.gov (United States)

    Wang, Jia Jie; Wriedt, Thomas; Lock, James A.; Jiao, Yong Chang

    2017-07-01

    Based on an analysis of polarized Bessel beams using the Hertz vector potentials and the angular spectrum representation (ASR), a general description of transverse mode Bessel beams is proposed. As opposed to the cases of linearly and circularly polarized Bessel beams, the magnetic and electric fields of a Bessel beam in a transverse mode are orthogonal to each other. Both sets of fields together form a complete set of basis Bessel fields, in terms of which an arbitrary Bessel beam can be regarded as a linear combination. The completeness of the basis Bessel fields is analyzed from the perspectives of waveguide theory and vector wave functions. Decompositions of linearly polarized, circularly polarized, and circularly symmetric n-order Bessel beams in terms of basis Bessel fields are given. The results presented in this paper provide a fresh perspective on the description of Bessel beams, which are useful in casting insights into the experimental generation of Bessel beams and the interpretation of light scattering-related problems in practice.

  7. CRISTAL-ISE your project

    CERN Document Server

    Rosaria Marraffino

    2014-01-01

    CRISTAL-ISE, a new version of the CRISTAL data tracking software developed at CERN in the late 90s, has recently been launched under an open source license. The potential for applications of this free software outside particle physics covers several areas, including medicine, where CRISTAL-ISE helps to monitor the progress of Alzheimer’s Disease.   CMS lead tungstate crystals produced in Russia. CRISTAL began as a collaboration between CERN, the University of the West of England (UWE) and the Centre National de la Recherche Scientifique (CNRS).“At the time of CMS’s construction, there was a need for software able to track the production of the almost 80,000 lead tungstate crystals for the Electromagnetic Calorimeter,” explains Andrew Branson, member of the CMS collaboration and Technical Coordinator of the CRISTAL-ISE project. “We started to develop the software when we didn’t yet know the detector testing procedures to go through,...

  8. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    Science.gov (United States)

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2018-05-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81, 345810104 (2015)]. A magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink stabilization threshold 0.1kVA [Y. Zhang et al., Phys. Plasmas 24, 110702 (2017)]. Injection of a spheromak-like plasma into a transverse background magnetic field led to the observation of finger-like structures on the side with a stronger magnetic field null between the spheromak and the background field. The finger-like structures are consistent with magneto-Rayleigh-Taylor instability. Jets or spheromaks launched into a background, low-β magnetized plasma show similar behavior as above, respectively, in both cases.

  9. A simple approximation method for dilute Ising systems

    International Nuclear Information System (INIS)

    Saber, M.

    1996-10-01

    We describe a simple approximate method to analyze dilute Ising systems. The method takes into consideration the fluctuations of the effective field, and is based on a probability distribution of random variables which correctly accounts for all the single site kinematic relations. It is shown that the simplest approximation gives satisfactory results when compared with other methods. (author). 12 refs, 2 tabs

  10. Susceptibility and magnetization of a random Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, D; Srivastava, V [Roorkee Univ. (India). Dept. of Physics

    1977-08-01

    The susceptibility of a bond disordered Ising model is calculated by configurationally averaging an Ornstein-Zernike type of equation for the two spin correlation function. The equation for the correlation function is derived using a diagrammatic method due to Englert. The averaging is performed using bond CPA. The magnetization is also calculated by averaging in a similar manner a linearised molecular field equation.

  11. Nonequilibrium dynamics of a mixed spin-1/2 and spin-3/2 Ising ferrimagnetic system with a time dependent oscillating magnetic field source

    Energy Technology Data Exchange (ETDEWEB)

    Vatansever, Erol [Dokuz Eylül University, Graduate School of Natural and Applied Sciences, TR-35160 Izmir (Turkey); Polat, Hamza, E-mail: hamza.polat@deu.edu.tr [Department of Physics, Dokuz Eylül University, TR-35160 Izmir (Turkey)

    2015-10-15

    Nonequilibrium phase transition properties of a mixed Ising ferrimagnetic model consisting of spin-1/2 and spin-3/2 on a square lattice under the existence of a time dependent oscillating magnetic field have been investigated by making use of Monte Carlo simulations with a single-spin flip Metropolis algorithm. A complete picture of dynamic phase boundary and magnetization profiles have been illustrated and the conditions of a dynamic compensation behavior have been discussed in detail. According to our simulation results, the considered system does not point out a dynamic compensation behavior, when it only includes the nearest-neighbor interaction, single-ion anisotropy and an oscillating magnetic field source. As the next-nearest-neighbor interaction between the spins-1/2 takes into account and exceeds a characteristic value which sensitively depends upon values of single-ion anisotropy and only of amplitude of external magnetic field, a dynamic compensation behavior occurs in the system. Finally, it is reported that it has not been found any evidence of dynamically first-order phase transition between dynamically ordered and disordered phases, which conflicts with the recently published molecular field investigation, for a wide range of selected system parameters. - Highlights: • Spin-1/2 and spin-3/2 Ising ferrimagnetic model is examined. • The system is exposed to time-dependent magnetic field. • Kinetic Monte Carlo simulation technique is used. • Any evidence of first-order phase transition has not been found.

  12. Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field

    Science.gov (United States)

    Ma, Hui; Wang, Jianhua; Liu, Zhiyuan; Geng, Yingsan; Wang, Zhenxing; Yan, Jing

    2016-06-01

    The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density BAMF can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF-AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.

  13. Quenched bond-dilute Ising ferromagnet in square lattice: thermodynamical properties

    International Nuclear Information System (INIS)

    Honmura, R.; Sarmento, E.F.; Tsallis, C.

    1982-01-01

    Within an effective field framework which improves the Molecular Field Approximation, the phase diagram, magnetization, specific heat and susceptibility associated with the quenched bond-dilute Ising ferromagnet in square lattice is calculated. The results are qualitatively (and within certain extent quantitatively) satisfactory; in particular the effects, on the specific heat and susceptibility, of the (eventually) coexisting finite and infinite clusters are exhibited. (Author) [pt

  14. Electrical transverse transport in Lorentz plasma with strong magnetic field and collision effect

    International Nuclear Information System (INIS)

    Xie, Baisong; Chong, L.V.; Li, Ziliang

    2015-01-01

    In inertial confinement fusion (ICF), the spontaneous magnetic field formed from laser interacting with the pellet may reach few hundreds of Megagauss (MG) which results in the cyclotron frequency ω at the same order of the collision frequency υ. Electrical transverse transport in this case would become very important so that we study it by the Boltzmann equation for different electron density distribution. For the Maxwell distribution, it is shown that transport coefficients decrease with the increase of Ω (the ratio of ω to υ), which means the electrons would be highly collimated by strong magnetic field. This is attributed to that the electron's gyroradius is smaller than the collisional mean free paths. Moreover, the electrical transverse transport is also studied for quasi-monoenergy distribution with different width ε, which is different from the Maxwell one. It is found that the transport coefficients decrease greatly as quasi-monoenergy degree increases. In particular when ε approaches to zero, i.e. the Delta distribution with almost perfect monoenergy electron density, the electric conductivity doesn't change while the thermal conductivity decreases with Ω. On the other hand the smaller the ε is the less amount the transverse transport exhibits. Our study indicates that they are beneficial to limit the electric transverse transport. (author)

  15. Statistically interacting quasiparticles in Ising chains

    International Nuclear Information System (INIS)

    Lu Ping; Vanasse, Jared; Piecuch, Christopher; Karbach, Michael; Mueller, Gerhard

    2008-01-01

    The exclusion statistics of two complementary sets of quasiparticles, generated from opposite ends of the spectrum, are identified for Ising chains with spin s = 1/2, 1. In the s = 1/2 case the two sets are antiferromagnetic domain walls (solitons) and ferromagnetic domains (strings). In the s = 1 case they are soliton pairs and nested strings, respectively. The Ising model is equivalent to a system of two species of solitons for s = 1/2 and to a system of six species of soliton pairs for s = 1. Solitons exist on single bonds but soliton pairs may be spread across many bonds. The thermodynamics of a system of domains spanning up to M lattice sites is amenable to exact analysis and shown to become equivalent, in the limit M → ∞, to the thermodynamics of the s = 1/2 Ising chain. A relation is presented between the solitons in the Ising limit and the spinons in the XX limit of the s = 1/2 XXZ chain

  16. Effect of low transverse magnetic field on the confinement strength in a quasi-1D wire

    International Nuclear Information System (INIS)

    Kumar, Sanjeev; Thomas, K. J.; Smith, L. W.; Farrer, I.; Ritchie, D. A.; Jones, G. A. C.; Griffiths, J.; Pepper, M.

    2013-01-01

    Transport measurements in a quasi-one dimensional (1D) quantum wire are reported in the presence of low transverse magnetic field. Differential conductance shows weak quantised plateaus when the 2D electrons are squeezed electrostatically. Application of a small transverse magnetic field (0.2T) enhances the overall degree of quantisation due to the formation of magneto-electric subbands. The results show the role of magnetic field to fine tune the confinement strength in low density wires when interaction gives rise to double row formation

  17. Quenched random-bond ising ferromagnet

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Honmura, R.; Tsallis, C.; Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro)

    1984-01-01

    A effective-field framework which, without mathematical complexities, enables the calculation of the phase diagram (and magnetization) associated with a quenched bond-mixed spin - 1/2 Ising model in an anisotropic simple cubic lattice have been recently introduced. The case corresponding to anisotropic coupling constants but isotropic concentrations was discussed in detail. Herein the case corresponding to isotropic coupling constants but anisotropic concentrations is discussed. A certain amount of interesting phase diagrams are exhibited; whenever comparison with available data is possible, the present results provide a satisfactory qualitative (and to a certain extent quantitative) agreement. (Author) [pt

  18. Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields

    NARCIS (Netherlands)

    Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    With the development of the 1.5 T MRI linear accelerator and the clinical introduction of the 0.35 T ViewRay™ system, delivering intensity-modulated radiotherapy (IMRT) in a transverse magnetic field becomes increasingly important. When delivering dose in the presence of a transverse magnetic field,

  19. Statistical mechanics of the cluster Ising model

    International Nuclear Information System (INIS)

    Smacchia, Pietro; Amico, Luigi; Facchi, Paolo; Fazio, Rosario; Florio, Giuseppe; Pascazio, Saverio; Vedral, Vlatko

    2011-01-01

    We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.

  20. Statistical mechanics of the cluster Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Smacchia, Pietro [SISSA - via Bonomea 265, I-34136, Trieste (Italy); Amico, Luigi [CNR-MATIS-IMM and Dipartimento di Fisica e Astronomia Universita di Catania, C/O ed. 10, viale Andrea Doria 6, I-95125 Catania (Italy); Facchi, Paolo [Dipartimento di Matematica and MECENAS, Universita di Bari, I-70125 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Fazio, Rosario [NEST, Scuola Normale Superiore and Istituto Nanoscienze - CNR, 56126 Pisa (Italy); Center for Quantum Technology, National University of Singapore, 117542 Singapore (Singapore); Florio, Giuseppe; Pascazio, Saverio [Dipartimento di Fisica and MECENAS, Universita di Bari, I-70126 Bari (Italy); INFN, Sezione di Bari, I-70126 Bari (Italy); Vedral, Vlatko [Center for Quantum Technology, National University of Singapore, 117542 Singapore (Singapore); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542 (Singapore); Department of Physics, University of Oxford, Clarendon Laboratory, Oxford, OX1 3PU (United Kingdom)

    2011-08-15

    We study a Hamiltonian system describing a three-spin-1/2 clusterlike interaction competing with an Ising-like antiferromagnetic interaction. We compute free energy, spin-correlation functions, and entanglement both in the ground and in thermal states. The model undergoes a quantum phase transition between an Ising phase with a nonvanishing magnetization and a cluster phase characterized by a string order. Any two-spin entanglement is found to vanish in both quantum phases because of a nontrivial correlation pattern. Nevertheless, the residual multipartite entanglement is maximal in the cluster phase and dependent on the magnetization in the Ising phase. We study the block entropy at the critical point and calculate the central charge of the system, showing that the criticality of the system is beyond the Ising universality class.

  1. ISEE/IMP Observations of simultaneous upstream ion events

    International Nuclear Information System (INIS)

    Mitchel, D.G.; Roelof, E.C.; Sanderson, T.R.; Reinhard, R.; Wenzel, K.

    1983-01-01

    Propagation of upstream energetic (50--200 keV) ions is analyzed in sixteen events observed simulataneously by solid state detectors on ISEE 3 at approx.200 R/sub E/ and on IMP 8 at approx.35 R/sub E/ from the earth. Conclusions are based on comparisons of the pitch angle distributions observed at the two spacecraft and transformed into the solar wind frame. They are beamlike at ISEE 3 and are confined to the outward hemisphere. When IMP 8 is furtherest from the bow shock, they are also usually beamlike, or hemispheric. However, when IMP 8 is closer to the bow shock, pancakelike distributions are observed. This systematic variation in the IMP 8 pitch angle distributions delimits a scattering region l< or approx. =14 R/sub E/ upstream of the earth's bow shock (l measured along the interplanetary magnetic field) that dominates ion propagation, influences the global distribution of fluxes in the foreshock, and may play a role in acceleration of the ions. When IMP 8 is beyond lapprox.15 R/sub E/, the propagation appears to be essentially scatter-free between IMP 8 and ISEE 3; this is deduced from the absence of earthward fluxes at IMP 8 as well as the tendency for the spin-averaged fluxes to be comparable at the two spacecraft

  2. Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Hui; Wang, Jianhua; Liu, Zhiyuan, E-mail: liuzy@mail.xjtu.edu.cn; Geng, Yingsan; Wang, Zhenxing; Yan, Jing [State Key Laboratory of Electrical Insulation and Power Equipment, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-06-15

    The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density B{sub AMF} can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF–AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.

  3. Vacuum arcing behavior between transverse magnetic field contacts subjected to variable axial magnetic field

    International Nuclear Information System (INIS)

    Ma, Hui; Wang, Jianhua; Liu, Zhiyuan; Geng, Yingsan; Wang, Zhenxing; Yan, Jing

    2016-01-01

    The objective of this work is to reveal the effects of an axial magnetic field (AMF) on the vacuum arc characteristics between transverse magnetic field (TMF) contacts. These vacuum arc characteristics include the vacuum arcing behavior and the arc voltage waveform. In the experiments, an external AMF was applied to a pair of TMF contacts. The external AMF flux density B AMF can be adjusted from 0 to 110 mT. The arc current in the tests varied over a range from 0 to 20 kA rms at 45 Hz. The contact material was CuCr25 (25% Cr). A high-speed charge-coupled device video camera was used to record the vacuum arc evolution. The experimental results show that the application of the AMF effectively reduces the TMF arc voltage noise component and reduces the formation of liquid metal drops between the contacts. The diffuse arc duration increases linearly with increasing AMF flux density, but it also decreases linearly with increasing arc current under application of the external AMF. The results also indicate that the diffuse arc duration before the current zero is usually more than 1 ms under the condition that the value of the AMF per kiloampere is more than 2.0 mT/kA. Finally, under application of the AMF, the arc column of the TMF contacts may constrict and remain in the center region without transverse rotation. Therefore, the combined TMF–AMF contacts should be designed such that they guarantee that the AMF is not so strong as to oppose transverse rotation of the arc column.

  4. Generic Ising trees

    DEFF Research Database (Denmark)

    Durhuus, Bergfinnur Jøgvan; Napolitano, George Maria

    2012-01-01

    The Ising model on a class of infinite random trees is defined as a thermodynamiclimit of finite systems. A detailed description of the corresponding distribution of infinite spin configurations is given. As an application, we study the magnetization properties of such systems and prove that they......The Ising model on a class of infinite random trees is defined as a thermodynamiclimit of finite systems. A detailed description of the corresponding distribution of infinite spin configurations is given. As an application, we study the magnetization properties of such systems and prove...... that they exhibit no spontaneous magnetization. Furthermore, the values of the Hausdorff and spectral dimensions of the underlying trees are calculated and found to be, respectively,¯dh =2 and¯ds = 4/3....

  5. Proceedings of the ISES Millennium Solar Forum 2000. 1. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Estrada, Claudio A. [ed.

    2000-07-01

    The ISES Millennium Solar Forum 2000 was organized by the Association Nacional de Energia Solar (ANES) of Mexico, and the International Solar Energy Society (ISES), in collaboration with other national and international organizations from 17 to 22 of September, 2000 in Mexico City. The Scientific-Technical Conference forms the core of this forum. This comprises of 167 papers, which were presented orally and form part of the proceedings. The papers represent the results of research and technological development effort in Renewable Energy reported by professionals and students of 22 countries. Of course, a major component is from Mexico and Latin America. Here you will find useful information on the advances in different fields of Renewable Energy. [Spanish] La Asociacion Nacional de Energia Solar A.C. (ANES) y la International Solar Society (ISES), apoyadas por organizaciones nacionales e internacionales, comprometidas con la promocion de las energias renovables organizaron el ISES Millennium Solar Forum 2000, los dias 17 a 22 de septiembre del 2000 en la Ciudad de Mexico. Como parte medular de este foro se organizo la reunion cientifico-tecnica, en donde se presentaron 167 trabajos, la mayoria de los cuales se incluyen en esta memoria. Estos trabajos representan el esfuerzo en investigacion y desarrollo tecnologico de estudiantes y profesionales de mas de 22 paises, la mayoria de Mexico y America Latina. En esta memoria se encuentran los avances mas relevantes en las distintas areas de especializacion de las energias renovables.

  6. The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics

    KAUST Repository

    Wheatley, V.; Samtaney, Ravi; Pullin, D. I.; Gehre, R. M.

    2014-01-01

    The magnetohydrodynamic Richtmyer-Meshkov instability is investigated for the case where the initial magnetic field is unperturbed and aligned with the mean interface location. For this initial condition, the magnetic field lines penetrate the perturbed density interface, forbidding a tangential velocity jump and therefore the presence of a vortex sheet. Through simulation, we find that the vorticity distribution present on the interface immediately after the shock acceleration breaks up into waves traveling parallel and anti-parallel to the magnetic field, which transport the vorticity. The interference of these waves as they propagate causes the perturbation amplitude of the interface to oscillate in time. This interface behavior is accurately predicted over a broad range of parameters by an incompressible linearized model derived presently by solving the corresponding impulse driven, linearized initial value problem. Our use of an equilibrium initial condition results in interface motion produced solely by the impulsive acceleration. Nonlinear compressible simulations are used to investigate the behavior of the transverse field magnetohydrodynamic Richtmyer-Meshkov instability, and the performance of the incompressible model, over a range of shock strengths, magnetic field strengths, perturbation amplitudes and Atwood numbers.

  7. The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics

    KAUST Repository

    Wheatley, V.

    2014-01-10

    The magnetohydrodynamic Richtmyer-Meshkov instability is investigated for the case where the initial magnetic field is unperturbed and aligned with the mean interface location. For this initial condition, the magnetic field lines penetrate the perturbed density interface, forbidding a tangential velocity jump and therefore the presence of a vortex sheet. Through simulation, we find that the vorticity distribution present on the interface immediately after the shock acceleration breaks up into waves traveling parallel and anti-parallel to the magnetic field, which transport the vorticity. The interference of these waves as they propagate causes the perturbation amplitude of the interface to oscillate in time. This interface behavior is accurately predicted over a broad range of parameters by an incompressible linearized model derived presently by solving the corresponding impulse driven, linearized initial value problem. Our use of an equilibrium initial condition results in interface motion produced solely by the impulsive acceleration. Nonlinear compressible simulations are used to investigate the behavior of the transverse field magnetohydrodynamic Richtmyer-Meshkov instability, and the performance of the incompressible model, over a range of shock strengths, magnetic field strengths, perturbation amplitudes and Atwood numbers.

  8. Mean Field Analysis of Quantum Annealing Correction.

    Science.gov (United States)

    Matsuura, Shunji; Nishimori, Hidetoshi; Albash, Tameem; Lidar, Daniel A

    2016-06-03

    Quantum annealing correction (QAC) is a method that combines encoding with energy penalties and decoding to suppress and correct errors that degrade the performance of quantum annealers in solving optimization problems. While QAC has been experimentally demonstrated to successfully error correct a range of optimization problems, a clear understanding of its operating mechanism has been lacking. Here we bridge this gap using tools from quantum statistical mechanics. We study analytically tractable models using a mean-field analysis, specifically the p-body ferromagnetic infinite-range transverse-field Ising model as well as the quantum Hopfield model. We demonstrate that for p=2, where the phase transition is of second order, QAC pushes the transition to increasingly larger transverse field strengths. For p≥3, where the phase transition is of first order, QAC softens the closing of the gap for small energy penalty values and prevents its closure for sufficiently large energy penalty values. Thus QAC provides protection from excitations that occur near the quantum critical point. We find similar results for the Hopfield model, thus demonstrating that our conclusions hold in the presence of disorder.

  9. The order parameter and susceptibility of the 3D Ising-like system in an external field near the phase transition point

    Directory of Open Access Journals (Sweden)

    M.P. Kozlovskii

    2010-01-01

    Full Text Available The present work is devoted to the investigation of the 3D Ising-like model in the presence of an external field in the vicinity of critical point. The method of collective variables is used. General expressions for the order parameter and susceptibility are calculated as functions of temperature and the external field as well as scaling functions of that are explicitly obtained. The results are compared with the ones obtained within the framework of parametric representation of the equation of state and Monte Carlo simulations. New expression for the exit point from critical regime of the order parameter fluctuations is proposed and used for the calculation.

  10. ISEE (InformationsSystem Erneuerbare Energie): Renewable Energy Information System

    International Nuclear Information System (INIS)

    Grebe, R.; Koch, H.

    1991-01-01

    Since the end of 1989 ISET has been operating the title database ISEE. Access to this on-line database may be obtained by any interested party posessing a computer, which is connected to the network of the 'Deutsche TeleCom' by telephone or Datex-P. The command language of ISEE is German. ISET will establish an English version in 1991/1992. In brief attention is paid to the components of the ISEE database, its user groups, the possibilities to access ISEE, and further developments. 3 figs

  11. Critical and Griffiths-McCoy singularities in quantum Ising spin glasses on d -dimensional hypercubic lattices: A series expansion study

    Science.gov (United States)

    Singh, R. R. P.; Young, A. P.

    2017-08-01

    We study the ±J transverse-field Ising spin-glass model at zero temperature on d -dimensional hypercubic lattices and in the Sherrington-Kirkpatrick (SK) model, by series expansions around the strong-field limit. In the SK model and in high dimensions our calculated critical properties are in excellent agreement with the exact mean-field results, surprisingly even down to dimension d =6 , which is below the upper critical dimension of d =8 . In contrast, at lower dimensions we find a rich singular behavior consisting of critical and Griffiths-McCoy singularities. The divergence of the equal-time structure factor allows us to locate the critical coupling where the correlation length diverges, implying the onset of a thermodynamic phase transition. We find that the spin-glass susceptibility as well as various power moments of the local susceptibility become singular in the paramagnetic phase before the critical point. Griffiths-McCoy singularities are very strong in two dimensions but decrease rapidly as the dimension increases. We present evidence that high enough powers of the local susceptibility may become singular at the pure-system critical point.

  12. Effective Hamiltonian for 2-dimensional arbitrary spin Ising model

    International Nuclear Information System (INIS)

    Sznajd, J.; Polska Akademia Nauk, Wroclaw. Inst. Niskich Temperatur i Badan Strukturalnych)

    1983-08-01

    The method of the reduction of the generalized arbitrary-spin 2-dimensional Ising model to spin-half Ising model is presented. The method is demonstrated in detail by calculating the effective interaction constants to the third order in cumulant expansion for the triangular spin-1 Ising model (the Blume-Emery-Griffiths model). (author)

  13. Ising formulations of many NP problems

    OpenAIRE

    Lucas, Andrew

    2013-01-01

    We provide Ising formulations for many NP-complete and NP-hard problems, including all of Karp's 21 NP-complete problems. This collects and extends mappings to the Ising model from partitioning, covering and satisfiability. In each case, the required number of spins is at most cubic in the size of the problem. This work may be useful in designing adiabatic quantum optimization algorithms.

  14. A new effective correlation mean-field theory for the ferromagnetic spin-1 Blume-Capel model in a transverse crystal field

    Science.gov (United States)

    Roberto Viana, J.; Rodriguez Salmon, Octavio D.; Neto, Minos A.; Carvalho, Diego C.

    2018-02-01

    A new approximation technique is developed so as to study the quantum ferromagnetic spin-1 Blume-Capel model in the presence of a transverse crystal field in the square lattice. Our proposal consists of approaching the spin system by considering islands of finite clusters whose frontiers are surrounded by noninteracting spins that are treated by the effective-field theory. The resulting phase diagram is qualitatively correct, in contrast to most effective-field treatments, in which the first-order line exhibits spurious behavior by not being perpendicular to the anisotropy axis at low-temperatures. The effect of the transverse anisotropy is also verified by the presence of quantum phase transitions. The possibility of using larger sizes constitutes an advantage to other approaches where the implementation of larger sizes is computationally costly.

  15. Visualization of Longitudinal and Transverse Components of Strongly Focused Optical Field by means of Photo-Reactive Azopolymers

    Directory of Open Access Journals (Sweden)

    Kharitonov A.V.

    2015-01-01

    Full Text Available Most important problems in modern photonics are fabrication, visualization and characterization of nanomaterials at optical frequencies. A number of optical techniques uses tightly focused laser beams to access longitudinal electromagnetic fields, which are directed towards the wave vector. In this Letter, the distribution of transverse and longitudinal optical fields in tightly focused laser beams, polarized in a new fashion, is investigated. Polarization dependent fingerprints of transverse and longitudinal optical fields are experimentally captured by means of photoinduced surface deformations in azobenzene polymer thin films.

  16. Structure and properties of the subsolar magnetopause for northward IMF: ISEE observations

    International Nuclear Information System (INIS)

    Song, P.; Russell, C.T.; Elphic, R.C.; Gosling, J.T.; Cattell, C.A.

    1990-01-01

    Detailed magnetopause structure and properties for the magnetic field, electric field and plasma are examined for an ISEE 1 magnetopause crossing which occurred near the subsolar point when the interplanetary magnetic field (IMF) was strongly northward. Because the crossing is slow, the spatial variations in the plasma are clearly resolved. This example illustrates the nature of the steady state interface of two magnetized thermal plasma populations with parallel fields and can serve as a guide to theoretical modeling and simulations. The authors have found that the magnetopause is composed of three layers, a sheath transition layer, an outer boundary layer and an inner boundary layer. In the sheath transition layer, there is a gradual density decrease without a change in temperature. The transition layer occurs totally within the magnetosheath plasma. The outer boundary layer and the inner boundary layer are dominated by magnetosheath and magnetospheric particles, respectively. In each of the boundary layers, the plasma can be interpreted as simple mixtures of the magnetosheath and magnetospheric populations. No significant heating or cooling is seen across the magnetopause during this crossing. The plasma within each of these layers is quite uniform and their boundaries are sharp, suggesting that there is very little diffusion present. The sharp boundaries between the transition layer, the boundary layers and the magnetosphere are all thinner than an ion gyroradius. Transverse waves with right hand or linear polarization near the ion gyrofrequency are observed in the transition layer. These appear to be generated in the transition layer and to be a common feature of this layer when the IMF is northward

  17. Experimental investigation of coaxial-gun-formed plasmas injected into a background transverse magnetic field or plasma

    OpenAIRE

    Zhang, Yue; Fisher, Dustin M.; Gilmore, Mark; Hsu, Scott C.; Lynn, Alan G.

    2017-01-01

    Injection of coaxial-gun-formed magnetized plasmas into a background transverse vacuum magnetic field or into a background magnetized plasma has been studied in the helicon-cathode (HelCat) linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys.81, 345810104 (2015)]. Magnetized plasma jet launched into a background transverse magnetic field shows emergent kink stabilization of the jet due to the formation of a sheared flow in the jet above the kink-stabilizati...

  18. Transverse electric fields' effects in the Dark Energy Camera CCDs

    International Nuclear Information System (INIS)

    Plazas, A A; Sheldon, E S; Bernstein, G M

    2014-01-01

    Spurious electric fields transverse to the surface of thick CCDs displace the photo-generated charges, effectively modifying the pixel area and producing noticeable signals in astrometric and photometric measurements. We use data from the science verification period of the Dark Energy Survey (DES) to characterize these effects in the Dark Energy Camera (DECam) CCDs, where the transverse fields manifest as concentric rings (impurity gradients or ''tree rings'') and bright stripes near the boundaries of the detectors (''edge distortions'') with relative amplitudes of about 1% and 10%, respectively. Using flat-field images, we derive templates in the five DES photometric bands (grizY) for the tree rings and the edge distortions as a function of their position on each DECam detector. Comparison of the astrometric and photometric residuals confirms their nature as pixel-size variations. The templates are directly incorporated into the derivation of photometric and astrometric residuals. The results presented in these proceedings are a partial report of analysis performed before the workshop ''Precision Astronomy with Fully depleted CDDs'' at Brookhaven National Laboratory. Additional work is underway, and the final results and analysis will be published elsewhere (Plazas, Bernstein and Sheldon 2014, in prep.)

  19. The giant Stark effect in armchair-edge phosphorene nanoribbons under a transverse electric field

    Science.gov (United States)

    Zhou, Benliang; Zhou, Benhu; Liu, Pu; Zhou, Guanghui

    2018-01-01

    We study the variation of electronic properties for armchair-edge phosphorene nanoribbons (APNRs) modulated by a transverse electric field. Within the tight-binding model Hamiltonian, and by solving the differential Schrödinger equation, we find that a band gap closure appears at the critical field due to the giant Stark effect for an APNR. The gap closure has no field polarity, and the gap varies quadratically for small fields but becomes linear for larger ones. We attribute the giant Stark effect to the broken edge degeneracy, i.e., the charge redistributions of the conduction band minimum and valence band maximum states localized at opposite edges induced by the field. By combined with the Green's function approach, it is shown that in the presence of the critical field a gap of density of states (DOS) disappears and a high value DOS turns up at the energy position of the band gap closure. Finally, as the field increases, we find the band gap decreases more rapidly and the gap closure occurs at smaller fields for wider ribbons. Both the band gap and DOS variations with the field show an insulator-metal transition induced by a transverse electric field for the APNR. Our results show that wider APNRs are more appreciable to design field-effect transistors.

  20. Transversal infinitesimal automorphisms on K\\"ahler foliations

    OpenAIRE

    Jung, Seoung Dal

    2011-01-01

    Let F be a K\\"ahler foliation on a compact Riemannian manifold M. we study the properties of infinitesimal automorphisms on (M,F), and in particular we concentrate on the transversal conformal field, transversal projective field and transversally holomorphic field

  1. Dynamics of Plasma Jets and Bubbles Launched into a Transverse Background Magnetic Field

    Science.gov (United States)

    Zhang, Yue

    2017-10-01

    A coaxial magnetized plasma gun has been utilized to launch both plasma jets (open B-field) and plasma bubbles (closed B-field) into a transverse background magnetic field in the HelCat (Helicon-Cathode) linear device at the University of New Mexico. These situations may have bearing on fusion plasmas (e.g. plasma injection for tokamak fueling, ELM pacing, or disruption mitigation) and astrophysical settings (e.g. astrophysical jet stability, coronal mass ejections, etc.). The magnetic Reynolds number of the gun plasma is 100 , so that magnetic advection dominates over magnetic diffusion. The gun plasma ram pressure, ρjetVjet2 >B02 / 2μ0 , the background magnetic pressure, so that the jet or bubble can easily penetrate the background B-field, B0. When the gun axial B-field is weak compared to the gun azimuthal field, a current-driven jet is formed with a global helical magnetic configuration. Applying the transverse background magnetic field, it is observed that the n = 1 kink mode is stabilized, while magnetic probe measurements show contrarily that the safety factor q(a) drops below unity. At the same time, a sheared axial jet velocity is measured. We conclude that the tension force arising from increasing curvature of the background magnetic field induces the measured sheared flow gradient above the theoretical kink-stabilization threshold, resulting in the emergent kink stabilization of the injected plasma jet. In the case of injected bubbles, spheromak-like plasma formation is verified. However, when the spheromak plasma propagates into the transverse background magnetic field, the typical self-closed global symmetry magnetic configuration does not hold any more. In the region where the bubble toroidal field opposed the background B-field, the magneto-Rayleigh-Taylor (MRT) instability has been observed. Details of the experiment setup, diagnostics, experimental results and theoretical analysis will be presented. Supported by the National Science Foundation

  2. Ising formulations of many NP problems

    Directory of Open Access Journals (Sweden)

    Andrew eLucas

    2014-02-01

    Full Text Available We provide Ising formulations for many NP-complete and NP-hard problems, including all of Karp's 21 NP-complete problems. This collects and extends mappings to the Ising model from partitioning, covering and satisfiability. In each case, the required number of spins is at most cubic in the size of the problem. This work may be useful in designing adiabatic quantum optimization algorithms.

  3. Charge Inversion Effects in Electrophoresis of Polyelectrolytes in the Presence of Multivalent Counterions and Transversal Electric Fields

    Directory of Open Access Journals (Sweden)

    Sorin Nedelcu

    2014-12-01

    Full Text Available By molecular dynamics simulations we investigate the transport of charged polymers in confinement, under externally applied electric fields, in straight cylinders of uniform diameter and in the presence of monovalent or multivalent counterions. The applied electric field has two components; a longitudinal component along the axis of the cylinder and a transversal component perpendicular to the cylinder axis. The direction of electrophoretic velocity depends on the polyelectrolyte length, valency of the counterions present in solution and transversal electric field value. A statistical model is put forward in order to explain these observations.

  4. Single-file water as a one-dimensional Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Koefinger, Juergen [Laboratory of Chemical Physics, Bldg 5, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 (United States); Dellago, Christoph, E-mail: koefingerj@mail.nih.go [Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria)

    2010-09-15

    We show that single-file water in nanopores can be viewed as a one-dimensional (1D) Ising model, and we investigate, on the basis of this, the static dielectric response of a chain of hydrogen-bonded water molecules to an external field. To achieve this, we use a recently developed dipole lattice model that accurately captures the free energetics of nanopore water. In this model, the total energy of the system can be expressed as the sum of the effective interactions of chain ends and orientational defects. Neglecting these interactions, we essentially obtain the 1D Ising model, which allows us to derive analytical expressions for the free energy as a function of the total dipole moment and for the dielectric susceptibility. Our expressions, which agree very well with simulation results, provide the basis for the interpretation of future dielectric spectroscopy experiments on water-filled nanopore membranes.

  5. Investigation of phase diagrams for cylindrical Ising nanotube using cellular automata

    Science.gov (United States)

    Astaraki, M.; Ghaemi, M.; Afzali, K.

    2018-05-01

    Recent developments in the field of applied nanoscience and nanotechnology have heightened the need for categorizing various characteristics of nanostructures. In this regard, this paper establishes a novel method to investigate magnetic properties (phase diagram and spontaneous magnetization) of a cylindrical Ising nanotube. Using a two-layer Ising model and the core-shell concept, the interactions within nanotube has been modelled. In the model, both ferromagnetic and antiferromagnetic cases have been considered. Furthermore, the effect of nanotube's length on the critical temperature is investigated. The model has been simulated using cellular automata approach and phase diagrams were constructed for different values of inter- and intra-layer couplings. For the antiferromagnetic case, the possibility of existence of compensation point is observed.

  6. Tricritical Ising model with a boundary

    International Nuclear Information System (INIS)

    De Martino, A.; Moriconi, M.

    1998-03-01

    We study the integrable and supersymmetric massive φ (1,3) deformation of the tricritical Ising model in the presence of a boundary. We use constraints from supersymmetry in order to compute the exact boundary S-matrices, which turn out to depend explicitly on the topological charge of the supersymmetry algebra. We also solve the general boundary Yang-Baxter equation and show that in appropriate limits the general reflection matrices go over the supersymmetry preserving solutions. Finally, we briefly discuss the possible connection between our reflection matrices and boundary perturbations within the framework of perturbed boundary conformal field theory. (author)

  7. Characterizing the spin orbit torque field-like term in in-plane magnetic system using transverse field

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Feilong [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Data Storage Institute, A*STAR Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore); Goolaup, Sarjoosing; Li, Sihua; Lim, Gerard Joseph; Tan, Funan; Engel, Christian; Zhang, Senfu; Ma, Fusheng; Lew, Wen Siang, E-mail: wensiang@ntu.edu.sg [School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371 (Singapore); Zhou, Tiejun [Data Storage Institute, A*STAR Agency for Science, Technology and Research, DSI Building, 5 Engineering Drive 1, Singapore 117608 (Singapore)

    2016-08-28

    In this work, we present an efficient method for characterizing the spin orbit torque field-like term in an in-plane magnetized system using the harmonic measurement technique. This method does not require a priori knowledge of the planar and anomalous hall resistances and is insensitive to non-uniformity in magnetization, as opposed to the conventional harmonic technique. We theoretically and experimentally demonstrate that the field-like term in the Ta/Co/Pt film stack with in-plane magnetic anisotropy can be obtained by an in-plane transverse field sweep as expected, and magnetization non-uniformity is prevented by the application of fixed magnetic field. The experimental results are in agreement with the analytical calculations.

  8. Dynamics of asymmetric kinetic Ising systems revisited

    International Nuclear Information System (INIS)

    Huang, Haiping; Kabashima, Yoshiyuki

    2014-01-01

    The dynamics of an asymmetric kinetic Ising model is studied. Two schemes for improving the existing mean-field description are proposed. In the first scheme, we derive the formulas for instantaneous magnetization, equal-time correlation, and time-delayed correlation, considering the correlation between different local fields. To derive the time-delayed correlation, we emphasize that the small-correlation assumption adopted in previous work (Mézard and Sakellariou, 2011 J. Stat. Mech. L07001) is in fact not required. To confirm the prediction efficiency of our method, we perform extensive simulations on single instances with either temporally constant external driving fields or sinusoidal external fields. In the second scheme, we develop an improved mean-field theory for instantaneous magnetization prediction utilizing the notion of the cavity system in conjunction with a perturbative expansion approach. Its efficiency is numerically confirmed by comparison with the existing mean-field theory when partially asymmetric couplings are present. (paper)

  9. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models

    Science.gov (United States)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  10. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models.

    Science.gov (United States)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics--from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the 'Emerging Intelligence Market Hypothesis' to reconcile the pervasive presence of 'noise traders' with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  11. Inverse Ising inference with correlated samples

    International Nuclear Information System (INIS)

    Obermayer, Benedikt; Levine, Erel

    2014-01-01

    Correlations between two variables of a high-dimensional system can be indicative of an underlying interaction, but can also result from indirect effects. Inverse Ising inference is a method to distinguish one from the other. Essentially, the parameters of the least constrained statistical model are learned from the observed correlations such that direct interactions can be separated from indirect correlations. Among many other applications, this approach has been helpful for protein structure prediction, because residues which interact in the 3D structure often show correlated substitutions in a multiple sequence alignment. In this context, samples used for inference are not independent but share an evolutionary history on a phylogenetic tree. Here, we discuss the effects of correlations between samples on global inference. Such correlations could arise due to phylogeny but also via other slow dynamical processes. We present a simple analytical model to address the resulting inference biases, and develop an exact method accounting for background correlations in alignment data by combining phylogenetic modeling with an adaptive cluster expansion algorithm. We find that popular reweighting schemes are only marginally effective at removing phylogenetic bias, suggest a rescaling strategy that yields better results, and provide evidence that our conclusions carry over to the frequently used mean-field approach to the inverse Ising problem. (paper)

  12. Dynamics of the directed Ising chain

    International Nuclear Information System (INIS)

    Godrèche, Claude

    2011-01-01

    The study by Glauber of the time-dependent statistics of the Ising chain is extended to the case where each spin is influenced unequally by its nearest neighbours. The asymmetry of the dynamics implies the failure of the detailed balance condition. The functional form of the rate at which an individual spin changes its state is constrained by the global balance condition with respect to the equilibrium measure of the Ising chain. The local magnetization, the equal-time and two-time correlation functions and the linear response to an external magnetic field obey linear equations which are solved explicitly. The behaviour of these quantities and the relation between the correlation and response functions are analysed both in the stationary state and in the zero-temperature scaling regime. In the stationary state, a transition between two behaviours of the correlation function occurs when the amplitude of the asymmetry crosses a critical value, with the consequence that the limit fluctuation-dissipation ratio decays continuously from the value 1, for the equilibrium state in the absence of asymmetry, to 0 for this critical value. At zero temperature, under asymmetric dynamics, the system loses its critical character, yet keeping many of the characteristic features of a coarsening system

  13. Dynamical implications of sample shape for avalanches in 2-dimensional random-field Ising model with saw-tooth domain wall

    Science.gov (United States)

    Tadić, Bosiljka

    2018-03-01

    We study dynamics of a built-in domain wall (DW) in 2-dimensional disordered ferromagnets with different sample shapes using random-field Ising model on a square lattice rotated by 45 degrees. The saw-tooth DW of the length Lx is created along one side and swept through the sample by slow ramping of the external field until the complete magnetisation reversal and the wall annihilation at the open top boundary at a distance Ly. By fixing the number of spins N =Lx ×Ly = 106 and the random-field distribution at a value above the critical disorder, we vary the ratio of the DW length to the annihilation distance in the range Lx /Ly ∈ [ 1 / 16 , 16 ] . The periodic boundary conditions are applied in the y-direction so that these ratios comprise different samples, i.e., surfaces of cylinders with the changing perimeter Lx and height Ly. We analyse the avalanches of the DW slips between following field updates, and the multifractal structure of the magnetisation fluctuation time series. Our main findings are that the domain-wall lengths materialised in different sample shapes have an impact on the dynamics at all scales. Moreover, the domain-wall motion at the beginning of the hysteresis loop (HLB) probes the disorder effects resulting in the fluctuations that are significantly different from the large avalanches in the central part of the loop (HLC), where the strong fields dominate. Specifically, the fluctuations in HLB exhibit a wide multi-fractal spectrum, which shifts towards higher values of the exponents when the DW length is reduced. The distributions of the avalanches in this segments of the loops obey power-law decay and the exponential cutoffs with the exponents firmly in the mean-field universality class for long DW. In contrast, the avalanches in the HLC obey Tsallis density distribution with the power-law tails which indicate the new categories of the scale invariant behaviour for different ratios Lx /Ly. The large fluctuations in the HLC, on the other

  14. Transverse self-fields within an electron bunch moving in an arc of a circle

    International Nuclear Information System (INIS)

    Geloni, G.; Botman, J.; Luiten, J.; Wiel, M. van der; Yurkov, M.V.

    2002-04-01

    As a consequence of motions driven by external forces, self-fields (which are different from the static case) originate within an electron bunch. In the case of magnetic external forces acting on an ultrarelativistic beam, the longitudinal self-interactions are responsible for CSR (coherent synchrotron radiation)-related phenomena, which have been studied extensively. On the other hand, transverse self-interactions are present too. At the time being, existing theoretical analysis of transverse self-forces deal with the case of a bunch moving along a circular orbit only, without considering the situation of a bending magnet with a finite length. In this paper we propose an electrodynamical analysis of transverse self-fields which originate, at the position of a test particle, from an ultrarelativistic electron bunch moving in an arc of a circle. The problem will be first addressed within a two-particle system. We then extend our consideration to a line bunch with a stepped density distribution, a situation which can be easily generalized to the case of an arbitrary density distribution. Our approach turns out to be also useful in order to get a better insight in the physics involved in the case of simple circular motion and in order to address the well known issue of the partial compensation of transverse self-force. (orig.)

  15. Ising model on tangled chain - 1: Free energy and entropy

    International Nuclear Information System (INIS)

    Mejdani, R.

    1993-04-01

    In this paper we have considered an Ising model defined on tangled chain, in which more bonds have been added to those of pure Ising chain. to understand their competition, particularly between ferromagnetic and antiferromagnetic bonds, we have studied, using the transfer matrix method, some simple analytical calculations and an iterative algorithm, the behaviour of the free energy and entropy, particularly in the zero-field and zero temperature limit, for different configurations of the ferromagnetic tangled chain and different types of addition interaction (ferromagnetic or antiferromagnetic). We found that the condition J=J' between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a ''transition-region'' condition for this behaviour. Our results indicate also the existence of non-zero entropy at zero temperature. (author). 17 refs, 8 figs

  16. Mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000, Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2015-11-01

    The magnetic properties of spins-S and σ Ising model on the Bethe lattice have been investigated by using the Monte Carlo simulation. The thermal total magnetization and magnetization of spins S and σ with the different exchange interactions, different external magnetic field and different temperatures have been studied. The critical temperature and compensation temperature have been deduced. The magnetic hysteresis cycle of Ising ferrimagnetic system on the Bethe lattice has been deduced for different values of exchange interactions between the spins S and σ, for different values of crystal field and for different sizes. The magnetic coercive filed has been deduced. - Highlights: • The magnetic properties of Bethe lattice have been investigated. • The critical temperature and compensation temperature have been deduced. • The magnetic coercive filed has been deduced.

  17. Linear perturbation renormalization group for the two-dimensional Ising model with nearest- and next-nearest-neighbor interactions in a field

    Science.gov (United States)

    Sznajd, J.

    2016-12-01

    The linear perturbation renormalization group (LPRG) is used to study the phase transition of the weakly coupled Ising chains with intrachain (J ) and interchain nearest-neighbor (J1) and next-nearest-neighbor (J2) interactions forming the triangular and rectangular lattices in a field. The phase diagrams with the frustration point at J2=-J1/2 for a rectangular lattice and J2=-J1 for a triangular lattice have been found. The LPRG calculations support the idea that the phase transition is always continuous except for the frustration point and is accompanied by a divergence of the specific heat. For the antiferromagnetic chains, the external field does not change substantially the shape of the phase diagram. The critical temperature is suppressed to zero according to the power law when approaching the frustration point with an exponent dependent on the value of the field.

  18. Phase diagram of the quantum Ising model with long-range interactions on an infinite-cylinder triangular lattice

    Science.gov (United States)

    Saadatmand, S. N.; Bartlett, S. D.; McCulloch, I. P.

    2018-04-01

    Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can be efficiently obtained using state-of-the-art translation-invariant variants of matrix product states and density-matrix renormalization-group algorithms. We use these methods to calculate the fully-quantitative ground-state phase diagram of the long-range interacting triangular Ising model with a transverse field on six-leg infinite-length cylinders and scrutinize the properties of the detected phases. We compare these results with those of the corresponding nearest neighbor model. Our results suggest that, for such long-range Hamiltonians, the long-range quantum fluctuations always lead to long-range correlations, where correlators exhibit power-law decays instead of the conventional exponential drops observed for short-range correlated gapped phases. Our results are relevant for comparisons with recent ion-trap quantum simulator experiments that demonstrate highly-controllable long-range spin couplings for several hundred ions.

  19. Entanglement negativity in the critical Ising chain

    International Nuclear Information System (INIS)

    Calabrese, Pasquale; Tagliacozzo, Luca; Tonni, Erik

    2013-01-01

    We study the scaling of the traces of the integer powers of the partially transposed reduced density matrix Tr(ρ A T 2 ) n and of the entanglement negativity for two spin blocks as a function of their length and separation in the critical Ising chain. For two adjacent blocks, we show that tensor network calculations agree with universal conformal field theory (CFT) predictions. In the case of two disjoint blocks the CFT predictions are recovered only after taking into account the finite size corrections induced by the finite length of the blocks. (paper)

  20. Linear perturbation renormalization group method for Ising-like spin systems

    Directory of Open Access Journals (Sweden)

    J. Sznajd

    2013-03-01

    Full Text Available The linear perturbation group transformation (LPRG is used to study the thermodynamics of the axial next-nearest-neighbor Ising model with four spin interactions (extended ANNNI in a field. The LPRG for weakly interacting Ising chains is presented. The method is used to study finite field para-ferrimagnetic phase transitions observed in layered uranium compounds, UAs1-xSex, UPd2Si2 or UNi2Si2. The above-mentioned systems are made of ferromagnetic layers and the spins from the nearest-neighbor and next-nearest-neighbor layers are coupled by the antiferromagnetic interactions J121-xSex the para-ferri phase transition is of the first order as expected from the symmetry reason, in UT2Si2 (T=Pd, Ni this transition seems to be a continuous one, at least in the vicinity of the multicritical point. Within the MFA, the critical character of the finite field para-ferrimagnetic transition at least at one isolated point can be described by the ANNNI model supplemented by an additional, e.g., four-spin interaction. However, in LPRG approximation for the ratio κ = J2/J1 around 0.5 there is a critical value of the field for which an isolated critical point also exists in the original ANNNI model. The positive four-spin interaction shifts the critical point towards higher fields and changes the shape of the specific heat curve. In the latter case for the fields small enough, the specific heat exhibits two-peak structure in the paramagnetic phase.

  1. Transverse beam dynamics in non-linear Fixed Field Alternating Gradient accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Haj, Tahar M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-02

    In this paper, we present some aspects of the transverse beam dynamics in Fixed Field Ring Accelerators (FFRA): we start from the basic principles in order to derive the linearized transverse particle equations of motion for FFRA, essentially FFAGs and cyclotrons are considered here. This is a simple extension of a previous work valid for linear lattices that we generalized by including the bending terms to ensure its correctness for FFAG lattice. The space charge term (contribution of the internal coulombian forces of the beam) is contained as well, although it is not discussed here. The emphasis is on the scaling FFAG type: a collaboration work is undertaken in view of better understanding the properties of the 150 MeV scaling FFAG at KURRI in Japan, and progress towards high intensity operation. Some results of the benchmarking work between different codes are presented. Analysis of certain type of field imperfections revealed some interesting features about this machine that explain some of the experimental results and generalize the concept of a scaling FFAG to a non-scaling one for which the tune variations obey a well-defined law.

  2. Hyperscaling breakdown and Ising spin glasses: The Binder cumulant

    Science.gov (United States)

    Lundow, P. H.; Campbell, I. A.

    2018-02-01

    Among the Renormalization Group Theory scaling rules relating critical exponents, there are hyperscaling rules involving the dimension of the system. It is well known that in Ising models hyperscaling breaks down above the upper critical dimension. It was shown by Schwartz (1991) that the standard Josephson hyperscaling rule can also break down in Ising systems with quenched random interactions. A related Renormalization Group Theory hyperscaling rule links the critical exponents for the normalized Binder cumulant and the correlation length in the thermodynamic limit. An appropriate scaling approach for analyzing measurements from criticality to infinite temperature is first outlined. Numerical data on the scaling of the normalized correlation length and the normalized Binder cumulant are shown for the canonical Ising ferromagnet model in dimension three where hyperscaling holds, for the Ising ferromagnet in dimension five (so above the upper critical dimension) where hyperscaling breaks down, and then for Ising spin glass models in dimension three where the quenched interactions are random. For the Ising spin glasses there is a breakdown of the normalized Binder cumulant hyperscaling relation in the thermodynamic limit regime, with a return to size independent Binder cumulant values in the finite-size scaling regime around the critical region.

  3. Thermodynamic behavior and enhanced magnetocaloric effect in a frustrated spin-1/2 Ising-Heisenberg triangular tube

    Science.gov (United States)

    Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.

    2018-04-01

    The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.

  4. Directional Solidification Microstructure of a Ni-Based Superalloy: Influence of a Weak Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Xu Li

    2015-06-01

    Full Text Available A Ni-based superalloy CMSX-6 was directionally solidified at various drawing speeds (5–20 μm·s−1 and diameters (4 mm, 12 mm under a 0.5 T weak transverse magnetic field. The results show that the application of a weak transverse magnetic field significantly modified the solidification microstructure. It was found that if the drawing speed was lower than 10 μm·s−1, the magnetic field caused extensive macro-segregation in the mushy zone, and a change in the mushy zone length. The magnetic field significantly decreases the size of γ’ and the content of γ-γ’ eutectic. The formation of macro-segregation under a weak magnetic field was attributed to the interdendritic solute transport driven by the thermoelectric magnetic convection (TEMC. The γ’ phase refinement could be attributed to a decrease in nucleation activation energy owing to the magnetic field during solid phase transformation. The change of element segregation is responsible for the content decrease of γ-γ’ eutectic.

  5. Phase transition of the FCC Ising ferromagnet with competing interactions

    International Nuclear Information System (INIS)

    Oh, J.H.; Lee, J.Y.; Kim, D.C.

    1984-01-01

    A molecular field theory with correlation and Monte Carlo simulations are utilized to determine the zero field phase diagram of a fcc Ising model with ferromagnetic nearest neighbor(-J) and antiferromagnetic next neighbor (*aJ) interactions. The correlated molecular field theory predicts a fluctuation induced first order phase transition for 0.87<*a<1.31. Monte Carlo analysis indicates that the first order transition occurs for a somewhat wider range of *a. The transition temperatures obtained by the two methods are in good agreement especially near *a=1 where the fluctuation effect is expected to be large. (Author)

  6. The Ising model coupled to 2d orders

    Science.gov (United States)

    Glaser, Lisa

    2018-04-01

    In this article we make first steps in coupling matter to causal set theory in the path integral. We explore the case of the Ising model coupled to the 2d discrete Einstein Hilbert action, restricted to the 2d orders. We probe the phase diagram in terms of the Wick rotation parameter β and the Ising coupling j and find that the matter and the causal sets together give rise to an interesting phase structure. The couplings give rise to five different phases. The causal sets take on random or crystalline characteristics as described in Surya (2012 Class. Quantum Grav. 29 132001) and the Ising model can be correlated or uncorrelated on the random orders and correlated, uncorrelated or anti-correlated on the crystalline orders. We find that at least one new phase transition arises, in which the Ising spins push the causal set into the crystalline phase.

  7. Simulations of ground state fluctuations in mean-field Ising spin glasses

    International Nuclear Information System (INIS)

    Boettcher, Stefan

    2010-01-01

    The scaling of fluctuations in the distribution of ground state energies or costs with the system size N for Ising spin glasses is considered using an extensive set of simulations with the extremal optimization heuristic across a range of different models on sparse and dense graphs. These models exhibit very diverse behaviors, and an asymptotic extrapolation is often complicated by higher-order corrections in size. The clearest picture, in fact, emerges from the study of graph bipartitioning, a combinatorial optimization problem closely related to spin glasses. Asides from two-spin interactions with discrete bonds, we also consider problems with Gaussian bonds and three-spin interactions, which behave quite differently

  8. Conductance oscillations of core-shell nanowires in transversal magnetic fields

    Science.gov (United States)

    Manolescu, Andrei; Nemnes, George Alexandru; Sitek, Anna; Rosdahl, Tomas Orn; Erlingsson, Sigurdur Ingi; Gudmundsson, Vidar

    2016-05-01

    We analyze theoretically electronic transport through a core-shell nanowire in the presence of a transversal magnetic field. We calculate the conductance for a variable coupling between the nanowire and the attached leads and show how the snaking states, which are low-energy states localized along the lines of the vanishing radial component of the magnetic field, manifest their existence. In the strong-coupling regime they induce flux periodic, Aharonov-Bohm-like, conductance oscillations, which, by decreasing the coupling to the leads, evolve into well-resolved peaks. The flux periodic oscillations arise due to interference of the snaking states, which is a consequence of backscattering at either the contacts with leads or magnetic or potential barriers in the wire.

  9. On asymptotic solutions of Regge field theory in zero transverse dimensions

    International Nuclear Information System (INIS)

    Bondarenko, S.; Horwitz, L.; Levitan, J.; Yahalom, A.

    2013-01-01

    An investigation of dynamical properties of solutions of a toy model of interacting Pomerons with triple vertex in zero transverse dimension is performed. Stable points and corresponding solutions at the limit of large rapidity are studied in the framework of a given model. It is shown that, at large rapidity, the “fan” amplitude is also a leading solution for the full RFT-0 (Regge Field Theory in zero transverse dimensions) Hamiltonian with both vertices of Pomeron splitting and merging included. An analytical form of the symmetrical solution of the equations of motion at high energy is obtained as well. For the solutions we have found, the scattering amplitude at large values of rapidity is calculated. Stability of the solutions is investigated by Lyapunov functions and the presence of closed cycles in solutions is demonstrated by the new method

  10. Optimization of Transverse Oscillating Fields for Vector Velocity Estimation with Convex Arrays

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2013-01-01

    A method for making Vector Flow Images using the transverse oscillation (TO) approach on a convex array is presented. The paper presents optimization schemes for TO fields for convex probes and evaluates their performance using Field II simulations and measurements using the SARUS experimental...... from 90 to 45 degrees in steps of 15 degrees. The optimization routine changes the lateral oscillation period lx to yield the best possible estimates based on the energy ratio between positive and negative spatial frequencies in the ultrasound field. The basic equation for lx gives 1.14 mm at 40 mm...

  11. Ising tricriticality in the extended Hubbard model with bond dimerization

    Science.gov (United States)

    Fehske, Holger; Ejima, Satoshi; Lange, Florian; Essler, Fabian H. L.

    We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c=7/10. Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results. This work was supported by Deutsche Forschungsgemeinschaft (Germany), SFB 652, project B5, and by the EPSRC under Grant No. EP/N01930X/1 (FHLE).

  12. Pengembangan Indentation Size Effect (ISE Dalam Penentuan Koefisien Pengerasan Regang Baja

    Directory of Open Access Journals (Sweden)

    I Nyoman Budiarsa

    2016-07-01

    Full Text Available Abstrak: Hubungan antara sifat material konstitutif dengan indentasi kekerasan (Hardness Indentation termasuk ISE (Indentation Size Effect telah dikembangkan dan dievaluasi dengan indentasi Vickers, hal Ini akan menjadi alat yang berguna dalam mengevaluasi kelayakan penggunaan nilai kekerasan dalam memprediksi parameter bahan konstitutif dengan mengacu pada syarat akurasi pada rentang semua potensi bahan. ISE dapat konsisten diukur dan dapat berpotensi dihubungkan dengan H/E rasio. Skala ISE dari sampel yang diuji menunjukkan pengulangan yang konsisten dan berhubungan kuat dengan sifat material secara signifikan. Hal Ini berpotensi memberikan set data eksperimen yang mencerminkan sifat material yang terkait dengan ketegangan gradien dan kerapatan dislokasi selama proses indentasi Konsep untuk menggunakan data ukuran indentasi Vickers telah dikembangkan untuk meningkatkan akurasi sifat invers pemodelan berdasarkan kekerasan menggunakan baja sebagai sistem bahan. Penelitian ini menunjukkan bahwa ada ISE signifikan dalam tes kekerasan Vickers dimana skala dan reliabilitas ISE dianalisis dengan fitting data mengikuti Power law and proportional resistance model Sebuah konsep baru menggunakan data ISE untuk memperkirakan Koefisien Pengerasan Regang (n nilai-nilai dari baja telah dievaluasi dan menunjukkan hasil yang baik untuk mempersempit kisaran sifat material yang diprediksi berdasarkan nilai-nilai kekerasan. . Kata kunci: ISE, H/E rasio, Koefisien Pengerasan Regang (n Abstract: The relationship between the constitutive material properties with Hardness indentation including ISE (indentation Size Effect has been developed and evaluated by Vickers indentation. This provided a useful tool in evaluating the feasibility of using of hardness value in predicting the constitutive material parameters with reference to the terms of accuracy in the all the potential materials range. ISE can be consistently measured and may potentially be associated with H

  13. Skin dose in longitudinal and transverse linac-MRIs using Monte Carlo and realistic 3D MRI field models.

    Science.gov (United States)

    Keyvanloo, A; Burke, B; Warkentin, B; Tadic, T; Rathee, S; Kirkby, C; Santos, D M; Fallone, B G

    2012-10-01

    The magnetic fields of linac-MR systems modify the path of contaminant electrons in photon beams, which alters patient skin dose. To accurately quantify the magnitude of changes in skin dose, the authors use Monte Carlo calculations that incorporate realistic 3D magnetic field models of longitudinal and transverse linac-MR systems. Finite element method (FEM) is used to generate complete 3D magnetic field maps for 0.56 T longitudinal and transverse linac-MR magnet assemblies, as well as for representative 0.5 and 1.0 T Helmholtz MRI systems. EGSnrc simulations implementing these 3D magnetic fields are performed. The geometry for the BEAMnrc simulations incorporates the Varian 600C 6 MV linac, magnet poles, the yoke, and the magnetic shields of the linac-MRIs. Resulting phase-space files are used to calculate the central axis percent depth-doses in a water phantom and 2D skin dose distributions for 70 μm entrance and exit layers using DOSXYZnrc. For comparison, skin doses are also calculated in the absence of magnetic field, and using a 1D magnetic field with an unrealistically large fringe field. The effects of photon field size, air gap (longitudinal configuration), and angle of obliquity (transverse configuration) are also investigated. Realistic modeling of the 3D magnetic fields shows that fringe fields decay rapidly and have a very small magnitude at the linac head. As a result, longitudinal linac-MR systems mostly confine contaminant electrons that are generated in the air gap and have an insignificant effect on electrons produced further upstream. The increase in the skin dose for the longitudinal configuration compared to the zero B-field case varies from ∼1% to ∼14% for air gaps of 5-31 cm, respectively. (All dose changes are reported as a % of D(max).) The increase is also field-size dependent, ranging from ∼3% at 20 × 20 cm(2) to ∼11% at 5 × 5 cm(2). The small changes in skin dose are in contrast to significant increases that are

  14. Phase transitions of a spin-one Ising ferromagnetic superlattice

    International Nuclear Information System (INIS)

    Saber, A.

    2001-09-01

    Using the effective field theory with a probability distribution technique, the magnetic properties in an infinite superlattice consisting of two different ferromagnets are studied in a spin-one Ising model. The dependence of the Curie temperatures are calculated as a function of two slabs in one period and as a function of the intra- and interlayer exchange interactions. A critical value of the exchange reduced interaction above which the interface magnetism appears is found. (author)

  15. Phase transitions of ferromagnetic Ising films with amorphous surfaces

    International Nuclear Information System (INIS)

    Saber, M.; Ainane, A.; Dujardin, F.; Stebe, B.

    1997-08-01

    The critical behavior of a ferromagnetic Ising film with amorphous surfaces is studied within the framework of the effective field theory. The dependence of the critical temperature on exchange interaction strength ratio, film thickness, and structural fluctuation parameter is presented. It is found that an order-disorder magnetic transition occurs by varying the thickness of the film. Such a result is in agreement with experiments performed recently on Fe-films. (author). 39 refs, 4 figs

  16. Longitudinal waves in carbon nanotubes in the presence of transverse magnetic field and elastic medium

    Science.gov (United States)

    Liu, Hu; Liu, Hua; Yang, Jialing

    2017-09-01

    In the present paper, the coupling effect of transverse magnetic field and elastic medium on the longitudinal wave propagation along a carbon nanotube (CNT) is studied. Based on the nonlocal elasticity theory and Hamilton's principle, a unified nonlocal rod theory which takes into account the effects of small size scale, lateral inertia and radial deformation is proposed. The existing rod theories including the classic rod theory, the Rayleigh-Love theory and Rayleigh-Bishop theory for macro solids can be treated as the special cases of the present model. A two-parameter foundation model (Pasternak-type model) is used to represent the elastic medium. The influence of transverse magnetic field, Pasternak-type elastic medium and small size scale on the longitudinal wave propagation behavior of the CNT is investigated in detail. It is shown that the influences of lateral inertia and radial deformation cannot be neglected in analyzing the longitudinal wave propagation characteristics of the CNT. The results also show that the elastic medium and the transverse magnetic field will also affect the longitudinal wave dispersion behavior of the CNT significantly. The results obtained in this paper are helpful for understanding the mechanical behaviors of nanostructures embedded in an elastic medium.

  17. Testing ground for fluctuation theorems: The one-dimensional Ising model

    Science.gov (United States)

    Lemos, C. G. O.; Santos, M.; Ferreira, A. L.; Figueiredo, W.

    2018-04-01

    In this paper we determine the nonequilibrium magnetic work performed on a Ising model and relate it to the fluctuation theorem derived some years ago by Jarzynski. The basic idea behind this theorem is the relationship connecting the free energy difference between two thermodynamic states of a system and the average work performed by an external agent, in a finite time, through nonequilibrium paths between the same thermodynamic states. We test the validity of this theorem by considering the one-dimensional Ising model where the free energy is exactly determined as a function of temperature and magnetic field. We have found that the Jarzynski theorem remains valid for all the values of the rate of variation of the magnetic field applied to the system. We have also determined the probability distribution function for the work performed on the system for the forward and reverse processes and verified that predictions based on the Crooks relation are equally correct. We also propose a method to calculate the lag between the current state of the system and that of the equilibrium based on macroscopic variables. We have shown that the lag increases with the sweeping rate of the field at its final value for the reverse process, while it decreases in the case of the forward process. The lag increases linearly with the size of the chain and with a slope decreasing with the inverse of the rate of variation of the field.

  18. Physics and financial economics (1776–2014): puzzles, Ising and agent-based models

    International Nuclear Information System (INIS)

    Sornette, Didier

    2014-01-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets. (key issues reviews)

  19. Performance evaluation of coherent Ising machines against classical neural networks

    Science.gov (United States)

    Haribara, Yoshitaka; Ishikawa, Hitoshi; Utsunomiya, Shoko; Aihara, Kazuyuki; Yamamoto, Yoshihisa

    2017-12-01

    The coherent Ising machine is expected to find a near-optimal solution in various combinatorial optimization problems, which has been experimentally confirmed with optical parametric oscillators and a field programmable gate array circuit. The similar mathematical models were proposed three decades ago by Hopfield et al in the context of classical neural networks. In this article, we compare the computational performance of both models.

  20. Exact solution of the Ising model in a fully frustrated two-dimensional lattice

    International Nuclear Information System (INIS)

    Silva, N.R. da; Medeiros e Silva Filho, J.

    1983-01-01

    A straightforward extension of the Onsager method allows us to solve exactly the Ising problem in a fully frustated square lattice in the absence of external magnetic field. It is shown there is no singularity in the thermodynamic functions for non-zero temperature. (Author) [pt

  1. An effective field study of the magnetic properties and critical behaviour at the surface Ising film

    International Nuclear Information System (INIS)

    Bengrine, M.; Benyoussef, A.; Ez-Zahraouy, H.; Mhirech, F.

    1998-09-01

    The influence of corrugation and disorder at the surface on the critical behaviour of a ferromagnetic spin-1/2 Ising film is investigated using mean-field theory and finite cluster approximation. It is found that the critical surface exponent β 1 follows closely the one of a perfect surface, in the two cases: corrugated surface and random equiprobable coupling surface. However, in the case of flat surface with random interactions the surface critical exponent β 1 depends on the concentration p of the strong interaction for p>p c =0,5, while for p≤p c , such critical exponent is independent on the value of p and is equal to the one of the perfect surface. Moreover, in the case of corrugated surface, the effective exponent for a layer z, β eff J(z,n), is calculated as a function of the number of steps at the surface. (author)

  2. Characteristics of electron cyclotron waves creating field-aligned and transverse plasma-potential structures

    International Nuclear Information System (INIS)

    Takahashi, K; Kaneko, T; Hatakeyama, R; Fukuyama, A

    2009-01-01

    Characteristics of electromagnetic waves of azimuthal mode number m = ±1 are investigated experimentally, analytically and numerically when the waves triggering the field-aligned and transverse plasma-potential structure modification near an electron cyclotron resonance (ECR) point are injected into an inhomogeneously magnetized plasma with high-speed ion flow. The waves of m = +1 and -1 modes generate an electric double layer near the ECR point at the radially central and peripheral areas of the plasma column, respectively, and the transverse electric fields are consequently formed. At these areas the waves have a right-handed polarization and are absorbed through the ECR mechanism, where the experimental and analytical results do show the polarization reversal along the radial axis. The numerical results by plasma analysis by finite element method (FEM)/wave analysis by FEM (PAF/WF) code show that the wave-absorption area is localized at the radially central and peripheral areas for m = +1 and -1 mode waves, respectively, being consistent with the experimental and analytical ones.

  3. Applications of ISES for the atmospheric sciences

    Science.gov (United States)

    Hoell, James M., Jr.

    1990-01-01

    The proposed Information Sciences Experiment System (ISES) will offer the opportunity for real-time access to measurements acquired aboard the Earth Observation System (Eos) satellite. These measurements can then be transmitted to remotely located ground based stations. The application of such measurements to issues related to atmospheric science which was presented to a workshop convened to review possible application of the ISES in earth sciences is summarized. The proposed protocol for Eos instruments requires that measurement results be available in a central data archive within 72 hours of acquiring data. Such a turnaround of raw satellite data to the final product will clearly enhance the timeliness of the results. Compared to the time that results from many current satellite programs, the 72 hour turnaround may be considered real time. Examples are discussed showing how real-time measurements from one or more of the proposed Eos instruments could have been applied to the study of certain issues important to global atmospheric chemistry. Each of the examples discussed is based upon a field mission conducted during the past five years. Each of these examples will emphasize how real-time data could have been used to alter the course of a field experiment, thereby enhancing the scientific output. For the examples, brief overviews of the scientific rationale and objectives, the region of operation, the measurements aboard the aircraft, and finally how one or more of the proposed Eos instruments could have provided data to enhance the productivity of the mission are discussed.

  4. Optimization of Pockels electric field in transverse modulated optical voltage sensor

    Science.gov (United States)

    Huang, Yifan; Xu, Qifeng; Chen, Kun-Long; Zhou, Jie

    2018-05-01

    This paper investigates the possibilities of optimizing the Pockels electric field in a transverse modulated optical voltage sensor with a spherical electrode structure. The simulations show that due to the edge effect and the electric field concentrations and distortions, the electric field distributions in the crystal are non-uniform. In this case, a tiny variation in the light path leads to an integral error of more than 0.5%. Moreover, a 2D model cannot effectively represent the edge effect, so a 3D model is employed to optimize the electric field distributions. Furthermore, a new method to attach a quartz crystal to the electro-optic crystal along the electric field direction is proposed to improve the non-uniformity of the electric field. The integral error is reduced therefore from 0.5% to 0.015% and less. The proposed method is simple, practical and effective, and it has been validated by numerical simulations and experimental tests.

  5. The Ising model and its applications to a phase transition of biological interest

    International Nuclear Information System (INIS)

    Cabrera, G.G.; Stein-Barana, A.M.; Zuckermann, M.J.

    1984-01-01

    It is investigated a gel-liquid crystal phase transition employing a two-state model equivalent to the Spin 1/2 Ising Model with applied magnetic field. The model is studied from the standpoint of the cluster variational method of Kikuchi for cooperative phenomena. (M.W.O.) [pt

  6. Quantum transitions driven by one-bond defects in quantum Ising rings.

    Science.gov (United States)

    Campostrini, Massimo; Pelissetto, Andrea; Vicari, Ettore

    2015-04-01

    We investigate quantum scaling phenomena driven by lower-dimensional defects in quantum Ising-like models. We consider quantum Ising rings in the presence of a bond defect. In the ordered phase, the system undergoes a quantum transition driven by the bond defect between a magnet phase, in which the gap decreases exponentially with increasing size, and a kink phase, in which the gap decreases instead with a power of the size. Close to the transition, the system shows a universal scaling behavior, which we characterize by computing, either analytically or numerically, scaling functions for the low-level energy differences and the two-point correlation function. We discuss the implications of these results for the nonequilibrium dynamics in the presence of a slowly varying parallel magnetic field h, when going across the first-order quantum transition at h=0.

  7. A diffusive atmospheric pressure glow discharge in a coaxial pin-to-ring gap with a transverse magnetic field

    Directory of Open Access Journals (Sweden)

    YongSheng Wang

    2017-09-01

    Full Text Available Atmospheric pressure glow discharge (APGD has been widely used in the industrial field. The industrial applications are based on achieving stable and diffusive APGD in a relatively large space. The existing sources only achieved stable and diffusive APGD between a short inter-electrode distance within 5 millimeters. In this paper, the effect of a transverse stationary magnetic field on the diffusion of filamentary APGD was studied in a pin-to-ring coaxial gap. The APGD was driven by a high-voltage resonant power supply, and the stationary magnetic field was supplied by a permanent magnet. The stable and diffusive APGD was achieved in the circular area, which diameter was 20 millimeters. The experimental results revealed that more collision ionization occurred and the plasma was distributed diffusively in the discharge gap by applying the external transverse magnetic field. Besides, it is likely to obtain more stable and diffusive APGD in the coaxial pin-to-ring discharge gap when adjusting the input voltage, transverse magnetic flux density and resonant frequency of the power supply.

  8. Inverse Ising Inference Using All the Data

    Science.gov (United States)

    Aurell, Erik; Ekeberg, Magnus

    2012-03-01

    We show that a method based on logistic regression, using all the data, solves the inverse Ising problem far better than mean-field calculations relying only on sample pairwise correlation functions, while still computationally feasible for hundreds of nodes. The largest improvement in reconstruction occurs for strong interactions. Using two examples, a diluted Sherrington-Kirkpatrick model and a two-dimensional lattice, we also show that interaction topologies can be recovered from few samples with good accuracy and that the use of l1 regularization is beneficial in this process, pushing inference abilities further into low-temperature regimes.

  9. The Glauber dynamics for a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Canko, Osman [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Kantar, Ersin [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2009-06-15

    We present a study, within a mean-field approximation, of the dynamics of a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions in the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the set of mean-field dynamic equations. Then, we study the time variation of the average order parameters to find the phases in the system. We also investigate the thermal behavior of dynamic order parameters to characterize the nature (first- or second-order) of the dynamic transitions. The dynamic phase transitions are obtained and the phase diagrams are constructed in two different the planes. The phase diagrams contain a disordered and ordered phases, and four different mixed phases that strongly depend on interaction parameters. Phase diagrams also display one or two dynamic tricritical points, a dynamic double critical end and dynamic quadruple points. A comparison is made with the results of the other metamagnetic Ising systems.

  10. The Glauber dynamics for a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Canko, Osman; Kantar, Ersin

    2009-01-01

    We present a study, within a mean-field approximation, of the dynamics of a spin-1 metamagnetic Ising system with bilinear and biquadratic interactions in the presence of a time-dependent oscillating external magnetic field. First, we employ the Glauber transition rates to construct the set of mean-field dynamic equations. Then, we study the time variation of the average order parameters to find the phases in the system. We also investigate the thermal behavior of dynamic order parameters to characterize the nature (first- or second-order) of the dynamic transitions. The dynamic phase transitions are obtained and the phase diagrams are constructed in two different the planes. The phase diagrams contain a disordered and ordered phases, and four different mixed phases that strongly depend on interaction parameters. Phase diagrams also display one or two dynamic tricritical points, a dynamic double critical end and dynamic quadruple points. A comparison is made with the results of the other metamagnetic Ising systems.

  11. Flowing states and vortices in the classical XY model in an external field

    International Nuclear Information System (INIS)

    Homma, Shigeo; Aoki, Toshizumi; Takeno, Shozo.

    1981-01-01

    Uniformly flowing states and vortices in the classical XY model in an external field are studied. This is done by using a continuum approximation and by paying attention to particular solutions to nonlinear partial differential equations for two angles theta and phi of rotation of spins for which phi satisfies the Laplace equation. For these two states equations for theta have forms similar to that in the classical Ising model in a transverse field. The uniformly flowing states are therefore described by kink-type excitations identical to those in the two-dimensional Ising model. Phonon modes associated with the uniformly flowing states are also studied, which are similar to Bogoliubov phonons. Vortex solutions and vortex formation energy are studied in close similarity to the case of liquid He 4 . By comparing the energies of these two states, an expression for critical velocity is obtained. By making correspondence to the case of liquid He 4 , numerical values of the critical velocity and of the velocity of phonons around the uniformly flowing states are estimated. For the former the numerical value is in fair agreement with experimental data. (author)

  12. Magnetic and magnetocaloric properties of the exactly solvable mixed-spin Ising model on a decorated triangular lattice in a magnetic field

    Science.gov (United States)

    Gálisová, Lucia; Strečka, Jozef

    2018-05-01

    The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.

  13. Integrated Support Environment (ISE) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Integrated Support Environment (ISE) Laboratory serves the fleet, in-service engineers, logisticians and program management offices by automatically and...

  14. Hyperfine Level Interactions of Diamond Nitrogen Vacancy Ensembles Under Transverse Magnetic Fields

    Science.gov (United States)

    2015-10-06

    eigenvalues 0, ±h̄, corresponding to ms = 0,±1 [18]. Figure 1 shows the calculated energy levels as a function of axial field for a fixed transverse...Progress in 5 Physics 77, 056503 (2014). [9] G. Kucsko, P. C. Maurer, N. Y. Yao, M. Kubo , H. J. Noh, P. K. Lo, H. Park, and M. D. Lukin, Nature 500

  15. Estimation of transversely isotropic material properties from magnetic resonance elastography using the optimised virtual fields method.

    Science.gov (United States)

    Miller, Renee; Kolipaka, Arunark; Nash, Martyn P; Young, Alistair A

    2018-03-12

    Magnetic resonance elastography (MRE) has been used to estimate isotropic myocardial stiffness. However, anisotropic stiffness estimates may give insight into structural changes that occur in the myocardium as a result of pathologies such as diastolic heart failure. The virtual fields method (VFM) has been proposed for estimating material stiffness from image data. This study applied the optimised VFM to identify transversely isotropic material properties from both simulated harmonic displacements in a left ventricular (LV) model with a fibre field measured from histology as well as isotropic phantom MRE data. Two material model formulations were implemented, estimating either 3 or 5 material properties. The 3-parameter formulation writes the transversely isotropic constitutive relation in a way that dissociates the bulk modulus from other parameters. Accurate identification of transversely isotropic material properties in the LV model was shown to be dependent on the loading condition applied, amount of Gaussian noise in the signal, and frequency of excitation. Parameter sensitivity values showed that shear moduli are less sensitive to noise than the other parameters. This preliminary investigation showed the feasibility and limitations of using the VFM to identify transversely isotropic material properties from MRE images of a phantom as well as simulated harmonic displacements in an LV geometry. Copyright © 2018 John Wiley & Sons, Ltd.

  16. Plasmasheet boundary electric fields during substorms

    International Nuclear Information System (INIS)

    Pedersen, A.

    1985-01-01

    Electric field data from the ISEE-1 and GEOS-2 satellites have been studied during two substorms when ISEE-1 was in a favourable position in the magneto-tail and GEOS-2 was in the afternoon/evening sector of the geostationary orbit. Both electric field measurements were carried out with spherical double probes, separately by 73.5 m on ISEE-1, and 42 m on GEOS-2. In one case GEOS-2, in the afternoon sector, detected an increase of the dawn-to-dusk electric field during plasmasheet thinning and approximately 10 minutes prior to a substorm expansion. At the time of this expansion ISEE-1 was most likely near an X-line, on the Earthward side and detected Earthward antiE x antiB velocities, in excess of 500 km s -1 . In another example ISEE-1 was most likely near an X-line, on the tailward side, and observed tailward antiE x antiB velocities which were followed, 5-20 minutes later, by characteristic oscillating electric fields (time scales of 10s-30s) on GEOS-2 near 23 local time. Such signatures have on many occasions been connected with observations of westward travelling surges near the GEOS-2 conjugated area in Scandinavia. The ISEE-1 observations of large-dawn-to-dusk electric fields were concentrated to the outer boundary of the plasmasheet, and in the case of the westward travelling surge. GEOS-2 was most likely at the inner, Earthward edge of the plasmasheet. Time delays between ISEE-1 and GEOS-2 indicate a propagation velocity comparable to the antiE x antiB velocity

  17. LONGITUDINAL AND TRANSVERSAL PLASMA WAVE INSTABILITIES IN TWO COUNTERSTREAMING PLASMAS WITHOUT EXTERNAL FIELDS

    Energy Technology Data Exchange (ETDEWEB)

    Buenemann, D

    1963-03-15

    Some aspects of the theory of longitudinal and transversal waves in a collisionless nonrelativistic plasma are treated. A dispersion relation for multicomponent plasmas is derived from the linearized Boltzmann-Vlasov equation using the full set of Maxwell's equations without an external field. The velocity distributions of the plasma streams are assumed to be Maxwellian. For the particular case of two counterstreaming plasmas it is shown that there exists transversal instabilities for all counterstreaming velocities whereas the well known two stream instabilities only exist for velocities greater than a critical velocity. Exact solutions for the onset of the instabilities can be given. This kind of instability may occur for any nonisotropic velocity distribution in a collisionless plasma. (auth)

  18. Exact solution of an Ising model with competing interactions on a Cayley tree

    CERN Document Server

    Ganikhodjaev, N N; Wahiddin, M R B

    2003-01-01

    The exact solution of an Ising model with competing restricted interactions on the Cayley tree, and in the absence of an external field is presented. A critical curve is defined where it is possible to get phase transitions above it, and a single Gibbs state is obtained elsewhere.

  19. Selection rules for single-chain-magnet behaviour in non-collinear Ising systems

    International Nuclear Information System (INIS)

    Vindigni, Alessandro; Pini, Maria Gloria

    2009-01-01

    The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.

  20. Selection rules for single-chain-magnet behaviour in non-collinear Ising systems

    Energy Technology Data Exchange (ETDEWEB)

    Vindigni, Alessandro [Laboratorium fuer Festkoerperphysik, ETH Zuerich, CH-8093 Zuerich (Switzerland); Pini, Maria Gloria [Istituto dei Sistemi Complessi, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019 Sesto Fiorentino (Italy)], E-mail: vindigni@phys.ethz.ch

    2009-06-10

    The magnetic behaviour of molecular single-chain magnets is investigated in the framework of a one-dimensional Ising model with single spin-flip Glauber dynamics. Opportune modifications to the original theory are required in order to account for non-collinearity of local anisotropy axes between themselves and with respect to the crystallographic (laboratory) frame. The extension of Glauber's theory to the case of a collinear Ising ferrimagnetic chain is also discussed. Within this formalism, both the dynamics of magnetization reversal in zero field and the response of the system to a weak magnetic field, oscillating in time, are studied. Depending on the experimental geometry, selection rules are found for the occurrence of slow relaxation of the magnetization at low temperatures, as well as for resonant behaviour of the a.c. susceptibility as a function of temperature at low frequencies. The present theory applies successfully to some real systems, namely Mn-, Dy- and Co-based molecular magnetic chains, showing that single-chain-magnet behaviour is not only a feature of collinear ferro- and ferrimagnetic, but also of canted antiferromagnetic chains.

  1. Tricriticality in the q-neighbor Ising model on a partially duplex clique.

    Science.gov (United States)

    Chmiel, Anna; Sienkiewicz, Julian; Sznajd-Weron, Katarzyna

    2017-12-01

    We analyze a modified kinetic Ising model, a so-called q-neighbor Ising model, with Metropolis dynamics [Phys. Rev. E 92, 052105 (2015)PLEEE81539-375510.1103/PhysRevE.92.052105] on a duplex clique and a partially duplex clique. In the q-neighbor Ising model each spin interacts only with q spins randomly chosen from its whole neighborhood. In the case of a duplex clique the change of a spin is allowed only if both levels simultaneously induce this change. Due to the mean-field-like nature of the model we are able to derive the analytic form of transition probabilities and solve the corresponding master equation. The existence of the second level changes dramatically the character of the phase transition. In the case of the monoplex clique, the q-neighbor Ising model exhibits a continuous phase transition for q=3, discontinuous phase transition for q≥4, and for q=1 and q=2 the phase transition is not observed. On the other hand, in the case of the duplex clique continuous phase transitions are observed for all values of q, even for q=1 and q=2. Subsequently we introduce a partially duplex clique, parametrized by r∈[0,1], which allows us to tune the network from monoplex (r=0) to duplex (r=1). Such a generalized topology, in which a fraction r of all nodes appear on both levels, allows us to obtain the critical value of r=r^{*}(q) at which a tricriticality (switch from continuous to discontinuous phase transition) appears.

  2. Deep Neural Network Detects Quantum Phase Transition

    Science.gov (United States)

    Arai, Shunta; Ohzeki, Masayuki; Tanaka, Kazuyuki

    2018-03-01

    We detect the quantum phase transition of a quantum many-body system by mapping the observed results of the quantum state onto a neural network. In the present study, we utilized the simplest case of a quantum many-body system, namely a one-dimensional chain of Ising spins with the transverse Ising model. We prepared several spin configurations, which were obtained using repeated observations of the model for a particular strength of the transverse field, as input data for the neural network. Although the proposed method can be employed using experimental observations of quantum many-body systems, we tested our technique with spin configurations generated by a quantum Monte Carlo simulation without initial relaxation. The neural network successfully identified the strength of transverse field only from the spin configurations, leading to consistent estimations of the critical point of our model Γc = J.

  3. Generation of Control by SU(2) Reduction for the Anisotropic Ising Model

    International Nuclear Information System (INIS)

    Delgado, F

    2016-01-01

    Control of entanglement is fundamental in Quantum Information and Quantum Computation towards scalable spin-based quantum devices. For magnetic systems, Ising interaction with driven magnetic fields modifies entanglement properties of matter based quantum systems. This work presents a procedure for dynamics reduction on SU(2) subsystems using a non-local description. Some applications for Quantum Information are discussed. (paper)

  4. Magnetic properties of the three-dimensional Ising model with an interface amorphization

    International Nuclear Information System (INIS)

    Benyoussef, A.; El Kenz, A.; Saber, M.

    1993-09-01

    A three-dimensional ferromagnetic Ising model with an interface amorphization is investigated with the use of the effective field theory. Phase diagrams and reduced magnetization curves of interface and bulks are studied. We obtain a number of characteristic behaviour such as the possibility of the reentrant phenomena and a large depression of interface magnetization. (author). 21 refs, 5 figs

  5. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine

    Science.gov (United States)

    Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa

    2014-12-01

    Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.

  6. The flame structure in round and plane propane microjet combustion in a transverse acoustic field at low Reynolds numbers

    Science.gov (United States)

    Kozlov, V. V.; Grek, G. R.; Katasonov, M. M.; Korobeinichev, O. P.; Litvinenko, Yu. A.; Shmakov, A. G.

    2014-12-01

    The results of experimental studies of the structure and features of flame evolution under propane combustion in round and plane microjet flows at low Reynolds numbers in a transverse acoustic field are discussed in this paper. The specific features of flame evolution under these conditions are shown. Based on the new information obtained on free microjet evolution, new phenomena in flame evolution in a transverse acoustic field with round and plane propane microjet combustion are discovered and explained.

  7. An extended chain Ising model and its Glauber dynamics

    International Nuclear Information System (INIS)

    Zhao Xing-Yu; Fan Xiao-Hui; Huang Yi-Neng; Huang Xin-Ru

    2012-01-01

    It was first proposed that an extended chain Ising (ECI) model contains the Ising chain model, single spin double-well potentials and a pure phonon heat bath of a specific energy exchange with the spins. The extension method is easy to apply to high dimensional cases. Then the single spin-flip probability (rate) of the ECI model is deduced based on the Boltzmann principle and general statistical principles of independent events and the model is simplified to an extended chain Glauber—Ising (ECGI) model. Moreover, the relaxation dynamics of the ECGI model were simulated by the Monte Carlo method and a comparison with the predictions of the special chain Glauber—Ising (SCGI) model was presented. It was found that the results of the two models are consistent with each other when the Ising chain length is large enough and temperature is relative low, which is the most valuable case of the model applications. These show that the ECI model will provide a firm physical base for the widely used single spin-flip rate proposed by Glauber and a possible route to obtain the single spin-flip rate of other form and even the multi-spin-flip rate. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. Transverse magnetic field penetration through the JET toroidal coil and support structure

    International Nuclear Information System (INIS)

    Core, W.G.F.; Noll, P.

    1988-01-01

    This report contains the results of a study of transverse magnetic field penetration through the JET magnetic field coil systems and supporting structures. The studies were carried out during the initial JET design phase (1973-78) and were part of a major radius compression plasma heating feasibility study. In view of the interest in this problem the authors have decided to re-issue the original work as a JET report. The material basically remains unchanged although better estimates of the penetration times have been obtained and typographical errors which occurred in the original have been corrected. (author)

  9. Quench dynamics across quantum critical points

    International Nuclear Information System (INIS)

    Sengupta, K.; Powell, Stephen; Sachdev, Subir

    2004-01-01

    We study the quantum dynamics of a number of model systems as their coupling constants are changed rapidly across a quantum critical point. The primary motivation is provided by the recent experiments of Greiner et al. [Nature (London) 415, 39 (2002)] who studied the response of a Mott insulator of ultracold atoms in an optical lattice to a strong potential gradient. In a previous work, it had been argued that the resonant response observed at a critical potential gradient could be understood by proximity to an Ising quantum critical point describing the onset of density wave order. Here we obtain numerical results on the evolution of the density wave order as the potential gradient is scanned across the quantum critical point. This is supplemented by studies of the integrable quantum Ising spin chain in a transverse field, where we obtain exact results for the evolution of the Ising order correlations under a time-dependent transverse field. We also study the evolution of transverse superfluid order in the three-dimensional case. In all cases, the order parameter is best enhanced in the vicinity of the quantum critical point

  10. Beam emittance growth caused by transverse deflecting fields in a linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Chao, A W; Richter, B; Yao, C Y [Stanford Linear Accelerator Center, CA (USA)

    1980-12-01

    The effect of the beam-generated transverse deflecting fields on the emittance of an intense bunch of particles in a high-energy linear accelerator is analyzed in this paper. The equation of motion is solved by a perturbation method for cases of a coasting beam and a uniformly accelerated beam. The results are applied to obtain some design tolerance specifications for the recently proposed SLAC Single Pass Collider.

  11. First-order phase transition in the quantum spin glass at T=0

    Energy Technology Data Exchange (ETDEWEB)

    Viana, J. Roberto; Nogueira, Yamilles; Sousa, J. Ricardo de

    2003-05-26

    The van Hemmen model with transverse and random longitudinal field is studied to analyze the tricritical behavior in the quantum Ising spin glass at T=0. The free energy and order parameter are calculated for two types of probability distributions: Gaussian and bimodal. We obtain the phase diagram in the {omega}-H plane, where {omega} and H are the transverse and random longitudinal fields, respectively. For the case of Gaussian distribution the phase transition is of second order, while the bimodal distribution we observe second-order transition for high-transverse field and first-order transition for small transverse field, with a tricritical point in the phase diagram.

  12. First-order phase transition in the quantum spin glass at T=0

    International Nuclear Information System (INIS)

    Viana, J. Roberto; Nogueira, Yamilles; Sousa, J. Ricardo de

    2003-01-01

    The van Hemmen model with transverse and random longitudinal field is studied to analyze the tricritical behavior in the quantum Ising spin glass at T=0. The free energy and order parameter are calculated for two types of probability distributions: Gaussian and bimodal. We obtain the phase diagram in the Ω-H plane, where Ω and H are the transverse and random longitudinal fields, respectively. For the case of Gaussian distribution the phase transition is of second order, while the bimodal distribution we observe second-order transition for high-transverse field and first-order transition for small transverse field, with a tricritical point in the phase diagram

  13. Speeding up transmissions of unknown quantum information along Ising-type quantum channels

    International Nuclear Information System (INIS)

    Guo W J; Wei L F

    2017-01-01

    Quantum teleportation with entanglement channels and a series of two-qubit SWAP gates between the nearest-neighbor qubits are usually utilized to achieve the transfers of unknown quantum state from the sender to the distant receiver. In this paper, by simplifying the usual SWAP gates we propose an approach to speed up the transmissions of unknown quantum information, specifically including the single-qubit unknown state and two-qubit unknown entangled ones, by a series of entangling and disentangling operations between the remote qubits with distant interactions. The generic proposal is demonstrated specifically with experimentally-existing Ising-type quantum channels without transverse interaction; liquid NMR-molecules driven by global radio frequency electromagnetic pulses and capacitively-coupled Josephson circuits driven by local microwave pulses. The proposal should be particularly useful to set up the connections between the distant qubits in a chip of quantum computing. (paper)

  14. Emergent 1d Ising Behavior in AN Elementary Cellular Automaton Model

    Science.gov (United States)

    Kassebaum, Paul G.; Iannacchione, Germano S.

    The fundamental nature of an evolving one-dimensional (1D) Ising model is investigated with an elementary cellular automaton (CA) simulation. The emergent CA simulation employs an ensemble of cells in one spatial dimension, each cell capable of two microstates interacting with simple nearest-neighbor rules and incorporating an external field. The behavior of the CA model provides insight into the dynamics of coupled two-state systems not expressible by exact analytical solutions. For instance, state progression graphs show the causal dynamics of a system through time in relation to the system's entropy. Unique graphical analysis techniques are introduced through difference patterns, diffusion patterns, and state progression graphs of the 1D ensemble visualizing the evolution. All analyses are consistent with the known behavior of the 1D Ising system. The CA simulation and new pattern recognition techniques are scalable (in both dimension, complexity, and size) and have many potential applications such as complex design of materials, control of agent systems, and evolutionary mechanism design.

  15. Phase transition properties of a cylindrical ferroelectric nanowire

    Indian Academy of Sciences (India)

    Based on the transverse Ising model (TIM) and using the mean-field theory, we inves- ... workers [11–13] to study the static and dynamic properties of ferroelectric superlattices. ... The mean-field expressions is usually used for a qualitative.

  16. Effects of surface modification on the critical behaviour in multiple-surface-layer ferroelectric thin films

    International Nuclear Information System (INIS)

    Lu, Z X

    2013-01-01

    Using the usual mean-field theory approximation, the critical behaviour (i.e. the Curie temperature T c and the critical surface transverse field Ω sc ) in a multiple-surface-layer ferroelectric thin film is studied on the basis of the spin- 1/2 transverse Ising model. The dependence of the Curie temperature T c on the surface transverse field Ω s and the surface layer number N s are discussed in detail. Meanwhile the dependence of the critical surface transverse field Ω sc on the surface layer number N s is also examined. The numerical results indicate that the critical behaviour of ferroelectric thin films is obviously affected by modifications of the surface transverse field Ω s and surface layer number N s .

  17. The Peierls argument for higher dimensional Ising models

    International Nuclear Information System (INIS)

    Bonati, Claudio

    2014-01-01

    The Peierls argument is a mathematically rigorous and intuitive method to show the presence of a non-vanishing spontaneous magnetization in some lattice models. This argument is typically explained for the D = 2 Ising model in a way which cannot be easily generalized to higher dimensions. The aim of this paper is to present an elementary discussion of the Peierls argument for the general D-dimensional Ising model. (paper)

  18. The Relationship between Macroeconomic Variables and ISE Industry Index

    Directory of Open Access Journals (Sweden)

    Ahmet Ozcan

    2012-01-01

    Full Text Available In this study, the relationship between macroeconomic variables and Istanbul Stock Exchange (ISE industry index is examined. Over the past years, numerous studies have analyzed these relationships and the different results obtained from these studies have motivated further research. The relationship between stock exchange index and macroeconomic variables has been well documented for the developed markets. However, there are few studies regarding the relationship between macroeconomic variables and stock exchange index for the developing markets. Thus, this paper seeks to address the question of whether macroeconomic variables have a significant relationship with ISE industry index using monthly data for the period from 2003 to 2010. The selected macroeconomic variables for the study include interest rates, consumer price index, money supply, exchange rate, gold prices, oil prices, current account deficit and export volume. The Johansen’s cointegration test is utilized to determine the impact of selected macroeconomic variables on ISE industry index. The result of the Johansen’s cointegration shows that macroeconomic variables exhibit a long run equilibrium relationship with the ISE industry index.

  19. Commuting quantum circuits and complexity of Ising partition functions

    International Nuclear Information System (INIS)

    Fujii, Keisuke; Morimae, Tomoyuki

    2017-01-01

    Instantaneous quantum polynomial-time (IQP) computation is a class of quantum computation consisting only of commuting two-qubit gates and is not universal. Nevertheless, it has been shown that if there is a classical algorithm that can simulate IQP efficiently, the polynomial hierarchy collapses to the third level, which is highly implausible. However, the origin of the classical intractability is still less understood. Here we establish a relationship between IQP and computational complexity of calculating the imaginary-valued partition functions of Ising models. We apply the established relationship in two opposite directions. One direction is to find subclasses of IQP that are classically efficiently simulatable by using exact solvability of certain types of Ising models. Another direction is applying quantum computational complexity of IQP to investigate (im)possibility of efficient classical approximations of Ising partition functions with imaginary coupling constants. Specifically, we show that a multiplicative approximation of Ising partition functions is #P-hard for almost all imaginary coupling constants even on planar lattices of a bounded degree. (paper)

  20. Giant magnetocaloric effect, magnetization plateaux and jumps of the regular Ising polyhedra

    International Nuclear Information System (INIS)

    Strečka, Jozef; Karľová, Katarína; Madaras, Tomáš

    2015-01-01

    Magnetization process and adiabatic demagnetization of the antiferromagnetic Ising spin clusters with the shape of regular polyhedra (Platonic solids) are exactly examined within the framework of a simple graph-theoretical approach. While the Ising cube as the only unfrustrated (bipartite) spin cluster shows just one trivial plateau at zero magnetization, the other regular Ising polyhedra (tetrahedron, octahedron, icosahedron and dodecahedron) additionally display either one or two intermediate plateaux at fractional values of the saturation magnetization. The nature of highly degenerate ground states emergent at intermediate plateaux owing to a geometric frustration is clarified. It is evidenced that the regular Ising polyhedra exhibit a giant magnetocaloric effect in a vicinity of magnetization jumps, whereas the Ising octahedron and dodecahedron belong to the most prominent geometrically frustrated spin clusters that enable an efficient low-temperature refrigeration by the process of adiabatic demagnetization

  1. Magnetic properties of Fe–Al for quenched diluted spin-1 Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, A.S. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil); Coordenadoria de Física, Instituto Federal de Sergipe, 49400-000 Lagarto, SE (Brazil); Albuquerque, Douglas F. de, E-mail: douglas@ufs.br [Departamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil); Departamento de Matemática, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil); Fittipaldi, I.P. [Representação Regional do Ministério da Ciência, Tecnologia e Inovação no Nordeste - ReNE, 50740-540 Recife, PE (Brazil); Moreno, N.O. [Departamento de Física, Universidade Federal de Sergipe, 49100-000, São Cristovão, SE (Brazil)

    2014-08-01

    We study the phase diagram of Fe{sub 1−q}Al{sub q} alloys via the quenched site diluted spin-1 ferromagnetic Ising model by employing effective field theory. One suggests a new approach to exchange interaction between nearest neighbors of Fe that depends on the powers of the Al (q) instead of the linear dependence proposed in other papers. In such model we propose the same kind of the exchange interaction in which the iron–nickel alloys obtain an excellent theoretical description of the experimental data of the T–q phase diagram for all Al concentration q. - Highlights: • We apply the quenched Ising model spin-1 to study the properties of Fe–Al. • We employ the EFT and suggest a new approach to ferromagnetic coupling. • The new probability distribution is considered. • The phase diagram is obtained for all values of q in T–q plane.

  2. Magnetic properties of Fe–Al for quenched diluted spin-1 Ising model

    International Nuclear Information System (INIS)

    Freitas, A.S.; Albuquerque, Douglas F. de; Fittipaldi, I.P.; Moreno, N.O.

    2014-01-01

    We study the phase diagram of Fe 1−q Al q alloys via the quenched site diluted spin-1 ferromagnetic Ising model by employing effective field theory. One suggests a new approach to exchange interaction between nearest neighbors of Fe that depends on the powers of the Al (q) instead of the linear dependence proposed in other papers. In such model we propose the same kind of the exchange interaction in which the iron–nickel alloys obtain an excellent theoretical description of the experimental data of the T–q phase diagram for all Al concentration q. - Highlights: • We apply the quenched Ising model spin-1 to study the properties of Fe–Al. • We employ the EFT and suggest a new approach to ferromagnetic coupling. • The new probability distribution is considered. • The phase diagram is obtained for all values of q in T–q plane

  3. Monte Carlo steps per spin vs. time in the master equation II: Glauber kinetics for the infinite-range ising model in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Suhk Kun [Chungbuk National University, Chungbuk (Korea, Republic of)

    2006-01-15

    As an extension of our previous work on the relationship between time in Monte Carlo simulation and time in the continuous master equation in the infinit-range Glauber kinetic Ising model in the absence of any magnetic field, we explored the same model in the presence of a static magnetic field. Monte Carlo steps per spin as time in the MC simulations again turns out to be proportional to time in the master equation for the model in relatively larger static magnetic fields at any temperature. At and near the critical point in a relatively smaller magnetic field, the model exhibits a significant finite-size dependence, and the solution to the Suzuki-Kubo differential equation stemming from the master equation needs to be re-scaled to fit the Monte Carlo steps per spin for the system with different numbers of spins.

  4. Numerical investigation of a plasma beam entering transverse magnetic fields

    International Nuclear Information System (INIS)

    Koga, J.; Geary, J.L.; Tajima, T.; Rostoker, N.

    1988-11-01

    We study plasma beam injection into transverse magnetic fields using both electrostatic and electromagnetic particle-in-cell (PIC) codes. In the case of small beam momentum or energy (low drift kinetic /beta/) we study both large and small ion gyroradius beams. Large ion gyroradius beams with a large dielectric constant /epsilon/ /muchreverse arrowgt/ (M/m)/sup /1/2// are found to propagate across the magnetic field via E /times/ B drifts at nearly the initial injection velocity, where /epsilon/ = 1 + (/omega//sup pi//sup 2/)/(/Omega//sub i//sup 2/) and (M/m) is the ion to electron mass ratio. Beam degradation and undulations are observed in agreement with previous experimental and analytical results. When /epsilon/ is on the order of (M/m)/sup /1/2//, the plasma beam propagates across field lines at only half its initial velocity and loses its coherent structure. When /epsilon/ is much less than (M/m)/sup /1/2//, the beam particles decouple at the magnetic field boundary, scattering the electrons and slightly deflecting the ions. For small ion gyroradius beam injection a flute type instability is observed at the beam magnetic fields interface. In the case of large beam momentum or energy (high drift kinetic /beta/) we observe good penetration of a plasma beam which shields the magnetic field from the interior of the beam (diagmagnetism). 25 refs., 13 figs., 1 tab

  5. Large deviations of the finite-time magnetization of the Curie-Weiss random-field Ising model

    Science.gov (United States)

    Paga, Pierre; Kühn, Reimer

    2017-08-01

    We study the large deviations of the magnetization at some finite time in the Curie-Weiss random field Ising model with parallel updating. While relaxation dynamics in an infinite-time horizon gives rise to unique dynamical trajectories [specified by initial conditions and governed by first-order dynamics of the form mt +1=f (mt) ] , we observe that the introduction of a finite-time horizon and the specification of terminal conditions can generate a host of metastable solutions obeying second-order dynamics. We show that these solutions are governed by a Newtonian-like dynamics in discrete time which permits solutions in terms of both the first-order relaxation ("forward") dynamics and the backward dynamics mt +1=f-1(mt) . Our approach allows us to classify trajectories for a given final magnetization as stable or metastable according to the value of the rate function associated with them. We find that in analogy to the Freidlin-Wentzell description of the stochastic dynamics of escape from metastable states, the dominant trajectories may switch between the two types (forward and backward) of first-order dynamics. Additionally, we show how to compute rate functions when uncertainty in the quenched disorder is introduced.

  6. Phase diagrams of a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system under a time-dependent oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, M.; Canko, O.; Gueldal, S.

    2009-01-01

    We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.

  7. Phase diagrams of a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system under a time-dependent oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, M., E-mail: keskin@erciyes.edu.t [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Canko, O. [Department of Physics, Erciyes University, 38039 Kayseri (Turkey); Gueldal, S. [Institute of Science, Erciyes University, 38039 Kayseri (Turkey)

    2009-12-14

    We present phase diagrams for a nonequilibrium mixed spin-1/2 and spin-2 Ising ferrimagnetic system on a square lattice in the presence of a time dependent oscillating external magnetic field. We employ the Glauber transition rates to construct the mean-field dynamical equations. The time variation of the average magnetizations and the thermal behavior of the dynamic magnetizations are investigated, extensively. The nature (continuous or discontinuous) of the transitions is characterized by studying the thermal behaviors of the dynamic magnetizations. The dynamic phase transition points are obtained and the phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p) and ferrimagnetic (i) phases, and one coexistence or mixed phase region, namely the i+p, that strongly depend on interaction parameters. The system exhibits the dynamic tricritical point and the reentrant behaviors.

  8. Magnetohydrodynamic Stability of Streaming Jet Pervaded Internally by Varying Transverse Magnetic Field

    Directory of Open Access Journals (Sweden)

    Alfaisal A. Hasan

    2012-01-01

    Full Text Available The Magnetohydrodynamic stability of a streaming cylindrical model penetrated by varying transverse magnetic field has been discussed. The problem is formulated, the basic equations are solved, upon appropriate boundary conditions the eigenvalue relation is derived and discussed analytically, and the results are verified numerically. The capillary force is destabilizing in a small axisymmetric domain 0<<1 and stabilizing otherwise. The streaming has a strong destabilizing effect in all kinds of perturbation. The toroidal varying magnetic field interior the fluid has no direct effect at all on the stability of the fluid column. The axial exterior field has strong stabilizing effect on the model. The effect of all acting forces altogether could be identified via the numerical analysis of the stability theory of the present model.

  9. Statistical mechanics of a multiconnected Hopfield neural-network model in a transverse field

    International Nuclear Information System (INIS)

    Ma, Y.; Gong, C.

    1995-01-01

    The Hopfield neural-network model with p-spin interactions in the presence of a transverse field is introduced and solved exactly in the limit p→∞. In the phase diagrams drawn as a function of the temperature, the important results such as reentrance are found, and the effects of the quantum fluctuations on the phase transitions, the retrieval phase, and the storage ratio α are examined

  10. Monte Carlo characterization of clinical electron beams in transverse magnetic fields

    International Nuclear Information System (INIS)

    Lee, Michael C.; Ma, Chang-Ming

    2000-01-01

    Monte Carlo simulations were employed to study the characteristics of the electron beams of a clinical linear accelerator in the presence of 1.5 and 3.0 T transverse magnetic fields and to assess the possibility of using magnetic fields in conjunction with modulated electron radiation therapy (MERT). The starting depth of the magnetic field was varied over several centimetres. It was found that peak doses of as much as 2.7 times the surface dose could be achieved with a 1.5 T magnetic field. The magnetic field was shown to reduce the 80% and 20% dose drop-off distance by 50% to 80%. The distance between the 80% dose levels of the pseudo-Bragg peak induced by the magnetic field was found to be extremely narrow, generally less than 1 cm. However, by modulating the energy and intensity of the electron fields while simultaneously moving the magnetic field, a homogeneous dose distribution with low surface dose and a sharp dose fall-off was generated. Heterogeneities are shown to change the effective range of the electron beams, but not eliminate the advantages of a sharp depth-dose drop-off or high peak-to-surface dose ratio. This suggests the applicability of MERT with magnetic fields in heterogeneous media. The results of this study demonstrate the ability to use magnetic fields in MERT to produce highly desirable dose distributions. (author)

  11. An Ising spin state explanation for financial asset allocation

    Science.gov (United States)

    Horvath, Philip A.; Roos, Kelly R.; Sinha, Amit

    2016-03-01

    We build on the developments in the application of statistical mechanics, notably the identity of the spin degree of freedom in the Ising model, to explain asset price dynamics in financial markets with a representative agent. Specifically, we consider the value of an individual spin to represent the proportional holdings in various assets. We use partial moment arguments to identify asymmetric reactions to information and develop an extension of a plunging and dumping model. This unique identification of the spin is a relaxation of the conventional discrete state limitation on an Ising spin to accommodate a new archetype in Ising model-finance applications wherein spin states may take on continuous values, and may evolve in time continuously, or discretely, depending on the values of the partial moments.

  12. Quantum critical environment assisted quantum magnetometer

    Science.gov (United States)

    Jaseem, Noufal; Omkar, S.; Shaji, Anil

    2018-04-01

    A central qubit coupled to an Ising ring of N qubits, operating close to a critical point is investigated as a potential precision quantum magnetometer for estimating an applied transverse magnetic field. We compute the quantum Fisher information for the central, probe qubit with the Ising chain initialized in its ground state or in a thermal state. The non-unitary evolution of the central qubit due to its interaction with the surrounding Ising ring enhances the accuracy of the magnetic field measurement. Near the critical point of the ring, Heisenberg-like scaling of the precision in estimating the magnetic field is obtained when the ring is initialized in its ground state. However, for finite temperatures, the Heisenberg scaling is limited to lower ranges of N values.

  13. Entanglement entropy from the truncated conformal space

    Directory of Open Access Journals (Sweden)

    T. Palmai

    2016-08-01

    Full Text Available A new numerical approach to entanglement entropies of the Rényi type is proposed for one-dimensional quantum field theories. The method extends the truncated conformal spectrum approach and we will demonstrate that it is especially suited to study the crossover from massless to massive behavior when the subsystem size is comparable to the correlation length. We apply it to different deformations of massless free fermions, corresponding to the scaling limit of the Ising model in transverse and longitudinal fields. For massive free fermions the exactly known crossover function is reproduced already in very small system sizes. The new method treats ground states and excited states on the same footing, and the applicability for excited states is illustrated by reproducing Rényi entropies of low-lying states in the transverse field Ising model.

  14. Spatial distribution of electron plasma oscillations in the Earth`s foreshock at ISEE 3

    Energy Technology Data Exchange (ETDEWEB)

    Greenstadt, E.W.; Moses, S.L.; Coroniti, F.V. [TRW, Redondo Beach, CA (United States)] [and others

    1995-10-01

    Electric field oscillations recorded by the 10-56 kHz channels of TRW`s plasma wave detector during parts of two of the ISEE 3 circumterrestrial orbits in 1983 have been used to make the first mapping of Earth`s electron plasma wave foreshock. By combining data from the two trajectory segments, each of which provided relatively meager spatial sampling outside the bow shock, but high variation of interplanetary magnetic field (IMF) direction, a first-order pattern of occurrence of electron plasma waves, hence also backstreaming electrons, has been determined. The authors depict the pattern with an adaptation of the mapping program previously used for the Venus electron foreshock. As at Venus, plasma wave activity was concentrated most densely along the IMF line tangent to the bow shock. Their mappings with three additional ISEE 3 channels surrounding the local electron plasma frequency indicate a richer distribution of waves in the foreshock than the single electron frequency channel of Pioneer Venus Orbiter could detect around Venus. 14 refs., 4 figs.

  15. Transverse eV Ion Heating by Random Electric Field Fluctuations in the Plasmasphere

    Science.gov (United States)

    Artemyev, A. V.; Mourenas, D.; Agapitov, O. V.; Blum, L.

    2017-01-01

    Charged particle acceleration in the Earth inner magnetosphere is believed to be mainly due to the local resonant wave-particle interaction or particle transport processes. However, the Van Allen Probes have recently provided interesting evidence of a relatively slow transverse heating of eV ions at distances about 2-3 Earth radii during quiet times. Waves that are able to resonantly interact with such very cold ions are generally rare in this region of space, called the plasmasphere. Thus, non-resonant wave-particle interactions are expected to play an important role in the observed ion heating. We demonstrate that stochastic heating by random transverse electric field fluctuations of whistler (and possibly electromagnetic ion cyclotron) waves could explain this weak and slow transverse heating of H+ and O+ ions in the inner magnetosphere. The essential element of the proposed model of ion heating is the presence of trains of random whistler (hiss) wave packets, with significant amplitude modulations produced by strong wave damping, rapid wave growth, or a superposition of wave packets of different frequencies, phases, and amplitudes. Such characteristics correspond to measured characteristics of hiss waves in this region. Using test particle simulations with typical wave and plasma parameters, we demonstrate that the corresponding stochastic transverse ion heating reaches 0.07-0.2 eV/h for protons and 0.007-0.015 eV/h for O+ ions. This global temperature increase of the Maxwellian ion population from an initial Ti approx. 0.3 eV could potentially explain the observations.

  16. Localized endomorphisms of the chiral Ising model

    International Nuclear Information System (INIS)

    Boeckenhauer, J.

    1994-07-01

    In the frame of the treatment of the chiral Ising model by Mack and Schomerus, examples of localized endomorphisms ρ 1 loc and ρ 1/2 loc are presented. It is shown that they lead to the same superselection sectors as the global ones in the sense that π 0 oρ 1 log ≅π 1 and π 0 pρ 1/2 loc ≅π 1/2 holds. For proving the latter unitary equivalence, Arakis formalism of the selfdual CAR algebra is used. Further it is shown that the localized endomorphisms obey the Ising fusion rules. (orig.)

  17. Mean-field Ising crossover and the critical exponents γ, ν, and η for a polymer blend: d-PB/PS studied by small-angle neutron scattering

    Science.gov (United States)

    Janssen, S.; Schwahn, D.; Springer, T.

    1992-05-01

    The critical behavior of the polymer blend d-PB/PS was investigated by small-angle neutron scattering experiments. 3D Ising behavior was clearly observed with the critical exponents γ=1.26+/-0.01, ν=0.59+/-0.01, and η=0.047+/-0.004. The crossover to mean-field behavior occurs at T*=Tc+5.4 K. This is compared with the results of other experiments and the Landau-Ginzburg criterion. The Q dependence of the structure factor S(Q) follows the Ornstein-Zernike form in both regimes.

  18. Magnetic field line draping in the plasma depletion layer

    Science.gov (United States)

    Sibeck, D. G.; Lepping, R. P.; Lazarus, A. J.

    1990-01-01

    Simultaneous IMP 8 solar wind and ISEE 1/2 observations for a northern dawn ISEE 1/2 magnetopause crossing on November 6, 1977. During this crossing, ISEE 1/2 observed quasi-periodic pulses of magnetosheathlike plasma on northward magnetic field lines. The ISEE 1/2 observations were originally interpreted as evidence for strong diffusion of magnetosheath plasma across the magnetopause and the Kelvin-Helmholtz instability at the inner edge of the low-latitude boundary layer. An alternate explanation, in terms of magnetic field merging and flux transfer events, has also been advocated. In this paper, a third interpretation is proposed in terms of quasi-periodic magnetopause motion which causes the satellites to repeatedly exit the magnetosphere and observe draped northward magnetosheath magnetic field lines in the plasma depletion layer.

  19. A Method to Measure the Transverse Magnetic Field and Orient the Rotational Axis of Stars

    Energy Technology Data Exchange (ETDEWEB)

    Leone, Francesco; Scalia, Cesare; Gangi, Manuele; Giarrusso, Marina [Università di Catania, Dipartimento di Fisica e Astronomia, Sezione Astrofisica, Via S. Sofia 78, I-95123 Catania (Italy); Munari, Matteo; Scuderi, Salvatore; Trigilio, Corrado [INAF—Osservatorio Astrofisico di Catania, Via S. Sofia 78, I-95123 Catania (Italy); Stift, Martin J. [Armagh Observatory, College Hill, Armagh BT61 9DG. Northern Ireland (United Kingdom)

    2017-10-20

    Direct measurements of stellar magnetic fields are based on the splitting of spectral lines into polarized Zeeman components. With a few exceptions, Zeeman signatures are hidden in data noise, and a number of methods have been developed to measure the average, over the visible stellar disk, of longitudinal components of the magnetic field. At present, faint stars are only observable via low-resolution spectropolarimetry, which is a method based on the regression of the Stokes V signal against the first derivative of Stokes I . Here, we present an extension of this method to obtain a direct measurement of the transverse component of stellar magnetic fields by the regression of high-resolution Stokes Q and U as a function of the second derivative of Stokes I . We also show that it is possible to determine the orientation in the sky of the rotation axis of a star on the basis of the periodic variability of the transverse component due to its rotation. The method is applied to data, obtained with the Catania Astrophysical Observatory Spectropolarimeter along the rotational period of the well known magnetic star β CrB.

  20. Microcanonical simulation of Ising systems

    International Nuclear Information System (INIS)

    Bhanot, G.; Neuberger, H.

    1984-01-01

    Numerical simulations of the microcanonical ensemble for Ising systems are described. We explain how to write very fast algorithms for such simulations, relate correlations measured in the microcanonical ensemble to those in the canonical ensemble and discuss criteria for convergence and ergodicity. (orig.)

  1. Monte Carlo study of alternate mixed spin-5/2 and spin-2 Ising ferrimagnetic system on the Bethe lattice

    Energy Technology Data Exchange (ETDEWEB)

    Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-01-01

    The magnetic properties of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice have been studied by using the Monte Carlo simulations. The ground state phase diagrams of alternate mixed spin-5/2 and spin-2 Ising model on the Bethe lattice has been obtained. The thermal total magnetization and magnetization of spins-5/2 and spin-2 with the different exchange interactions, external magnetic field and temperatures have been studied. The critical temperature have been deduced. The magnetic hysteresis cycle on the Bethe lattice has been deduced for different values of exchange interactions, for different values of crystal field and for different sizes. The magnetic coercive field has been deduced. - Highlights: • The alternate mixed spin-5/2 and -2 on the Bethe lattice is studied. • The critical temperature has been deduced. • The magnetic coercive filed has been deduced.

  2. Contingency plans for the ISEE-3 libration-point mission

    Science.gov (United States)

    Dunham, D. W.

    1979-01-01

    During the planning stage of the International Sun-Earth Explorer-3 (ISEE-3) mission, a recovery strategy was developed in case the Delta rocket underperformed during the launch phase. If a large underburn had occurred, the ISEE-3 spacecraft would have been allowed to complete one revolution of its highly elliptical earth orbit. The recovery plan called for a maneuver near perigee to increase the energy of the off-nominal orbit; a relatively small second maneuver would then insert the spacecraft into a new transfer trajectory toward the desired halo orbit target, and a third maneuver would place the spacecraft in the halo orbit. Results of the study showed that a large range of underburns could be corrected for a total nominal velocity deviation cost within the ISEE-3 fuel budget.

  3. A coherent Ising machine for 2000-node optimization problems

    Science.gov (United States)

    Inagaki, Takahiro; Haribara, Yoshitaka; Igarashi, Koji; Sonobe, Tomohiro; Tamate, Shuhei; Honjo, Toshimori; Marandi, Alireza; McMahon, Peter L.; Umeki, Takeshi; Enbutsu, Koji; Tadanaga, Osamu; Takenouchi, Hirokazu; Aihara, Kazuyuki; Kawarabayashi, Ken-ichi; Inoue, Kyo; Utsunomiya, Shoko; Takesue, Hiroki

    2016-11-01

    The analysis and optimization of complex systems can be reduced to mathematical problems collectively known as combinatorial optimization. Many such problems can be mapped onto ground-state search problems of the Ising model, and various artificial spin systems are now emerging as promising approaches. However, physical Ising machines have suffered from limited numbers of spin-spin couplings because of implementations based on localized spins, resulting in severe scalability problems. We report a 2000-spin network with all-to-all spin-spin couplings. Using a measurement and feedback scheme, we coupled time-multiplexed degenerate optical parametric oscillators to implement maximum cut problems on arbitrary graph topologies with up to 2000 nodes. Our coherent Ising machine outperformed simulated annealing in terms of accuracy and computation time for a 2000-node complete graph.

  4. Transverse field-induced nucleation pad switching modes during domain wall injection

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, M. T.; Fry, P. W.; Schrefl, T.; Gibbs, M. R. J.; Allwood, D. A.; Im, M.-Y.; Fischer, P.

    2010-03-12

    We have used magnetic transmission X-ray microscopy (M-TXM) to image in-field magnetization configurations of patterned Ni{sub 80}Fe{sub 20} domain wall 'injection pads' and attached planar nanowires. Comparison with micromagnetic simulations suggests that the evolution of magnetic domains in rectangular injection pads depends on the relative orientation of closure domains in the remanent state. The magnetization reversal pathway is also altered by the inclusion of transverse magnetic fields. These different modes explain previous results of domain wall injection into nanowires. Even more striking was the observation of domain walls injecting halfway across the width of wider (>400 nm wide) wires but over wire lengths of several micrometers. These extended Neel walls can interact with adjacent nanowires and cause a switching in the side of the wire undergoing reversal as the domain wall continues to expand.

  5. Learning and inference in a nonequilibrium Ising model with hidden nodes.

    Science.gov (United States)

    Dunn, Benjamin; Roudi, Yasser

    2013-02-01

    We study inference and reconstruction of couplings in a partially observed kinetic Ising model. With hidden spins, calculating the likelihood of a sequence of observed spin configurations requires performing a trace over the configurations of the hidden ones. This, as we show, can be represented as a path integral. Using this representation, we demonstrate that systematic approximate inference and learning rules can be derived using dynamical mean-field theory. Although naive mean-field theory leads to an unstable learning rule, taking into account Gaussian corrections allows learning the couplings involving hidden nodes. It also improves learning of the couplings between the observed nodes compared to when hidden nodes are ignored.

  6. Dimers and the Critical Ising Model on lattices of genus >1

    International Nuclear Information System (INIS)

    Costa-Santos, Ruben; McCoy, B.M.

    2002-01-01

    We study the partition function of both Close-Packed Dimers and the Critical Ising Model on a square lattice embedded on a genus two surface. Using numerical and analytical methods we show that the determinants of the Kasteleyn adjacency matrices have a dependence on the boundary conditions that, for large lattice size, can be expressed in terms of genus two theta functions. The period matrix characterizing the continuum limit of the lattice is computed using a discrete holomorphic structure. These results relate in a direct way the lattice combinatorics with conformal field theory, providing new insight to the lattice regularization of conformal field theories on higher genus Riemann surfaces

  7. The correlation between the transverse polarization and transverse momentum of lambda produced in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ye Yunxiu; Zhou Xin; Ji Gang; Su Shufang; Zhu Guohuai

    1996-01-01

    The transverse polarization of lambda produced in relativistic nucleus-nucleus collisions is determined. The effect from the interaction between spin moment and magnetic field is corrected. The near zero transverse polarization and non-correlation between transverse polarization and transverse momentum are obtained and compared to ones obtained from the nucleus-nucleus interactions at lower energies. This comparison shows that the production mechanism of lambdas in the relativistic nucleus-nucleus collisions is different from one in the nucleus-nucleus reactions at lower energies

  8. Exact low-temperature series expansion for the partition function of the zero-field Ising model on the infinite square lattice

    Science.gov (United States)

    Siudem, Grzegorz; Fronczak, Agata; Fronczak, Piotr

    2016-01-01

    In this paper, we provide the exact expression for the coefficients in the low-temperature series expansion of the partition function of the two-dimensional Ising model on the infinite square lattice. This is equivalent to exact determination of the number of spin configurations at a given energy. With these coefficients, we show that the ferromagnetic–to–paramagnetic phase transition in the square lattice Ising model can be explained through equivalence between the model and the perfect gas of energy clusters model, in which the passage through the critical point is related to the complete change in the thermodynamic preferences on the size of clusters. The combinatorial approach reported in this article is very general and can be easily applied to other lattice models. PMID:27721435

  9. Conformal structure in the spectrum of an altered quantum Ising chain

    International Nuclear Information System (INIS)

    Henkel, M.; Patkos, A.

    1986-07-01

    The Ising model with an infinite line of defects is mapped onto a strip with two defect lines. The Hamiltonian spectrum is studied at the bulk critical point. Its exact diagonal form is found for an infinite number of sites. The spectrum of physical excitations contains an infinite number of primary fields, while the leading ground state energy correction is independent of the defect strength. A novel algebraic structure interpolating between those belonging to periodic and free boundary conditions is signalled. (orig.)

  10. Phase diagram of the Ising model on a Cayley tree in the presence of competing interactions and magnetic field

    International Nuclear Information System (INIS)

    Mariz, A.M.; Tsallis, C.; Albuquerque, E.L. de.

    1984-01-01

    The phae diagram for the Ising Model on a Cayley tree with competing nearest-neighbour interactions J 1 and next-nearest-neighbour interactions J 2 and J 3 in the presence of an external magnetic field is studied. To perform this study, an iterative scheme similar to that appearing in real space renormalization group frameworks is established; it recovers, as particular cases, previous works by Vannimenus and by Inawashiro et al. At vanishing temperature, the phase diagram is fully determined, for all values and signs of J 2 /J 1 and J 3 /J 2 ; in particular, it is verified that values of J 3 /J 2 high enough favour the paramagnetic phase. At finite temperatures, several interesting features (evolution of re-entrances, separation of the modulated region in two disconnected pieces, etc.) are exhibited for typical values of J 2 /J 1 and J 3 /J 2 . (Author) [pt

  11. Influence of a transverse magnetic field on arc root movements in a dc plasma torch: Diamagnetic effect of arc column

    International Nuclear Information System (INIS)

    Kim, Keun Su

    2009-01-01

    The effect of a transverse magnetic field on the anodic arc root movement inside a dc plasma torch has been investigated. The arc voltage fluctuation, which represents the degree of the arc instability, was reduced to 28.6% of the original value and the high frequency components in the voltage signal also decreased in their magnitudes. The inherent arc instability in a dc thermal plasma torch seems to be suppressed by a diamagnetic effect of the arc column. Furthermore, the measured voltage wave forms indicated that the arc root attachment mode would be controllable by a transverse magnetic field

  12. A Tunable Reentrant Resonator with Transverse Orientation of Electric Field for in Vivo EPR Spectroscopy

    Science.gov (United States)

    Chzhan, Michael; Kuppusamy, Periannan; Samouilov, Alexandre; He, Guanglong; Zweier, Jay L.

    1999-04-01

    There has been a need for development of microwave resonator designs optimized to provide high sensitivity and high stability for EPR spectroscopy and imaging measurements ofin vivosystems. The design and construction of a novel reentrant resonator with transversely oriented electric field (TERR) and rectangular sample opening cross section for EPR spectroscopy and imaging ofin vivobiological samples, such as the whole body of mice and rats, is described. This design with its transversely oriented capacitive element enables wide and simple setting of the center frequency by trimming the dimensions of the capacitive plate over the range 100-900 MHz with unloadedQvalues of approximately 1100 at 750 MHz, while the mechanical adjustment mechanism allows smooth continuous frequency tuning in the range ±50 MHz. This orientation of the capacitive element limits the electric field based loss of resonatorQobserved with large lossy samples, and it facilitates the use of capacitive coupling. Both microwave performance data and EPR measurements of aqueous samples demonstrate high sensitivity and stability of the design, which make it well suited forin vivoapplications.

  13. The size effect of the quantum coherence in the transverse-field XY chain

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Yang, Cui-hong; Wang, Jun-feng [Department of Physics, Nanjing University of Information Science & Technology, Nanjing 210044 (China); Lei, Shu-guo, E-mail: sglei@njtech.edu.cn [College of Science, Nanjing Tech University, Nanjing, 211816 (China)

    2016-12-15

    Based on the Wigner–Yanase skew information, the size effect of the quantum coherence in the ground state of the finite transverse-field spin-1/2 XY chain is explored. It is found that the first-order derivatives of the single-spin coherence and the two-spin local coherence both have scaling behaviors in the vicinity of the critical point. A simplified version of coherence is also studied and the same characteristics with its counterpart are found.

  14. Diagonalization of replicated transfer matrices for disordered Ising spin systems

    International Nuclear Information System (INIS)

    Nikoletopoulos, T; Coolen, A C C

    2004-01-01

    We present an alternative procedure for solving the eigenvalue problem of replicated transfer matrices describing disordered spin systems with (random) 1D nearest neighbour bonds and/or random fields, possibly in combination with (random) long range bonds. Our method is based on transforming the original eigenvalue problem for a 2 n x 2 n matrix (where n → 0) into an eigenvalue problem for integral operators. We first develop our formalism for the Ising chain with random bonds and fields, where we recover known results. We then apply our methods to models of spins which interact simultaneously via a one-dimensional ring and via more complex long-range connectivity structures, e.g., (1 + ∞)-dimensional neural networks and 'small-world' magnets. Numerical simulations confirm our predictions satisfactorily

  15. A theory of solving TAP equations for Ising models with general invariant random matrices

    DEFF Research Database (Denmark)

    Opper, Manfred; Çakmak, Burak; Winther, Ole

    2016-01-01

    We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields...... the iteration dependent on a Gaussian distributed field only. The TAP magnetizations are stable fixed points if a de Almeida–Thouless stability criterion is fulfilled. We illustrate our method explicitly for coupling matrices drawn from the random orthogonal ensemble....

  16. Phase diagram and re-entrant fermionic entanglement in a hybrid Ising-Hubbard ladder

    Science.gov (United States)

    Sousa, H. S.; Pereira, M. S. S.; de Oliveira, I. N.; Strečka, J.; Lyra, M. L.

    2018-05-01

    The degree of fermionic entanglement is examined in an exactly solvable Ising-Hubbard ladder, which involves interacting electrons on the ladder's rungs described by Hubbard dimers at half-filling on each rung, accounting for intrarung hopping and Coulomb terms. The coupling between neighboring Hubbard dimers is assumed to have an Ising-like nature. The ground-state phase diagram consists of four distinct regions corresponding to the saturated paramagnetic, the classical antiferromagnetic, the quantum antiferromagnetic, and the mixed classical-quantum phase. We have exactly computed the fermionic concurrence, which measures the degree of quantum entanglement between the pair of electrons on the ladder rungs. The effects of the hopping amplitude, the Coulomb term, temperature, and magnetic fields on the fermionic entanglement are explored in detail. It is shown that the fermionic concurrence displays a re-entrant behavior when quantum entanglement is being generated at moderate temperatures above the classical saturated paramagnetic ground state.

  17. Thermodynamical properties of random spin-1/2 XY chain with Dzyaloshinskii-Moriya interaction

    International Nuclear Information System (INIS)

    Derzhko, O.; Krokhmalskii, T.; Verkholyak, T.

    1995-07-01

    For computation of the equilibrium statistical properties of finite spin-1/2 XY chains with Dzyaloshinskii-Moriya interaction the suggested earlier approach (JMMM 140-144 (1995) 1623) is generalized. It is applied for calculation of transverse dynamical susceptibility of spin-1/2 Ising chain in non-random and random Gaussian transverse field with Dzyaloshinskii-Moriya interaction. (author). 7 refs, 2 figs

  18. Bona Fide Thermodynamic Temperature in Nonequilibrium Kinetic Ising Models

    OpenAIRE

    Sastre, Francisco; Dornic, Ivan; Chaté, Hugues

    2003-01-01

    We show that a nominal temperature can be consistently and uniquely defined everywhere in the phase diagram of large classes of nonequilibrium kinetic Ising spin models. In addition, we confirm the recent proposal that, at critical points, the large-time ``fluctuation-dissipation ratio'' $X_\\infty$ is a universal amplitude ratio and find in particular $X_\\infty \\approx 0.33(2)$ and $X_\\infty = 1/2$ for the magnetization in, respectively, the two-dimensional Ising and voter universality classes.

  19. Coupling between Spin and Charge Order Driven by Magnetic Field in Triangular Ising System LuFe2O4+δ

    Directory of Open Access Journals (Sweden)

    Lei Ding

    2018-02-01

    Full Text Available We present a study of the magnetic-field effect on spin correlations in the charge ordered triangular Ising system LuFe2O4+δ through single crystal neutron diffraction. In the absence of a magnetic field, the strong diffuse neutron scattering observed below the Neel temperature (TN = 240 K indicates that LuFe2O4+δ shows short-range, two-dimensional (2D correlations in the FeO5 triangular layers, characterized by the development of a magnetic scattering rod along the 1/3 1/3 L direction, persisting down to 5 K. We also found that on top of the 2D correlations, a long range ferromagnetic component associated with the propagation vector k1 = 0 sets in at around 240 K. On the other hand, an external magnetic field applied along the c-axis effectively favours a three-dimensional (3D spin correlation between the FeO5 bilayers evidenced by the increase of the intensity of satellite reflections with propagation vector k2 = (1/3, 1/3, 3/2. This magnetic modulation is identical to the charge ordered superstructure, highlighting the field-promoted coupling between the spin and charge degrees of freedom. Formation of the 3D spin correlations suppresses both the rod-type diffuse scattering and the k1 component. Simple symmetry-based arguments provide a natural explanation of the observed phenomenon and put forward a possible charge redistribution in the applied magnetic field.

  20. Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, S.S., E-mail: Shoukryhassan@hotmail.com [Department of Mathematics, College of Science, University of Bahrain, P.O. Box 32038 (Bahrain); Manchester Metropolitan University, Dept. of Computing, Maths. and Digital Technology, Manchester M1 5GD (United Kingdom); Sharaby, Y.A., E-mail: Yasser_Sharaby@hotmail.com [Department of Physics, Faculty of Science, Suez Canal University, Suez (Egypt); Ali, M.F.M., E-mail: dr.mona.fathy@hotmail.com [Department of Mathematics: Faculty of Science, Ain Shams University, Cairo (Egypt); Joshi, A., E-mail: ajoshi@eiu.edu [Department of Physics, Eastern Illinois University, Charleston, IL 61920 (United States)

    2012-10-15

    The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.

  1. Optical bistabilities of higher harmonics: Inhomogeneous and transverse effects

    International Nuclear Information System (INIS)

    Hassan, S.S.; Sharaby, Y.A.; Ali, M.F.M.; Joshi, A.

    2012-01-01

    The steady state behavior of optical bistable system in a ring cavity with transverse field variations and inhomogeneousely broadened two-level atoms is investigated outside the rotating wave approximation (RWA). Analytical and numerical investigation is presented for different cases of transverse field variations with Lorentzian or Gaussian line widths. When both (transverse and inhomogeneous) features taken into account, the first harmonic output field component outside the RWA exhibits a one-way switching down processes (butterfly OB) or reversed (clockwise) OB behavior, depending on the atomic linewidth shape.

  2. Inverse Ising problem in continuous time: A latent variable approach

    Science.gov (United States)

    Donner, Christian; Opper, Manfred

    2017-12-01

    We consider the inverse Ising problem: the inference of network couplings from observed spin trajectories for a model with continuous time Glauber dynamics. By introducing two sets of auxiliary latent random variables we render the likelihood into a form which allows for simple iterative inference algorithms with analytical updates. The variables are (1) Poisson variables to linearize an exponential term which is typical for point process likelihoods and (2) Pólya-Gamma variables, which make the likelihood quadratic in the coupling parameters. Using the augmented likelihood, we derive an expectation-maximization (EM) algorithm to obtain the maximum likelihood estimate of network parameters. Using a third set of latent variables we extend the EM algorithm to sparse couplings via L1 regularization. Finally, we develop an efficient approximate Bayesian inference algorithm using a variational approach. We demonstrate the performance of our algorithms on data simulated from an Ising model. For data which are simulated from a more biologically plausible network with spiking neurons, we show that the Ising model captures well the low order statistics of the data and how the Ising couplings are related to the underlying synaptic structure of the simulated network.

  3. Effect of geometry structure on critical properties

    Science.gov (United States)

    Jiang, Qing; Jiang, Xue-fan

    1997-02-01

    The effective-field renormalization group (EFRG) scheme is utilized to compute critical properties of the transverse Ising model (TIM) in a quantum-spin system. We distinguish differences between lattices of the same coordination number but of different structures and take effects of the first fluctuation correction into account. The improved results for the critical transverse field are obtained for several lattice structures even by considering the smallest possible cluster, which is in good agreement with series results.

  4. Dynamical TAP equations for non-equilibrium Ising spin glasses

    DEFF Research Database (Denmark)

    Roudi, Yasser; Hertz, John

    2011-01-01

    We derive and study dynamical TAP equations for Ising spin glasses obeying both synchronous and asynchronous dynamics using a generating functional approach. The system can have an asymmetric coupling matrix, and the external fields can be time-dependent. In the synchronously updated model, the TAP...... equations take the form of self consistent equations for magnetizations at time t+1, given the magnetizations at time t. In the asynchronously updated model, the TAP equations determine the time derivatives of the magnetizations at each time, again via self consistent equations, given the current values...... of the magnetizations. Numerical simulations suggest that the TAP equations become exact for large systems....

  5. Decorated Ising models with competing interactions and modulated structures

    International Nuclear Information System (INIS)

    Tragtenberg, M.H.R.; Yokoi, C.S.O.; Salinas, S.R.A.

    1988-01-01

    The phase diagrams of a variety of decorated Ising lattices are calculated. The competing interactions among the decorating spins may induce different types of modulated orderings. In particular, the effect of an applied field on the phase diagram of the two-dimensional mock ANNNI model is considered, where only the original horizontal bonds on a square lattice are decorated. Some Bravais lattices and Cayley trees where all bonds are equally decorated are then studied. The Bravais lattices display a few stable modulated structures. The Cayley trees, on the other hand, display a large number of modulated phases, which increases with the lattice coordination number. (authors) [pt

  6. On the phase transition nature in compressible Ising models

    International Nuclear Information System (INIS)

    Ota, A.T.

    1985-01-01

    The phase transition phenomenon is analysed in a compressible ferromagnetic Ising model at null field, through the mean-field approximation. The model studied is d-dimensional under the magnetic point of view and one-dimensional under the elastic point of view. This is achieved keeping the compressive interactions among the ions and rejecting annealing forces completely. The exchange parameter J is linear and the elastic potential quadratic in relation to the microscopic shifts of the lattice. In the one-dimensional case, this model shows no phase transition. In the two-dimensional case, the role of the S i spin of the i-the ion is crucial: a) for spin 1/2 the transitions are of second order; b) for spin 1, desides the second order transitions there is a three-critical point and a first-order transitions line. (L.C.) [pt

  7. Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles with core–shell structure

    International Nuclear Information System (INIS)

    Deviren, Bayram; Şener, Yunus

    2015-01-01

    The magnetic properties of mixed spin-1 and spin-3/2 Ising nanoparticles with core/shell structure are studied by using the effective-field theory with correlations. We investigate the thermal variations of the core, shell and total magnetizations and the Q-, R-, P-, S-, N- and L-types of compensation behavior in Néel classification nomenclature exists in the system. The effects of the crystal-field, core and shell interactions and interface coupling, on the phase diagrams are investigated in detail and the obtained phase diagrams are presented in three different planes. The system exhibits both second- and first-order phase transitions besides tricritical point, double critical end point, triple point and critical end point depending on the appropriate values of the interaction parameters. The system strongly affected by the surface situations and some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. - Highlights: • Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles are investigated. • The system exhibits tricritical, double critical end, triple, critical end points. • Q-, R-, P-, S-, N- and L-types of compensation behavior are found. • Some characteristic phenomena are found depending on the interaction parameters. • Effects of crystal-field and bilinear interactions on the system are examined

  8. Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles with core–shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Bayram, E-mail: bayram.deviren@nevsehir.edu.tr [Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey); Şener, Yunus [Institute of Science, Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey)

    2015-07-15

    The magnetic properties of mixed spin-1 and spin-3/2 Ising nanoparticles with core/shell structure are studied by using the effective-field theory with correlations. We investigate the thermal variations of the core, shell and total magnetizations and the Q-, R-, P-, S-, N- and L-types of compensation behavior in Néel classification nomenclature exists in the system. The effects of the crystal-field, core and shell interactions and interface coupling, on the phase diagrams are investigated in detail and the obtained phase diagrams are presented in three different planes. The system exhibits both second- and first-order phase transitions besides tricritical point, double critical end point, triple point and critical end point depending on the appropriate values of the interaction parameters. The system strongly affected by the surface situations and some characteristic phenomena are found depending on the ratio of the physical parameters in the surface shell and the core. - Highlights: • Magnetic properties of mixed spin (1, 3/2) Ising nanoparticles are investigated. • The system exhibits tricritical, double critical end, triple, critical end points. • Q-, R-, P-, S-, N- and L-types of compensation behavior are found. • Some characteristic phenomena are found depending on the interaction parameters. • Effects of crystal-field and bilinear interactions on the system are examined.

  9. Alfven wave excitation in a cavity with a transverse magnetic field

    International Nuclear Information System (INIS)

    Bures, M.

    1982-12-01

    A transversely magnetized cylindrical plasma model with an internal rod conductor is used to approximate the FIVA internal ring device of Spherator type with a purely poloidal magnetic field. It is shown that an excitation asymmetry along the plasma column, i.e. with a wave number k sub (z) does not equal 0, introduces a coupling between the magnetoacoustic and shear Alfven waves in the frequency range #betta#<<#betta# sub (ci). The introduction of an equilibrium mass motion along the plasma cylinder introduces a flow continuum. Simultaneously the Alfven resonance frequency becomes Doppler shifted. The experimental observations indicate that cavity modes do not build up in the FIVA device in the case of nonsymmetric excitation. If on the other hand the exciting structure becomes symmetric, i.e. with k sub (z) equals 0, the magnetoacoustic resonance become excited. The resulting Q values are rather low which indicates that the coupling to the shear wave through the Hall electric field cannot be neglected. (Author)

  10. Integrals of the Ising class

    International Nuclear Information System (INIS)

    Bailey, D H; Borwein, J M; Crandall, R E

    2006-01-01

    From an experimental-mathematical perspective we analyse 'Ising-class' integrals. These are structurally related n-dimensional integrals we call C n , D n , E n , where D n is a magnetic susceptibility integral central to the Ising theory of solid-state physics. We first analyse C n := 4/(n factorial) ∫ 0 ∞ ... ∫ 0 ∞ 1/(Σ j=1 n (u j + 1/u j )) 2 du 1 /u 1 ... du n /u n . We had conjectured-on the basis of extreme-precision numerical quadrature-that C n has a finite large-n limit, namely C ∞ = 2 e -2γ , with γ being the Euler constant. On such a numerological clue we are able to prove the conjecture. We then show that integrals D n and E n both decay exponentially with n, in a certain rigorous sense. While C n , D n remain unresolved for n ≥ 5, we were able to conjecture a closed form for E 5 . Our experimental results involved extreme-precision, multidimensional quadrature on intricate integrands; thus, a highly parallel computation was required

  11. Mixed spin-3/2 and spin-5/2 Ising system on the Bethe lattice

    International Nuclear Information System (INIS)

    Albayrak, Erhan; Yigit, Ali

    2006-01-01

    In order to study the critical behaviors of the half-integer mixed spin-3/2 and spin-5/2 Blume-Capel Ising ferrimagnetic system, we have used the exact recursion relations on the Bethe lattice. The system was studied for the coordination numbers with q=3, 4, 5 and 6, and the obtained phase diagrams are illustrated on the (kT c /|J|,D A /|J|) plane for constant values of D B /|J|, the reduced crystal field of the sublattice with spin-5/2, and on the (kT c /|J|,D B /|J|) plane for constant values of D A /|J|, the reduced crystal field of the sublattice with spin-3/2, for q=3 only, since the cases corresponding to q=4, 5 and 6 reproduce results similar to the case for q=3. In addition we have also presented the phase diagram with equal strengths of the crystal fields for q=3, 4, 5 and 6. Besides the second- and first-order phase transitions, the system also exhibits compensation temperatures for appropriate values of the crystal fields. In this mixed spin system while the second-order phase transition lines never cut the reduced crystal field axes as in the single spin type spin-3/2 and spin-5/2 Ising models separately, the first-order phase transition lines never connect to the second-order phase transition lines and they end at the critical points, therefore the system does not give any tricritical points. In addition to this, this mixed-spin model exhibits one or two compensation temperatures depending on the values of the crystal fields, as a result the compensation temperature lines show reentrant behavior

  12. ISEE : An Intuitive Sound Editing Environment

    NARCIS (Netherlands)

    Vertegaal, R.P.H.; Bonis, E.

    1994-01-01

    This article presents ISEE, an intuitive sound editing environment, as a general sound synthesis model based on expert auditory perception and cognition of musical instruments. It discusses the backgrounds of current synthesizer user interface design and related timbre space research. Of the three

  13. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  14. Testing Lorentz Invariance Emergence in the Ising Model using Monte Carlo simulations

    CERN Document Server

    Dias Astros, Maria Isabel

    2017-01-01

    In the context of the Lorentz invariance as an emergent phenomenon at low energy scales to study quantum gravity a system composed by two 3D interacting Ising models (one with an anisotropy in one direction) was proposed. Two Monte Carlo simulations were run: one for the 2D Ising model and one for the target model. In both cases the observables (energy, magnetization, heat capacity and magnetic susceptibility) were computed for different lattice sizes and a Binder cumulant introduced in order to estimate the critical temperature of the systems. Moreover, the correlation function was calculated for the 2D Ising model.

  15. Compiling gate networks on an Ising quantum computer

    International Nuclear Information System (INIS)

    Bowdrey, M.D.; Jones, J.A.; Knill, E.; Laflamme, R.

    2005-01-01

    Here we describe a simple mechanical procedure for compiling a quantum gate network into the natural gates (pulses and delays) for an Ising quantum computer. The aim is not necessarily to generate the most efficient pulse sequence, but rather to develop an efficient compilation algorithm that can be easily implemented in large spin systems. The key observation is that it is not always necessary to refocus all the undesired couplings in a spin system. Instead, the coupling evolution can simply be tracked and then corrected at some later time. Although described within the language of NMR, the algorithm is applicable to any design of quantum computer based on Ising couplings

  16. Low-energy-state dynamics of entanglement for spin systems

    International Nuclear Information System (INIS)

    Jafari, R.

    2010-01-01

    We develop the ideas of the quantum renormalization group and quantum information by exploring the low-energy-state dynamics of entanglement resources of a system close to its quantum critical point. We demonstrate that low-energy-state dynamical quantities of one-dimensional magnetic systems can show a quantum phase transition point and show scaling behavior in the vicinity of the transition point. To present our idea, we study the evolution of two spin entanglements in the one-dimensional Ising model in the transverse field. The system is initialized as the so-called thermal ground state of the pure Ising model. We investigate the evolution of the generation of entanglement with increasing magnetic field. We obtain that the derivative of the time at which the entanglement reaches its maximum with respect to the transverse field diverges at the critical point and its scaling behaviors versus the size of the system are the same as the static ground-state entanglement of the system.

  17. Dynamics of the two-dimensional directed Ising model in the paramagnetic phase

    Science.gov (United States)

    Godrèche, C.; Pleimling, M.

    2014-05-01

    We consider the nonconserved dynamics of the Ising model on the two-dimensional square lattice, where each spin is influenced preferentially by its east and north neighbours. The single-spin flip rates are such that the stationary state is Gibbsian with respect to the usual ferromagnetic Ising Hamiltonian. We show the existence, in the paramagnetic phase, of a dynamical transition between two regimes of violation of the fluctuation-dissipation theorem in the nonequilibrium stationary state: a regime of weak violation where the stationary fluctuation-dissipation ratio is finite, when the asymmetry parameter is less than a threshold value, and a regime of strong violation where this ratio vanishes asymptotically above the threshold. This study suggests that this novel kind of dynamical transition in nonequilibrium stationary states, already found for the directed Ising chain and the spherical model with asymmetric dynamics, might be quite general. In contrast with the latter models, the equal-time correlation function for the two-dimensional directed Ising model depends on the asymmetry.

  18. Quantum quench in an atomic one-dimensional Ising chain.

    Science.gov (United States)

    Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Daley, A J; Nägerl, H-C

    2013-08-02

    We study nonequilibrium dynamics for an ensemble of tilted one-dimensional atomic Bose-Hubbard chains after a sudden quench to the vicinity of the transition point of the Ising paramagnetic to antiferromagnetic quantum phase transition. The quench results in coherent oscillations for the orientation of effective Ising spins, detected via oscillations in the number of doubly occupied lattice sites. We characterize the quench by varying the system parameters. We report significant modification of the tunneling rate induced by interactions and show clear evidence for collective effects in the oscillatory response.

  19. Transverse dispersion in heterogeneous fractures

    International Nuclear Information System (INIS)

    Dershowitz, Bill; Shuttle, Dawn; Klise, Kate; Outters, Nils; Hermanson, Jan

    2004-12-01

    This report evaluates the significance of transverse dispersion processes for solute transport in a single fracture. Transverse dispersion is a potentially significant process because it increases the fracture surface area available for sorptive and diffusive properties, and has the potential to transport solute between what would otherwise be distinctive, streamline pathways. Transverse dispersion processes are generally ignored in one-dimensional repository performance assessment approaches. This report provides an initial assessment of the magnitude of transverse dispersion effect in a single heterogeneous fracture on repository safety assessment. This study builds on a previous report which considered the network effects on transport dispersion including streamline routing and mixing at fracture intersections. The project uses FracMan software. This platform has been extensively used by SKB in other projects. FracMan software is designed to generate and analyze DFN's as well as to compute fluid flow in DFN's with the MAFIC Finite element method (FEM) code. Solute transport was modeled using the particle tracking inside MAFIC, the 2-D Laplace Transform Galerkin inside PAWorks/LTG, and the 1-D Laplace Transform approach designed to replicate FARF31 inside GoldSim.The study reported here focuses on a single, 20-meter scale discrete fracture, with simplified boundary conditions intended to represent the position of this fracture within a fracture network. The range of assumptions made regarding fracture heterogeneity were as follows: Base case, Heterogeneous fracture, geostatistical field, correlation length 0.01 m. Case 1a, Homogeneous fracture, transmissivity = 10 -7 m 2 /s. Case 1b, Heterogeneous fracture, non-channeled geostatistical field correlation length 5 m. Case 1c, Heterogeneous fracture, channeled, anisotropic geostatistical field. Case 1d, Heterogeneous fracture, fracture intersection zone (FIZ) permeability enhanced. Case 5, Simple channelized

  20. Hysteresis and compensation behaviors of mixed spin-2 and spin-1 hexagonal Ising nanowire core–shell structure

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Bahmad, L. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014 Rabat (Morocco)

    2015-09-01

    The magnetic behaviors of a mixed spins (2-1) hexagonal Ising nanowire with core–shell structure are investigated by using the Monte Carlo simulations. The thermal magnetizations, the magnetic susceptibilities and the transition temperatures of core–shell are studied for different values of crystal field and exchange interactions. The thermal and magnetic hysteresis cycles are given for different values of the crystal field. - Highlights: • Critical temperature increase when exchange interaction increasing in core-shell. • Hysteresis loop areas decrease at above transition temperature. • Magnetic coercive field decrease when crystal field increasing. • Magnetic coercive field increase when exchange interaction increasing.

  1. Emergent kink stability of a magnetized plasma jet injected into a transverse background magnetic field

    Science.gov (United States)

    Zhang, Yue; Gilmore, Mark; Hsu, Scott C.; Fisher, Dustin M.; Lynn, Alan G.

    2017-11-01

    We report experimental results on the injection of a magnetized plasma jet into a transverse background magnetic field in the HelCat linear plasma device at the University of New Mexico [M. Gilmore et al., J. Plasma Phys. 81(1), 345810104 (2015)]. After the plasma jet leaves the plasma-gun muzzle, a tension force arising from an increasing curvature of the background magnetic field induces in the jet a sheared axial-flow gradient above the theoretical kink-stabilization threshold. We observe that this emergent sheared axial flow stabilizes the n = 1 kink mode in the jet, whereas a kink instability is observed in the jet when there is no background magnetic field present.

  2. Statistical Mechanics of Coherent Ising Machine — The Case of Ferromagnetic and Finite-Loading Hopfield Models —

    Science.gov (United States)

    Aonishi, Toru; Mimura, Kazushi; Utsunomiya, Shoko; Okada, Masato; Yamamoto, Yoshihisa

    2017-10-01

    The coherent Ising machine (CIM) has attracted attention as one of the most effective Ising computing architectures for solving large scale optimization problems because of its scalability and high-speed computational ability. However, it is difficult to implement the Ising computation in the CIM because the theories and techniques of classical thermodynamic equilibrium Ising spin systems cannot be directly applied to the CIM. This means we have to adapt these theories and techniques to the CIM. Here we focus on a ferromagnetic model and a finite loading Hopfield model, which are canonical models sharing a common mathematical structure with almost all other Ising models. We derive macroscopic equations to capture nonequilibrium phase transitions in these models. The statistical mechanical methods developed here constitute a basis for constructing evaluation methods for other Ising computation models.

  3. Transversally extended string

    International Nuclear Information System (INIS)

    Akama, Keiichi

    1988-01-01

    Starting with the space-time action of the transversally extended string, we derive its world-sheet action, which is that of a gravitational and gauge theory with matter fields on the world-sheet, with additional effects of the second fundamental quantity. (author)

  4. On the balance of a linear plasma column confined in a transverse magnetic field

    International Nuclear Information System (INIS)

    Lehnert, B.

    1978-08-01

    The equilibrium features are investigated of a straight plasma column being confined in a purely transverse magnetic field, part of which is being generated by external conductors. Provided that stability can be secured at high beta values, the reduced transport of particles and heat in the axial direction should allow for large axial temperature gradients. It is then expected that temperatures even leading to ignition can be achieved in a pure plasma, at technically realistic column lengths. (author)

  5. Triangular and honeycomb lattices bond-diluted Ising ferromagnet: critical frontier

    International Nuclear Information System (INIS)

    Magalhaes, A.C.N. de; Schwaccheim, G.; Tsallis, C.

    1982-01-01

    Within a real space renormalization group framework (12 different procedures, all of them using star-triangle and duality-type transformations) accurate approximations for the critical frontiers associated with the quenched bond-diluted first-neighbour spin- 1 / 2 Ising ferromagnet on triangular and honeycomb lattices are calculated. All of them provide, in both pure bond percolation and pure Ising limits, the exact critical points and exact or almost exact derivatives in the p-t space (p is the bond independent occupancy probability and t tanh J/k(sub B)T). The best numerical proposals lead to the exact derivative in the pure percolation limit (p = p(sub c)) and, in what concerns the pure Ising limit (p = 1) derivative, to a 0.15% error for the triangular lattice and to a 0.96% error for the honeycomb one; in the intermediate region (p(sub c) [pt

  6. Transverse and longitudinal angular momenta of light

    Energy Technology Data Exchange (ETDEWEB)

    Bliokh, Konstantin Y., E-mail: k.bliokh@gmail.com [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Nonlinear Physics Centre, RSPhysE, The Australian National University, Canberra, ACT 0200 (Australia); Nori, Franco [Center for Emergent Matter Science, RIKEN, Wako-shi, Saitama 351-0198 (Japan); Physics Department, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2015-08-26

    We review basic physics and novel types of optical angular momentum. We start with a theoretical overview of momentum and angular momentum properties of generic optical fields, and discuss methods for their experimental measurements. In particular, we describe the well-known longitudinal (i.e., aligned with the mean momentum) spin and orbital angular momenta in polarized vortex beams. Then, we focus on the transverse (i.e., orthogonal to the mean momentum) spin and orbital angular momenta, which were recently actively discussed in theory and observed in experiments. First, the recently-discovered transverse spin  angular momenta appear in various structured fields: evanescent waves, interference fields, and focused beams. We show that there are several kinds of transverse spin angular momentum, which differ strongly in their origins and physical properties. We describe extraordinary features of the transverse optical spins and overview recent experiments. In particular, the helicity-independent transverse spin inherent in edge evanescent waves offers robust spin–direction coupling at optical interfaces (the quantum spin Hall effect of light). Second, we overview the transverse orbital angular momenta of light, which can be both extrinsic and intrinsic. These two types of the transverse orbital angular momentum are produced by spatial shifts of the optical beams (e.g., in the spin Hall effect of light) and their Lorentz boosts, respectively. Our review is underpinned by a unified theory of the angular momentum of light based on the canonical momentum and spin densities, which avoids complications associated with the separation of spin and orbital angular momenta in the Poynting picture. It allows us to construct a comprehensive classification of all known optical angular momenta based on their key parameters and main physical properties.

  7. Absorption of electromagnetic radiation in a quantum wire with an anisotropic parabolic potential in a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Karpunin, V. V., E-mail: karpuninvv@mail.ru [Mordovian State Pedagogical Institute (Russian Federation); Margulis, V. A., E-mail: theorphysics@mrsu.ru [Mordovian State University (Russian Federation)

    2016-06-15

    An analytical expression for the coefficient of absorption of electromagnetic radiation by electrons in a quantum wire in a magnetic field is derived. The case of a magnetic field transverse with respect to the wire axis is considered. The resonance character of absorption is shown, and the resonance frequencies as functions of the field are determined. The effect of the scattering of electrons at optical phonons is studied, and it is shown that scattering is responsible for additional resonance absorption peaks.

  8. Heat transfer in flow past a continuously moving semi-infinite flat plate in transverse magnetic field with heat flux

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, T.V.R.

    Thermal boundary layer on a continuously moving semi-infinite flat plate in the presence of transverse magnetic field with heat flux has been examined. Similarity solutions have been derived and the resulting equations are integrated numerically...

  9. Directional Transverse Oscillation Vector Flow Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2017-01-01

    A method for estimating vector velocities using transverse oscillation (TO) combined with directional beamforming is presented. In Directional Transverse Oscillation (DTO) a normal focused field is emitted and the received signals are beamformed in the lateral direction transverse to the ultrasound...... beam to increase the amount of data for vector velocity estimation. The approach is self-calibrating as the lateral oscillation period is estimated from the directional signal through a Fourier transform to yield quantitative velocity results over a large range of depths. The approach was extensively...... simulated using Field IIpro and implemented on the experimental SARUS scanner in connection with a BK Medical 8820e convex array transducer. Velocity estimates for DTO are found for beam-to-flow angles of 60, 75, and 90, and vessel depths from 24 to 156 mm. Using 16 emissions the Standard Deviation (SD...

  10. Coevolution of Glauber-like Ising dynamics and topology

    Science.gov (United States)

    Mandrà, Salvatore; Fortunato, Santo; Castellano, Claudio

    2009-11-01

    We study the coevolution of a generalized Glauber dynamics for Ising spins with tunable threshold and of the graph topology where the dynamics takes place. This simple coevolution dynamics generates a rich phase diagram in the space of the two parameters of the model, the threshold and the rewiring probability. The diagram displays phase transitions of different types: spin ordering, percolation, and connectedness. At variance with traditional coevolution models, in which all spins of each connected component of the graph have equal value in the stationary state, we find that, for suitable choices of the parameters, the system may converge to a state in which spins of opposite sign coexist in the same component organized in compact clusters of like-signed spins. Mean field calculations enable one to estimate some features of the phase diagram.

  11. Transient time of an Ising machine based on injection-locked laser network

    International Nuclear Information System (INIS)

    Takata, Kenta; Utsunomiya, Shoko; Yamamoto, Yoshihisa

    2012-01-01

    We numerically study the dynamics and frequency response of the recently proposed Ising machine based on the polarization degrees of freedom of an injection-locked laser network (Utsunomiya et al 2011 Opt. Express 19 18091). We simulate various anti-ferromagnetic Ising problems, including the ones with symmetric Ising and Zeeman coefficients, which enable us to study the problem size up to M = 1000. Transient time, to reach a steady-state polarization configuration after a given Ising problem is mapped onto the system, is inversely proportional to the locking bandwidth and does not scale exponentially with the problem size. In the Fourier analysis with first-order linearization approximation, we find that the cut-off frequency of a system's response is almost identical to the locking bandwidth, which supports the time-domain analysis. It is also shown that the Zeeman term, which is created by the horizontally polarized injection signal from the master laser, serves as an initial driving force on the system and contributes to the transient time in addition to the inverse locking bandwidth. (paper)

  12. The ground-state phase diagrams of the spin-3/2 Ising model

    International Nuclear Information System (INIS)

    Canko, Osman; Keskin, Mustafa

    2003-01-01

    The ground-state spin configurations are obtained for the spin-3/2 Ising model Hamiltonian with bilinear and biquadratic exchange interactions and a single-ion crystal field. The interactions are assumed to be only between nearest-neighbors. The calculated ground-state phase diagrams are presented on diatomic lattices, such as the square, honeycomb and sc lattices, and triangular lattice in the (Δ/z vertical bar J vertical bar ,K/ vertical bar J vertical bar) and (H/z vertical bar J vertical bar, K/ vertical bar J vertical bar) planes

  13. Modeling of the financial market using the two-dimensional anisotropic Ising model

    Science.gov (United States)

    Lima, L. S.

    2017-09-01

    We have used the two-dimensional classical anisotropic Ising model in an external field and with an ion single anisotropy term as a mathematical model for the price dynamics of the financial market. The model presented allows us to test within the same framework the comparative explanatory power of rational agents versus irrational agents with respect to the facts of financial markets. We have obtained the mean price in terms of the strong of the site anisotropy term Δ which reinforces the sensitivity of the agent's sentiment to external news.

  14. The phase diagrams of the site-diluted spin-1/2 Ising superlattice

    International Nuclear Information System (INIS)

    Saber, A.; Essaoudi, I.; Ainane, A.; Dujardin, F.; Saber, M.; Stebe, B.

    1998-08-01

    Using the effective field theory with a probability distribution technique that accounts for the single-site spin correlations, the critical behavior of a diluted spin-1/2 Ising superlattice consisting of two different ferromagnet materials is examined. The critical temperature of the system is studied as a function of the thickness of the constituents in a unit cell, the concentration of magnetic atoms, and the exchange interactions in each material. It is shown that the properties of the diluted system are different from those of the corresponding pure system. (author)

  15. Propagation of ULF waves through the ionosphere: Inductive effect for oblique magnetic fields

    Directory of Open Access Journals (Sweden)

    M. D. Sciffer

    2004-04-01

    Full Text Available Solutions for ultra-low frequency (ULF wave fields in the frequency range 1–100mHz that interact with the Earth's ionosphere in the presence of oblique background magnetic fields are described. Analytic expressions for the electric and magnetic wave fields in the magnetosphere, ionosphere and atmosphere are derived within the context of an inductive ionosphere. The inductive shielding effect (ISE arises from the generation of an "inductive" rotational current by the induced part of the divergent electric field in the ionosphere which reduces the wave amplitude detected on the ground. The inductive response of the ionosphere is described by Faraday's law and the ISE depends on the horizontal scale size of the ULF disturbance, its frequency and the ionosphere conductivities. The ISE for ULF waves in a vertical background magnetic field is limited in application to high latitudes. In this paper we examine the ISE within the context of oblique background magnetic fields, extending studies of an inductive ionosphere and the associated shielding of ULF waves to lower latitudes. It is found that the dip angle of the background magnetic field has a significant effect on signals detected at the ground. For incident shear Alfvén mode waves and oblique background magnetic fields, the horizontal component of the field-aligned current contributes to the signal detected at the ground. At low latitudes, the ISE is larger at smaller conductivity values compared with high latitudes.

    Key words. Ionosphere (ionosphere-magnetosphere interactions; electric fields and currents; wave propagation

  16. Dynamical replica analysis of processes on finitely connected random graphs: II. Dynamics in the Griffiths phase of the diluted Ising ferromagnet

    International Nuclear Information System (INIS)

    Mozeika, A; Coolen, A C C

    2009-01-01

    We study the Glauber dynamics of Ising spin models with random bonds, on finitely connected random graphs. We generalize a recent dynamical replica theory with which to predict the evolution of the joint spin-field distribution, to include random graphs with arbitrary degree distributions. The theory is applied to Ising ferromagnets on randomly diluted Bethe lattices, where we study the evolution of the magnetization and the internal energy. It predicts a prominent slowing down of the flow in the Griffiths phase, it suggests a further dynamical transition at lower temperatures within the Griffiths phase, and it is verified quantitatively by the results of Monte Carlo simulations

  17. Heisenberg spin glass experiments and the chiral ordering scenario

    International Nuclear Information System (INIS)

    Campbell, Ian A.; Petit, Dorothee C.M.C.

    2010-01-01

    An overview is given of experimental data on Heisenberg spin glass materials so as to make detailed comparisons with numerical results on model Heisenberg spin glasses, with particular reference to the chiral driven ordering transition scenario due to Kawamura and collaborators. On weak anisotropy systems, experiments show critical exponents which are very similar to those estimated numerically for the model Heisenberg chiral ordering transition but which are quite different from those at Ising spin glass transitions. Again on weak anisotropy Heisenberg spin glasses, experimental torque data show well defined in-field transverse ordering transitions up to strong applied fields, in contrast to Ising spin glasses where fields destroy ordering. When samples with stronger anisotropies are studied, critical and in-field behavior tend progressively towards the Ising limit. It can be concluded that the essential physics of laboratory Heisenberg spin glasses mirrors that of model Heisenberg spin glasses, where chiral ordering has been demonstrated numerically. (author)

  18. Average neutralization and transverse stability in ISABELLE

    International Nuclear Information System (INIS)

    Herrera, J.; Zotter, B.

    1978-01-01

    Clearing of electrons in the vicinity of the axis of a proton beam in the dipoles of a separated function AG-focusing structure is accomplished by transverse crossed-field drift due to the magnetic dipole field and a weak longitudinal electric field. This electric field is generated by potential differences caused by cross section variations of the beam due to variations of the β-functions and dispersion. The resulting radial drift brings the electrons into the off-axis region where they are driven out of the magnets by the usual longitudinal cross-field drift caused by the radial space charge field. The neutralization in ISABELLE is then a factor 20 below former estimates, and transverse stability can be obtained by chromaticity adjustments well within the design strengths of the sextupole correction windings

  19. The In Situ Enzymatic Screening (ISES) Approach to Reaction Discovery and Catalyst Identification.

    Science.gov (United States)

    Swyka, Robert A; Berkowitz, David B

    2017-12-14

    The importance of discovering new chemical transformations and/or optimizing catalytic combinations has led to a flurry of activity in reaction screening. The in situ enzymatic screening (ISES) approach described here utilizes biological tools (enzymes/cofactors) to advance chemistry. The protocol interfaces an organic reaction layer with an adjacent aqueous layer containing reporting enzymes that act upon the organic reaction product, giving rise to a spectroscopic signal. ISES allows the experimentalist to rapidly glean information on the relative rates of a set of parallel organic/organometallic reactions under investigation, without the need to quench the reactions or draw aliquots. In certain cases, the real-time enzymatic readout also provides information on sense and magnitude of enantioselectivity and substrate specificity. This article contains protocols for single-well (relative rate) and double-well (relative rate/enantiomeric excess) ISES, in addition to a colorimetric ISES protocol and a miniaturized double-well procedure. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  20. Exact solutions to plaquette Ising models with free and periodic boundaries

    International Nuclear Information System (INIS)

    Mueller, Marco; Johnston, Desmond A.; Janke, Wolfhard

    2017-01-01

    An anisotropic limit of the 3d plaquette Ising model, in which the plaquette couplings in one direction were set to zero, was solved for free boundary conditions by Suzuki (1972) , who later dubbed it the fuki-nuke, or “no-ceiling”, model. Defining new spin variables as the product of nearest-neighbour spins transforms the Hamiltonian into that of a stack of (standard) 2d Ising models and reveals the planar nature of the magnetic order, which is also present in the fully isotropic 3d plaquette model. More recently, the solution of the fuki-nuke model was discussed for periodic boundary conditions, which require a different approach to defining the product spin transformation, by Castelnovo et al. (2010) . We clarify the exact relation between partition functions with free and periodic boundary conditions expressed in terms of original and product spin variables for the 2d plaquette and 3d fuki-nuke models, noting that the differences are already present in the 1d Ising model. In addition, we solve the 2d plaquette Ising model with helical boundary conditions. The various exactly solved examples illustrate how correlations can be induced in finite systems as a consequence of the choice of boundary conditions.

  1. An optimized target-field method for MRI transverse biplanar gradient coil design

    International Nuclear Information System (INIS)

    Zhang, Rui; Xu, Jing; Huang, Kefu; Zhang, Jue; Fang, Jing; Fu, Youyi; Li, Yangjing

    2011-01-01

    Gradient coils are essential components of magnetic resonance imaging (MRI) systems. In this paper, we present an optimized target-field method for designing a transverse biplanar gradient coil with high linearity, low inductance and small resistance, which can well satisfy the requirements of permanent-magnet MRI systems. In this new method, the current density is expressed by trigonometric basis functions with unknown coefficients in polar coordinates. Following the standard procedures, we construct an objective function with respect to the total square errors of the magnetic field at all target-field points with the penalty items associated with the stored magnetic energy and the dissipated power. By adjusting the two penalty factors and minimizing the objective function, the appropriate coefficients of the current density are determined. Applying the stream function method to the current density, the specific winding patterns on the planes can be obtained. A novel biplanar gradient coil has been designed using this method to operate in a permanent-magnet MRI system. In order to verify the validity of the proposed approach, the gradient magnetic field generated by the resulted current density has been calculated via the Biot–Savart law. The results have demonstrated the effectiveness and advantage of this proposed method

  2. Elevator convection modes in vertical ducts with strong transverse magnetic fields

    Science.gov (United States)

    Zikanov, Oleg; Liu, Li

    2014-11-01

    Instability modes in the form of axially uniform vertical jets, also called ``elevator modes,'' are known to be solutions of thermal convection problems for vertically unbounded systems. Typically, their relevance to an actual flow state is limited, since they quickly break down to secondary instabilities. We consider a downward flow of a liquid metal in a vertical duct with a heated wall and strong transverse magnetic field and find elevator modes that are likely to be not just relevant, but a dominant feature of the flow. Recent experiments indicate that counterparts of such modes may develop in vertically finite ducts leading to high-amplitude fluctuations of temperature. Potential implications for designs of liquid metal blankets for fusion reactors with poloidal ducts are discussed. Financial support was provided by the US NSF (Grant CBET 1232851).

  3. The Influence of Participation in Sustainability Index (ISE in the Financial Performance of Business

    Directory of Open Access Journals (Sweden)

    Juliana Tatiane Vital

    2009-12-01

    Full Text Available This article aims to compare the performance, through certain financial indicators, including companies in the guide of the 500 biggest and best companies of Exame Magazine, forming part of the Corporate Sustainability Index (ISE and companies who do not. The primary purpose of ISE is to see the return of a portfolio composed of shares of companies committed to social responsibility and corporate sustainability. This research is classified as being descriptive and largely qualitative. The financial indicators examined in this study were: sales (value and growth, Net Income, Profitability, Net Working Capital, Liquidity, General Debt, Long Term Debt, EBITA and Indicators of export. After the analysis we can conclude that the companies participating in the ISE have greater potential for sales and exports. Companies that are not part of the ISE have better financial performance.

  4. WEAK EFFICIENCY ON THE STOCK EXCHANGE MARKET: AN EMPIRICAL STUDY ON ISE

    Directory of Open Access Journals (Sweden)

    SİBEL DUMAN ATAN

    2013-06-01

    Full Text Available Markets which returns of share certificate are reflected completely whole information, describe as effective. In a weak-form efficiency market, all past price activity were reflected with current price and it isn’t obtaining an above the normal return to use with past price activity in markets. In this paper, we aim to provide the efficiency level of ISE market using fifteen minutes and session frequency data for the 03 January 2003 – 30 December 2005 period. In order to test the efficiency of ISE we use firstly ADF and KPSS unit root tests and secondly ELW fractionally integrated estimator developed by Shimotsu and Philips (2005. According to application we found that ISE is weakly efficient market.

  5. Ising Processing Units: Potential and Challenges for Discrete Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Coffrin, Carleton James [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Nagarajan, Harsha [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Bent, Russell Whitford [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-07-05

    The recent emergence of novel computational devices, such as adiabatic quantum computers, CMOS annealers, and optical parametric oscillators, presents new opportunities for hybrid-optimization algorithms that leverage these kinds of specialized hardware. In this work, we propose the idea of an Ising processing unit as a computational abstraction for these emerging tools. Challenges involved in using and bench- marking these devices are presented, and open-source software tools are proposed to address some of these challenges. The proposed benchmarking tools and methodology are demonstrated by conducting a baseline study of established solution methods to a D-Wave 2X adiabatic quantum computer, one example of a commercially available Ising processing unit.

  6. Ground states, magnetization plateaus and bipartite entanglement of frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tubes

    International Nuclear Information System (INIS)

    Alécio, Raphael C.; Lyra, Marcelo L.; Strečka, Jozef

    2016-01-01

    The ground-state phase diagram, magnetization process and bipartite entanglement of the frustrated spin-1/2 Ising-Heisenberg and Heisenberg triangular tube (three-leg ladder) are investigated in a non-zero external magnetic field. The exact ground-state phase diagram of the spin-1/2 Ising-Heisenberg tube with Heisenberg intra-rung and Ising inter-rung couplings consists of six distinct gapped phases, which manifest themselves in a magnetization curve as intermediate plateaus at zero, one-third and two-thirds of the saturation magnetization. Four out of six available ground states exhibit quantum entanglement between two spins from the same triangular unit evidenced by a non-zero concurrence. Density-matrix renormalization group calculations are used in order to construct the ground-state phase diagram of the analogous but purely quantum spin-1/2 Heisenberg tube with Heisenberg intra- and inter-rung couplings, which consists of four gapped and three gapless phases. The Heisenberg tube shows a continuous change of the magnetization instead of a plateau at zero magnetization, while the intermediate one-third and two-thirds plateaus may be present or not in the zero-temperature magnetization curve. - Highlights: • Ground-state properties of Ising-Heisenberg and full Heisenberg spin tubes are studied. • Phases with 1/3 and 2/3 magnetization plateaus are present in both models. • We unveil the region in the parameter space on which inter-rung quantum fluctuations are relevant. • The full Heisenberg tube exhibits quantum bipartite entanglement between intra- as well as inter-rung spins.

  7. Dipolar ferromagnets and glasses (invited)

    International Nuclear Information System (INIS)

    Rosenbaum, T.F.; Wu, W.; Ellman, B.; Yang, J.; Aeppli, G.; Reich, D.H.

    1991-01-01

    What is the ground state and what are the dynamics of 10 23 randomly distributed Ising spins? We have attempted to answer these questions through magnetic susceptibility, calorimetric, and neutron scattering studies of the randomly diluted dipolar-coupled Ising magnet LiHo x Y 1-x F 4 . The material is ferromagnetic for dipole concentrations at least as low as x=0.46, with a Curie temperature obeying mean-field scaling relative to that of pure LiHoF 4 . In the dilute spin limit, an x=0.045 crystal shows very unusual glassy properties characterized by decreasing barriers to relaxation as T→0. Its properties are consistent with a single low degeneracy ground state with a large gap for excitations. A slightly more concentrated x=0.167 sample, however, supports a complex ground state with no appreciable gap, in accordance with prevailing theories of spin glasses. The underlying causes of such disparate behavior are discussed in terms of random clusters as probed by neutron studies of the x=0.167 sample. In addition to tracing the evolution of the glassy and ferromagnetic states with dipole concentration, we investigate the effects of a transverse magnetic field on the Ising spin glass, LiHo 0.167 Y 0.833 F 4 . The transverse field mixes the eigenfunctions of the ground-state Ising doublet with the otherwise inaccessible excited-state levels. We observe a rapid decrease in the characteristic relaxation times, large changes in the spectral form of the relaxation, and a depression of the spin-glass transition temperature with the addition of quantum fluctuations

  8. Dynamic phase transitions and dynamic phase diagrams of the Ising model on the Shastry-Sutherland lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Şeyma Akkaya, E-mail: sadeviren@nevsehir.edu.tr [Department of Science Education, Education Faculty, Nevsehir Hacı Bektaş Veli University, 50300 Nevşehir (Turkey); Deviren, Bayram [Department of Physics, Nevsehir Hacı Bektaş Veli University, 50300 Nevsehir (Turkey)

    2016-03-15

    The dynamic phase transitions and dynamic phase diagrams are studied, within a mean-field approach, in the kinetic Ising model on the Shastry-Sutherland lattice under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The time-dependence behavior of order parameters and the behavior of average order parameters in a period, which is also called the dynamic order parameters, as a function of temperature, are investigated. Temperature dependence of the dynamic magnetizations, hysteresis loop areas and correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions as well as to obtain the dynamic phase transition temperatures. We present the dynamic phase diagrams in the magnetic field amplitude and temperature plane. The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena. The phase diagrams also contain paramagnetic (P), Néel (N), Collinear (C) phases, two coexistence or mixed regions, (N+C) and (N+P), which strongly depend on interaction parameters. - Highlights: • Dynamic magnetization properties of spin-1/2 Ising model on SSL are investigated. • Dynamic magnetization, hysteresis loop area, and correlation have been calculated. • The dynamic phase diagrams are constructed in (T/|J|, h/|J|) plane. • The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena.

  9. Exact sampling hardness of Ising spin models

    Science.gov (United States)

    Fefferman, B.; Foss-Feig, M.; Gorshkov, A. V.

    2017-09-01

    We study the complexity of classically sampling from the output distribution of an Ising spin model, which can be implemented naturally in a variety of atomic, molecular, and optical systems. In particular, we construct a specific example of an Ising Hamiltonian that, after time evolution starting from a trivial initial state, produces a particular output configuration with probability very nearly proportional to the square of the permanent of a matrix with arbitrary integer entries. In a similar spirit to boson sampling, the ability to sample classically from the probability distribution induced by time evolution under this Hamiltonian would imply unlikely complexity theoretic consequences, suggesting that the dynamics of such a spin model cannot be efficiently simulated with a classical computer. Physical Ising spin systems capable of achieving problem-size instances (i.e., qubit numbers) large enough so that classical sampling of the output distribution is classically difficult in practice may be achievable in the near future. Unlike boson sampling, our current results only imply hardness of exact classical sampling, leaving open the important question of whether a much stronger approximate-sampling hardness result holds in this context. The latter is most likely necessary to enable a convincing experimental demonstration of quantum supremacy. As referenced in a recent paper [A. Bouland, L. Mancinska, and X. Zhang, in Proceedings of the 31st Conference on Computational Complexity (CCC 2016), Leibniz International Proceedings in Informatics (Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, 2016)], our result completes the sampling hardness classification of two-qubit commuting Hamiltonians.

  10. Entanglement of transverse modes in a pendular cavity

    OpenAIRE

    Mancini, Stefano; Gatti, Alessandra

    2001-01-01

    We study the phenomena that arise in the transverse structure of electromagnetic field impinging on a linear Fabry-Perot cavity with an oscillating end mirror. We find quantum correlations among transverse modes which can be considered as a signature of their entanglement.

  11. Quantum kinetic Ising models

    International Nuclear Information System (INIS)

    Augusiak, R; Cucchietti, F M; Lewenstein, M; Haake, F

    2010-01-01

    In this paper, we introduce a quantum generalization of classical kinetic Ising models (KIM), described by a certain class of quantum many-body master equations. Similarly to KIMs with detailed balance that are equivalent to certain Hamiltonian systems, our models reduce to a set of Hamiltonian systems determining the dynamics of the elements of the many-body density matrix. The ground states of these Hamiltonians are well described by the matrix product, or pair entangled projected states. We discuss critical properties of such Hamiltonians, as well as entanglement properties of their low-energy states.

  12. Growth of transverse coherence in SASE FELs

    International Nuclear Information System (INIS)

    Kumar, Vinit; Krishnagopal, Srinivas

    2000-01-01

    We introduce the correlation function between the electric field at two different points in the transverse plane as a parameter to quantify the degree of transverse coherence. We also propose a more realistic model for the initialization of the radiation in computer codes used to study SASE FELs. We make these modifications in the code TDA and use it to study the growth of transverse coherence as a function of electron beam size, beam current and transverse emittance. Our results show explicitly that the onset of full transverse coherence in SASE takes place much before the power saturates. With the more realistic model the onset of the exponential growth regime is delayed, and to get a given power from the FEL one needs a longer undulator than would be predicted by the original TDA code

  13. A supersymmetric phase transition in Josephson-tunnel-junction arrays

    International Nuclear Information System (INIS)

    Foda, O.

    1988-01-01

    The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T I ≤T V , then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T I =T V . Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory. (orig.)

  14. Information Geometry, Inference Methods and Chaotic Energy Levels Statistics

    OpenAIRE

    Cafaro, Carlo

    2008-01-01

    In this Letter, we propose a novel information-geometric characterization of chaotic (integrable) energy level statistics of a quantum antiferromagnetic Ising spin chain in a tilted (transverse) external magnetic field. Finally, we conjecture our results might find some potential physical applications in quantum energy level statistics.

  15. Hierarchy of exactly solvable spin-1/2 chains with so (N)_I critical points

    NARCIS (Netherlands)

    Lahtinen, V.; Mansson, T.; Ardonne, E.

    2014-01-01

    We construct a hierarchy of exactly solvable spin-1/2 chains with so(N)1 critical points. Our construction is based on the framework of condensate-induced transitions between topological phases. We employ this framework to construct a Hamiltonian term that couples N transverse field Ising chains

  16. Ecological risk assessment of TBT in Ise Bay.

    Science.gov (United States)

    Yamamoto, Joji; Yonezawa, Yoshitaka; Nakata, Kisaburo; Horiguchi, Fumio

    2009-02-01

    An ecological risk assessment of tributyltin (TBT) in Ise Bay was conducted using the margin of exposure (MOE) method. The assessment endpoint was defined to protect the survival, growth and reproduction of marine organisms. Sources of TBT in this study were assumed to be commercial vessels in harbors and navigation routes. Concentrations of TBT in Ise Bay were estimated using a three-dimensional hydrodynamic model, an ecosystem model and a chemical fate model. Estimated MOEs for marine organisms for 1990 and 2008 were approximately 0.1-2.0 and over 100 respectively, indicating a declining temporal trend in the probability of adverse effects. The chemical fate model predicts a much longer persistence of TBT in sediments than in the water column. Therefore, it is necessary to monitor the harmful effects of TBT on benthic organisms.

  17. Finite-lattice form factors in free-fermion models

    International Nuclear Information System (INIS)

    Iorgov, N; Lisovyy, O

    2011-01-01

    We consider the general Z 2 -symmetric free-fermion model on the finite periodic lattice, which includes as special cases the Ising model on the square and triangular lattices and the Z n -symmetric BBS τ (2) -model with n = 2. Translating Kaufman's fermionic approach to diagonalization of Ising-like transfer matrices into the language of Grassmann integrals, we determine the transfer matrix eigenvectors and observe that they coincide with the eigenvectors of a square lattice Ising transfer matrix. This allows us to find exact finite-lattice form factors of spin operators for the statistical model and the associated finite-length quantum chains, of which the most general is equivalent to the XY chain in a transverse field

  18. Flow of liquid metals with a transversely applied magnetic field, (8)

    International Nuclear Information System (INIS)

    Arai, Shigeki; Tomita, Yukio; Sudou, Kouzou

    1977-01-01

    As one of the researches of liquid metal flow in transversely applied magnetic field concerning the flow in MHD pipes, the influences of the electrical property of channel side walls, aspect ratio, Reynolds number and Hartmann number on laminar and transition flows investigated experimentally are reported in this paper. Mercury flowed in the rectangular ducts, one of which was made with four insulated walls, and another with insulated top and bottom walls and two conductive side walls, with the aspect ratio varying from 8 to 1/8, in the region of relatively low Hartmann number and Reynolds number. The facility, procedure and results of the experiment are explained, and many experimental curves showing the relations among pipe friction coefficient, Hartmann number, Reynolds number, aspect ratio and the property of walls are given. The experimental results show that the Hartmann effect and the aspect ratio effect are evident as the magnetic field is intensified, but the influence by the electric property of walls is little, and three shapes of the curves representing the relation of friction coefficient and Reynolds number are confirmed by this experiment. (auth.)

  19. Magnetic properties and thermodynamics of decorated Ising chain with pendants of arbitrary spin

    Energy Technology Data Exchange (ETDEWEB)

    Li Wei, E-mail: liwei-b09@mails.gucas.ac.c [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Department of Physics, Beihang University, Beijing 100191 (China); Gong Shoushu [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Chen Ziyu [Department of Physics, Beihang University, Beijing 100191 (China); Zhao Yang [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China); Su Gang, E-mail: gsu@gucas.ac.c [College of Physical Sciences, Graduate University of Chinese Academy of Sciences, P.O. Box 4588, Beijing 100049 (China)

    2010-05-31

    The decorated Ising chain with pendants of arbitrary spin and the single-ion anisotropy is exactly solved by the transfer matrix method. The solutions reveal abundant novel properties than the conventional one-dimensional Ising model. It is compared with the experimental data of a necklace-like molecule-based magnet, that gives a qualitative consistency.

  20. Magnetic properties and thermodynamics of decorated Ising chain with pendants of arbitrary spin

    International Nuclear Information System (INIS)

    Li Wei; Gong Shoushu; Chen Ziyu; Zhao Yang; Su Gang

    2010-01-01

    The decorated Ising chain with pendants of arbitrary spin and the single-ion anisotropy is exactly solved by the transfer matrix method. The solutions reveal abundant novel properties than the conventional one-dimensional Ising model. It is compared with the experimental data of a necklace-like molecule-based magnet, that gives a qualitative consistency.

  1. A Study of Large Transverse Momentum Phenomena

    CERN Multimedia

    2002-01-01

    This experiment studies the structure of those p-p and @*-p collisions which are characterized by a very high transverse momentum flow in the central region. Some specific items studied are:\\\\ \\\\ \\item -~~Structure of events, where the high transverse momentum is shared by charged and neutral hadron (``jets''). Transverse momentum distribution, correlations and momentum balance for such events. \\item -~~Structure of events, where the high transverse momentum is mostly carried by one identified particle. Quantum number dependence and quantum number correlations of the high transverse momentum events. \\item -~~Structure of events containing large transverse momentum leptons or lepton pairs or direct photons. \\end{enumerate}.sk -~~Study of low momentum electrons and photons. -~~Search for gluonium states. -~~Search for new and rare particles. \\\\ \\\\ A conventional C-type magnet with a 0.5 T field in the direction of the beams together with a 42-layer cylindrical drift chamber detector is used for momentum analysi...

  2. Approximating the Ising model on fractal lattices of dimension less than two

    DEFF Research Database (Denmark)

    Codello, Alessandro; Drach, Vincent; Hietanen, Ari

    2015-01-01

    We construct periodic approximations to the free energies of Ising models on fractal lattices of dimension smaller than two, in the case of a zero external magnetic field, based on the combinatorial method of Feynman and Vdovichenko. We show that the procedure is applicable to any fractal obtained...... with, possibly, arbitrary accuracy and paves the way for determination Tc of any fractal of dimension less than two. Critical exponents are more diffcult to determine since the free energy of any periodic approximation still has a logarithmic singularity at the critical point implying α = 0. We also...

  3. Precision islands in the Ising and O(N) models

    Energy Technology Data Exchange (ETDEWEB)

    Kos, Filip [Department of Physics, Yale University, New Haven, CT 06520 (United States); Poland, David [Department of Physics, Yale University, New Haven, CT 06520 (United States); School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Simmons-Duffin, David [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Vichi, Alessandro [Theory Division, CERN, Geneva (Switzerland)

    2016-08-04

    We make precise determinations of the leading scaling dimensions and operator product expansion (OPE) coefficients in the 3d Ising, O(2), and O(3) models from the conformal bootstrap with mixed correlators. We improve on previous studies by scanning over possible relative values of the leading OPE coefficients, which incorporates the physical information that there is only a single operator at a given scaling dimension. The scaling dimensions and OPE coefficients obtained for the 3d Ising model, (Δ{sub σ},Δ{sub ϵ},λ{sub σσϵ},λ{sub ϵϵϵ})=(0.5181489(10),1.412625(10),1.0518537(41),1.532435(19)), give the most precise determinations of these quantities to date.

  4. Precision Islands in the Ising and $O(N)$ Models

    CERN Document Server

    Kos, Filip; Simmons-Duffin, David; Vichi, Alessandro

    2016-01-01

    We make precise determinations of the leading scaling dimensions and operator product expansion (OPE) coefficients in the 3d Ising, $O(2)$, and $O(3)$ models from the conformal bootstrap with mixed correlators. We improve on previous studies by scanning over possible relative values of the leading OPE coefficients, which incorporates the physical information that there is only a single operator at a given scaling dimension. The scaling dimensions and OPE coefficients obtained for the 3d Ising model, $(\\Delta_{\\sigma}, \\Delta_{\\epsilon},\\lambda_{\\sigma\\sigma\\epsilon}, \\lambda_{\\epsilon\\epsilon\\epsilon}) = (0.5181489(10), 1.412625(10), 1.0518537(41), 1.532435(19))$, give the most precise determinations of these quantities to date.

  5. Displacement of an electric arc by a stationary transverse magnetic field to different pressures of the ionized gas

    International Nuclear Information System (INIS)

    Ramos, J.

    1987-01-01

    The displacement of a wall-stabilized electric arc by a stationary transverse magnetic field is measured to different pressures of the ionized gas. The increase of the pressure makes the heat transfer function and the mass flow velocity in the arc column to raise, and it makes the arc displacement to decrease. (author)

  6. Out-of-time-ordered correlators in a quantum Ising chain

    Science.gov (United States)

    Lin, Cheng-Ju; Motrunich, Olexei I.

    2018-04-01

    Out-of-time-ordered correlators (OTOC) have been proposed to characterize quantum chaos in generic systems. However, they can also show interesting behavior in integrable models, resembling the OTOC in chaotic systems in some aspects. Here we study the OTOC for different operators in the exactly-solvable one-dimensional quantum Ising spin chain. The OTOC for spin operators that are local in terms of the Jordan-Wigner fermions has a "shell-like" structure: After the wavefront passes, the OTOC approaches its original value in the long-time limit, showing no signature of scrambling; the approach is described by a t-1 power law at long time t . On the other hand, the OTOC for spin operators that are nonlocal in the Jordan-Wigner fermions has a "ball-like" structure, with its value reaching zero in the long-time limit, looking like a signature of scrambling; the approach to zero, however, is described by a slow power law t-1 /4 for the Ising model at the critical coupling. These long-time power-law behaviors in the lattice model are not captured by conformal field theory calculations. The mixed OTOC with both local and nonlocal operators in the Jordan-Wigner fermions also has a "ball-like" structure, but the limiting values and the decay behavior appear to be nonuniversal. In all cases, we are not able to define a parametrically large window around the wavefront to extract the Lyapunov exponent.

  7. A study of the coherence length of ULF waves in the earth's foreshock

    Science.gov (United States)

    Le, G.; Russell, C. T.

    1990-01-01

    High-time-resolution magnetic-field data for different separations of ISEE 1 and 2 in the earth's ion foreshock region are examined to study the coherence length of upstream ULF waves. Examining the correlation coefficients of the low-frequency waves as a function of separation distance shows that the correlation coefficient depends mainly on the separation distance of ISEE 1 and 2 transverse to the solar-wind flow. It drops to about 0.5 when the transverse separation is about 1 earth radius, a distance much larger than the proton thermal gyroradius in the solar wind. Thus the coherence length of the low-frequency waves is about one earth radius, which is of the order of the wavelength, and is consistent with that estimated from the bandwidth of the waves.

  8. The Ising Decision Maker: a binary stochastic network for choice response time.

    Science.gov (United States)

    Verdonck, Stijn; Tuerlinckx, Francis

    2014-07-01

    The Ising Decision Maker (IDM) is a new formal model for speeded two-choice decision making derived from the stochastic Hopfield network or dynamic Ising model. On a microscopic level, it consists of 2 pools of binary stochastic neurons with pairwise interactions. Inside each pool, neurons excite each other, whereas between pools, neurons inhibit each other. The perceptual input is represented by an external excitatory field. Using methods from statistical mechanics, the high-dimensional network of neurons (microscopic level) is reduced to a two-dimensional stochastic process, describing the evolution of the mean neural activity per pool (macroscopic level). The IDM can be seen as an abstract, analytically tractable multiple attractor network model of information accumulation. In this article, the properties of the IDM are studied, the relations to existing models are discussed, and it is shown that the most important basic aspects of two-choice response time data can be reproduced. In addition, the IDM is shown to predict a variety of observed psychophysical relations such as Piéron's law, the van der Molen-Keuss effect, and Weber's law. Using Bayesian methods, the model is fitted to both simulated and real data, and its performance is compared to the Ratcliff diffusion model. (c) 2014 APA, all rights reserved.

  9. Ground-state candidate for the classical dipolar kagome Ising antiferromagnet

    Science.gov (United States)

    Chioar, I. A.; Rougemaille, N.; Canals, B.

    2016-06-01

    We have investigated the low-temperature thermodynamic properties of the classical dipolar kagome Ising antiferromagnet using Monte Carlo simulations, in the quest for the ground-state manifold. In spite of the limitations of a single-spin-flip approach, we managed to identify certain ordering patterns in the low-temperature regime and we propose a candidate for this unknown state. This configuration presents some intriguing features and is fully compatible with the extrapolations of the at-equilibrium thermodynamic behavior sampled so far, making it a very likely choice for the dipolar long-range ordered state of the classical kagome Ising antiferromagnet.

  10. Accurate Mapping of Multilevel Rydberg Atoms on Interacting Spin-1 /2 Particles for the Quantum Simulation of Ising Models

    Science.gov (United States)

    de Léséleuc, Sylvain; Weber, Sebastian; Lienhard, Vincent; Barredo, Daniel; Büchler, Hans Peter; Lahaye, Thierry; Browaeys, Antoine

    2018-03-01

    We study a system of atoms that are laser driven to n D3 /2 Rydberg states and assess how accurately they can be mapped onto spin-1 /2 particles for the quantum simulation of anisotropic Ising magnets. Using nonperturbative calculations of the pair potentials between two atoms in the presence of electric and magnetic fields, we emphasize the importance of a careful selection of experimental parameters in order to maintain the Rydberg blockade and avoid excitation of unwanted Rydberg states. We benchmark these theoretical observations against experiments using two atoms. Finally, we show that in these conditions, the experimental dynamics observed after a quench is in good agreement with numerical simulations of spin-1 /2 Ising models in systems with up to 49 spins, for which numerical simulations become intractable.

  11. Heat pumps in field test; Waermepumpen im Feldtest

    Energy Technology Data Exchange (ETDEWEB)

    Becker, R. [Fraunhofer-Institut fuer Solare Energiesysteme (ISE), Freiburg im Breisgau (Germany); Miara, M.; Russ, C.

    2007-09-15

    The Fraunhofer ISE has launched two field tests of newly installed heat pumps in 2006. Both deal with the measurement of a high number of heat pump units under real conditions in small houses. Values of volume flows, temperatures, heat quantity and electricity consumption are collected and daily saved and analysed at the Fraunhofer ISE. (orig.)

  12. Symmetry and Degeneracy in Quantum Mechanics. Self-Duality in Finite Spin Systems

    Science.gov (United States)

    Osacar, C.; Pacheco, A. F.

    2009-01-01

    The symmetry of self-duality (Savit 1980 "Rev. Mod. Phys. 52" 453) of some models of statistical mechanics and quantum field theory is discussed for finite spin blocks of the Ising chain in a transverse magnetic field. The existence of this symmetry in a specific type of these blocks, and not in others, is manifest by the degeneracy of their…

  13. Quantum phase transition and critical phenomena

    International Nuclear Information System (INIS)

    Dutta, A.; Chakrabarti, B.K.

    1998-01-01

    We intend to describe briefly the generic features associated with the zero temperature transition in quantum mechanical systems. We elucidate the discussion of the introductory section using the very common example of Ising model in a transverse field. We discuss the method of fermionisation for one dimensional systems. The quantum-classical correspondence is discussed using Suzuki-Trotter method. We then introduce the quantum rotor model and discuss its spherical limit. We finally discuss novel features arising due to the presence of quenched randomness in the quantum Ising and rotor systems. (author)

  14. On the formation and evolution of plasmoids: A survey of ISEE 3 geotail data

    International Nuclear Information System (INIS)

    Moldwin, M.B.; Hughes, W.J.

    1992-01-01

    ISEE 3 magnetometer and electron plasma measurements from the 1983 Geotail Mission were surveyed to determine the magnetic and plasma properties of plasmoids and their evolution with distance downtail. Events were selected on the basis of a bipolar magnetic signature in either the geocentric solar magnetospheric B z and/or B y component; most had B z bipolar signatures. The authors found 366 events consistent with this signature while ISEE 3 was in the plasma sheet. Plasmoid length was determined using both the magnetometer and the electron plasma velocity data. They found the average length of plasmoids is 16.7 ± 13.0 R E , significantly smaller than previous estimates. Many plasmoids have a well-defined magnetic core field, characterized by a field strength maximum at the center of the pass through the structure. The size, velocity, magnetic core strength, and B z field amplitude of plasmoids do not depend on distance beyond 100 R E downtail. The average electron temperature inside plasmoids drops by a factor of 2 and the electron density increases by a factor of 2 as plasmoids propagate from near Earth distances (within 100 R E of the Earth) to the deep tail. They conclude that the stable size of the plasmoids, the density increase and the temperature decrease are consistent with a flux of cold electrons into the plasmoid. The strong correlation of interplanetary magnetic field B y an hour before the event with the strength and direction of B y observed inside plasmoids, the existence of events with the bipolar signature in both the B y and B z components, and the possible mass flux all are consistent with plasmoids being 'open' magnetic structures

  15. Phase diagrams of a nonequilibrium mixed spin-3/2 and spin-2 Ising system in an oscillating magnetic field

    International Nuclear Information System (INIS)

    Keskin, Mustafa; Polat, Yasin

    2009-01-01

    The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins σ=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature T abs and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i 1 , i 2 , i 3 ) phases, and three coexistence or mixed phase regions, namely i 1 +p, i 2 +p and i 3 +p mixed phases that strongly depend on interaction parameters.

  16. Phase diagrams of a nonequilibrium mixed spin-3/2 and spin-2 Ising system in an oscillating magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Keskin, Mustafa [Department of Physics, Erciyes University, 38039 Kayseri (Turkey)], E-mail: keskin@erciyes.edu.tr; Polat, Yasin [Institutes of Science, Erciyes University, 38039 Kayseri (Turkey)

    2009-12-15

    The phase diagrams of the nonequilibrium mixed spin-3/2 and spin-2 Ising ferrimagnetic system on square lattice under a time-dependent external magnetic field are presented by using the Glauber-type stochastic dynamics. The model system consists of two interpenetrating sublattices of spins {sigma}=3/2 and S=2, and we take only nearest-neighbor interactions between pairs of spins. The system is in contact with a heat bath at absolute temperature T{sub abs} and the exchange of energy with the heat bath occurs via one-spin flip of the Glauber dynamics. First, we investigate the time variations of average order parameters to find the phases in the system and then the thermal behavior of the dynamic order parameters to obtain the dynamic phase transition (DPT) points as well as to characterize the nature (first- or second-order) phase transitions. The dynamic phase diagrams are presented in two different planes. Phase diagrams contain paramagnetic (p), ferrimagnetic (i{sub 1}, i{sub 2}, i{sub 3}) phases, and three coexistence or mixed phase regions, namely i{sub 1}+p, i{sub 2}+p and i{sub 3}+p mixed phases that strongly depend on interaction parameters.

  17. High temperature limit of the order parameter correlation functions in the quantum Ising model

    Science.gov (United States)

    Reyes, S. A.; Tsvelik, A. M.

    2006-06-01

    In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures.

  18. High temperature limit of the order parameter correlation functions in the quantum Ising model

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, S.A. [Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States); Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States); Tsvelik, A.M. [Department of Physics and Astronomy, SUNY at Stony Brook, Stony Brook, NY 11794-3840 (United States) and Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)]. E-mail tsvelik@bnl.gov

    2006-06-12

    In this paper we use the exact results for the anisotropic two-dimensional Ising model obtained by Bugrii and Lisovyy [A.I. Bugrii, O.O. Lisovyy, Theor. Math. Phys. 140 (2004) 987] to derive the expressions for dynamical correlation functions for the quantum Ising model in one dimension at high temperatures.

  19. Microscopic energy flows in disordered Ising spin systems

    International Nuclear Information System (INIS)

    Agliari, E; Casartelli, M; Vezzani, A

    2010-01-01

    An efficient microcanonical dynamics has been recently introduced for Ising spin models embedded in a generic connected graph even in the presence of disorder, i.e. with the spin couplings chosen from a random distribution. Such a dynamics allows a coherent definition of local temperatures also when open boundaries are coupled to thermostats, imposing an energy flow. Within this framework, here we introduce a consistent definition for local energy currents and we study their dependence on the disorder. In the linear response regime, when the global gradient between thermostats is small, we also define local conductivities following a Fourier discretized picture. Then, we work out a linearized 'mean-field approximation', where local conductivities are supposed to depend on local couplings and temperatures only. We compare the approximated currents with the exact results of the nonlinear system, showing the reliability range of the mean-field approach, which proves very good at high temperatures and not so efficient in the critical region. In the numerical studies we focus on the disordered cylinder but our results could be extended to an arbitrary, disordered spin model on generic discrete structures

  20. Ising model on tangled chain - 2: Magnetization and susceptibility

    International Nuclear Information System (INIS)

    Mejdani, R.

    1993-05-01

    In the preceding paper we have considered an Ising model defined on tangled chain to study the behaviour of the free energy and entropy, particularly in the zero-field and zero-temperature limit. In this paper, following the main line and basing on some results of the previous work, we shall study in the ''language'' of state configurations the behaviour of the magnetization and the susceptibility for different conditions of the model, to understand better the competition between the ferromagnetic bonds along the chain and the antiferromagnetic additional bonds across the chain. Particularly interesting is the behaviour of the susceptibility in the zero-field and zero-temperature limit. Exact solutions for the magnetization and susceptibility, generated by analytical calculations and iterative algorithms, are described. The additional bonds, introduced as a form of perfectly disorder, indicate a particular effect on the spin correlation. We found that the condition J=-J' between the ferromagnetic interaction J along the chain and the antiferromagnetic interaction J' across the chain is somewhat as a ''transition-region'' condition for this behaviour. (author). 16 refs, 14 figs

  1. Plasma electron signature of magnetic connection to the earth's bow shock: ISEE 3

    International Nuclear Information System (INIS)

    Feldman, W.C.; Anderson, R.C.; Asbridge, J.R.; Bame, S.J.; Gosling, J.T.; Zwickl, R.D.

    1982-01-01

    Enhanced fluxes of low-energy electrons backstreaming from the earth's bow shock have been identified at ISEE 3. When present, these fluxes modify ambient solar wind electron velocity distributions f(v) in characteristic ways that depends on whether ISEE 3 is near the edge, or within the interior of the earth's electron foreshock. Near the edge, energy peaks in f(v) are observed. Such distributions should be locally unstable to electron plasma oscillations. Well within the interior of the foreshock, enhanced fluxes of electrons with energies up to the maximum detected by the Los Alamos electron analyzer (approx.1 keV) are observed over the full backward hemisphere. These electrons can be modelled with an asymptotic power law distribution having index in the range 4< or approx. =p/sub b/s< or approx. =6. At intermediate energies (approx.20--50 eV), twin angular peaks are observed centered on the magnetic field direction B. Also observed at these times are depressions in f(v) at energies less than approx.20 eV that are centered on B. Such distributions having a perpendicular temperature greater than their parallel temperature may be locally unstable to the generation of whistler waves. Analysis of a particularly clean example of connection to the bow shock is consistent with the possiblility that the observed electron fluxes emerge from the forward foot of the electron heating region within bow shock where the electron density and temperature are larger than that of the uperturbed upstream solar wind by a factor of approx.1.2. This analysis also indicates that the electrostatic potential within the forward foot of the shock is between approx.5 and 50 V more positive than that within plasma far upstream at ISEE 3. However, these interpretations depend on the assumption of nearly scatter-free propagation, which may not hold

  2. Free energy distribution function of a random Ising ferromagnet

    International Nuclear Information System (INIS)

    Dotsenko, Victor; Klumov, Boris

    2012-01-01

    We study the free energy distribution function of a weakly disordered Ising ferromagnet in terms of the D-dimensional random temperature Ginzburg–Landau Hamiltonian. It is shown that besides the usual Gaussian 'body' this distribution function exhibits non-Gaussian tails both in the paramagnetic and in the ferromagnetic phases. Explicit asymptotic expressions for these tails are derived. It is demonstrated that the tails are strongly asymmetric: the left tail (for large negative values of the free energy) is much slower than the right one (for large positive values of the free energy). It is argued that at the critical point the free energy of the random Ising ferromagnet in dimensions D < 4 is described by a non-trivial universal distribution function which is non-self-averaging

  3. Monte Carlo Simulations of Compressible Ising Models: Do We Understand Them?

    Science.gov (United States)

    Landau, D. P.; Dünweg, B.; Laradji, M.; Tavazza, F.; Adler, J.; Cannavaccioulo, L.; Zhu, X.

    Extensive Monte Carlo simulations have begun to shed light on our understanding of phase transitions and universality classes for compressible Ising models. A comprehensive analysis of a Landau-Ginsburg-Wilson hamiltonian for systems with elastic degrees of freedom resulted in the prediction that there should be four distinct cases that would have different behavior, depending upon symmetries and thermodynamic constraints. We shall provide an account of the results of careful Monte Carlo simulations for a simple compressible Ising model that can be suitably modified so as to replicate all four cases.

  4. Ising models and soliton equations

    International Nuclear Information System (INIS)

    Perk, J.H.H.; Au-Yang, H.

    1985-01-01

    Several new results for the critical point of correlation functions of the Hirota equation are derived within the two-dimensional Ising model. The recent success of the conformal-invariance approach in the determination of a critical two-spin correration function is analyzed. The two-spin correlation function is predicted to be rotationally invariant and to decay with a power law in this approach. In the approach suggested here systematic corrections due to the underlying lattice breaking the rotational invariance are obtained

  5. Giant transversal particle diffusion in a longitudinal magnetic ratchet.

    Science.gov (United States)

    Tierno, Pietro; Reimann, Peter; Johansen, Tom H; Sagués, Francesc

    2010-12-03

    We study the transversal motion of paramagnetic particles on a uniaxial garnet film, exhibiting a longitudinal ratchet effect in the presence of an oscillating magnetic field. Without the field, the thermal diffusion coefficient obtained by video microscopy is D(0) ≈ 3 × 10(-4)  μm2/s. With the field, the transversal diffusion exhibits a giant enhancement by almost four decades and a pronounced maximum as a function of the driving frequency. We explain the experimental findings with a theoretical interpretation in terms of random disorder effects within the magnetic film.

  6. Feasibility study of a transversely polarized target in PANDA

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Heybat; Deiseroth, Malte; Khaneft, Dmitry; Noll, Oliver; Valente, Roserio; Zambrana, Manuel [Helmholtz-Institut Mainz (Germany); Johannes Gutenberg-Universitaet Mainz (Germany); Ahmed, Samer [Helmholtz-Institut Mainz (Germany); Capozza, Luigi; Dbeyssi, Alaa; Froehlich, Bertold; Lin, Dexu; Maas, Frank; Mora Espi, Maria Carmen; Morales Morales, Cristina; Rodriguez Pineiro, David; Zimmermann, Iris [Helmholtz-Institut Mainz (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH (Germany)

    2015-07-01

    The PANDA (Antiproton Annihilation at Darmstadt) spectrometer, located at the Facility for Antiproton and Ion Research (FAIR), is an excellent tool for exploring the nucleon structure. An unpolarized target allows the determination of the electromagnetic time-like form factor of the proton. An additional experiment in which the target is transversely polarized is necessary for the first-time extraction of their imaginary part. A transverse polarization requires the shielding of the 2 T longitudinal field from the PANDA-Solenoid at the target volume and an additional transverse holding field. We present results from our first experiment at the Institut fuer Kernphysik in Mainz on intense magnetic flux shielding using a BSCCO (bismuth strontium calcium copper oxide) thin-wall hollow cylinder at 4.2 K and a 1.4 T external magnetic field and compare this to numerical calculations.

  7. Generating transverse response explicitly from harmonic oscillators

    Science.gov (United States)

    Yao, Yuan; Tang, Ying; Ao, Ping

    2017-10-01

    We obtain stochastic dynamics from a system-plus-bath mechanism as an extension of the Caldeira-Leggett (CL) model in the classical regime. An effective magnetic field and response functions with both longitudinal and transverse parts are exactly generated from the bath of harmonic oscillators. The effective magnetic field and transverse response are antisymmetric matrices: the former is explicitly time-independent corresponding to the geometric magnetism, while the latter can have memory. The present model can be reduced to previous representative examples of stochastic dynamics describing nonequilibrium processes. Our results demonstrate that a system coupled with a bath of harmonic oscillators is a general approach to studying stochastic dynamics, and provides a method to experimentally implement an effective magnetic field from coupling to the environment.

  8. Magnetization in quenched bond-mixed Ising ferromagnetic with anisotropic coupling constants

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Tsallis, C.

    1982-01-01

    Within the framework of an effective field theory the phase diagram (ferromagnetic phase stability limit) and magnetization of a quenched bond-mixed spin 1 / 2 Ising model in anisotropic simple cubic lattice for both competing and non competing interactions is dicussed. Although analytically simple, the present formalism is superior to the standard Mean Field Approximation regarding at least two important features, namely it is capable of providing: (i) vanishing critical temperatures for one-dimensional systems; (ii) expected non uniform convergences in the highly diluted and highly anisotropic limits. The largeness of the model under consideration enables the exhibition of a certain amount of physically interesting crossovers (dimensionality changements, (dilute) - (non dilute) behavior, or even mixed situations) at both the phase diagram and magnetization levels. Whenever comparison is possible a satisfactory qualitative (and to a certain extent quantitative) agreement is observed with results available in the literature. (Author) [pt

  9. Transverse magnetic field effects on the relaxation time of the magnetization in Mn12 measured by 55Mn-NMR

    International Nuclear Information System (INIS)

    Furukawa, Y.; Watanabe, K.; Kumagai, K.; Borsa, F.; Gatteschi, D.

    2003-01-01

    The longitudinal (H Z ) and transverse (H T ) magnetic field dependence of the relaxation time of the magnetization in Mn12 in its S=10 ground state was measured by NMR. The minima in the relaxation time at the fields for level crossing are due to the quantum tunneling of the magnetization. The shortening of the relaxation time under the application of H T is shown to be due mainly to the reduction of the energy barrier

  10. Self-organization of domain growth in the Ising model with impurities

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Mouritsen, Ole G.

    1992-01-01

    We have studied avalanchelike rearrangements of domain patterns in the two-dimensional Ising model with static impurities, which is quenched to low temperatures. When breaking the up-down symmetry of the spins by a small applied field, the mere fluctuation of a single spin eventually results...... in a cascade of spin flips at the domain boundaries. We have analyzed the lifetime and size distribution functions for the avalanches and related the results to the general phenomena of self-organized criticality and to recent experiments on cellular magnetic domain patterns in magnetic garnet films. Our...... results suggest that the self-organized state in this system appears to be subcritical, in agreement with a recent theory....

  11. Supersymmetric phase transition in Josephson-tunnel-junction arrays

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1988-08-31

    The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T/sub I/less than or equal toT/sub V/, then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T/sub I/=T/sub V/. Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory.

  12. Study of the Effect of Transport Current and Combined Transverse and Longitudinal Fields on the AC Loss in NET Prototype Conductors

    NARCIS (Netherlands)

    Nijhuis, Arend; ten Kate, Herman H.J.

    1994-01-01

    AC losses in cables carrying DC as well as AC transport currents at different DC background fields up to 2T have been measured on three types of Nb3Sn subcables in a new test facility. In this facility it is possible to apply sinusoidal transverse AC fields up to dB/dt=5T/s and longitudinal AC

  13. Volatility behavior of visibility graph EMD financial time series from Ising interacting system

    Science.gov (United States)

    Zhang, Bo; Wang, Jun; Fang, Wen

    2015-08-01

    A financial market dynamics model is developed and investigated by stochastic Ising system, where the Ising model is the most popular ferromagnetic model in statistical physics systems. Applying two graph based analysis and multiscale entropy method, we investigate and compare the statistical volatility behavior of return time series and the corresponding IMF series derived from the empirical mode decomposition (EMD) method. And the real stock market indices are considered to be comparatively studied with the simulation data of the proposed model. Further, we find that the degree distribution of visibility graph for the simulation series has the power law tails, and the assortative network exhibits the mixing pattern property. All these features are in agreement with the real market data, the research confirms that the financial model established by the Ising system is reasonable.

  14. Comparable studies of magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.

    2016-01-01

    In this work, we have studied and compared the magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices using the Monte Carlo simulations. The transition temperature of the two-dimensional decorated square and triangular lattices has been obtained. The effect of the exchange interactions and crystal field on the magnetization is investigated. The magnetic coercive field and saturation magnetization of the two-dimensional decorated square and triangular lattices have been obtained.

  15. Comparable studies of magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Jabar, A. [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63 46000 Safi (Morocco); Benyoussef, A. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-07-15

    In this work, we have studied and compared the magnetic properties of Ising spins-5/2 and 3/2 systems on decorated square and triangular lattices using the Monte Carlo simulations. The transition temperature of the two-dimensional decorated square and triangular lattices has been obtained. The effect of the exchange interactions and crystal field on the magnetization is investigated. The magnetic coercive field and saturation magnetization of the two-dimensional decorated square and triangular lattices have been obtained.

  16. Large Deviations for the Annealed Ising Model on Inhomogeneous Random Graphs: Spins and Degrees

    Science.gov (United States)

    Dommers, Sander; Giardinà, Cristian; Giberti, Claudio; Hofstad, Remco van der

    2018-04-01

    We prove a large deviations principle for the total spin and the number of edges under the annealed Ising measure on generalized random graphs. We also give detailed results on how the annealing over the Ising model changes the degrees of the vertices in the graph and show how it gives rise to interesting correlated random graphs.

  17. Transverse oscillation vector flow imaging for transthoracic echocardiography

    DEFF Research Database (Denmark)

    Bradway, David; Lindskov Hansen, Kristoffer; Nielsen, Michael Bachmann

    2015-01-01

    -oscillating receive field is described, and results from Field II simulations are presented. Measurements are made using the SARUS experimental ultrasound scanner driving an intercostal phased-array probe. The acquisition sequence was composed of interleaved frames of 68-line B-mode and 17-direction, 32-shot vector......This work presents the development and first results of in vivo transthoracic cardiac imaging using an implementation of Vector Flow Imaging (VFI) via the Transverse Oscillation (TO) method on a phased-array transducer. Optimal selection of the lateral wavelength of the transversely...

  18. Investigation of air-assisted sprays submitted to high frequency transverse acoustic fields: Droplet clustering

    Science.gov (United States)

    Ficuciello, A.; Blaisot, J. B.; Richard, C.; Baillot, F.

    2017-06-01

    An experimental investigation of the effects of a high amplitude transverse acoustic field on coaxial jets is presented in this paper. Water and air are used as working fluids at ambient pressure. The coaxial injectors are placed on the top of a semi-open resonant cavity where the acoustic pressure fluctuations of the standing wave can reach a maximum peak-to-peak amplitude of 12 kPa at the forcing frequency of 1 kHz. Several test conditions are considered in order to quantify the influence of injection conditions, acoustic field amplitude, and injector position with respect to the standing wave acoustic field. A high speed back-light visualization technique is used to characterize the jet response. Image processing is used to obtain valuable information about the jet behavior. It is shown that the acoustic field drastically affects the atomization process for all atomization regimes. The position of the injector in the acoustic field determines the jet response, and a droplet-clustering phenomenon is highlighted in multi-point injection conditions and quantified by determining discrete droplet location distributions. A theoretical model based on nonlinear acoustics related to the spatial distribution of the radiation pressure exerted on an object explains the behavior observed.

  19. Magnetic and thermodynamic properties of Ising model with borophene structure in a longitudinal magnetic field

    Science.gov (United States)

    Shi, Kaile; Jiang, Wei; Guo, Anbang; Wang, Kai; Wu, Chuang

    2018-06-01

    The magnetic and thermodynamic properties of borophene structure have been studied for the first time by Monte Carlo simulation. Two-dimensional borophene structure consisting of seven hexagonal B36 units is described by Ising model. Each B36 basic unit includes three benzene-like with spin-3/2. The general formula for the borophene structure is given. The numerical results of the magnetization, the magnetic susceptibility, the internal energy and the specific heat are studied with various parameters. The possibility to test the predicted magnetism in experiment are illustrated, for instance, the maximum on the magnetization curve. The multiple hysteresis loops and the magnetization plateaus are sensitive to the ferromagnetic or ferrimagnetic exchange coupling in borophene structure. The results show the borophene structure could have applications in spintronics, which deserves further studies in experiments.

  20. Transversely driven charge density waves in NbSe3

    International Nuclear Information System (INIS)

    Markovic, N.; Dohmen, M.A.H.; Zant, H.S.J. van der

    1999-01-01

    We have studied the charge density wave (CDW) transport in the presence of a single-particle current flowing transversely to the sliding direction of the CDW. The depinning threshold field was found to decrease exponentially with the transverse current, allowing the CDWs to slide even at very low bias fields. The CDW transport is ohmic in this novel, nonequilibrium regime. The results from thin NbSe 3 crystals are in excellent agreement with recent theoretical predictions. (orig.)

  1. Transverse magnetization and giant magnetoimpedance in amorphous ribbons

    International Nuclear Information System (INIS)

    Orue, I.; Garcia-Arribas, A.; Saad, A.; Cos, D. de; Barandiaran, J.M.

    2005-01-01

    In the classical approach giant magnetoimpedance (GMI) is driven by the transverse permeability of the sample, as excited by the current flowing through it. Transverse permeability is usually taken as a constant, while detailed magnetization processes are important for the interpretation of GMI data. In most cases the transverse permeability (or magnetization) is only guessed by looking at the longitudinal magnetization curve and direct determinations of such parameter are scarce in the literature. In this work we report on the operation of a simple setup which provides the transverse magnetization of amorphous ribbons as a function of the current intensity flowing through it, by means of the magnetooptical kerr effect (MOKE). The system has been tested on low magnetostriction amorphous ribbons of very soft character with both longitudinal and transverse anisotropy. The transverse magnetization as a function of both the current and a DC longitudinal field applied, was compared with magneto impedance measurements

  2. Experimental study on flow characteristics of a vertically falling film flow of liquid metal NaK in a transverse magnetic field

    International Nuclear Information System (INIS)

    Li Fengchen; Serizawa, Akimi

    2004-01-01

    Experimental study was carried out on the characteristics of a vertically falling film flow of liquid metal sodium-potassium alloy (NaK-78) in a vertical square duct in the presence of a transverse magnetic field. The magnitude of the applied magnetic field was up to 0.7 T. The Reynolds number, defined by the hydraulic diameter based on the wetted perimeter length and the liquid average velocity, ranged from 8.0x10 3 to 3.0x10 4 . The free surfaces of the falling film flows in both a stainless steel and an acrylic resin channels were visualized. The instantaneous film thickness of the falling film flow in the acrylic resin channel was then measured by means of the ultrasonic transmission technique. Magnetohydrodynamic (MHD) effects on the characteristics of the falling film flow were investigated by the visualization and the statistical analysis of the measured film thickness. It was found that the falling liquid NaK film was thickened and the flow was stabilized remarkably by a strong transverse magnetic field. A bifurcation of the film was recovered by the applied magnetic field. The turbulence of the flow was substantially suppressed

  3. Transverse Field Dispersion in the Generalized Nonlinear Schrödinger Equation: Four Wave Mixing in a Higher Order Mode Fiber

    DEFF Research Database (Denmark)

    Pedersen, Martin Erland Vestergaard; Cheng, Ji; Xu, Chris

    2013-01-01

    An improved version of the generalized nonlinear Schrödinger equation is derived, which takes into account the correct dispersion of the transverse field distribution. The new improved version of the generalized nonlinear Schrödinger equation is verified to give the same results as the standard...

  4. Equivalent effect of neutral gas pressure and transverse magnetic field in low-pressure glow discharge plasma

    International Nuclear Information System (INIS)

    Toma, M.; Rusu, Ioana; Pohoata, V.; Mihaila, I.

    2001-01-01

    In the paper it is emphasized the equivalent effect of the neutral gas pressure and the action of a transverse magnetic field (TMF), respectively, on a striated positive plasma column. Experimental and theoretical results prove that the distance between striations has the same variation under the influence of both neutral gas pressure and the action of TMF. The pressure modification as well as the action of a TMF can induce ionization instability in the plasma column which explains the standing striation appearance. (authors)

  5. Nuclear transverse sectional brain function imager

    International Nuclear Information System (INIS)

    Stoddart, H.F.

    1982-01-01

    A transverse radionuclide scan field imaging apparatus comprises a plurality of highly focused closely laterally adjacent collimators arranged inwardly focused in an array that surrounds a scan field of interest. Each collimator is moveable relative to its adjacent collimator. Means are provided for imparting travel to the collimators such that the focal point of each uniformly samples at least one half of the scan field

  6. Multipartite entanglement characterization of a quantum phase transition

    Science.gov (United States)

    Costantini, G.; Facchi, P.; Florio, G.; Pascazio, S.

    2007-07-01

    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.

  7. Multipartite entanglement characterization of a quantum phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, G [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); Facchi, P [Istituto Nazionale di Fisica Nucleare, Sezione di Bari, I-70126 Bari (Italy); Florio, G [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy); Pascazio, S [Dipartimento di Fisica, Universita di Bari, I-70126 Bari (Italy)

    2007-07-13

    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.

  8. Specific heat of the simple-cubic Ising model

    NARCIS (Netherlands)

    Feng, X.; Blöte, H.W.J.

    2010-01-01

    We provide an expression quantitatively describing the specific heat of the Ising model on the simple-cubic lattice in the critical region. This expression is based on finite-size scaling of numerical results obtained by means of a Monte Carlo method. It agrees satisfactorily with series expansions

  9. CT-guided radioactive 125I-seed implantation for the treatment of pancreatic carcinoma: a clinical observation of 19 cases

    International Nuclear Information System (INIS)

    Lu Jian; Zheng Yunfeng; Zhang Huan; Wang Zhongmin; Chen Kemin

    2010-01-01

    Objective: To explore the dynamic changes of serum tumor markers after CT-guided radioactive 125 I-seed implantation treatment in patients with pancreatic carcinoma and to assess the therapeutic effectiveness of 125 I-seed implantation. Methods: CT-guided radioactive 125 I-seed implantation was performed in 19 patients with unresectable advanced pancreatic cancer. Treatment planning system was used to reconstruct 3-dimentional images of the tumor, and the quantity and distribution of 125 I-seeds to be implanted were thus determined. Under CT guidance 125 I-seeds were embedded into pancreatic cancer. Before and after the 125 I-seed implantation the levels of serum tumor markers, including CEA, CA19-9 and CA50, were determined by using radioimmunoassay method. The clinical effects were observed and the therapeutic results were statistically analyzed. Results: The pain stared to be relieved 2 to 5 days after implantation. The total effective rate (CR + PR) at one and three months after treatment was 68.42% (13 /19) and 63.16% (12 /19) respectively. One month after 125 I-seed implantation, the levels of serum CEA, CA19-9 and CA50 were significantly different to that determined before implantation in all cases (P 125 I-seed implantation is a safe and effective interventional treatment for advanced pancreatic cancer with reliable short-term result and remarkable pain-relieving effect. Moreover, this therapy can significantly lower the levels of many serum tumor markers, which play some suggestive roles in evaluating the clinical curativeness. (authors)

  10. Compensating for the impact of non-stationary spherical air cavities on IMRT dose delivery in transverse magnetic fields

    International Nuclear Information System (INIS)

    Bol, G H; Lagendijk, J J W; Raaymakers, B W

    2015-01-01

    With the development of the 1.5 T MRI linear accelerator and the clinical introduction of the 0.35 T ViewRay™ system, delivering intensity-modulated radiotherapy (IMRT) in a transverse magnetic field becomes increasingly important. When delivering dose in the presence of a transverse magnetic field, one of the most prominent phenomena occurs around air cavities: the electron return effect (ERE). For stationary, spherical air cavities which are centrally located in the phantom, the ERE can be compensated by using opposing beams configurations in combination with IMRT. In this paper we investigate the effects of non-stationary spherical air cavities, centrally located within the target in a phantom containing no organs at risk, on IMRT dose delivery in 0.35 T and 1.5 T transverse magnetic fields by using Monte Carlo simulations. We show that IMRT can be used for compensating ERE around those air cavities, except for intrafraction appearing or disappearing air cavities. For these cases, gating or plan re-optimization should be used. We also analyzed the option of using IMRT plans optimized at 0 T to be delivered in the presence of 0.35 T and 1.5 T magnetic field. When delivering dose at 0.35 T, IMRT plans optimized at 0 T and 0.35 T perform equally well regarding ERE compensation. Within a 1.5 T environment, the 1.5 T optimized plans perform slightly better for the static and random intra- and interfraction air cavity movement cases than the 0 T optimized plans. For non-stationary spherical air cavities with a baseline shift (intra- and interfraction) the 0 T optimized plans perform better. These observations show the intrinsic ERE compensation by equidistant and opposing beam configurations for spherical air cavities within the target area. IMRT gives some additional compensation, but only in case of correct positioning of the air cavity according to the IMRT compensation. For intrafraction appearing or disappearing air cavities this correct

  11. Critical phenomena in Ising-type thin films by Monte Carlo study

    International Nuclear Information System (INIS)

    Masrour, R.; Jabar, A.; Benyoussef, A.; Hamedoun, M.

    2016-01-01

    The magnetic properties of ferrimagnetic spin-2 and 3/2 Ising-typed thin films are studied by Monte Carlo simulation. The critical temperature is obtained for different values of thickness of the thin film and for different exchange interactions. The total magnetization has been determined for different values of exchange interactions in surface and in bulk and different temperatures. The magnetic hysteresis cycle is obtained for different values of exchange interactions ferro and antiferromagnetic in the surface and in the bulk and for different values of temperatures for a fixed size of the film thickness. The coercive field increase with increasing the film thickness. - Highlights: • The magnetic properties of thin films are studied by Monte Carlo simulation. • The critical temperature is obtained for different values of thickness of thin film. • The magnetic hysteresis cycle is obtained in the surface and in the bulk. • The coercive field increase with increasing the thin film thickness.

  12. Critical phenomena in Ising-type thin films by Monte Carlo study

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, 63, 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco)

    2016-04-01

    The magnetic properties of ferrimagnetic spin-2 and 3/2 Ising-typed thin films are studied by Monte Carlo simulation. The critical temperature is obtained for different values of thickness of the thin film and for different exchange interactions. The total magnetization has been determined for different values of exchange interactions in surface and in bulk and different temperatures. The magnetic hysteresis cycle is obtained for different values of exchange interactions ferro and antiferromagnetic in the surface and in the bulk and for different values of temperatures for a fixed size of the film thickness. The coercive field increase with increasing the film thickness. - Highlights: • The magnetic properties of thin films are studied by Monte Carlo simulation. • The critical temperature is obtained for different values of thickness of thin film. • The magnetic hysteresis cycle is obtained in the surface and in the bulk. • The coercive field increase with increasing the thin film thickness.

  13. Fermions in light front transverse lattice quantum chromodynamics

    Indian Academy of Sciences (India)

    Ur(x-aˆr)]}. (3). After eliminating the constraint fields we arrive at the transverse lattice Hamiltonian. P. =P. 1 +P. 2 ,. (4) where P. 1 arises from the elimination of ψ (hence sensitive to how fermions are put on the transverse lattice) and P. 2 contains Wilson plaquette term and the terms arising from the elimination of A . Explicitly.

  14. Genus-two characters of the Ising model

    International Nuclear Information System (INIS)

    Choi, J.H.; Koh, I.G.

    1989-01-01

    As a first step in studying conformal theories on a higher-genus Riemann surface, we construct genus-two characters of the Ising model from their behavior in zero- and nonzero-homology pinching limits, the Goddard-Kent-Oliveco set-space construction, and the branching coefficients in the level-two A 1 /sup (1)/ Kac-Moody characters on the higher-genus Riemann surface

  15. Weak universality in inhomogeneous Ising quantum chains

    International Nuclear Information System (INIS)

    Karevski, Dragi

    2006-01-01

    The Ising quantum chain with arbitrary coupling distribution {λ i } leading to an anisotropic scaling is considered. The smallest gap of the chain is connected to the surface magnetization by the relation Λ 1 = m s ({λ i })m s ({λ -1 i }). For some aperiodic distribution {λ i }, a weak universality of the critical behaviour is found. (letter to the editor)

  16. Magnetization plateaus and phase diagrams of the Ising model on the Shastry–Sutherland lattice

    Energy Technology Data Exchange (ETDEWEB)

    Deviren, Seyma Akkaya, E-mail: sadeviren@nevsehir.edu.tr

    2015-11-01

    The magnetization properties of a two-dimensional spin-1/2 Ising model on the Shastry–Sutherland lattice are studied within the effective-field theory (EFT) with correlations. The thermal behavior of the magnetizations is investigated in order to characterize the nature (the first- or second-order) of the phase transitions as well as to obtain the phase diagrams of the model. The internal energy, specific heat, entropy and free energy of the system are also examined numerically as a function of the temperature in order to confirm the stability of the phase transitions. The applied field dependence of the magnetizations is also examined to find the existence of the magnetization plateaus. For strong enough magnetic fields, several magnetization plateaus are observed, e.g., at 1/9, 1/8, 1/3 and 1/2 of the saturation. The phase diagrams of the model are constructed in two different planes, namely (h/|J|, |J′|/|J|) and (h/|J|, T/|J|) planes. It was found that the model exhibits first- and second-order phase transitions; hence tricitical point is also observed in additional to the zero-temperature critical point. Moreover the Néel order (N), collinear order (C) and ferromagnetic (F) phases are also found with appropriate values of the system parameters. The reentrant behavior is also obtained whenever model displays two Néel temperatures. These results are compared with some theoretical and experimental works and a good overall agreement has been obtained. - Highlights: • Magnetization properties of spin-1/2 Ising model on SS lattice are investigated. • The magnetization plateaus of the 1/9, 1/8, 1/3 and 1/2 are observed. • The phase diagrams of the model are constructed in two different planes. • The model exhibits the tricitical and zero-temperature critical points. • The reentrant behavior is obtained whenever model displays two Neel temperatures.

  17. Nature versus nurture: Predictability in low-temperature Ising dynamics

    Science.gov (United States)

    Ye, J.; Machta, J.; Newman, C. M.; Stein, D. L.

    2013-10-01

    Consider a dynamical many-body system with a random initial state subsequently evolving through stochastic dynamics. What is the relative importance of the initial state (“nature”) versus the realization of the stochastic dynamics (“nurture”) in predicting the final state? We examined this question for the two-dimensional Ising ferromagnet following an initial deep quench from T=∞ to T=0. We performed Monte Carlo studies on the overlap between “identical twins” raised in independent dynamical environments, up to size L=500. Our results suggest an overlap decaying with time as t-θh with θh=0.22±0.02; the same exponent holds for a quench to low but nonzero temperature. This “heritability exponent” may equal the persistence exponent for the two-dimensional Ising ferromagnet, but the two differ more generally.

  18. Multi spin-flip dynamics: a solution of the one-dimensional Ising model

    International Nuclear Information System (INIS)

    Novak, I.

    1990-01-01

    The Glauber dynamics of interacting Ising spins (the single spin-flip dynamics) is generalized to p spin-flip dynamics with a simultaneous flip of up to p spins in a single configuration move. The p spin-flip dynamics is studied of the one-dimensional Ising model with uniform nearest-neighbour interaction. For this case, an exact relation is given for the time dependence of magnetization. It was found that the critical slowing down in this model could be avoided when p spin-flip dynamics with p>2 was considered. (author). 17 refs

  19. Electro-optical properties of zigzag and armchair boron nitride nanotubes under a transverse electric field: Tight binding calculations

    Science.gov (United States)

    Chegel, Raad; Behzad, Somayeh

    2012-02-01

    The electro-optical properties of zigzag and armchair BNNTs in a uniform transverse electric field are investigated within tight binding approximation. It is found that the electric field modifies the band structure and splits band degeneracy where these effects reflect in the DOS and JDOS spectra. A decrease in the band gap, as a function of the electric field, is observed. This gap reduction increases with the diameter and it is independent of chirality. An analytic function to estimate the electric field needed for band gap closing is proposed which is in good agreement with DFT results. In additional, we show that the larger diameter tubes are more sensitive than small ones. Number and position of peaks in DOS and JDOS spectra for armchair and zigzag tubes with similar radius are dependent on electric field strength.

  20. Signals for transversity and transverse-momentum-dependent quark distribution functions studied at the HERMES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Diefenthaler, Markus

    2010-08-15

    Intention of the present thesis was the study of transverse-momentum dependent quark distribution functions. In the focus stood the Fourier analysis of azimutal single-spin asymmetries of pions and charged kaons performed within the HERMES experiment. These asymmetries were reconstructed from deep-inelastic scattering events on a transversely polarized proton target and decomposed in Fourier components. In the framework of quantum chromodynamics such components can be interpreted as folding of quark distribution and fragmentation functions. By the analysis of the transverse-momentum dependent quark distribution functions the study of spin-orbit correlations in the internal of the nucleon was made possible. By this conclusions on the orbital angular momentum of the quarks can be drawn. The extracted Fourier components extend the hitherto available informations on the transverse-momentum dependent quark distribution functions remarkably. The presented Fourier analysis made not only a detection of the Collins and Sivers effects possible, but beyond the extraction of the signals of the pretzelosity and worm-gear distributions. The so obtained results will conclusively contribute to the understanding of future measurements in this field and furthermore make possible a test of fundamental predictions of quantum chromodynamics.