WorldWideScience

Sample records for transporting coal particles

  1. Influence of coal slurry particle composition on pipeline hydraulic transportation behavior

    Science.gov (United States)

    Li-an, Zhao; Ronghuan, Cai; Tieli, Wang

    2018-02-01

    Acting as a new type of energy transportation mode, the coal pipeline hydraulic transmission can reduce the energy transportation cost and the fly ash pollution of the conventional coal transportation. In this study, the effect of average velocity, particle size and pumping time on particle composition of coal particles during hydraulic conveying was investigated by ring tube test. Meanwhile, the effects of particle composition change on slurry viscosity, transmission resistance and critical sedimentation velocity were studied based on the experimental data. The experimental and theoretical analysis indicate that the alter of slurry particle composition can lead to the change of viscosity, resistance and critical velocity of slurry. Moreover, based on the previous studies, the critical velocity calculation model of coal slurry is proposed.

  2. Coal transportation research and information needs

    Energy Technology Data Exchange (ETDEWEB)

    Eck, R.W. (West Virginia Univ., Morgantown); Hui, C.Y.

    1978-09-01

    This paper examines some of the existing and emerging issues of interest to engineers and planners dealing with coal transportation. One conclusion is that any research or data collection efforts in this field must be of a multidisciplinary nature. Not only must transportation planners, highway engineers, maintenance engineers, and soils engineers work together but, in addition, engineers will need to work with geologists, economists, and marketing specialists for effective planning, design, and operation of the coal transportation system. Earlier sections of this paper may have given the erroneous impression that all future research should concentrate on problems of transporting coal by truck. Although the West Virginia coal conversion study documented information deficiencies relative to the highway transportation of coal, research efforts involving railroads and waterways should continue. There is a serious need for research and information relative to the interactions between modes. For example, in order to predict the impact of local coal conversions on rail and barge systems that serve retailers, it is necessary to have a knowledge of the typical volumes that would be required by retail facilities, frequency of delivery to retail yards, and transportation distances involved mine and retailer. This paper deals with relatively short-term planning, however, information is required on the long-range future of the coal industry. Decision makers involved with providing an adequate coal transportation system must have information on the future role that coal will play in United States energy policy. (MCW)

  3. Coal supply and transportation model (CSTM)

    International Nuclear Information System (INIS)

    1991-11-01

    The Coal Supply and Transportation Model (CSTM) forecasts annual coal supply and distribution to domestic and foreign markets. The model describes US coal production, national and international coal transportation industries. The objective of this work is to provide a technical description of the current version of the model

  4. Energy Policy Act transportation rate study: Interim report on coal transportation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-10-01

    The primary purpose of this report is to examine changes in domestic coal distribution and railroad coal transportation rates since enactment of the Clean Air Act Amendments of 1990 (CAAA90). From 1988 through 1993, the demand for low-sulfur coal increased, as a the 1995 deadline for compliance with Phase 1 of CAAA90 approached. The shift toward low-sulfur coal came sooner than had been generally expected because many electric utilities switched early from high-sulfur coal to ``compliance`` (very low-sulfur) coal. They did so to accumulate emissions allowances that could be used to meet the stricter Phase 2 requirements. Thus, the demand for compliance coal increased the most. The report describes coal distribution and sulfur content, railroad coal transportation and transportation rates, and electric utility contract coal transportation trends from 1979 to 1993 including national trends, regional comparisons, distribution patterns and regional profiles. 14 figs., 76 tabs.

  5. Rheology of Colombian coal-water slurry fuels: Effect of particle-size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Pulido, J E; Rojas, C P; Acero, G [Universidad Industrial de Santander, Bucaramanga (Colombia)

    1996-12-31

    Coal-water slurry fuels (CWSF`s) have been prepared and characterized in a research project in Colombia, sponsored by Colciencias and Ecocarbon, in order to evaluate the effects of the different composition variables on the behavior during preparation and pipe line transportation. The authors have previously presented details describing the characteristics of the slurry fuels prepared with five types of Colombian thermal coals and the influence of their chemical composition on the optimum particle-size distribution (PSD) required to prepare highly loaded and workable CWSF`s. The formulation and design of flow systems of suspensions with high solids content, such as the CWSF`s, require a detailed rheological knowledge of the suspension in terms of the governing parameters related to PSD, coal content, surface chemistry of the particles and dispersants used to stabilize the slurries. Important studies on these aspects have been reviewed and carried out experimentally by other authors specially devoted to the correlations between apparent viscosity, solids content and average coal particle-size. One of the targets to obtain an optimum control on the viscosity and flow properties of the CWSF`s must be based in correlating the Theological constants for the prevailing model of viscosity law to the characteristic parameters of the particle-size distribution and to the coal content in the slurry. In spite of the effect of PSD on the rheology of highly-loaded coal slurries have been long recognized as significant, the specific influence of the various PSD`s on the parameters of the Theological model continues to receive attention to further understanding in order to improve the slurry formulations for a specified purpose on preparation and hydraulic handling. This paper reports the results of an experimental technique of examining the various PSD`s on coal slurry fuel rheology, taking special attention for the effect on the parameters of the rheological model.

  6. Study of coal oxidation by charged particle activation analysis

    International Nuclear Information System (INIS)

    Schlyer, D.J.; Wolf, A.P.

    1980-01-01

    It has been possible, using the technique of changed particle activation analysis, to follow the time course of the oxidation of coal exposed to air. The kinetics have been studied and seem to be consistent with a rapid initial uptake of oxygen containing molecules followed by slow diffusion into the surface of the coal particles. In this latter regard a study has been undertaken to study the depth profile of the oxygen into the coal particle surface. The depth of penetration of the activating particle is determined by the incident energy and therefore, by comparison to the appropriate standards, the depth profile may be determined either by varying the incident energy or by varying the particle size. Both approaches have been used and give consistent results. The depth to which a significant amount of oxygen penetrates varies from about 3 μm for very high rank coals to about 20 μm for low rank coals. This diffusion depth seems to be related to the porosity of the coals. A model for the low temperature air oxidation of coal has been developed to explain the results from the above mentioned experiments

  7. Computational methods for two-phase flow and particle transport

    CERN Document Server

    Lee, Wen Ho

    2013-01-01

    This book describes mathematical formulations and computational methods for solving two-phase flow problems with a computer code that calculates thermal hydraulic problems related to light water and fast breeder reactors. The physical model also handles the particle and gas flow problems that arise from coal gasification and fluidized beds. The second part of this book deals with the computational methods for particle transport.

  8. Dewatering behaviour of ultrafine hard coal particles

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, D.; Alizadeh, A.; Simonis, W.

    1986-03-01

    With decreasing particle diameter distribution the dewatering behaviour of coal gets increasingly complicated. A correlation between final moisture and content of particles below 25..mu..m in the course of centrifuging can be verified. This behaviour of the particles below 25..mu..m can be explained by the great specific surface, on the one hand, and by the distribution of the surface charge density, on the other hand. The charge density depends on the type of coal, on the minerals content and their make-up, as well as on the characteristics of the surrounding medium. The surface charge can be measured indirectly. Varying electrophoretic mobilities of the particles are observed in dependence on the type of raw material. In the neutral pH-range, minerals have a negative surface charge, while coal has a positive one. By way of adding reagents it is possible to invert the negative charges with complicated dewatering characteristics into positive charges. A similar influence will be exerted by changing the pH-value. 6 references.

  9. Coal lumps vs. electrons: How do Chinese bulk energy transport decisions affect the global steam coal market?

    International Nuclear Information System (INIS)

    Paulus, Moritz; Trüby, Johannes

    2011-01-01

    This paper demonstrates the ways in which different Chinese bulk energy transport strategies affect the future steam coal market in China and in the rest of the world. An increase in Chinese demand for steam coal will lead to a growing need for additional domestic infrastructure as production hubs and demand centers are spatially separated, and domestic transport costs could influence the future Chinese steam coal supply mix. If domestic transport capacity is available only at elevated costs, Chinese power generators could turn to the global trade markets and further increase steam coal imports. Increased Chinese imports could then yield significant changes in steam coal market economics on a global scale. This effect is analyzed in China, where coal is mainly transported by railway, and in another setting where coal energy is transported as electricity. For this purpose, a spatial equilibrium model for the global steam coal market has been developed. One major finding is that if coal is converted into electricity early in the supply chain, worldwide marginal costs of supply are lower than if coal is transported via railway. Furthermore, China's dependence on international imports is significantly reduced in this context. Allocation of welfare changes particularly in favor of Chinese consumers while rents of international producers decrease.

  10. Studies on the effect of coal particle size on biodepyritization of high sulfur coal in batch bioreactor

    Directory of Open Access Journals (Sweden)

    Singh Sradhanjali

    2015-03-01

    Full Text Available The moderate thermophilic mix culture bacteria were used to depyritize the Illinois coal of varying particle sizes (-100 μm, 100-200 μm, +200 μm. Mineral libration analysis showed the presence of pyrite along with other minerals in coal. Microbial depyritization of coal was carried out in stirred tank batch reactors in presence of an iron-free 9K medium. The results indicate that microbial depyritization of coal using moderate thermophiles is an efficient process. Moreover, particle size of coal is an important parameter which affects the efficiency of microbial depyritization process. At the end of the experiment, a maximum of 75% pyrite and 66% of pyritic sulphur were removed from the median particle size. The XRD analysis showed the absence of pyrite mineral in the treated coal sample. A good mass balance was also obtained with net loss of mass ranging from 5-9% showing the feasibility of the process for large scale applications.

  11. Investigations of the transportation characteristics of biomass fuel particles in a horizontal pipeline through CFD modelling and experimental measurement

    International Nuclear Information System (INIS)

    Gubba, S.R.; Ingham, D.B.; Larsen, K.J.; Ma, L.; Pourkashanian, M.; Qian, X.; Williams, A.; Yan, Y.

    2012-01-01

    Recent national and international emission legislations to reduce emissions of carbon dioxide are forcing power generation industries using coal to look at various alternatives, such as biomass and especially by co-firing techniques. Biomass is transported to the burners either mixed with the primary fuel, in general, coal, or used in dedicated pipelines. In both cases, transportation of biomass is difficult due to its composition, size, shape and physical behaviour in comparison to the transportation of coal. This study considers experimental measurements for biomass particle transportation in a pipeline with a transverse elbow and compares the results with those using computation fluid dynamic (CFD) techniques. Various materials: flour, willow, wood, bark and a mixture of flour and willow, have been considered in the present investigation. The experimental work was performed using the dynamic changes in the electrostatic charges of biomass particles in conjunction with correlation signal processing techniques. The CFD simulations were performed by considering the effects of gravity, non-spherical drag (based on estimated shape factor), detailed information of the particle distribution, particle wall collisions and particle–particle interactions. Good quantitative and qualitative agreement was obtained between the CFD simulations and the experimental data. It is concluded that particle–particle interactions are of less importance if the mass loading ratio of particles to air is less than 0.03. -- Highlights: ► Dispersed biomass particle transportation is studied using experiments and CFD. ► Inclusion of asphericity in the drag model clearly demonstrated the improvements. ► Gravity effects are found to be important for correct particle distribution in pipe lines. ► Inter-particle collisions were less important for mass loading ratios <0.05 kg/kg.

  12. Mercury speciation and fine particle size distribution on combustion of Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lei; Wang, Shuxiao; Hao, Jiming [Tsinghua Univ., Beijing (China). Dept. of Environmental Science and Engineering and State Key Joint Lab. of Environment Simulation and Pollution Control; Daukoru, Michael; Torkamani, Sarah; Biswas, Pratim [Washington Univ., St. Louis, MO (United States). Aerosol and Air Quality Research Lab.

    2013-07-01

    Coal combustion is the dominant anthropogenic mercury emission source of the world. Electrostatic precipitator (ESP) can remove almost all the particulate mercury (Hg{sub p}), and wet flue gas desulfurization (WFGD) can retain a large part of the gaseous oxidized mercury (Hg{sup 2+}). Only a small percentage of gaseous elemental mercury (Hg{sup 0}) can be abated by the air pollution control devices (APCDs). Therefore, the mercury behavior across APCDs largely depends on the mercury speciation in the flue gas exhausting from the coal combustor. To better understand the formation process of three mercury species, i.e. Hg{sup 0}, Hg{sup 2+} and Hg{sub p}, in gaseous phase and fine particles, bench-scale measurements for the flue gas exhausting from combustion of different types of coal in a drop-tube furnace set-up, were carried out. It was observed that with the limitation of reaction kinetics, higher mercury concentration in flue gas will lead to lower Hg{sup 2+} proportion. The concentration of chlorine has the opposite effect, not as significantly as that of mercury though. With the chlorine concentration increasing, the proportion of Hg{sup 2+} increases. Combusting the finer coal powder results in the formation of more Hg{sup 2+}. Mineral composition of coal and coal particle size has a great impact on fine particle formation. Al in coal is in favor of finer particle formation, while Fe in coal can benefit the formation of larger particles. The coexistence of Al and Si can strengthen the particle coagulation process. This process can also be improved by the feeding of more or finer coal powder. The oxy-coal condition can make for both the mercury oxidation process and the metal oxidation in the fine particle formation process.

  13. Pressure Prediction of Coal Slurry Transportation Pipeline Based on Particle Swarm Optimization Kernel Function Extreme Learning Machine

    Directory of Open Access Journals (Sweden)

    Xue-cun Yang

    2015-01-01

    Full Text Available For coal slurry pipeline blockage prediction problem, through the analysis of actual scene, it is determined that the pressure prediction from each measuring point is the premise of pipeline blockage prediction. Kernel function of support vector machine is introduced into extreme learning machine, the parameters are optimized by particle swarm algorithm, and blockage prediction method based on particle swarm optimization kernel function extreme learning machine (PSOKELM is put forward. The actual test data from HuangLing coal gangue power plant are used for simulation experiments and compared with support vector machine prediction model optimized by particle swarm algorithm (PSOSVM and kernel function extreme learning machine prediction model (KELM. The results prove that mean square error (MSE for the prediction model based on PSOKELM is 0.0038 and the correlation coefficient is 0.9955, which is superior to prediction model based on PSOSVM in speed and accuracy and superior to KELM prediction model in accuracy.

  14. Energy characteristics of finest coal particles surfaces versus their upgrading using flotation

    Energy Technology Data Exchange (ETDEWEB)

    Jerzy Sablik

    2007-07-01

    The paper presents selected results of investigations on energy properties of the fine coal particles, and methodological grounds for conducting such investigations. Using the discussed relationships, values of contact angle of coal particles with various degree of coalification in the range defined by the energy nonhomogeneity of the surfaces were computed. There have been determined the values of the contact angles of coal particles with hydrophobic and hydrophilic surfaces after coating with nonpolar and polar reagents. The energy state of the surfaces of coal particles in the feeds and products of industrial flotation were determined, which enabled to evaluate this process. 22 refs., 6 figs., 4 tabs.

  15. Investigating erosion of building materials used in an installation for pneumatic transport of coke breeze and coal

    Energy Technology Data Exchange (ETDEWEB)

    Bandrowski, J.; Kot-Borkowska, Z.; Misztal, M.; Raczek, J.; Kaczmarzyk, G.

    1980-09-01

    This article investigates the influence of the following factors on erosion of building material used in pneumatic transport of coal and coke breeze: intensity of coal or coke breeze flow within the range of 47 to 120 kg/h for coke and 99 to 165 kg/h for coal; speed of solid material particles within the range 3.71 to 7.97 m/s for coke, and 3.30 to 7.58 m/s for coal; duration of the experiments 0.5 to 1.5 h for coke and 2.0 to 5.0 for coal; angle of inclination of the sample of building material 30 to 60 degrees for both coal and coke breeze. Three types of construction material used in pneumatic transport were tested: steel, concrete and chamotte bricks. Investigations show that concrete is characterized by the highest erosion, chamotte bricks by medium erosion and steel by the lowest erosion. As a result of mathematical processing of experimental data, empirical models of erosion of the three materials are constructed. (7 refs.)

  16. Overview of the environmental concerns of coal transportation

    Energy Technology Data Exchange (ETDEWEB)

    Bertram, K.; Dauzvardis, P.; Fradkin, L.; Surles, T.

    1980-02-01

    More than 30 environmental concerns were analyzed for the transportation of coal by rail, roads (trucks), high voltage transmission lines (that is, from mine-mouth generating plants to distribution networks), coal slurry pipelines, and barges. The following criteria were used to identify these problems: (1) real physical environmetal impacts for which control technologies must be developed, or regulation made effective where control technologies presently exist; (2) the level of impact is uncertain, although the potential impact may be moderate to high; (3) the concerns identified by the first two criteria are specific to or exacerbated by coal transportation. Generic transportation problems are not included. The significant environmental problems identified as a result of this study are: (1) rail transport - community traffic disruption and human health, safety, and habitat destruction; (2) coal haul roads - road degradation, traffic congestion and safety, air quality, and noise; (3) high voltage transmission lines - changed land use without local benefits, biological health and safety effects, and disruption of world weather patterns; (4) slurry pipelines - water availability, water quality, and possible spills from non-water slurry pipelines; and (5) barge transport - impacts common to all barge traffic. (DMC)

  17. Formation of fine particles in co-combustion of coal and solid recovered fuel in a pulverized coal-fired power station

    DEFF Research Database (Denmark)

    Wu, Hao; Pedersen, Anne Juul; Glarborg, Peter

    2011-01-01

    showed an ultrafine mode centered at approximately 0.1 μm. Compared with coal combustion, co-combustion of coal and SRF increased the formation of submicron particles, especially ultrafine particles below 0.2 μm. The morphology of the particles indicated that supermicron particles were primarily formed...... by the melting of minerals. The ultrafine particles were generated through nucleation and coagulation of vaporized inorganic species, while for the particles in between supermicron and ultrafine particles, condensation of vaporized species or aggregation of nucleates on the existing spherical submicron particles...... appear to be an important formation mechanism. The elemental composition of the particles from coal combustion showed that S and Ca were significantly enriched in ultrafine particles and P was also enriched considerably. However, compared with supermicron particles, the contents of Al, Si and K were...

  18. Optimization of laser-induced breakdown spectroscopy for coal powder analysis with different particle flow diameters

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Shunchun, E-mail: epscyao@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); State Key Laboratory of Pulsed Power Laser Technology, Electronic Engineering Institute, Hefei 230037 (China); Xu, Jialong; Dong, Xuan; Zhang, Bo; Zheng, Jianping [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China); Lu, Jidong, E-mail: jdlu@scut.edu.cn [School of Electric Power, South China University of Technology, Guangzhou, Guangdong 510640 (China)

    2015-08-01

    The on-line measurement of coal is extremely useful for emission control and combustion process optimization in coal-fired plant. Laser-induced breakdown spectroscopy was employed to directly analyze coal particle flow. A set of tapered tubes were proposed for beam-focusing the coal particle flow to different diameters. For optimizing the measurement of coal particle flow, the characteristics of laser-induced plasma, including optical breakdown, the relative standard deviation of repeated measurement, partial breakdown spectra ratio and line intensity, were carefully analyzed. The comparison of the plasma characteristics among coal particle flow with different diameters showed that air breakdown and the random change in plasma position relative to the collection optics could significantly influence on the line intensity and the reproducibility of measurement. It is demonstrated that the tapered tube with a diameter of 5.5 mm was particularly useful to enrich the coal particles in laser focus spot as well as to reduce the influence of air breakdown and random changes of plasma in the experiment. - Highlights: • Tapered tube was designed for beam-focusing the coal particle flow as well as enriching the particles in laser focus spot. • The characteristics of laser-induced plasma of coal particle flow were investigated carefully. • An appropriate diameter of coal particle flow was proven to benefit for improving the performance of LIBS measurement.

  19. Determining the radiative properties of pulverized-coal particles from experiments. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Menguec, M.P.

    1992-02-01

    A comprehensive coupled experimental-theoretical study has been performed to determine the effective radiative properties of pulverized-coal/char particles. The results obtained show that the ``effective`` scattering phase function of coal particles are highly forward scattering and show less sensitivity to the size than predicted from the Lorenz-Mie theory. The main reason for this is the presence of smaller size particles associated with each larger particle. Also, the coal/char particle clouds display more side scattering than predicted for the same size range spheres, indicating the irregular shape of the particles and fragmentation. In addition to these, it was observed that in the visible wavelength range the coal absorption is not gray, and slightly vary with the wavelength. These two experimental approaches followed in this study are unique in a sense that the physics of the problem are not approximated. The properties determined include all uncertainties related to the particle shape, size distribution, inhomogeneity and spectral complex index of refraction data. In order to obtain radiative property data over a wider wavelength spectrum, additional ex-situ experiments have been carried out using a Fourier Transform Infrared (FT-IR) Spectrometer. The spectral measurements were performed over the wavelength range of 2 to 22 {mu}m. These results were interpreted to obtain the ``effective`` efficiency factors of coal particles and the corresponding refractive index values. The results clearly show that the coal/char radiative properties display significant wavelength dependency in the infrared spectrum.

  20. Ecological aspects of water coal fuel transportation and application

    Directory of Open Access Journals (Sweden)

    Anna SHVORNIKOVA

    2010-01-01

    Full Text Available This paper deals with the aspects of influence of transportation process and burning of water coal fuel on an ecological condition of environment. Also mathematical dependences between coal ash level and power consumption for transportation are presented.

  1. New methods in efficient coal transportation

    Energy Technology Data Exchange (ETDEWEB)

    Monroe, C.O.; Wolach, D.G.; Alexander, A.B. [Savage Industries Inc., Salt Lake City, UT (United States)

    1998-10-01

    With the increasing trend towards railroad mergers in the USA, there is a growing awareness of competition and of the need for railroads to ensure a better value service. This paper discusses the concept of business process outsourcing and its potential to provide an efficient and integrated transport system for coal handling. Examples at US coal distribution facilities are given. 6 photos., 1 fig.

  2. Volatile release and particle formation characteristics of injected pulverized coal in blast furnaces

    International Nuclear Information System (INIS)

    Chen, Wei-Hsin; Du, Shan-Wen; Yang, Tsung-Han

    2007-01-01

    Volatiles release and particle formation for two kinds of pulverized coals (a high volatile bituminous coal and a low volatile bituminous coal) in a drop tube furnace are investigated to account for the reactions of pulverized coal injected in blast furnaces. Two different sizes of feed particles are considered; one is 100-200 mesh and the other is 200-325 mesh. By evaluating the R-factor, the devolatilization extent of the larger feed particles is found to be relatively poor. However, the swelling behavior of individual or two agglomerated particles is pronounced, which is conducive to gasification of the chars in blast furnaces. In contrast, for the smaller feed particles, volatiles liberated from the coal particles can be improved in a significant way as a result of the amplified R-factor. This enhancement can facilitate the performance of gas phase combustion. Nevertheless, the residual char particles are characterized by agglomeration, implying that the reaction time of the char particles will be lengthened, thereby increasing the possibility of furnace instability. Double peak distributions in char particle size are observed in some cases. This possibly results from the interaction of the plastic state and the blowing effect at the particle surface. Considering the generation of tiny aerosols composed of soot particles and tar droplets, the results indicate that their production is highly sensitive to the volatile matter and elemental oxygen contained in the coal. Comparing the reactivity of the soot to that of the unburned char, the former is always lower than the latter. Consequently, the lower is the soot formation, the better is the blast furnace stability

  3. Long range transport of fine particle windblown soils and coal fired power station emissions into Hanoi between 2001 to 2008

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, D.D.; Crawford, J.; Stelcer, E.; Vuong, T.B. [Australian Nuclear Science & Technology Organisation, Kirrawee DC, NSW (Australia)

    2010-10-15

    Fine particulate matter (PM2.5), source fingerprints and their contributions have been measured and reported previously at Hanoi, Vietnam, from 25 April 2001 to 31 December 2008. In this study back trajectories are used to identify long range transport into Hanoi for two of these sources, namely, windblown dust (Soil) from 12 major deserts in China and emissions from 33 coal fired power plants (Coal) in Vietnam and China. There were 28 days of extreme Soil events with concentrations greater than 6 {mu} g m{sup -3} and 25 days of extreme Coal with concentrations greater than 30 {mu} g m{sup -3} from a total of 748 sampling days during the study period. Through the use of back trajectories it was found that long range transport of soil from the Taklamakan and Gobi desert regions (more than 3000 km to the north west) accounted for 76% of the extreme events for Soil. The three local Vietnamese power stations contributed to 15% of the extreme Coal events, while four Chinese power stations between 300 km and 1700 km to the north-east of Hanoi contributed 50% of the total extreme Coal events measured at the Hanoi sampling site.

  4. Novel fragmentation model for pulverized coal particles gasification in low temperature air thermal plasma

    Directory of Open Access Journals (Sweden)

    Jovanović Rastko D.

    2016-01-01

    Full Text Available New system for start-up and flame support based on coal gasification by low temperature air thermal plasma is planned to supplement current heavy oil system in Serbian thermal power plants in order to decrease air pollutions emission and operational costs. Locally introduced plasma thermal energy heats up and ignites entrained coal particles, thus starting chain process which releases heat energy from gasified coal particles inside burner channel. Important stages during particle combustion, such as particle devolatilisation and char combustion, are described with satisfying accuracy in existing commercial CFD codes that are extensively used as powerful tool for pulverized coal combustion and gasification modeling. However, during plasma coal gasification, high plasma temperature induces strong thermal stresses inside interacting coal particles. These stresses lead to “thermal shock” and extensive particle fragmentation during which coal particles with initial size of 50-100 m disintegrate into fragments of at most 5-10 m. This intensifies volatile release by a factor 3-4 and substantially accelerates the oxidation of combustible matter. Particle fragmentation, due to its small size and thus limited influence on combustion process is commonly neglected in modelling. The main focus of this work is to suggest novel approach to pulverized coal gasification under high temperature conditions and to implement it into commercial comprehensive code ANSYS FLUENT 14.0. Proposed model was validated against experimental data obtained in newly built pilot scale D.C plasma burner test facility. Newly developed model showed very good agreement with experimental results with relative error less than 10%, while the standard built-in gasification model had error up to 25%.

  5. Risk Evaluation of Railway Coal Transportation Network Based on Multi Level Grey Evaluation Model

    Science.gov (United States)

    Niu, Wei; Wang, Xifu

    2018-01-01

    The railway transport mode is currently the most important way of coal transportation, and now China’s railway coal transportation network has become increasingly perfect, but there is still insufficient capacity, some lines close to saturation and other issues. In this paper, the theory and method of risk assessment, analytic hierarchy process and multi-level gray evaluation model are applied to the risk evaluation of coal railway transportation network in China. Based on the example analysis of Shanxi railway coal transportation network, to improve the internal structure and the competitiveness of the market.

  6. Investigation of the efect of the coal particle sizes on the interfacial and rheological properties of coal-water slurry fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kihm, K.D.; Deignan, P. [Texas A& M Univ., College Station, TX (United States)

    1995-11-01

    Experiments were conducted to investigate the effect of particle size on coal-water slurry (CWS) surface tension properties. Two different coal powder samples of different size ranges were obtained through sieving of coal from the Upper Elkhorn Seam. The surfactant (anionic DDBS-soft, dodecylbenzene sulfonic acid) concentration varied from 0 to 1.0% in weight while the coal loading remained at 40% in weight for all the cases. A du Nouy ring tensiometer and a maximum bubble pressure tensiometer measured the static and dynamic surface tensions, respectively, The results show that both static and dynamic surface tensions tend to increase with decreasing coal particle sizes suspended in CWS fuels. Examination of the peak pressure, minimum pressure, surfactant diffusion time, and dead time were also made to correlate these microscopic pressure behavior with the macroscopic dynamic surface tension and to examine the accuracy of the experiment.

  7. Coal supply and transportation markets during Phase One: Change, risk and opportunity. Final report

    International Nuclear Information System (INIS)

    Heller, J.N.; Kaplan, S.

    1996-01-01

    The Clean Air Act Amendments of 1990 (CAAA) required many utilities to sharply reduce sulfur emissions by January 1, 1995. This study describes and analyzes how the coal and transportation markets responded to this major development. The study focuses on five key coal supply regions and their associated transportation networks: the Uinta Basin (Colorado/Utah), Wyoming Powder River Basin, Illinois Basin, Monongahela region (Pittsburgh seam) and the central Appalachian region. From these regional studies, the report identifies key risk areas for future coal planning and general lessons for the fuels planning process. The study provides statistical information on coal production, demand, and transportation flows for each region. The analysis for each region focuses on developments which were generally unexpected; e.g., the relatively large volumes of medium-sulfur coal produced in the Illinois Basin and Monongahela region, the eastern penetration of Utah and Colorado coals, and the relatively modest growth in demand for central Appalachian coals. These developments generally worked to the advantage of utilities; i.e., medium- and low-sulfur coal was available at a lower price, in greater volumes and from a wider range of sources than many had expected. Utilities both took advantage of and helped to encourage these developments in the coal and transportation market. Looking ahead to Phase 11 strategies and future coal procurement, a major challenge will be to maintain the choice among supply and transportation alternatives which was so important to utility success in Phase 1. The report identifies rail transportation to be the major area of risk in most regions

  8. Analysis and forecast of railway coal transportation volume based on BP neural network combined forecasting model

    Science.gov (United States)

    Xu, Yongbin; Xie, Haihong; Wu, Liuyi

    2018-05-01

    The share of coal transportation in the total railway freight volume is about 50%. As is widely acknowledged, coal industry is vulnerable to the economic situation and national policies. Coal transportation volume fluctuates significantly under the new economic normal. Grasp the overall development trend of railway coal transportation market, have important reference and guidance significance to the railway and coal industry decision-making. By analyzing the economic indicators and policy implications, this paper expounds the trend of the coal transportation volume, and further combines the economic indicators with the high correlation with the coal transportation volume with the traditional traffic prediction model to establish a combined forecasting model based on the back propagation neural network. The error of the prediction results is tested, which proves that the method has higher accuracy and has practical application.

  9. Developmental effects of aerosols and coal burning particles in zebrafish embryos

    International Nuclear Information System (INIS)

    Olivares, Alba; Drooge, Barend L. van; Casado, Marta; Prats, Eva; Serra, Montserrat; Ven, Leo T. van der; Kamstra, Jorke H.; Hamers, Timo; Hermsen, Sanne; Grimalt, Joan O.; Piña, Benjamin

    2013-01-01

    Embryo toxicity of particles generated by combustion processes is of special concern for human health. A significant part of these toxic effects is linked to the binding of some pollutants (like polycyclic aromatic hydrocarbons or PAHs) to the Aryl hydrocarbon Receptor (AhR) and the activation of target genes, like the cytochrome P4501A. This activity was analyzed for ambient air and coal-combustion particle extracts in zebrafish embryos (the cyp1aDarT assay) and in two single-cell bioassays: the yeast-based YCM-RYA and the DR-luc (rat cells) assay. Observed AhR ligand activity of samples generally correlated to the predicted toxic effect according to their PAH composition, except for one of the coal combustion samples with an anomalously high activity in the cyp1aDarT assay. This sample induced deformities in zebrafish embryos. We concluded that the combination of morphological and molecular assays may detect embryonic toxic effects that cannot be predicted from chemical analyses or single-cell bioassays. -- Highlights: ► Samples from air particulated matter and coal waste gob showed embryo toxicity in zebrafish. ► PAHs composition of samples does not adequately predict the toxic effects in zebrafish. ► Active coal waste gob samples show maximal AhR-ligand activity and induce deformations in zebrafish embryos. -- Aerosols and coal burning particles showed a strong developmental toxicity in zebrafish, in a degree that cannot be directly predicted from chemical analyses or single-cell bioassays

  10. Coal emissions adverse human health effects associated with ultrafine/nano-particles role and resultant engineering controls.

    Science.gov (United States)

    Oliveira, Marcos L S; Navarro, Orlando G; Crissien, Tito J; Tutikian, Bernardo F; da Boit, Kátia; Teixeira, Elba C; Cabello, Juan J; Agudelo-Castañeda, Dayana M; Silva, Luis F O

    2017-10-01

    There are multiple elements which enable coal geochemistry: (1) boiler and pollution control system design parameters, (2) temperature of flue gas at collection point, (3) feed coal and also other fuels like petroleum coke, tires and biomass geochemistry and (4) fuel feed particle size distribution homogeneity distribution, maintenance of pulverisers, etc. Even though there is a large number of hazardous element pollutants in the coal-processing industry, investigations on micrometer and nanometer-sized particles including their aqueous colloids formation reactions and their behaviour entering the environment are relatively few in numbers. X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/ (Energy Dispersive Spectroscopy) EDS/ (selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS and granulometric distribution analysis were used as an integrated characterization techniques tool box to determine both geochemistry and nanomineralogy for coal fly ashes (CFAs) from Brazil´s largest coal power plant. Ultrafine/nano-particles size distribution from coal combustion emissions was estimated during the tests. In addition the iron and silicon content was determined as 54.6% of the total 390 different particles observed by electron bean, results aimed that these two particles represent major minerals in the environment particles normally. These data may help in future investigations to asses human health actions related with nano-particles. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways

    International Nuclear Information System (INIS)

    Jaramillo, Paulina; Samaras, Constantine; Wakeley, Heather; Meisterling, Kyle

    2009-01-01

    Using coal to produce transportation fuels could improve the energy security of the United States by replacing some of the demand for imported petroleum. Because of concerns regarding climate change and the high greenhouse gas (GHG) emissions associated with conventional coal use, policies to encourage pathways that utilize coal for transportation should seek to reduce GHGs compared to petroleum fuels. This paper compares the GHG emissions of coal-to-liquid (CTL) fuels to the emissions of plug-in hybrid electric vehicles (PHEV) powered with coal-based electricity, and to the emissions of a fuel cell vehicle (FCV) that uses coal-based hydrogen. A life cycle approach is used to account for fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing emissions. This analysis allows policymakers to better identify benefits or disadvantages of an energy future that includes coal as a transportation fuel. We find that PHEVs could reduce vehicle life cycle GHG emissions by up to about one-half when coal with carbon capture and sequestration is used to generate the electricity used by the vehicles. On the other hand, CTL fuels and coal-based hydrogen would likely lead to significantly increased emissions compared to PHEVs and conventional vehicles using petroleum-based fuels.

  12. Trace and major element pollution originating from coal ash suspension and transport processes.

    Science.gov (United States)

    Popovic, A; Djordjevic, D; Polic, P

    2001-04-01

    Coal ash obtained by coal combustion in the "Nikola Tesla A" power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. Considering concentrations of seven trace elements as well as five major elements in extracts from a total of 12 samples, it can be concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  13. Trace and major element pollution originating from coal ash suspension and transport processes

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, A.; Djordjevic, D.; Polic, P. [University of Belgrade, Belgrade (Yugoslavia). Faculty of Science, Dept. of Chemistry

    2001-07-01

    Coal ash obtained from Nikola Tesla A power plant in Obrenovac, near Belgrade, Yugoslavia, is mixed with water of the Sava river and transported to the dump. In order to assess pollution caused by leaching of some minor and major elements during ash transport through the pipeline, two sets of samples (six samples each) were subjected to a modified sequential extraction. The first set consisted of coal ash samples taken immediately after combustion, while the second set was obtained by extraction with river water, imitating the processes that occur in the pipeline. Samples were extracted consecutively with distilled water and a 1 M solution of KCl, pH 7, and the differences in extractability were compared in order to predict potential pollution. It is concluded that lead and cadmium do not present an environmental threat during and immediately after ash transport to the dump. Portions of zinc, nickel and chromium are released during the ash transport, and arsenic and manganese are released continuously. Copper and iron do not present an environmental threat due to element leaching during and immediately after the coal ash suspension and transport. On the contrary, these elements, as well as chromium, become concentrated during coal ash transport. Adsorbed portions of calcium, magnesium and potassium are also leached during coal ash transport.

  14. Soot, unburned carbon and ultrafine particle emissions from air- and oxy-coal flames

    International Nuclear Information System (INIS)

    Morris, W.J.; Yu, Dunxi; Wendt, J.O.L.

    2010-01-01

    Oxy-coal combustion is one possible solution for the mitigation of greenhouse gases. In this process coal is burned in oxygen, rather than air, and the temperatures in the boiler are mitigated by recycling flue gases, so that the inlet mixture may contain either 27 % O 2 to match adiabatic flame temperatures, or 32 % O 2 to match gaseous radiation heat fluxes in the combustion chamber. However, a major issue for heat transfer from coal combustion is the radiative heat transmission from soot. For this research, air and oxy coal firing were compared regarding the emission of soot. A 100 kW down-fired laboratory combustor was used to determine effects of switching from air to oxy-firing on soot, unburned carbon and ultrafine particle emissions from practical pulverized coal flames. Of interest here were potential chemical effects of substitution of the N 2 in air by CO 2 in practical pulverized coal flames. The oxy-coal configuration investigated used once-through CO 2 , simulating cleaned flue gas recycle with all contaminants and water removed. Three coals were each burned in: a) air, b) 27 % O 2 / 73 % CO 2 , c) 32 % O 2 / 68 % CO 2 . Tests were conducted at (nominally) 3 %, 2 %, 1 % and 0 % O 2 in the exhaust (dry basis). For each condition, particulate samples were iso kinetically withdrawn far from the radiant zone, and analyzed using a photoacoustic analyzer (PA) for black carbon, a scanning mobility particle sizer (SMPS) for ultrafine particles, and a total sample loss on ignition (LOI) method for unburned carbon in ash. Data suggest that at low stoichiometric ratios, ultrafine particles consist primarily of black carbon, which, for the bituminous coal, is produced in lesser amounts under oxy-fired conditions than under the air-fired condition, even when adiabatic flame temperatures are matched. However, significant changes in mineral matter vaporization were not observed unless the flames were hotter. These and other results are interpreted in the light of

  15. CALCULATION OF POLLUTION DYNAMICS NEAR RAILWAY TERRITORY DURING COAL TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    M. M. Biliaiev

    2017-02-01

    Full Text Available Purpose. The article is aimed to develop 3D numerical model for the prediction of atmospheric pollution during transportation of bulk cargo in the railway car. Methodology.To solve this problem, it was developed three-dimensional numerical model, based on the use of the transport equation of dust pollution in the air by the wind and atmospheric turbulent diffusion. For the numerical integration of the simulating equation of the dust transport the implicit difference scheme was used. When constructing a difference scheme, it was carried out prior splitting of the original transport equation into the sequence of solutions of three equations. The first of them takes into account the transport of dust in paths, the second equation – dust transport under the influence of atmospheric turbulent diffusion, and the third equation –change of the dust concentration in the air due to its emissions from the cars.Unknown value of the pollutant concentration at every step of splitting is determined by the explicit scheme – the method of running account, which provides a simple numerical implementation of splitting equations. The developed numerical model is the basis for specialized computer program. On the basis of the constructed numerical model we carried out a computational experiment to assess the level of air pollution at the railway station during the motion of train with coal. Findings. Authors developed 3D numerical model, which belongs to the class of «screening models». This model takes into account the main physical factors affecting the process of dispersion of dust pollution in the atmosphere during coal transportation. The proposed numerical model requires low cost of computer time in the practical implementation on small and medium-power computers. This model can be used for rapid calculations of the dynamics of air pollution when transporting coal by rail. Calculations to determine the pollutant concentration and formation of the

  16. PM1 particles at coal- and gas-fired power plant work areas.

    Science.gov (United States)

    Hicks, Jeffrey B; McCarthy, Sheila A; Mezei, Gabor; Sayes, Christie M

    2012-03-01

    With the increased interest in the possible adverse health effects attributed to inhalation of fine particle matter, this study was conducted to gather preliminary information about workplace exposures at coal- and gas-fired power plants to fine particles (PM(1); i.e. <1 μm) and ultrafine particles (i.e. <0.1 μm). Combustion of fossil fuel is known to produce fine particles, and due to their proximity and durations of exposure, power plant workers could be a group of individuals who experience high chronic exposures to these types of particles. The results of a series of real-time instrument measurements showed that concentrations of PM(1) were elevated in some locations in power plants. The highest concentrations were in locations near combustion sources, indicating that combustion materials were leaking from conventional fossil fuel-fired boilers or it was associated with emission plume downwash. Concentrations were the lowest inside air-conditioned control rooms where PM(1) were present at levels similar to or lower than upwind concentrations. Microscopic examinations indicate that PM(1) at the coal-fired plants are dominated by vitrified spheres, although there were also unusual elongated particles. Most of the PM(1) were attached to larger coal fly ash particles that may affect where and how they could be deposited in the lung.

  17. Immersion Freezing of Coal Combustion Ash Particles from the Texas Panhandle

    Science.gov (United States)

    Whiteside, C. L.; Tobo, Y.; Mulamba, O.; Brooks, S. D.; Mirrielees, J.; Hiranuma, N.

    2017-12-01

    Coal combustion aerosol particles contribute to the concentrations of ice-nucleating particles (INPs) in the atmosphere. Especially, immersion freezing can be considered as one of the most important mechanisms for INP formation in supercooled tropospheric clouds that exist at temperatures between 0°C and -38°C. The U.S. contains more than 550 operating coal-burning plants consuming 7.2 x 108 metric tons of coal (in 2016) to generate a total annual electricity of >2 billion MW-h, resulting in the emission of at least 4.9 x 105 metric tons of PM10 (particulate matter smaller than 10 µm in diameter). In Texas alone, 19 combustion plants generate 0.15 billion MW-h electricity and >2.4 x 104 metric tons of PM10. Here we present the immersion freezing behavior of combustion fly ash and bottom ash particles collected in the Texas Panhandle region. Two types of particulate samples, namely electron microscopy on both ash types will also be presented to relate the crystallographic and chemical properties to their ice nucleation abilities.

  18. Numerical research of heat and mass transfer during low-temperature ignition of a coal particle

    Directory of Open Access Journals (Sweden)

    Glushkov Dmitrii O.

    2015-01-01

    Full Text Available Numerical researches have been carried out to study the influence of air flow temperature and a fossil fuel particle rate on sufficient conditions of ignition in a “coal particle - air” system. Developed mathematical model takes into account interconnected processes of heat transfer in a coal particle and gas area, thermal decomposition of organic material, diffusion and gas-phase oxidation of volatiles, heating of a coke (carbon and its heterogeneous ignition. The effect of low-temperature (about 600 K ignition for a single coal particle is impossible even at variation of its rate (radius from 0.05 mm to 0.5 mm. Nevertheless this process is possible for group of particles (two, three, et al. situated at close-range from each other. The physical aspects of the problem are discussed.

  19. Optimizing the particle size of coal for CWM in view of fluidity. [Biomodal

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, Seiji; Nonaka, Michio; Okano, Yasuhiko; Inoue, Toshio

    1987-10-25

    As is well known, the viscosity of CWM is considerably influenced by the distribution of coal particle sizes and has bearing on particle packing density or porosity. A model for representing the viscosity of CWM in terms of particle porosity and specific surface was designed. Also, experimental verification was conducted for the method of optimizing particle size on a two-stage grinding system. The results are as follows: The viscosity of CWM is influenced not only by the porosity of coal particles, but also by the specific surface; also, it is correlated to the distance between suspended particles. At the two-stage grinding experiments, a particle size distribution leading to a low viscosity was obtained by mixing coarse and fine particles at 4:1. This has demonstrated that the use of an agitating mill for fine particles is of help. (11 figs, 2 tabs, 6 refs)

  20. Fine particles flotation of the Moatize coal/Mozambique

    Science.gov (United States)

    Castro, Amilton; de Brum, Irineu A. S.

    2017-11-01

    This study was done from a sample of coal mined at the Vale-Mozambique mine, located in Moatize district, Tete Province. The aim of this work is to analyze the reagent system in the flotation of coal fines belonging to the UCB layer. Among coal processing methods, flotation stands out as one of the most important for the concentration of this material, in particular in the treatment of fine particles. The total feed of the Vale-Mozambique processing plant is 8000 tph of coal, where 10% of this feed corresponds to the fine fraction that feeds the flotation circuit. The material used in this study had a particle size of 96% smaller than 0.25 mm. The reagents used in the flotation tests were Betacol and diesel oil as hydrophobizing agents and MIBC as frother. The range of Betacol concentrations in the first test phase was 200 g / t at 500 g / t, and in the second phase 200 g / t at 500 g / t of diesel oil and MIBC were kept constant at 300 g / t. The immediate analysis followed the Brazilian standards: NBR 8289, NBR 8293, NBR 8290, NBR 8299. The results showed that it is possible, from a feed with the ash content around 22.84%, to obtain products with levels below of 10% ash, with a mass recovery around 50%. The recovery of carbonaceous matter was also evaluated and presented positive results. Complementing this study, the effect of H2O recovery was evaluated and it was observed that for the concentrations of Betacol the recoveries ranged from 6 to 9%, and for diesel oil plus MIBC were 4 to 7%.

  1. Single particle aerosol mass spectrometry of coal combustion particles associated with high lung cancer rates in Xuanwei and Fuyuan, China.

    Science.gov (United States)

    Lu, Senlin; Tan, Zhengying; Liu, Pinwei; Zhao, Hui; Liu, Dingyu; Yu, Shang; Cheng, Ping; Win, Myat Sandar; Hu, Jiwen; Tian, Linwei; Wu, Minghong; Yonemochi, Shinich; Wang, Qingyue

    2017-11-01

    Coal combustion particles (CCPs) are linked to the high incidence of lung cancer in Xuanwei and in Fuyuan, China, but studies on the chemical composition of the CCPs are still limited. Single particle aerosol mass spectrometry (SPAMS) was recently developed to measure the chemical composition and size of single particles in real-time. In this study, SPAMS was used to measure individual combustion particles emitted from Xuanwei and Fuyuan coal samples and the results were compared with those by ICP-MS and transmission electron microscopy (TEM). The total of 38,372 particles mass-analyzed by SPAMS can be divided into 9 groups based on their chemical composition and their number percentages: carbonaceous, Na-rich, K-rich, Al-rich, Fe-rich, Si-rich, Ca-rich, heavy metal-bearing, and PAH-bearing particles. The carbonaceous and PAH-bearing particles are enriched in the size range below 0.56 μm, Fe-bearing particles range from 0.56 to 1.0 μm in size, and heavy metals such as Ti, V, Cr, Cu, Zn, and Pb have diameters below 1 μm. The TEM results show that the particles from Xuanwei and Fuyuan coal combustion can be classified into soot aggregates, Fe-rich particles, heavy metal containing particles, and mineral particles. Non-volatile particles detected by SPAMS could also be observed with TEM. The number percentages by SPAMS also correlate with the mass concentrations measured by ICP-MS. Our results could provide valuable insight for understanding high lung cancer incidence in the area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Particle-based characterisation of pulverised coals and chars for carbon burnout studies

    Energy Technology Data Exchange (ETDEWEB)

    Gibbins, J.R.; Seitz, M.H.; Kennedy, S.M.; Beeley, T.J.; Riley, G.S. [Imperial College of Science, Technology and Medicine, London (United Kingdom). Mechanical Engineering Department

    1999-07-01

    The study of individual particle properties, as opposed to averaged behaviour of differing particles, was carried out for the combustion of coals and chars using optical microscopy and digital image processing. Chars from entrained flow reactors and corresponding pulverized fuel samples were characterized to examine possible char particle origins for real heterogeneous particles. 7 refs., 5 figs., 1 tab.

  3. Oxy-fuel combustion of millimeter-sized coal char: Particle temperatures and NO formation

    DEFF Research Database (Denmark)

    Brix, Jacob; Navascués, Leyre Gómez; Nielsen, Joachim Bachmann

    2013-01-01

    In this work, differences in particle temperature and NO yield during char oxidation in O2/N2 and O2/CO2 atmospheres, respectively, have been examined. A laboratory scale fixed bed reactor, operated isothermally at 1073 K, was used for combustion of millimeter-sized lignite and bituminous coal char...... increased with mass loading, by as much as 700 K above the furnace set point. The formation of NO from lignite char was not influenced by the change from N2 to CO2 whereas the NO yield from bituminous coal char was considerably lower in O2/CO2 compared O2/N2. For both chars the conversion to NO decreased...... as the O2 concentration or the particle size increased. However, for the bituminous coal char, a peak in NO yield was observed at an intermediate particle size of 0.1–0.2 g. The differences in the effect of gas atmosphere, O2 concentration, and particle mass on the NO yield from oxidation of bituminous...

  4. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    Energy Technology Data Exchange (ETDEWEB)

    E. James Davis

    1998-05-01

    The objective of this research is to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. In this experimental and analytical study the authors elucidate the transport processes that control the rate of concentrated colloidal particle removal, demonstrate the process on a laboratory scale, and develop the scale-up laws needed to design commercial-scale processes. The authors are also addressing the fundamental problems associated with particle-particle interactions (electrical and hydrodynamic), the effects of particle concentration on the applied electric field, the electrochemical reactions that occur at the electrodes, and the prediction of power requirements.

  5. Heat and Mass Transfer at Hot Surface Ignition of Coal Particle

    OpenAIRE

    Glushkov Dmitrii O.; Kosintsev Andrey. G.; Shlegel Nikita E.; Vershinina Ksenia Yu.

    2015-01-01

    This paper describes the experimental investigations of the characteristics of heat and mass transfer during the conductive heating of a coal particle. We have established the boundary conditions of combustion initiation, and the conditions of thermal decomposition and solid fuel particles decay, characterized by the temperature of a heat source, and the duration of the respective stages.

  6. PASSIVE CONTROL OF PARTICLE DISPERSION IN A PARTICLE-LADEN CIRCULAR JET USING ELLIPTIC CO-ANNULAR FLOW: A MEANS FOR IMPROVING UTILIZATION AND EMISSION REDUCTIONS IN PULVERIZED COAL BURNER

    Energy Technology Data Exchange (ETDEWEB)

    Ahsan R. Choudhuri

    2003-06-01

    A passive control technology utilizing elliptic co-flow to control the particle flinging and particle dispersion in a particle (coal)-laden flow was investigated using experimental and numerical techniques. Preferential concentration of particles occurs in particle-laden jets used in pulverized coal burner and causes uncontrollable NO{sub x} formation due to inhomogeneous local stoichiometry. This particular project was aimed at characterizing the near-field flow behavior of elliptic coaxial jets. The knowledge gained from the project will serve as the basis of further investigation on fluid-particle interactions in an asymmetric coaxial jet flow-field and thus is important to improve the design of pulverized coal burners where non-homogeneity of particle concentration causes increased NO{sub x} formation.

  7. The application of the coal grain analysis method to coal liberation studies

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, G.; Firth, B.; Adair, B. [CSIRO Earth Science & Resource Engineering Brisbane, Qld. (Australia)

    2011-07-01

    Emerging coal markets such as the use of coal for conversion to liquid fuels and its use in fuels cells and as coal water slurries in diesel engines require coal products with different coal quality specifications than those applicable to traditional coal markets of coke making and conventional power generation. As well as quantifying coals in terms of their chemical and physical properties, detailed knowledge of the mineral inclusions within the coal particles is required to identify coals that are suited to economically produce the low-ash value coals required for these markets. After mining and processing, some particles can consist of essentially pure components of a single maceral or mineral phase whilst others are composite particles that are comprised of varying amounts of macerals and minerals. The proportion of particles that are present as pure components or as composites will be a function of the characteristics of the coal and the particle size. In general, it is considered that size reduction will result in liberation and hence increased yield. The amount of liberation that occurs during crushing or grinding a coal is however coal specific. Particle characterization information provided by an optical microscopic-imaging method, Coal Grain Analysis, was used to identify coals that might benefit from additional crushing to improve recovery of clean coal by new density separation techniques and by flotation. As expected, the results of these studies suggest that the degree of liberation that is obtained is coal specific, and, hence, yield improvements are also coal specific. Hence a quantitative method of investigating this issue is required.

  8. Control of the extraction, transport and quality of coal in sections in actual time intervals

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, P; Sladek, J

    1981-01-01

    This paper describes the design of a system for the automatic, semiautomatic and manual control of the extraction, transport and quality of the coal in two sections of the Severo-Cheshsk brown coal basin using computers. The coal in these sections is transported along a joint transport main line which consists of three conveyor lines to two grinding works and from there to 3 thermoelectric power plants. Based on information about the coal quality in the mining sections of individual excavators, about their productivity and about the throughput of the conveyor lines, the computer determines in a quite short time the maximally possible throughput of the conveyor lines for ensuring the required coal quality. Programs are written in the ALGOL language. The information in the SM-3 computer from the excavators will be transmitted using a Tesla Radom wireless communications apparatus through a JPR-12 computer. A terminal will be mounted on each excavator which will report to the computer the number of ledges subject to mining, the type of coal in them, the distance of the excavator from the coal loading point and the size of required and actual productivity of the excavator.

  9. Briquetting of coal fines and sawdust - effect of particle-size distribution

    Energy Technology Data Exchange (ETDEWEB)

    Patil, D.P.; Taulbee, D.; Parekh, B.K.; Honaker, R. [University of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    2009-07-01

    The coal industry usually discards fine-size (-150 microns) coal because of its high-moisture content and handling problems. One avenue for utilization is to either pelletize or briquette this material. However, industry has not adopted this route due in large part to significant drying and binder costs. In an effort to reduce these costs, compacting and briquetting studies were conducted to determine the effect of combining a coarse (1.18x0.15mm) spiral separator product with a fine coal flotation product (-150microns), with and without adding sawdust. Maximizing the packing density of the coal and wood waste mixture could potentially reduce the binder requirement by minimizing the void space as well as reducing shipping costs. Accordingly, work reported here focused on evaluating the impact of the particle-size distribution of different blends of fine and coarse coal, with and without sawdust and/or binder. The modified Proctor density of compacted blends along with the porosity and compressive strengths of briquettes made from each blend were determined. For the coal-only blends, the packing density was maximized by a relatively high (70% to 80%) coarse coal content. However, the packing density did not correlate with the compressive strength of the briquette that instead maximized with 100% fine flotation coal and continuously decreased as higher proportions of coarse coal were added. Similar compaction and compressive-strength results were obtained with mixtures of sawdust and varying proportions of coarse and fine coal. With the addition of a binder, the highest strengths were no longer obtained with 100% fine coal but instead maximized between 20% and 50% coarse coal addition depending on how long the briquettes were cured.

  10. A computerized coal-water slurry transportation model

    Energy Technology Data Exchange (ETDEWEB)

    Ljubicic, B.R.; Trostad, B. [Univ. of North Dakota, Grand Forks, ND (United States); Bukurov, Z.; Cvijanovic, P. [Univ. of Novi Sad (Yugoslavia)

    1995-12-01

    Coal-water fuel (CWF) technology has been developed to the point where full-scale commercialization is just a matter of gaining sufficient market confidence in the price stability of alternate fossil fuels. In order to generalize alternative fuel cost estimates for the desired combinations of processing and/or transportation, a great deal of flexibility is required owing to the understood lack of precision in many of the newly emerging coal technologies. Previously, decisions regarding the sequential and spatial arrangement of the various process steps were made strictly on the basis of experience, simplified analysis, and intuition. Over the last decade, computer modeling has progressed from empirically based correlation to that of intricate mechanistic analysis. Nomograms, charts, tables, and many simple rules of thumb have been made obsolete by the availability of complex computer models. Given the ability to view results graphically in real or near real time, the engineer can immediately verify, from a practical standpoint, whether the initial assumptions and inputs were indeed valid. If the feasibility of a project is being determined in the context of a lack of specific data, the ability to provide a dynamic software-based solution is crucial. Furthermore, the resulting model can be used to establish preliminary operating procedures, test control logic, and train plant/process operators. Presented in this paper is a computerized model capable of estimating the delivered cost of CWF. The model uses coal-specific values, process and transport requirements, terrain factors, and input costs to determine the final operating configuration, bill of materials, and, ultimately, the capital, operating, and unit costs.

  11. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Directory of Open Access Journals (Sweden)

    Cieślik Ewelina

    2018-01-01

    Full Text Available One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  12. Particle size distribution of fly ash from co-incineration of bituminous coal with municipal solid waste

    Science.gov (United States)

    Cieślik, Ewelina; Konieczny, Tomasz; Bobik, Bartłomiej

    2018-01-01

    One of the source of air pollutants is emission from local coal-fired boiler-houses and domestic heating boilers. The consequence of incineration of municipal waste is the introduction of additional pollutants into the atmosphere, including fly ash. The aim of this work was to evaluate the particle size distribution of fly ash emitted by coal combustion and co-incineration of coal with municipal waste in a domestic 18 kW central heating boiler equipped with an automatic fuel feeder. Mixtures of bituminous coal with different types of solid waste (5, 10 and 15% of mass fraction) were used. Solid waste types consisted of: printed, colored PE caps, fragmented cable trunking, fragmented car gaskets and shredded tires from trucks. During the incineration of a given mixture of municipal waste with bituminous coal, the velocity of exhaust gas was specified, the concentration and mass flow of fly ash were determined together with the physico-chemical parameters of the exhaust gas, the samples of emitted fly ash were taken as the test material. Particle size analysis of fly ash was performed using laser particle sizer Fritch Analysette 22. The PM10 share from all fly ashes from incineration of mixtures was about 100%. Differences were noted between PM2.5 and PM1.

  13. Mass spectra features of biomass burning boiler and coal burning boiler emitted particles by single particle aerosol mass spectrometer.

    Science.gov (United States)

    Xu, Jiao; Li, Mei; Shi, Guoliang; Wang, Haiting; Ma, Xian; Wu, Jianhui; Shi, Xurong; Feng, Yinchang

    2017-11-15

    In this study, single particle mass spectra signatures of both coal burning boiler and biomass burning boiler emitted particles were studied. Particle samples were suspended in clean Resuspension Chamber, and analyzed by ELPI and SPAMS simultaneously. The size distribution of BBB (biomass burning boiler sample) and CBB (coal burning boiler sample) are different, as BBB peaks at smaller size, and CBB peaks at larger size. Mass spectra signatures of two samples were studied by analyzing the average mass spectrum of each particle cluster extracted by ART-2a in different size ranges. In conclusion, BBB sample mostly consists of OC and EC containing particles, and a small fraction of K-rich particles in the size range of 0.2-0.5μm. In 0.5-1.0μm, BBB sample consists of EC, OC, K-rich and Al_Silicate containing particles; CBB sample consists of EC, ECOC containing particles, while Al_Silicate (including Al_Ca_Ti_Silicate, Al_Ti_Silicate, Al_Silicate) containing particles got higher fractions as size increase. The similarity of single particle mass spectrum signatures between two samples were studied by analyzing the dot product, results indicated that part of the single particle mass spectra of two samples in the same size range are similar, which bring challenge to the future source apportionment activity by using single particle aerosol mass spectrometer. Results of this study will provide physicochemical information of important sources which contribute to particle pollution, and will support source apportionment activities. Copyright © 2017. Published by Elsevier B.V.

  14. POC-scale testing of a dry triboelectrostatic separator for fine coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, R.H.; Luttrell, G.H.; Adel, G.T. [Virginia Polytechnic Institute and State Univ., Blacksburg, VA (United States)

    1995-11-01

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both the ash and sulfur contents of run-of-mine coals. The extent of cleaning depends on the liberation characteristics of the coal, which generally improve with reducing particle size. however, since most of the advanced technologies are wet processes, the clean coal product must be dewatered before it can be transported and burned in conventional boilers. This additional treatment step significantly increases the processing cost and makes the industrial applicability of these advanced technologies much less attractive. In order to avoid problems associated with fine coal dewatering, researchers at the Pittsburgh Energy Technology Center (PETC) developed a novel triboelectrostatic separation (TES) process that can remove mineral matter from dry coal. In this technique, finely pulverized coal is brought into contact with a material (such as copper) having a work function intermediate to that of the carbonaceous material and associated mineral matter. Carbonaceous particles having a relatively low work function become positively charged, while particles of mineral matter having significantly higher work functions become negatively charged. once the particles become selectively charged, a separation can be achieved by passing the particle stream through an electrically charged field. Details related to the triboelectrostatic charging phenomenon have been discussed elsewhere (Inculet, 1984).

  15. Coal cleaning: a viable strategy for reduced carbon emissions and improved environment in China?

    International Nuclear Information System (INIS)

    Glomsroed, Solveig; Wei Taoyuan

    2005-01-01

    China is a dominant energy consumer in global context and current energy forecasts emphasise that China's future energy consumption also will rely heavily on coal. The coal use is the major source of the greenhouse gas CO 2 and particles causing serious health damage. This paper looks into the question if coal washing might work as low cost strategy for both CO 2 and particle emission reductions. Coal washing removes dirt and rock from raw coal, resulting in a coal product with higher thermal energy and less air pollutants. Coal cleaning capacity has so far not been developed in line with the market potential. In this paper an emerging market for cleaned coal is studied within a CGE model for China. The macro approach catches the repercussions of coal cleaning through increased energy efficiency, lower coal transportation costs and crowding out effect of investments in coal washing plants. Coal cleaning stimulates economic growth and reduces particle emissions, but total energy use, coal use and CO 2 emissions increase through a rebound effect supported by the vast reserve of underemployed labourers. A carbon tax on fossil fuel combustion has a limited effect on total emissions. The reason is a coal leakage to tax exempted processing industries

  16. Effects of bluff-body burner and coal particle size on NOx emissions and burnout

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, L.S.; Cheng, J.F.; Zeng, H.C. [Huazhong University of Science and Technology, Wuhan (China). National Coal Combustion Lab.

    1999-12-01

    Investigations on air staging have been carried out using various coals with different degrees of fineness and a variety of burners with a 92.9 kw h{sup -1} tunnel furnace burning pulverized coal. It has been observed that using the bluff-body burner can reduce both the unburned carbon in fly ash and NOx emissions in the case of air staging. The experimental results show that air-staging combustion has a more remarkable effect on NOx reduction for higher-volatile coal than for lower-volatile coal. The results also show that there is a strong influence of coal particle size on NOx emissions and unburned carbon in the fly ash in the case of air staging. 13 refs., 12 figs., 2 tabs.

  17. Investigation of flow behaviour of coal particles in a pilot-scale fluidized bed gasifier (FBG) using radiotracer technique.

    Science.gov (United States)

    Pant, H J; Sharma, V K; Kamudu, M Vidya; Prakash, S G; Krishanamoorthy, S; Anandam, G; Rao, P Seshubabu; Ramani, N V S; Singh, Gursharan; Sonde, R R

    2009-09-01

    Knowledge of residence time distribution (RTD), mean residence time (MRT) and degree of axial mixing of solid phase is required for efficient operation of coal gasification process. Radiotracer technique was used to measure the RTD of coal particles in a pilot-scale fluidized bed gasifier (FBG). Two different radiotracers i.e. lanthanum-140 and gold-198 labeled coal particles (100 gm) were independently used as radiotracers. The radiotracer was instantaneously injected into the coal feed line and monitored at the ash extraction line at the bottom and gas outlet at the top of the gasifier using collimated scintillation detectors. The measured RTD data were treated and MRTs of coal/ash particles were determined. The treated data were simulated using tanks-in-series model. The simulation of RTD data indicated good degree of mixing with small fraction of the feed material bypassing/short-circuiting from the bottom of the gasifier. The results of the investigation were found useful for optimizing the design and operation of the FBG, and scale-up of the gasification process.

  18. Particulate behavior in a controlled-profile pulverized coal-fired reactor: A study of coupled turbulent particle dispersion and thermal radiation transport. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, M.; Webb, B.W.

    1996-06-01

    To aid in the evaluation and development of advanced coal-combustion models, comprehensive experimental data sets are needed containing information on both the condensed and gas phases. To address this need a series of test were initiated on a 300 kW laboratory-scale, coal-fired reactor at a single test condition using several types of instrumentation. Data collected on the reactor during the course of the test includes: gas, particle, and wall temperature profiles; radiant, total, and convective heat fluxes to the walls; particle size and velocity profiles; transmission measurements; and gas species concentrations. Solid sampling was also performed to determine carbon and total burnout. Along with the extensive experimental measurements, the particle dispersion and radiation submodels in the ACERC comprehensive 2D code were studied in detail and compared to past experimental measurements taken in the CPR. In addition to the presentation and discussion of the experimental data set, a detailed description of the measurement techniques used in collecting the data, including a discussion of the error associated with each type of measurement, is given.

  19. Particle-transport simulation with the Monte Carlo method

    International Nuclear Information System (INIS)

    Carter, L.L.; Cashwell, E.D.

    1975-01-01

    Attention is focused on the application of the Monte Carlo method to particle transport problems, with emphasis on neutron and photon transport. Topics covered include sampling methods, mathematical prescriptions for simulating particle transport, mechanics of simulating particle transport, neutron transport, and photon transport. A literature survey of 204 references is included. (GMT)

  20. Mechanism of travelling-wave transport of particles

    International Nuclear Information System (INIS)

    Kawamoto, Hiroyuki; Seki, Kyogo; Kuromiya, Naoyuki

    2006-01-01

    Numerical and experimental investigations have been carried out on transport of particles in an electrostatic travelling field. A three-dimensional hard-sphere model of the distinct element method was developed to simulate the dynamics of particles. Forces applied to particles in the model were the Coulomb force, the dielectrophoresis force on polarized dipole particles in a non-uniform field, the image force, gravity and the air drag. Friction and repulsion between particle-particle and particle-conveyer were included in the model to replace initial conditions after mechanical contacts. Two kinds of experiments were performed to confirm the model. One was the measurement of charge of particles that is indispensable to determine the Coulomb force. Charge distribution was measured from the locus of free-fallen particles in a parallel electrostatic field. The averaged charge of the bulk particle was confirmed by measurement with a Faraday cage. The other experiment was measurements of the differential dynamics of particles on a conveyer consisting of parallel electrodes to which a four-phase travelling electrostatic wave was applied. Calculated results agreed with measurements, and the following characteristics were clarified. (1) The Coulomb force is the predominant force to drive particles compared with the other kinds of forces, (2) the direction of particle transport did not always coincide with that of the travelling wave but changed partially. It depended on the frequency of the travelling wave, the particle diameter and the electric field, (3) although some particles overtook the travelling wave at a very low frequency, the motion of particles was almost synchronized with the wave at the low frequency and (4) the transport of some particles was delayed to the wave at medium frequency; the majority of particles were transported backwards at high frequency and particles were not transported but only vibrated at very high frequency

  1. Cleaning and dewatering fine coal

    Science.gov (United States)

    Yoon, Roe-Hoan; Eraydin, Mert K.; Freeland, Chad

    2017-10-17

    Fine coal is cleaned of its mineral matter impurities and dewatered by mixing the aqueous slurry containing both with a hydrophobic liquid, subjecting the mixture to a phase separation. The resulting hydrophobic liquid phase contains coal particles free of surface moisture and droplets of water stabilized by coal particles, while the aqueous phase contains the mineral matter. By separating the entrained water droplets from the coal particles mechanically, a clean coal product of substantially reduced mineral matter and moisture contents is obtained. The spent hydrophobic liquid is separated from the clean coal product and recycled. The process can also be used to separate one type of hydrophilic particles from another by selectively hydrophobizing one.

  2. Steam coal processing technology: handling, high-order processing, COM, meth-coal

    Energy Technology Data Exchange (ETDEWEB)

    Kamata, H.; Onodera, J.

    1982-01-01

    Topics covered include: various handling techologies (overland and marine transport, storage, water removal, drying, comminution and sizing); various coal processing technologies (gravity concentration, magnetic separation, multi-stage flotation, liquid-phase pelletizing, chemical processing); production methods for coal-oil mixtures (COM), their physical properties, stability, storage, transport, advantages, plus recent trends in research and development; production of coal-methanol slurry (meth-coal), its stability, storage, transport, utilization and environmental problems, plus latest trends in research and development. (In Japanese)

  3. Experimental characterization of solid particle transport by slug flow using Particle Image Velocimetry

    International Nuclear Information System (INIS)

    Goharzadeh, A; Rodgers, P

    2009-01-01

    This paper presents an experimental study of gas-liquid slug flow on solid particle transport inside a horizontal pipe with two types of experiments conducted. The influence of slug length on solid particle transportation is characterized using high speed photography. Using combined Particle Image Velocimetry (PIV) with Refractive Index Matching (RIM) and fluorescent tracers (two-phase oil-air loop) the velocity distribution inside the slug body is measured. Combining these experimental analyses, an insight is provided into the physical mechanism of solid particle transportation due to slug flow. It was observed that the slug body significantly influences solid particle mobility. The physical mechanism of solid particle transportation was found to be discontinuous. The inactive region (in terms of solid particle transport) upstream of the slug nose was quantified as a function of gas-liquid composition and solid particle size. Measured velocity distributions showed a significant drop in velocity magnitude immediately upstream of the slug nose and therefore the critical velocity for solid particle lifting is reached further upstream.

  4. Underground Coal Gasification: Rates of Post Processing Gas Transport

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Stanczyk, K.; Šolcová, Olga

    2014-01-01

    Roč. 68, č. 12 (2014), s. 1707-1715 ISSN 0366-6352 R&D Projects: GA MŠk 7C12017 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gas ification * gas transport * textural properties Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 1.468, year: 2014

  5. Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion

    Directory of Open Access Journals (Sweden)

    BORISLAV GRUBOR

    2003-02-01

    Full Text Available A model for the combustion of porous char particles as a basis for modeling the process of sulfur retention by ash during coal combustion is developed in this paper. The model belongs to the microscopic intrinsic models and describes the dynamic behavior of a porous char particle during comustion, taking into account temporal and spatial changes of all important physical properties of the char particle and various combustion parameters. The parametric analysis of the enhanced model shows that the model represents a good basis for the development of a model for the process of sulfur retention by ash during coal combustion. The model enables the prediction of the values of all parameters necessary for the introduction of reactions between sulfur compounds and mineral components in ash, primarily calcium oxide.

  6. A spatial analysis of China's coal flow

    International Nuclear Information System (INIS)

    Mou Dunguo; Li Zhi

    2012-01-01

    The characteristics of China's energy structure and the distribution of its coal resources make coal transportation a very important component of the energy system; moreover, coal transportation acts as a bottleneck for the Chinese economy. To insure the security of the coal supply, China has begun to build regional strategic coal reserves at some locations, but transportation is still the fundamental way to guaranty supply security. Here, we study China's coal transportation quantitatively with a linear programming method that analyses the direction and volume of China's coal flows with the prerequisite that each province's supply and demand balance is guaranteed. First, we analyse the optimal coal transportation for the status quo coal supply and demand given the bottleneck effects that the Daqin Railway has on China's coal flow; second, we analyse the influence of future shifts in the coal supply zone in the future, finding that China's coal flows will also change, which will pressure China to construct railways and ports; and finally, we analyse the possibility of exploiting Yangtze River capacity for coal transportation. We conclude the paper with suggestions for enhancing China's coal transportation security. - Highlights: ► We use linear programming to study China's coal transportation. ► First, analyse the optimal coal flow under the status quo condition. ► Second, analyse influences of coal supply zone shifts to Neimeng and Xinjiang. ► Third, analyse the influence of using Yangtze River for coal transportation. ► At last, we give suggestions about infrastructure construction to guaranty China's long-run coal supply security.

  7. Experimental studies on the group ignition of a cloud of coal particles: Volume 2, Pyrolysis and ignition modeling

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, K.; Ryan, W.

    1992-01-01

    The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere.

  8. Comparative study on the impact of coal and uranium mining, processing, and transportation in the western United States

    Energy Technology Data Exchange (ETDEWEB)

    Sandquist, G.M.

    1979-06-01

    A comparative study and quantitative assessment of the impacts, costs and benefits associated with the mining, processing and transportation of coal and uranium within the western states, specifically Arizona, California, Colorado, Montana, New Mexico, Oregon, Utah, Washington and Wyoming are presented. The western states possess 49% of the US reserve coal base, 67% of the total identified reserves and 82% of the hypothetical reserves. Western coal production has increased at an average annual rate of about 22% since 1970 and should become the major US coal supplier in the 1980's. The Colorado Plateau (in Arizona, Colorado, New Mexico and Utah) and the Wyoming Basin areas account for 72% of the $15/lb U/sub 3/O/sub 8/ resources, 76% of the $30/lb, and 75% of the $50/lb resources. It is apparent that the West will serve as the major supplier of domestic US coal and uranium fuels for at least the next several decades. Impacts considered are: environmental impacts, (land, water, air quality); health effects of coal and uranium mining, processing, and transportation; risks from transportation accidents; radiological impact of coal and uranium mining; social and economic impacts; and aesthetic impacts (land, air, noise, water, biota, and man-made objects). Economic benefits are discussed.

  9. Comparative study on the impact of coal and uranium mining, processing, and transportation in the western United States

    International Nuclear Information System (INIS)

    Sandquist, G.M.

    1979-06-01

    A comparative study and quantitative assessment of the impacts, costs and benefits associated with the mining, processing and transportation of coal and uranium within the western states, specifically Arizona, California, Colorado, Montana, New Mexico, Oregon, Utah, Washington and Wyoming are presented. The western states possess 49% of the US reserve coal base, 67% of the total identified reserves and 82% of the hypothetical reserves. Western coal production has increased at an average annual rate of about 22% since 1970 and should become the major US coal supplier in the 1980's. The Colorado Plateau (in Arizona, Colorado, New Mexico and Utah) and the Wyoming Basin areas account for 72% of the $15/lb U 3 O 8 resources, 76% of the $30/lb, and 75% of the $50/lb resources. It is apparent that the West will serve as the major supplier of domestic US coal and uranium fuels for at least the next several decades. Impacts considered are: environmental impacts, (land, water, air quality); health effects of coal and uranium mining, processing, and transportation; risks from transportation accidents; radiological impact of coal and uranium mining; social and economic impacts; and aesthetic impacts (land, air, noise, water, biota, and man-made objects). Economic benefits are discussed

  10. Leaching and soil/groundwater transport of contaminants from coal combustion residues

    International Nuclear Information System (INIS)

    Hjelmar, O.; Hansen, E.A.; Larsen, F.; Thomassen, H.

    1992-01-01

    In this project the results of accelerated laboratory leaching tests on coal fly ash and flue gas desulfurization (FGD) products from the spray dryer absorption process (SDA) were evaluated by comparison to the results of large scale lysimeter leaching tests on the same residues. The mobility of chromium and molybdenum - two of the kev contaminants of coal combustion residue leachates - in various typical soil types was investigated by batch and column methods in the laboratory. Some of the results were confirmed by field observations at an old coal fly ash disposal site and by a lysimeter attenuation test with coal fly ash leachate on a clayed till. A large number of groundwater transport models and geochemical models were reviewed, and two of the models (Gove-Stollenwerk and CHMTRNS) were modified and adjusted and used to simulate column attenuation tests performed in the laboratory. One of the models (Grove-Stollenwerk) was used to illustrate a recommended method of environmental impact assessment, using lysimeter leaching data and laboratory column attenuation data to describe the emission and migration of Mo from a coal fly ash disposal site

  11. Fiscal 1997 for the upgrading of the Asia/Pacific coal development. Survey of the optimization of the coal transportation system in Indonesia; 1997 nendo Asia Taiheiyo sekitan kaihatsu kodoka chosa. Indonesia ni okeru sekitan yuso system saitekika chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper summarized the results of Phase 1 and Phase 2 surveys conducted based on `Agreement on the comprehensive survey of a coal transportation system in South Sumatra` concluded between NEDO and the Ministry of Mine and Energy in Indonesia. In addition to the data collection and site surveys made in Phase 1, conducted in Phase 2 were determination of sites for harbors, determination of a scenario on coal transportation from coal mines to harbors, optimization of the coal transportation system, social/economic assessment, and proposal on the optimum transportation system. The results of the simulation were as follows: It is the most advantageous to transport coal from coal deposit area to harbor by rail and from harbor to Paiton by barge weighed over 10,000 tons. Tanjung Api Api is the most advantageous as harbor. The production scale which is profitable became more than 15 million tons. The present coal price of PTBA is $25/t arriving Suralaya. The coal in this case is said to be 5500kcal/kg in quality, and the coal of the same quality to this is only profitable. 8 refs., 68 figs., 104 tabs.

  12. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2007-09-01

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  13. Gasification Characteristics of Coal/Biomass Mixed Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Reginald [Stanford Univ., CA (United States). Mechanical Engineering Dept.

    2014-09-01

    A research project was undertaken that had the overall objective of developing the models needed to accurately predict conversion rates of coal/biomass mixtures to synthesis gas under conditions relevant to a commercially-available coal gasification system configured to co-produce electric power as well as chemicals and liquid fuels. In our efforts to accomplish this goal, experiments were performed in an entrained flow reactor in order to produce coal and biomass chars at high heating rates and temperatures, typical of the heating rates and temperatures fuel particles experience in real systems. Mixed chars derived from coal/biomass mixtures containing up to 50% biomass and the chars of the pure coal and biomass components were subjected to a matrix of reactivity tests in a pressurized thermogravimetric analyzer (TGA) in order to obtain data on mass loss rates as functions of gas temperature, pressure and composition as well as to obtain information on the variations in mass specific surface area during char conversion under kinetically-limited conditions. The experimental data were used as targets when determining the unknown parameters in the chemical reactivity and specific surface area models developed. These parameters included rate coefficients for the reactions in the reaction mechanism, enthalpies of formation and absolute entropies of adsorbed species formed on the carbonaceous surfaces, and pore structure coefficients in the model used to describe how the mass specific surface area of the char varies with conversion. So that the reactivity models can be used at high temperatures when mass transport processes impact char conversion rates, Thiele modulus – effectiveness factor relations were also derived for the reaction mechanisms developed. In addition, the reactivity model and a mode of conversion model were combined in a char-particle gasification model that includes the effects of chemical reaction and diffusion of reactive gases through particle

  14. Thermal coal utilization for the ESCAP region

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    A selection of papers is presented originating from talks to coal utilization workshops for the ASEAN region in 1981. The papers cover: planning aspects - economic and technical aspects of coal usage, long term planning for fuel coal needs, planning and coal selection for coal-fired power plants, coal availability and marketing, and economic aspects of coal usage in developing countries; combustion and plant - changing from coal to oil, principles and problems of coal combustion, use of indigenous and imported coals and their effects on plant design, coal pulverizing mills, ash and dust disposal, environmental aspects of coal combustion, industrial sized coal-fired boilers; transport and storage -ocean shipment, coal receival facilities and associated operations, shipping and rail transport, coal handling and transport, environmental issue in the transport and handling of coal, coal preparation and blending; testing and properties - coal types, characterization properties and classification; training power plant operators; the cement industry and coal, the Australian black coal industry.

  15. Relationship between Particle Size Distribution of Low-Rank Pulverized Coal and Power Plant Performance

    Directory of Open Access Journals (Sweden)

    Rajive Ganguli

    2012-01-01

    Full Text Available The impact of particle size distribution (PSD of pulverized, low rank high volatile content Alaska coal on combustion related power plant performance was studied in a series of field scale tests. Performance was gauged through efficiency (ratio of megawatt generated to energy consumed as coal, emissions (SO2, NOx, CO, and carbon content of ash (fly ash and bottom ash. The study revealed that the tested coal could be burned at a grind as coarse as 50% passing 76 microns, with no deleterious impact on power generation and emissions. The PSD’s tested in this study were in the range of 41 to 81 percent passing 76 microns. There was negligible correlation between PSD and the followings factors: efficiency, SO2, NOx, and CO. Additionally, two tests where stack mercury (Hg data was collected, did not demonstrate any real difference in Hg emissions with PSD. The results from the field tests positively impacts pulverized coal power plants that burn low rank high volatile content coals (such as Powder River Basin coal. These plants can potentially reduce in-plant load by grinding the coal less (without impacting plant performance on emissions and efficiency and thereby, increasing their marketability.

  16. Investigate the causes of transport and tramming accidents on coal mines.

    CSIR Research Space (South Africa)

    Rushworth, AM

    1999-03-01

    Full Text Available Transport and tramming accidents on coal mines in South Africa are a major component in the overall pattern of colliery accidents. Furthermore, there is now a widespread acceptance that human error is a common cause of failure in accident patterns...

  17. Investigations concerning the mechanism of action of brown-coal coke particles in aerobic biological waste water treatment

    International Nuclear Information System (INIS)

    Rieger, W.

    1990-01-01

    At the start of this work experience with the use of brown coal coke in the activated sludge process was lacking entirely. It therefore was necessary to carry through preliminary experiments in order to practically test the effect of Grown-coal coke. In two technical-scale experiments and a pilot test, very good results were obtained with the application of brown-coal coke to activated sludge. These, and previously published results, permitted to evolve moodel concepts of the mechanism of action of coal, especially brown coal coke, in activated sludge. According to these concepts the coal particles act as buffers and a temporary adsorbent of oxygen and waste water constituents. This in turn stimulates the colonization of the surface with microorganisms. In order to corroborate these model concepts, the - adsorption and desorption of solved oxygen to coal in a watery medium and - the effect of coal over a longer period of time were investigated. The results in essence confirm the model concepts. (UWa) [de

  18. Coal summit II

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    Various papers were presented on world coal trade. Papers include: Poland as a producer and exporter of coal; the dynamics of world coal trade; Cerrejon coal production perspectives; present state of the Australian coal industry; present state of the EC coal market and future prospects; prospects of US coal exports to Europe; forecast of Italian coal supply and demand through 1990; statistics from coal transportation outlook; status of world coal ports.

  19. NOx, FINE PARTICLE AND TOXIC METAL EMISSIONS FROM THE COMBUSTION OF SEWAGE SLUDGE/COAL MIXTURES: A SYSTEMATIC ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    Jost O.L. Wendt

    2002-08-15

    This research project focuses on pollutants from the combustion of mixtures of dried municipal sewage sludge (MSS) and coal. The objective is to determine the relationship between (1) fraction sludge in the sludge/coal mixture, and (2) combustion conditions on (a) NOx concentrations in the exhaust, (b) the size segregated fine and ultra-fine particle composition in the exhaust, and (c) the partitioning of toxic metals between vapor and condenses phases, within the process. The proposed study will be conducted in concert with an existing ongoing research on toxic metal partitioning mechanisms for very well characterized pulverized coals alone. Both high NOx and low NOx combustion conditions will be investigated (unstaged and staged combustion). Tradeoffs between CO2 control, NOx control, and inorganic fine particle and toxic metal emissions will be determined. Previous research has yielded data on trace metal partitioning for MSS by itself, with natural gas assist, for coal plus MSS combustion together, and for coal alone. We have re-evaluated the inhalation health effects of ash aerosol from combustion of MSS both by itself and also together with coal. We have concluded that ash from the co-combustion of MSS and coal is very much worse from an inhalation health point of view, than ash from either MSS by itself or coal by itself. The reason is that ZnO is not the ''bad actor'' as had been suspected before, but the culprit is, rather, sulfated Zn. The MSS supplies the Zn and the coal supplies the sulfur, and so it is the combination of coal and MSS that makes that process environmentally bad. If MSS is to be burned, it should be burned without coal, in the absence of sulfur.

  20. Particle and heat transport in Tokamaks

    International Nuclear Information System (INIS)

    Chatelier, M.

    1984-01-01

    A limitation to performances of tokamaks is heat transport through magnetic surfaces. Principles of ''classical'' or ''neoclassical'' transport -i.e. transport due to particle and heat fluxes due to Coulomb scattering of charged particle in a magnetic field- are exposed. It is shown that beside this classical effect, ''anomalous'' transport occurs; it is associated to the existence of fluctuating electric or magnetic fields which can appear in the plasma as a result of charge and current perturbations. Tearing modes and drift wave instabilities are taken as typical examples. Experimental features are presented which show that ions behave approximately in a classical way whereas electrons are strongly anomalous [fr

  1. Differential pulmonary inflammation and in vitro cytotoxicity of size-fractionated fly ash particles from pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    M. Ian Gilmour; Silvia O' Connor; Colin A.J. Dick; C. Andrew Miller; William P. Linak [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States). National Health and Environmental Effects Research Laboratory

    2004-03-01

    Exposure to airborne particulate matter (PM) has been associated with adverse health effects in humans. Pulmonary inflammatory responses were examined in CD1 mice after intratracheal instillation of 25 or 100 {mu}g of ultrafine ({lt}0.2 {mu}m), fine ({lt}2.5 {mu}m), and coarse ({gt}2.5 {mu}m) coal fly ash from a combusted Montana subbituminous coal, and of fine and coarse fractions from a combusted western Kentucky bituminous coal. After 18 hr, the lungs were lavaged and the bronchoalveolar fluid was assessed for cellular influx, biochemical markers, and pro-inflammatory cytokines. The responses were compared with saline and endotoxin as negative and positive controls, respectively. On an equal mass basis, the ultrafine particles from combusted Montana coal induced a higher degree of neutrophil inflammation and cytokine levels than did the fine or coarse PM. The western Kentucky fine PM caused a moderate degree of inflammation and protein levels in bronchoalveolar fluid that were higher than the Montana fine PM. Coarse PM did not produce any significant effects. In vitro experiments with rat alveolar macrophages showed that of the particles tested, only the Montana ultrafine displayed significant cytotoxicity. It is concluded that fly ash toxicity is inversely related with particle size and is associated with increased sulfur and trace element content. 42 refs., 5 figs., 3 tabs.

  2. Dissolution and transport of coal tar compounds in fractured clay-rich residuum

    DEFF Research Database (Denmark)

    Vulava, Vijay M.; McKay, Larry D.; Broholm, Mette Martina

    2012-01-01

    the importance of rapid dissolution and transport through the fracture networks. The concentrations continued to rise but did not reach the corresponding effective solubility limit in most cases. Compounds that were less soluble and those that were more susceptible to sorption or matrix diffusion eluted...... at a much slower rate. Analysis of contaminant concentrations in microcore residuum samples indicated that all 10 compounds had spread throughout the entire monolith and had diffused into the fine-grained matrix between fractures. These data suggest that the predominantly fine pore structure did not appear......We investigated the dissolution and transport of organic contaminants from a crude coal tar mixture in a monolith of fractured clay-rich residuum. An electrolyte solution was eluted through the residuum monolith containing a small emplaced source of coal tar under biologically inhibited and mildly...

  3. Coal transport demand in Western Europe and Japan: Impacts of energy market liberalisation and climate policy

    International Nuclear Information System (INIS)

    Golombek, Rolf; Kittelsen, Sverre A.C.; Maestad, Ottar

    2005-12-01

    Western Europe and Japan are among the main importers of coal. Climate policies following the Kyoto agreement are creating pressure to substitute away from coal and turn to less emission intensive energy sources. At the same time, liberalizations of energy markets in Europe and Japan are likely to cause reduced electricity prices, which will boost the overall demand for electricity. This paper analyses the combined effect of electricity market liberalization and climate policies on the international coal trade. Using the numerical equilibrium model LIBEMOD, we find that while liberalization of electricity markets will imply a large increase in aggregate coal transport demand, the negative impact of climate policies may be even larger, in particular if Russia and Ukraine utilise their market power in the market for emission permits. If this market power is exploited, the total effect of liberalisation and climate policy - when including the impact of general economic growth - is a 20% reduction in aggregate coal transport between 2000 and 2010. Further, impacts differ markedly between Western Europe and Japan. A main difference is that liberalisation has a much more positive - and climate policies have a much stronger negative - impact on steam coal demand in Western Europe than in Japan

  4. Detection of Coal Fires: A Case Study Conducted on Indian Coal Seams Using Neural Network and Particle Swarm Optimization

    Science.gov (United States)

    Singh, B. B.

    2016-12-01

    India produces majority of its electricity from coal but a huge quantity of coal burns every day due to coal fires and also poses a threat to the environment as severe pollutants. In the present study we had demonstrated the usage of Neural Network based approach with an integrated Particle Swarm Optimization (PSO) inversion technique. The Self Potential (SP) data set is used for the early detection of coal fires. The study was conducted over the East Basuria colliery, Jharia Coal Field, Jharkhand, India. The causative source was modelled as an inclined sheet like anomaly and the synthetic data was generated. Neural Network scheme consists of an input layer, hidden layers and an output layer. The input layer corresponds to the SP data and the output layer is the estimated depth of the coal fire. A synthetic dataset was modelled with some of the known parameters such as depth, conductivity, inclination angle, half width etc. associated with causative body and gives a very low misfit error of 0.0032%. Therefore, the method was found accurate in predicting the depth of the source body. The technique was applied to the real data set and the model was trained until a very good correlation of determination `R2' value of 0.98 is obtained. The depth of the source body was found to be 12.34m with a misfit error percentage of 0.242%. The inversion results were compared with the lithologs obtained from a nearby well which corresponds to the L3 coal seam. The depth of the coal fire had exactly matched with the half width of the anomaly which suggests that the fire is widely spread. The inclination angle of the anomaly was 135.510 which resembles the development of the geometrically complex fracture planes. These fractures may be developed due to anisotropic weakness of the ground which acts as passage for the air. As a result coal fires spreads along these fracture planes. The results obtained from the Neural Network was compared with PSO inversion results and were found in

  5. Fouling deposition characteristic by variation of coal particle size and deposition temperature in DTF (Drop Tube Furnace)

    Energy Technology Data Exchange (ETDEWEB)

    Namkung, Hueon; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research; Xu, Li-hua [IAE, Suwon (Korea, Republic of). Plant Engineering Center

    2013-07-01

    One of the major operation obstacles in gasification process is ash deposition phenomenon. In this investigation, experiment was carried out to examine coal fouling characteristics using a laminar DTF (Drop Tube Furnace) with variation of operating condition such as different coal size, and probe surface temperature. Four different samples of pulverized coal were injected into DTF under various conditions. The ash particles are deposited on probe by impacting and agglomerating action. Fouling grains are made of eutectic compound, which is made by reacting with acid minerals and alkali minerals, in EPMA (Electron Probe Micro-Analysis). And agglomeration area of fouling at top layer is wide more than it of middle and bottom layer. The major mineral factors of fouling phenomenon are Fe, Ca, and Mg. The deposition quantity of fouling increases with increasing particle size, high alkali mineral (Fe, Ca, and Mg) contents, and ash deposition temperature.

  6. High performance stream computing for particle beam transport simulations

    International Nuclear Information System (INIS)

    Appleby, R; Bailey, D; Higham, J; Salt, M

    2008-01-01

    Understanding modern particle accelerators requires simulating charged particle transport through the machine elements. These simulations can be very time consuming due to the large number of particles and the need to consider many turns of a circular machine. Stream computing offers an attractive way to dramatically improve the performance of such simulations by calculating the simultaneous transport of many particles using dedicated hardware. Modern Graphics Processing Units (GPUs) are powerful and affordable stream computing devices. The results of simulations of particle transport through the booster-to-storage-ring transfer line of the DIAMOND synchrotron light source using an NVidia GeForce 7900 GPU are compared to the standard transport code MAD. It is found that particle transport calculations are suitable for stream processing and large performance increases are possible. The accuracy and potential speed gains are compared and the prospects for future work in the area are discussed

  7. Electrokinetic Particle Transport in Micro-Nanofluidics Direct Numerical Simulation Analysis

    CERN Document Server

    Qian, Shizhi

    2012-01-01

    Numerous applications of micro-/nanofluidics are related to particle transport in micro-/nanoscale channels, and electrokinetics has proved to be one of the most promising tools to manipulate particles in micro/nanofluidics. Therefore, a comprehensive understanding of electrokinetic particle transport in micro-/nanoscale channels is crucial to the development of micro/nano-fluidic devices. Electrokinetic Particle Transport in Micro-/Nanofluidics: Direct Numerical Simulation Analysis provides a fundamental understanding of electrokinetic particle transport in micro-/nanofluidics involving elect

  8. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.K.; Wall, T.F.; Creelman, R.A.; Gupta, R.P. [University of Newcastle, Newcastle, NSW (Australia). CRC for Black Coal Utilisation

    1998-07-01

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degree}C. The temperature corresponding to the rapid rate of shrinkage correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined using a scanning electron microscope (SEM) to identify the associated chemical and physical changes. The progressive changes in the range of chemical composition (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenisation, viscosity and ash fusion mechanisms. Alternate ash fusion temperatures based on different levels of shrinkage have also been suggested to characterise the ash deposition tendency of the coals. 13 refs., 9 figs.

  9. Distribution of trace elements in selected pulverized coals as a function of particle size and density

    Science.gov (United States)

    Senior, C.L.; Zeng, T.; Che, J.; Ames, M.R.; Sarofim, A.F.; Olmez, I.; Huggins, Frank E.; Shah, N.; Huffman, G.P.; Kolker, A.; Mroczkowski, S.; Palmer, C.; Finkelman, R.

    2000-01-01

    Trace elements in coal have diverse modes of occurrence that will greatly influence their behavior in many coal utilization processes. Mode of occurrence is important in determining the partitioning during coal cleaning by conventional processes, the susceptibility to oxidation upon exposure to air, as well as the changes in physical properties upon heating. In this study, three complementary methods were used to determine the concentrations and chemical states of trace elements in pulverized samples of four US coals: Pittsburgh, Illinois No. 6, Elkhorn and Hazard, and Wyodak coals. Neutron Activation Analysis (NAA) was used to measure the absolute concentration of elements in the parent coals and in the size- and density-fractionated samples. Chemical leaching and X-ray absorption fine structure (XAFS) spectroscopy were used to provide information on the form of occurrence of an element in the parent coals. The composition differences between size-segregated coal samples of different density mainly reflect the large density difference between minerals, especially pyrite, and the organic portion of the coal. The heavy density fractions are therefore enriched in pyrite and the elements associated with pyrite, as also shown by the leaching and XAFS methods. Nearly all the As is associated with pyrite in the three bituminous coals studied. The sub-bituminous coal has a very low content of pyrite and arsenic; in this coal arsenic appears to be primarily organically associated. Selenium is mainly associated with pyrite in the bituminous coal samples. In two bituminous coal samples, zinc is mostly in the form of ZnS or associated with pyrite, whereas it appears to be associated with other minerals in the other two coals. Zinc is also the only trace element studied that is significantly more concentrated in the smaller (45 to 63 ??m) coal particles.

  10. Entropic Ratchet transport of interacting active Brownian particles

    Energy Technology Data Exchange (ETDEWEB)

    Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)

    2014-11-21

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.

  11. Entropic Ratchet transport of interacting active Brownian particles

    International Nuclear Information System (INIS)

    Ai, Bao-Quan; He, Ya-Feng; Zhong, Wei-Rong

    2014-01-01

    Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction

  12. Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rutledge, G.; Lane, D.; Edblom, G.

    1980-01-01

    This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)

  13. Influence of particle sorting in transport of sediment-associated contaminants

    International Nuclear Information System (INIS)

    Lane, L.J.; Hakonson, T.E.

    1982-01-01

    Hydrologic and sediment transport models are developed to route the flow of water and sediment (by particle size classes) in alluvial stream channels. A simplified infiltration model is used to compute runoff from upland areas and flow is routed in ephemeral stream channels to account for infiltration or transmission losses in the channel alluvium. Hydraulic calculations, based on the normal flow assumption and an approximating hydrograph, are used to compute sediment transport by particle size classes. Contaminants associated with sediment particles are routed in the stream channels to predict contaminatant transport by particle size classes. An empirical adjustment factor, the enrichment ratio, is shown to be a function of the particle size distribution of stream bed sediments, contaminant concentrations by particle size, differential sediment transport rates, and the magnitude of the runoff event causing transport of sediment and contaminants. This analysis and an example application in a liquid effluent-receiving area illustrate the significance of particle sorting in transport of sediment associated contaminants

  14. Heavy particle transport in sputtering systems

    Science.gov (United States)

    Trieschmann, Jan

    2015-09-01

    This contribution aims to discuss the theoretical background of heavy particle transport in plasma sputtering systems such as direct current magnetron sputtering (dcMS), high power impulse magnetron sputtering (HiPIMS), or multi frequency capacitively coupled plasmas (MFCCP). Due to inherently low process pressures below one Pa only kinetic simulation models are suitable. In this work a model appropriate for the description of the transport of film forming particles sputtered of a target material has been devised within the frame of the OpenFOAM software (specifically dsmcFoam). The three dimensional model comprises of ejection of sputtered particles into the reactor chamber, their collisional transport through the volume, as well as deposition of the latter onto the surrounding surfaces (i.e. substrates, walls). An angular dependent Thompson energy distribution fitted to results from Monte-Carlo simulations is assumed initially. Binary collisions are treated via the M1 collision model, a modified variable hard sphere (VHS) model. The dynamics of sputtered and background gas species can be resolved self-consistently following the direct simulation Monte-Carlo (DSMC) approach or, whenever possible, simplified based on the test particle method (TPM) with the assumption of a constant, non-stationary background at a given temperature. At the example of an MFCCP research reactor the transport of sputtered aluminum is specifically discussed. For the peculiar configuration and under typical process conditions with argon as process gas the transport of aluminum sputtered of a circular target is shown to be governed by a one dimensional interaction of the imposed and backscattered particle fluxes. The results are analyzed and discussed on the basis of the obtained velocity distribution functions (VDF). This work is supported by the German Research Foundation (DFG) in the frame of the Collaborative Research Centre TRR 87.

  15. Investigation cost subsidizing project for improving development of overseas coals in fiscal 1999. Investigations on improving development of Asian and Pacific coals (Investigation on optimizing the coal transportation system in East Karimantan Province in Indonesia); 1999 nendo Asia Taiheiyo sekitan kaihatsu kodoka chosa. Indonesia Higashi Karimantan shu ni okeru sekitan yuso system saitekika chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Evaluation was given on coal production quantity and coal transportation capability in areas scheduled of future development in Karimantan, Indonesia. Discussions were given on an optimal coal transportation system in East Karimantan Province. The coal production quantity in East Karimantan in fiscal 1999 was 35.27 million tons, accounting for 48% of the total Indonesian coal production. Production of 81.90 million tons is anticipated in 2020. Quality of the coal being produced is low in ash and high in water content in general. Calorific power is 5800 kcal or more. Sulfur content is 0.5% or more, not necessarily a low sulfur coal. The result of analyzing the optimal transportation routes by using the LP model may be summarized as follows: such scenarios are regarded to be largely profitable and advantageous that assume making railways utilizable as the land transportation in addition to use of trucks, belt conveyers, and barges, expanding coal terminals at the ports of PBCT, KPC, BCT and NPLCT, and newly building ports at Tarakan, TgSengatta, BPCTH, and Mangkapadie. (NEDO)

  16. Survey on improvement in development of coal in Asia-Pacific region in fiscal 1998. Survey on optimization of coal transportation system in Kalimantan, Indonesia (South Kalimantan State); 1998 nendo Asia Taiheiyo sekitan kaihatsu kodoka chosa. Indonesia Karimantan ni okeru sekitan yuso system saitekika chosa (Minami Karimantan shu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Based on the June 1998 agreement with Indonesia on a comprehensive survey of the Kalimantan coal transportation system, plans for developing transportation infrastructures and coal mines were established, and a survey was carried out to realize efficient coal development and transportation. In proceeding with the future development of the South Kalimantan coal, it was made clear that the domestic Indonesian demand and export demand thereon can be fully expected, and latent supply capability thereto exists sufficiently. However, although the latent supply capability is available, the coal transportation infrastructures are insufficient, hence new construction of railways and coal shipping ports is necessary. The present survey has prepared an LP model for the coal transportation infrastructures, and performed case studies on six coal transportation scenarios composed of potential existing or new roads, waterways, railways and coal shipping ports. It was found promising economically that, for either case of domestic or export supply, Tg. Selatan port shall be newly built in addition to IBT port and NPLCT port, to link the ports by a railway network to be built newly. (NEDO)

  17. Stochastic transport of particles across single barriers

    International Nuclear Information System (INIS)

    Kreuter, Christian; Siems, Ullrich; Henseler, Peter; Nielaba, Peter; Leiderer, Paul; Erbe, Artur

    2012-01-01

    Transport phenomena of interacting particles are of high interest for many applications in biology and mesoscopic systems. Here we present measurements on colloidal particles, which are confined in narrow channels on a substrate and interact with a barrier, which impedes the motion along the channel. The substrate of the particle is tilted in order for the particles to be driven towards the barrier and, if the energy gained by the tilt is large enough, surpass the barrier by thermal activation. We therefore study the influence of this barrier as well as the influence of particle interaction on the particle transport through such systems. All experiments are supported with Brownian dynamics simulations in order to complement the experiments with tests of a large range of parameter space which cannot be accessed in experiments.

  18. Effects of intraparticle heat and mass transfer during devolatilization of a single coal particle

    NARCIS (Netherlands)

    Bliek, A.; Poelje, W.M.; van Swaaij, Willibrordus Petrus Maria; van Beckum, F.P.H.

    1985-01-01

    The objective of the present work is to elucidate the influence of intraparticle mass and heat transfer phenomena on the overall rate and product yields during devolatilization of a single coal particle in an inert atmosphere. To this end a mathematical model has been formulated which covers

  19. Charged-particle calculations using Boltzmann transport methods

    International Nuclear Information System (INIS)

    Hoffman, T.J.; Dodds, H.L. Jr.; Robinson, M.T.; Holmes, D.K.

    1981-01-01

    Several aspects of radiation damage effects in fusion reactor neutron and ion irradiation environments are amenable to treatment by transport theory methods. In this paper, multigroup transport techniques are developed for the calculation of charged particle range distributions, reflection coefficients, and sputtering yields. The Boltzmann transport approach can be implemented, with minor changes, in standard neutral particle computer codes. With the multigroup discrete ordinates code, ANISN, determination of ion and target atom distributions as functions of position, energy, and direction can be obtained without the stochastic error associated with atomistic computer codes such as MARLOWE and TRIM. With the multigroup Monte Carlo code, MORSE, charged particle effects can be obtained for problems associated with very complex geometries. Results are presented for several charged particle problems. Good agreement is obtained between quantities calculated with the multigroup approach and those obtained experimentally or by atomistic computer codes

  20. Rationale for continuing R&D in direct coal conversion to produce high quality transportation fuels

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, R.D.; McIlvried, H.G. [Burns and Roe Services Corp., Pittsburgh, PA (United States); Gray, D. [Mitre Corp, McLean, VA (United States)] [and others

    1995-12-31

    For the foreseeable future, liquid hydrocarbon fuels will play a significant role in the transportation sector of both the United States and the world. Factors favoring these fuels include convenience, high energy density, and the vast existing infrastructure for their production and use. At present the U.S. consumes about 26% of the world supply of petroleum, but this situation is expected to change because of declining domestic production and increasing competition for imports from countries with developing economies. A scenario and time frame are developed in which declining world resources will generate a shortfall in petroleum supply that can be allieviated in part by utilizing the abundant domestic coal resource base. One option is direct coal conversion to liquid transportation fuels. Continued R&D in coal conversion technology will results in improved technical readiness that can significantly reduce costs so that synfuels can compete economically in a time frame to address the shortfall.

  1. Energy and particle core transport in tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, Marc; Angioni, Clemente; Beidler, Craig; Dinklage, Andreas; Fuchert, Golo; Hirsch, Matthias; Puetterich, Thomas; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald/Garching (Germany)

    2016-07-01

    The paper discusses expectations for core transport in the Wendelstein 7-X stellarator (W7-X) and presents a comparison to tokamaks. In tokamaks, the neoclassical trapped-particle-driven losses are small and turbulence dominates the energy and particle transport. At reactor relevant low collisionality, the heat transport is limited by ion temperature gradient limited turbulence, clamping the temperature gradient. The particle transport is set by an anomalous inward pinch, yielding peaked profiles. A strong edge pedestal adds to the good confinement properties. In traditional stellarators the 3D geometry cause increased trapped orbit losses. At reactor relevant low collisionality and high temperatures, these neoclassical losses would be well above the turbulent transport losses. The W7-X design minimizes neoclassical losses and turbulent transport can become dominant. Moreover, the separation of regions of bad curvature and that of trapped particle orbits in W7-X may have favourable implications on the turbulent electron heat transport. The neoclassical particle thermodiffusion is outward. Without core particle sources the density profile is flat or even hollow. The presence of a turbulence driven inward anomalous particle pinch in W7-X (like in tokamaks) is an open topic of research.

  2. Ratchet Transport of Chiral Particles Caused by the Transversal Asymmetry: Current Reversals and Particle Separation

    Science.gov (United States)

    Liu, Jian-li; Lu, Shi-cai; Ai, Bao-quan

    2018-06-01

    Due to the chirality of active particles, the transversal asymmetry can induce the the longitudinal directed transport. The transport of chiral active particles in a periodic channel is investigated in the presence of two types of the transversal asymmetry, the transverse force and the transverse rigid half-circle obstacles. For all cases, the counterclockwise and clockwise particles move to the opposite directions. For the case of the only transverse force, the chiral active particles can reverse their directions when increasing the transverse force. When the transverse rigid half-circle obstacles are introduced, the transport behavior of particles becomes more complex and multiple current reversals occur. The direction of the transport is determined by the competition between two types of the transversal asymmetry. For a given chirality, by suitably tailoring parameters, particles with different self-propulsion speed can move in different directions and can be separated.

  3. Cleavage and crosslinking of polymeric coal structures during pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionization mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.

  4. Spatiotemporal Structure of Aeolian Particle Transport on Flat Surface

    Science.gov (United States)

    Niiya, Hirofumi; Nishimura, Kouichi

    2017-05-01

    We conduct numerical simulations based on a model of blowing snow to reveal the long-term properties and equilibrium state of aeolian particle transport from 10-5 to 10 m above the flat surface. The numerical results are as follows. (i) Time-series data of particle transport are divided into development, relaxation, and equilibrium phases, which are formed by rapid wind response below 10 cm and gradual wind response above 10 cm. (ii) The particle transport rate at equilibrium is expressed as a power function of friction velocity, and the index of 2.35 implies that most particles are transported by saltation. (iii) The friction velocity below 100 µm remains roughly constant and lower than the fluid threshold at equilibrium. (iv) The mean particle speed above 300 µm is less than the wind speed, whereas that below 300 µm exceeds the wind speed because of descending particles. (v) The particle diameter increases with height in the saltation layer, and the relationship is expressed as a power function. Through comparisons with the previously reported random-flight model, we find a crucial problem that empirical splash functions cannot reproduce particle dynamics at a relatively high wind speed.

  5. Influence of the shape of soaring particle based on coal-water slurry containing petrochemicals on ignition characteristics

    Directory of Open Access Journals (Sweden)

    Valiullin Timur R.

    2017-01-01

    Full Text Available This paper examines the laws of stable ignition of organic coal-water slurry containing petrochemicals (CWSP. The CWSP is based on the filter cake of coal and scavenge oil. The experiments are performed for individual CWSP particles soaring in a special set-up. The temperature and velocity of an oxidizer flow are varied between 500-1200 K, and 0.5-3 m/s. The dimensions (longitudinal and transverse of particles range are from 0.5 mm to 5 mm. The study indicates how the shape of a fuel particle (sphere, ellipsoid, and polyhedron influences its ignition characteristics (delay time, minimum temperature, modes, stages. Based on the experimental results, the paper explains why the surface configuration of particles influences the conditions of heat transfer with an oxidizer. The results obtained for soaring particles are compared with the results for fixed CWSP particles having different surface configurations (sphere, ellipsoid, and polyhedron. In general, the study may contribute to the expansion of the fuel resource base. The experimental data may be used for the development of the technologies of burning CWSP prepared by recycling traditional fuels. As a result of this study, several recommendations for the practical application of research results are made.

  6. The level of air pollution in the impact zone of coal-fired power plant (Karaganda City) using the data of geochemical snow survey (Republic of Kazakhstan)

    Science.gov (United States)

    Adil'bayeva, T. E.; Talovskaya, A. V.; Yazikov, Ye G.; Matveenko, I. A.

    2016-09-01

    Coal-fired power plants emissions impact the air quality and human health. Of great significance is assessment of solid airborne particles emissions from those plants and distance of their transportation. The article presents the results of air pollution assessment in the zone of coal-fired power plant (Karaganda City) using snow survey. Based on the mass of solid airborne particles deposited in snow, time of their deposition on snow at the distance from 0.5 to 4.5 km a value of dust load has been determined. It is stated that very high level of pollution is observed at the distance from 0.5 to 1 km. there is a trend in decrease of dust burden value with the distance from the stacks of coal-fired power plant that may be conditioned by the particle size and washing out smaller ash particles by ice pellets forming at freezing water vapour in stacks of the coal-fired power plant. Study in composition of solid airborne particles deposited in snow has shown that they mainly contain particulates of underburnt coal, Al-Si- rich spheres, Fe-rich spheres, and coal dust. The content of the particles in samples decreases with the distance from the stacks of the coal-fired power plant.

  7. Picobubble column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Daniel Tao; Samuel Yu; Xiaohua Zhou; R.Q. Honaker; B.K. Parekh [University of Kentucky, Lexington, KY (United States). Department of Mining Engineering

    2008-01-15

    Froth flotation is widely used in the coal industry to clean -28 mesh (0.6 mm) or -100 mesh (0.15 mm) fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range, nominally 10-100 {mu}m, beyond which the flotation efficiency drops sharply. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. Experimental results have shown that the use of picobubbles in a 5-cm diameter column flotation increased the combustible recovery of a highly floatable coal by up to 10% and that of a poorly floatable coal by up to 40%, depending on the feed rate, collector dosage, and other flotation conditions. 14 refs.

  8. 1982 Australian coal conference papers

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This third Australian coal conference included papers discussing the market for coal, finance and investment, use of computers, mining, coal research, coal preparation and waste disposal, marketing and trade, and the transport of coal. All papers have been individually abstracted.

  9. Empirical particle transport model for tokamaks

    International Nuclear Information System (INIS)

    Petravic, M.; Kuo-Petravic, G.

    1986-08-01

    A simple empirical particle transport model has been constructed with the purpose of gaining insight into the L- to H-mode transition in tokamaks. The aim was to construct the simplest possible model which would reproduce the measured density profiles in the L-regime, and also produce a qualitatively correct transition to the H-regime without having to assume a completely different transport mode for the bulk of the plasma. Rather than using completely ad hoc constructions for the particle diffusion coefficient, we assume D = 1/5 chi/sub total/, where chi/sub total/ ≅ chi/sub e/ is the thermal diffusivity, and then use the κ/sub e/ = n/sub e/chi/sub e/ values derived from experiments. The observed temperature profiles are then automatically reproduced, but nontrivially, the correct density profiles are also obtained, for realistic fueling rates and profiles. Our conclusion is that it is sufficient to reduce the transport coefficients within a few centimeters of the surface to produce the H-mode behavior. An additional simple assumption, concerning the particle mean-free path, leads to a convective transport term which reverses sign a few centimeters inside the surface, as required by the H-mode density profiles

  10. Picobubble enhanced fine coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Y.J.; Liu, J.T.; Yu, S.; Tao, D. [University of Kentucky, Lexington, KY (United States). Dept. of Mining Engineering

    2006-07-01

    Froth flotation is widely used in the coal industry to clean -28 mesh fine coal. A successful recovery of particles by flotation depends on efficient particle-bubble collision and attachment with minimal subsequent particle detachment from bubble. Flotation is effective in a narrow size range beyond which the flotation efficiency drops drastically. It is now known that the low flotation recovery of particles in the finest size fractions is mainly due to a low probability of bubble-particle collision while the main reason for poor coarse particle flotation recovery is the high probability of detachment. A fundamental analysis has shown that use of picobubbles can significantly improve the flotation recovery of particles in a wide range of size by increasing the probability of collision and attachment and reducing the probability of detachment. A specially designed column with a picobubble generator has been developed for enhanced recovery of fine coal particles. Picobubbles were produced based on the hydrodynamic cavitation principle. They are characterized by a size distribution that is mostly below 1 {mu}m and adhere preferentially to the hydrophobic surfaces. The presence of picobubbles increases the probability of collision and attachment and decreases the probability of detachment, thus enhancing flotation recovery. Experimental results with the Coalberg seam coal in West Virginia, U.S.A. have shown that the use of picobubbles in a 2 in. column flotation increased fine coal recovery by 10-30%, depending on the feed rate, collector dosage, and other flotation conditions. Picobubbles also acted as a secondary collector and reduced the collector dosage by one third to one half.

  11. Fundamental studies of coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The authors have examined the pyrolysis of Argonne samples of Wyodak and Illinois No. 6 coal in argon, undecane, Tetralin, and water. The effects of the pyrolysis on individual particles of coal were monitored visually in a cell with diamond windows capable of operation to temperature and pressures in excess of 500{degrees}C and 3000 psi. The changes in the particles from ambient to 460{degrees}C were recorded in real time on video tape, and images were then taken from the tape record and analyzed. The study showed that in argon both coals developed tars at 350{degrees}-370{degrees}C. The tars then quickly evaporated, leaving core particles remarkably similar in size and shape to the initial particles. These observations suggest that coal does not melt nor become fully liquid when heated. Nor does the softened coal undergo crosslinking to generate coke. Rather the simple loss of volatiles leaves behind the core residue as coke. Contrary to the common view, there appears to be no link between the bond-breaking processes yielding tar and the interaction of the coal with H-donors leading to liquefaction. Water as a medium was surprising in its effect. Both coals began to shrink at 300{degrees}-350{degrees}C, with the effect appearing to be more of an erosion rather than a uniform loss of substance as seen in Tetralin. The Wyodak continued to shrink to 460{degrees}C to about half its initial size. With the Illinois No. 6 coal, however, the process reversed at around 420{degrees}C, and the particles appeared to grow with the evolution of a tar, continuing to 460{degrees}C. The authors submit that this final observation is evidence for hydrothermal synthesis of hydrocarbons at these conditions.

  12. Entropic transport of active particles driven by a transverse ac force

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jian-chun, E-mail: wjchun2010@163.com; Chen, Qun; Ai, Bao-quan, E-mail: aibq@scnu.edu.cn

    2015-12-18

    Transport of active particles is numerically investigated in a two-dimensional period channel. In the presence of a transverse ac force, the directed transport of active particles demonstrates striking behaviors. By adjusting the amplitude and the frequency of the transverse ac force, the average velocity will be influenced significantly and the direction of the transport can be reversed several times. Remarkably, it is also found that the direction of the transport varies with different self-propelled speeds. Therefore, particles with different self-propelled speeds will move to the different directions, which is able to separate particles of different self-propelled speeds. - Highlights: • A transverse ac force strongly influence the transport of active particles. • The direction of the transport can be reversed several times. • Active particles with different self-propelled speeds can be separated.

  13. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  14. Desulfurization Sorbents for Transport-Bed Applications

    International Nuclear Information System (INIS)

    Gupta, Raghubir P.; Turk, Brian S.; Vierheilig, Albert A.

    1997-01-01

    This project extends the prior work on the development of fluidizable zinc titanate particles using a spray-drying technique to impart high reactivity and attrition resistance. The specific objectives are: (1) To develop highly reactive and attrition-resistant zinc titanate sorbents in 40- to 150-(micro)m particle size range for transport reactor applications; (2) To transfer sorbent production technology to private sector; and (3) To provide technical support to Sierra Pacific Clean Coal Technology Demonstration plant and FETC's Hot-Gas Desulfurization Process Development Unit (PDU), both employing a transport reactor system

  15. Effect of multiphase radiation on coal combustion in a pulverized coal jet flame

    International Nuclear Information System (INIS)

    Wu, Bifen; Roy, Somesh P.; Zhao, Xinyu; Modest, Michael F.

    2017-01-01

    The accurate modeling of coal combustion requires detailed radiative heat transfer models for both gaseous combustion products and solid coal particles. A multiphase Monte Carlo ray tracing (MCRT) radiation solver is developed in this work to simulate a laboratory-scale pulverized coal flame. The MCRT solver considers radiative interactions between coal particles and three major combustion products (CO 2 , H 2 O, and CO). A line-by-line spectral database for the gas phase and a size-dependent nongray correlation for the solid phase are employed to account for the nongray effects. The flame structure is significantly altered by considering nongray radiation and the lift-off height of the flame increases by approximately 35%, compared to the simulation without radiation. Radiation is also found to affect the evolution of coal particles considerably as it takes over as the dominant mode of heat transfer for medium-to-large coal particles downstream of the flame. To investigate the respective effects of spectral models for the gas and solid phases, a Planck-mean-based gray gas model and a size-independent gray particle model are applied in a frozen-field analysis of a steady-state snapshot of the flame. The gray gas approximation considerably underestimates the radiative source terms for both the gas phase and the solid phase. The gray coal approximation also leads to under-prediction of the particle emission and absorption. However, the level of under-prediction is not as significant as that resulting from the employment of the gray gas model. Finally, the effect of the spectral property of ash on radiation is also investigated and found to be insignificant for the present target flame. - Highlights: • A Monte Carlo–based nongray radiation solver is developed to study effects of radiation. • Radiation alters the lift-off height, and the distribution of temperature andspecies for the target flame. • Radiation alters the heat transfer mechanism of medium

  16. Particle transport in field-reversed configurations

    Energy Technology Data Exchange (ETDEWEB)

    Tuszewski, M.; Linford, R.K.

    1982-05-01

    Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average ..beta.. condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement.

  17. Particle transport in field-reversed configurations

    International Nuclear Information System (INIS)

    Tuszewski, M.; Linford, R.K.

    1982-01-01

    Particle transport in field-reversed configurations is investigated using a one-dimensional, nondecaying, magnetic field structure. The radial profiles are constrained to satisfy an average β condition from two-dimensional equilibrium and a boundary condition at the separatrix to model the balance between closed and open-field-line transport. When applied to the FRX-B experimental data and to the projected performance of the FRX-C device, this model suggests that the particle confinement times obtained with anomalous lower-hybrid-drift transport are in good agreement with the available numerical and experimental data. Larger values of confinement times can be achieved by increasing the ratio of the separatrix radius to the conducting wall radius. Even larger increases in lifetimes might be obtained by improving the open-field-line confinement

  18. Microstripes for transport and separation of magnetic particles

    DEFF Research Database (Denmark)

    Donolato, Marco; Dalslet, Bjarke Thomas; Hansen, Mikkel Fougt

    2012-01-01

    We present a simple technique for creating an on-chip magnetic particle conveyor based on exchange-biased permalloy microstripes. The particle transportation relies on an array of stripes with a spacing smaller than their width in conjunction with a periodic sequence of four different externally...... applied magnetic fields. We demonstrate the controlled transportation of a large population of particles over several millimeters of distance as well as the spatial separation of two populations of magnetic particles with different magnetophoretic mobilities. The technique can be used for the controlled...... selective manipulation and separation of magnetically labelled species. (C) 2012 American Institute of Physics....

  19. Physico-chemical and optical properties of combustion-generated particles from coal-fired power plant, automobile and ship engine and charcoal kiln.

    Science.gov (United States)

    Kim, Hwajin

    2015-04-01

    Similarities and differences in physico-chemical and optical properties of combustion generated particles from various sources were investigated. Coal-fired power plant, charcoal kiln, automobile and ship engine were major sources, representing combustions of coal, biomass and two different types of diesel, respectively. Scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM) and energy-dispersive X-ray spectroscopy (EDX) equipped with both SEM and HRTEM were used for physico-chemical analysis. Light absorbing properties were assessed using a spectrometer equipped with an integrating sphere. Particles generated from different combustion sources and conditions demonstrate great variability in their morphology, structure and composition. From coal-fired power plant, both fly ash and flue gas were mostly composed of heterogeneously mixed mineral ash spheres, suggesting that the complete combustion was occurred releasing carbonaceous species out at high temperature (1200-1300 °C). Both automobile and ship exhausts from diesel combustions show typical features of soot: concentric circles comprised of closely-packed graphene layers. However, heavy fuel oil (HFO) combusted particles from ship exhaust demonstrate more complex compositions containing different morphology of particles other than soot, e.g., spherical shape of char particles composed of minerals and carbon. Even for the soot aggregates, particles from HFO burning have different chemical compositions; carbon is dominated but Ca (29.8%), S (28.7%), Na(1%), and Mg(1%) are contained, respectively which were not found from particles of automobile emission. This indicates that chemical compositions and burning conditions are significant to determine the fate of particles. Finally, from biomass burning, amorphous and droplet-like carbonaceous particles with no crystallite structure are observed and they are generally formed by the condensation of low volatile species at low

  20. Estimates of Lagrangian particle transport by wave groups: forward transport by Stokes drift and backward transport by the return flow

    Science.gov (United States)

    van den Bremer, Ton S.; Taylor, Paul H.

    2014-11-01

    Although the literature has examined Stokes drift, the net Lagrangian transport by particles due to of surface gravity waves, in great detail, the motion of fluid particles transported by surface gravity wave groups has received considerably less attention. In practice nevertheless, the wave field on the open sea often has a group-like structure. The motion of particles is different, as particles at sufficient depth are transported backwards by the Eulerian return current that was first described by Longuet-Higgins & Stewart (1962) and forms an inseparable counterpart of Stokes drift for wave groups ensuring the (irrotational) mass balance holds. We use WKB theory to study the variation of the Lagrangian transport by the return current with depth distinguishing two-dimensional seas, three-dimensional seas, infinite depth and finite depth. We then provide dimensional estimates of the net horizontal Lagrangian transport by the Stokes drift on the one hand and the return flow on the other hand for realistic sea states in all four cases. Finally we propose a simple scaling relationship for the transition depth: the depth above which Lagrangian particles are transported forwards by the Stokes drift and below which such particles are transported backwards by the return current.

  1. An approach to improving transporting velocity in the long-range ultrasonic transportation of micro-particles

    International Nuclear Information System (INIS)

    Meng, Jianxin; Mei, Deqing; Yang, Keji; Fan, Zongwei

    2014-01-01

    In existing ultrasonic transportation methods, the long-range transportation of micro-particles is always realized in step-by-step way. Due to the substantial decrease of the driving force in each step, the transportation is lower-speed and stair-stepping. To improve the transporting velocity, a non-stepping ultrasonic transportation approach is proposed. By quantitatively analyzing the acoustic potential well, an optimal region is defined as the position, where the largest driving force is provided under the condition that the driving force is simultaneously the major component of an acoustic radiation force. To keep the micro-particle trapped in the optimal region during the whole transportation process, an approach of optimizing the phase-shifting velocity and phase-shifting step is adopted. Due to the stable and large driving force, the displacement of the micro-particle is an approximately linear function of time, instead of a stair-stepping function of time as in the existing step-by-step methods. An experimental setup is also developed to validate this approach. Long-range ultrasonic transportations of zirconium beads with high transporting velocity were realized. The experimental results demonstrated that this approach is an effective way to improve transporting velocity in the long-range ultrasonic transportation of micro-particles

  2. Immersion freezing induced by different kinds of coal fly ash: Comparing particle generation methods and measurement techniques

    Science.gov (United States)

    Grawe, Sarah; Augustin-Bauditz, Stefanie; Clemen, Hans-Christian; Eriksen-Hammer, Stine; Lubitz, Jasmin; Schneider, Johannes; Stratmann, Frank; Wex, Heike

    2017-04-01

    To date, a lot of effort has been put into the identification and characterization of atmospheric ice nucleating particles (INPs), which may influence both weather and climate. The majority of studies focuses on INPs from natural origin such as biological particles or mineral dust particles (Hoose and Möhler 2012, Murray et al. 2012). Combustion ashes, being possible sources of anthropogenic INPs, have rarely been investigated in the past. Ash particles may be emitted into the atmosphere either by the action of wind from ash deposits on the ground (bottom ash), or during the combustion process (fly ash). Two recent studies (Umo et al., 2015; Grawe et al., 2016) identified fly ash from coal combustion as the most efficient of the investigated samples (including also bottom ashes from wood and coal combustion). These results motivate the here presented study in which we investigated the immersion freezing behavior of four coal fly ash samples taken from the filters of different coal-fired power plants in Germany. A combination of two instruments was used to capture the temperature range from 0 °C to the homogeneous freezing limit at around -38 °C. Firstly, the new Leipzig Ice Nucleation Array (LINA) was used, where droplets from an ash-water suspension are pipetted onto a cooled plate. Secondly, we used the Leipzig Aerosol Cloud Interaction Simulator (LACIS; Hartmann et al., 2011), a laminar flow tube in which every droplet contains a single size-segregated ash particle. Here, it was possible to study the effect of different kinds of particle generation, i.e., atomization of an ash-water suspension, and aerosolization of dry ash material. The composition of the ash particles was investigated by means of single particle aerosol mass spectrometry and particles were sampled on filters for environmental scanning electron microscope analysis. Our measurements show that all four fly ash samples feature a similar immersion freezing behavior (ice fractions vary by a

  3. Nitration of benzo[a]pyrene adsorbed on coal fly ash particles by nitrogen dioxide: role of thermal activation.

    Science.gov (United States)

    Kristovich, Robert L; Dutta, Prabir K

    2005-09-15

    Nitration of benzo[a]pyrene (BaP) by nitrogen dioxide (NO2) adsorbed on the surface of thermally activated coal fly ash and model aluminosilicate particles led to the formation of nitrobenzo[a]pyrenes as verified by extraction and gas chromatography/mass spectrometry (GC/MS). In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was utilized to follow the nitration reaction on the surface of zeolite Y. Nitrobenzo[a]pyrene formation was observed along with the formation of nitrous acid and nitrate species. The formation of the BaP radical cation was also observed on thermally activated aluminosilicate particles by electron spin resonance (ESR) spectroscopy. On the basis of GC/MS, DRIFTS, and ESR spectroscopy results, a mechanism of nitration involving intermediate BaP radical cations generated on thermally activated aluminosilicate particles is proposed. These observations have led to the hypothesis that nitration of adsorbed polyaromatic hydrocarbons on coal fly ash by reaction with nitrogen oxides can occur in the smokestack, but with the aging of the fly ash particles, the extent of the nitration reaction will be diminished.

  4. Transport of the moving barrier driven by chiral active particles

    Science.gov (United States)

    Liao, Jing-jing; Huang, Xiao-qun; Ai, Bao-quan

    2018-03-01

    Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can power and steer the directed transport of the barrier in the longitudinal direction. The transport of the barrier is determined by the chirality of active particles. The moving barrier and active particles move in the opposite directions. The average velocity of the barrier is much larger than that of active particles. There exist optimal parameters (the chirality, the self-propulsion speed, the packing fraction, and the channel width) at which the average velocity of the barrier takes its maximal value. In particular, tailoring the geometry of the barrier and the active concentration provides novel strategies to control the transport properties of micro-objects or cargoes in an active medium.

  5. Modeling pollutant transport using a meshless-lagrangian particle model

    International Nuclear Information System (INIS)

    Carrington, D.B.; Pepper, D.W.

    2002-01-01

    A combined meshless-Lagrangian particle transport model is used to predict pollutant transport over irregular terrain. The numerical model for initializing the velocity field is based on a meshless approach utilizing multiquadrics established by Kansa. The Lagrangian particle transport technique uses a random walk procedure to depict the advection and dispersion of pollutants over any type of surface, including street and city canyons

  6. Coal Mines Security System

    OpenAIRE

    Ankita Guhe; Shruti Deshmukh; Bhagyashree Borekar; Apoorva Kailaswar; Milind E.Rane

    2012-01-01

    Geological circumstances of mine seem to be extremely complicated and there are many hidden troubles. Coal is wrongly lifted by the musclemen from coal stocks, coal washeries, coal transfer and loading points and also in the transport routes by malfunctioning the weighing of trucks. CIL —Coal India Ltd is under the control of mafia and a large number of irregularities can be contributed to coal mafia. An Intelligent Coal Mine Security System using data acquisition method utilizes sensor, auto...

  7. Emissions from carpet combustion in a pilot-scale rotary kiln: comparison with coal and particle-board combustion

    Energy Technology Data Exchange (ETDEWEB)

    Stephanie Lucero Konopa; James A. Mulholland; Matthew J. Realff; Paul M. Lemieux [Georgia Institute of Technology, Atlanta, GA (United States). School of Civil and Environmental Engineering

    2008-08-15

    The use of post-consumer carpet as a potential fuel substitute in cement kilns and other high-temperature processes is being considered to address the problem of huge volumes of carpet waste and the opportunity of waste-to-energy recovery. Carpet represents a high volume waste stream, provides high energy value, and contains other recoverable materials for the production of cement. This research studied the emission characteristics of burning 0.46-kg charges of chopped nylon carpet squares, pulverized coal, and particle-board pellets in a pilot-scale natural gas-fired rotary kiln. Carpet was tested with different amounts of water added. Emissions of oxygen, carbon dioxide, nitric oxide (NO), sulfur dioxide (SO{sub 2}), carbon monoxide (CO), and total hydrocarbons and temperatures were continuously monitored. It was found that carpet burned faster and more completely than coal and particle board, with a rapid volatile release that resulted in large and variable transient emission peaks. NO emissions from carpet combustion ranged from 0.06 to 0.15 g/MJ and were inversely related to CO emissions. Carpet combustion yielded higher NO emissions than coal and particleboard combustion, consistent with its higher nitrogen content. S{sub 2} emissions were highest for coal combustion, consistent with its higher sulfur content than carpet or particle board. Adding water to carpet slowed its burn time and reduced variability in the emission transients, reducing the CO peak but increasing NO emissions. Results of this study indicate that carpet waste can be used as an effective alternative fuel, with the caveats that it might be necessary to wet carpet or chop it finely to avoid excessive transient puff emissions due to its high volatility compared with other solid fuels, and that controlled mixing of combustion air might be used to control NO emissions from nylon carpet. 13 refs., 5 figs., 1 tab.

  8. Characterization of airborne float coal dust emitted during continuous mining, longwall mining and belt transport.

    Science.gov (United States)

    Shahan, M R; Seaman, C E; Beck, T W; Colinet, J F; Mischler, S E

    2017-09-01

    Float coal dust is produced by various mining methods, carried by ventilating air and deposited on the floor, roof and ribs of mine airways. If deposited, float dust is re-entrained during a methane explosion. Without sufficient inert rock dust quantities, this float coal dust can propagate an explosion throughout mining entries. Consequently, controlling float coal dust is of critical interest to mining operations. Rock dusting, which is the adding of inert material to airway surfaces, is the main control technique currently used by the coal mining industry to reduce the float coal dust explosion hazard. To assist the industry in reducing this hazard, the Pittsburgh Mining Research Division of the U.S. National Institute for Occupational Safety and Health initiated a project to investigate methods and technologies to reduce float coal dust in underground coal mines through prevention, capture and suppression prior to deposition. Field characterization studies were performed to determine quantitatively the sources, types and amounts of dust produced during various coal mining processes. The operations chosen for study were a continuous miner section, a longwall section and a coal-handling facility. For each of these operations, the primary dust sources were confirmed to be the continuous mining machine, longwall shearer and conveyor belt transfer points, respectively. Respirable and total airborne float dust samples were collected and analyzed for each operation, and the ratio of total airborne float coal dust to respirable dust was calculated. During the continuous mining process, the ratio of total airborne float coal dust to respirable dust ranged from 10.3 to 13.8. The ratios measured on the longwall face were between 18.5 and 21.5. The total airborne float coal dust to respirable dust ratio observed during belt transport ranged between 7.5 and 21.8.

  9. On the Langevin approach to particle transport

    International Nuclear Information System (INIS)

    Bringuier, Eric

    2006-01-01

    In the Langevin description of Brownian motion, the action of the surrounding medium upon the Brownian particle is split up into a systematic friction force of Stokes type and a randomly fluctuating force, alternatively termed noise. That simple description accounts for several basic features of particle transport in a medium, making it attractive to teach at the undergraduate level, but its range of applicability is limited. The limitation is illustrated here by showing that the Langevin description fails to account realistically for the transport of a charged particle in a medium under crossed electric and magnetic fields and the ensuing Hall effect. That particular failure is rooted in the concept of the friction force rather than in the accompanying random force. It is then shown that the framework of kinetic theory offers a better account of the Hall effect. It is concluded that the Langevin description is nothing but an extension of Drude's transport model subsuming diffusion, and so it inherits basic limitations from that model. This paper thus describes the interrelationship of the Langevin approach, the Drude model and kinetic theory, in a specific transport problem of physical interest

  10. Turbulent transport of large particles in the atmospheric boundary layer

    Science.gov (United States)

    Richter, D. H.; Chamecki, M.

    2017-12-01

    To describe the transport of heavy dust particles in the atmosphere, assumptions must typically be made in order to connect the micro-scale emission processes with the larger-scale atmospheric motions. In the context of numerical models, this can be thought of as the transport process which occurs between the domain bottom and the first vertical grid point. For example, in the limit of small particles (both low inertia and low settling velocity), theory built upon Monin-Obukhov similarity has proven effective in relating mean dust concentration profiles to surface emission fluxes. For increasing particle mass, however, it becomes more difficult to represent dust transport as a simple extension of the transport of a passive scalar due to issues such as the crossing trajectories effect. This study focuses specifically on the problem of large particle transport and dispersion in the turbulent boundary layer by utilizing direct numerical simulations with Lagrangian point-particle tracking to determine under what, if any, conditions the large dust particles (larger than 10 micron in diameter) can be accurately described in a simplified Eulerian framework. In particular, results will be presented detailing the independent contributions of both particle inertia and particle settling velocity relative to the strength of the surrounding turbulent flow, and consequences of overestimating surface fluxes via traditional parameterizations will be demonstrated.

  11. Beneficiation of power grade coals: its relevance to future coal use in India

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1992-01-01

    With consumption increasing from the current level of 220 mt. to over 600 mt. by the year 2010 A.D., coal will continue to enjoy a prime position in the overall energy scene in India. India being endowed with coal resources of high ash content, the major coal consuming industries have, by and large, adjusted the combustion techniques to suit the quality of coal available. However, wide fluctuations in the quality of coal supplies adversely affect their plant performance. With the coal deposits being localised in the eastern and central parts of peninsular India, the load on railway network in carrying coal to other parts of the country will continue to increase and this will emerge as a major constraint in managing the coal supply to the consuming centres located away from the coal fields. It is in this context, the author has discussed the need of setting up of coal cleaning facilities at the pit heads. The extent to which the transport network will be relieved of carrying avoidable muck in coal has been quantified along with the benefits that will accrue in the form of extra transport capacity, better power plant performance and reduced air pollution and solid waste at consumer end. (author). 5 refs., 6 tabs., 8 figs

  12. Coal-oil assisted flotation for the gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Sen, S.; Seyrankaya, A.; Cilingir, Y. [Dokuz Eylul University, Izmir (Turkey). Mining Engineering Department

    2005-09-01

    Using coal-oil agglomeration method for free or native gold recovery has been a research subject for many researchers over the years. In this study, a new approach 'coal-oil assisted gold flotation' was used to recover gold particles. The coal-oil-gold agglomeration process considers the preferential wetting of coal and gold particles. The method takes advantage of the greater hydrophobicity and oleophilicity of coal and gold compared to that the most gangue materials. Unlike the previous studies about coal-oil-gold agglomeration, this method uses a very small amount of coal and agglomerating agents. Some experiments were conducted on synthetic gold ore samples to reveal the reaction of the coal-oil assisted gold flotation process against the size and the number of gold particles in the feed. It was observed that there is no significant difference in process gold recoveries for feeds assaying different Au. Although there was a slight decrease for coarse gold particles, the process seems to be effective for the recovery of gold grains as coarse as 300 {mu} m. The decrease in the finest size ({lt} 53 {mu} m) is considered to be the decrease in the collision efficiency between the agglomerates and the finest gold particles. The effect of changing coal quantity for constant ore and oil amounts was also investigated. The experiments showed that the process gives very similar results for both artificial and natural ore samples; the best results have been obtained by using 30/1 coal-oil ratio.

  13. The world behind electricity from coal. The dubious origin of coal for Dutch coal-fired power plants

    International Nuclear Information System (INIS)

    2008-01-01

    Five energy companies in the Netherlands want to build additional coal-fired power plants: Essent and Nuon, the German company RWE and E.ON and the Belgian company Electrabel. Coal-fired power plants emit 70 percent more CO2 than gas-fired power plants. Especially because of the threat to the climate Greenpeace believes that no more coal-fired power plants should be built. In this publication Greenpeace explores the pollution, the working conditions and human rights with regard to the exploitation of coal. That has been elaborated for the three countries from which Dutch energy companies import coal: South Africa, Colombia and Indonesia. In addition to information about the origin of coal also insight is given into the coal market (stocks and use), the enormous coal transport and the world trade [nl

  14. Convective and diffusive effects on particle transport in asymmetric periodic capillaries.

    Directory of Open Access Journals (Sweden)

    Nazmul Islam

    Full Text Available We present here results of a theoretical investigation of particle transport in longitudinally asymmetric but axially symmetric capillaries, allowing for the influence of both diffusion and convection. In this study we have focused attention primarily on characterizing the influence of tube geometry and applied hydraulic pressure on the magnitude, direction and rate of transport of particles in axi-symmetric, saw-tooth shaped tubes. Three initial value problems are considered. The first involves the evolution of a fixed number of particles initially confined to a central wave-section. The second involves the evolution of the same initial state but including an ongoing production of particles in the central wave-section. The third involves the evolution of particles a fully laden tube. Based on a physical model of convective-diffusive transport, assuming an underlying oscillatory fluid velocity field that is unaffected by the presence of the particles, we find that transport rates and even net transport directions depend critically on the design specifics, such as tube geometry, flow rate, initial particle configuration and whether or not particles are continuously introduced. The second transient scenario is qualitatively independent of the details of how particles are generated. In the third scenario there is no net transport. As the study is fundamental in nature, our findings could engender greater understanding of practical systems.

  15. Cleavage and crosslinking of polymeric coal structures during pyrolysis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    McMillen, D.F.; Malhotra, R.

    1992-02-01

    The ultimate objective of this project was to develop a better understanding of volatiles production to help optimize the yield and character of condensable coproducts during coal pyrolysis or mild gasification. The specific objectives were to (1) Develop pyrolysis procedures that minimize secondary reactions; and (2) Develop coal pretreatments that current knowledge suggests will prorate bond scission or prevent retrograde reactions. Our approach was to study the pyrolysis of coals and tar-loaded coals by using several techniques that span a range of heating rates and pressures. Slow-heating pyrolyses were performed at low pressures in the inlet of a field ionization mass spectrometer and at atmospheric pressures in a thermogravimetric analyzer. Moderately rapid-heating pyrolyses were performed in a vacuum TGA apparatus and in sealed silica ampules heated in a molten-salt bath. The fastest heating rates were achieved with laser pyrolysis at about 30,000 X/s. The high tar yield seen in this work where the entire volume of the coal particle becomes hot and fluid at very nearly the same time, taken together with the evident non-vapor transport of the tar under these conditions, emphasizes the importance of better understanding the development of fluidity during coal heating. This specifically includes the profound effects--long-recognized but poorly understood that mild oxidation has in suppressing coal fluidity. It also includes the more recently recognized fact that heating in the presence of an inert gas produced substantially greater fluidity than does heating in the presence of combustion gases, even if the conditions are very fuel rich and all the oxygen itself has already been consumed when the coal particles are encountered.

  16. Transport with three-particle interaction

    International Nuclear Information System (INIS)

    Morawetz, K.

    2000-01-01

    Starting from a point - like two - and three - particle interaction the kinetic equation is derived. While the drift term of the kinetic equation turns out to be determined by the known Skyrme mean field the collision integral appears in two - and three - particle parts. The cross section results from the same microscopic footing and is naturally density dependent due to the three - particle force. By this way no hybrid model for drift and cross section is needed for nuclear transport. The resulting equation of state has besides the mean field correlation energy also a two - and three - particle correlation energy which both are calculated analytically for the ground state. These energies contribute to the equation of state and lead to an occurrence of a maximum at 3 times nuclear density in the total energy. (author)

  17. Use of coal-oil agglomerates for particulate gold recovery

    Energy Technology Data Exchange (ETDEWEB)

    Calvez, J.P.S.; Kim, M.J.; Wong, P.L.M.; Tran, T. [University of New South Wales, Sydney, NSW (Australia). School of Chemical Engineering and Industrial Chemistry

    1998-09-01

    The underlying principles by which gold is recovered by coal-oil agglomerates was investigated. The effects of various parameters such as oil:coal ratios, agglomerate:ore ratios, pH and coal particle size on gold recovery were evaluated using synthetic gold bearing samples, bituminous coal, and diesel oil and kerosene. The effects of sulfides on gold recovery and the depth of gold particle penetration within the agglomerates were also investigated. Results showed that gold recovery was increased by increasing agglomerate:ore ratio, decreasing oil:coal ratio and decreasing coal particle size. There was no significant difference in gold recoveries at pH range of 4-12 and at up to 5% sulfides in the feed.

  18. Predicted coal production trends in Kentucky: The results of available coal resources, coal quality demands, and regulatory factors

    International Nuclear Information System (INIS)

    Watson, W.D.

    1993-01-01

    Many factors affect the viability of regional coal production markets including (1) coal quality and recoverable tonnage, (2) coal mining cost, (3) the regional and time varying patterns of coal demand growth, (4) regulations and other institutional constraints that affect coal demand and utilization, and (5) the regional array of coal transport modes and rates. This analysis integrates these factors into an assessment of coal production prospects (separately) for eastern and western Kentucky coal producing counties for the decade of the 90's. The integration indicates that eastern Kentucky coal production will peak and begin to decline by the end of the decade whereas western Kentucky coal production will continue to grow. No single factor explains these trends. There is plenty of available minable coal. The combination of changes in environmental regulations, some increase in coal mining costs, and the mining-out of low sulfur reserves are the main factors that account for the production trends

  19. Gyrokinetic particle simulation of neoclassical transport

    International Nuclear Information System (INIS)

    Lin, Z.; Tang, W.M.; Lee, W.W.

    1995-01-01

    A time varying weighting (δf ) scheme for gyrokinetic particle simulation is applied to a steady-state, multispecies simulation of neoclassical transport. Accurate collision operators conserving momentum and energy are developed and implemented. Simulation results using these operators are found to agree very well with neoclassical theory. For example, it is dynamically demonstrated that like-particle collisions produce no particle flux and that the neoclassical fluxes are ambipolar for an ion--electron plasma. An important physics feature of the present scheme is the introduction of toroidal flow to the simulations. Simulation results are in agreement with the existing analytical neoclassical theory. The poloidal electric field associated with toroidal mass flow is found to enhance density gradient-driven electron particle flux and the bootstrap current while reducing temperature gradient-driven flux and current. Finally, neoclassical theory in steep gradient profile relevant to the edge regime is examined by taking into account finite banana width effects. In general, in the present work a valuable new capability for studying important aspects of neoclassical transport inaccessible by conventional analytical calculation processes is demonstrated. copyright 1995 American Institute of Physics

  20. Industrial use of coal and clean coal technology

    Energy Technology Data Exchange (ETDEWEB)

    Leibson, I; Plante, J J.M.

    1990-06-01

    This report builds upon two reports published in 1988, namely {ital The use of Coal in the Industrial, Commercial, Residential and Transportation Sectors} and {ital Innovative Clean Coal Technology Deployment}, and provides more specific recommendations pertaining to coal use in the US industrial sector. The first chapter addresses industrial boilers which are common to many industrial users. The subsequent nine chapters cover the following: coke, iron and steel industries; aluminium and other metals; glass, brick, ceramic, and gypsum industries; cement and lime industries; pulp and paper industry; food and kindred products; durable goods industry; textile industry; refining and chemical industry. In addition, appendices supporting the contents of the study are provided. Each chapter covers the following topics as applicable: energy overview of the industry sector being discussed; basic processes; foreign experience; impediments to coal use; incentives that could make coal a fuel of choice; current and projected use of clean coal technology; identification of coal technology needs; conclusions; recommendations.

  1. Particle Acceleration and Fractional Transport in Turbulent Reconnection

    Science.gov (United States)

    Isliker, Heinz; Pisokas, Theophilos; Vlahos, Loukas; Anastasiadis, Anastasios

    2017-11-01

    We consider a large-scale environment of turbulent reconnection that is fragmented into a number of randomly distributed unstable current sheets (UCSs), and we statistically analyze the acceleration of particles within this environment. We address two important cases of acceleration mechanisms when particles interact with the UCS: (a) electric field acceleration and (b) acceleration by reflection at contracting islands. Electrons and ions are accelerated very efficiently, attaining an energy distribution of power-law shape with an index 1-2, depending on the acceleration mechanism. The transport coefficients in energy space are estimated from test-particle simulation data, and we show that the classical Fokker-Planck (FP) equation fails to reproduce the simulation results when the transport coefficients are inserted into it and it is solved numerically. The cause for this failure is that the particles perform Levy flights in energy space, while the distributions of the energy increments exhibit power-law tails. We then use the fractional transport equation (FTE) derived by Isliker et al., whose parameters and the order of the fractional derivatives are inferred from the simulation data, and solving the FTE numerically, we show that the FTE successfully reproduces the kinetic energy distribution of the test particles. We discuss in detail the analysis of the simulation data and the criteria that allow one to judge the appropriateness of either an FTE or a classical FP equation as a transport model.

  2. Particle Acceleration and Fractional Transport in Turbulent Reconnection

    Energy Technology Data Exchange (ETDEWEB)

    Isliker, Heinz; Pisokas, Theophilos; Vlahos, Loukas [Department of Physics, Aristotle University of Thessaloniki, GR-52124 Thessaloniki (Greece); Anastasiadis, Anastasios [Institute for Astronomy, Astrophysics, Space Applications and Remote Sensing, National Observatory of Athens, GR-15236 Penteli (Greece)

    2017-11-01

    We consider a large-scale environment of turbulent reconnection that is fragmented into a number of randomly distributed unstable current sheets (UCSs), and we statistically analyze the acceleration of particles within this environment. We address two important cases of acceleration mechanisms when particles interact with the UCS: (a) electric field acceleration and (b) acceleration by reflection at contracting islands. Electrons and ions are accelerated very efficiently, attaining an energy distribution of power-law shape with an index 1–2, depending on the acceleration mechanism. The transport coefficients in energy space are estimated from test-particle simulation data, and we show that the classical Fokker–Planck (FP) equation fails to reproduce the simulation results when the transport coefficients are inserted into it and it is solved numerically. The cause for this failure is that the particles perform Levy flights in energy space, while the distributions of the energy increments exhibit power-law tails. We then use the fractional transport equation (FTE) derived by Isliker et al., whose parameters and the order of the fractional derivatives are inferred from the simulation data, and solving the FTE numerically, we show that the FTE successfully reproduces the kinetic energy distribution of the test particles. We discuss in detail the analysis of the simulation data and the criteria that allow one to judge the appropriateness of either an FTE or a classical FP equation as a transport model.

  3. Acute respiratory effects of the inhalation of coal-dust particles

    Energy Technology Data Exchange (ETDEWEB)

    McDermott, M

    1962-01-01

    Volunteers were exposed to 8 to 50 mg/m/sup 3/ (< 7 ..mu..m) coal dust clouds from 10 a.m. to 2 p.m. Controls showed a 10% decrease in airway resistance (R/sub a/) during this time. Those exposed to 8 or 9 mg/m/sup 3/ showed no change in R/sub a/, whereas those exposed to 19, 33, or 50 mg/m/sup 3/ showed increases in R/sub a/ that were correlated with the weight of particles between 3.6 and 7 ..mu..m. There was large individual variation. Increased respiratory rate and dyspnea were measured at heaviest loading. R/sub a/ decreased, but not to normal values, 1 hr after the exposure.

  4. Fuzzy bicriteria multi-index transportation problems for coal allocation planning of Taipower

    International Nuclear Information System (INIS)

    Tzeng, G.-H.; Teodorvic, D.; Hwang, M.-J.

    1996-01-01

    Taipower, the official electricity authority of Taiwan, encounters several difficulties in planning annual coal purchase and allocation schedule, e.g. with multiple sources, multiple destinations, multiple coal types, different shipping vessels, and even an uncertain demand and supply. In this study, these concerns are formulated as a fuzzy bicriteria multi-index transportation problem. Furthermore, an effective and interactive algorithm is proposed which combines reducing index method and interactive fuzzy multi-objective linear programming technique to cope with a complicated problem which may be prevalent in other industries. Results obtained in this study clearly demonstrate that this model can not only satisfy more of the actual requirements of the integral system but also offer more information to the decision makers (DMs) for reference in favor of exalting decision making quality. 34 refs., 4 figs., 4 tabs

  5. Particle and heavy ion transport code system; PHITS

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Intermediate and high energy nuclear data are strongly required in design study of many facilities such as accelerator-driven systems, intense pulse spallation neutron sources, and also in medical and space technology. There is, however, few evaluated nuclear data of intermediate and high energy nuclear reactions. Therefore, we have to use some models or systematics for the cross sections, which are essential ingredients of high energy particle and heavy ion transport code to estimate neutron yield, heat deposition and many other quantities of the transport phenomena in materials. We have developed general purpose particle and heavy ion transport Monte Carlo code system, PHITS (Particle and Heavy Ion Transport code System), based on the NMTC/JAM code by the collaboration of Tohoku University, JAERI and RIST. The PHITS has three important ingredients which enable us to calculate (1) high energy nuclear reactions up to 200 GeV, (2) heavy ion collision and its transport in material, (3) low energy neutron transport based on the evaluated nuclear data. In the PHITS, the cross sections of high energy nuclear reactions are obtained by JAM model. JAM (Jet AA Microscopic Transport Model) is a hadronic cascade model, which explicitly treats all established hadronic states including resonances and all hadron-hadron cross sections parametrized based on the resonance model and string model by fitting the available experimental data. The PHITS can describe the transport of heavy ions and their collisions by making use of JQMD and SPAR code. The JQMD (JAERI Quantum Molecular Dynamics) is a simulation code for nucleus nucleus collisions based on the molecular dynamics. The SPAR code is widely used to calculate the stopping powers and ranges for charged particles and heavy ions. The PHITS has included some part of MCNP4C code, by which the transport of low energy neutron, photon and electron based on the evaluated nuclear data can be described. Furthermore, the high energy nuclear

  6. Coal-water fuels - a clean coal solution for Eastern Europe

    International Nuclear Information System (INIS)

    Ljubicic, B.; Willson, W.; Bukurov, Z.; Cvijanovic, P.; Stajner, K.; Popovic, R.

    1993-01-01

    Eastern Europe currently faces great economic and environmental problems. Among these problems is energy provision. Coal reserves are large but cause pollution while oil and gas need to be used for export. Formal 'clean coal technologies' are simply too expensive to be implemented on a large scale in the current economic crisis. The promised western investment and technological help has simply not taken place, western Europe must help eastern Europe with coal technology. The cheapest such technology is coal-water fuel slurry. It can substitute for oil, but research has not been carried out because of low oil prices. Coal-water fuel is one of the best methods of exploiting low rank coal. Many eastern European low rank coals have a low sulfur content, and thus make a good basis for a clean fuel. Italy and Russia are involved in such a venture, the slurry being transported in a pipeline. This technology would enable Russia to exploit Arctic coal reserves, thus freeing oil and gas for export. In Serbia the exploitation of sub-Danube lignite deposits with dredging mining produced a slurry. This led to the use and development of hot water drying, which enabled the removal of many of the salts which cause problems in pulverized fuel combustion. The system is economic, the fuel safer to transport then oil, either by rail or in pipelines. Many eastern European oil facilities could switch. 24 refs

  7. Relation between particle size and properties of some bituminous coals

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A.D.; Cheng, M.; Goulet, J.-C.; Furimsky, E. (CANMET, Ottawa, ON (Canada). Energy Research Laboratories)

    1990-02-01

    Coal fractions of different size distributions exhibited different H/C ratio, ash and sulphur contents, and surface structures. This was confirmed using two low-sulphur and two high-sulphur bituminous coals. The effect was much less pronounced for low-sulphur coals than for high-sulphur coals. A significant difference in properties was noted between the two high-sulphur coals in spite of similar basic compositional parameters. This was confirmed by the fractal dimensionality factor D of Illinois No. 6 coal, which exceeded the theoretical value. 14 refs., 9 figs., 5 tabs.

  8. Improving the stability of coal slurries: Quarterly progress report for the period Sep. 15, 1986-Dec. 15, 1986. [Adsorption of gum tragacanth on coal particles

    Energy Technology Data Exchange (ETDEWEB)

    Fogler, H.S.

    1986-01-01

    The last quarterly progress report focused on the adsorption study of the polystyrene latex spheres with gum tragacanth (GT), and the adsorption mechanism was found to be hydrophobic rather than electrostatic. Also, the effect of the amount of GT adsorbed, the bulk concentration of GT, incubation time and pH on the stability factor was examined, and the results indicated that the conformation of GT on the surface of latex spheres plays an important role in the stabilization. This report presents the results of the coal-water slurries, mainly focusing on the adsorption study of GT by changing pH and ionic strength. It was found from the experiment in which the ionic strength was changed that the adsorption of GT on the coal particles is hindered by the coulombic repulsion between GT and coal. In addition, the experiment in which pH was changed also indicated that the adsorption mechanism is electrostatic in nature. 7 refs., 2 figs.

  9. Outlook and Challenges for Chinese Coal

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel T.; Fridley, David G.; Zheng, Nina

    2008-06-20

    inextricably entwined with China's economy in its current mode of growth. Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on its current growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Broadening awareness of the environmental costs of coal mining, transport, and combustion is raising the pressure on Chinese policy makers to find alternative energy sources. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China is short of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport. Transporting coal to users has overloaded the train system and dramatically increased truck use, raising transport oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 mt by 2025, significantly impacting regional markets. The looming coal gap threatens to derail China's growth path, possibly undermining political, economic, and social stability. High coal prices and domestic shortages will have regional and global effects. Regarding China's role as a global manufacturing center, a domestic coal gap will increase prices and constrain growth. Within the Asia-Pacific region, China's coal gap is likely to bring about increased competition with other coal-importing countries including Japan, South Korea, Taiwan, and India. As with petroleum, China may respond with a government-supported 'going-out' strategy of resource acquisition and vertical integration. Given its population and growing resource constraints, China may favor energy security, competitiveness, and local environmental protection over global climate

  10. Report on Seminar on Clean Coal Technology '93; Clean coal technology kokusai seminar hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-11-01

    The program of the above clean coal technology (CCT) event is composed of 1) Coal energy be friendly toward the earth, 2) Research on CCT in America (study of coal structure under electron microscope), and 3) Research on CCT in Australia (high intensity combustion of ultrafine coal particles in a clean way). Remarks under item 1) are mentioned below. As for SO{sub 2} emissions base unit, Japan's is 1 at its coal-fired thermal power station while that of America is 7.8. As for the level of SO{sub 2}/NOx reduction attributable to coal utilization technologies, it rises in the order of flue gas desulfurizer-aided pulverized coal combustion, normal pressure fluidized bed combustion, pressurized fluidized bed combustion, integrated coal gasification combined cycle power generation, and integrated coal gasification combined cycle power generation/fuel cell. As for the level of CO2 reduction attributable to power generation efficiency improvement, provided that Japan's average power generation efficiency is 39% and if China's efficiency which is now 28% is improved to be similar to that of Japan, there will be a 40% reduction in CO2 emissions. Under item 2) which involves America's CCT program, reference is made to efforts at eliminating unnecessary part from the catalytic process and at reducing surplus air, to the export of CCT technology, and so forth. Under item 3), it is stated that coal cleaning may govern reaction efficiency in a process of burning coal particles for gasification. (NEDO)

  11. Transport of Particle Swarms Through Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    The transport of engineered micro- and nano-scale particles through fractured rock is often assumed to occur as dispersions or emulsions. Another potential transport mechanism is the release of particle swarms from natural or industrial processes where small liquid drops, containing thousands to millions of colloidal-size particles, are released over time from seepage or leaks. Swarms have higher velocities than any individual colloid because the interactions among the particles maintain the cohesiveness of the swarm as it falls under gravity. Thus particle swarms give rise to the possibility that engineered particles may be transported farther and faster in fractures than predicted by traditional dispersion models. In this study, the effect of fractures on colloidal swarm cohesiveness and evolution was studied as a swarm falls under gravity and interacts with fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with either (1) a uniform aperture or (2) a converging aperture followed by a uniform aperture (funnel-shaped). The samples consisted of two blocks that measured 100 x 100 x 50 mm. The separation between these blocks determined the aperture (0.5 mm to 50 mm). During experiments, a fracture was fully submerged in water and swarms were released into it. The swarms consisted of dilute suspensions of either 25 micron soda-lime glass beads (2% by mass) or 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. In the uniform aperture fracture, the speed of the swarm prior to bifurcation increased with aperture up to a maximum at a fracture width of approximately 10 mm. For apertures greater than ~15 mm, the velocity was essentially constant with fracture width (but less than at 10 mm). This peak suggests that two competing mechanisms affect swarm velocity in fractures. The wall provides both drag, which

  12. The identification of unusual microscopic features in coal and their derived chars: Influence on coal fluidized bed combustion

    Energy Technology Data Exchange (ETDEWEB)

    Valentim, B. [Centro de Geologia da Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Lemos de Sousa, M.J. [Centro de Geologia da Universidade do Porto, Praca de Gomes Teixeira, 4099-002 Porto (Portugal); Abelha, P.; Boavida, D.; Gulyurtlu, I. [Departamento de Engenharia Energetica e Controlo Ambiental (DEECA), Instituto Nacional de Engenharia, Tecnologia e Inovacao (INETI), Estrada do Paco do Lumiar, 22, Edif. J, 1649-038, Lisboa (Portugal)

    2006-06-06

    During the petrographic study of seven feed coals from different origins, it was found that these coals presented microfeatures such as: material size, shape, weathering, thermally affected particles and contamination. After devolatilization under fluidized bed conditions, some chars presented the consequences of the above mentioned microfeatures, i.e., unreacted coal, unswelled particles, coatings and microstratification. Since the amounts of the microfeatures observed were low (less than 1%), the present study is essentially observational/descriptional. However, it seems very likely, from the observations that were made, that the occurrence of one or more of these microfeatures in coal, depending on their kind and abundance, may have significant effect on the coal devolatilization. (author)

  13. Carbon Dioxide Transport and Sorption Behavior in Confined Coal Cores for Enhanced Coalbed Methane and CO2 Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Jikich, S.A.; McLendon, T.R.; Seshadri, K.S.; Irdi, G.A.; Smith, D.H.

    2007-11-01

    Measurements of sorption isotherms and transport properties of CO2 in coal cores are important for designing enhanced coalbed methane/CO2 sequestration field projects. Sorption isotherms measured in the lab can provide the upper limit on the amount of CO2 that might be sorbed in these projects. Because sequestration sites will most likely be in unmineable coals, many of the coals will be deep and under considerable lithostatic and hydrostatic pressures. These lithostatic pressures may significantly reduce the sorption capacities and/or transport rates. Consequently, we have studied apparent sorption and diffusion in a coal core under confining pressure. A core from the important bituminous coal Pittsburgh #8 was kept under a constant, three-dimensional external stress; the sample was scanned by X-ray computer tomography (CT) before, then while it sorbed, CO2. Increases in sample density due to sorption were calculated from the CT images. Moreover, density distributions for small volume elements inside the core were calculated and analyzed. Qualitatively, the computerized tomography showed that gas sorption advanced at different rates in different regions of the core, and that diffusion and sorption progressed slowly. The amounts of CO2 sorbed were plotted vs. position (at fixed times) and vs. time (for various locations in the sample). The resulting sorption isotherms were compared to isotherms obtained from powdered coal from the same Pittsburgh #8 extended sample. The results showed that for this single coal at specified times, the apparent sorption isotherms were dependent on position of the volume element in the core and the distance from the CO2 source. Also, the calculated isotherms showed that less CO2 was sorbed than by a powdered (and unconfined) sample of the coal. Changes in density distributions during the experiment were also observed. After desorption, the density distribution of calculated volume elements differed from the initial distribution

  14. Experimental Research on the Impactive Dynamic Effect of Gas-Pulverized Coal of Coal and Gas Outburst

    Directory of Open Access Journals (Sweden)

    Haitao Sun

    2018-03-01

    Full Text Available Coal and gas outburst is one of the major serious natural disasters during underground coal, and the shock air flow produced by outburst has a huge threat on the mine safety. In order to study the two-phase flow of a mixture of pulverized coal and gas of a mixture of pulverized coal and gas migration properties and its shock effect during the process of coal and gas outburst, the coal samples of the outburst coal seam in Yuyang Coal Mine, Chongqing, China were selected as the experimental subjects. By using the self-developed coal and gas outburst simulation test device, we simulated the law of two-phase flow of a mixture of pulverized coal and gas in the roadway network where outburst happened. The results showed that the air in the roadway around the outburst port is disturbed by the shock wave, where the pressure and temperature are abruptly changed. For the initial gas pressure of 0.35 MPa, the air pressure in different locations of the roadway fluctuated and eventually remain stable, and the overpressure of the outburst shock wave was about 20~35 kPa. The overpressure in the main roadway and the distance from the outburst port showed a decreasing trend. The highest value of temperature in the roadway increased by 0.25 °C and the highest value of gas concentration reached 38.12% during the experiment. With the action of shock air flow, the pulverized coal transportation in the roadway could be roughly divided into three stages, which are the accelerated movement stage, decelerated movement stage and the particle settling stage respectively. Total of 180.7 kg pulverized coal of outburst in this experiment were erupted, and most of them were accumulated in the main roadway. Through the analysis of the law of outburst shock wave propagation, a shock wave propagation model considering gas desorption efficiency was established. The relationships of shock wave overpressure and outburst intensity, gas desorption rate, initial gas pressure, cross

  15. Review : Pollution due to Coal Mining Activity and its Impact on Environment

    Directory of Open Access Journals (Sweden)

    Andi Arif Setiawan

    2018-03-01

    Full Text Available Utilization of natural resources in the form of coal mines has a positive impact on economic and energy development, in addition to coal mining activities have a negative impact on the environment that result in environmental pollution in soil, water, and air. Pollution begins when clearing land, taking exploitation, transporting, stockpile and when the coal is burned. When land clearing causes damage to forest ecosystems. At the time of exploitation impact on air pollution by coal dust particles, the erosion, siltation of the river, the pollution of heavy metals and the formation of acid mine drainage (AMD. The high acid conditions cause the faster heavy metals such as Hg, Cd, Pb, Cr, Cu, Zn and Ni present in the coal dissolved and carried to the waters. Coal stockpile activity also causes pollution in the air, soil, and water. At the time the coal is burned as an energy source causes the emission of hazardous materials into the air of Hg, As, Se and CO2 gas, NOx, SO2. This condition has an impact on the environment and ultimately on human health.

  16. Coal yearbook 1993

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    This book is the first coal yearbook published by ATIC (France). In a first chapter, economical context of coal worldwide market is analyzed: comparative evaluations on coal exports and imports, coal industry, prices, production in USA, Australia, South Africa, China, former USSR, Poland, Colombia, Venezuela and Indonesia are given. The second chapter describes the french energy context: national coal production, imports, sectorial analysis, maritime transport. The third chapter describes briefly the technologies of clean coal and energy saving developed by Charbonnages de France: fossil-fuel power plants with combined cycles and cogeneration, fluidized beds for the recovery of coal residues, recycling of agricultural wastes (sugar cane wastes) in thermal power plant, coal desulfurization for air pollution abatement. In the last chapter, statistical data on coal, natural gas and crude oil are offered: world production, world imports, world exports, french imports, deliveries to France, coal balance, french consumption of primary energy, power generation by fuel type

  17. Transient fluctuation relations for time-dependent particle transport

    Science.gov (United States)

    Altland, Alexander; de Martino, Alessandro; Egger, Reinhold; Narozhny, Boris

    2010-09-01

    We consider particle transport under the influence of time-varying driving forces, where fluctuation relations connect the statistics of pairs of time-reversed evolutions of physical observables. In many “mesoscopic” transport processes, the effective many-particle dynamics is dominantly classical while the microscopic rates governing particle motion are of quantum-mechanical origin. We here employ the stochastic path-integral approach as an optimal tool to probe the fluctuation statistics in such applications. Describing the classical limit of the Keldysh quantum nonequilibrium field theory, the stochastic path integral encapsulates the quantum origin of microscopic particle exchange rates. Dynamically, it is equivalent to a transport master equation which is a formalism general enough to describe many applications of practical interest. We apply the stochastic path integral to derive general functional fluctuation relations for current flow induced by time-varying forces. We show that the successive measurement processes implied by this setup do not put the derivation of quantum fluctuation relations in jeopardy. While in many cases the fluctuation relation for a full time-dependent current profile may contain excessive information, we formulate a number of reduced relations, and demonstrate their application to mesoscopic transport. Examples include the distribution of transmitted charge, where we show that the derivation of a fluctuation relation requires the combined monitoring of the statistics of charge and work.

  18. Coal option. [Shell Co

    Energy Technology Data Exchange (ETDEWEB)

    1978-01-01

    This paper notes the necessity of developing an international coal trade on a very large scale. The role of Shell in the coal industry is examined; the regions in which Shell companies are most active are Australia, Southern Africa, Indonesia; Europe and North America. Research is being carried out on marketing and transportation, especially via slurry pipelines; coal-oil emulsions; briquets; fluidized-bed combustion; recovery of coal from potential waste material; upgrading of low-rank coals; unconventional forms of mining; coal conversion (the Shell/Koppers high-pressure coal gasification process). Techniques for cleaning flue gas (the Shell Flue Gas Desulfurization process) are being examined.

  19. Coal distribution, January--June 1990

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-17

    The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, federal and state agencies, the coal industry, and the general public. This issue presents information for January through June 1990. Coal distribution data are shown (in tables 1--34) by coal-producing state of origin, consumer use, method of transportation, and state of destination. 6 figs., 34 tabs.

  20. Drift Wave Test Particle Transport in Reversed Shear Profile

    International Nuclear Information System (INIS)

    Horton, W.; Park, H.B.; Kwon, J.M.; Stronzzi, D.; Morrison, P.J.; Choi, D.I.

    1998-01-01

    Drift wave maps, area preserving maps that describe the motion of charged particles in drift waves, are derived. The maps allow the integration of particle orbits on the long time scale needed to describe transport. Calculations using the drift wave maps show that dramatic improvement in the particle confinement, in the presence of a given level and spectrum of E x B turbulence, can occur for q(r)-profiles with reversed shear. A similar reduction in the transport, i.e. one that is independent of the turbulence, is observed in the presence of an equilibrium radial electric field with shear. The transport reduction, caused by the combined effects of radial electric field shear and both monotonic and reversed shear magnetic q-profiles, is also investigated

  1. ELECTROKINETIC DENSIFICATION OF COAL FINES IN WASTE PONDS

    Energy Technology Data Exchange (ETDEWEB)

    E. James Davis

    1999-12-18

    The objective of this research was to demonstrate that electrokinetics can be used to remove colloidal coal and mineral particles from coal-washing ponds and lakes without the addition of chemical additives such as salts and polymeric flocculants. The specific objectives were: Design and develop a scaleable electrophoresis apparatus to clarify suspensions of colloidal coal and clay particles; Demonstrate the separation process using polluted waste water from the coal-washing facilities at the coal-fired power plants in Centralia, WA; Develop a mathematical model of the process to predict the rate of clarification and the suspension electrical properties needed for scale up.

  2. Fundamental study for improvement of dewatering of fine coal/refuse. Final report, August 1981-December 1984

    Energy Technology Data Exchange (ETDEWEB)

    Chiang, S.H.; Klinzing, G.E.; Morsi, B.I.; Tierney, J.W.; Binkley, T.; Chi, S.M.; Huang, S.; Qamar, I.; Venkatadri, R.

    1984-12-01

    Fine coal in slurry form must be dewatered to minimize handling and transportation problems and be reduced to a desirable level for subsequent preparation of coal/water mixtures as a substitute utility fuel. The current practice is inadequate for the dewatering of fine coal, particularly for coal particles with sizes smaller than 400 mesh. Therefore, it is most desirable to develop improved mechanical methods for reducing the moisture content of fine coal. In the light of this, a fundamental study of the dewatering of fine coal/refuse was initiated in June 1979 and continued through 1984. The overall objective of the study is to seek improved methods of dewatering through a better understanding of the filtration and post-filtration processes. As a first step, efforts have been focused on the mechanism of dewatering in terms of the basic properties of coal (and refuse) particles and the microstructures of filter cakes, and their relations to filtration rate and final moisture content. Pittsburgh seam-Bruceton Mine coal was used as a base coal. During the past year, filter cakes from coals with widely varying size ranges were micrographically characterized. The effects of a number of surface active agents and of entrapped air bubbles on the filter cake properties were also studied. Modules of the network model for calculating single phase and two phase permeabilities were formulated and tested. The report is divided into four parts: summary and deliverables; work forecast for 1984-1985; detailed description of technical progress; and appendices. 21 refs., 55 figs., 17 tabs.

  3. A dynamic mathematical model for microbial removal of pyritic sulfur from coal.

    Science.gov (United States)

    Kargi, F; Weissman, J G

    1984-06-01

    A dynamic mathematical model has been developed to describe microbial desulfurization of coal by Thiobacillus ferrooxidans. The model considers adsorption and desorption of cells on coal particles and microbial oxidation of pyritic sulfur on particle surfaces. The influence of certain parameters, such as microbial growth rate constants, adsorption-description constants, pulp density, coal particle size, initial cell and solid phase substrate concentration on the maximum rate of pyritic sulfur removal, have been elucidated. The maximum rate of pyritic sulfur removal was strongly dependent upon the number of attached cells per coal particle. At sufficiently high initial cell concentrations, the surfaces of coal particles are nearly saturated by the cells and the maximum leaching rate is limited either by total external surface area of coal particles or by the concentration of pyritic sulfur in the coal phase. The maximum volumetric rate of pyritic sulfur removal (mg S/h cm(3) mixture) increases with the pulp density of coal and reaches a saturation level at high pulp densities (e.g. 45%). The maximum rate also increases with decreasing particle diameter in a hyperbolic form. Increases in adsorption coefficient or decreases in the desorption coefficient also result in considerable improvements in this rate. The model can be applied to other systems consisting of suspended solid substrate particles in liquid medium with microbial oxidation occurring on the particle surfaces (e.g., bacterial ore leaching). The results obtained from this model are in good agreement with published experimental data on microbial desulfurization of coal and bacterial ore leaching.

  4. Directed transport of confined Brownian particles with torque

    Science.gov (United States)

    Radtke, Paul K.; Schimansky-Geier, Lutz

    2012-05-01

    We investigate the influence of an additional torque on the motion of Brownian particles confined in a channel geometry with varying width. The particles are driven by random fluctuations modeled by an Ornstein-Uhlenbeck process with given correlation time τc. The latter causes persistent motion and is implemented as (i) thermal noise in equilibrium and (ii) noisy propulsion in nonequilibrium. In the nonthermal process a directed transport emerges; its properties are studied in detail with respect to the correlation time, the torque, and the channel geometry. Eventually, the transport mechanism is traced back to a persistent sliding of particles along the even boundaries in contrast to scattered motion at uneven or rough ones.

  5. Vadose Zone Fate and Transport Simulation of Chemicals Associated with Coal Seam Gas Extraction

    Science.gov (United States)

    Simunek, J.; Mallants, D.; Jacques, D.; Van Genuchten, M.

    2017-12-01

    The HYDRUS-1D and HYDRUS (2D/3D) computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this presentation is to provide an overview of the HYDRUS models and their add-on modules, and to demonstrate applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the vadose zone. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated) provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the coupled HYDRUS-PHREEQC module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in the vadose zone leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration is complexation of

  6. Picobubble enhanced column flotation of fine coal

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Yu, S.; Parekh, B.K. [University of Kentucky, Lexington, KY (United States). Mining Engineering

    2006-07-01

    The purpose is to study the effectiveness of picobubbles in the column flotation of -28 mesh fine coal particles. A flotation column with a picobubble generator was developed and tested for enhancing the recovery of ultrafine coal particles. The picobubble generator was designed using the hydrodynamic cavitation principle. A metallurgical and a steam coal were tested in the apparatus. The results show that the use of picobubbles in a 2in. flotation column increased the recovery of fine coal by 10 to 30%. The recovery rate varied with feed rate, collector dosage, and other column conditions. 40 refs., 8 figs., 2 tabs.

  7. Methane Bubbles Transport Particles From Contaminated Sediment to a Lake Surface

    Science.gov (United States)

    Delwiche, K.; Hemond, H.

    2017-12-01

    Methane bubbling from aquatic sediments has long been known to transport carbon to the atmosphere, but new evidence presented here suggests that methane bubbles also transport particulate matter to a lake surface. This transport pathway is of particular importance in lakes with contaminated sediments, as bubble transport could increase human exposure to toxic metals. The Upper Mystic Lake in Arlington, MA has a documented history of methane bubbling and sediment contamination by arsenic and other heavy metals, and we have conducted laboratory and field studies demonstrating that methane bubbles are capable of transporting sediment particles over depths as great as 15 m in Upper Mystic Lake. Methane bubble traps were used in-situ to capture particles adhered to bubble interfaces, and to relate particle mass transport to bubble flux. Laboratory studies were conducted in a custom-made 15 m tall water column to quantify the relationship between water column height and the mass of particulate transport. We then couple this particle transport data with historical estimates of ebullition from Upper Mystic Lake to quantify the significance of bubble-mediated particle transport to heavy metal cycling within the lake. Results suggest that methane bubbles can represent a significant pathway for contaminated sediment to reach surface waters even in relatively deep water bodies. Given the frequent co-occurrence of contaminated sediments and high bubble flux rates, and the potential for human exposure to heavy metals, it will be critical to study the significance of this transport pathway for a range of sediment and contaminant types.

  8. Uranium trace and alpha activity characterization of coal and fly ash using particle track etch technique

    International Nuclear Information System (INIS)

    Chakravarti, S.K.

    1991-01-01

    Uranium is extensively found in carbonaceous components of sedimentary rocks and is considered to be accumulated in coals during the coalification process through the geological times. Burning of coal is mainly responsible for a manifold increase in the concentration of radioactive nuclides in atmosphere precipitates. Fly ash being an incombustible residue and formed from 90% of the inorganic material in coal, escapes into the atmosphere and constitutes a potential hazard. Also its use as one of the pozzolanic materials in the products of concrete, bricks etc and filling of ground cavities is even more hazardous because of the wall radioactivity, besides emission and diffusion of radon. This paper reports a simple method called Particle Track Etch (PTE) technique, for trace determination of uranium content in coal and fly ash samples by making use of low cost and versatile plastic detectors known as Solid State Nuclear Track Detectors (SSNTDs). Total alpha activity has also been estimated using these SSNTDs. The values of uranium concentration in coal samples are found to range from 1.1 to 3.6 ppm (uniform component) and 33 to 46 ppm (non-uniform part) whereas in fly ash, it varies from 8 to 11 ppm (uniform) and 55 to 71 ppm in non-uniform range. It is also observed that the alpha activity is a function of uranium concentration for most of the natural samples of coal studied except for mixtures of fly ash samples where relationship is found to be on higher side. (author). 13 refs., 2 tabs., 1 fig

  9. NMR imaging studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Z.R.; Zhang, P.Z.; Ding, G.L.; Li, L.Y.; Ye, C.H. [University of Science and Technology, Beijing (China). Dept. of Chemistry

    1996-06-01

    The permeation transportation and swelling behavior of solvents into coal are investigated by NMR imaging using pyridine-d{sub 5} and acetone-d{sub 6}. Images of coal swollen with deuterated solvents illuminate proton distributions of mobile phases within the coal macromolecular networks. More information about the chemical and physical structure of coal can be obtained using NMR imaging techniques.

  10. EIA projections of coal supply and demand

    International Nuclear Information System (INIS)

    Klein, D.E.

    1989-01-01

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion

  11. Coal in Asia-Pacific. Vo1 7, No. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In China, there are bottle-necks of the coal transportation capacity in the major inter-regional routes. The Chinese Government`s eighth and ninth five-year plans intend to increase the capacity. In the 9% growth case, the planned railway transport capacity will be critical. Measures are considered, as to promotion of coal dressing, transport as electric power, construction of nuclear power plants and hydraulic power plants, and construction of coal water slurry pipe lines. Japan`s coal policy includes the structural adjustment of coal mining industry, and a new policy for coal in the total energy policy. To secure the stable overseas coal supply, NEDO has a leading part in overseas coal resources development. Coal demand and supply, mining technology, mine safety, coal preparation and processing technology, and comprehensive coal utilization technology including clean coal technology in Japan are described. At present, Thailand is progressing with the seventh plan, and the development of domestic energy emphasize lignite, natural gas, and oil. Thai import demand for high-quality coal is to be increasing. Japan`s cooperation is considered to be effective for the environmental problems. 12 figs., 40 tabs.

  12. Coal combustion aerothermochemistry research. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Witte, A.B.; Gat, N.; Denison, M.R.; Cohen, L.M.

    1980-12-15

    On the basis of extensive aerothermochemistry analyses, laboratory investigations, and combustor tests, significant headway has been made toward improving the understanding of combustion phenomena and scaling of high swirl pulverized coal combustors. A special attempt has been made to address the gap between scientific data available on combustion and hardware design and scaling needs. Both experimental and theoretical investigations were conducted to improve the predictive capability of combustor scaling laws. The scaling laws derived apply to volume and wall burning of pulverized coal in a slagging high-swirl combustor. They incorporate the findings of this investigation as follows: laser pyrolysis of coal at 10/sup 6/ K/sec and 2500K; effect of coal particle shape on aerodynamic drag and combustion; effect of swirl on heat transfer; coal burnout and slag capture for 20 MW/sub T/ combustor tests for fine and coarse coals; burning particle trajectories and slag capture; particle size and aerodynamic size; volatilization extent and burnout fraction; and preheat level. As a result of this work, the following has been gained: an increased understanding of basic burning mechanisms in high-swirl combustors and an improved model for predicting combustor performance which is intended to impact hardware design and scaling in the near term.

  13. Transient particle transport studies at the W7-AS stellarator

    International Nuclear Information System (INIS)

    Koponen, J.

    2000-01-01

    One of the crucial problems in fusion research is the understanding of the transport of particles and heat in plasmas relevant for energy production. Extensive experimental transport studies have unraveled many details of heat transport in tokamaks and stellarators. However, due to larger experimental difficulties, the properties of particle transport have remained much less known. In particular, very few particle transport studies have been carried out in stellarators. This thesis summarises the transient particle transport experiments carried out at the Wendelstein 7-Advanced Stellarator (W7-AS). The main diagnostics tool was a 10-channel microwave interferometer. A technique for reconstructing the electron density profiles from the multichannel interferometer data was developed and implemented. The interferometer and the reconstruction software provide high quality electron density measurements with high temporal and sufficient spatial resolution. The density reconstruction is based on regularization methods studied during the development work. An extensive program of transient particle transport studies was carried out with the gas modulation method. The experiments resulted in a scaling expression for the diffusion coefficient. Transient inward convection was found in the edge plasma. The role of convection is minor in the core plasma, except at higher heating power, when an outward directed convective flux is observed. Radially peaked density profiles were found in discharges free of significant central density sources. Such density profiles are usually observed in tokamaks, but never before in W7-AS. Existence of an inward pinch is confirmed with two independent transient transport analysis methods. The density peaking is possible if the plasma is heated with extreme off-axis Electron Cyclotron Heating (ECH), when the temperature gradient vanishes in the core plasma, and if the gas puffing level is relatively low. The transport of plasma particles and heat

  14. The level of air pollution in the impact zone of coal-fired power plant (Karaganda City) using the data of geochemical snow survey (Republic of Kazakhstan)

    OpenAIRE

    Adil'bayeva, Т. E.; Talovskaya, Anna Valerievna; Yazikov, Yegor (Egor) Grigoryevich; Matveenko, Irina Alekseevna

    2016-01-01

    Coal-fired power plants emissions impact the air quality and human health. Of great significance is assessment of solid airborne particles emissions from those plants and distance of their transportation. The article presents the results of air pollution assessment in the zone of coal-fired power plant (Karaganda City) using snow survey. Based on the mass of solid airborne particles deposited in snow, time of their deposition on snow at the distance from 0.5 to 4.5 km a value of dust load has...

  15. Burnout of pulverized biomass particles in large scale boiler - Single particle model approach

    Energy Technology Data Exchange (ETDEWEB)

    Saastamoinen, Jaakko; Aho, Martti; Moilanen, Antero [VTT Technical Research Centre of Finland, Box 1603, 40101 Jyvaeskylae (Finland); Soerensen, Lasse Holst [ReaTech/ReAddit, Frederiksborgsveij 399, Niels Bohr, DK-4000 Roskilde (Denmark); Clausen, Soennik [Risoe National Laboratory, DK-4000 Roskilde (Denmark); Berg, Mogens [ENERGI E2 A/S, A.C. Meyers Vaenge 9, DK-2450 Copenhagen SV (Denmark)

    2010-05-15

    Burning of coal and biomass particles are studied and compared by measurements in an entrained flow reactor and by modelling. The results are applied to study the burning of pulverized biomass in a large scale utility boiler originally planned for coal. A simplified single particle approach, where the particle combustion model is coupled with one-dimensional equation of motion of the particle, is applied for the calculation of the burnout in the boiler. The particle size of biomass can be much larger than that of coal to reach complete burnout due to lower density and greater reactivity. The burner location and the trajectories of the particles might be optimised to maximise the residence time and burnout. (author)

  16. Relativity primer for particle transport. A LASL monograph

    International Nuclear Information System (INIS)

    Everett, C.J.; Cashwell, E.D.

    1979-04-01

    The basic principles of special relativity involved in Monte Carlo transport problems are developed with emphasis on the possible transmutations of particles, and on computational methods. Charged particle ballistics and polarized scattering are included, as well as a discussion of colliding beams

  17. Particle transport in urban dwellings

    International Nuclear Information System (INIS)

    Cannell, R.J.; Goddard, A.J.H.; ApSimon, H.M.

    1988-01-01

    A quantitative investigation of the potential for contamination of a dwelling by material carried in on the occupants' footwear has been completed. Data are now available on the transport capacity of different footwear for a small range of particle sizes and contamination source strengths. Additional information is also given on the rate of redistribution

  18. China's Coal: Demand, Constraints, and Externalities

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of

  19. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, S.; Wall, T.F.; Creelman, R.A.; Gupta, R. [Univ. of Newcastle, Callaghan (Australia)

    1996-12-31

    A mechanistic study is detailed in which coal ash is heated with its shrinkage measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to the rapid rate of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples were therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity were then quantified and related to homogenization, viscosity and ash fusion mechanisms.

  20. Ash fusion temperatures and the transformations of coal ash particles to slag

    Energy Technology Data Exchange (ETDEWEB)

    Wall, T.F.; Creelman, R.A.; Gupta, R.; Gupta, S. [Univ. of Newcastle (Australia)

    1996-10-01

    A mechanistic study is detailed in which coal ash is heated with the shrinkage and electrical resistance measured continuously up to a temperature of 1600{degrees}C. The temperatures corresponding to rapid rates of shrinkage are shown to correspond to the formation of eutectics identified on phase diagrams. Samples where therefore heated to these temperatures, cooled rapidly and examined with an SEM to identify the associated chemical and physical changes. The progressive changes in the range of chemical analysis (from SEM), the extent of undissolved ash particles and porosity are then quantified and related to the shrinkage events and standard ash fusion temperatures.

  1. The world coal market: supplies, prices, transport (Review)

    International Nuclear Information System (INIS)

    Drozdnik, I.D.; Kaftan, Yu.S.; Dolzhanskaya, Yu.B.

    1998-01-01

    The state of the world coal market in the period of 1994-1997 is reviewed, its long-term outlooks are presented. The major world coal exporters-Australia, Canada, China, Poland, Russia, the USA, SAR, and Ukraine are briefly characterized. It is pointed out that in the foreseeable future coal will retain its importance of a primary energy carrier along with petroleum and natural gas

  2. 1980 Australian coal conference. Conference papers

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Papers were presented under the following headings: supply and demand for coal; government policies - coal development; mining finance and taxation; Australian coal mining practices; research and development; infrastructure and transportation; legislation and safe working practices; and industrial relations.

  3. Advanced Hydrogen Transport Membrane for Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, Joseph [Praxair, Inc., Tonawanda, NY (United States); Porter, Jason [Colorado School of Mines, Golden, CO (United States); Patki, Neil [Colorado School of Mines, Golden, CO (United States); Kelley, Madison [Colorado School of Mines, Golden, CO (United States); Stanislowski, Josh [Univ. of North Dakota, Grand Forks, ND (United States); Tolbert, Scott [Univ. of North Dakota, Grand Forks, ND (United States); Way, J. Douglas [Colorado School of Mines, Golden, CO (United States); Makuch, David [Praxair, Inc., Tonawanda, NY (United States)

    2015-12-23

    A pilot-scale hydrogen transport membrane (HTM) separator was built that incorporated 98 membranes that were each 24 inches long. This separator used an advanced design to minimize the impact of concentration polarization and separated over 1000 scfh of hydrogen from a hydrogen-nitrogen feed of 5000 scfh that contained 30% hydrogen. This mixture was chosen because it was representative of the hydrogen concentration expected in coal gasification. When tested with an operating gasifier, the hydrogen concentration was lower and contaminants in the syngas adversely impacted membrane performance. All 98 membranes survived the test, but flux was lower than expected. Improved ceramic substrates were produced that have small surface pores to enable membrane production and large pores in the bulk of the substrate to allow high flux. Pd-Au was chosen as the membrane alloy because of its resistance to sulfur contamination and good flux. Processes were developed to produce a large quantity of long membranes for use in the demonstration test.

  4. Control of alpha-particle transport by ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-01-01

    In this paper control of radial alpha-particle transport by using ion cyclotron range of frequency (ICRF) waves is investigated in a large-aspect-ratio tokamak geometry. Spatially inhomogeneous ICRF wave energy with properly selected frequencies and wave numbers can induce fast convective transports of alpha particles at the speed of order v α ∼ (P RF /n α ε 0 )ρ p , where R RF is the ICRF wave power density, n α is the alpha-particle density, ε 0 is the alpha-particle birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to International Thermonuclear Experimental Reactor (ITER) plasma is studied and possible antenna designs to control alpha-particle flux are discussed

  5. Effect of the grinding behaviour of coal blends on coal utilisation for combustion

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Fuente, E.; Pis, J.J. [Inst. Nacional del Carbon, CSIC, Oviedo (Spain); Miles, N. [School of Chemical, Environmental and Mining Engineering, Nottingham Univ. (United Kingdom)

    1999-11-01

    Grinding of a high volatile bituminous coal was performed in three comminution devices: Raymond Mill (RM), Rolls Crusher (RC) and Ball Mill (BM). The pulverised samples were sieved to obtain four particle size fractions, and temperature-programmed combustion (TPC) was used for the evaluation of their combustion behaviour. In addition, three coals of different hardness and rank were mixed in various proportions in order to compare the combustibility characteristics of the binary coal blends with those of the individual coals. The effect of coal blending on grindability was also studied. It was found that grindability was non-additive especially when coals of very different hardgrove grindability index (HGI) were blended. The combustion studies also suggested that there exists an interaction between individual coals when they are burnt as a blend. (orig.)

  6. Coal upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, S. [IEA Clean Coal Centre, London (United Kingdom)

    2009-10-15

    This report examines current technologies and those likely to be used to produce cleaner coal and coal products, principally for use in power generation and metallurgical applications. Consideration is also given to coal production in the leading coal producing countries, both with developed and developing industries. A range of technologies are considered. These include the coal-based liquid fuel called coal water mixture (CWM) that may compete with diesel, the production of ultra-clean coal (UCC) and coal liquefaction which competes with oil and its products. Technologies for upgrading coal are considered, especially for low rank coals (LRC), since these have the potential to fill the gap generated by the increasing demand for coal that cannot be met by higher quality coals. Potential advantages and downsides of coal upgrading are outlined. Taking into account the environmental benefits of reduced pollution achieved through cleaner coal and reduced transport costs, as well as other positive aspects such as a predictable product leading to better boiler design, the advantages appear to be significant. The drying of low rank coals improves the energy productively released during combustion and may also be used as an adjunct or as part of other coal processing procedures. Coal washing technologies vary in different countries and the implications of this are outlined. Dry separation technologies, such as dry jigging and electrostatic separation, are also described. The demonstration of new technologies is key to their further development and demonstrations of various clean coal technologies are considered. A number of approaches to briquetting and pelletising are available and their use varies from country to country. Finally, developments in upgrading low rank coals are described in the leading coal producing countries. This is an area that is developing rapidly and in which there are significant corporate and state players. 81 refs., 32 figs., 3 tabs.

  7. Experimental studies on the group ignition of a cloud of coal particles: Volume 2, Pyrolysis and ignition modeling. Final report, August 15, 1988--October 15, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Annamalai, K.; Ryan, W.

    1992-01-01

    The primary objectives of this work are to formulate a model to simulate transient coal pyrolysis, ignition, and combustion of a cloud of coal particles and to compare results of the program with those reported in the literature elsewhere.

  8. Tracking suspended particle transport via radium isotopes (226Ra and 228Ra) through the Apalachicola–Chattahoochee–Flint River system

    International Nuclear Information System (INIS)

    Peterson, Richard N.; Burnett, William C.; Opsahl, Stephen P.; Santos, Isaac R.; Misra, Sambuddha; Froelich, Philip N.

    2013-01-01

    Suspended particles in rivers can carry metals, nutrients, and pollutants downstream which can become bioactive in estuaries and coastal marine waters. In river systems with multiple sources of both suspended particles and contamination sources, it is important to assess the hydrologic conditions under which contaminated particles can be delivered to downstream ecosystems. The Apalachicola–Chattahoochee–Flint (ACF) River system in the southeastern United States represents an ideal system to study these hydrologic impacts on particle transport through a heavily-impacted river (the Chattahoochee River) and one much less impacted by anthropogenic activities (the Flint River). We demonstrate here the utility of natural radioisotopes as tracers of suspended particles through the ACF system, where particles contaminated with arsenic (As) and antimony (Sb) have been shown to be contributed from coal-fired power plants along the Chattahoochee River, and have elevated concentrations in the surficial sediments of the Apalachicola Bay Delta. Radium isotopes ( 228 Ra and 226 Ra) on suspended particles should vary throughout the different geologic provinces of this river system, allowing differentiation of the relative contributions of the Chattahoochee and Flint Rivers to the suspended load delivered to Lake Seminole, the Apalachicola River, and ultimately to Apalachicola Bay. We also use various geochemical proxies ( 40 K, organic carbon, and calcium) to assess the relative composition of suspended particles (lithogenic, organic, and carbonate fractions, respectively) under a range of hydrologic conditions. During low (base) flow conditions, the Flint River contributed 70% of the suspended particle load to both the Apalachicola River and the bay, whereas the Chattahoochee River became the dominant source during higher discharge, contributing 80% of the suspended load to the Apalachicola River and 62% of the particles entering the estuary. Neither of these hydrologic

  9. Magneto-transport properties of oriented Mn{sub 2}CoAl films sputtered on thermally oxidized Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, G. Z.; Du, Y.; Zhang, X. M.; Liu, E. K.; Wang, W. H., E-mail: wenhong.wang@iphy.ac.cn; Wu, G. H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Zhang, H. G. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China)

    2014-06-16

    Spin gapless semiconductors are interesting family of materials by embracing both magnetism and semiconducting due to their unique band structure. Its potential application in future spintronics requires realization in thin film form. In this Letter, we report fabrication and transport properties of spin gapless Mn{sub 2}CoAl films prepared on thermally oxidized Si substrates by magnetron sputtering deposition. The films deposited at 673 K are well oriented to (001) direction and display a uniform-crystalline surface. Magnetotransport measurements on the oriented films reveal a semiconducting-like resistivity, small anomalous Hall conductivity, and linear magnetoresistance representative of the transport signatures of spin gapless semiconductors. The magnetic properties of the films have also been investigated and compared to that of bulk Mn{sub 2}CoAl, showing small discrepancy induced by the composition deviation.

  10. Study on the Inference Factors of Huangling Coking Coal Pyrolysis

    Science.gov (United States)

    Du, Meili; Yang, Zongyi; Fan, Jinwen

    2018-01-01

    In order to reasonably and efficiently utilize Huangling coking coal resource, coal particle, heating rate, holding time, pyrolysis temperature and others factors were dicussed for the influence of those factor on Huangling coking coal pyrolysis products. Several kinds of coal blending for coking experiments were carried out with different kinds of coal such as Huangling coking coal, Xida coal with high ash low sufur, Xinghuo fat coal with hign sulfur, Zhongxingyi coking coal with high sulfur, Hucun lean coal, mixed meager and lean coal. The results shown that the optimal coal particle size distribution was 0.5~1.5mm, the optimal heating rate was 8°C/min, the optimal holding time was 15min, the optimal pyrolysis temperature was 800°C for Huangling coking coal pyrolysis, the tar yield increased from 4.7% to 11.2%. The maximum tar yield of coal blending for coking under the best single factor experiment condition was 10.65% when the proportio of Huangling coking coal was 52%.

  11. General particle transport equation. Final report

    International Nuclear Information System (INIS)

    Lafi, A.Y.; Reyes, J.N. Jr.

    1994-12-01

    The general objectives of this research are as follows: (1) To develop fundamental models for fluid particle coalescence and breakage rates for incorporation into statistically based (Population Balance Approach or Monte Carlo Approach) two-phase thermal hydraulics codes. (2) To develop fundamental models for flow structure transitions based on stability theory and fluid particle interaction rates. This report details the derivation of the mass, momentum and energy conservation equations for a distribution of spherical, chemically non-reacting fluid particles of variable size and velocity. To study the effects of fluid particle interactions on interfacial transfer and flow structure requires detailed particulate flow conservation equations. The equations are derived using a particle continuity equation analogous to Boltzmann's transport equation. When coupled with the appropriate closure equations, the conservation equations can be used to model nonequilibrium, two-phase, dispersed, fluid flow behavior. Unlike the Eulerian volume and time averaged conservation equations, the statistically averaged conservation equations contain additional terms that take into account the change due to fluid particle interfacial acceleration and fluid particle dynamics. Two types of particle dynamics are considered; coalescence and breakage. Therefore, the rate of change due to particle dynamics will consider the gain and loss involved in these processes and implement phenomenological models for fluid particle breakage and coalescence

  12. Steel story founded on coal

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Paper reports on an iron and steel plant in New Zealand which uses non-coking subbituminuous coal to produce the sponge iron. The transport of the ironsand and the coal to the site and the operation of the kiln in which the ironsand is reduced by the coal is described.

  13. The Charfuel coal refining process

    International Nuclear Information System (INIS)

    Meyer, L.G.

    1991-01-01

    The patented Charfuel coal refining process employs fluidized hydrocracking to produce char and liquid products from virtually all types of volatile-containing coals, including low rank coal and lignite. It is not gasification or liquefaction which require the addition of expensive oxygen or hydrogen or the use of extreme heat or pressure. It is not the German pyrolysis process that merely 'cooks' the coal, producing coke and tar-like liquids. Rather, the Charfuel coal refining process involves thermal hydrocracking which results in the rearrangement of hydrogen within the coal molecule to produce a slate of co-products. In the Charfuel process, pulverized coal is rapidly heated in a reducing atmosphere in the presence of internally generated process hydrogen. This hydrogen rearrangement allows refinement of various ranks of coals to produce a pipeline transportable, slurry-type, environmentally clean boiler fuel and a slate of value-added traditional fuel and chemical feedstock co-products. Using coal and oxygen as the only feedstocks, the Charfuel hydrocracking technology economically removes much of the fuel nitrogen, sulfur, and potential air toxics (such as chlorine, mercury, beryllium, etc.) from the coal, resulting in a high heating value, clean burning fuel which can increase power plant efficiency while reducing operating costs. The paper describes the process, its thermal efficiency, its use in power plants, its pipeline transport, co-products, environmental and energy benefits, and economics

  14. Experimental and Numerical Investigation of Effect of Coal Rank on Burn-off Time in Pulverized Coal Combustion

    OpenAIRE

    Nozawa, Sohei; Wada, Nozomi; Matsushita, Yosuke; Yamamoto, Tsuyoshi; Omori, Motohira; Harada, Tatsuro

    2012-01-01

    Thermogravimetry (TG) for two different coal ranks, Loy Yang coal and Newlands coal, was carried out in an atmospheric air environment. Detailed parameters of the heterogeneous oxidation reaction for each coal rank were estimated by analyzing the TG results. Heat and mass transfer of a single pulverized coal particle that was heated at a constant temperature were numerically simulated. In this calculation, the decrease in the mass ratio caused by the oxidation reaction was considered. The num...

  15. Directed Transport of Brownian Particles in a Periodic Channel

    International Nuclear Information System (INIS)

    Jiang Jie; Ai Bao-Quan; Wu Jian-Chun

    2015-01-01

    The transport of Brownian particles in the infinite channel within an external force along the axis of the channel has been studied. In this paper, we study the transport of Brownian particle in the infinite channel within an external force along the axis of the channel and an external force in the transversal direction. In this more sophisticated situation, some property is similar to the simple situation, but some interesting property also appears. (paper)

  16. Quantitative characterization of pulverized coal and biomass–coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    International Nuclear Information System (INIS)

    Qian, Xiangchen; Wang, Chao; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao

    2012-01-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass–coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass–coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow. (paper)

  17. Quantitative characterization of pulverized coal and biomass-coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques

    Science.gov (United States)

    Qian, Xiangchen; Yan, Yong; Shao, Jiaqing; Wang, Lijuan; Zhou, Hao; Wang, Chao

    2012-08-01

    Quantitative data about the dynamic behaviour of pulverized coal and biomass-coal blends in fuel injection pipelines allow power plant operators to detect variations in fuel supply and oscillations in the flow at an early stage, enable them to balance fuel distribution between fuel feeding pipes and ultimately to achieve higher combustion efficiency and lower greenhouse gas emissions. Electrostatic sensor arrays and data fusion algorithms are combined to provide a non-intrusive solution to the measurement of fuel particle velocity, relative solid concentration and flow stability under pneumatic conveying conditions. Electrostatic sensor arrays with circular and arc-shaped electrodes are integrated in the same sensing head to measure ‘averaged’ and ‘localized’ characteristics of pulverized fuel flow. Data fusion techniques are applied to optimize and integrate the results from the sensor arrays. Experimental tests were conducted on the horizontal section of a 150 mm bore pneumatic conveyor circulating pulverized coal and sawdust under various flow conditions. Test results suggest that pure coal particles travel faster and carry more electrostatic charge than biomass-coal blends. As more biomass particles are added to the flow, the overall velocity of the flow reduces, the electrostatic charge level on particles decreases and the flow becomes less stable compared to the pure coal flow.

  18. Chemical kinetics and transport processes in supercritical fluid extraction of coal. Final report, August 10, 1990--December 30, 1992

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, B.J.; Smith, J.M.; Wang, M.; Zhang, C.J.

    1993-02-01

    The overall objective of this project was to study the supercritical fluid extraction of hydrocarbons from coal. Beyond the practical concern of deriving products from coal, the research has provided insights into the structure, properties, and reactivities of coal. Information on engineering fundamentals of coal thermolysis and extraction, including physical and chemical processes, is presented in this final report. To accomplish the goals of the project we developed continuous-flow experiments for fixed-bed samples of coal that allow two types of analysis of the extract: continuous spectrophotometric absorbance measurements of the lumped concentration of extract, and chromatographic determinations of molecular-weight distributions as a function of time. Thermolysis of coal yields a complex mixture of many extract products whose molecular-weight distribution (MWD) varies with time for continuous-flow, semibatch experiments. The flow reactor with a differential, fixed bed of coal particles contacted by supercritical t-butanol was employed to provide dynamic MWD data by means of HPLC gel permeation chromatography of the extract. The experimental results, time-dependent MWDs of extract molecules, were interpreted by a novel mathematical model based on continuous-mixture kinetics for thermal cleavage of chemical bonds in the coal network. The parameters for the MWDs of extractable groups in the coal and the rate constants for one- and two-fragment reaction are determined from the experimental data. The significant effect of temperature on the kinetics of the extraction was explained in terms of one- and two-fragment reactions in the coal.

  19. Semi-analytic modeling of tokamak particle transport

    International Nuclear Information System (INIS)

    Shi Bingren; Long Yongxing; Li Jiquan

    2000-01-01

    The linear particle transport equation of tokamak plasma is analyzed. Particle flow consists of an outward diffusion and an inward convection. General solution is expressed in terms of a Green function constituted by eigen-functions of corresponding Sturm-Liouville problem. For a particle source near the plasma edge (shadow fueling), a well-behaved solution in terms of Fourier series can be constituted by using the complementarity relation. It can be seen from the lowest eigen-function that the particle density becomes peaked when the wall recycling reduced. For a transient point source in the inner region, a well-behaved solution can be obtained by the complementarity as well

  20. Transformations of inorganic coal constituents in combustion systems

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. (ed.); Srinivasachar, S.; Wilemski, G.; Boni, A.A. (PSI Technology Co., Andover, MA (United States)); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. (Massachusetts Inst. of Tech., Cambridge, MA (United States)); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. (Arizona Univ., Tucson, AZ (United States)); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. (Kentucky Univ., Lexingt

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles What determines their composition Whether or not particles deposit How combustion conditions, including reactor size, affect these processes remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  1. Fluidized bed combustion of single coal char particles at high CO{sub 2} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Scala, F.; Chirone, R. [CNR, Naples (Italy)

    2010-12-15

    Combustion of single coal char particles was studied at 850{sup o}C in a lab-scale fluidized bed at high CO{sub 2} concentration, typical of oxyfiring conditions. The burning rate of the particles was followed as a function of time by continuously measuring the outlet CO and O{sub 2} concentrations. Some preliminary evaluations on the significance of homogeneous CO oxidation in the reactor and of carbon gasification by CO{sub 2} in the char were also carried out. Results showed that the carbon burning rate increases with oxygen concentration and char particle size. The particle temperature is approximately equal to that of the bed up to an oxygen concentration of 2%, but it is considerably higher for larger oxygen concentrations. Both CO{sub 2} gasification of char and homogeneous CO oxidation are not negligible. The gasification reaction rate is slow and it is likely to be controlled by intrinsic kinetics. During purely gasification conditions the extent of carbon loss due to particle attrition by abrasion (estimated from the carbon mass balance) appears to be much more important than under combustion conditions.

  2. Enrichment of coal pulps by selective flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Z

    1977-01-01

    The results are presented of selective flocculation of coal pulps using different reagents. In some tests the coal particles were flocculated, and in others the coal remained in suspension and the dirt was flocculated. Selective flocculation makes it possible to obtain coal concentrates with a very low ash content from slurries with a high ash content. (In Polish)

  3. Enrichment of coal pulps by selective flocculation

    Energy Technology Data Exchange (ETDEWEB)

    Blaschke, Z

    1977-01-01

    The results are presented of selective flocculation of coal pulps using different reagents. In some tests the coal particles were flocculated, and in others the coal remained in suspension and the dirt was flocculated. Selective flocculation makes it possible to obtain coal concentrates with a very low ash content from slurries with a high ash content.

  4. EXPERIMENTS AND COMPUTATIONAL MODELING OF PULVERIZED-COAL IGNITION; FINAL

    International Nuclear Information System (INIS)

    Samuel Owusu-Ofori; John C. Chen

    1999-01-01

    Under typical conditions of pulverized-coal combustion, which is characterized by fine particles heated at very high rates, there is currently a lack of certainty regarding the ignition mechanism of bituminous and lower rank coals as well as the ignition rate of reaction. furthermore, there have been no previous studies aimed at examining these factors under various experimental conditions, such as particle size, oxygen concentration, and heating rate. Finally, there is a need to improve current mathematical models of ignition to realistically and accurately depict the particle-to-particle variations that exist within a coal sample. Such a model is needed to extract useful reaction parameters from ignition studies, and to interpret ignition data in a more meaningful way. The authors propose to examine fundamental aspects of coal ignition through (1) experiments to determine the ignition temperature of various coals by direct measurement, and (2) modeling of the ignition process to derive rate constants and to provide a more insightful interpretation of data from ignition experiments. The authors propose to use a novel laser-based ignition experiment to achieve their first objective. Laser-ignition experiments offer the distinct advantage of easy optical access to the particles because of the absence of a furnace or radiating walls, and thus permit direct observation and particle temperature measurement. The ignition temperature of different coals under various experimental conditions can therefore be easily determined by direct measurement using two-color pyrometry. The ignition rate-constants, when the ignition occurs heterogeneously, and the particle heating rates will both be determined from analyses based on these measurements

  5. PHITS-a particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji; Sato, Tatsuhiko; Iwase, Hiroshi; Nose, Hiroyuki; Nakashima, Hiroshi; Sihver, Lembit

    2006-01-01

    The paper presents a summary of the recent development of the multi-purpose Monte Carlo Particle and Heavy Ion Transport code System, PHITS. In particular, we discuss in detail the development of two new models, JAM and JQMD, for high energy particle interactions, incorporated in PHITS, and show comparisons between model calculations and experiments for the validations of these models. The paper presents three applications of the code including spallation neutron source, heavy ion therapy and space radiation. The results and examples shown indicate PHITS has great ability of carrying out the radiation transport analysis of almost all particles including heavy ions within a wide energy range

  6. Numerical computation of discrete differential scattering cross sections for Monte Carlo charged particle transport

    International Nuclear Information System (INIS)

    Walsh, Jonathan A.; Palmer, Todd S.; Urbatsch, Todd J.

    2015-01-01

    Highlights: • Generation of discrete differential scattering angle and energy loss cross sections. • Gauss–Radau quadrature utilizing numerically computed cross section moments. • Development of a charged particle transport capability in the Milagro IMC code. • Integration of cross section generation and charged particle transport capabilities. - Abstract: We investigate a method for numerically generating discrete scattering cross sections for use in charged particle transport simulations. We describe the cross section generation procedure and compare it to existing methods used to obtain discrete cross sections. The numerical approach presented here is generalized to allow greater flexibility in choosing a cross section model from which to derive discrete values. Cross section data computed with this method compare favorably with discrete data generated with an existing method. Additionally, a charged particle transport capability is demonstrated in the time-dependent Implicit Monte Carlo radiative transfer code, Milagro. We verify the implementation of charged particle transport in Milagro with analytic test problems and we compare calculated electron depth–dose profiles with another particle transport code that has a validated electron transport capability. Finally, we investigate the integration of the new discrete cross section generation method with the charged particle transport capability in Milagro.

  7. Further Investigations on Simultaneous Ultrasonic Coal Flotation

    Directory of Open Access Journals (Sweden)

    Safak Gokhan Ozkan

    2017-09-01

    Full Text Available This study investigates the flotation performance of a representative hard coal slime sample (d80 particle size of minus 0.2 mm obtained from the Prosper-Haniel coal preparation plant located in Bottrop, Germany. Flotation was carried out with a newly designed flotation cell refurbished from an old ultrasonic cleaning bath (2.5 L volume equipped with a single frequency (35 kHz and two different power levels (80–160 W and a sub-aeration-type flotation machine operating at a stable impeller speed (1200 rpm and air rate (2.5 L/min. The reagent combination for conventional and simultaneous ultrasonic coal flotation tests was Ekofol-440 at variable dosages (40–300 g/t with controlling water temperature (20–25 °C at natural pH (6.5–7.0. The batch coal flotation results were analyzed by comparing the combustible recovery (% and separation efficiency (% values, taking mass yield and ash concentrations of the froths and tailings into account. It was found that simultaneous ultrasonic coal flotation increased yield and recovery values of the floated products with lower ash values than the conventional flotation despite using similar reagent dosages. Furthermore, particle size distribution of the ultrasonically treated and untreated coals was measured. Finely distributed coal particles seemed to be agglomerated during the ultrasonic treatment, while ash-forming slimes were removed by hydrodynamic cavitation.

  8. Particle Tracking Model and Abstraction of Transport Processes

    International Nuclear Information System (INIS)

    Robinson, B.

    2000-01-01

    The purpose of the transport methodology and component analysis is to provide the numerical methods for simulating radionuclide transport and model setup for transport in the unsaturated zone (UZ) site-scale model. The particle-tracking method of simulating radionuclide transport is incorporated into the FEHM computer code and the resulting changes in the FEHM code are to be submitted to the software configuration management system. This Analysis and Model Report (AMR) outlines the assumptions, design, and testing of a model for calculating radionuclide transport in the unsaturated zone at Yucca Mountain. In addition, methods for determining colloid-facilitated transport parameters are outlined for use in the Total System Performance Assessment (TSPA) analyses. Concurrently, process-level flow model calculations are being carrier out in a PMR for the unsaturated zone. The computer code TOUGH2 is being used to generate three-dimensional, dual-permeability flow fields, that are supplied to the Performance Assessment group for subsequent transport simulations. These flow fields are converted to input files compatible with the FEHM code, which for this application simulates radionuclide transport using the particle-tracking algorithm outlined in this AMR. Therefore, this AMR establishes the numerical method and demonstrates the use of the model, but the specific breakthrough curves presented do not necessarily represent the behavior of the Yucca Mountain unsaturated zone

  9. POC-SCALE TESTING OF A DRY TRIBOELECTROSTATIC SEPARATOR FOR FINE COAL CLEANING

    Energy Technology Data Exchange (ETDEWEB)

    R.H. Yoon; G.H. Luttrell; E.S. Yan; A.D. Walters

    2001-04-30

    Numerous advanced coal cleaning processes have been developed in recent years that are capable of substantially reducing both ash- and sulfur-forming minerals from coal. However, most of the processes involve fine grinding and use water as the cleaning medium; therefore, the clean coal products must be dewatered before they can be transported and burned. Unfortunately, dewatering fine coal is costly, which makes it difficult to deploy advanced coal cleaning processes for commercial applications. As a means of avoiding problems associated with the fine coal dewatering, the National Energy Technology Laboratory (NETL) developed a dry coal cleaning process in which mineral matter is separated from coal without using water. In this process, pulverized coal is subjected to triboelectrification before being placed in an electric field for electrostatic separation. The triboelectrification is accomplished by passing a pulverized coal through an in-line mixer made of copper. Copper has a work function that lies between that of carbonaceous material (coal) and mineral matter. Thus, coal particles impinging on the copper wall lose electrons to the metal thereby acquiring positive charges, while mineral matter impinging on the wall gain electrons to acquire negative charges. The charged particles then pass through an electric field where they are separated according to their charges into two or more products depending on the configuration of the separator. The results obtained at NETL showed that it is capable of removing more than 90% of the pyritic sulfur and 70% of the ash-forming minerals from a number of eastern U.S. coals. However, the BTU recoveries were less than desirable. The laboratory-scale batch triboelectrostatic separator (TES) used by NETL relied on adhering charged particles on parallel electrode surfaces and scraping them off. Therefore, its throughput will be proportional to the electrode surface area. If this laboratory device is scaled-up as is, it would

  10. Agglomeration of coal fines for premium fuel application

    International Nuclear Information System (INIS)

    Atalay, A.; Zaman, M.D.

    1992-01-01

    This paper reports on fine coal in liquid suspension, which can be agglomerated in a number of ways. One of the oldest procedures involves the addition of electrolyte to the suspension to cause a reduction in the zeta potential and allow colliding particles to agglomerate. A second method involves the use of polymeric flocculants to bridge between particles. Both of these technologies are being used in the wastewater treatment plants for removal of fine waste particles from contaminated water. A third method involves the addition of a second immiscible liquid preferentially to wet the particles and cause adhesion by capillary interfacial forces. While the bonding forces in the first two methods are small and result in rather weak and voluminous agglomerates, the third method is postulated to produce more dense and much stronger agglomerates. In the case of fine coals, the carbonaceous constituents can be agglomerated and recovered from the aqueous suspension with many different coagulants. Inorganic or ash-forming constituents are also agglomerated along with the fine coal particles. As the froth floatation, agglomeration using coal and colloidal dust to effect a separation. Froth floatation, however, becomes less effective where extremely fine particles of cal must be treated or if there is considerable clay-size particle present. In contrast, there appears to be virtually no lower limit on the particle size suitable for agglomeration uses

  11. Coal in competition

    Energy Technology Data Exchange (ETDEWEB)

    Manners, G

    1985-06-01

    During the past decade world coal consumption has expanded by about 26% whilst energy demands overall have grown by only 17%. This is because of the increased price of oil products, plus a period during which the costs of mining coal in many parts of the world have been moderately well contained. Over-ambitious forecasts of coal demand have encouraged the considerable over-investment in coalmining capacity that exists today. Costs of winning coal and transporting it are low, but sales depend on the rate of growth of a country's demand for energy. Some countries are more successful at marketing coal than others. Amongst the major factors that influence the rate of substitution of one source of energy for another is the nature and age of the boiler stock. The outcome of the developing environmental debate and calls for reduction in SO/sub 2/ and NO/sub x/ emissions from coal-fired boilers is going to affect coal's fortunes in the 1990's.

  12. New particle formation in the fresh flue-gas plume from a coal-fired power plant: effect of flue-gas cleaning

    Science.gov (United States)

    Mylläri, Fanni; Asmi, Eija; Anttila, Tatu; Saukko, Erkka; Vakkari, Ville; Pirjola, Liisa; Hillamo, Risto; Laurila, Tuomas; Häyrinen, Anna; Rautiainen, Jani; Lihavainen, Heikki; O'Connor, Ewan; Niemelä, Ville; Keskinen, Jorma; Dal Maso, Miikka; Rönkkö, Topi

    2016-06-01

    Atmospheric emissions, including particle number and size distribution, from a 726 MWth coal-fired power plant were studied experimentally from a power plant stack and flue-gas plume dispersing in the atmosphere. Experiments were conducted under two different flue-gas cleaning conditions. The results were utilized in a plume dispersion and dilution model taking into account particle formation precursor (H2SO4 resulted from the oxidation of emitted SO2) and assessment related to nucleation rates. The experiments showed that the primary emissions of particles and SO2 were effectively reduced by flue-gas desulfurization and fabric filters, especially the emissions of particles smaller than 200 nm in diameter. Primary pollutant concentrations reached background levels in 200-300 s. However, the atmospheric measurements indicated that new particles larger than 2.5 nm are formed in the flue-gas plume, even in the very early phases of atmospheric ageing. The effective number emission of nucleated particles were several orders of magnitude higher than the primary particle emission. Modelling studies indicate that regardless of continuing dilution of the flue gas, nucleation precursor (H2SO4 from SO2 oxidation) concentrations remain relatively constant. In addition, results indicate that flue-gas nucleation is more efficient than predicted by atmospheric aerosol modelling. In particular, the observation of the new particle formation with rather low flue-gas SO2 concentrations changes the current understanding of the air quality effects of coal combustion. The results can be used to evaluate optimal ways to achieve better air quality, particularly in polluted areas like India and China.

  13. On changes in bed-material particles from a 550 MWth CFB boiler burning coal, bark and peat

    Energy Technology Data Exchange (ETDEWEB)

    Vesna Barisic; Mikko Hupa [Aabo Akademi Process Chemistry Centre, Turku (Finland). Combustion and Materials Chemistry

    2007-02-15

    This paper presents our observations on coating build up, morphology and the elemental composition of bed-material particles collected from a 550 MWth CFB boiler burning coal, bark and peat fuel/fuel mixture. The special focus was on the changes of the elemental composition of coating layer on bed-material particles when different fuels were burned. The results were obtained using a scanning electron microscope coupled with an energy depressive X-ray analyser (SEM/EDX). The results clearly show that properties of bed-material particles are a result of complex interaction between the fuels burned previously, and the fuels used at the time of sampling. Short communication. 8 refs., 1 fig., 2 tabs.

  14. Modelling of neutral particle transport in divertor plasma

    International Nuclear Information System (INIS)

    Kakizuka, Tomonori; Shimizu, Katsuhiro

    1995-01-01

    An outline of the modelling of neutral particle transport in the diverter plasma was described in the paper. The characteristic properties of divertor plasma were largely affected by interaction between neutral particles and divertor plasma. Accordingly, the behavior of neutral particle should be investigated quantitatively. Moreover, plasma and neutral gas should be traced consistently in the plasma simulation. There are Monte Carlo modelling and the neutral gas fluid modelling as the transport modelling. The former need long calculation time, but it is able to make the physical process modelling. A ultra-large parallel computer is good for the former. In spite of proposing some kinds of models, the latter has not been established. At the view point of reducing calculation time, a work station is good for the simulation of the latter, although some physical problems have not been solved. On the Monte Carlo method particle modelling, reducing the calculation time and introducing the interaction of particles are important subjects to develop 'the evolutional Monte Carlo Method'. To reduce the calculation time, two new methods: 'Implicit Monte Carlo method' and 'Free-and Diffusive-Motion Hybrid Monte-Carlo method' have been developing. (S.Y.)

  15. Coal Data: A reference

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of Coal Data: A Reference is to provide basic information on the mining and use of coal, an important source of energy in the United States. The report is written for a general audience. The goal is to cover basic material and strike a reasonable compromise between overly generalized statements and detailed analyses. The section ''Coal Terminology and Related Information'' provides additional information about terms mentioned in the text and introduces new terms. Topics covered are US coal deposits, resources and reserves, mining, production, employment and productivity, health and safety, preparation, transportation, supply and stocks, use, coal, the environment, and more. (VC)

  16. Transport of large particles released in a nuclear accident

    International Nuclear Information System (INIS)

    Poellaenen, R.; Toivonen, H.; Lahtinen, J.; Ilander, T.

    1995-10-01

    Highly radioactive particulate material may be released in a nuclear accident or sometimes during normal operation of a nuclear power plant. However, consequence analyses related to radioactive releases are often performed neglecting the particle nature of the release. The properties of the particles have an important role in the radiological hazard. A particle deposited on the skin may cause a large and highly non-uniform skin beta dose. Skin dose limits may be exceeded although the overall activity concentration in air is below the level of countermeasures. For sheltering purposes it is crucial to find out the transport range, i.e. the travel distance of the particles. A method for estimating the transport range of large particles (aerodynamic diameter d a > 20 μm) in simplified meteorological conditions is presented. A user-friendly computer code, known as TROP, is developed for fast range calculations in a nuclear emergency. (orig.) (23 refs., 13 figs.)

  17. Transport of large particles released in a nuclear accident

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R; Toivonen, H; Lahtinen, J; Ilander, T

    1995-10-01

    Highly radioactive particulate material may be released in a nuclear accident or sometimes during normal operation of a nuclear power plant. However, consequence analyses related to radioactive releases are often performed neglecting the particle nature of the release. The properties of the particles have an important role in the radiological hazard. A particle deposited on the skin may cause a large and highly non-uniform skin beta dose. Skin dose limits may be exceeded although the overall activity concentration in air is below the level of countermeasures. For sheltering purposes it is crucial to find out the transport range, i.e. the travel distance of the particles. A method for estimating the transport range of large particles (aerodynamic diameter d{sub a} > 20 {mu}m) in simplified meteorological conditions is presented. A user-friendly computer code, known as TROP, is developed for fast range calculations in a nuclear emergency. (orig.) (23 refs., 13 figs.).

  18. The outlook for the U.S. coal industry and U.S.-Japanese coal trade

    International Nuclear Information System (INIS)

    Ellerman, A.D.

    1988-01-01

    The U.S. coal industry is stable and efficient, and in good position to respond to any increase in export demand over the next ten years. After the 1973 and 1978--79 oil price increases and the resulting growth in world demand for coal, the industry responded with extensive investment in coal mines; the transportation industry similarly made large investments in coal handling equipment and port facilities. However, as a result of the expansion in world production facilities and the less than anticipated growth in coal demand, the United States now has excess capacity---in the mining, transport and port terminal industries. The coal industry's large capital investments, followed by cost cutting improvements in response to excess capacity, have paid off in greatly increased productivity. Between its low point in 1978, and 1985, average tons per miner-hour grew by 55 percent, or at an average annual rate of 6.4 percent. This gain has been passed on to coal customers in the form of lower prices. Between 1976 and 1985, FOB mine prices in constant dollars declined by 26.9 percent, or at a rate of 3.4 percent per year; the trend continued in 1986 with an additional 4.8 percent price decline

  19. Technological and economic aspects of coal biodesulfurisation.

    Science.gov (United States)

    Klein, J

    1998-01-01

    The sulfur found in coal is either part of the molecular coal structure (organically bound sulfur), is contained in minerals such as pyrite (FeS2), or occurs in minor quantities in the form of sulfate and elemental sulfur. When pyrite crystals are finely distributed within the coal matrix, mechanical cleaning can only remove part of the pyrite. It can, however, be removed by microbial action requiring only mild conditions. The process involves simple equipment, almost no chemicals, but relatively long reaction times, and treatment of iron sulfate containing process water. Different process configurations are possible, depending on the coal particle size. Coal with particle sizes of less than 0.5 mm is preferably desulfurised in slurry reactors, while lump coal (> 0.5 mm) should be treated in heaps. Investment and operating costs are estimated for different process configurations on an industrial scale. Concerning the organically bound sulfur in coal there is up to now no promising biochemical pathway for the degradation and/or desulfurisation of such compounds.

  20. Effect of frothing and collecting agents for flotation behavior of coal

    International Nuclear Information System (INIS)

    Nasir, S.; Sheikh, T.S.

    2011-01-01

    Coal flotation is a complex process involving several phases (particles, oil droplets and air bubbles). These phases simultaneously interact with each other and with other species such as the molecules of a promoting reagent and dissolved ions in water. The physical and chemical interactions determine the outcome of the flotation process. Although the interactions between the oil droplets and coal particles are actually favored, stabilization of the oil droplets by small amounts of fine hydrophobic particles may lead to decrease in selectivity and an increased in oil consumption. These problems could be remedied by use of promoters that modify the coal surface for suitable particle-particle, droplet-particle and particle-bubble contact while emulsifying the oil droplets. In this paper, a detailed description of the coal flotation, their physical and chemical interactions with each other in the flotation pulp, the major parameters (% volatiles, % fixed carbon and heating value) that affect these interactions and how these interactions, in turn, influence the flotation process are discussed. (author)

  1. Potential markets for thermal coal in Canada 1978-2000

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This paper evaluates thermal coal demand by industrial consumers such as cement plants and pulp and paper plants and, on a provincial basis, by thermal electric generating plants. Transportation costs to the identified market locations from four representative coal supply areas in Canada are estimated and used to calculate net-back figures attainable at coal mine sites. Transportation methods considered are rail, ship, truck, intermodal terminals, coal slurry pipeline, and electric transmission from mine-mouth.

  2. Density Dependence of Particle Transport in ECH Plasmas of the TJ-II Stellarator

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, V. I.; Lopez-Bruna, D.; Guasp, J.; Herranz, J.; Estrada, T.; Medina, F.; Ochando, M.A.; Velasco, J.L.; Reynolds, J.M.; Ferreira, J.A.; Tafalla, D.; Castejon, F.; Salas, A.

    2009-05-21

    We present the experimental dependence of particle transport on average density in electron cyclotron heated (ECH) hydrogen plasmas of the TJ-II stellarator. The results are based on: (I) electron density and temperature data from Thomson Scattering and reflectometry diagnostics; (II) a transport model that reproduces the particle density profiles in steady state; and (III) Eirene, a code for neutrals transport that calculates the particle source in the plasma from the particle confinement time and the appropriate geometry of the machine/plasma. After estimating an effective particle diffusivity and the particle confinement time, a threshold density separating qualitatively and quantitatively different plasma transport regimes is found. The poor confinement times found below the threshold are coincident with the presence of ECH-induced fast electron losses and a positive radial electric field all over the plasma. (Author) 40 refs.

  3. Fiscal 1997 survey of the overseas coal import base preparation/improvement. Survey of a coal flow in China; 1997 nendo kaigaitan yunyu kiban seibi sokushin chosa. Chugoku ni okeru coal flow ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    The paper surveyed the preparation of the coal transportation infrastructure, status of its running, economical efficiency, etc. in terms mainly of the trend of coal production/consumption in China, and coal railroad/water transportation and electric power transportation by mine-mouth power generation. From the survey, the following conclusions were obtained. As to the coal which China uses as a main energy for maintaining the present high economic growth as targeted, there will remain the coal transportation problem between production site (north and west) and consumption site (east and south) still in the future (in 2000 and 2010). China is now facing with a big turning point in a socioeconomic aspect. The advancing opening market policy brought steep rises in energy prices such as coal and electric power, which is affecting various fields. Further, the energy related laws, which were unprepared, are abruptly being prepared, and the environment for the introduction of foreign investment, which is expected to be accelerated, is being prepared. In the future, attention should be paid to environmental problems such as air pollution, acid rain and global warming. 48 figs., 96 tabs.

  4. Fine coal cleaning via the micro-mag process

    Science.gov (United States)

    Klima, Mark S.; Maronde, Carl P.; Killmeyer, Richard P.

    1991-01-01

    A method of cleaning particulate coal which is fed with a dense medium slurry as an inlet feed to a cyclone separator. The coal particle size distribution is in the range of from about 37 microns to about 600 microns. The dense medium comprises water and ferromagnetic particles that have a relative density in the range of from about 4.0 to about 7.0. The ferromagnetic particles of the dense medium have particle sizes of less than about 15 microns and at least a majority of the particle sizes are less than about 5 microns. In the cyclone, the particulate coal and dense-medium slurry is separated into a low gravity product stream and a high gravity produce stream wherein the differential in relative density between the two streams is not greater than about 0.2. The low gravity and high gravity streams are treated to recover the ferromagnetic particles therefrom.

  5. Transport of Particle Swarms Through Variable Aperture Fractures

    Science.gov (United States)

    Boomsma, E.; Pyrak-Nolte, L. J.

    2012-12-01

    Particle transport through fractured rock is a key concern with the increased use of micro- and nano-size particles in consumer products as well as from other activities in the sub- and near surface (e.g. mining, industrial waste, hydraulic fracturing, etc.). While particle transport is often studied as the transport of emulsions or dispersions, particles may also enter the subsurface from leaks or seepage that lead to particle swarms. Swarms are drop-like collections of millions of colloidal-sized particles that exhibit a number of unique characteristics when compared to dispersions and emulsions. Any contaminant or engineered particle that forms a swarm can be transported farther, faster, and more cohesively in fractures than would be expected from a traditional dispersion model. In this study, the effects of several variable aperture fractures on colloidal swarm cohesiveness and evolution were studied as a swarm fell under gravity and interacted with the fracture walls. Transparent acrylic was used to fabricate synthetic fracture samples with (1) a uniform aperture, (2) a converging region followed by a uniform region (funnel shaped), (3) a uniform region followed by a diverging region (inverted funnel), and (4) a cast of a an induced fracture from a carbonate rock. All of the samples consisted of two blocks that measured 100 x 100 x 50 mm. The minimum separation between these blocks determined the nominal aperture (0.5 mm to 20 mm). During experiments a fracture was fully submerged in water and swarms were released into it. The swarms consisted of a dilute suspension of 3 micron polystyrene fluorescent beads (1% by mass) with an initial volume of 5μL. The swarms were illuminated with a green (525 nm) LED array and imaged optically with a CCD camera. The variation in fracture aperture controlled swarm behavior. Diverging apertures caused a sudden loss of confinement that resulted in a rapid change in the swarm's shape as well as a sharp increase in its velocity

  6. The release of mineral matter and associated phosphorus as a function of the particle size coal

    Energy Technology Data Exchange (ETDEWEB)

    Claassens, V. [Sasol Technology Research & Development, Sasolburg (South Africa). Syngas & Coal Technologies

    2009-05-15

    The presence of phosphorus in carbon reductants is a major concern in the metallurgical industry. The behaviour of the phosphorus and mineral matter content (reported as ash) as a function of particle size was investigated. The primary aim of this study was to determine the reduction in phosphorus and mineral matter that occurred as the particle size decreased. A secondary aim was to determine how the phosphorus was distributed in the feed coal and to where it reported during floc-flotation. Results showed that the ash content decreased more rapidly than the phosphorus content as the mean particle size was reduced. It remains unclear why P-rejection is only half as effective as mineral matter rejection. Detailed liberation analysis of P-containing minerals is required to possibly explain this phenomenon.

  7. Interrelating the breakage and composition of mined and drill core coal

    Science.gov (United States)

    Wilson, Terril Edward

    Particle size distribution of coal is important if the coal is to be beneficiated, or if a coal sales contract includes particle size specifications. An exploration bore core sample of coal ought to be reduced from its original cylindrical form to a particle size distribution and particle composition that reflects, insofar as possible, a process stream of raw coal it represents. Often, coal cores are reduced with a laboratory crushing machine, the product of which does not match the raw coal size distribution. This study proceeds from work in coal bore core reduction by Australian investigators. In this study, as differentiated from the Australian work, drop-shatter impact breakage followed by dry batch tumbling in steel cylinder rotated about its transverse axis are employed to characterize the core material in terms of first-order and zeroth-order breakage rate constants, which are indices of the propensity of the coal to degrade during excavation and handling. Initial drop-shatter and dry tumbling calibrations were done with synthetic cores composed of controlled low-strength concrete incorporating fly ash (as a partial substitute for Portland cement) in order to reduce material variables and conserve difficult-to-obtain coal cores. Cores of three different coalbeds--Illinois No. 6, Upper Freeport, and Pocahontas No. 5 were subjected to drop-shatter and dry batch tumbling tests to determine breakage response. First-order breakage, characterized by a first-order breakage index for each coal, occurred in the drop-shatter tests. First- and zeroth-order breakage occurred in dry batch tumbling; disappearance of coarse particles and creation of fine particles occurred in a systematic way that could be represented mathematically. Certain of the coal cores available for testing were dry and friable. Comparison of coal preparation plant feed with a crushed bore core and a bore core prepared by drop-shatter and tumbling (all from the same Illinois No.6 coal mining

  8. Stress, Flow and Particle Transport in Rock Fractures

    Energy Technology Data Exchange (ETDEWEB)

    Koyama, Tomofumi

    2007-09-15

    The fluid flow and tracer transport in a single rock fracture during shear processes has been an important issue in rock mechanics and is investigated in this thesis using Finite Element Method (FEM) and streamline particle tracking method, considering evolutions of aperture and transmissivity with shear displacement histories under different normal stresses, based on laboratory tests. The distributions of fracture aperture and its evolution during shear were calculated from the initial aperture fields, based on the laser-scanned surface roughness features of replicas of rock fracture specimens, and shear dilations measured during the coupled shear-flow-tracer tests in laboratory performed using a newly developed testing apparatus in Nagasaki University, Nagasaki, Japan. Three rock fractures of granite with different roughness characteristics were used as parent samples from which nine plaster replicas were made and coupled shear-flow tests was performed under three normal loading conditions (two levels of constant normal loading (CNL) and one constant normal stiffness (CNS) conditions). In order to visualize the tracer transport, transparent acrylic upper parts and plaster lower parts of the fracture specimens were manufactured from an artificially created tensile fracture of sandstone and the coupled shear-flow tests with fluid visualization was performed using a dye tracer injected from upstream and a CCD camera to record the dye movement. A special algorithm for treating the contact areas as zero-aperture elements was used to produce more accurate flow field simulations by using FEM, which is important for continued simulations of particle transport, but was often not properly treated in literature. The simulation results agreed well with the flow rate data obtained from the laboratory tests, showing that complex histories of fracture aperture and tortuous flow channels with changing normal stresses and increasing shear displacements, which were also captured

  9. Grindability and combustion behavior of coal and torrefied biomass blends.

    Science.gov (United States)

    Gil, M V; García, R; Pevida, C; Rubiera, F

    2015-09-01

    Biomass samples (pine, black poplar and chestnut woodchips) were torrefied to improve their grindability before being combusted in blends with coal. Torrefaction temperatures between 240 and 300 °C and residence times between 11 and 43 min were studied. The grindability of the torrefied biomass, evaluated from the particle size distribution of the ground sample, significantly improved compared to raw biomass. Higher temperatures increased the proportion of smaller-sized particles after grinding. Torrefied chestnut woodchips (280 °C, 22 min) showed the best grinding properties. This sample was blended with coal (5-55 wt.% biomass). The addition of torrefied biomass to coal up to 15 wt.% did not significantly increase the proportion of large-sized particles after grinding. No relevant differences in the burnout value were detected between the coal and coal/torrefied biomass blends due to the high reactivity of the coal. NO and SO2 emissions decreased as the percentage of torrefied biomass in the blend with coal increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Coal chemistry and technology. Komur Kimyasi ve Teknolojisi

    Energy Technology Data Exchange (ETDEWEB)

    Kural, O [ed.

    1988-01-01

    The 18 chapters cover the following topics: mining in Turkey; formation, petrography and classification of coal; chemical and physical properties of coal; mechanical properties of coal; spontaneous combustion of coal and the methods of prevention; sampling of coal; coal preparation and plants; desulfurization of coal; bituminous coal and its consumption; lignite and its consumption; world coal trade and transportation; other important carbon fuels; briquetting of coal; carbonization and coking formed coke; liquefaction of coal; gasification of coal; underground gasification of coal; and combustion models, fluidized-bed combustion, furnaces. An English-Turkish coal dictionary is included. 641 refs., 244 figs., 108 tabs.

  11. Effects of fuel particle size distributions on neutron transport in stochastic media

    International Nuclear Information System (INIS)

    Liang, Chao; Pavlou, Andrew T.; Ji, Wei

    2014-01-01

    Highlights: • Effects of fuel particle size distributions on neutron transport are evaluated. • Neutron channeling is identified as the fundamental reason for the effects. • The effects are noticeable at low packing and low optical thickness systems. • Unit cells of realistic reactor designs are studied for different size particles. • Fuel particle size distribution effects are not negligible in realistic designs. - Abstract: This paper presents a study of the fuel particle size distribution effects on neutron transport in three-dimensional stochastic media. Particle fuel is used in gas-cooled nuclear reactor designs and innovative light water reactor designs loaded with accident tolerant fuel. Due to the design requirements and fuel fabrication limits, the size of fuel particles may not be perfectly constant but instead follows a certain distribution. This brings a fundamental question to the radiation transport computation community: how does the fuel particle size distribution affect the neutron transport in particle fuel systems? To answer this question, size distribution effects and their physical interpretations are investigated by performing a series of neutron transport simulations at different fuel particle size distributions. An eigenvalue problem is simulated in a cylindrical container consisting of fissile fuel particles with five different size distributions: constant, uniform, power, exponential and Gaussian. A total of 15 parametric cases are constructed by altering the fissile particle volume packing fraction and its optical thickness, but keeping the mean chord length of the spherical fuel particle the same at different size distributions. The tallied effective multiplication factor (k eff ) and the spatial distribution of fission power density along axial and radial directions are compared between different size distributions. At low packing fraction and low optical thickness, the size distribution shows a noticeable effect on neutron

  12. Transport fuels from two-stage coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.; Cebolla, V.; Fernandez, I.; Martinez, M.T.; Miranda, J.L.; Oelert, H.; Prado, J.G. (Instituto de Carboquimica CSIC, Zaragoza (Spain))

    1994-03-01

    Four Spanish lignites and their vitrinite concentrates were evaluated for coal liquefaction. Correlationships between the content of vitrinite and conversion in direct liquefaction were observed for the lignites but not for the vitrinite concentrates. The most reactive of the four coals was processed in two-stage liquefaction at a higher scale. First-stage coal liquefaction was carried out in a continuous unit at Clausthal University at a temperature of 400[degree]C at 20 MPa hydrogen pressure and with anthracene oil as a solvent. The coal conversion obtained was 75.41% being 3.79% gases, 2.58% primary condensate and 69.04% heavy liquids. A hydroprocessing unit was built at the Instituto de Carboquimica for the second-stage coal liquefaction. Whole and deasphalted liquids from the first-stage liquefaction were processed at 450[degree]C and 10 MPa hydrogen pressure, with two commercial catalysts: Harshaw HT-400E (Co-Mo/Al[sub 2]O[sub 3]) and HT-500E (Ni-Mo/Al[sub 2]O[sub 3]). The effects of liquid hourly space velocity (LHSV), temperature, gas/liquid ratio and catalyst on the heteroatom liquids, and levels of 5 ppm of nitrogen and 52 ppm of sulphur were reached at 450[degree]C, 10 MPa hydrogen pressure, 0.08 kg H[sub 2]/kg feedstock and with Harshaw HT-500E catalyst. The liquids obtained were hydroprocessed again at 420[degree]C, 10 MPa hydrogen pressure and 0.06 kg H[sub 2]/kg feedstock to hydrogenate the aromatic structures. In these conditions, the aromaticity was reduced considerably, and 39% of naphthas and 35% of kerosene fractions were obtained. 18 refs., 4 figs., 4 tabs.

  13. Gyrokinetic theory for particle and energy transport in fusion plasmas

    Science.gov (United States)

    Falessi, Matteo Valerio; Zonca, Fulvio

    2018-03-01

    A set of equations is derived describing the macroscopic transport of particles and energy in a thermonuclear plasma on the energy confinement time. The equations thus derived allow studying collisional and turbulent transport self-consistently, retaining the effect of magnetic field geometry without postulating any scale separation between the reference state and fluctuations. Previously, assuming scale separation, transport equations have been derived from kinetic equations by means of multiple-scale perturbation analysis and spatio-temporal averaging. In this work, the evolution equations for the moments of the distribution function are obtained following the standard approach; meanwhile, gyrokinetic theory has been used to explicitly express the fluctuation induced fluxes. In this way, equations for the transport of particles and energy up to the transport time scale can be derived using standard first order gyrokinetics.

  14. Three-dimensional simulation of flow and combustion for pulverised coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Guo, B.Y.; Zulli, P.; Rogers, H.; Mathieson, J.G.; Yu, A.B. [BlueScope Steel Research, Port Kembla, NSW (Australia)

    2005-07-01

    A three-dimensional numerical model of pulverised coal injection has been developed for simulating coal flow and combustion in the tuyere and raceway of a blast furnace. The model has been used to simulate previously reported combustion tests, which feature an inclined co-axial lance with an annular cooling gas. The predicted coal burnout agrees well with that measured for three coals with volatile contents and particle size ranging between 20.2-36.4% and particle sizes 1-200 {mu}m. Many important phenomena including flow asymmetry, recirculating flow and particle dispersion in the combustion chamber have been predicted. The current model can reproduce the experimental observations including the effects on burnout of coal flowrate and the introduction of methane for lance cooling.

  15. Survey of state water laws affecting coal slurry pipeline development

    Energy Technology Data Exchange (ETDEWEB)

    Rogozen, M.B.

    1980-11-01

    This report summarizes state water laws likely to affect the development of coal slurry pipelines. It was prepared as part of a project to analyze environmental issues related to energy transportation systems. Coal slurry pipelines have been proposed as a means to expand the existing transportation system to handle the increasing coal shipments that will be required in the future. The availability of water for use in coal slurry systems in the coal-producing states is an issue of major concern.

  16. Fueling profile sensitivities of trapped particle mode transport to TNS

    International Nuclear Information System (INIS)

    Mense, A.T.; Attenberger, S.E.; Houlberg, W.A.

    1977-01-01

    A key factor in the plasma thermal behavior is the anticipated existence of dissipative trapped particle modes. A possible scheme for controlling the strength of these modes was found. The scheme involves varying the cold fueling profile. A one dimensional multifluid transport code was used to simulate plasma behavior. A multiregime model for particle and energy transport was incorporated based on pseudoclassical, trapped electron, and trapped ion regimes used elsewhere in simulation of large tokamaks. Fueling profiles peaked toward the plasma edge may provide a means for reducing density-gradient-driven trapped particle modes, thus reducing diffusion and conduction losses

  17. Development of general-purpose particle and heavy ion transport monte carlo code

    International Nuclear Information System (INIS)

    Iwase, Hiroshi; Nakamura, Takashi; Niita, Koji

    2002-01-01

    The high-energy particle transport code NMTC/JAM, which has been developed at JAERI, was improved for the high-energy heavy ion transport calculation by incorporating the JQMD code, the SPAR code and the Shen formula. The new NMTC/JAM named PHITS (Particle and Heavy-Ion Transport code System) is the first general-purpose heavy ion transport Monte Carlo code over the incident energies from several MeV/nucleon to several GeV/nucleon. (author)

  18. Development of life cycle water-demand coefficients for coal-based power generation technologies

    International Nuclear Information System (INIS)

    Ali, Babkir; Kumar, Amit

    2015-01-01

    Highlights: • We develop water consumption and withdrawals coefficients for coal power generation. • We develop life cycle water footprints for 36 coal-based electricity generation pathways. • Different coal power generation technologies were assessed. • Sensitivity analysis of plant performance and coal transportation on water demand. - Abstract: This paper aims to develop benchmark coefficients for water consumption and water withdrawals over the full life cycle of coal-based power generation. This study considered not only all of the unit operations involved in the full electricity generation life cycle but also compared different coal-based power generating technologies. Overall this study develops the life cycle water footprint for 36 different coal-based electricity generation pathways. Power generation pathways involving new technologies of integrated gasification combined cycle (IGCC) or ultra supercritical technology with coal transportation by conventional means and using dry cooling systems have the least complete life cycle water-demand coefficients of about 1 L/kW h. Sensitivity analysis is conducted to study the impact of power plant performance and coal transportation on the water demand coefficients. The consumption coefficient over life cycle of ultra supercritical or IGCC power plants are 0.12 L/kW h higher when conventional transportation of coal is replaced by coal-log pipeline. Similarly, if the conventional transportation of coal is replaced by its transportation in the form of a slurry through a pipeline, the consumption coefficient of a subcritical power plant increases by 0.52 L/kW h

  19. Intrinsic reaction kinetics of coal char combustion by direct measurement of ignition temperature

    International Nuclear Information System (INIS)

    Kim, Ryang-Gyoon; Jeon, Chung-Hwan

    2014-01-01

    A wire heating reactor that can use a synchronized experimental method was developed to obtain the intrinsic kinetics of large coal char particles ranging in size from 0.4 to 1 mm. This synchronization system consists of three parts: a thermocouple wire for both heating and direct measurement of the particle temperature, a photodetector sensor for determining ignition/burnout points by measuring the intensity of luminous emission from burning particles, and a high-speed camera–long-distance microscope for observing and recording the movement of luminous zone directly. Coal char ignition was found to begin at a spot on the particle's external surface and then moved across the entire particle. Moreover, the ignition point determined according to the minimum of dT/dt is a spot point and not a full growth point. The ignition temperature of the spot point rises as the particle diameter increases. A spot ignition model, which describes the ignition in terms of the internal conduction and external/internal oxygen diffusion, was then developed to evaluate the intrinsic kinetics and predict the ignition temperature of the coal char. Internal conduction was found to be important in large coal char particles because its effect becomes greater than that of oxygen diffusion as the particle diameter increases. In addition, the intrinsic kinetics of coal char obtained from the spot ignition model for two types of coal does not differ significantly from the results of previous investigators. -- Highlights: • A novel technique was used to measure the coal char particle temperature. • The ignition point determined from a dT/dt minimum is a spot ignition point. • A spot ignition model was suggested to analyze the intrinsic reaction kinetics of coal char. • Internal conduction has to be considered in order to evaluate the intrinsic kinetics for larger particle (above 1 mm)

  20. Particle transport due to magnetic fluctuations

    International Nuclear Information System (INIS)

    Stoneking, M.R.; Hokin, S.A.; Prager, S.C.; Fiksel, G.; Ji, H.; Den Hartog, D.J.

    1994-01-01

    Electron current fluctuations are measured with an electrostatic energy analyzer at the edge of the MST reversed-field pinch plasma. The radial flux of fast electrons (E>T e ) due to parallel streaming along a fluctuating magnetic field is determined locally by measuring the correlated product e B r >. Particle transport is small just inside the last closed flux surface (Γ e,mag e,total ), but can account for all observed particle losses inside r/a=0.8. Electron diffusion is found to increase with parallel velocity, as expected for diffusion in a region of field stochasticity

  1. Coal surface control for advanced physical fine coal cleaning technologies

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-01-01

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO[sub 2] emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  2. Particle transport methods for LWR dosimetry developed by the Penn State transport theory group

    International Nuclear Information System (INIS)

    Haghighat, A.; Petrovic, B.

    1997-01-01

    This paper reviews advanced particle transport theory methods developed by the Penn State Transport Theory Group (PSTTG) over the past several years. These methods have been developed in response to increasing needs for accuracy of results and for three-dimensional modeling of nuclear systems

  3. The energetic alpha particle transport method EATM

    International Nuclear Information System (INIS)

    Kirkpatrick, R.C.

    1998-02-01

    The EATM method is an evolving attempt to find an efficient method of treating the transport of energetic charged particles in a dynamic magnetized (MHD) plasma for which the mean free path of the particles and the Larmor radius may be long compared to the gradient lengths in the plasma. The intent is to span the range of parameter space with the efficiency and accuracy thought necessary for experimental analysis and design of magnetized fusion targets

  4. Measuring ash content of coal

    International Nuclear Information System (INIS)

    Clayton, C.G.; Wormald, M.R.

    1980-01-01

    An apparatus for measuring the ash content of coal is claimed. It comprises a means for irradiating a known quantity of coal in a transport container with a known dose of neutrons, a means for detecting γ-rays having a predetermined energy emitted by the irradiated coal, the γ-rays being indicative of the presence of an ash-forming element in the coal, a means for producing a signal related to the intensity of the γ-ray emission and a means responsive to the signal to provide an indication of the concentration of the ash-forming element in the coal

  5. Slagging behavior of upgraded brown coal and bituminous coal in 145 MW practical coal combustion boiler

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Katsuya; Pak, Haeyang; Takubo, Yoji [Kobe Steel, Ltd, Kobe (Japan). Mechanical Engineering Research Lab.; Tada, Toshiya [Kobe Steel, Ltd, Takasago (Japan). Coal and Energy Technology Dept.; Ueki, Yasuaki [Nagoya Univ. (Japan). Energy Science Div.; Yoshiie, Ryo; Naruse, Ichiro [Nagoya Univ. (Japan). Dept. of Mechanical Science and Engineering

    2013-07-01

    The purpose of this study is to quantitatively evaluate behaviors of ash deposition during combustion of Upgraded Brown Coal (UBC) and bituminous coal in a 145 MW practical coal combustion boiler. A blended coal consisting 20 wt% of the UBC and 80 wt% of the bituminous coal was burned for the combustion tests. Before the actual ash deposition tests, the molten slag fractions of ash calculated by chemical equilibrium calculations under the combustion condition was adopted as one of the indices to estimate the tendency of ash deposition. The calculation results showed that the molten slag fraction for UBC ash reached approximately 90% at 1,523 K. However, that for the blended coal ash became about 50%. These calculation results mean that blending the UBC with a bituminous coal played a role in decreasing the molten slag fraction. Next, the ash deposition tests were conducted, using a practical pulverized coal combustion boiler. A water-cooled stainless-steel tube was inserted in locations at 1,523 K in the boiler to measure the amount of ash deposits. The results showed that the mass of deposited ash for the blended coal increased and shape of the deposited ash particles on the tube became large and spherical. This is because the molten slag fraction in ash for the blended coal at 1,523 K increased and the surface of deposited ash became sticky. However, the mass of the deposited ash for the blended coal did not greatly increase and no slagging problems occurred for 8 days of boiler operation under the present blending conditions. Therefore, appropriate blending of the UBC with a bituminous coal enables the UBC to be used with a low ash melting point without any ash deposition problems in a practical boiler.

  6. Particle Communication and Domain Neighbor Coupling: Scalable Domain Decomposed Algorithms for Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, M. J.; Brantley, P. S.

    2015-01-20

    In order to run Monte Carlo particle transport calculations on new supercomputers with hundreds of thousands or millions of processors, care must be taken to implement scalable algorithms. This means that the algorithms must continue to perform well as the processor count increases. In this paper, we examine the scalability of:(1) globally resolving the particle locations on the correct processor, (2) deciding that particle streaming communication has finished, and (3) efficiently coupling neighbor domains together with different replication levels. We have run domain decomposed Monte Carlo particle transport on up to 221 = 2,097,152 MPI processes on the IBM BG/Q Sequoia supercomputer and observed scalable results that agree with our theoretical predictions. These calculations were carefully constructed to have the same amount of work on every processor, i.e. the calculation is already load balanced. We also examine load imbalanced calculations where each domain’s replication level is proportional to its particle workload. In this case we show how to efficiently couple together adjacent domains to maintain within workgroup load balance and minimize memory usage.

  7. Studies for the stabilization of coal-oil mixtures. Final report, August 1978-May 1981

    Energy Technology Data Exchange (ETDEWEB)

    Botsaris, G.D.; Glazman, Y.M.; Adams-Viola, M.

    1981-01-01

    A fundamental understanding of the stabilization of coal-oil mixtures (COM) was developed. Aggregation of the coal particles was determined to control both the sedimentation and rheological properties of the COM. Sedimentation stability of COM prepared with coal, 80% < 200 mesh, is achieved by particle aggregation, which leads to the formation of a network of particles throughout the oil. The wettability of coal powders was evaluated by the Pickering emulsion test and a spherical agglomeration test to assess its effect on the stability of various COM formulations. Sedimentation stability of hydrophilic coal-oil-water mixtures (COWM) involves the formation of water bridges between the coal particles, while less stabilization of oleophilic COWM is achieved by the formation of an emulsion. Anionic SAA were least sensitive to the coal type and enhanced the aggregation stability of the suspension. The effect of cationic SAA, nonionic SAA and polymer additives depended upon the specific chemical structure of the SAA, the water content of the COM and the type of coal. The sedimentation stability of ultrafine COM was not directly due to the fineness of the powder but due to the formation of a network of flocculated particles.

  8. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    International Nuclear Information System (INIS)

    Poellaenen, R.

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has been higher

  9. Utilisation of coal for energy production in fuel cells

    Directory of Open Access Journals (Sweden)

    Dudek Magdalena

    2016-01-01

    Full Text Available In this paper a brief characterization of fuel cell technology and its possible application in sustainable energy development was described. Special attention was paid to direct carbon fuel cell technology. The direct carbon fuel cell is an electrochemical device which directly converts the chemical energy of carbonaceous based fuel into electricity without ‘flame burning’. The electrical efficiency of a DCFC is indeed very high (in practice exceeding 80%, and the product of conversion consists of almost pure CO2, eliminating the most expensive step of sequestration: the separation of carbon from flue gases. In this paper the process of electrochemical oxidation of carbon particles on the surface of oxide electrolytes at 8% mol Y2O3 in ZrO2 (8YSZ as well as cermet anode Ni-8YSZ was analysed. The graphite, carbon black powders were considered as reference solid fuels for coal samples. It was found that the main factors contributing to the electrochemical reactivity of carbon particles is not only the high carbon content in samples but also structural disorder. It was found that structurally disordered carbon-based materials are the most promising solid fuels for direct carbon solid oxide fuel cells. Special impact was placed on the consideration of coal as possible solid fuels for DC-SOFC. Statistical and economic analyses show that in the coming decades, in developing countries such as China, India, and some EU countries, coal-fuelled power plants will maintain their strong position in the power sector due to their reliability and low costs as well as the large reserves of coal and lignite in the world. Coal is mined in politically stable areas, which guarantees its easy and safe purchase and transport. The impact of the physiochemical properties of raw and purified coal on the performance of the DC-SOFC was studied. An analysis of the stability of electrical parameters was performed for a DC-SOFC operating under a load over an extended

  10. Adaptive multilevel splitting for Monte Carlo particle transport

    Directory of Open Access Journals (Sweden)

    Louvin Henri

    2017-01-01

    Full Text Available In the Monte Carlo simulation of particle transport, and especially for shielding applications, variance reduction techniques are widely used to help simulate realisations of rare events and reduce the relative errors on the estimated scores for a given computation time. Adaptive Multilevel Splitting (AMS is one of these variance reduction techniques that has recently appeared in the literature. In the present paper, we propose an alternative version of the AMS algorithm, adapted for the first time to the field of particle transport. Within this context, it can be used to build an unbiased estimator of any quantity associated with particle tracks, such as flux, reaction rates or even non-Boltzmann tallies like pulse-height tallies and other spectra. Furthermore, the efficiency of the AMS algorithm is shown not to be very sensitive to variations of its input parameters, which makes it capable of significant variance reduction without requiring extended user effort.

  11. Modeling reactive transport with particle tracking and kernel estimators

    Science.gov (United States)

    Rahbaralam, Maryam; Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-04-01

    Groundwater reactive transport models are useful to assess and quantify the fate and transport of contaminants in subsurface media and are an essential tool for the analysis of coupled physical, chemical, and biological processes in Earth Systems. Particle Tracking Method (PTM) provides a computationally efficient and adaptable approach to solve the solute transport partial differential equation. On a molecular level, chemical reactions are the result of collisions, combinations, and/or decay of different species. For a well-mixed system, the chem- ical reactions are controlled by the classical thermodynamic rate coefficient. Each of these actions occurs with some probability that is a function of solute concentrations. PTM is based on considering that each particle actually represents a group of molecules. To properly simulate this system, an infinite number of particles is required, which is computationally unfeasible. On the other hand, a finite number of particles lead to a poor-mixed system which is limited by diffusion. Recent works have used this effect to actually model incomplete mix- ing in naturally occurring porous media. In this work, we demonstrate that this effect in most cases should be attributed to a defficient estimation of the concentrations and not to the occurrence of true incomplete mixing processes in porous media. To illustrate this, we show that a Kernel Density Estimation (KDE) of the concentrations can approach the well-mixed solution with a limited number of particles. KDEs provide weighting functions of each particle mass that expands its region of influence, hence providing a wider region for chemical reactions with time. Simulation results show that KDEs are powerful tools to improve state-of-the-art simulations of chemical reactions and indicates that incomplete mixing in diluted systems should be modeled based on alternative conceptual models and not on a limited number of particles.

  12. Coal development potential in Pakistan

    Energy Technology Data Exchange (ETDEWEB)

    Khan, M N; Pelofsky, A H [eds.

    1986-01-01

    A total of 48 papers were presented, and covered the following topics: the current situation in Pakistan with respect to development and utilization of coal resources; the policies that have been responsible for the development and utilization of coal resources in Pakistan; coal development and utilization in other developing nations e.g. Indonesia, Greece, Philippines, China, Thailand and Haiti; and technological developments in coal exploration; extraction, handling, transport and utilization which could accelerate future development of Pakistan's coal resources. Specific subjects covered include the use of coal in the cement industry of Pakistan; the production of briquettes for domestic use, development and training of personnel for the coal industry; and sources of finance for coal development projects. Particular emphasis is given throughout the conference to the Lakhra coal mine/power plant project which aims to develop and effectively utilize the lignite reserves of Sind Province. 47 papers have been abstracted separately.

  13. Solar energetic particle anisotropies and insights into particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Leske, R. A., E-mail: ral@srl.caltech.edu; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Christian, E. R.; Rosenvinge, T. T. von [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-03-25

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  14. Solar energetic particle anisotropies and insights into particle transport

    Science.gov (United States)

    Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von

    2016-03-01

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  15. Development of particle and heavy ion transport code system

    International Nuclear Information System (INIS)

    Niita, Koji

    2004-01-01

    Particle and heavy ion transport code system (PHITS) is 3 dimension general purpose Monte Carlo simulation codes for description of transport and reaction of particle and heavy ion in materials. It is developed on the basis of NMTC/JAM for design and safety of J-PARC. What is PHITS, it's physical process, physical models and development process of PHITC code are described. For examples of application, evaluation of neutron optics, cancer treatment by heavy particle ray and cosmic radiation are stated. JAM and JQMD model are used as the physical model. Neutron motion in six polar magnetic field and gravitational field, PHITC simulation of trace of C 12 beam and secondary neutron track of small model of cancer treatment device in HIMAC and neutron flux in Space Shuttle are explained. (S.Y.)

  16. Optimization of magnetic switches for single particle and cell transport

    Energy Technology Data Exchange (ETDEWEB)

    Abedini-Nassab, Roozbeh; Yellen, Benjamin B., E-mail: yellen@duke.edu [Department of Mechanical Engineering and Materials Science, Duke University, Box 90300 Hudson Hall, Durham, North Carolina 27708 (United States); Joint Institute, University of Michigan—Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai 200240 (China); Murdoch, David M. [Department of Medicine, Duke University, Durham, North Carolina 27708 (United States); Kim, CheolGi [Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 711-873 (Korea, Republic of)

    2014-06-28

    The ability to manipulate an ensemble of single particles and cells is a key aim of lab-on-a-chip research; however, the control mechanisms must be optimized for minimal power consumption to enable future large-scale implementation. Recently, we demonstrated a matter transport platform, which uses overlaid patterns of magnetic films and metallic current lines to control magnetic particles and magnetic-nanoparticle-labeled cells; however, we have made no prior attempts to optimize the device geometry and power consumption. Here, we provide an optimization analysis of particle-switching devices based on stochastic variation in the particle's size and magnetic content. These results are immediately applicable to the design of robust, multiplexed platforms capable of transporting, sorting, and storing single cells in large arrays with low power and high efficiency.

  17. Development of a phenomenological model for coal slurry atomization

    Energy Technology Data Exchange (ETDEWEB)

    Dooher, J.P. [Adelphi Univ., Garden City, NY (United States)

    1995-11-01

    Highly concentrated suspensions of coal particles in water or alternate fluids appear to have a wide range of applications for energy production. For enhanced implementation of coal slurry fuel technology, an understanding of coal slurry atomization as a function coal and slurry properties for specific mechanical configurations of nozzle atomizers should be developed.

  18. Sawtooth driven particle transport in tokamak plasmas

    International Nuclear Information System (INIS)

    Nicolas, T.

    2013-01-01

    The radial transport of particles in tokamaks is one of the most stringent issues faced by the magnetic confinement fusion community, because the fusion power is proportional to the square of the pressure, and also because accumulation of heavy impurities in the core leads to important power losses which can lead to a 'radiative collapse'. Sawteeth and the associated periodic redistribution of the core quantities can significantly impact the radial transport of electrons and impurities. In this thesis, we perform numerical simulations of sawteeth using a nonlinear tridimensional magnetohydrodynamic code called XTOR-2F to study the particle transport induced by sawtooth crashes. We show that the code recovers, after the crash, the fine structures of electron density that are observed with fast-sweeping reflectometry on the JET and TS tokamaks. The presence of these structure may indicate a low efficiency of the sawtooth in expelling the impurities from the core. However, applying the same code to impurity profiles, we show that the redistribution is quantitatively similar to that predicted by Kadomtsev's model, which could not be predicted a priori. Hence finally the sawtooth flushing is efficient in expelling impurities from the core. (author) [fr

  19. Scalable Domain Decomposed Monte Carlo Particle Transport

    Energy Technology Data Exchange (ETDEWEB)

    O' Brien, Matthew Joseph [Univ. of California, Davis, CA (United States)

    2013-12-05

    In this dissertation, we present the parallel algorithms necessary to run domain decomposed Monte Carlo particle transport on large numbers of processors (millions of processors). Previous algorithms were not scalable, and the parallel overhead became more computationally costly than the numerical simulation.

  20. Coal pre-feasibility assessment

    International Nuclear Information System (INIS)

    1994-03-01

    It examines the feasibility of using coal from the Delbi-Moya reserve for domestic or institutional cooking, industrial process heating and electricity generation. It indicates as coal can be mined from the Delbi reserve at a cost of EB110/tonne, can be processed for EB400/tonne and transported to Addis Ababa for 150/tonne. The wholesale price of coal briquettes in Addis Ababa would be EB750/tonne. Domestic users can save EB475 per year by switching from charcoal to coal briquettes. And for a 50MW plant annual saving would be of the order of EB30 million per year. 11 tab. 4 figs. 6 appendex

  1. Measurement and modeling of advanced coal conversion processes, Volume II

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, P.R.; Serio, M.A.; Hamblen, D.G. [and others

    1993-06-01

    A two dimensional, steady-state model for describing a variety of reactive and nonreactive flows, including pulverized coal combustion and gasification, is presented. The model, referred to as 93-PCGC-2 is applicable to cylindrical, axi-symmetric systems. Turbulence is accounted for in both the fluid mechanics equations and the combustion scheme. Radiation from gases, walls, and particles is taken into account using a discrete ordinates method. The particle phase is modeled in a lagrangian framework, such that mean paths of particle groups are followed. A new coal-general devolatilization submodel (FG-DVC) with coal swelling and char reactivity submodels has been added.

  2. DRIFT-INDUCED PERPENDICULAR TRANSPORT OF SOLAR ENERGETIC PARTICLES

    International Nuclear Information System (INIS)

    Marsh, M. S.; Dalla, S.; Kelly, J.; Laitinen, T.

    2013-01-01

    Drifts are known to play a role in galactic cosmic ray transport within the heliosphere and are a standard component of cosmic ray propagation models. However, the current paradigm of solar energetic particle (SEP) propagation holds the effects of drifts to be negligible, and they are not accounted for in most current SEP modeling efforts. We present full-orbit test particle simulations of SEP propagation in a Parker spiral interplanetary magnetic field (IMF), which demonstrate that high-energy particle drifts cause significant asymmetric propagation perpendicular to the IMF. Thus in many cases the assumption of field-aligned propagation of SEPs may not be valid. We show that SEP drifts have dependencies on energy, heliographic latitude, and charge-to-mass ratio that are capable of transporting energetic particles perpendicular to the field over significant distances within interplanetary space, e.g., protons of initial energy 100 MeV propagate distances across the field on the order of 1 AU, over timescales typical of a gradual SEP event. Our results demonstrate the need for current models of SEP events to include the effects of particle drift. We show that the drift is considerably stronger for heavy ion SEPs due to their larger mass-to-charge ratio. This paradigm shift has important consequences for the modeling of SEP events and is crucial to the understanding and interpretation of in situ observations

  3. Concentrations of lithium in Chinese coals

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Yuzhuang; Li, Yanheng; Zhao, Cunliang; Lin, Mingyue; Wang, Jinxi; Qin, Shenjun [Hebei University of Engineering, Handan (China). Key Laboratory of Resource Exploration Research of Hebei Province

    2010-04-15

    Lithium is an important energy metal. Its concentrations in coals have been studied by many geologists. Its average content is only 14 mg/kg in the coals of the world. Lithium has never been reported as a coal associated deposit before. In order to study the concentrations in Chinese coals, 159 coal and gangue samples were taken from six coal mines and were determined by ICP-MS and the minerals in the samples were identified by X-ray powder diffraction. The results indicate that the Li contents in the coal samples from the Antaibao Coal Mine have reached the industry grade of coal associated deposits. In Tongxing Coal Mine, Li contents in the coal floor rock samples have reached the industry grade of independent lithium deposits. Main minerals are polylithionite, triphylite, zinnwaldite, lithionite and cookeite, which were transported into the peats. Therefore, lithium enriched is most likely in the synsedimentary stage in both coal mines. Furthermore, a revised average Li content in Chinese coals was given.

  4. Modelling of shear effects on thermal and particle transport in advanced Tokamak scenarios

    International Nuclear Information System (INIS)

    Moreau, D.; Voitsekhovitch, I.; Baker, D.R.

    1999-01-01

    Evolution of thermal and particle internal transport barriers (ITBs) is studied by modelling the time-dependent energy and particle balance in DIII-D plasmas with reversed magnetic shear configurations and in JET discharges with monotonic or slightly reversed q-profiles and large ExB rotation shear. Simulations are performed with semi-empirical models for anomalous diffusion and particle pinch. Stabilizing effects of magnetic and ExB rotation shears are included in anomalous particle and heat diffusivity. Shear effects on particle and thermal transport are compared. Improved particle and energy confinement with the formation of an internal transport barrier (ITB) has been produced in DIII-D plasmas during current ramp-up accompanied with neutral beam injection (NBI). These plasmas are characterized by strong reversed magnetic shear and large ExB rotation shear which provide the reduction of anomalous fluxes. The formation of ITB's in the optimized shear (OS) JET scenario starts with strong NBI heating in a target plasma with a flat or slightly reversed q-profile pre-formed during current ramp-up with ion cyclotron resonance heating (ICRH). Our paper presents the modelling of particle and thermal transport for these scenarios. (authors)

  5. Dust particle diffusion in ion beam transport region

    Energy Technology Data Exchange (ETDEWEB)

    Miyamoto, N.; Okajima, Y.; Romero, C. F.; Kuwata, Y.; Kasuya, T.; Wada, M., E-mail: mwada@mail.doshisha.ac.jp [Graduate school of Science and Engineering, Doshisha University, Kyotanabe, Kyoto 610-0321 (Japan)

    2016-02-15

    Dust particles of μm size produced by a monoplasmatron ion source are observed by a laser light scattering. The scattered light signal from an incident laser at 532 nm wavelength indicates when and where a particle passes through the ion beam transport region. As the result, dusts with the size more than 10 μm are found to be distributed in the center of the ion beam, while dusts with the size less than 10 μm size are distributed along the edge of the ion beam. Floating potential and electron temperature at beam transport region are measured by an electrostatic probe. This observation can be explained by a charge up model of the dust in the plasma boundary region.

  6. Large-eddy simulation of swirling pulverized-coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Hu, L.Y.; Luo, Y.H. [Shanghai Jiaotong Univ. (China). School of Mechanical Engineering; Zhou, L.X.; Xu, C.S. [Tsinghua Univ., Beijing (China). Dept. of Engineering Mechanics

    2013-07-01

    A Eulerian-Lagrangian large-eddy simulation (LES) with a Smagorinsky-Lilly sub-grid scale stress model, presumed-PDF fast chemistry and EBU gas combustion models, particle devolatilization and particle combustion models are used to study the turbulence and flame structures of swirling pulverized-coal combustion. The LES statistical results are validated by the measurement results. The instantaneous LES results show that the coherent structures for pulverized coal combustion is stronger than that for swirling gas combustion. The particles are concentrated in the periphery of the coherent structures. The flame is located at the high vorticity and high particle concentration zone.

  7. Fluidised bed gasification of low grade South African coals

    CSIR Research Space (South Africa)

    North, BC

    2006-09-01

    Full Text Available gasifiers. Fluidised bed Entrained flow Coal particle size 0.5 mm – 5 mm 0 – 0.5 mm Coal moisture Dry Dry/slurry Coal type Non-caking coals Any coal Ash in coal < 60% < 30% Gasification agents Air/steam/oxygen Steam/oxygen Gasification... properties important for fluidised bed gasification are: square4 Coal reactivity in atmospheres of CO2 and H2O square4 Caking index and free swelling index (FSI) square4 Ash fusion temperature (AFT) 5.1 Coal reactivity The gasifcation reactions (1...

  8. Applying Dispersive Changes to Lagrangian Particles in Groundwater Transport Models

    Science.gov (United States)

    Konikow, Leonard F.

    2010-01-01

    Method-of-characteristics groundwater transport models require that changes in concentrations computed within an Eulerian framework to account for dispersion be transferred to moving particles used to simulate advective transport. A new algorithm was developed to accomplish this transfer between nodal values and advecting particles more precisely and realistically compared to currently used methods. The new method scales the changes and adjustments of particle concentrations relative to limiting bounds of concentration values determined from the population of adjacent nodal values. The method precludes unrealistic undershoot or overshoot for concentrations of individual particles. In the new method, if dispersion causes cell concentrations to decrease during a time step, those particles in the cell having the highest concentration will decrease the most, and those with the lowest concentration will decrease the least. The converse is true if dispersion is causing concentrations to increase. Furthermore, if the initial concentration on a particle is outside the range of the adjacent nodal values, it will automatically be adjusted in the direction of the acceptable range of values. The new method is inherently mass conservative. ?? US Government 2010.

  9. Experimental investigations on drying behaviour of Bulgarian brown coal in steam fluidized bed

    International Nuclear Information System (INIS)

    Buschsieweke, F.; Koenig, J.

    1999-01-01

    The main targets were: to investigate the parameters for optimizing the drying process as steam pressure, fluidization velocity and particle size; to identify the cost of drying and combustion processes considering the necessity of milling the coal (raw or dried). Test series with Bulgarian brown coal from Maritsa-East has been made. Two fractions with different particle size was got: A from 0 to 1.6 mm (0.5 mm average) and B, resp. 1.6 to 6.3 (1.7 mm). The particle size is depending on the coal moisture. The fluidized bed process with the both fractions was performed at variations of the following parameters: steam velocity (0.07 to 1.7 m/s); raw coal feed rate (4 to 16 kg/h); raw moisture (18 to 43 wt %) and pressure (1.3 and 5 bar). Also the shrinking behaviour of the coal in different pore sizes was tested. Comparing pore size of the oven dried coal to the fluidized bed dried coal, significantly higher inner surface for the oven dried coal was established. To indicate the pore size of raw coal samples were made by freeze drying. Ice expanding should cause higher inner surface compared to oven drying method but no significant difference was established. A significant increase of heat transfer of the particles from A fraction (300 to 350 W/m 2 K0 compared to B (200 to 230 W/m 2 K) was determined. The heat transfer coefficient increased at increasing of the raw coal feed rate, mostly significant for A, due to higher particle contact. In conclusion: the particle convective mechanism is predominant for the heat transfer; development of pressurized fluidized bed drying is not of interest and the question about the total expenditure for crushing and milling remains open

  10. A study on the particle penetration in RMS Right Single Quotation Marks particle transport system

    International Nuclear Information System (INIS)

    Son, S. M.; Oh, S. H.; Choi, C. R.

    2014-01-01

    In nuclear facilities, a radiation monitoring system (RMS) monitors the exhaust gas containing the radioactive material. Samples of exhaust gas are collected in the downstream region of air cleaning units (ACUs) in order to examine radioactive materials. It is possible to predict an amount of radioactive material by analyzing the corrected samples. Representation of the collected samples should be assured in order to accurately sense and measure of radioactive materials. The radius of curvature is mainly 5 times of tube diameter. Sometimes, a booster fan is additionally added to enhance particle penetration rate... In this study, particle penetrations are calculated to evaluate particle penetration rate with various design parameters (tube lengths, tube declined angles, radius of curvatures, etc). The particle penetration rates have been calculated for several elements in the particle transport system. In general, the horizontal length of tube and the number of bending tube have a big impact on the penetration rate in the particle transport system. If the sampling location is far from the radiation monitoring system, additional installation of booster fans could be considered in case of large diameter tubes, but is not recommended in case of small diameter tube. In order to enhance particle penetration rate, the following works are recommended by priority. 1) to reduce the interval between sampling location and radiation monitoring system 2) to reduce the number of the bending tube

  11. Modelling and analysis of global coal markets

    International Nuclear Information System (INIS)

    Trueby, Johannes

    2013-01-01

    International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global

  12. Modelling and analysis of global coal markets

    Energy Technology Data Exchange (ETDEWEB)

    Trueby, Johannes

    2013-01-17

    International Steam Coal Trade. In this paper, we analyse steam coal market equilibria in the years 2006 and 2008 by testing for two possible market structure scenarios: perfect competition and an oligopoly setup with major exporters competing in quantities. The assumed oligopoly scenario cannot explain market equilibria for any year. While we find that the competitive model simulates market equilibria well in 2006, the competitive model is not able to reproduce real market outcomes in 2008. The analysis shows that not all available supply capacity was utilised in 2008. We conclude that either unknown capacity bottlenecks or more sophisticated non-competitive strategies were the cause for the high prices in 2008. Chapter 4 builds upon the findings of the analysis in chapter 3 and adds a more detailed representation of domestic markets. The corresponding essay is titled Nations as Strategic Players in Global Commodity Markets: Evidence from World Coal Trade. In this chapter we explore the hypothesis that export policies and trade patterns of national players in the steam coal market are consistent with non-competitive market behaviour. We test this hypothesis by developing a static equilibrium model which is able to model coal producing nations as strategic players. We explicitly account for integrated seaborne trade and domestic markets. The global steam coal market is simulated under several imperfect market structure setups. We find that trade and prices of a China - Indonesia duopoly fits the real market outcome best and that real Chinese export quotas in 2008 were consistent with simulated exports under a Cournot-Nash strategy. Chapter 5 looks at the long-term effect of Chinese energy system planning decisions. The time horizon is 2006 to 2030. The analysis in this chapter combines a dynamic equilibrium model with the scenario analysis technique. The corresponding essay is titled Coal Lumps vs. Electrons: How Do Chinese Bulk Energy Transport Decisions Affect the Global

  13. A generalized transport-velocity formulation for smoothed particle hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Chi; Hu, Xiangyu Y., E-mail: xiangyu.hu@tum.de; Adams, Nikolaus A.

    2017-05-15

    The standard smoothed particle hydrodynamics (SPH) method suffers from tensile instability. In fluid-dynamics simulations this instability leads to particle clumping and void regions when negative pressure occurs. In solid-dynamics simulations, it results in unphysical structure fragmentation. In this work the transport-velocity formulation of Adami et al. (2013) is generalized for providing a solution of this long-standing problem. Other than imposing a global background pressure, a variable background pressure is used to modify the particle transport velocity and eliminate the tensile instability completely. Furthermore, such a modification is localized by defining a shortened smoothing length. The generalized formulation is suitable for fluid and solid materials with and without free surfaces. The results of extensive numerical tests on both fluid and solid dynamics problems indicate that the new method provides a unified approach for multi-physics SPH simulations.

  14. FLUKA: A Multi-Particle Transport Code

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, A.; Sala, P.R.; /CERN /INFN, Milan; Fasso, A.; /SLAC; Ranft, J.; /Siegen U.

    2005-12-14

    This report describes the 2005 version of the Fluka particle transport code. The first part introduces the basic notions, describes the modular structure of the system, and contains an installation and beginner's guide. The second part complements this initial information with details about the various components of Fluka and how to use them. It concludes with a detailed history and bibliography.

  15. PAH contamination in soils adjacent to a coal-transporting facility in Tapin district, south Kalimantan, Indonesia.

    Science.gov (United States)

    Mizwar, Andy; Trihadiningrum, Yulinah

    2015-07-01

    This study was undertaken to determine the level of 16 polycyclic aromatic hydrocarbon (PAH), listed as priority pollutants by the United States Environmental Protection Agency (USEPA), in surface soils around a coal-transporting facility in the western part of South Kalimantan, Indonesia. Three composite soil samples were collected from a coal stockpile, coal-hauling road, and coal port. Identification and quantification of PAH was performed by gas chromatography-mass spectrometry. The total content of 16 USEPA-PAH ranged from 11.79 to 55.30 mg/kg with arithmetic mean value of 33.14 mg/kg and median of 32.33 mg/kg. The 16 USEPA-PAH measured levels were found to be greater compared with most of the literature values. The levels of high molecular-weight PAH (5- and 6-ring) were dominant and formed 67.77-80.69 % of the total 16 USEPA-PAH The most abundant of individual PAH are indeno[1,2,3-cd] pyrene and benzo[a]pyrene with concentration ranges of 2.11-20.56 and 1.59-17.84 mg/kg, respectively. The degree of PAH contamination and subsequent toxicity assessment suggest that the soils of the study area are highly contaminated and pose a potential health risk to humans.

  16. Ultrafine ash aerosols from coal combustion: Characterization and health effects

    Energy Technology Data Exchange (ETDEWEB)

    William P. Linak; Jong-Ik Yoo; Shirley J. Wasson; Weiyan Zhu; Jost O.L. Wendt; Frank E. Huggins; Yuanzhi Chen; Naresh Shah; Gerald P. Huffman; M. Ian Gilmour [US Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory

    2007-07-01

    Ultrafine coal fly-ash particles withdiameters less than 0.5 {mu}m typically comprise less than 1% of the total fly-ash mass. This paper reports research focused on both characterization and health effects of primary ultrafine coal ash aerosols alone. Ultrafine, fine, and coarse ash particles were segregated and collected from a coal burned in a 20 kW laboratory combustor and two additional coals burned in an externally heated drop tube furnace. Extracted samples from both combustors were characterized by transmission electron microscopy (TEM), wavelength dispersive X-ray fluorescence(WD-XRF) spectroscopy, Moessbauer spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Pulmonary inflammation was characterized by albumin concentrations in mouse lung lavage fluid after instillation of collected particles in saline solutions and a single direct inhalation exposure. Results indicate that coal ultrafine ash sometimes contains significant amounts of carbon, probably soot originating from coal tar volatiles, depending on coal type and combustion device. Surprisingly, XAFS results revealed the presence of chromium and thiophenic sulfur in the ultrafine ash particles. The instillation results suggested potential lung injury, the severity of which could be correlated with the carbon (soot) content of the ultrafines. This increased toxicity is consistent with theories in which the presence of carbon mediates transition metal (i.e., Fe) complexes, as revealed in this work by TEM and XAFS spectroscopy, promoting reactive oxygenspecies, oxidation-reduction cycling, and oxidative stress. 24 refs., 7 figs.

  17. Modeling particle transport and discoloration risk in drinking water distribution networks

    Directory of Open Access Journals (Sweden)

    J. van Summeren

    2017-10-01

    Full Text Available Discoloration of drinking water is a worldwide phenomenon caused by accumulation and subsequent remobilization of particulate matter in drinking water distribution systems (DWDSs. It contributes a substantial fraction of customer complaints to water utilities. Accurate discoloration risk predictions could improve system operation by allowing for more effective programs on cleaning and prevention actions and field measurements, but are challenged by incomplete understanding on the origins and properties of particles and a complex and not fully understood interplay of processes in distribution networks. In this paper, we assess and describe relevant hydraulic processes that govern particle transport in turbulent pipe flow, including gravitational settling, bed-load transport, and particle entrainment into suspension. We assess which transport mechanisms are dominant for a range of bulk flow velocities, particle diameters, and particle mass densities, which includes common conditions for DWDSs in the Netherlands, the UK, and Australia. Our analysis shows that the theoretically predicted particle settling velocity and threshold shear stresses for incipient particle motion are in the same range as, but more variable than, previous estimates from lab experiments, field measurements, and modeling. The presented material will be used in the future development of a numerical modeling tool to determine and predict the spatial distribution of particulate material and discoloration risk in DWDSs. Our approach is aimed at understanding specific causalities and processes, which can complement data-driven approaches.

  18. Numerical investigations for insulation particle transport phenomena in water flow

    International Nuclear Information System (INIS)

    Krepper, E.; Grahn, A.; Alt, S.; Kaestner, W.; Kratzsch, A.; Seeliger, A.

    2005-01-01

    The investigation of insulation debris generation, transport and sedimentation gains importance regarding the reactor safety research for PWR and BWR considering the long term behaviour of emergency core coolant systems during all types of LOCA. The insulation debris released near the break during LOCA consists of a mixture of very different particles concerning size, shape, consistence and other properties. Some fraction of the released insulation debris will be transported into the reactor sump where it may affect emergency core cooling. Open questions of generic interest are e.g. the sedimentation of the insulation debris in a water pool, possible re-suspension, transport in the sump water flow, particle load on strainers and corresponding difference pressure. A joint research project in cooperation with Institute of Process Technology, Process Automation and Measuring Technology (IPM) Zittau deals with the experimental investigation and the development of CFD models for the description of particle transport phenomena in coolant flow. While experiments are performed at the IPM-Zittau, theoretical work is concentrated at Forschungszentrum Rossendorf. In the present paper the basic concepts for CFD modelling are described and first results including feasibility studies are shown. During the ongoing work further results are expected. (author)

  19. Extending the Modelling Framework for Gas-Particle Systems

    DEFF Research Database (Denmark)

    Rosendahl, Lasse Aistrup

    , with very good results. Single particle combustion has been tested using a number of different particle combustion models applied to coal and straw particles. Comparing the results of these calculations to measurements on straw burnout, the results indicate that for straw, existing heterogeneous combustion...... models perform well, and may be used in high temperature ranges. Finally, the particle tracking and combustion model is applied to an existing coal and straw co- fuelled burner. The results indicate that again, the straw follows very different trajectories than the coal particles, and also that burnout...

  20. Taipower - latest projects to boost coal import levels

    Energy Technology Data Exchange (ETDEWEB)

    Hargreaves, D

    1985-05-01

    The activities are reviewd for Taipower, the state enterprise electrical power utility for Taiwan RC: its generating facilities and comparability; the status of major projects, especially the Taichung thermal project; the status of coal; coal burn performance; air pollution controls; coal ash performance; coal imports; transport logistics; including terminal facilities at the Taichung thermal power plant.

  1. Coal cleaning: A viable strategy for reduced carbon emissions and improved environment in China?

    OpenAIRE

    Glomsrød, Solveig; Taoyuan, Wei

    2003-01-01

    Abstract: China is a dominant energy consumer in a global context and current energy forecasts emphasise that China’s future energy consumption also will rely heavily on coal. The coal use is the major source of the greenhouse gas CO2 and particles causing serious health damage. This paper looks into the question if coal washing might work as low cost strategy for both CO2 and particle emission reductions. Coal washing removes dirt and rock from raw coal, resulting in a coal pr...

  2. Planning framework for the accommodation for coal development by Wollongong City

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    The major objectives of this study are to determine the significance of the coal mining industry for Wollongong City, and to provide Wollongong City with a framework for accommodating development related to the coal industry. In this first stage of the study, the significance of the coal industry to Wollongong City is broadly analysed. The results of this examination illustrate that the coal industry has a significant impact on the National, State and Local economies. Transportation has played a major role in facilitating or inhibiting the development of the coal industry over time. It is expected that transportation inputs will continue to be a major factor in the economic development of the coal, and iron and steel industries. In this context, existing transportation conditions in the study area are examined and future needs estimated. Part one therefore provides the basis for part two which examines formulation of a short term coal haulage strategy, environmental impact assessment of short and long term strategies including description of the present environment affected by the strategies, identification of environmental safeguards to be incorporated into the strategies, sources of finance, and formulation of a plan to provide council with a comprehensive approach in dealing with impacts of coal transport in a time framework.

  3. Nuclear fuel particles in the environment - characteristics, atmospheric transport and skin doses

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, R

    2002-05-01

    In the present thesis, nuclear fuel particles are studied from the perspective of their characteristics, atmospheric transport and possible skin doses. These particles, often referred to as 'hot' particles, can be released into the environment, as has happened in past years, through human activities, incidents and accidents, such as the Chernobyl nuclear power plant accident in 1986. Nuclear fuel particles with a diameter of tens of micrometers, referred to here as large particles, may be hundreds of kilobecquerels in activity and even an individual particle may present a quantifiable health hazard. The detection of individual nuclear fuel particles in the environment, their isolation for subsequent analysis and their characterisation are complicated and require well-designed sampling and tailored analytical methods. In the present study, the need to develop particle analysis methods is highlighted. It is shown that complementary analytical techniques are necessary for proper characterisation of the particles. Methods routinely used for homogeneous samples may produce erroneous results if they are carelessly applied to radioactive particles. Large nuclear fuel particles are transported differently in the atmosphere compared with small particles or gaseous species. Thus, the trajectories of gaseous species are not necessarily appropriate for calculating the areas that may receive large particle fallout. A simplified model and a more advanced model based on the data on real weather conditions were applied in the case of the Chernobyl accident to calculate the transport of the particles of different sizes. The models were appropriate in characterising general transport properties but were not able to properly predict the transport of the particles with an aerodynamic diameter of tens of micrometers, detected at distances of hundreds of kilometres from the source, using only the current knowledge of the source term. Either the effective release height has

  4. Coal Mine Dust Desquamative Chronic Interstitial Pneumonia: A Precursor of Dust-Related Diffuse Fibrosis and of Emphysema

    Directory of Open Access Journals (Sweden)

    Tomislav M Jelic

    2017-07-01

    Full Text Available Background: Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. Objective: To identify the precursor of dust-related diffuse fibrosis and emphysema. Methods: Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Results: Coal miners had 331 birefringent particles/high power field while smokers had 4 (p<0.001. Every coal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. Conclusion: The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.

  5. Coal Mine Dust Desquamative Chronic Interstitial Pneumonia: A Precursor of Dust-Related Diffuse Fibrosis and of Emphysema.

    Science.gov (United States)

    Jelic, Tomislav M; Estalilla, Oscar C; Sawyer-Kaplan, Phyllis R; Plata, Milton J; Powers, Jeremy T; Emmett, Mary; Kuenstner, John T

    2017-07-01

    Diseases associated with coal mine dust continue to affect coal miners. Elucidation of initial pathological changes as a precursor of coal dust-related diffuse fibrosis and emphysema, may have a role in treatment and prevention. To identify the precursor of dust-related diffuse fibrosis and emphysema. Birefringent silica/silicate particles were counted by standard microscope under polarized light in the alveolar macrophages and fibrous tissue in 25 consecutive autopsy cases of complicated coal worker's pneumoconiosis and in 21 patients with tobacco-related respiratory bronchiolitis. Coal miners had 331 birefringent particles/high power field while smokers had 4 (pcoal miner had intra-alveolar macrophages with silica/silicate particles and interstitial fibrosis ranging from minimal to extreme. All coal miners, including those who never smoked, had emphysema. Fibrotic septa of centrilobular emphysema contained numerous silica/silicate particles while only a few were present in adjacent normal lung tissue. In coal miners who smoked, tobacco-associated interstitial fibrosis was replaced by fibrosis caused by silica/silicate particles. The presence of silica/silicate particles and anthracotic pigment-laden macrophages inside the alveoli with various degrees of interstitial fibrosis indicated a new disease: coal mine dust desquamative chronic interstitial pneumonia, a precursor of both dust-related diffuse fibrosis and emphysema. In studied coal miners, fibrosis caused by smoking is insignificant in comparison with fibrosis caused by silica/silicate particles. Counting birefringent particles in the macrophages from bronchioalveolar lavage may help detect coal mine dust desquamative chronic interstitial pneumonia, and may initiate early therapy and preventive measures.

  6. Monte Carlo simulations of the particle transport in semiconductor detectors of fast neutrons

    International Nuclear Information System (INIS)

    Sedlačková, Katarína; Zaťko, Bohumír; Šagátová, Andrea; Nečas, Vladimír

    2013-01-01

    Several Monte Carlo all-particle transport codes are under active development around the world. In this paper we focused on the capabilities of the MCNPX code (Monte Carlo N-Particle eXtended) to follow the particle transport in semiconductor detector of fast neutrons. Semiconductor detector based on semi-insulating GaAs was the object of our investigation. As converter material capable to produce charged particles from the (n, p) interaction, a high-density polyethylene (HDPE) was employed. As the source of fast neutrons, the 239 Pu–Be neutron source was used in the model. The simulations were performed using the MCNPX code which makes possible to track not only neutrons but also recoiled protons at all interesting energies. Hence, the MCNPX code enables seamless particle transport and no other computer program is needed to process the particle transport. The determination of the optimal thickness of the conversion layer and the minimum thickness of the active region of semiconductor detector as well as the energy spectra simulation were the principal goals of the computer modeling. Theoretical detector responses showed that the best detection efficiency can be achieved for 500 μm thick HDPE converter layer. The minimum detector active region thickness has been estimated to be about 400 μm. -- Highlights: ► Application of the MCNPX code for fast neutron detector design is demonstrated. ► Simulations of the particle transport through conversion film of HDPE are presented. ► Simulations of the particle transport through detector active region are presented. ► The optimal thickness of the HDPE conversion film has been calculated. ► Detection efficiency of 0.135% was reached for 500 μm thick HDPE conversion film

  7. Testing of a "smart-pebble" for measuring particle transport statistics

    Science.gov (United States)

    Kitsikoudis, Vasileios; Avgeris, Loukas; Valyrakis, Manousos

    2017-04-01

    This paper presents preliminary results from novel experiments aiming to assess coarse sediment transport statistics for a range of transport conditions, via the use of an innovative "smart-pebble" device. This device is a waterproof sphere, which has 7 cm diameter and is equipped with a number of sensors that provide information about the velocity, acceleration and positioning of the "smart-pebble" within the flow field. A series of specifically designed experiments are carried out to monitor the entrainment of a "smart-pebble" for fully developed, uniform, turbulent flow conditions over a hydraulically rough bed. Specifically, the bed surface is configured to three sections, each of them consisting of well packed glass beads of slightly increasing size at the downstream direction. The first section has a streamwise length of L1=150 cm and beads size of D1=15 mm, the second section has a length of L2=85 cm and beads size of D2=22 mm, and the third bed section has a length of L3=55 cm and beads size of D3=25.4 mm. Two cameras monitor the area of interest to provide additional information regarding the "smart-pebble" movement. Three-dimensional flow measurements are obtained with the aid of an acoustic Doppler velocimeter along a measurement grid to assess the flow forcing field. A wide range of flow rates near and above the threshold of entrainment is tested, while using four distinct densities for the "smart-pebble", which can affect its transport speed and total momentum. The acquired data are analyzed to derive Lagrangian transport statistics and the implications of such an important experiment for the transport of particles by rolling are discussed. The flow conditions for the initiation of motion, particle accelerations and equilibrium particle velocities (translating into transport rates), statistics of particle impact and its motion, can be extracted from the acquired data, which can be further compared to develop meaningful insights for sediment transport

  8. Mechanism for Particle Transport and Size Sorting via Low-Frequency Vibrations

    Science.gov (United States)

    Sherrit, Stewart; Scott, James S.; Bar-Cohen, Yoseph; Badescu, Mircea; Bao, Xiaoqi

    2010-01-01

    There is a need for effective sample handling tools to deliver and sort particles for analytical instruments that are planned for use in future NASA missions. Specifically, a need exists for a compact mechanism that allows transporting and sieving particle sizes of powdered cuttings and soil grains that may be acquired by sampling tools such as a robotic scoop or drill. The required tool needs to be low mass and compact to operate from such platforms as a lander or rover. This technology also would be applicable to sample handling when transporting samples to analyzers and sorting particles by size.

  9. Atmospheric fate and transport of fine volcanic ash: Does particle shape matter?

    Science.gov (United States)

    White, C. M.; Allard, M. P.; Klewicki, J.; Proussevitch, A. A.; Mulukutla, G.; Genareau, K.; Sahagian, D. L.

    2013-12-01

    Volcanic ash presents hazards to infrastructure, agriculture, and human and animal health. In particular, given the economic importance of intercontinental aviation, understanding how long ash is suspended in the atmosphere, and how far it is transported has taken on greater importance. Airborne ash abrades the exteriors of aircraft, enters modern jet engines and melts while coating interior engine parts causing damage and potential failure. The time fine ash stays in the atmosphere depends on its terminal velocity. Existing models of ash terminal velocities are based on smooth, quasi-spherical particles characterized by Stokes velocity. Ash particles, however, violate the various assumptions upon which Stokes flow and associated models are based. Ash particles are non-spherical and can have complex surface and internal structure. This suggests that particle shape may be one reason that models fail to accurately predict removal rates of fine particles from volcanic ash clouds. The present research seeks to better parameterize predictive models for ash particle terminal velocities, diffusivity, and dispersion in the atmospheric boundary layer. The fundamental hypothesis being tested is that particle shape irreducibly impacts the fate and transport properties of fine volcanic ash. Pilot studies, incorporating modeling and experiments, are being conducted to test this hypothesis. Specifically, a statistical model has been developed that can account for actual volcanic ash size distributions, complex ash particle geometry, and geometry variability. Experimental results are used to systematically validate and improve the model. The experiments are being conducted at the Flow Physics Facility (FPF) at UNH. Terminal velocities and dispersion properties of fine ash are characterized using still air drop experiments in an unconstrained open space using a homogenized mix of source particles. Dispersion and sedimentation dynamics are quantified using particle image

  10. Kinetics of coal pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Seery, D.J.; Freihaut, J.D.; Proscia, W.M. (United Technologies Research Center, East Hartford, CT (USA)); Howard, J.B.; Peters, W.; Hsu, J.; Hajaligol, M.; Sarofim, A. (Massachusetts Inst. of Tech., Cambridge, MA (USA)); Jenkins, R.; Mallin, J.; Espindola-Merin, B. (Pennsylvania State Univ., University Park, PA (USA)); Essenhigh, R.; Misra, M.K. (Ohio State Univ., Columbus, OH (USA))

    1989-07-01

    This report contains results of a coordinated, multi-laboratory investigation of coal devolatilization. Data is reported pertaining to the devolatilization for bituminous coals over three orders of magnitude in apparent heating rate (100 to 100,000 + {degree}C/sec), over two orders of magnitude in particle size (20 to 700 microns), final particle temperatures from 400 to 1600{degree}C, heat transfer modes ranging from convection to radiative, ambient pressure ranging from near vacuum to one atmosphere pressure. The heat transfer characteristics of the reactors are reported in detail. It is assumed the experimental results are to form the basis of a devolatilization data base. Empirical rate expressions are developed for each phase of devolatilization which, when coupled to an awareness of the heat transfer rate potential of a particular devolatilization reactor, indicate the kinetics emphasized by a particular system reactor plus coal sample. The analysis indicates the particular phase of devolatilization that will be emphasized by a particular reactor type and, thereby, the kinetic expressions appropriate to that devolatilization system. Engineering rate expressions are developed from the empirical rate expressions in the context of a fundamental understanding of coal devolatilization developed in the course of the investigation. 164 refs., 223 figs., 44 tabs.

  11. Coal information 1996

    International Nuclear Information System (INIS)

    1997-01-01

    Coal Information (1997 edition) is the latest edition of a publication that has been produced annually by the IEA since 1983. The report is intended to provide both Member countries of the OECD and those employed in all sectors of the coal industry with information on current world coal market trends and long-term prospects. It includes information on coal prices, demand, trade, supply, production capacity, transport, environmental issues (including emission standards for coal-fired boilers), coal ports, coal-fired power stations and coal used in non -OECD countries. Part I of the publication contains a wide ranging review of world coal market developments in 1996 and current prospects to 2010. The review is based on historical data of OECD energy supply and demand, data on other world regions, projections of OECD coal supply, demand and trade and information provided by the CIAB. Part II provides, in tabular and graphical form, a more detailed and comprehensive statistical picture of coal developments and future prospects for coal in the OECD, by region and for individual Member countries. Readers interested in projections are strongly advised to read the notes for individual countries in Principles and Definitions in Part II. Coal statistics for non-OECD countries are presented in Part III of the book. Summary data are available on hard coal supply and end-use statistics for about 40 countries and regions world-wide. Data are based on official national submissions to the United Nations in Geneva and New York, national energy publications, information provided to the IEA Secretariat by national statistical offices as well as other unofficial Secretariat sources. Further information on coal used in non-OECD countries is published annually by the IEA in Energy Statistics and Balances of Non-OECD Countries. Also included in Part III are the Survey of Coal Ports world-wide and the Survey of Coal-fired Power Stations in coal-importing countries

  12. Characterization and supply of coal-based fuels

    Energy Technology Data Exchange (ETDEWEB)

    1989-06-01

    Contract objectives are as follows: Develop fuel specifications to serve combustor requirements. Select coals having appropriate compositional and quality characteristics as well as an economically attractive reserve base; Provide quality assurance for both the parent coals and the fuel forms; and deliver premium coal-based fuels to combustor developers as needed for their contract work. Progress is discussed, particulary in slurry fuel preparation and particle size distribution.

  13. Coproduction of transportation fuels in advanced IGCCs via coal and biomass mixtures

    International Nuclear Information System (INIS)

    Chen, Qin; Rao, Ashok; Samuelsen, Scott

    2015-01-01

    Highlights: • Coproduction of electricity and transportation fuels with carbon capture. • Switchgrass biomass is cofed with bituminous coal or lignite. • Cost of Fischer–Tropsch liquids is comparable to longer term price projections of crude oil. • Ethanol costs more than gasoline but greenhouse gas emissions will be lower. • Cost of hydrogen is lower than the DoE announced goal of $3/kg. - Abstract: Converting abundant fossil resources of coal to alternative transportation fuels is a promising option for countries heavily dependent on petroleum imports if plants are equipped with carbon capture for sequestration and cofed with biomass (30% by weight of the total feed on a dry basis), an essentially carbon neutral fuel, without penalizing the process economics excessively. A potential exists to improve both thermal efficiency and economics of such plants by taking advantage of the synergies of coproducing electricity using advanced technologies under development. Three types of transportation fuels are considered. Fischer–Tropsch (F–T) liquids consisting predominantly of waxes could be processed in existing refineries while displacing petroleum and the refined products introduced into the market place at the present time or in the near term without requiring changes to the existing infrastructure. Ethanol could potentially serve in the not so distant future (or phased in by blending with conventional liquid fuels). Hydrogen which could play a dominant role in the more distant future being especially suitable to the fuel cell hybrid vehicle (FCHV). Two types of coal along with biomass cofeed are evaluated; bituminous coal at $42.0/dry tonne, lignite at $12.0/dry tonne, and switchgrass at $99.0/dry tonne. The calculated cost for F–T liquids ranged from $77.8/bbl to $86.6/bbl (or $0.0177 to 0.0197/MJ LHV) depending on the feedstock, which is comparable to the projected longer term market price of crude oil at ∼$80/bbl when supply and demand reach a

  14. Investigation of a separation process involving liquid-water-coal systems

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Jr, D V; Burry, W

    1987-01-01

    A liquid-liquid-solid separation procedure wherein a water-oil-coal-mineral matter slurry is allowed to come to equilibrium through mechanical agitation has for many years been applied to the separation of coal from mineral matter. The product is a black cottage cheese-like mass of agglomerated coal particles and oil suspended in the excess water which supports the dispersed mineral matter particles. A liquid bridge model which was proposed by earlier investigators is reviewed critically and used to estimate the free energy per unit area of the separation of coals of different ranks. Observations of the kinetics of the process suggest that the simple liquid bridge model is insufficient, probably due to the heterogeneous surfaces of the coal. An alternative model is proposed. 14 references.

  15. High energy particle transport code NMTC/JAM

    International Nuclear Information System (INIS)

    Niita, Koji; Meigo, Shin-ichiro; Takada, Hiroshi; Ikeda, Yujiro

    2001-03-01

    We have developed a high energy particle transport code NMTC/JAM, which is an upgraded version of NMTC/JAERI97. The applicable energy range of NMTC/JAM is extended in principle up to 200 GeV for nucleons and mesons by introducing the high energy nuclear reaction code JAM for the intra-nuclear cascade part. For the evaporation and fission process, we have also implemented a new model, GEM, by which the light nucleus production from the excited residual nucleus can be described. According to the extension of the applicable energy, we have upgraded the nucleon-nucleus non-elastic, elastic and differential elastic cross section data by employing new systematics. In addition, the particle transport in a magnetic field has been implemented for the beam transport calculations. In this upgrade, some new tally functions are added and the format of input of data has been improved very much in a user friendly manner. Due to the implementation of these new calculation functions and utilities, consequently, NMTC/JAM enables us to carry out reliable neutronics study of a large scale target system with complex geometry more accurately and easily than before. This report serves as a user manual of the code. (author)

  16. Production and global transport of Titan's sand particles

    Science.gov (United States)

    Barnes, Jason W.; Lorenz, Ralph D.; Radebaugh, Jani; Hayes, Alexander G.; Arnold, Karl; Chandler, Clayton

    2015-06-01

    Previous authors have suggested that Titan's individual sand particles form by either sintering or by lithification and erosion. We suggest two new mechanisms for the production of Titan's organic sand particles that would occur within bodies of liquid: flocculation and evaporitic precipitation. Such production mechanisms would suggest discrete sand sources in dry lakebeds. We search for such sources, but find no convincing candidates with the present Cassini Visual and Infrared Mapping Spectrometer coverage. As a result we propose that Titan's equatorial dunes may represent a single, global sand sea with west-to-east transport providing sources and sinks for sand in each interconnected basin. The sand might then be transported around Xanadu by fast-moving Barchan dune chains and/or fluvial transport in transient riverbeds. A river at the Xanadu/Shangri-La border could explain the sharp edge of the sand sea there, much like the Kuiseb River stops the Namib Sand Sea in southwest Africa on Earth. Future missions could use the composition of Titan's sands to constrain the global hydrocarbon cycle.

  17. Characterization of coal and char reactivity as a function of burn-off

    Energy Technology Data Exchange (ETDEWEB)

    Biede, O.; Swane Lund, J. [DTU, Dept. of Energy Engineering (Denmark); Holst Soerensen, L. [Risoe National Lab. (Denmark); Peck, R.E. [Arizona State University (United States)

    1996-12-01

    Four coal types have been tested under varying burning conditions in three high-temperature experimental facilities: A 1.3 MW test furnace, an entrained flow reactor and a down-fired tube furnace with a flat flame burner have been used to produce char samples. More than one hundred partly burned samples with burn-off from 30% to 99% have been collected from the experimental facilities, and analyzed in a thermogravimetric analyser (TGA) giving, besides the proximate data, a char burning profile of each individual sample, using a linear TGA-temperature ramp of 3 deg. C/minute. The burning profile derived by this procedure agrees well with reactivity profiles derived at a constant temperature. It is shown that small particle burn faster than large particles, and that small particles in general are more reactive than large particles. Particles burn faster when the oxygen partial pressure is increased, and apparently the oxygen partial pressure influences the combustion rate differently for different coal types. Except for one coal type, that apparently behaves differently in different burning environments, the ranking with respect to reactivity among the coals remains consistent at both high and at low temperatures. It is further shown how samples from one coal type varies more in behavior than samples from the other coal types, indicating a larger inhomogeneity of this coal. In general the reactivity of collected samples decrease with high-temperature burn-off. (au) 20 refs.

  18. Oxidation and carbonisation of coals: a case study of coal fire affected coals from the Wuda coalfield, Inner Mongolia, China

    Science.gov (United States)

    Kus, Jolanta; Meyer, Uwe; Ma, Jianwei; Chen-Brauchler, Dai

    2010-05-01

    At the coalfield of Wuda (Inner Mongolia, PR China) extensive underground coal fires cause widespread thermal and oxidative effects in coal seams. Within phase B of the Coal Fire Research Project of the Sino-German Initiative, methods for innovative fire-extinguishing technologies were investigated in multifaceted research approaches. Extensive investigations of oxidative and thermally affected coal seams in coal fire zone 18 were conducted in 2008 prior to application of new fire-extinguishing methods. We present results from the outcrop of coal seam No. 4 in the fire zone 18. The coal of seam No. 4 is of Early Permian age and belongs stratigraphically to the Shanxi Formation. The unaffected coal displays a high volatile bituminous A rank with a background value of random vitrinite reflectance ranging from 0.90 to 0.96 % Rr. Coal channel samples were coallected at actively extracted coal faces along multiple profiles with surface temperatures ranging from about 50° to 600°C. Microscopic examinations revealed a variety of products of coal exposure to the fire. Within coal samples, a marked rise in vitrinite reflectance from background values to 5.55% Rr (6.00 % Rmax) is encountered. In addition, a number of coal samples showed suppressed vitrinite reflectances ranging between 0.82 to 0.88% Rr. Further, seemingly heat unaffected coal samples display intensive development of oxidations rims at coal grain edges and cracks as well as shrinkage cracks and formation of iron oxides/hydroxides. Instead, thermally affected coal samples with higher coalification grade are further characterised by development of macropores (devolatilisation pores) in vitrinitic streaks, transformation of liptinite to meta-liptinite and micrinite as well as by natural coke particles of mostly porous nature and fine to coarse grained anisotropic mosaic. Coal petrographic investigations confirmed a hypothesis that both, oxidations as well as low temperature carbonisation govern the thermal

  19. Low-shear rheology and sedimentation stability of coal-oil dispersions

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, P. R.; Davies, J. M.; Jones, T. E.R.

    1984-10-15

    Stable coal-oil mixtures can be prepared by grinding coal particles in fuel oil. These products have been prepared by the British Petroleum Company plc and are referred to as Coal-Oil Dispersions (COD). One of the major problems associated with the production of DOD is the rapid assessment of the length of time the coal particles are likely to remain in suspension under a particular set of storage conditions. This paper describes a number of measurements of the low-shear rheology and sedimentation stability of a series of CODs prepared by grinding two types of coal in two different fuel oils. The results suggest that two types of COD are possible. One type exhibits complex rheological properties at low shear rates and does not produce a coal sediment, even after prolonged storage at 80/sup 0/C under dynamic conditions. The other exhibits near Newtonian behaviour and appears to form a sedimented layer of coal during storage.

  20. Research on pyrolysis characteristics and kinetics of super fine and conventional pulverized coal

    International Nuclear Information System (INIS)

    Zhang Chaoqun; Jiang Xiumin; Wei Lihong; Wang Hui

    2007-01-01

    Based on isothermal thermogravimetric analysis (TGA) and kinetic equations, the optimization toolbox of MATLAB was applied to study the effects of particle size and heating rate on the pyrolysis characteristics and kinetics and to obtain the mechanism function and kinetic parameters of Yuanbaoshan coal at four different particle sizes and heating rates. The pyrolysis characteristics of the samples were analyzed using thermogravimetric (TG) curves and differential thermogravimetric (DTG) curves. The results show that the coal pyrolysis process is strongly affected by heating rate and particle size. As the heating rate increases, the temperature of volatile matter initiation increases, the total volatile matter evolved decreases and the DTG peak shifts toward higher temperature. As the particle size decreases, the temperature of volatile matter initiation of the coal sample decreases and the maximum rate of mass loss increases. In the pyrolysis of coal, the activation energies of the samples were found to increase with growing particle size and decreasing heating rate for both of the devolatilization temperature stages. In the lower temperature stage, the coal samples show a great difference in mechanism function at different particle sizes and heating rates

  1. Modeling of Particle Transport on Channels and Gaps Exposed to Plasma Fluxes

    International Nuclear Information System (INIS)

    Nieto-Perez, Martin

    2008-01-01

    Many problems in particle transport in fusion devices involve the transport of plasma or eroded particles through channels or gaps, such as in the case of trying to assess damage to delicate optical diagnostics collecting light through a slit or determining the deposition and codeposition on the gaps between tiles of plasma-facing components. A dynamic-composition Monte Carlo code in the spirit of TRIDYN, previously developed to study composition changes on optical mirrors subject to ion bombardment, has been upgraded to include motion of particles through a volume defined by sets of plane surfaces. Particles sputtered or reflected from the walls of the channel/gap can be tracked as well, allowing the calculation of wall impurity transport, either back to the plasma (for the case of a gap) or to components separated from the plasma by a channel/slit (for the case of optical diagnostics). Two examples of the code application to particle transport in fusion devices will be presented in this work: one will evaluate the erosion/impurity deposition rate on a mirror separated from a plasma source by a slit; the other case will look at the enhanced emission of tile material in the region of the gap between two tiles

  2. Graphical User Interface for High Energy Multi-Particle Transport, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Computer codes such as MCNPX now have the capability to transport most high energy particle types (34 particle types now supported in MCNPX) with energies extending...

  3. Graphical User Interface for High Energy Multi-Particle Transport, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Computer codes such as MCNPX now have the capability to transport most high energy particle types (34 particle types now supported in MCNPX) with energies extending...

  4. Coal trends and prospects in Malaysia. Malaysia no sekitan doko to mitoshi

    Energy Technology Data Exchange (ETDEWEB)

    Husin, T. (Tenaga Nasional Berhad (Malaysia))

    1993-03-01

    This paper describes problems in coal development and coal processing techniques used in Malaysia. Malaysia has a national organization placing importance on maximizing natural gas source development, but no such an organization is available for coal. Necessity exists in developing transportation infrastructures that can transport coal at a competitive price from coal mines to users inside and outside the country. Majority of the Merit Pila coal is produced in mines with relatively thin coal beds, which raise production cost higher. Coal resources are mostly of low calorific power. Since the coal resource development is a new economic activity, it requires training of people in related areas, and frameworks of legislative regulation. Important in coal development is to select technologies that can meet environmental requirements and stand with competitions in the world coal markets. New coal processing technologies available for discussion in coal refining processes include relaxed gasification or pyrolysis, coal liquefaction, coal-water mixture to mix coal powder and water with additives, coal pretreatment techniques, coal cleaning techniques, and fluidized bed combustion. 1 fig., 1 tab.

  5. Simulating the Fate and Transport of Coal Seam Gas Chemicals in Variably-Saturated Soils Using HYDRUS

    Directory of Open Access Journals (Sweden)

    Dirk Mallants

    2017-05-01

    Full Text Available The HYDRUS-1D and HYDRUS (2D/3D computer software packages are widely used finite element models for simulating the one-, and two- or three-dimensional movement of water, heat, and multiple solutes in variably-saturated media, respectively. While the standard HYDRUS models consider only the fate and transport of individual solutes or solutes subject to first-order degradation reactions, several specialized HYDRUS add-on modules can simulate far more complex biogeochemical processes. The objective of this paper is to provide a brief overview of the HYDRUS models and their add-on modules, and to demonstrate possible applications of the software to the subsurface fate and transport of chemicals involved in coal seam gas extraction and water management operations. One application uses the standard HYDRUS model to evaluate the natural soil attenuation potential of hydraulic fracturing chemicals and their transformation products in case of an accidental release. By coupling the processes of retardation, first-order degradation and convective-dispersive transport of the biocide bronopol and its degradation products, we demonstrated how natural attenuation reduces initial concentrations by more than a factor of hundred in the top 5 cm of the soil. A second application uses the UnsatChem module to explore the possible use of coal seam gas produced water for sustainable irrigation. Simulations with different irrigation waters (untreated, amended with surface water, and reverse osmosis treated provided detailed results regarding chemical indicators of soil and plant health, notably SAR, EC and sodium concentrations. A third application uses the HP1 module to analyze trace metal transport involving cation exchange and surface complexation sorption reactions in a soil leached with coal seam gas produced water following some accidental water release scenario. Results show that the main process responsible for trace metal migration in soil is complexation of

  6. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Gao, Shan; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2014-01-01

    Highlights: • Superfine pulverized coal combustion in O 2 /CO 2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O 2 /CO 2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O 2 /CO 2 combustion. - Abstract: The combination of O 2 /CO 2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O 2 /CO 2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  7. Silver (Ag) Transport Mechanisms in TRISO coated particles: A Critical Review

    Energy Technology Data Exchange (ETDEWEB)

    I J van Rooyen; J H Neethling; J A A Engelbrecht; P M van Rooyen; G Strydom

    2012-10-01

    Transport of 110mAg in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE’s fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.

  8. Silver (Ag) transport mechanisms in TRISO coated particles: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Rooyen, I.J. van, E-mail: isabella.vanrooyen@inl.gov [Idaho National Laboratory, Idaho Falls, ID 83415-6188 (United States); Dunzik-Gougar, M.L. [Department of Nuclear Engineering, Idaho State University, ID (United States); Rooyen, P.M. van [Philip M. van Rooyen Network Consultants, Midlands Estates (South Africa)

    2014-05-01

    Transport of {sup 110m}Ag in the intact SiC layer of TRISO coated particles has been studied for approximately 30 years without arriving at a satisfactory explanation of the transport mechanism. In this paper the possible mechanisms postulated in previous experimental studies, both in-reactor and out-of reactor research environment studies are critically reviewed and of particular interest are relevance to very high temperature gas reactor operating and accident conditions. Among the factors thought to influence Ag transport are grain boundary stoichiometry, SiC grain size and shape, the presence of free silicon, nano-cracks, thermal decomposition, palladium attack, transmutation products, layer thinning and coated particle shape. Additionally new insight to nature and location of fission products has been gained via recent post irradiation electron microscopy examination of TRISO coated particles from the DOE's fuel development program. The combined effect of critical review and new analyses indicates a direction for investigating possible the Ag transport mechanism including the confidence level with which these mechanisms may be experimentally verified.

  9. Clean coal initiatives in Indiana

    Science.gov (United States)

    Bowen, B.H.; Irwin, M.W.; Sparrow, F.T.; Mastalerz, Maria; Yu, Z.; Kramer, R.A.

    2007-01-01

    Purpose - Indiana is listed among the top ten coal states in the USA and annually mines about 35 million short tons (million tons) of coal from the vast reserves of the US Midwest Illinois Coal Basin. The implementation and commercialization of clean coal technologies is important to the economy of the state and has a significant role in the state's energy plan for increasing the use of the state's natural resources. Coal is a substantial Indiana energy resource and also has stable and relatively low costs, compared with the increasing costs of other major fuels. This indigenous energy source enables the promotion of energy independence. The purpose of this paper is to outline the significance of clean coal projects for achieving this objective. Design/methodology/approach - The paper outlines the clean coal initiatives being taken in Indiana and the research carried out at the Indiana Center for Coal Technology Research. Findings - Clean coal power generation and coal for transportation fuels (coal-to-liquids - CTL) are two major topics being investigated in Indiana. Coking coal, data compilation of the bituminous coal qualities within the Indiana coal beds, reducing dependence on coal imports, and provision of an emissions free environment are important topics to state legislators. Originality/value - Lessons learnt from these projects will be of value to other states and countries.

  10. Effect of ultrasonic stimulation on particle transport and fate over different lengths of porous media

    Science.gov (United States)

    Chen, Xingxin; Wu, Zhonghan; Cai, Qipeng; Cao, Wei

    2018-04-01

    It is well established that seismic waves traveling through porous media stimulate fluid flow and accelerate particle transport. However, the mechanism remains poorly understood. To quantify the coupling effect of hydrodynamic force, transportation distance, and ultrasonic stimulation on particle transport and fate in porous media, laboratory experiments were conducted using custom-built ultrasonic-controlled soil column equipment. Three column lengths (23 cm, 33 cm, and 43 cm) were selected to examine the influence of transportation distance. Transport experiments were performed with 0 W, 600 W, 1000 W, 1400 W, and 1800 W of applied ultrasound, and flow rates of 0.065 cm/s, 0.130 cm/s, and 0.195 cm/s, to establish the roles of ultrasonic stimulation and hydrodynamic force. The laboratory results suggest that whilst ultrasonic stimulation does inhibit suspended-particle deposition and accelerate deposited-particle release, both hydrodynamic force and transportation distance are the principal controlling factors. The median particle diameter for the peak concentration was approximately 50% of that retained in the soil column. Simulated particle-breakthrough curves using extended traditional filtration theory effectively described the experimental curves, particularly the curves that exhibited a higher tailing concentration.

  11. Multi-element determinations of N,N-dimethylformamide (DMF) coal slurries using ICP-OES

    Energy Technology Data Exchange (ETDEWEB)

    M. Mujuru; R.I. McCrindle; B.M. Botha; P.P. Ndibewu [Tshwane University of Technology, Pretoria (South Africa). Department of Chemistry

    2009-04-15

    A slurry nebulisation technique was applied for elemental analysis of bituminous coals SARM 18, SARM 19 and four coals from three different seams in Witbank, South Africa, by inductively coupled plasma optical emission spectroscopy (ICP-OES). Major elements (Al, Ca, Fe, Mg, S, Si and Ti) and trace elements (Ba, Cr, Mn, Ni, Sr, V, Zn and Zr) in coal were determined. Various slurry preparations were evaluated using two dispersants (glycerol and Triton X-100) and by varying the concentration of dispersants, between 0.1% and 1.0% (v/v). The effect of initially solubilising the ground coal in N,N-dimethylformamide (DMF) was investigated by varying the volume of DMF added. The effect of wet grinding with DMF was investigated. Wet grinding with DMF was shown to drastically reduce particle sizes (50.0% < 0.28 m and 90.0% < 6.17 {mu}m) as compared to dry grinding (50.0% < 5.25 {mu}m and 90.0% < 11.1 {mu}m). The reduced particle sizes and increased transport efficiency of the coal slurries led to improved analytical recoveries of elements in the reference coal, SARM 18. The best analytical recoveries for all elements were achieved using 0.1% Triton X-100 with 10.0% DMF. Results obtained by ICP-OES after wet grinding of the coal with DMF, using 0.1% Triton X-100, also gave excellent recoveries (Al, 100%; Ca, 103%; Cr, 106%; Fe, 102%; Mg, 100%; Mn, 104%; Ni, 109%; Si, 102%; Ti, 95.0%; and V, 108%). The results obtained with 10.0% DMF and 0.1% Triton X-100 were in agreement with certified values for all selected elements according to paired t-test at the 95.0% confidence level. Selected elements (Al, Ca, Fe, Mg, Mn, Si, Ti and V) were also analysed with X-ray fluorescence for comparison with results obtained from ICP-OES. Analysis by ICP-OES of microwave digested coal was also carried out. It is suggested that the DMF slurry technique could be used for routine analysis of bituminous coals. 27 refs., 4 figs., 4 tabs.

  12. Froth flotation as a promising method of coal preparation in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Campos, A.R. de; Almeida, S L.M. de; Santos, A.T. dos

    1979-01-01

    Run-of-mine coal and pre-washed coal from Santa Catarina, Brazil, were characterized using washability curves, and by particle analysis after crushing. Bench-scale froth flotation tests were then conducted with the pre-washed coal, using kerosene and diesel oil as the collectors and pine oil as the frother. The influence of starch (as depressor) on flotation was also studied. The effects of feed particle size; pH; collector, frother and depressor additions; and flotation time were investigated. A 9.5% ash content coal was obtained with a mass recovery of about 29%. (17 refs.)

  13. Quasilinear Line Broadened Model for Energetic Particle Transport

    Science.gov (United States)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2011-10-01

    We present a self-consistent quasi-linear model that describes wave-particle interaction in toroidal geometry and computes fast ion transport during TAE mode evolution. The model bridges the gap between single mode resonances, where it predicts the analytically expected saturation levels, and the case of multiple modes overlapping, where particles diffuse across phase space. Results are presented in the large aspect ratio limit where analytic expressions are used for Fourier harmonics of the power exchange between waves and particles, . Implemention of a more realistic mode structure calculated by NOVAK code are also presented. This work is funded by DOE contract DE-AC02-09CH11466.

  14. Antiproton annihilation physics annihilation physics in the Monte Carlo particle transport code particle transport code SHIELD-HIT12A

    DEFF Research Database (Denmark)

    Taasti, Vicki Trier; Knudsen, Helge; Holzscheiter, Michael

    2015-01-01

    The Monte Carlo particle transport code SHIELD-HIT12A is designed to simulate therapeutic beams for cancer radiotherapy with fast ions. SHIELD-HIT12A allows creation of antiproton beam kernels for the treatment planning system TRiP98, but first it must be benchmarked against experimental data. An...

  15. Relationship between particle and heat transport in JT-60U plasmas with internal transport barrier

    International Nuclear Information System (INIS)

    Takenaga, H.

    2002-01-01

    Relationship between particle and heat transport in an internal transport barrier (ITB) has been systematically investigated for the first time in reversed shear (RS) and high-β p ELMy H-mode (weak positive shear) plasmas of JT-60U for understanding of compatibility of improved energy confinement and effective particle control such as exhaust of helium ash and reduction in impurity contamination. In the RS plasma, no helium and carbon accumulation inside the ITB is observed even with highly improved energy confinement. In the high-β p plasma, both helium and carbon density profiles are flat. As the ion temperature profile changes from parabolic- to box-type, the helium diffusivity decreases by a factor of about 2 as well as the ion thermal diffusivity in the RS plasma. The measured soft X-ray profile is more peaked than that calculated by assuming the same n AR profile as the n e profile in the Ar injected RS plasma with the box-type profile, suggesting accumulation of Ar inside the ITB. Particle transport is improved with no change of ion temperature in the RS plasma, when density fluctuation is drastically reduced by a pellet injection. (author)

  16. Burnout behaviour of bituminous coals in air-staged combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kluger, F.; Spliethoff, H.; Hein, K.R.G. [University of Stuttgart, Stuttgart (Germany). Inst. of Process Engineering and Power Plant (IVD)

    2001-07-01

    In order to determine the influence on burnout by the combustion conditions and the coal preparation, three bituminous coals sold on the world market, from three different locations in Poland, South Africa, and Australia, were studied more closely. For this purpose, the coals were ground in two different particle size ranges, which, besides the influence of the combustion conditions, such a temperature, residence time, and stoichiometry, made it possible to also investigate the impact on burnout by the coal preparation. The experiments were carried out in an electrically heated entrained-flow reactor with a thermal input of 8.5 kW. The parameters for the experiments are wall temperature (1000-1350{degree}C), air ratio (0.6-1.15) and two particle sizes (70% {lt} 75 {mu}m, 90% {lt} 75 {mu}m). The results show that in general, for increasing temperatures, the burnout quality will improve. For the Australian Illawara coal, another outcome is increased NOx emissions. Lowering the air ratio in the reduction zone leads to less NOx emission but to increased unburnt matter in ash. For the smaller particle size fraction, the analysis of the different particle sizes shows an improvement of the burnout without a change in NOx emissions. 10 refs., 10 figs., 2 tabs.

  17. Ice cloud formation potential by free tropospheric particles from long-range transport over the Northern Atlantic Ocean

    Science.gov (United States)

    China, Swarup; Alpert, Peter A.; Zhang, Bo; Schum, Simeon; Dzepina, Katja; Wright, Kendra; Owen, R. Chris; Fialho, Paulo; Mazzoleni, Lynn R.; Mazzoleni, Claudio; Knopf, Daniel A.

    2017-03-01

    Long-range transported free tropospheric particles can play a significant role on heterogeneous ice nucleation. Using optical and electron microscopy we examine the physicochemical characteristics of ice nucleating particles (INPs). Particles were collected on substrates from the free troposphere at the remote Pico Mountain Observatory in the Azores Islands, after long-range transport and aging over the Atlantic Ocean. We investigate four specific events to study the ice formation potential by the collected particles with different ages and transport patterns. We use single-particle analysis, as well as bulk analysis to characterize particle populations. Both analyses show substantial differences in particle composition between samples from the four events; in addition, single-particle microscopy analysis indicates that most particles are coated by organic material. The identified INPs contained mixtures of dust, aged sea salt and soot, and organic material acquired either at the source or during transport. The temperature and relative humidity (RH) at which ice formed, varied only by 5% between samples, despite differences in particle composition, sources, and transport patterns. We hypothesize that this small variation in the onset RH may be due to the coating material on the particles. This study underscores and motivates the need to further investigate how long-range transported and atmospherically aged free tropospheric particles impact ice cloud formation.

  18. Modeling Dynamic Objects in Monte Carlo Particle Transport Calculations

    International Nuclear Information System (INIS)

    Yegin, G.

    2008-01-01

    In this study, the Multi-Geometry geometry modeling technique was improved in order to handle moving objects in a Monte Carlo particle transport calculation. In the Multi-Geometry technique, the geometry is a superposition of objects not surfaces. By using this feature, we developed a new algorithm which allows a user to make enable or disable geometry elements during particle transport. A disabled object can be ignored at a certain stage of a calculation and switching among identical copies of the same object located adjacent poins during a particle simulation corresponds to the movement of that object in space. We called this powerfull feature as Dynamic Multi-Geometry technique (DMG) which is used for the first time in Brachy Dose Monte Carlo code to simulate HDR brachytherapy treatment systems. Our results showed that having disabled objects in a geometry does not effect calculated dose values. This technique is also suitable to be used in other areas such as IMRT treatment planning systems

  19. Ten questions on the future of coal

    International Nuclear Information System (INIS)

    Ruelle, G.

    2005-01-01

    The author comments data and information on the main uses of coal, the evolution of the coal share in the world energy consumption, the amounts and locations of coal reserves in comparison with oil and gas, the coal reserves left in the European Union, the world coal market characteristics with respect to those of oil and gas, the reason of the bad environmental reputation of coal, the internal cost of a KWh produced by a coal power station, the external cost resulting from its environmental pollution, the possibility of reducing those defects by 2020, 2040, 2060, the way of transforming coal into oil and to which cost, in order to expand its use to modern transports, the role of coal during the 21. century and the possibilities of CO 2 sequestration

  20. Neutral particle transport modeling with a reflective source in the plasma edge

    International Nuclear Information System (INIS)

    Valenti, M.E.

    1992-01-01

    A reflective source term is incorporated into the Boltzmann neutral particle transport equation to account for boundary reflection. This reflective neutral model is integrated over a uniform axis and subsequently discretized. The discrete two-dimensional equations are solved iteratively with a computer code. The results of the reflective neutral model computer code are benchmarked with the neutral particle transport code ONEDANT. The benchmark process demonstrates the validity of the reflective neutral model. The reflective neutral model is coupled to the Braams plasma particle and energy transport code. The coupled system generates self-consistent plasma edge transport solutions. These solutions, which utilize the transport equation are similar to solutions which utilize simple plasma edge neutral models when high recycle divertors are modeled. In the high recycle mode, the high electron density at the divertor plate reduces the mean free path of plate neutrals. Hence, the similarity in results. It is concluded that simple neutral models are sufficient for the analysis of high recycle power reactor edge plasmas. Low recycle edge plasmas were not examined

  1. The rates of production of CO and CO2 from the combustion of pulverized coal particles in a shock tube

    NARCIS (Netherlands)

    Commissaris, F.A.C.M.; Banine, V.Y.; Roekaerts, D.J.E.M.; Veefkind, A.

    1998-01-01

    This work presents some results of experiments on coal combustion in a shock tube, as well as a time-dependent model of the boundary layer of a single, burning char particle under similar conditions. The partial pressure of O2 in a shock tube was varied between 0 and 10 bar, with gas temperatures

  2. Occurrence of trace elements in respirable coal dust

    International Nuclear Information System (INIS)

    Sahoo, B.N.

    1991-01-01

    Inhalation of fine particles of coal dust contributes significantly to the occurrence of the disease, pneumoconiosis, prevailing in coal mining community. It is not presently known whether only the coal dust or specific chemical compounds or synergistic effects of several compounds associated with respirable coal dust is responsible for the disease, pneumoconiosis. The present paper describes the quantitative determination of ten minor and trace elements in respirable coal dust particles by atomic absorption spectrophotometric methods. The respirable coal dust samples are collected at the mine atmosphere during drilling in coal scams by using Messrs. Casella's Hexlet apparatus specially designed and fitted with horizontal elutriator to collect the respirable coal dust fraction simulating as near as possible to the lung's retention of the coal miners. After destruction of organic matter by wet oxidation and filtering off clay and silica, Fe, Ca, Mg, Na, K, Mn, Cu, Zn, Cd, and Ni were determined directly in the resulting solution by atomic absorption spectrophotometric procedures. The results show that the trace metals are more acute in lower range of size spectrum. Correlation coefficient, enrichment factor and linear regression values and their inverse relationship between the slope and EF values suggest that, in general, the trace metals in respirable particulates are likely to be from coal derived source if their concentrations are likewise high in the coal. The trace metal analytical data of respirable particulates fitted well to the linear regressive equation. The results of the studies are of importance as it may throw some light on the respirable lung disease 'pneumoconiosis' which are predominant in coal mining community. (author). 13 refs., 6 tabs

  3. CO2-ECBM related coupled physical and mechanical transport processes

    Science.gov (United States)

    Gensterblum, Yves; Satorius, Michael; Busch, Andreas; Krooß, Bernhard

    2013-04-01

    The interrelation of cleat transport processes and mechanical properties was investigated by permeability tests at different stress levels (60% to 130% of in-situ stress) with sorbing (CH4, CO2) and inert gases (N2, Ar, He) on a sub bituminous A coal from the Surat Basin, Queensland Australia. From the flow tests under controlled triaxial stress conditions the Klinkenberg-corrected "true" permeability coefficients and the Klinkenberg slip factors were derived. The "true"-, absolute or Klinkenberg corrected permeability shows a gas type dependence. Following the approach of Seidle et al. (1992) the cleat volume compressibility (cf) was calculated from observed changes in apparent permeability upon variation of external stress (at equal mean gas pressures). The observed effects also show a clear dependence on gas type. Due to pore or cleat compressibility the cleat aperture decreases with increasing effective stress. Vice versa we observe with increasing mean pressure at lower confining pressure an increase in permeability which we attribute to a cleat aperture widening. The cleat volume compressibility (cf) also shows a dependence on the mean pore pressure. Non-sorbing gases like helium and argon show higher apparent permeabilities than sorbing gases like methane. Permeability coefficients measured with successively increasing mean gas pressures were consistently lower than those determined at decreasing mean gas pressures. This permeability hysteresis is in accordance with results reported by Harpalani and McPherson (1985). The kinetics of matrix transport processes were studied by sorption tests on different particle sizes at various moisture contents and temperatures (cf. Busch et al., 2006). Methane uptake rates were determined from the pressure decline curves recorded for each particle-size fraction, and "diffusion coefficients" were calculated using several unipore and bidisperse diffusion models. While the CH4 sorption capacity of moisture-equilibrated coals

  4. Modeling coal combustion behavior in an ironmaking blast furnace raceway: model development and applications

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado, D.; Austin, P.R.; Zulli, P.; Guo B. [BlueScope Steel Research Laboratories, Port Kembla, NSW (Australia)

    2009-03-15

    A numerical model has been developed and validated for the investigation of coal combustion phenomena under blast furnace operating conditions. The model is fully three-dimensional, with a broad capacity to analyze significant operational and equipment design changes. The model was used in a number of studies, including: Effect of cooling gas type in coaxial lance arrangements. It was found that oxygen cooling improves coal burnout by 7% compared with natural gas cooling under conditions that have the same amount of oxygen enrichment in the hot blast. Effect of coal particle size distribution. It was found that during two similar periods of operation at Port Kembla's BF6, a difference in PCI capability could be attributed to the difference in coal size distribution. Effect of longer tuyeres. Longer tuyeres were installed at Port Kembla's BF5, leading to its reline scheduled for March 2009. The model predicted an increase in blast velocity at the tuyere nose due to the combustion of volatiles within the tuyere, with implications for tuyere pressure drop and PCI capability. Effect of lance tip geometry. A number of alternate designs were studied, with the best-performing designs promoting the dispersion of the coal particles. It was also found that the base case design promoted size segregation of the coal particles, forcing smaller coal particles to one side of the plume, leaving larger coal particles on the other side. 11 refs., 15 figs., 4 tabs.

  5. The separation of radionuclide migration by solution and particle transport in LLRW repository buffer material

    International Nuclear Information System (INIS)

    Torok, J.; Buckley, L.P.; Woods, B.L.

    1989-01-01

    Laboratory-scale lysimeter experiments were performed with simulated waste forms placed in candidate buffer materials which have been chosen for a low-level radioactive waste repository. Radionuclide releases into the effluent water and radionuclide capture by the buffer material were determined. The results could not be explained by traditional solution transport mechanisms, and transport by particles released from the waste form and/or transport by buffer particles were suspected as the dominant mechanism for radionuclide release from the lysimeters. To elucidate the relative contribution of particle and solution transport, the waste forms were replaced by a wafer of neutron-activated buffer soaked with selected soluble isotopes. Particle transport was determined by the movement of gamma-emitting neutron-activation products through the lysimeter. Solution transport was quantified by comparing the migration of soluble radionuclides relative to the transport of neutron activation products. The new approach for monitoring radionuclide migration in soil is presented. It facilitates the determination of most of the fundamental coefficients required to model the transport process

  6. Heat and mass transfer of liquid nitrogen in coal porous media

    Science.gov (United States)

    Lang, Lu; Chengyun, Xin; Xinyu, Liu

    2018-04-01

    Liquid nitrogen has been working as an important medium in fire extinguishing and prevention, due to its efficiency in oxygen exclusion and heat removal. Such a technique is especially crucial for coal industry in China. We built a tunnel model with a temperature monitor system (with 36 thermocouples installed) to experimentally study heat and mass transfer of liquid nitrogen in non-homogeneous coal porous media (CPM), and expected to optimize parameters of liquid nitrogen injection in engineering applications. Results indicate that injection location and amount of liquid nitrogen, together with air leakage, significantly affect temperature distribution in CPM, and non-equilibrium heat inside and outside of coal particles. The injection position of liquid nitrogen determines locations of the lowest CPM temperature and liquid nitrogen residual. In the deeper coal bed, coal particles take longer time to reach thermal equilibrium between their surface and inside. Air leakage accelerates temperature increase at the bottom of the coal bed, which is a major reason leading to fire prevention inefficiency. Measurement fluctuation of CPM temperature may be caused by incomplete contact of coal particles with liquid nitrogen flowing in the coal bed. Moreover, the secondary temperature drop (STD) happens and grows with the more injection of liquid nitrogen, and the STD phenomenon is explained through temperature distributions at different locations.

  7. Time-dependent Perpendicular Transport of Energetic Particles for Different Turbulence Configurations and Parallel Transport Models

    Energy Technology Data Exchange (ETDEWEB)

    Lasuik, J.; Shalchi, A., E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada)

    2017-09-20

    Recently, a new theory for the transport of energetic particles across a mean magnetic field was presented. Compared to other nonlinear theories the new approach has the advantage that it provides a full time-dependent description of the transport. Furthermore, a diffusion approximation is no longer part of that theory. The purpose of this paper is to combine this new approach with a time-dependent model for parallel transport and different turbulence configurations in order to explore the parameter regimes for which we get ballistic transport, compound subdiffusion, and normal Markovian diffusion.

  8. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    Science.gov (United States)

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  9. Microbial and Organic Fine Particle Transport Dynamics in Streams - a Combined Experimental and Stochastic Modeling Approach

    Science.gov (United States)

    Drummond, Jen; Davies-Colley, Rob; Stott, Rebecca; Sukias, James; Nagels, John; Sharp, Alice; Packman, Aaron

    2014-05-01

    Transport dynamics of microbial cells and organic fine particles are important to stream ecology and biogeochemistry. Cells and particles continuously deposit and resuspend during downstream transport owing to a variety of processes including gravitational settling, interactions with in-stream structures or biofilms at the sediment-water interface, and hyporheic exchange and filtration within underlying sediments. Deposited cells and particles are also resuspended following increases in streamflow. Fine particle retention influences biogeochemical processing of substrates and nutrients (C, N, P), while remobilization of pathogenic microbes during flood events presents a hazard to downstream uses such as water supplies and recreation. We are conducting studies to gain insights into the dynamics of fine particles and microbes in streams, with a campaign of experiments and modeling. The results improve understanding of fine sediment transport, carbon cycling, nutrient spiraling, and microbial hazards in streams. We developed a stochastic model to describe the transport and retention of fine particles and microbes in rivers that accounts for hyporheic exchange and transport through porewaters, reversible filtration within the streambed, and microbial inactivation in the water column and subsurface. This model framework is an advance over previous work in that it incorporates detailed transport and retention processes that are amenable to measurement. Solute, particle, and microbial transport were observed both locally within sediment and at the whole-stream scale. A multi-tracer whole-stream injection experiment compared the transport and retention of a conservative solute, fluorescent fine particles, and the fecal indicator bacterium Escherichia coli. Retention occurred within both the underlying sediment bed and stands of submerged macrophytes. The results demonstrate that the combination of local measurements, whole-stream tracer experiments, and advanced modeling

  10. Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lkhagvadorj, Sh; Kim, Sang In; Lim, Ho; Kim, Seung Mo; Jeon, Chung Hwan [Pusan National Univ., Busan (Korea, Republic of); Lee, Byoung Hwa [Doosan Heavy Industries and Construction, Ltd., Changwon (Korea, Republic of)

    2016-01-15

    Co-firing of biomass with coal is a promising combustion technology in a coal-fired power plant. However, it still requires verifications to apply co-firing in an actual boiler. In this study, data from the Thermogravimetric analyzer(TGA) and Drop tube furnace(DTF) were used to obtain the combustion characteristics of biomass when co-firing with coal. The combustion characteristics were verified using experimental results including reactivity from the TGA and Unburned carbon(UBC) data from the DTF. The experiment also analyzed with the variation of the biomass blending ratio and biomass particle size. It was determined that increasing the biomass blending ratio resulted in incomplete chemical reactions due to insufficient oxygen levels because of the rapid initial combustion characteristics of the biomass. Thus, the optimum blending condition of the biomass based on the results of this study was found to be 5 while oxygen enrichment reduced the increase of UBC that occurred during combustion of blended biomass and coal.

  11. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  12. Helium, iron and electron particle transport and energy transport studies on the TFTR tokamak

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Grek, B.; Hill, K.W.; Hulse, R.A.; Johnson, D.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Redi, M.H.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor

  13. Fiscal 1996 survey for the upgrading of the Asia/Pacific coal development. Survey of the coal infrastructure propagation in Indonesia; 1996 nendo Asia Taiheiyo sekitan kaihatsu kodoka chosa. Indonesia ni okeru sekitan infura seibi chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    Phase 1 survey in fiscal 1996 was conducted based on `Agreement on the comprehensive survey of a coal transportation system in South Sumatra` concluded between NEDO and the Ministry of Mine and Energy in Indonesia. In the survey, conducted were collection of data on coal fields and site surveys, collection of data on inland transportation and site surveys, collection of data on harbors and site surveys, and worked out were a simplified database and a coal transportation plan by optimization of the coal chain system. The area for survey is the periphery of the Musi River of South Sumatra. The results of the simulation by LP models were as follows: When the coal of Bukit Asam coal mine is $25/t in price, only coal of 5500Kcal/kg is profitable, and when $27/t in price, coal of 4500Kcal/kg also becomes profitable. This shows that if the coal is of good quality, it can pay arriving at Suralaya, independent of the distance of transportation. 47 figs., 63 tabs.

  14. 49 CFR 176.903 - Stowage of cotton or vegetable fibers with coal.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Stowage of cotton or vegetable fibers with coal... § 176.903 Stowage of cotton or vegetable fibers with coal. Cotton or vegetable fibers being transported on a vessel may not be stowed in the same hold with coal. They may be stowed in adjacent holds if the...

  15. Recent advances in neutral particle transport methods and codes

    International Nuclear Information System (INIS)

    Azmy, Y.Y.

    1996-01-01

    An overview of ORNL's three-dimensional neutral particle transport code, TORT, is presented. Special features of the code that make it invaluable for large applications are summarized for the prospective user. Advanced capabilities currently under development and installation in the production release of TORT are discussed; they include: multitasking on Cray platforms running the UNICOS operating system; Adjacent cell Preconditioning acceleration scheme; and graphics codes for displaying computed quantities such as the flux. Further developments for TORT and its companion codes to enhance its present capabilities, as well as expand its range of applications are disucssed. Speculation on the next generation of neutron particle transport codes at ORNL, especially regarding unstructured grids and high order spatial approximations, are also mentioned

  16. The economics of international coal markets

    Energy Technology Data Exchange (ETDEWEB)

    Paulus, Moritz

    2012-07-13

    In the scope of four related essays this thesis analyses the Chinese domestic coal sector and coal trade policies and their respective impact on international steam coal trade economics. In particular, the thesis investigates the role of domestic transport infrastructure investment policies as well as Chinese coal export and import controls and the potential exertion of market power through such trade instruments. For this purpose, several spatial equilibrium models have been developed that enable simulation runs to compare different policy scenarios. These models also permit ex-post analyses to empirically test hypotheses of non-competitive market conduct of individual players under the assumption of Cournot behaviour. These model-based analyses yield, among others, the following findings: If coal is converted into electricity early in the Chinese energy supply chain, worldwide marginal costs of supply are substantially lower than if coal is transported via railway. This can reduce China's dependence on international imports significantly. Allocation of welfare changes, particularly in favour of Chinese consumers while rents of international producers decrease. If not only seaborne trade but also interactions and feedbacks between domestic coal markets and international trade markets are accounted for, trade volumes and prices of a China - Indonesia duopoly fit the real market outcome best in 2008. Real Chinese export quotas have been consistent with simulated exports under a Cournot-Nash strategy. Uncertainties with regard to future Chinese coal demand and coal sector policies generate significant costs for international investors and lead to a spatial and temporal reallocation of mining and infrastructure investments. The potential exertion of Chinese demand side market power would further reduce the overall investment activity of exporters.

  17. The economics of international coal markets

    International Nuclear Information System (INIS)

    Paulus, Moritz

    2012-01-01

    In the scope of four related essays this thesis analyses the Chinese domestic coal sector and coal trade policies and their respective impact on international steam coal trade economics. In particular, the thesis investigates the role of domestic transport infrastructure investment policies as well as Chinese coal export and import controls and the potential exertion of market power through such trade instruments. For this purpose, several spatial equilibrium models have been developed that enable simulation runs to compare different policy scenarios. These models also permit ex-post analyses to empirically test hypotheses of non-competitive market conduct of individual players under the assumption of Cournot behaviour. These model-based analyses yield, among others, the following findings: If coal is converted into electricity early in the Chinese energy supply chain, worldwide marginal costs of supply are substantially lower than if coal is transported via railway. This can reduce China's dependence on international imports significantly. Allocation of welfare changes, particularly in favour of Chinese consumers while rents of international producers decrease. If not only seaborne trade but also interactions and feedbacks between domestic coal markets and international trade markets are accounted for, trade volumes and prices of a China - Indonesia duopoly fit the real market outcome best in 2008. Real Chinese export quotas have been consistent with simulated exports under a Cournot-Nash strategy. Uncertainties with regard to future Chinese coal demand and coal sector policies generate significant costs for international investors and lead to a spatial and temporal reallocation of mining and infrastructure investments. The potential exertion of Chinese demand side market power would further reduce the overall investment activity of exporters.

  18. Particle transport in JET and TCV-H mode plasmas

    International Nuclear Information System (INIS)

    Maslov, M.

    2009-10-01

    Understanding particle transport physics is of great importance for magnetically confined plasma devices and for the development of thermonuclear fusion power for energy production. From the beginnings of fusion research, more than half a century ago, the problem of heat transport in tokamaks attracted the attention of researchers, but the particle transport phenomena were largely neglected until fairly recently. As tokamak physics advanced to its present level, the physics community realized that there are many hurdles to the development of fusion power beyond the energy confinement. Particle transport is one of the outstanding issues. The aim of this thesis work is to study the anomalous (turbulence driven) particle transport in tokamaks on the basis of experiments on two different devices: JET (Joint European Torus) and TCV (Tokamak à Configuration Variable). In particular the physics of particle inward convection (pinch), which causes formation of peaked density profiles, is addressed in this work. Density profile peaking has a direct, favorable effect on fusion power in a reactor, we therefore also propose an extrapolation to the international experimental reactor ITER, which is currently under construction. To complete the thesis research, a comprehensive experimental database was created on the basis of data collected on JET and TCV during the duration of the thesis. Improvements of the density profile measurements techniques and careful analysis of the experimental data allowed us to derive the dependencies of density profile shape on the relevant plasma parameters. These improved techniques also allowed us to dispel any doubts that had been voiced about previous results. The major conclusions from previous work on JET and other tokamaks were generally confirmed, with some minor supplements. The main novelty of the thesis resides in systematic tests of the predictions of linear gyrokinetic simulations of the ITG (Ion Temperature Gradient) mode against the

  19. Effect of mechanical and chemical clay removals by hydrocyclone and dispersants on coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Oats, W.J.; Ozdemir, O.; Nguyen, A.V. [University of Queensland, Brisbane, Qld. (Australia). School of Chemical Engineering

    2010-04-15

    Fine minerals, mostly clays, are known to have a detrimental effect on coal flotation. This paper focuses on the effect of mechanical and chemical removals of fine minerals by hydrocyclone and dispersants on coal flotation. The experimental results showed that the flotation recovery slightly increased from medium acidic to medium alkaline ranges. The flotation experiments carried out with dispersants at different dosages showed that the dispersants did not enhance the flotation recovery significantly. However, the removal of the fine fraction from the feed using a hydrocyclone significantly increased the flotation recovery. The bubble-particle attachment tests also indicated that the attachment time between an air bubble and the coal particles increased in the presence of clay particles. These attachment time results clearly showed that the clay particles adversely affected the flotation of coal particles by covering the coal surfaces which reduced the efficiency of bubble-coal attachment. An analysis based on the colloid stability theory showed that the clay coating was governed by the van der Waals attraction and that the double-layer interaction played a secondary role. It was also concluded that the best way to increase the flotation recovery in the presence of clays was to remove these fine minerals by mechanical means such as hydrocylones.

  20. Process for treating moisture laden coal fines

    Science.gov (United States)

    Davis, Burl E.; Henry, Raymond M.; Trivett, Gordon S.; Albaugh, Edgar W.

    1993-01-01

    A process is provided for making a free flowing granular product from moisture laden caked coal fines, such as wet cake, by mixing a water immiscible substance, such as oil, with the caked coal, preferably under low shear forces for a period of time sufficient to produce a plurality of free flowing granules. Each granule is preferably comprised of a dry appearing admixture of one or more coal particle, 2-50% by weight water and the water immiscible substance.

  1. Weighted-delta-tracking for Monte Carlo particle transport

    International Nuclear Information System (INIS)

    Morgan, L.W.G.; Kotlyar, D.

    2015-01-01

    Highlights: • This paper presents an alteration to the Monte Carlo Woodcock tracking technique. • The alteration improves computational efficiency within regions of high absorbers. • The rejection technique is replaced by a statistical weighting mechanism. • The modified Woodcock method is shown to be faster than standard Woodcock tracking. • The modified Woodcock method achieves a lower variance, given a specified accuracy. - Abstract: Monte Carlo particle transport (MCPT) codes are incredibly powerful and versatile tools to simulate particle behavior in a multitude of scenarios, such as core/criticality studies, radiation protection, shielding, medicine and fusion research to name just a small subset applications. However, MCPT codes can be very computationally expensive to run when the model geometry contains large attenuation depths and/or contains many components. This paper proposes a simple modification to the Woodcock tracking method used by some Monte Carlo particle transport codes. The Woodcock method utilizes the rejection method for sampling virtual collisions as a method to remove collision distance sampling at material boundaries. However, it suffers from poor computational efficiency when the sample acceptance rate is low. The proposed method removes rejection sampling from the Woodcock method in favor of a statistical weighting scheme, which improves the computational efficiency of a Monte Carlo particle tracking code. It is shown that the modified Woodcock method is less computationally expensive than standard ray-tracing and rejection-based Woodcock tracking methods and achieves a lower variance, given a specified accuracy

  2. E-commerce finally finds the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Hudson, M.

    2000-12-01

    In the last few months, new web sites have come online which are not only showcase for coal mining products and equipment but also act as sales platforms. A large set of sites deal with the purchase of coal and other raw materials. Most of them offer 24-hour news updates, a coal library and a reference section to help with financing, insurance and transportation of purchased coal. Another group focuses on the sale of equipment. Short writeups are given of 18 web sites. 1 photo.

  3. Particle swarm optimization - Genetic algorithm (PSOGA) on linear transportation problem

    Science.gov (United States)

    Rahmalia, Dinita

    2017-08-01

    Linear Transportation Problem (LTP) is the case of constrained optimization where we want to minimize cost subject to the balance of the number of supply and the number of demand. The exact method such as northwest corner, vogel, russel, minimal cost have been applied at approaching optimal solution. In this paper, we use heurisitic like Particle Swarm Optimization (PSO) for solving linear transportation problem at any size of decision variable. In addition, we combine mutation operator of Genetic Algorithm (GA) at PSO to improve optimal solution. This method is called Particle Swarm Optimization - Genetic Algorithm (PSOGA). The simulations show that PSOGA can improve optimal solution resulted by PSO.

  4. Control of alpha particle transport by spatially inhomogeneous ion cyclotron resonance heating

    International Nuclear Information System (INIS)

    Chang, C.S.; Imre, K.; Weitzner, H.; Colestock, P.

    1990-02-01

    Control of the radial alpha particle transport by using Ion Cyclotron Range of Frequency waves is investigated in a large-aspect-ratio tokamak geometry. It is shown that spatially inhomogeneous ICRF-wave energy with properly selected frequencies and wave numbers can induce fast convective transport of alpha particles at the speed of order υ alpha ∼ (P RF /n α ε 0 ) ρ p , where P RF is the ICRF-wave power density, n α is the alpha density, ε 0 is the alpha birth energy, and ρ p is the poloidal gyroradius of alpha particles at the birth energy. Application to ITER plasmas is studied and possible antenna designs to control alpha particle flux are discussed. 8 refs., 3 figs

  5. Research on Improving Low Rank Coal Caking Ability by Moderate Hydrogenation

    Science.gov (United States)

    Huang, Peng

    2017-12-01

    The hydrogenation test of low metamorphic coal was carried out by using a continuous hydrogen reactor at the temperature of (350-400)°C and the initial hydrogen pressure of 3 ~ 6Mpa. The purpose of the experiment was to increase the caking property, and the heating time was controlled from 30 to 50min. The test results show that the mild hydrogenation test, no adhesion of low metamorphic coal can be transformed into a product having adhesion, oxygen elements in coal have good removal, the calorific value of the product has been improved significantly and coal particles during pyrolysis, swelling, catalyst, hydrogenation, structural changes and the combined effects of particles a new component formed between financial and is a major cause of coal caking enhancement and lithofacies change, coal blending test showed that the product can be used effectively in the coking industry.

  6. The two faces of coal : uncertainty the common prospect for metallurgical and thermal coal

    International Nuclear Information System (INIS)

    Zlotnikov, D.

    2010-01-01

    Although the methods of producing thermal and metallurgical coal are the same, metallurgical coal is destined to cross the world for steel manufacturing and thermal coal is destined for power plants close to where it was mined. This article discussed the factors influencing the price of these 2 coals. The production of thermal coal can remain steady during an economic crisis because coal-fired power plants generally provide low-cost-base-load electricity that remains stable during economic cycles. However, the demand for metallurgical coal is more volatile during an economic crisis because it is directly related to the demand for steel products in the construction and automotive industry, which are very sensitive to the state of the economy. There have been recent indications that Canada's export market for thermal coal is on the rise. In 2008, China became a net importer of coking coal. China's need for more coal to fuel its growing economy despite the global economic slowdown has meant that producers are diverting excess supply from European markets to China. Higher-end thermal coal offers low sulphur content and higher energy content, both desirable traits for power utilities facing strict emissions control. In addition to having huge reserves of very high-quality coal that is becoming increasingly important to China, Canada has the advantage of having the available transportation capacity in its west coast terminals and on its rail network. 3 figs.

  7. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  8. Investigation of particle reduction and its transport mechanism in UHF-ECR dielectric etching system

    International Nuclear Information System (INIS)

    Kobayashi, Hiroyuki; Yokogawa, Ken'etsu; Maeda, Kenji; Izawa, Masaru

    2008-01-01

    Control of particle transport was investigated by using a UHF-ECR etching apparatus with a laser particle monitor. The particles, which float at a plasma-sheath boundary, fall on a wafer when the plasma is turned off. These floating particles can be removed from the region above the wafer by changing the plasma distribution. We measured the distribution of the rotational temperature of nitrogen molecules across the wafer to investigate the effect of the thermophoretic force. We found that mechanisms of particle transport in directions parallel to the wafer surface can be explained by the balance between thermophoretic and gas viscous forces

  9. Chain segmentation for the Monte Carlo solution of particle transport problems

    International Nuclear Information System (INIS)

    Ragheb, M.M.H.

    1984-01-01

    A Monte Carlo approach is proposed where the random walk chains generated in particle transport simulations are segmented. Forward and adjoint-mode estimators are then used in conjunction with the firstevent source density on the segmented chains to obtain multiple estimates of the individual terms of the Neumann series solution at each collision point. The solution is then constructed by summation of the series. The approach is compared to the exact analytical and to the Monte Carlo nonabsorption weighting method results for two representative slowing down and deep penetration problems. Application of the proposed approach leads to unbiased estimates for limited numbers of particle simulations and is useful in suppressing an effective bias problem observed in some cases of deep penetration particle transport problems

  10. Effective Diffusion Coefficients in Coal Chars

    DEFF Research Database (Denmark)

    Johnsson, Jan Erik; Jensen, Anker

    2001-01-01

    Knowledge of effective diffusion coefficients in char particles is important when interpreting experimental reactivity measurements and modeling char combustion or NO and N2O reduction. In this work, NO and N2O reaction with a bituminous coal char was studied in a fixed-bed quartz glass reactor....... In the case of strong pore diffusion limitations, the error in the interpretation of experimental results using the mean pore radius could be a factor of 5 on the intrinsic rate constant. For an average coal char reacting with oxygen at 1300 K, this would be the case for particle sizes larger than about 50...

  11. Analytic theory of the energy and time independent particle transport in the plane geometry

    International Nuclear Information System (INIS)

    Simovic, R.D.

    2001-01-01

    An analytic investigation of the energy and time independent particle transport in the plane geometry described by a common anisotropic scattering function is carried out. Regarding the particles with specific diffusion histories in the infinite or the semi-infinite medium, new exact solutions of the corresponding transport equations are analytically derived by means of the Fourier inversion technique. Two particular groups of particles scattered after each successive collision into the directions μ 0, were considered. Its Fourier transformed transport equations have solutions without logarithmic singular points, in the upper part or the lower part of the complex k-plane. The Fourier inversion of solutions are carried out analytically and the obtained formulae represents valid generalization of the expressions for the flux of once scattered particles. (author)

  12. Market, trading and coal price

    International Nuclear Information System (INIS)

    Muller, J.C.; Cornot-Gandolphe, S.; Labrunie, L.; Lemoine, St.; Vandijck, M.

    2006-01-01

    The coal world experienced a true upheaval in the past five years World coal consumption went up 28 % between 2000 and 2005, as a result of the strong growth in Chinese demand. The growth should continue in the coming years: electrical plant builders' orders are mainly for coal. The regained interest in coal is based on the constraints experienced by competing energies (increase in oil and natural gas prices, geopolitical uncertainties, supply difficulties) and by the abundant reserves of coal in the world and the competitiveness of its price. The strong growth in world coal demand comes with a change in rules governing steam coal trading. While long term bilateral agreements were most common until the late nineties, there has been a true revolution in coal marketing since 2000: spot contracts, stock exchange emergence and futures contracts, price indexes. In a few years, the steam coal market has become a true commodities market, overtaking many more goods. The price of coal has also gone through strong variations since 2003. Whereas the price had been stable for decades, in 2004 the strong increase in China' s demand for coal and iron ore resulting in transport shortage, caused a strong increase in CAF coal prices. Since then, prices have gone down, but remain higher than the Eighties and Nineties levels. In spite of the increase, coal remains available at more competitive prices than its competing energies. (authors)

  13. Coal distribution, January--June 1991

    International Nuclear Information System (INIS)

    1991-01-01

    The Coal Distribution report provides information on coal production, distribution, and stocks in the United States to a wide audience including Congress, Federal and State agencies, the coal industry, and the general public. The data in this report are collected and published by the Energy Information Administration (EIA) to fulfill its data collection and dissemination responsibilities as specified in the Federal Energy Administration Act of 1974 (Public Law 93-275, Sections 5 and 13, as amended). This issue presents information for January through June 1991. Coal distribution data are shown (in Tables 1--34) by coal-producing Sate of origin, consumer use, method of transportation, and State of destination. All data in this report were collected by the EIA on Form EIA-6, ''Coal Distribution Report.'' A copy of the form and the instructions for filing appear in Appendix B. All data in this report for 1991 are preliminary. Data for previous years are final. 6 figs., 34 tabs

  14. Indian coal industry: Growth perspective

    International Nuclear Information System (INIS)

    Sachdev, R.K.

    1993-01-01

    Growth perspective of Indian coal industry and their environmental aspects, are discussed. The complete coal chain comprises of mining including preparation and processing, transport, usage and disposal of solid, liquid and gaseous wastes. Proper environmental protection measures are therefore, required to be integrated at every stage. At mining stage, land reclamation, restoration of surface damaged by subsidence and proper treatment of effluents are the minimum requirement for effective environmental protection. Since coal will continue to be the major source of commercial energy in coming decades initiative will have to be taken in making coal a clean fuel from the point of view of its usage in different industries. Washing of high ash coals for reducing the ash content will go a long way in reducing the atmospheric pollution through better plant performance and reduced environmental pollution at the power plants. (author)

  15. Selective transport of Fe(III) using ionic imprinted polymer (IIP) membrane particle

    Science.gov (United States)

    Djunaidi, Muhammad Cholid; Jumina, Siswanta, Dwi; Ulbricht, Mathias

    2015-12-01

    The membrane particles was prepared from polyvinyl alcohol (PVA) and polymer IIP with weight ratios of 1: 2 and 1: 1 using different adsorbent templates and casting thickness. The permeability of membrane towards Fe(III) and also mecanism of transport were studied. The selectivity of the membrane for Fe(III) was studied by performing adsorption experiments also with Cr(III) separately. In this study, the preparation of Ionic Imprinted Polymer (IIP) membrane particles for selective transport of Fe (III) had been done using polyeugenol as functional polymer. Polyeugenol was then imprinted with Fe (III) and then crosslinked with PEGDE under alkaline condition to produce polyeugenol-Fe-PEGDE polymer aggregates. The agrregates was then crushed and sieved using mesh size of 80 and the powder was then used to prepare the membrane particles by mixing it with PVA (Mr 125,000) solution in 1-Methyl-2-pyrrolidone (NMP) solvent. The membrane was obtained after casting at a speed of 25 m/s and soaking in NaOH solution overnight. The membrane sheet was then cut and Fe(III) was removed by acid to produce IIP membrane particles. Analysis of the membrane and its constituent was done by XRD, SEM and size selectivity test. Experimental results showed the transport of Fe(III) was faster with the decrease of membrane thickness, while the higher concentration of template ion correlates with higher Fe(III) being transported. However, the transport of Fe(III) was slower for higher concentration of PVA in the membrane. IImparticles works through retarded permeation mechanism, where Fe(III) was bind to the active side of IIP. The active side of IIP membrane was dominated by the -OH groups. The selectivity of all IIP membranes was confirmed as they were all unable to transport Cr (III), while NIP (Non-imprinted Polymer) membrane was able transport Cr (III).

  16. Modeling of Contaminant Migration through Porous Media after Underground Coal Gasification in Shallow Coal Seam

    Czech Academy of Sciences Publication Activity Database

    Soukup, Karel; Hejtmánek, Vladimír; Čapek, P.; Stanczyk, K.; Šolcová, Olga

    2015-01-01

    Roč. 140, DEC (2015), s. 188-197 ISSN 0378-3820 Grant - others:RFCS(XE) RFCR-CT-2011-00002 Institutional support: RVO:67985858 Keywords : underground coal gasification * transport phenomena modeling * transport parameters Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 3.847, year: 2015

  17. Assessment of the way of biomass transportation to the coal power plant with regard to the limitation of emissions of CO2

    International Nuclear Information System (INIS)

    Adamkiewicz, A.; Zenczak, W.

    2014-01-01

    One from the activities taken in Poland in aim of limitation of CO 2 , emission is coal and biomass combustion together in one boiler. Biomass is delivered to power station Dolna Odra in Szczecin by trucks, which are also a source of CO 2 , emission. The paper presents results of comparative analysis of CO 2 , emission from trucks during transportation of biomass to power station with actual reduction of emission through power station as result of substitution of part of coal by biomass.

  18. Modeling the international competitiveness of Botswana's coal

    Science.gov (United States)

    Fichani, Khaulani

    Botswana has vast proven deposits of steam coal, which for a long time it has wanted to develop but without much success. The main objectives of this study are: (1) to analyze the time schedule of coal exports likely to be forthcoming from Botswana and the land routes for these exports; (2) to determine the competitiveness of Botswana's coal in the world steam coal markets and (3) to make recommendations on the appropriate policy for the exploitation of this coal. To accomplish these objectives, we construct a model of the seaborne steam coal trade consisting of exporters and importers with a substantial share in this trade. We econometrically estimate the long run marginal cost functions for net exporters and employ these to construct a spatial and dynamic model of the world steam coal trade with elastic supply and inelastic demand. This model is applied to simulate Botswana's competitiveness in this trade over the period 1995 to 2010 from a 1990 base year with a decision criterion that minimizes the sum of discounted capital costs of mine development, variable supply costs, rail and maritime transportation costs. Finally, we employ the model to forecast the likely optimal size of mine, timing of production capacity and choice of export port for Botswana's coal for the years 2005 and 2010. The base year for the forecast is 2000. The simulation results indicate that Botswana's coal would have been competitive in the steam coal markets of Western Europe and Asia. The forecast results indicate that Botswana's coal would also be competitive in these markets in the future. These results are least sensitive to changes in rail transportation and variable supply costs but are sensitive to capital costs for mine development.

  19. Ignition behaviour of different rank coals in an entrained flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    J. Faundez; A. Arenillas; F. Rubiera; X. Garcia; A.L. Gordon; J.J. Pis [Instituto Nacional del Carbon (INCAR), Oviedo (Spain)

    2005-12-01

    An experimental study to determine the temperature and mechanism of coal ignition was carried out by using an entrained flow reactor (EFR) at relatively high coal feed rates (0.5 g min{sup -1}). Seven coals ranging in rank from subbituminous to semianthracite, were tested and the evolved gases (O{sub 2}, CO, CO{sub 2}, NO) were measured continuously. The ignition temperature was evaluated from the gas evolution profiles, and it was found to be inversely correlated to the reactivity of the coal, as reflected by the increasing values of the ignition temperature in the sequence: subbituminous, high volatile bituminous, low volatile bituminous and semianthracite coals. The mechanism of ignition varied from a heterogeneous mechanism for subbituminous, low volatile bituminous and semianthracite coals, to a homogeneous mechanism for high volatile bituminous coals. A thermogravimetric analyser (TGA) was also used to evaluate coal ignition behaviour. Both methods, TGA and EFR, were in agreement as regards the mechanism of coal ignition. From the SEM micrographs of the coal particles retrieved from the cyclone, it was possible to observe the external appearance of the particles before, during and after ignition. The micrographs confirmed the mechanism deduced from the gas profiles. 23 refs., 5 figs., 1 tab.

  20. Study of China's coal supply cost

    International Nuclear Information System (INIS)

    Schneider, K.

    1998-01-01

    The Department of Primary Industries and Energy is funding a joint research project between ABARE and the Energy Research Institute of China's State Planning Commission, China's leading organisation undertaking policy-related energy sector research. Together, the two organisations will analyse the economic costs and impacts of moving large quantities of coal from China's northern coal fields to, power stations in the rapidly growing south-eastern coastal provinces. The study will also compare the true economic costs of using domestic coal - including the costs of subsidies on coal production and transport - with the costs of using imported coal. ABARE will use its dynamic model, MEGABARE, to undertake ky parts of the study, taking into account the complex linkages between sectors in an economy and between different economies

  1. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs

  2. Coal reactions during shock heating in a hydrogen atmosphere. Reaktionsverhalten von Kohlen bei schockartiger Aufheizung in Wasserstoffatmosphaere

    Energy Technology Data Exchange (ETDEWEB)

    Sperling, R

    1987-04-30

    The study deals with the hydropyrolysis of coal under shock heating in order to learn more about the elementary reactions, which take place on the coal surface or in the interior of the carbon grain and which determine the product range and product yield. For recording the factors influencing primary cracking of products and the secondary reactions of the crack products, investigations were carried out by varying the particle diameter of the coals used (3 coals of different carbonization degrees) and the hydrogen pressure. For further recording of secondary reactions and thus the mechanism of the hydropyrolysis, typical crack products with primary character were presented on or in the coal; this was done by the absorption of a defined quantity of model compounds from the gas phase. For shock heating, the Curie point method (inductive heating) was used. It turned out that, with increasing H/sub 2/ pressure, the formation of H-transporting compounds and the availability of the molecular hydrogen from the gas phase is increased but the volatility of the reaction products is inhibited by cross-linking reactions of radicals with high-molecular crack products. High temperatures in shock heating can compensate this negative effect.

  3. Size Effect on Acoustic Emission Characteristics of Coal-Rock Damage Evolution

    OpenAIRE

    Wen, Zhijie; Wang, Xiao; Chen, Lianjun; Lin, Guan; Zhang, Hualei

    2017-01-01

    Coal-gas outburst, rock burst, and other mine dynamic disasters are closely related to the instability and failure of coal-rock. Coal-rock is the assemblies of mineral particles of varying sizes and shapes bonded together by cementing materials. The damage and rupture process of coal-rock is accompanied by acoustic emission (AE), which can be used as an effective means to monitor and predict the instability of coal-rock body. In this manuscript, considering the size effect of coal-rock, the i...

  4. Co-firing straw with coal in a swirl-stabilized dual-feed burner: modelling and experimental validation

    DEFF Research Database (Denmark)

    Yin, Chungen; Kær, Søren Knudsen; Rosendahl, Lasse

    2010-01-01

    This paper presents a comprehensive computational fluid dynamics (CFD) modelling study of co-firing wheat straw with coal in a 150 kW swirl-stabilized dual-feed burner flow reactor, in which the pulverized straw particles (mean diameter of 451μm) and coal particles (mean diameter of 110.4μm...... conversion. It is found that for pulverized biomass particles of a few hundred microns in diameter the intra-particle heat and mass transfer is a secondary issue at most in their conversion, and the global four-step mechanism of Jones and Lindstedt may be better used in modelling volatiles combustion......-lean core zone; whilst the coal particles are significantly affected by secondary air jet and swirled into the oxygen-rich outer radius with increased residence time (in average, 8.1s for coal particles vs. 5.2s for straw particles in the 3m high reactor). Therefore, a remarkable difference in the overall...

  5. Advective isotope transport by mixing cell and particle tracking algorithms

    International Nuclear Information System (INIS)

    Tezcan, L.; Meric, T.

    1999-01-01

    The 'mixing cell' algorithm of the environmental isotope data evaluation is integrated with the three dimensional finite difference ground water flow model (MODFLOW) to simulate the advective isotope transport and the approach is compared with the 'particle tracking' algorithm of the MOC3D, that simulates three-dimensional solute transport with the method of characteristics technique

  6. Pelletization of fine coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, K.V.S.

    1995-12-31

    Coal is one of the most abundant energy resources in the US with nearly 800 million tons of it being mined annually. Process and environmental demands for low-ash, low-sulfur coals and economic constraints for high productivity are leading the coal industry to use such modern mining methods as longwall mining and such newer coal processing techniques as froth flotation, oil agglomeration, chemical cleaning and synthetic fuel production. All these processes are faced with one common problem area--fine coals. Dealing effectively with these fine coals during handling, storage, transportation, and/or processing continues to be a challenge facing the industry. Agglomeration by the unit operation of pelletization consists of tumbling moist fines in drums or discs. Past experimental work and limited commercial practice have shown that pelletization can alleviate the problems associated with fine coals. However, it was recognized that there exists a serious need for delineating the fundamental principles of fine coal pelletization. Accordingly, a research program has been carried involving four specific topics: (i) experimental investigation of coal pelletization kinetics, (ii) understanding the surface principles of coal pelletization, (iii) modeling of coal pelletization processes, and (iv) simulation of fine coal pelletization circuits. This report summarizes the major findings and provides relevant details of the research effort.

  7. Inward particle transport at high collisionality in the Experimental Advanced Superconducting Tokamak

    International Nuclear Information System (INIS)

    Wang, G. Q.; Ma, J.; Weiland, J.; Zang, Q.

    2013-01-01

    We have made the first drift wave study of particle transport in the Experimental Advanced Superconducting Tokamak (Wan et al., Nucl. Fusion 49, 104011 (2009)). The results reveal that collisions make the particle flux more inward in the high collisionality regime. This can be traced back to effects that are quadratic in the collision frequency. The particle pinch is due to electron trapping which is not very efficient in the high collisionality regime so the approach to equilibrium is slow. We have included also the electron temperature gradient (ETG) mode to give the right electron temperature gradient, since the Trapped Electron Mode (TE mode) is weak in this regime. However, at the ETG mode number ions are Boltzmann distributed so the ETG mode does not give particle transport

  8. Nano-mineralogical investigation of coal and fly ashes from coal-based captive power plant (India): An introduction of occupational health hazards

    International Nuclear Information System (INIS)

    Oliveira, Marcos L.S.; Marostega, Fabiane; Taffarel, Silvio R.; Saikia, Binoy K.; Waanders, Frans B.; DaBoit, Kátia; Baruah, Bimala P.

    2014-01-01

    Coal derived nano-particles has been received much concern recently around the world for their adverse effects on human health and the environment during their utilization. In this investigation the mineral matter present in some industrially important Indian coals and their ash samples are addressed. Coal and fly ash samples from the coal-based captive power plant in Meghalaya (India) were collected for different characterization and nano-mineralogy studies. An integrated application of advanced characterization techniques such as X-ray diffraction (XRD), High Resolution-Transmission Electron microscopy (HR-TEM)/(Energy Dispersive Spectroscopy) EDS/(selected-area diffraction pattern) SAED, Field Emission-Scanning Electron Microscopy (FE-SEM)/EDS analysis, and Mössbauer spectroscopy were used to know their extent of risks to the human health when present in coal and fly ash. The study has revealed that the coals contain mainly clay minerals, whilst glass fragments, spinel, quartz, and other minerals in lesser quantities were found to be present in the coal fly ash. Fly ash carbons were present as chars. Indian coal fly ash also found to contain nanominerals and ultrafine particles. The coal-fired power plants are observed to be the largest anthropogenic source of Hg emitted to the atmosphere and expected to increase its production in near future years. The Multi Walled Carbon Nano-Tubes (MWCNTs) are detected in our fly ashes, which contains residual carbonaceous matter responsible for the Hg capture/encapsulation. This detailed investigation on the inter-relationship between the minerals present in the samples and their ash components will also be useful for fulfilling the clean coal technology principles. - Highlights: • We research changes in the level of ultrafine and nanoparticles about coal–ash quality. • Increasing dates will increase human health quality in this Indian coal area. • Welfare effects depend on ex-ante or ex-post assumptions about

  9. Innovative Coal Solids-Flow Monitoring and Measurement Using Phase-Doppler and Mie Scattering Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Seong Lee

    2010-01-19

    Fuel flow to individual burners is complicated and difficult to determine on coal fired boilers, since coal solids were transported in a gas suspension that is governed by the complex physics of two-phase flow. The objectives of the project were the measurements of suspended coal solids-flows in the simulated test conditions. Various extractive methods were performed manually and can give only a snapshot result of fuel distribution. In order to measure particle diameter & velocity, laser based phase-Doppler particle analyzer (PDPA) and particle image velocimetry (PIV) were carefully applied. Statistical methods were used to analyze particle characteristics to see which factors have significant effect. The transparent duct model was carefully designed and fabricated for the laser-based-instrumentation of solids-flow monitoring (LISM). The experiments were conducted with two different kinds of particles with four different particle diameters. The particle types were organic particles and saw dust particles with the diameter range of 75-150 micron, 150-250 micron, 250-355 micron and 355-425 micron. The densities of the particles were measured to see how the densities affected the test results. Also the experiment was conducted with humid particles and fog particles. To generate humid particles, the humidifier was used. A pipe was connected to the humidifier to lead the particle flow to the intersection of the laser beam. The test results of the particle diameter indicated that, the mean diameter of humid particles was between 6.1703 microns and 6.6947 microns when the humid particle flow was low. When the humid particle flow was high, the mean diameter was between 6.6728 microns and 7.1872 microns. The test results of the particle mean velocity indicated that the mean velocity was between 1.3394 m/sec and 1.4556 m/sec at low humid particle flow. When the humid particle flow was high, the mean velocity was between 1.5694 m/sec and 1.7856 m/sec. The Air Flow Module, TQ

  10. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  11. Modeling airflow and particle transport/deposition in pulmonary airways.

    Science.gov (United States)

    Kleinstreuer, Clement; Zhang, Zhe; Li, Zheng

    2008-11-30

    A review of research papers is presented, pertinent to computer modeling of airflow as well as nano- and micron-size particle deposition in pulmonary airway replicas. The key modeling steps are outlined, including construction of suitable airway geometries, mathematical description of the air-particle transport phenomena and computer simulation of micron and nanoparticle depositions. Specifically, diffusion-dominated nanomaterial deposits on airway surfaces much more uniformly than micron particles of the same material. This may imply different toxicity effects. Due to impaction and secondary flows, micron particles tend to accumulate around the carinal ridges and to form "hot spots", i.e., locally high concentrations which may lead to tumor developments. Inhaled particles in the size range of 20nm< or =dp< or =3microm may readily reach the deeper lung region. Concerning inhaled therapeutic particles, optimal parameters for mechanical drug-aerosol targeting of predetermined lung areas can be computed, given representative pulmonary airways.

  12. Monoenergetic particle transport in a semi-infinite medium with reflection

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    1993-01-01

    Next to neutron or photon transport in infinite geometry, particle transport in semi-infinite geometry is probably the most investigated transport problem. When the mean free path for particle interaction is small compared to the physical dimension of the scattering medium, the infinite or semi-infinite geometry assumption is reasonable for a variety of applications. These include nondestructive testing, photon transport in plant canopies, and inverse problems associated with well logging. Another important application of the transport solution in a semi-infinite medium is as a benchmark to which other more approximate methods can be compared. In this paper, the transport solution in a semi-infinite medium with both diffuse and specular reflection at the free surface is solved analytically and numerically evaluated. The approach is based on a little-known solution obtained by Sobelev for the problem with specular reflection, which itself originates from the classical albedo problem solution without reflection. Using Sobelev's solution as a partial Green's function, the exiting flux for diffuse reflection can be obtained. In this way, the exiting flux for a half-space with both constant diffuse and specular reflection coefficients is obtained for the first time. This expression can then be extended to the complex plane to obtain the interior flux as an inverse Laplace transform, which is numerically evaluated

  13. Investigations into detonations of coal dust suspensions in oxygen-nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, D.; Fearnley, P.; Nettleton, M.

    1987-03-01

    The effect of particle size (practically monodispersed), volatile content and composition of gaseous oxygen-nitrogen mixtures on initiating flame acceleration rates in coal dust suspensions is investigated experimentally. Description is given of apparatus, material used and experiments carried out. The authors discusses: microwave interferograms, pressure oscillograms for various oxygen-nitrogen mixtures; development of ionization front speed in relation to distance from diaphragm; effect of composition on shock wave advance rates. It is concluded that: microwave interferometry can successfully be used in recording initiation of coal dust suspension detonations; ignition of confined coal dust suspensions by shock waves originated by detonation front in stoichiometric oxyacetylene mixtures can be explained by heating of coal particles in shock compression stream to ignition temperature (1000 K) by combined convection and radiation heat transfer. 16 refs.

  14. Particle and energy transport studies on TFTR and implications for helium ash in future fusion devices

    International Nuclear Information System (INIS)

    Synakowski, E.J.; Efthimion, P.C.; Rewoldt, G.; Stratton, B.C.; Tang, W.M.; Bell, R.E.; Grek, B.; Hulse, R.A.; Johnson, D.W.; Hill, K.W.; Mansfield, D.K.; McCune, D.; Mikkelsen, D.R.; Park, H.K.; Ramsey, A.T.; Scott, S.D.; Taylor, G.; Timberlake, J.; Zarnstorff, M.C.

    1992-01-01

    Particle and energy transport in tokamak plasmas have long been subjects of vigorous investigation. Present-day measurement techniques permit radially resolved studies of the transport of electron perturbations, low- and high-Z impurities, and energy. In addition, developments in transport theory provide tools that can be brought to bear on transport issues. Here, we examine local particle transport measurements of electrons, fully-stripped thermal helium, and helium-like iron in balanced-injection L-mode and enhanced confinement deuterium plasmas on TFTR of the same plasma current, toroidal field, and auxiliary heating power. He 2+ and Fe 24+ transport has been studied with charge exchange recombination spectroscopy, while electron transport has been studied by analyzing the perturbed electron flux following the same helium puff used for the He 2+ studies. By examining the electron and He 2+ responses following the same gas puff in the same plasmas, an unambiguous comparison of the transport of the two species has been made. The local energy transport has been examined with power balance analysis, allowing for comparisons to the local thermal fluxes. Some particle and energy transport results from the Supershot have been compared to a transport model based on a quasilinear picture of electrostatic toroidal drift-type microinstabilities. Finally, implications for future fusion reactors of the observed correlation between thermal transport and helium particle transport is discussed

  15. Coal flotation - bench-scale study. Flotacao de carvao estudo em escala de bancada

    Energy Technology Data Exchange (ETDEWEB)

    Campos, A.R. de; Almeida, S L.M. de; Santos, A.T. dos

    1979-01-01

    Run-of-mine coal and pre-washed coal from Santa Catarina, Brazil, were characterized using washability curves and by particle size analysis after crushing. Bench-scale froth flotation tests were then conducted with the pre-washed coal. Kerosene and diesel oil were used as the collectors, and pine oil as the frother. The influence of starch (as depressor) on flotation was also studied. The effects of feed particle size, pH, collector addition, frother addition, depressor addition and flotation time were investigated. A 9.5% ash content coal could be obtained with a mass recovery of about 29%. (17 refs.)

  16. Burnout prediction using advance image analysis coal characterization techniques

    Energy Technology Data Exchange (ETDEWEB)

    Edward Lester; Dave Watts; Michael Cloke [University of Nottingham, Nottingham (United Kingdom). School of Chemical Environmental and Mining Engineering

    2003-07-01

    The link between petrographic composition and burnout has been investigated previously by the authors. However, these predictions were based on 'bulk' properties of the coal, including the proportion of each maceral or the reflectance of the macerals in the whole sample. Combustion studies relating burnout with microlithotype analysis, or similar, remain less common partly because the technique is more complex than maceral analysis. Despite this, it is likely that any burnout prediction based on petrographic characteristics will become more accurate if it includes information about the maceral associations and the size of each particle. Chars from 13 coals, 106-125 micron size fractions, were prepared using a Drop Tube Furnace (DTF) at 1300{degree}C and 200 millisecond and 1% Oxygen. These chars were then refired in the DTF at 1300{degree}C 5% oxygen and residence times of 200, 400 and 600 milliseconds. The progressive burnout of each char was compared with the characteristics of the initial coals. This paper presents an extension of previous studies in that it relates combustion behaviour to coals that have been characterized on a particle by particle basis using advanced image analysis techniques. 13 refs., 7 figs.

  17. Burning characteristics and gaseous/solid emissions of blends of pulverized coal with waste tire-derived fuel

    Energy Technology Data Exchange (ETDEWEB)

    Levendis, Y.A.; Atal, A.; Courtemanche, B.; Carlson, J.B. [Northeastern University, Boston, MA (United States). Dept. of Mechanical, Industrial and Manufacturing Engineering

    1998-10-01

    The combustion behaviour and the emissions from blends of a pulverized bituminous coal and ground waste automobile tires were investigated. Combustion took place under steady flow conditions, in an electrically-heated drop-tube furnace in air at a gas temperature of 1150{degree}C and a particle heating rate of approximate to 10{sup 5}{degree}C/s. Combustion observations were conducted with simultaneous pyrometry and cinematography. Interparticle flame interactions were visually observed in the near-stoichiometric and fuel-rich regions. Volatile flame interactions were apparent at a lower phi for tire crumb particles than for coal particles and became progressively more intense with increasing phi until at sufficiently high phi`s large group flames formed for tire particles. As particle flame interactions increased, average maximum temperatures in the flame decreased. Coal particles resisted the formation of group flames, even at high phi`s. Such observations correlated with the trends observed for the PAH emissions of the two fuels, those of tire crumb being much higher than those of coal Some stratification in the combustion of blends of particles of the two fuels was observed. This kept the PAH emissions lower levels than expected. NO{sub x} emissions from tires were much lower than those of coal, while those of the blends were close to the weighted average emissions. SO{sub 2} emissions from the blends were close to the weighted average emissions of the two fuels. Blending coal with tire reduced the CO{sub 2} emissions of coal but increased the CO emissions. Particulate emissions (soot and ash), measured in the range of 0.4 to 8{mu}m, increased with phi. Generally, tire produced more mass of submicron particulates than coal. Particulate emissions of blends of the two fuels were close to those expected based on weighted average of the two fuels.

  18. The hazards of coal (other than the greenhouse effect)

    International Nuclear Information System (INIS)

    Durand, Bernard

    2012-01-01

    After an introduction in which he outlines the major role of coal in CO 2 emissions and the health effects associated with coal and, more precisely, with the various hazardous elements it contains, and also evokes the different types of coals and their difference with hydrocarbons, the author proposes an overview of coal production, uses, resources and reserves. He addresses the different environmental and health risks associated with coal: those related to exploitation and transport (direct mortality due to accidents, delayed mortality due to occupational diseases), those related to the use of coal (related to combustion products, to domestic use, to electricity production by coal-fired plants)

  19. Design of sampling tools for Monte Carlo particle transport code JMCT

    International Nuclear Information System (INIS)

    Shangguan Danhua; Li Gang; Zhang Baoyin; Deng Li

    2012-01-01

    A class of sampling tools for general Monte Carlo particle transport code JMCT is designed. Two ways are provided to sample from distributions. One is the utilization of special sampling methods for special distribution; the other is the utilization of general sampling methods for arbitrary discrete distribution and one-dimensional continuous distribution on a finite interval. Some open source codes are included in the general sampling method for the maximum convenience of users. The sampling results show sampling correctly from distribution which are popular in particle transport can be achieved with these tools, and the user's convenience can be assured. (authors)

  20. Co-combustion of peanut hull and coal blends: Artificial neural networks modeling, particle swarm optimization and Monte Carlo simulation.

    Science.gov (United States)

    Buyukada, Musa

    2016-09-01

    Co-combustion of coal and peanut hull (PH) were investigated using artificial neural networks (ANN), particle swarm optimization, and Monte Carlo simulation as a function of blend ratio, heating rate, and temperature. The best prediction was reached by ANN61 multi-layer perception model with a R(2) of 0.99994. Blend ratio of 90 to 10 (PH to coal, wt%), temperature of 305°C, and heating rate of 49°Cmin(-1) were determined as the optimum input values and yield of 87.4% was obtained under PSO optimized conditions. The validation experiments resulted in yields of 87.5%±0.2 after three replications. Monte Carlo simulations were used for the probabilistic assessments of stochastic variability and uncertainty associated with explanatory variables of co-combustion process. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. A review on effluent generation in coal mines and its treatment methods

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, R.; Karmakar, N.C.; Gupta, S. [Banaras Hindu University, Varanasi (India)

    2008-07-01

    The waste water of coal washeries, coal handling plants, workshops and overburden runoff of a coal mine contains a high concentration of suspended fine particles which usually remain after treatment in sedimentation tanks. The study on the performance characteristics of different coagulants shows that the turbidity removal efficiency depends much on the characteristics of the effluent and combined coagulants perform better than individuals. The various sources of generation of effluent and their treatment methods are discussed. It is suggested that the mine owners should consider the mine effluent as a rich source of both fine particles of coal and precious water. The coal particles are of high grade and may be used in coke preparation and water may be reused in mine to avoid the extra cost for water. The effluent treatment methods are required to be studied properly, so that less consumption of chemicals will be possible. If polyelectrolyte is used along with the other coagulants, the clarification performance will be improved. The best combination of chemicals are selected and practiced in mines. 14 refs., 5 tabs.

  2. The marriage of gas turbines and coal

    International Nuclear Information System (INIS)

    Bajura, R.A.; Webb, H.A.

    1991-01-01

    This paper reports on developing gas turbine systems that can use coal or a coal-based fuel ensures that the United States will have cost-effective environmentally sound options for supplying future power generation needs. Power generation systems that marry coal or a coal-based fuel to a gas turbine? Some matchmakers would consider this an unlikely marriage. Historically, most gas turbines have been operated only on premium fuels, primarily natural gas or distillate oil. The perceived problems from using coal or coal-based fuels in turbines are: Erosion and deposition: Coal ash particles in the hot combustion gases passing through the expander turbine could erode or deposit on the turbine blades. Corrosion: Coal combustion will release alkali compounds form the coal ash. Alkali in the hot gases passing through the expander turbine can cause corrosion of high-temperature metallic surfaces. Emissions: coal contains higher levels of ash, fuel-bound sulfur and nitrogen compounds, and trace contaminants than premium fuels. Meeting stringent environmental regulations for particulates, sulfur dioxide (SO 2 ), nitrogen oxides (NO x ), and trace contaminants will be difficult. Economics: Coal-based systems are expensive to build. The difference in price between coal and premium fuels must be large enough to justify the higher capital cost

  3. Trends and outlook of coal energy in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Zainal Abidin Husin (Tenaga Nasional Berhad, Kuala Lumpur (Malaysia). Fuel and Materials Management Dept.)

    1993-03-01

    Current energy policy in Malaysia is directed towards development of natural gas resources although there is a strategy to diversify energy sources to gas, hydro, coal and oil. By the year 2000, however, coal could emerge as a major energy source. The author advocates the need for a policy direction for the coal industry - for exploration, mine planning, mixing methods, transport and regulations to ensure occupational health and safety. Malaysia has abundant coal resources but most are in Sarawak and Sabah whereas the bulk of energy demand is in the Peninsula Malaysia. A table defines known coal resources in Malaysia and a map shows their location. To ensure successful development of the coal industry, technologies must be developed to meet environmental requirements and global market competition. Several emerging technologies are mentioned: production of process-derived fuel and coal-derived liquid from sub-bituminous coal, coal liquefaction, manufacture of coal water mixture, coal beneficiation, and fluidised bed combustion. 1 fig., 1 tab.

  4. Experimental Investigation of Coal Dust Wettability Based on Surface Contact Angle

    Directory of Open Access Journals (Sweden)

    Gang Zhou

    2016-01-01

    Full Text Available Wettability is one of the key chemical properties of coal dust, which is very important to dedusting. In this paper, the theory of liquid wetting solid was presented firstly; then, taking the gas coal of Xinglongzhuang coal mine in China as an example, by determination of critical surface tension of coal piece, it can be concluded that only when the surface tension of surfactant solution is less than 45 mN/m can the coal sample be fully wetted. Due to the effect of particle dispersity, compared with the contact angle of milled coal particle, not all the contact angles of screened coal powder with different sizes have a tendency to increase. Furthermore, by the experiments of coal samples’ specific surface areas and porosities, it can be achieved that the volume of single-point total pore decreases with the gradual decreasing of coal’s porosity, while the ultramicropores’ dispersities and multipoint BET specific surface areas increase. Besides, by a series of contact angle experiments with different surfactants, it can be found that with the increasing of porosity and the decreasing of volume percentage of ultramicropore, the contact angle tends to reduce gradually and the coal dust is much easier to get wetted.

  5. Surface transport and stable trapping of particles and cells by an optical waveguide loop.

    Science.gov (United States)

    Hellesø, Olav Gaute; Løvhaugen, Pål; Subramanian, Ananth Z; Wilkinson, James S; Ahluwalia, Balpreet Singh

    2012-09-21

    Waveguide trapping has emerged as a useful technique for parallel and planar transport of particles and biological cells and can be integrated with lab-on-a-chip applications. However, particles trapped on waveguides are continuously propelled forward along the surface of the waveguide. This limits the practical usability of the waveguide trapping technique with other functions (e.g. analysis, imaging) that require particles to be stationary during diagnosis. In this paper, an optical waveguide loop with an intentional gap at the centre is proposed to hold propelled particles and cells. The waveguide acts as a conveyor belt to transport and deliver the particles/cells towards the gap. At the gap, the diverging light fields hold the particles at a fixed position. The proposed waveguide design is numerically studied and experimentally implemented. The optical forces on the particle at the gap are calculated using the finite element method. Experimentally, the method is used to transport and trap micro-particles and red blood cells at the gap with varying separations. The waveguides are only 180 nm thick and thus could be integrated with other functions on the chip, e.g. microfluidics or optical detection, to make an on-chip system for single cell analysis and to study the interaction between cells.

  6. Integrated coal preparation

    International Nuclear Information System (INIS)

    Buchanan, D.J.; Jones, T.F.

    1992-01-01

    Perceptions of quality have changed over the years. The attributes of a certain coal (its rank, slagging propensity, ash content etc) are traditionally referred to as its quality. However, the subject of this paper is quality in a much wider sense: quality as fitness for purpose: and all that such a wide definition entails. British Standard BS 5750 (ISO 9000) Quality Systems defines a systems approach to quality, and includes both the supplier of raw materials and the final customer within this boundary. Coal preparation starts at the production face. The greater the proportion of dirt in run-of-mine product the greater the challenge in satisfying the customer's needs. Significant advances have been made in minimizing mined dirt. For example, the sue of vertical steering on longwall faces improves productivity and quality. Unfortunately modern mining methods produce large quantities of fines, despite efforts to reduce them at the point of production and during transportation to the surface. Coal preparation also produces further fines. It has been estimated that fine coal costs 2.5 times as much to clean as large coal, and the costs of handing wet fine coal product will inflate this estimate. Handling considerations rightly concern our customers and are part of the wider meaning of quality. In this paper the authors address some novel solutions to the challenge posed by fines

  7. Transport and selective chaining of bidisperse particles in a travelling wave potential.

    Science.gov (United States)

    Tierno, Pietro; Straube, Arthur V

    2016-05-01

    We combine experiments, theory and numerical simulation to investigate the dynamics of a binary suspension of paramagnetic colloidal particles dispersed in water and transported above a stripe-patterned magnetic garnet film. The substrate generates a one-dimensional periodic energy landscape above its surface. The application of an elliptically polarized rotating magnetic field causes the landscape to translate, inducing direct transport of paramagnetic particles placed above the film. The ellipticity of the applied field can be used to control and tune the interparticle interactions, from net repulsive to net attractive. When considering particles of two distinct sizes, we find that, depending on their elevation above the surface of the magnetic substrate, the particles feel effectively different potentials, resulting in different mobilities. We exploit this feature to induce selective chaining for certain values of the applied field parameters. In particular, when driving two types of particles, we force only one type to condense into travelling parallel chains. These chains confine the movement of the other non-chaining particles within narrow colloidal channels. This phenomenon is explained by considering the balance of pairwise magnetic forces between the particles and their individual coupling with the travelling landscape.

  8. Coal and clean coal technology: challenges and opportunities

    Energy Technology Data Exchange (ETDEWEB)

    Minchener, Andrew [IEA Clean Coal Centre, London (United Kingdom)

    2013-07-01

    Globally, there is a growing concern about fuel diversity and security of supply, particularly with regard to oil and natural gas. In contrast, coal is available from a much wider range of sources and has greater price stability. Consequently, coal use is increasing rapidly, and by 2030 may well reach a level of more than 4,500 Mtoe, corresponding to close to a doubling of current levels. However, at the same time, tightening regulations will require better solutions for achieving environmental compliance, for which coal has a number of key issues to address. Most of the coal will be used in the power generation sector. Consequently, the key research challenges are to develop and deploy methods by which coal can be used cleanly, efficiently, and in a sustainable way. These include improvements to existing coal utilisation technologies, particularly to improve operational flexibility and availability, while reducing energy use through higher efficiencies. There is an increasing need to ensure improved emissions control, with the emphasis on achieving ever-lower emissions of particulates, SO{sub 2} and NO{sub x} while also introducing control of trace species, particularly mercury. Alongside this, a key challenge is the integration of techniques that can capture CO{sub 2} then transport and store it within secure geological formations, thereby resulting in near zero emissions of CO{sub 2}. From a power plant perspective, the need is to achieve such integration while minimising any adverse impact on power plant efficiency, performance of existing emissions control systems, operational flexibility and availability. At the same time, means to minimize the additional costs associated with such technology must be established.

  9. Examination of flame length for burning pulverized coal in laminar flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan [Pusan National University, Busan (Korea, Republic of)

    2010-12-15

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  10. Examination of flame length for burning pulverized coal in laminar flow reactor

    International Nuclear Information System (INIS)

    Kim, Jae Dong; Kim, Gyu Bo; Chang, Young June; Song, Ju Hun; Jeon, Chung Hwan

    2010-01-01

    Because there has been a recent increase in the use of low calorific coal compared to standard coal, it is crucial to control the char flame length governing the burning life-time of coal in a coal-fired utility boiler. The main objective of this study is to develop a simplified model that can theoretically predict the flame length for burning coal in a laboratory-scale entrained laminar flow reactor (LFR) system. The char burning behavior was experimentally observed when sub-bituminous pulverized coal was fed into the LFR under burning conditions similar to those in a real boiler: a heating rate of 1000 K/s, an oxygen molar fraction of 7.7 %, and reacting flue gas temperatures ranging from 1500 to 2000 K. By using the theoretical model developed in this study, the effect of particle size on the coal flame length was exclusively addressed. In this model, the effect of particle mass was eliminated to compare with the experimental result performed under a constant mass feeding of coal. Overall, the computed results for the coal flame length were in good agreement with the experimental data, particularly when the external oxygen diffusion effect was considered in the model

  11. Magnetic fluctuation driven cross-field particle transport in the reversed-field pinch

    International Nuclear Information System (INIS)

    Scheffel, J.; Liu, D.

    1997-01-01

    Electrostatic and electromagnetic fluctuations generally cause cross-field particle transport in confined plasmas. Thus core localized turbulence must be kept at low levels for sufficient energy confinement in magnetic fusion plasmas. Reversed-field pinch (RFP) equilibria can, theoretically, be completely stable to ideal and resistive (tearing) magnetohydrodynamic (MHD) modes at zero beta. Unstable resistive interchange modes are, however, always present at experimentally relevant values of the poloidal beta β θ . An analytical quasilinear, ambipolar diffusion model is here used to model associated particle transport. The results indicate that core density fluctuations should not exceed a level of about 1% for plasmas of fusion interest. Parameters of experimentally relevant stationary states of the RFP were adjusted to minimize growth rates, using a fully resistive linearized MHD stability code. Density gradient effects are included through employing a parabolic density profile. The scaling of particle diffusion [D(r)∝λ 2 n 0.5 T/aB, where λ is the mode width] is such that the effects of particle transport are milder in present day RFP experiments than in future reactor-relevant plasmas. copyright 1997 American Institute of Physics

  12. Modeling particle-facilitated solute transport using the C-Ride module of HYDRUS

    Science.gov (United States)

    Simunek, Jiri; Bradford, Scott A.

    2017-04-01

    Strongly sorbing chemicals (e.g., heavy metals, radionuclides, pharmaceuticals, and/or explosives) in soils are associated predominantly with the solid phase, which is commonly assumed to be stationary. However, recent field- and laboratory-scale observations have shown that, in the presence of mobile colloidal particles (e.g., microbes, humic substances, clays and metal oxides), the colloids could act as pollutant carriers and thus provide a rapid transport pathway for strongly sorbing contaminants. Such transport can be further accelerated since these colloidal particles may travel through interconnected larger pores where the water velocity is relatively high. Additionally, colloidal particles have a considerable adsorption capacity for other species present in water because of their large specific surface areas and their high concentrations in soil-water and groundwater. As a result, the transport of contaminants can be significantly, sometimes dramatically, enhanced when they are adsorbed to mobile colloids. To address this problem, we have developed the C-Ride module for HYDRUS-1D. This one-dimensional numerical module is based on the HYDRUS-1D software package and incorporates mechanisms associated with colloid and colloid-facilitated solute transport in variably saturated porous media. This numerical model accounts for both colloid and solute movement due to convection, diffusion, and dispersion in variably-saturated soils, as well as for solute movement facilitated by colloid transport. The colloids transport module additionally considers processes of attachment/detachment to/from the solid phase, straining, and/or size exclusion. Various blocking and depth dependent functions can be used to modify the attachment and straining coefficients. The module additionally considers the effects of changes in the water content on colloid/bacteria transport and attachment/detachment to/from solid-water and air-water interfaces. For example, when the air

  13. Particle segregation in pneumatic conveying lines

    Energy Technology Data Exchange (ETDEWEB)

    McGlinchey, D.; Marjanovic, P.; Cook, S.; Jones, M.G. [Glasgow Caledonian University, Glasgow (United Kingdom). Centre for Industrial Bulk Solids Handling

    2000-07-01

    This investigation studied segregation of particles during pneumatic transport from a theoretical and experimental perspective. Dilute phase or suspension flow and dense phase (non-suspension flow) were both considered. A computer model was generated based on the conservation equations to investigate dilute phase conditions; an initial qualitative investigation of material behaviour being conveyed in dense phase was made with plastic pellets and salt as a segregating mixture in a small test rig and the results from a full scale test rig conveying two grades of coal of different size distributions are discussed. 11 refs., 9 figs., 1 tab.

  14. PyMercury: Interactive Python for the Mercury Monte Carlo Particle Transport Code

    International Nuclear Information System (INIS)

    Iandola, F.N.; O'Brien, M.J.; Procassini, R.J.

    2010-01-01

    Monte Carlo particle transport applications are often written in low-level languages (C/C++) for optimal performance on clusters and supercomputers. However, this development approach often sacrifices straightforward usability and testing in the interest of fast application performance. To improve usability, some high-performance computing applications employ mixed-language programming with high-level and low-level languages. In this study, we consider the benefits of incorporating an interactive Python interface into a Monte Carlo application. With PyMercury, a new Python extension to the Mercury general-purpose Monte Carlo particle transport code, we improve application usability without diminishing performance. In two case studies, we illustrate how PyMercury improves usability and simplifies testing and validation in a Monte Carlo application. In short, PyMercury demonstrates the value of interactive Python for Monte Carlo particle transport applications. In the future, we expect interactive Python to play an increasingly significant role in Monte Carlo usage and testing.

  15. Gastric cancer in coal miners: an hypothesis of coal mine dust causation

    Energy Technology Data Exchange (ETDEWEB)

    Ong, T M; Whong, W Z; Ames, R G

    1983-10-01

    An hypothesis is proposed to explain the elevated incidence of gastric cancer among coal miners. Inhaled coal mine dust, especially the larger particles, is cleared from the lung and tracheobronchial tree by mucociliary function, swallowed, and introduced into the stomach. Organic and/or inorganic materials in the dust can undergo intra-gastric nitrosation and/or interaction with exogenous chemicals to form carcinogenic compounds which in turn may lead to precancerous lesions, which may subsequently develop into gastric cancer. This sequence of events, however, depends upon occupational exposures as well as life-style features and individual genetic predisposition.

  16. Verification of Gyrokinetic Particle of Turbulent Simulation of Device Size Scaling Transport

    Institute of Scientific and Technical Information of China (English)

    LIN Zhihong; S. ETHIER; T. S. HAHM; W. M. TANG

    2012-01-01

    Verification and historical perspective are presented on the gyrokinetic particle simulations that discovered the device size scaling of turbulent transport and indentified the geometry model as the source of the long-standing disagreement between gyrokinetic particle and continuum simulations.

  17. Measurement of particle transport coefficients on Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial ({approx} 2 cm) and high temporal ({le} 1.0 ms) resolution. The system consists of 10 CO{sub 2} (10.6 {mu}m) and 4 HeNe (.6328 {mu}m) chords that are used to measure the line integrated density to within 0.08 CO{sub 2} degrees or 2.3 {times} 10{sup 16}m{sup {minus}2} theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment.

  18. Measurement of particle transport coefficients on Alcator C-Mod

    International Nuclear Information System (INIS)

    Luke, T.C.T.

    1994-10-01

    The goal of this thesis was to study the behavior of the plasma transport during the divertor detachment in order to explain the central electron density rise. The measurement of particle transport coefficients requires sophisticated diagnostic tools. A two color interferometer system was developed and installed on Alcator C-Mod to measure the electron density with high spatial (∼ 2 cm) and high temporal (≤ 1.0 ms) resolution. The system consists of 10 CO 2 (10.6 μm) and 4 HeNe (.6328 μm) chords that are used to measure the line integrated density to within 0.08 CO 2 degrees or 2.3 x 10 16 m -2 theoretically. Using the two color interferometer, a series of gas puffing experiments were conducted. The density was varied above and below the threshold density for detachment at a constant magnetic field and plasma current. Using a gas modulation technique, the particle diffusion, D, and the convective velocity, V, were determined. Profiles were inverted using a SVD inversion and the transport coefficients were extracted with a time regression analysis and a transport simulation analysis. Results from each analysis were in good agreement. Measured profiles of the coefficients increased with the radius and the values were consistent with measurements from other experiments. The values exceeded neoclassical predictions by a factor of 10. The profiles also exhibited an inverse dependence with plasma density. The scaling of both attached and detached plasmas agreed well with this inverse scaling. This result and the lack of change in the energy and impurity transport indicate that there was no change in the underlying transport processes after detachment

  19. Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand.

    Science.gov (United States)

    Cai, Li; Tong, Meiping; Wang, Xueting; Kim, Hyunjung

    2014-07-01

    This study investigated the influence of two representative suspended clay particles, bentonite and kaolinite, on the transport of titanium dioxide nanoparticles (nTiO2) in saturated quartz sand in both NaCl (1 and 10 mM ionic strength) and CaCl2 solutions (0.1 and 1 mM ionic strength) at pH 7. The breakthrough curves of nTiO2 with bentonite or kaolinite were higher than those without the presence of clay particles in NaCl solutions, indicating that both types of clay particles increased nTiO2 transport in NaCl solutions. Moreover, the enhancement of nTiO2 transport was more significant when bentonite was present in nTiO2 suspensions relative to kaolinite. Similar to NaCl solutions, in CaCl2 solutions, the breakthrough curves of nTiO2 with bentonite were also higher than those without clay particles, while the breakthrough curves of nTiO2 with kaolinite were lower than those without clay particles. Clearly, in CaCl2 solutions, the presence of bentonite in suspensions increased nTiO2 transport, whereas, kaolinite decreased nTiO2 transport in quartz sand. The attachment of nTiO2 onto clay particles (both bentonite and kaolinite) were observed under all experimental conditions. The increased transport of nTiO2 in most experimental conditions (except for kaolinite in CaCl2 solutions) was attributed mainly to the clay-facilitated nTiO2 transport. The straining of larger nTiO2-kaolinite clusters yet contributed to the decreased transport (enhanced retention) of nTiO2 in divalent CaCl2 solutions when kaolinite particles were copresent in suspensions.

  20. Design, synthesis, and characterization of novel fine-particle, unsupported catalysts for coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M.T.

    1991-12-30

    The purpose of this work is to investigate the kinetics-assisted design, synthesis and characterization of fme-pardcle, unsupported catalysts for coal liquefaction. The goal is to develop a fundamental understanding of coal catalysis and catalysts that will, in turn, allow for the specification of a novel optimal catalyst for coal liquefaction.

  1. Solubility of iron from combustion source particles in acidic media linked to iron speciation.

    Science.gov (United States)

    Fu, Hongbo; Lin, Jun; Shang, Guangfeng; Dong, Wenbo; Grassian, Vichi H; Carmichael, Gregory R; Li, Yan; Chen, Jianmin

    2012-10-16

    In this study, iron solubility from six combustion source particles was investigated in acidic media. For comparison, a Chinese loess (CL) dust was also included. The solubility experiments confirmed that iron solubility was highly variable and dependent on particle sources. Under dark and light conditions, the combustion source particles dissolved faster and to a greater extent relative to CL. Oil fly ash (FA) yielded the highest soluble iron as compared to the other samples. Total iron solubility fractions measured in the dark after 12 h ranged between 2.9 and 74.1% of the initial iron content for the combustion-derived particles (Oil FA > biomass burning particles (BP) > coal FA). Ferrous iron represented the dominant soluble form of Fe in the suspensions of straw BP and corn BP, while total dissolved Fe presented mainly as ferric iron in the cases of oil FA, coal FA, and CL. Mössbauer measurements and TEM analysis revealed that Fe in oil FA was commonly presented as nanosized Fe(3)O(4) aggregates and Fe/S-rich particles. Highly labile source of Fe in corn BP could be originated from amorphous Fe form mixed internally with K-rich particles. However, Fe in coal FA was dominated by the more insoluble forms of both Fe-bearing aluminosilicate glass and Fe oxides. The data presented herein showed that iron speciation varies by source and is an important factor controlling iron solubility from these anthropogenic emissions in acidic solutions, suggesting that the variability of iron solubility from combustion-derived particles is related to the inherent character and origin of the aerosols themselves. Such information can be useful in improving our understanding on iron solubility from combustion aerosols when they undergo acidic processing during atmospheric transport.

  2. Gasifier feed: Tailor-made from Illinois coals

    Energy Technology Data Exchange (ETDEWEB)

    Ehrlinger, H.P. III.

    1991-01-01

    The purpose of this research is to develop a coal slurry from waste streams using Illinois coal that is ideally suited for a gasification feed. The principle items to be studied are (1) methods of concentrating pyrite and decreasing other ash forming minerals into a high grade gasification feed using froth flotation and gravity separation techniques; (2) chemical and particle size analyses of coal slurries; (3) determination of how that slurry can be densified and to what degree of densification is optimum from the pumpability and combustibility analyses; and (4) reactivity studies.

  3. Fuel briquettes from brown coals of Yakutia

    Energy Technology Data Exchange (ETDEWEB)

    L.A. Nikolaeva; V.G. Latyshev; O.N. Burenina [Russian Academy of Sciences, Yakutsk (Russian Federation). Institute of Oil and Gas Problems

    2009-04-15

    Experimental data on the development of technology for the manufacture of briquetted fuel from brown coals with the use of various petroleum binders are presented. The influence of the moisture content, the coal particle-size composition, the binder type and concentration, the compacting pressure, and heat treatment regimes on the mechanical properties of the materials was studied. The optimal compositions and optimal values of the engineering parameters for the production of graded briquetted fuel from brown coals of the Kangalassy deposit in the Republic of Sakha (Yakutia) were established.

  4. A PIXE study of elements transport in fluvial waters in the Candiota region, Rio Grande do Sul, Brazil

    International Nuclear Information System (INIS)

    Teixeira, E.C.; Streck, C.D.; Braga, C.F.; Yoneama, M.L.; Dias, J.F.

    2004-01-01

    The transport of elements in fluvial waters within the Candiota region was evaluated by determining the elements associated with suspended particulate matter (SPM). To that end, SPM samples were collected at nine different locations five times from December 1999 to October 2000. The particle-induced X-ray emission technique was used to determine elements associated with SPM. Data interpretation was performed using factor analysis. Among the results explained by factor 1, the highest score was found to be due to the effect of local anthropogenic sources (coal mines) during the dry season. On the other hand, factor 2 was substantially heterogeneous, emphasising the sum of all anthropogenic contributions generated at the basin. Flux ratio and enrichment factor were calculated to elucidate the balance between weathering and solute transport. Results showed that Mn, Ni, Fe, Cu and Zn were carried by Candiota Stream particles, indicating that coal mining is presumably responsible for contamination of these elements in SPM

  5. Coal pyrolysis and char burnout under conventional and oxy-fuel conditions

    Energy Technology Data Exchange (ETDEWEB)

    Al-Makhadmeh, L.; Maier, J.; Scheffknecht, G. [Stuttgart Univ. (Germany). Institut fuer Verfahrenstechnik und Dampfkesselwesen

    2009-07-01

    Coal utilization processes such as combustion or gasification generally involve several steps i.e., the devolatilization of organic materials, homogeneous reactions of volatile matter with the reactant gases, and heterogeneous reactions of the solid (char) with the reactant gases. Most of the reported work about coal pyrolysis and char burnout were performed at low temperatures under environmental conditions related to the air firing process with single particle tests. In this work, coal combustion under oxy-fuel conditions is investigated by studying coal pyrolysis and char combustion separately in practical scales, with the emphasis on improving the understanding of the effect of a CO{sub 2}-rich gas environment on coal pyrolysis and char burnout. Two coals, Klein Kopje a medium volatile bituminous coal and a low-rank coal, Lausitz coal were used. Coal pyrolysis in CO{sub 2} and N{sub 2} environments were performed for both coals at different temperatures in an entrained flow reactor. Overall mass release, pyrolysis gas concentrations, and char characterization were performed. For char characterization ultimate analysis, particle size, and BET surface area were measured. Chars for both coals were collected at 1150 C in both CO{sub 2} and N{sub 2} environments. Char combustion was performed in a once-through 20 kW test facility in O{sub 2}/CO{sub 2} and O{sub 2}/N{sub 2} atmospheres. Besides coal quality, oxygen partial pressure was chosen as a variable to study the effect of the gas environment on char burnout. In general, it is found that the CO{sub 2} environment and coal rank have a significant effect on coal pyrolysis and char burnout. (orig.)

  6. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    International Nuclear Information System (INIS)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-β micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient

  7. Plasma transport in stochastic magnetic fields. I. General considerations and test particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Krommes, J.A.; Kleva, R.G.; Oberman, C.

    1978-05-01

    A systematic theory is developed for the computation of electron transport in stochastic magnetic fields. Small scale magnetic perturbations arising, for example, from finite-..beta.. micro-instabilities are assumed to destroy the flux surfaces of a standard tokamak equilibrium. Because the magnetic lines then wander in a volume, electron radial flux is enhanced due to the rapid particle transport along as well as across the lines. By treating the magnetic lines as random variables, it is possible to develop a kinetic equation for the electron distribution function. This is solved approximately to yield the diffusion coefficient.

  8. SIMULATION OF ENERGETIC PARTICLE TRANSPORT AND ACCELERATION AT SHOCK WAVES IN A FOCUSED TRANSPORT MODEL: IMPLICATIONS FOR MIXED SOLAR PARTICLE EVENTS

    Energy Technology Data Exchange (ETDEWEB)

    Kartavykh, Y. Y.; Dröge, W. [Institut für Theoretische Physik und Astrophysik, Universität Würzburg, D-97074 Würzburg (Germany); Gedalin, M. [Department of Physics, Ben-Gurion Unversity of the Negev, Beer-Sheva (Israel)

    2016-03-20

    We use numerical solutions of the focused transport equation obtained by an implicit stochastic differential equation scheme to study the evolution of the pitch-angle dependent distribution function of protons in the vicinity of shock waves. For a planar stationary parallel shock, the effects of anisotropic distribution functions, pitch-angle dependent spatial diffusion, and first-order Fermi acceleration at the shock are examined, including the timescales on which the energy spectrum approaches the predictions of diffusive shock acceleration theory. We then consider the case that a flare-accelerated population of ions is released close to the Sun simultaneously with a traveling interplanetary shock for which we assume a simplified geometry. We investigate the consequences of adiabatic focusing in the diverging magnetic field on the particle transport at the shock, and of the competing effects of acceleration at the shock and adiabatic energy losses in the expanding solar wind. We analyze the resulting intensities, anisotropies, and energy spectra as a function of time and find that our simulations can naturally reproduce the morphologies of so-called mixed particle events in which sometimes the prompt and sometimes the shock component is more prominent, by assuming parameter values which are typically observed for scattering mean free paths of ions in the inner heliosphere and energy spectra of the flare particles which are injected simultaneously with the release of the shock.

  9. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Directory of Open Access Journals (Sweden)

    Demongeot Jacques

    2004-06-01

    Full Text Available Abstract Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo.

  10. Microtubule self-organisation by reaction-diffusion processes causes collective transport and organisation of cellular particles

    Science.gov (United States)

    Glade, Nicolas; Demongeot, Jacques; Tabony, James

    2004-01-01

    Background The transport of intra-cellular particles by microtubules is a major biological function. Under appropriate in vitro conditions, microtubule preparations behave as a 'complex' system and show 'emergent' phenomena. In particular, they form dissipative structures that self-organise over macroscopic distances by a combination of reaction and diffusion. Results Here, we show that self-organisation also gives rise to a collective transport of colloidal particles along a specific direction. Particles, such as polystyrene beads, chromosomes, nuclei, and vesicles are carried at speeds of several microns per minute. The process also results in the macroscopic self-organisation of these particles. After self-organisation is completed, they show the same pattern of organisation as the microtubules. Numerical simulations of a population of growing and shrinking microtubules, incorporating experimentally realistic reaction dynamics, predict self-organisation. They forecast that during self-organisation, macroscopic parallel arrays of oriented microtubules form which cross the reaction space in successive waves. Such travelling waves are capable of transporting colloidal particles. The fact that in the simulations, the aligned arrays move along the same direction and at the same speed as the particles move, suggest that this process forms the underlying mechanism for the observed transport properties. Conclusions This process constitutes a novel physical chemical mechanism by which chemical energy is converted into collective transport of colloidal particles along a given direction. Self-organisation of this type provides a new mechanism by which intra cellular particles such as chromosomes and vesicles can be displaced and simultaneously organised by microtubules. It is plausible that processes of this type occur in vivo. PMID:15176973

  11. Volume-weighted particle-tracking method for solute-transport modeling; Implementation in MODFLOW–GWT

    Science.gov (United States)

    Winston, Richard B.; Konikow, Leonard F.; Hornberger, George Z.

    2018-02-16

    In the traditional method of characteristics for groundwater solute-transport models, advective transport is represented by moving particles that track concentration. This approach can lead to global mass-balance problems because in models of aquifers having complex boundary conditions and heterogeneous properties, particles can originate in cells having different pore volumes and (or) be introduced (or removed) at cells representing fluid sources (or sinks) of varying strengths. Use of volume-weighted particles means that each particle tracks solute mass. In source or sink cells, the changes in particle weights will match the volume of water added or removed through external fluxes. This enables the new method to conserve mass in source or sink cells as well as globally. This approach also leads to potential efficiencies by allowing the number of particles per cell to vary spatially—using more particles where concentration gradients are high and fewer where gradients are low. The approach also eliminates the need for the model user to have to distinguish between “weak” and “strong” fluid source (or sink) cells. The new model determines whether solute mass added by fluid sources in a cell should be represented by (1) new particles having weights representing appropriate fractions of the volume of water added by the source, or (2) distributing the solute mass added over all particles already in the source cell. The first option is more appropriate for the condition of a strong source; the latter option is more appropriate for a weak source. At sinks, decisions whether or not to remove a particle are replaced by a reduction in particle weight in proportion to the volume of water removed. A number of test cases demonstrate that the new method works well and conserves mass. The method is incorporated into a new version of the U.S. Geological Survey’s MODFLOW–GWT solute-transport model.

  12. Characterization of a coal tailing deposit for zero waste mine in the Brazilian coal field of Santa Catarina

    International Nuclear Information System (INIS)

    Amaral Filho, J.R.; Schneider, I.A.H.; Tubino, R.M.C.; Brum de, I.A.S.; Miltzarek, G.; Sampaio, C.H.

    2010-01-01

    Coal tailings deposits in Brazil are occupying large areas of land while also generating acid mine drainage (AMD) that includes heavy metals. This paper described an analytical study of a typical coal tailings deposit. The study objective was to separate low density, intermediate density, and high density fractions for future reuse. Particle size analysis, disymmetric studies, X-ray diffraction, and tests conducted to determine ash, total sulphur, and acid bases were conducted in order to characterize the coal tailings samples. Results of the study demonstrated a size distribution of 67 percent coarse, 14 percent fine, and 19 percent ultra-fine particles. The gravimetric concentration method was used to recover 34.2 percent of the total deposit for future energy use. Approximately 9.2 percent of the remaining deposit was a pyrite concentrate. The acid generating potential of the remaining materials was reduced by approximately 60 percent. 9 refs., 1 tab., 2 figs.

  13. Momentum, heat, and mass transfer analogy for vertical hydraulic transport of inert particles

    Directory of Open Access Journals (Sweden)

    Jaćimovski Darko R.

    2014-01-01

    Full Text Available Wall-to-bed momentum, heat and mass transfer in vertical liquid-solids flow, as well as in single phase flow, were studied. The aim of this investigation was to establish the analogy among those phenomena. Also, effect of particles concentration on momentum, heat and mass transfer was studied. The experiments in hydraulic transport were performed in a 25.4 mm I.D. cooper tube equipped with a steam jacket, using spherical glass particles of 1.94 mm in diameter and water as a transport fluid. The segment of the transport tube used for mass transfer measurements was inside coated with benzoic acid. In the hydraulic transport two characteristic flow regimes were observed: turbulent and parallel particle flow regime. The transition between two characteristic regimes (γ*=0, occurs at a critical voidage ε≈0.85. The vertical two-phase flow was considered as the pseudofluid, and modified mixture-wall friction coefficient (fw and modified mixture Reynolds number (Rem were introduced for explanation of this system. Experimental data show that the wall-to-bed momentum, heat and mass transfer coefficients, in vertical flow of pseudofluid, for the turbulent regime are significantly higher than in parallel regime. Wall-to-bed, mass and heat transfer coefficients in hydraulic transport of particles were much higher then in single-phase flow for lower Reynolds numbers (Re15000, there was not significant difference. The experimental data for wall-to-bed momentum, heat and mass transfer in vertical flow of pseudofluid in parallel particle flow regime, show existing analogy among these three phenomena. [Projekat Ministarstva nauke Republike Srbije, br. 172022

  14. Radial transport processes as a precursor to particle deposition in drinking water distribution systems.

    Science.gov (United States)

    van Thienen, P; Vreeburg, J H G; Blokker, E J M

    2011-02-01

    Various particle transport mechanisms play a role in the build-up of discoloration potential in drinking water distribution networks. In order to enhance our understanding of and ability to predict this build-up, it is essential to recognize and understand their role. Gravitational settling with drag has primarily been considered in this context. However, since flow in water distribution pipes is nearly always in the turbulent regime, turbulent processes should be considered also. In addition to these, single particle effects and forces may affect radial particle transport. In this work, we present an application of a previously published turbulent particle deposition theory to conditions relevant for drinking water distribution systems. We predict quantitatively under which conditions turbophoresis, including the virtual mass effect, the Saffman lift force, and the Magnus force may contribute significantly to sediment transport in radial direction and compare these results to experimental observations. The contribution of turbophoresis is mostly limited to large particles (>50 μm) in transport mains, and not expected to play a major role in distribution mains. The Saffman lift force may enhance this process to some degree. The Magnus force is not expected to play any significant role in drinking water distribution systems. © 2010 Elsevier Ltd. All rights reserved.

  15. Technology assessment of various coal-fuel options

    International Nuclear Information System (INIS)

    Coenen, R.; Findling, B.; Klein-Vielhauer, S.; Nieke, E.; Paschen, H.; Tangen, H.; Wintzer, D.

    1991-01-01

    The technology assessment (TA) study of coal-based fuels presented in this report was performed for the Federal Ministry for Research and Technology. Its goal was to support decision-making of the Federal Ministry for Research and Technology in the field of coal conversion. Various technical options of coal liquefaction have been analyzed on the basis of hard coal as well as lignite -- direct liquefaction of coal (hydrogenation) and different possibilities of indirect liquefaction, that is the production of fuels (methanol, gasoline) by processing products of coal gasification. The TA study takes into consideration the entire technology chain from coal mining via coal conversion to the utilization of coal-based fuels in road transport. The analysis focuses on costs of the various options, overall economic effects, which include effects on employment and public budgets, and on environmental consequences compared to the use of liquid fuels derived from oil. Furthermore, requirements of infrastructure and other problems of the introduction of coal-based fuels as well as prospects for the export of technologies of direct and indirect coal liquefaction have been analyzed in the study. 14 figs., 10 tabs

  16. Effects of oil dispersants on settling of marine sediment particles and particle-facilitated distribution and transport of oil components.

    Science.gov (United States)

    Cai, Zhengqing; Fu, Jie; Liu, Wen; Fu, Kunming; O'Reilly, S E; Zhao, Dongye

    2017-01-15

    This work investigated effects of three model oil dispersants (Corexit EC9527A, Corexit EC9500A and SPC1000) on settling of fine sediment particles and particle-facilitated distribution and transport of oil components in sediment-seawater systems. All three dispersants enhanced settling of sediment particles. The nonionic surfactants (Tween 80 and Tween 85) play key roles in promoting particle aggregation. Yet, the effects varied with environmental factors (pH, salinity, DOM, and temperature). Strongest dispersant effect was observed at neutral or alkaline pH and in salinity range of 0-3.5wt%. The presence of water accommodated oil and dispersed oil accelerated settling of the particles. Total petroleum hydrocarbons in the sediment phase were increased from 6.9% to 90.1% in the presence of Corexit EC9527A, and from 11.4% to 86.7% for PAHs. The information is useful for understanding roles of oil dispersants in formation of oil-sediment aggregates and in sediment-facilitated transport of oil and PAHs in marine eco-systems. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Proceedings of the 5th international coal trade, transportation and handling conference held in Rotterdam 18-20 October 1988 [CoalTrans '88

    International Nuclear Information System (INIS)

    Cargill, R.

    1989-01-01

    The worldwide position of coal as a fuel is reviewed in 36 papers. First the competitive position is reviewed (4 papers) and then the new demand for steam coal in Europe (EEC, Scandinavia and the UK), East Asia (Hong Kong, Taiwan and Japan) and Turkey, North Africa and the USA is reviewed. The shipping of coal and freight costs (4 papers) are debated and the development of new coal markets is reviewed (4 papers). New technology (6 papers) - for example combined explained and then the issues of supply - new coal projects in Alaska, Venezuela, Indonesia and Colombia - (4 papers) and the pressures on established coal exporters (5 papers) is considered. One paper, on how the future prospects of nuclear power will affect coal demand, is indexed separately. (UK)

  18. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    Science.gov (United States)

    Zhao, Tongbin; Yin, Yanchun; Xiao, Fukun; Tan, Yunliang; Zou, Jianchao

    2014-01-01

    Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster. PMID:25054186

  19. Rockburst Disaster Prediction of Isolated Coal Pillar by Electromagnetic Radiation Based on Frictional Effect

    Directory of Open Access Journals (Sweden)

    Tongbin Zhao

    2014-01-01

    Full Text Available Based on the understanding that charges generated during coal cracking are due to coal particle friction, a microstructure model was developed by considering four different variation laws of friction coefficient. Firstly, the frictional energy release of coal sample during uniaxial compressive tests was investigated and discussed. Then electromagnetic radiation method was used to predict the potential rockburst disaster in isolated coal pillar mining face, Muchengjian Colliery. The results indicate that the friction coefficient of coal particles decreases linearly with the increase of axial loading force. In predicting the strain-type rockburst, the high stress state of coal must be closely monitored. Field monitoring shows that electromagnetic radiation signal became abnormal before the occurrence of rockburst during isolated coal pillar mining. Furthermore, rockburst tends to occur at the early and ending stages of isolated coal pillar extraction. Mine-site investigation shows the occurrence zone of rockburst is consistent with the prediction, proving the reliability of the electromagnetic radiation method to predict strain-type rockburst disaster.

  20. Coal transportation road damage

    International Nuclear Information System (INIS)

    Burtraw, D.; Harrison, K.; Pawlowski, J.A.

    1994-01-01

    Heavy trucks are primarily responsible for pavement damage to the nation's highways. In this paper we evaluate the pavement damage caused by coal trucks. We analyze the chief source of pavement damage (vehicle weight per axle, not total vehicle weight) and the chief cost involved (the periodic overlay that is required when a road's surface becomes worn). This analysis is presented in two stages. In the first section we present a synopsis of current economic theory including simple versions of the formulas that can be: used to calculate costs of pavement wear. In the second section we apply this theory to a specific example proximate to the reference environment for the Fuel Cycle Study in New Mexico in order to provide a numerical measure of the magnitude of the costs

  1. Commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi.

    Science.gov (United States)

    Kumar, Pramod; Gupta, N C

    2016-01-15

    A public health concern is to understand the linkages between specific pollution sources and adverse health impacts. Commuting can be viewed as one of the significant-exposure activity in high-vehicle density areas. This paper investigates the commuter exposure to inhalable, thoracic and alveolic particles in various transportation modes in Delhi, India. Air pollution levels are significantly contributed by automobile exhaust and also in-vehicle exposure can be higher sometime than ambient levels. Motorcycle, auto rickshaw, car and bus were selected to study particles concentration along two routes in Delhi between Kashmere Gate and Dwarka. The bus and auto rickshaw were running on compressed natural gas (CNG) while the car and motorcycle were operated on gasoline fuel. Aerosol spectrometer was employed to measure inhalable, thoracic and alveolic particles during morning and evening rush hours for five weekdays. From the study, we observed that the concentration levels of these particles were greatly influenced by transportation modes. Concentrations of inhalable particles were found higher during morning in auto rickshaw (332.81 ± 90.97 μg/m(3)) while the commuter of bus exhibited higher exposure of thoracic particles (292.23 ± 110.45 μg/m(3)) and car commuters were exposed to maximum concentrations of alveolic particles (222.37 ± 26.56 μg/m(3)). We observed that in evening car commuters experienced maximum concentrations of all sizes of particles among the four commuting modes. Interestingly, motorcycle commuters were exposed to lower levels of inhalable and thoracic particles during morning and evening hours as compared to other modes of transport. The mean values were found greater than the median values for all the modes of transport suggesting that positive skewed distributions are characteristics of naturally occurring phenomenon. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Determination of moisture in coal, in the case of discontinuous transport, using condensers

    Energy Technology Data Exchange (ETDEWEB)

    Prieto-Fernandez, Ismael; Luengo-Garcia, Juan-Carlos; Alonso, Manuela [Area Maquinas y Motores Termicos, Universidad de Oviedo, Campus Universitario, 33203 , Asturias Gijon (Spain)

    2002-02-20

    The need for a rapid method of determining the technological characteristics of coal has been increasing in the last decades. The coal industry demands methods of coal analysis on a rapid and reasonably accurate basis. In this report, a non-conventional system for moisture analysis of thermal coal, based on capacitance techniques, is proposed. A device for non-continuous analysis based on this technique is designed and developed. Such device simulates a cylindrical condenser, in which coal acts as the dielectric material. The device is used to measure moisture content in coals. The results from the statistical analyses and conclusions are presented. Also, on-site potential use of capacitance techniques is shown.

  3. Computer codes in particle transport physics

    International Nuclear Information System (INIS)

    Pesic, M.

    2004-01-01

    Simulation of transport and interaction of various particles in complex media and wide energy range (from 1 MeV up to 1 TeV) is very complicated problem that requires valid model of a real process in nature and appropriate solving tool - computer code and data library. A brief overview of computer codes based on Monte Carlo techniques for simulation of transport and interaction of hadrons and ions in wide energy range in three dimensional (3D) geometry is shown. Firstly, a short attention is paid to underline the approach to the solution of the problem - process in nature - by selection of the appropriate 3D model and corresponding tools - computer codes and cross sections data libraries. Process of data collection and evaluation from experimental measurements and theoretical approach to establishing reliable libraries of evaluated cross sections data is Ion g, difficult and not straightforward activity. For this reason, world reference data centers and specialized ones are acknowledged, together with the currently available, state of art evaluated nuclear data libraries, as the ENDF/B-VI, JEF, JENDL, CENDL, BROND, etc. Codes for experimental and theoretical data evaluations (e.g., SAMMY and GNASH) together with the codes for data processing (e.g., NJOY, PREPRO and GRUCON) are briefly described. Examples of data evaluation and data processing to generate computer usable data libraries are shown. Among numerous and various computer codes developed in transport physics of particles, the most general ones are described only: MCNPX, FLUKA and SHIELD. A short overview of basic application of these codes, physical models implemented with their limitations, energy ranges of particles and types of interactions, is given. General information about the codes covers also programming language, operation system, calculation speed and the code availability. An example of increasing computation speed of running MCNPX code using a MPI cluster compared to the code sequential option

  4. Characterization of a new Hencken burner with a transition from a reducing-to-oxidizing environment for fundamental coal studies

    Science.gov (United States)

    Adeosun, Adewale; Huang, Qian; Li, Tianxiang; Gopan, Akshay; Wang, Xuebin; Li, Shuiqing; Axelbaum, Richard L.

    2018-02-01

    In pulverized coal burners, coal particles usually transition from a locally reducing environment to an oxidizing environment. The locally reducing environment in the near-burner region is due to a dense region of coal particles undergoing devolatilization. Following this region, the particles move into an oxidizing environment. This "reducing-to-oxidizing" transition can influence combustion processes such as ignition, particulate formation, and char burnout. To understand these processes at a fundamental level, a system is required that mimics such a transition. Hence, we have developed and characterized a two-stage Hencken burner to evaluate the effect of the reducing-to-oxidizing transition and particle-to-particle interaction (which characterizes dense region of coal particles) on ignition and ultrafine aerosol formation. The two-stage Hencken burner allows coal particles to experience a reducing environment followed by a transition to an oxidizing environment. This work presents the results of the design and characterization of the new two-stage Hencken burner and its new coal feeder. In a unique approach to the operation of the flat-flame of the Hencken burner, the flame configurations are operated as either a normal flame or inverse flame. Gas temperatures and oxygen concentrations for the Hencken burner are measured in reducing-to-oxidizing and oxidizing environments. The results show that stable flames with well-controlled conditions, relatively uniform temperatures, and species concentrations can be achieved in both flame configurations. This new Hencken burner provides an effective system for evaluating the effect of the reducing-to-oxidizing transition and particle-to-particle interaction on early-stage processes of coal combustion such as ignition and ultrafine particle formation.

  5. Representation of mathematical expectation of symmetrical functionals in the particle transport theory

    International Nuclear Information System (INIS)

    Uchajkin, V.V.

    1977-01-01

    The two-dimensional functional is used to show that the mathematical expectation of symmetrical functionals may be represented as a nonlinear functional obtained from the solution of the Boltzman equations (Green's function). For the highest moments of additive detector readings, which are a particular case of symmetrical functionals, a similar result was obtained by the author previously when he studied particles transport with and without multiplication. In physical terms such a concept is conditioned by the absence of moving particles with one another, the assumption of which is the basis of the linear transport theory

  6. Ripple enhanced transport of suprathermal alpha particles

    International Nuclear Information System (INIS)

    Tani, K.; Takizuka, T.; Azumi, M.

    1986-01-01

    The ripple enhanced transport of suprathermal alpha particles has been studied by the newly developed Monte-Carlo code in which the motion of banana orbit in a toroidal field ripple is described by a mapping method. The existence of ripple-resonance diffusion has been confirmed numerically. We have developed another new code in which the radial displacement of banana orbit is given by the diffusion coefficients from the mapping code or the orbit following Monte-Carlo code. The ripple loss of α particles during slowing down has been estimated by the mapping model code as well as the diffusion model code. From the comparison of the results with those from the orbit-following Monte-Carlo code, it has been found that all of them agree very well. (author)

  7. Los Alamos neutral particle transport codes: New and enhanced capabilities

    International Nuclear Information System (INIS)

    Alcouffe, R.E.; Baker, R.S.; Brinkley, F.W.; Clark, B.A.; Koch, K.R.; Marr, D.R.

    1992-01-01

    We present new developments in Los Alamos discrete-ordinates transport codes and introduce THREEDANT, the latest in the series of Los Alamos discrete ordinates transport codes. THREEDANT solves the multigroup, neutral-particle transport equation in X-Y-Z and R-Θ-Z geometries. THREEDANT uses computationally efficient algorithms: Diffusion Synthetic Acceleration (DSA) is used to accelerate the convergence of transport iterations, the DSA solution is accelerated using the multigrid technique. THREEDANT runs on a wide range of computers, from scientific workstations to CRAY supercomputers. The algorithms are highly vectorized on CRAY computers. Recently, the THREEDANT transport algorithm was implemented on the massively parallel CM-2 computer, with performance that is comparable to a single-processor CRAY-YMP We present the results of THREEDANT analysis of test problems

  8. Particle transport and fluctuation characteristics around neoclassically optimized configurations in LHD

    International Nuclear Information System (INIS)

    Tanaka, K.; Michael, C.; Vyacheslavov, L.N.

    2008-01-01

    Density profiles in LHD were measured and particle transport coefficients were estimated from density modulation experiments in LHD. The data set contains the wide region of discharge condition. The dataset of different magnetic axis, toroidal magnetic field and heating power provided data set of widely scanned neoclassical transport. At minimized neoclassical transport configuration in the dataset (Rax=3.5m, Bt=2.8T) showed peaked density profile. Its peaking factor increased gradually with decrease of collisional frequency. This is a similar result observed in tokamak data base. At other configuration, peaking factor reduced with decrease of collisional frequency. Data set showed that larger contribution of neoclassical transport produced hollowed density profile. Comparison between neoclassical and experimental estimated particle diffusivity showed different minimum condition. This suggests neoclassical optimization is not same as anomalous optimization. Clear difference of spatial profile of turbulence was observed between hollowed and peaked density profiles. Major part of fluctuation existed in the unstable region of linear growth rate of ion temperature gradient mode. (author)

  9. Direct measurements of particle transport in dc glow discharge dusty plasmas

    International Nuclear Information System (INIS)

    Thomas, E. Jr.

    2001-01-01

    Many recent experiments in dc glow discharge plasmas have shown that clouds of dust particles can be suspended near the biased electrodes. Once formed, the dust clouds have well defined boundaries while particle motion within the clouds can be quite complex. Because the dust particles in the cloud can remain suspended in the plasma for tens of minutes, it implies that the particles have a low diffusive loss rate and follow closed trajectories within the cloud. In the experiments discussed in this paper, direct measurements of the dust particle velocities are made using particle image velocimetry (PIV) techniques. From the velocity measurements, a reconstruction of the three-dimensional transport of the dust particles is performed. A qualitative model is developed for the closed motion of the dust particles in a dc glow discharge dusty plasma. (orig.)

  10. Directed Magnetic Particle Transport above Artificial Magnetic Domains Due to Dynamic Magnetic Potential Energy Landscape Transformation.

    Science.gov (United States)

    Holzinger, Dennis; Koch, Iris; Burgard, Stefan; Ehresmann, Arno

    2015-07-28

    An approach for a remotely controllable transport of magnetic micro- and/or nanoparticles above a topographically flat exchange-bias (EB) thin film system, magnetically patterned into parallel stripe domains, is presented where the particle manipulation is achieved by sub-mT external magnetic field pulses. Superparamagnetic core-shell particles are moved stepwise by the dynamic transformation of the particles' magnetic potential energy landscape due to the external magnetic field pulses without affecting the magnetic state of the thin film system. The magnetic particle velocity is adjustable in the range of 1-100 μm/s by the design of the substrate's magnetic field landscape (MFL), the particle-substrate distance, and the magnitude of the applied external magnetic field pulses. The agglomeration of magnetic particles is avoided by the intrinsic magnetostatic repulsion of particles due to the parallel alignment of the particles' magnetic moments perpendicular to the transport direction and parallel to the surface normal of the substrate during the particle motion. The transport mechanism is modeled by a quantitative theory based on the precise knowledge of the sample's MFL and the particle-substrate distance.

  11. Modeling of the flame propagation in coal-dust- methane air mixture in an enclosed sphere volume

    International Nuclear Information System (INIS)

    Krainov, A Yu; Moiseeva, K M

    2016-01-01

    The results of the numerical simulation of the flame front propagation in coal-dust- methane-air mixture in an enclosed volume with the ignition source in the center of the volume are presented. The mathematical model is based on a dual-velocity two-phase model of the reacting gas-dispersion medium. The system of equations includes the mass-conversation equation, the impulse-conversation equation, the total energy-conversation equation of the gas and particles taking into account the thermal conductivity and chemical reactions in the gas and on the particle surface, mass-conversation equation of the mixture gas components considering the diffusion and the burn-out and the particle burn-out equation. The influence of the coal particle mass on the pressure in the volume after the mixture burn out and on the burn-out time has been investigated. It has been shown that the burning rate of the coal-dust methane air mixtures depends on the coal particle size. (paper)

  12. Coal-char combustion in a fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mehrotra, S.P.; Pande, M. [Indian Institute of Technolgy, Kanpur (India)

    2001-12-01

    Combustion of bituminous coal chars ranging from 0.8 mm to 1.8 mm has been studied in a fluidised bed reactor at temperatures ranging from 500 to 850{sup o}C. The fluidised bed consists of inert sand particles of average size of 0.5 mm and reactive coal char particles. A heat balance has been worked out to calculate the rate of combustion of char from measured incremental changes in the bed temperature during combustion. Investigations on partially burnt particles suggest that the ash layer which builds up around the burning core of char particles is non-flaking and the particles burn in a shrinking core manner. Analysis of rate data indicates that the rate of combustion is controlled by chemical reaction kinetics, though diffusion of oxygen through the bundary layer begins to influence the overall reaction kinetics at higher temperatures. The burnt out time varies linearly with particle size. Activation energy for the chemical reaction control regime is found to be around 68 kJ/mole.

  13. Linear kinetic theory and particle transport in stochastic mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Pomraning, G.C. [Univ. of California, Los Angeles, CA (United States)

    1995-12-31

    We consider the formulation of linear transport and kinetic theory describing energy and particle flow in a random mixture of two or more immiscible materials. Following an introduction, we summarize early and fundamental work in this area, and we conclude with a brief discussion of recent results.

  14. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    International Nuclear Information System (INIS)

    Lissianski, Vitali V.; Loc Ho; Maly, Peter M.; Zamansky, Vladimir M.

    2002-01-01

    This project develops Fuel-Flexible Reburning (FFR), which combines conventional reburning and Advanced Reburning (AR) technologies with an innovative method of delivering coal as the reburning fuel. The FFR can be retrofit to existing boilers and can be configured in several ways depending on the boiler, coal characteristics, and NO x control requirements. Fly ash generated by the technology will be a saleable byproduct for use in the cement and construction industries. FFR can also reduce NO x by 60%-70%, achieving an emissions level of 0.15 lb/10 6 Btu in many coal-fired boilers equipped with Low NO x Burners. Total process cost is expected to be one third to one half of that for Selective Catalytic Reduction (SCR). Activities during reporting period included design, manufacture, assembly, and shake down of the coal gasifier and pilot-scale testing of the efficiency of coal gasification products in FFR. Tests were performed in a 300 kW Boiler Simulator Facility. Several coals with different volatiles content were tested. Data suggested that incremental increase in the efficiency of NO x reduction due to the gasification was more significant for less reactive coals with low volatiles content. Experimental results also suggested that the efficiency of NO x reduction in FFR was higher when air was used as a transport media. Up to 14% increase in the efficiency of NO x reduction in comparison with that of basic reburning was achieved with air transport. Temperature and residence time in the gasification zone also affected the efficiency of NO x reduction

  15. Maximizing efficiency in the transition to a coal-based economy

    International Nuclear Information System (INIS)

    Brathwaite, J.; Horst, S.; Iacobucci, J.

    2010-01-01

    Energy is the lynchpin of modern society. Since the early 1970s, growing dependence on foreign energy sources, oil in particular, has constrained US independence in foreign policy, and at times, inhibited economic stability and growth. Addressing oil dependence is politically and economically complex. Proposed solutions are multifaceted with various objectives such as energy efficiency and resource substitution. One solution is the partial transition from an oil- to coal-based economy. A number of facts support this solution including vast coal reserves in the US and the relative price stability of coal. However, several roadblocks exist. These include uncertain recoverable reserves and the immaturity of 'clean' coal technologies. This paper provides a first order analysis of the most efficient use of coal assuming the transition from oil to coal is desirable. Scenario analysis indicates two possible transition pathways: (1) bring the transportation sector onto the electric grid and (2) use coal-to-liquid fuels to directly power vehicles. The feasibility of each pathway is examined based on economic and environmental factors, among which are energy availability, affordability and efficiency, and environmental sustainability. Results indicate that partial transition of the transportation sector onto the electric grid offers the more viable solution for coal-based reduction of the US oil dependence.

  16. Coal preparation and coal cleaning in the dry process; Kanshiki sentaku to coal cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Z; Morikawa, M; Fujii, Y [Okayama University, Okayama (Japan). Faculty of Engineering

    1996-09-01

    Because the wet process has a problem such as waste water treatment, coal cleaning in the dry process was discussed. When a fluidized bed (using glass beads and calcium carbonate) is utilized instead of the heavy liquid, the fluidized bed will have apparent density as the liquid does, whereas the relative relationship therewith determines whether a substance having been put into the fluidized bed will float or sink. This is utilized for coals. In addition, two powder constituents of A and B may be wanted to be separated using the fluidized extraction process (similar to the liquid-liquid extraction process). In such a case, a fluidized bed in which both constituents are mixed is added with a third constituent C (which will not mix with A, but mix well with B), where the constituents are separated into A and (B + C), and the (B + C) constituent is separated further by using a sieve. If coal has the coal content mixed with ash content and pulverized, it turns into particle groups which have distributions in grain size and density. Groups having higher density may contain more ash, and those having lower density less ash. In addition, the ash content depends also on the grain size. The ash content may be classified by using simultaneously wind classification (for density and grain size) and a sieve (for grain size). This inference may be expanded to consideration of constructing a multi-stage fluidized bed classification tower. 12 figs., 5 tabs.

  17. Method for processing coal-enrichment waste with solid and volatile fuel inclusions

    Science.gov (United States)

    Khasanova, A. V.; Zhirgalova, T. B.; Osintsev, K. V.

    2017-10-01

    The method relates to the field of industrial heat and power engineering. It can be used in coal preparation plants for processing coal waste. This new way is realized to produce a loose ash residue directed to the production of silicate products and fuel gas in rotary kilns. The proposed method is associated with industrial processing of brown coal beneficiation waste. Waste is obtained by flotation separation of rock particles up to 13 mm in size from coal particles. They have in their composition both solid and volatile fuel inclusions (components). Due to the high humidity and significant rock content, low heat of combustion, these wastes are not used on energy boilers, they are stored in dumps polluting the environment.

  18. Coal belt options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-15

    Whether moving coal long distances overland or short distances in-plant, belt conveyors will always be in demand. The article reports on recent systems developments and applications by Beumer, Horizon Conveyor Equipment, Conveyor Dynamics, Doppelmayr Transport Technology, Enclosed Bulk Systems, ContiTech and Bateman Engineered Technologies. 2 photos.

  19. Experimental and theoretical study of particle transport in the TCV Tokamak

    International Nuclear Information System (INIS)

    Fable, E.

    2009-06-01

    The main scope of this thesis work is to compare theoretical models with experimental observations on particle transport in particular regimes of plasma operation from the Tokamak à Configuration Variable (TCV) located at CRPP–EPFL in Lausanne. We introduce the main topics in Tokamak fusion research and the challenging problems in the first Chapter. A particular attention is devoted to the modelling of heat and particle transport. In the second Chapter the experimental part is presented, including an overview of TCV capabilities, a brief review of the relevant diagnostic systems, and a discussion of the numerical tools used to analyze the experimental data. In addition, the numerical codes that are used to interpret the experimental data and to compare them with theoretical predictions are introduced. The third Chapter deals with the problem of understanding the mechanisms that regulate the transport of energy in TCV plasmas, in particular in the electron Internal Transport Barrier (eITB) scenario. A radial transport code, integrated with an external module for the calculation of the turbulence-induced transport coefficients, is employed to reproduce the experimental scenario and to understand the physics at play. It is shown how the sustainment of an improved confinement regime is linked to the presence of a reversed safety factor profile. The improvement of confinement in the eITB regime is visible in the energy channel and in the particle channel as well. The density profile shows strong correlation with the temperature profile and has a large local logarithmic gradient. This is an important result obtained from the TCV eITB scenario analysis and is presented in the fourth Chapter. In the same chapter we present the estimate of the particle diffusion and convection coefficients obtained from density transient experiments performed in the eITB scenario. The theoretical understanding of the strong correlation between density and temperature observed in the e

  20. Time-dependent transport of energetic particles in magnetic turbulence: computer simulations versus analytical theory

    Science.gov (United States)

    Arendt, V.; Shalchi, A.

    2018-06-01

    We explore numerically the transport of energetic particles in a turbulent magnetic field configuration. A test-particle code is employed to compute running diffusion coefficients as well as particle distribution functions in the different directions of space. Our numerical findings are compared with models commonly used in diffusion theory such as Gaussian distribution functions and solutions of the cosmic ray Fokker-Planck equation. Furthermore, we compare the running diffusion coefficients across the mean magnetic field with solutions obtained from the time-dependent version of the unified non-linear transport theory. In most cases we find that particle distribution functions are indeed of Gaussian form as long as a two-component turbulence model is employed. For turbulence setups with reduced dimensionality, however, the Gaussian distribution can no longer be obtained. It is also shown that the unified non-linear transport theory agrees with simulated perpendicular diffusion coefficients as long as the pure two-dimensional model is excluded.

  1. Neutron secondary-particle production cross sections and their incorporation into Monte-Carlo transport codes

    International Nuclear Information System (INIS)

    Brenner, D.J.; Prael, R.E.; Little, R.C.

    1987-01-01

    Realistic simulations of the passage of fast neutrons through tissue require a large quantity of cross-sectional data. What are needed are differential (in particle type, energy and angle) cross sections. A computer code is described which produces such spectra for neutrons above ∼14 MeV incident on light nuclei such as carbon and oxygen. Comparisons have been made with experimental measurements of double-differential secondary charged-particle production on carbon and oxygen at energies from 27 to 60 MeV; they indicate that the model is adequate in this energy range. In order to utilize fully the results of these calculations, they should be incorporated into a neutron transport code. This requires defining a generalized format for describing charged-particle production, putting the calculated results in this format, interfacing the neutron transport code with these data, and charged-particle transport. The design and development of such a program is described. 13 refs., 3 figs

  2. Greening coal: breakthroughs and challenges in carbon capture and storage.

    Science.gov (United States)

    Stauffer, Philip H; Keating, Gordon N; Middleton, Richard S; Viswanathan, Hari S; Berchtold, Kathryn A; Singh, Rajinder P; Pawar, Rajesh J; Mancino, Anthony

    2011-10-15

    Like it or not, coal is here to stay, for the next few decades at least. Continued use of coal in this age of growing greenhouse gas controls will require removing carbon dioxide from the coal waste stream. We already remove toxicants such as sulfur dioxide and mercury, and the removal of CO₂ is the next step in reducing the environmental impacts of using coal as an energy source (i.e., greening coal). This paper outlines some of the complexities encountered in capturing CO₂ from coal, transporting it large distances through pipelines, and storing it safely underground.

  3. Pyrolysis of superfine pulverized coal. Part 3. Mechanisms of nitrogen-containing species formation

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2015-01-01

    Highlights: • NH 3 and NO formation mechanisms during superfine pulverized coal pyrolysis are investigated. • Influences of temperature, heating rate, particle size, atmosphere, and acid wash on the NH 3 and NO formation are analyzed. • Transformations of nitrogen-containing structures in coal/char during pyrolysis are recognized through XPS observation. • Relationships among nitrogen-containing gaseous species during pyrolysis are discussed. - Abstract: With more stringent regulations being implemented, elucidating the formation mechanisms of nitrogen-containing species during the initial pyrolysis step becomes important for developing new NO x control strategies. However, there is a lack of agreement on the origins of NO x precursors during coal pyrolysis, in spite of extensive investigations. Hence, it is important to achieve a more precise knowledge of the formation mechanisms of nitrogen-contain species during coal pyrolysis. In this paper, pyrolysis experiments of superfine pulverized coal were performed in a fixed bed at low heating rates. The influences of temperature, coal type, particle size and atmosphere on the NH 3 and NO evolution were discussed. There is a central theme to develop knowledge of the relationship between particle sizes and evolving behaviors of nitrogen-containing species. Furthermore, the catalytic role of inherent minerals in coal was proved to be effective on the partitioning of nitrogen during coal pyrolysis. In addition, the conversion pathways of heteroaromatic nitrogen structures in coal/char during pyrolysis were recognized through the X-ray photoelectron spectroscopy (XPS) analysis. Large quantities of pyridinic and quanternary nitrogen functionalities were formed during the thermal degradation. Finally, the relationships among the nitrogen-containing gaseous species during coal pyrolysis were discussed. In brief, a comprehensive picture of the volatile-nitrogen partitioning during coal pyrolysis is obtained in this

  4. Investigation of factors influencing the attrition breakage of coal

    Energy Technology Data Exchange (ETDEWEB)

    Oberholzer, V.; van der Walt, J. [North West University, Mmabatho (South Africa). School of Chemical & Minerals Engineering

    2009-04-15

    The presence of fines (particles smaller than 6 mm in diameter) causes hydrodynamic problems in gasifiers and therefore it is of great importance to minimize the amount of fine coal in the feed. This serves as motivation for understanding coal's breakage mechanisms, which could lead to the ability to predict the generation of fines. The aim of this project was to simulate the pulsating effect of the conveyor belt in order to investigate factors influencing the breakage. Results indicated that an increased initial particle size had an increasing effect in the amount of fines generated. Weathering had an insignificant effect on the breakage of coal. To conclude, a breakage model was developed to describe the rate of breakage out of the top size when a combination of two breakage modes is present.

  5. Health impacts of coal: facts and fallacies

    Energy Technology Data Exchange (ETDEWEB)

    Finkelman, R.B. [University of Texas, Dallas, TX (United States)

    2007-02-15

    Coal has contributed enormously to the advance of civilization by providing an abundant, inexpensive, and convenient source of energy. Concurrent with its contributions, coal has extracted a high cost in terms of environmental damage and human health impacts. Unfortunately, the links between coal use and human health are distorted by a great deal of ignorance and misinformation. This paper discusses the facts and fallacies of the direct health impacts caused by coal. These include health problems caused by arsenic, fluorine, mercury and selenium released in coal use in the residential sector. The trace element iodine however may help prevent iodine deficiency disorder. Lignite in the ground in some Balkan areas has been associated with a urinary tract cancer known as Balkan endemic nephropathy (BEN). Uncontrolled burning coal seams and coal waste piles contribute to global warming and to respiratory problems. The 10-fold enrichment of trace elements in fly ash and the fine particles released from power plants could present a health threat but where good pollution control technology and disposal practices are applied the health threat is probably minimal. Radioactivity levels in coal are thought to be too low to cause concern. 27 refs., 2 figs.

  6. Transformations of inorganic coal constituents in combustion systems. Volume 1, sections 1--5: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Helble, J.J. [ed.; Srinivasachar, S.; Wilemski, G.; Boni, A.A. [PSI Technology Co., Andover, MA (United States); Kang, Shin-Gyoo; Sarofim, A.F.; Graham, K.A.; Beer, J.M. [Massachusetts Inst. of Tech., Cambridge, MA (United States); Peterson, T.W.; Wendt, J.O.L.; Gallagher, N.B.; Bool, L. [Arizona Univ., Tucson, AZ (United States); Huggins, F.E.; Huffman, G.P.; Shah, N.; Shah, A. [Kentucky Univ., Lexington, KY (United States)

    1992-11-01

    The inorganic constituents or ash contained in pulverized coal significantly increase the environmental and economic costs of coal utilization. For example, ash particles produced during combustion may deposit on heat transfer surfaces, decreasing heat transfer rates and increasing maintenance costs. The minimization of particulate emissions often requires the installation of cleanup devices such as electrostatic precipitators, also adding to the expense of coal utilization. Despite these costly problems, a comprehensive assessment of the ash formation and had never been attempted. At the start of this program, it was hypothesized that ash deposition and ash particle emissions both depended upon the size and chemical composition of individual ash particles. Questions such as: What determines the size of individual ash particles? What determines their composition? Whether or not particles deposit? How combustion conditions, including reactor size, affect these processes? remained to be answered. In this 6-year multidisciplinary study, these issues were addressed in detail. The ambitious overall goal was the development of a comprehensive model to predict the size and chemical composition distributions of ash produced during pulverized coal combustion. Results are described.

  7. Tribocharging in electrostatic beneficiation of coal: Effects of surface composition on work function as measured by x-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy in air

    International Nuclear Information System (INIS)

    Trigwell, S.; Mazumder, M.K.; Pellissier, R.

    2001-01-01

    The cleaning of coal by electrostatic beneficiation is based on tribocharging characteristics of pulverized coal particles with diameter smaller than 120 μm. The tribocharging process should be such that the organic coal particles must charge with a polarity opposite to that of the sulfur and the mineral containing particles so that coal can be separated from minerals by using a charge separator. However, the charge distribution of electrostatically separated coal particles indicates that coal exhibits bipolar charging. A significant fraction of the coal particles charges negatively which appears to be in conflict with expectations in that the organic coal particles should charge positively, and the mineral particles, present as impurities such as pyrite, charge negatively when tribocharged against copper. The relative work functions of the particles (coal and mineral) and that of the metal surface (copper or stainless steel) used for tribocharging predict these expected results. However, ultraviolet photoelectron spectroscopy (UPS) measurements in air on specimens of three different coal species, showed the work function to be approximately 5.4 eV, which is higher than a reported measured work function of 3.93 eV. Studies by UPS and x-ray photoelectron spectroscopy on copper, stainless steel, aluminum, and other commonly used tribocharging materials such as nylon and polytetrafluorethylene, as well as pure pyrite, showed that the work function varied considerably as a function of surface composition. Therefore, the reason for the bipolar charging of the coal particles may be the too small differences in work functions between coal powder and copper used as the charging material. The choice of a material for impaction triboelectric charging for coal or mineral separation should therefore depend upon the actual work function as modified by the ambient conditions such as moisture content and the oxidation of the surface

  8. Partitioning behaviour of natural radionuclides during combustion of coal in thermal power plants

    International Nuclear Information System (INIS)

    Sahu, S.K.; Tiwari, M.; Bhangare, R.C.; Ajmal, P.Y.; Pandit, G.G.

    2014-01-01

    All fossil fuels contain low levels of naturally occurring radioactive substances. The environmental impact of radionuclide-containing waste products from coal combustion is an important issue. These radionuclides vaporize in the hot portions of the coal combustor and then return to the solid phase in cooler downstream zones. Indian coal used in power plants generally has high ash yield (35-45%) and is of low quality. In the burning process of coal, minerals undergo thermal decomposition, fusion, disintegration, and agglomeration. A major portion of elements in the boiler enter into slag or bottom ash, and the rest of the inorganic materials find their way into the flue gas, in fly ash or vapor. Fly and bottom ash are significant sources of exposure to these radionuclides. In the present study, coal and ash samples collected from six thermal power stations were analyzed to determine their natural radioactivity content and the partitioning behavior of these radionuclides was carried out by tracing their activities in fly and bottom ashes. The partitioning of radionuclides is strongly dependent on the size of associated ash particle. Polonium-210 was mostly associated with the finest fraction and showed large variation with particle size whereas 232 Th showed least dependence on the particle size. The high activities of all radionuclides in fly ashes than that of bottom ashes thus may be due to strong affinity of the nuclides towards the finer particle fractions. All the radionuclide distribution favored small particle sizes

  9. Application of Acidithiobacillus Ferrooxidans in coal flotation

    Energy Technology Data Exchange (ETDEWEB)

    Amini, E.; Hosseini, T.R.; Oliazadeh, M.; Kolahdoozan, M. [University of Queensland, Brisbane, Qld. (Australia)

    2009-07-01

    Bioflotation is a potential method for removing pyritic sulphur from coal. Sodium cyanide is a well-known depressant for pyrite in flotation of sulphide minerals; however, for coal this reagent is unacceptable from the environmental point of view. This study investigates an alternate to sodium cyanide, Acidithiobacillus Ferrooxidans, a nonharmful bacterial reagent as a pyrite depressant. The flotation behavior of pyrite and other gangue particles using the sodium cyanide and the Ferrooxidans is compared by applying the general first-order flotation model. The kinetic parameters extracted from the model demonstrated that the modified flotation rate of pyrite was reduced, and the selectivity between coal and gangue was improved using the bacteria. These results indicate that Acidithiobacillus Ferrooxidans has potential in removing pyritic sulfur from coal.

  10. Recently developed methods in neutral-particle transport calculations: overview

    International Nuclear Information System (INIS)

    Alcouffe, R.E.

    1982-01-01

    It has become increasingly apparent that successful, general methods for the solution of the neutral particle transport equation involve a close connection between the spatial-discretization method used and the source-acceleration method chosen. The first form of the transport equation, angular discretization which is discrete ordinates is considered as well as spatial discretization based upon a mesh arrangement. Characteristic methods are considered briefly in the context of future, desirable developments. The ideal spatial-discretization method is described as having the following attributes: (1) positive-positive boundary data yields a positive angular flux within the mesh including its boundaries; (2) satisfies the particle balance equation over the mesh, that is, the method is conservative; (3) possesses the diffusion limit independent of spatial mesh size, that is, for a linearly isotropic flux assumption, the transport differencing reduces to a suitable diffusion equation differencing; (4) the method is unconditionally acceleratable, i.e., for each mesh size, the method is unconditionally convergent with a source iteration acceleration. It is doubtful that a single method possesses all these attributes for a general problem. Some commonly used methods are outlined and their computational performance and usefulness are compared; recommendations for future development are detailed, which include practical computational considerations

  11. Initiative hard coal; Initiative Steinkohle

    Energy Technology Data Exchange (ETDEWEB)

    Leonhardt, J.

    2007-08-02

    In order to decrease the import dependence of hard coal in the European Union, the author has submitted suggestions to the director of conventional sources of energy (directorate general for energy and transport) of the European community, which found a positive resonance. These suggestions are summarized in an elaboration 'Initiative Hard Coal'. After clarifying the starting situation and defining the target the presupposition for a better use of hard coal deposits as raw material in the European Union are pointed out. On that basis concrete suggestions for measures are made. Apart from the conditions of the deposits it concerns thereby also new mining techniques and mining-economical developments, connected with tasks for the mining-machine industry. (orig.)

  12. Drying kinetics characteristic of Indonesia lignite coal (IBC) using lab scale fixed bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kang, TaeJin; Jeon, DoMan; Namkung, Hueon; Jang, DongHa; Jeon, Youngshin; Kim, Hyungtaek [Ajou Univ., Suwon (Korea, Republic of). Div. of Energy Systems Research

    2013-07-01

    Recent instability of energy market arouse a lot of interest about coal which has a tremendous amount of proven coal reserves worldwide. South Korea hold the second rank by importing 80 million tons of coal in 2007 following by Japan. Among various coals, there is disused coal. It's called Low Rank Coal (LRC). Drying process has to be preceded before being utilized as power plant. In this study, drying kinetics of LRC is induced by using a fixed bed reactor. The drying kinetics was deduced from particle size, the inlet gas temperature, the drying time, the gas velocity, and the L/D ratio. The consideration on Reynold's number was taken for correction of gas velocity, particle size, and the L/D ratio was taken for correction packing height of coal. It can be found that active drying of free water and phase boundary reaction is suitable mechanism through the fixed bed reactor experiments.

  13. Coal background paper. Coal demand

    International Nuclear Information System (INIS)

    1997-01-01

    Statistical data are presented on coal demands in IEA and OECD member countries and in other countries. Coal coaking and coaking coal consumption data are tabulated, and IEA secretariat's coal demand projections are summarized. Coal supply and production data by countries are given. Finally, coal trade data are presented, broken down for hard coal, steam coal, coking coal (imports and export). (R.P.)

  14. Mineralogy and characterization of deposited particles of the aero sediments collected in the vicinity of power plants and the open pit coal mine: Kolubara (Serbia).

    Science.gov (United States)

    Cvetković, Željko; Logar, Mihovil; Rosić, Aleksandra

    2013-05-01

    In this paper, particular attention was paid to the presence of aerosol solid particles, which occurred mainly as a result of exploitation and coal combustion in the thermal power plants of the Kolubara basin. Not all of the particles created by this type of anthropogenic pollution have an equal impact on human health, but it largely depends on their size and shape. The mineralogical composition and particle size distribution in the samples of aero sediments were defined. The samples were collected close to the power plant and open pit coal mine, in the winter and summer period during the year 2007. The sampling was performed by using precipitators placed in eight locations within the territory of the Lazarevac municipality. In order to characterize the sedimentary particles, several methods were applied: microscopy, SEM-EDX and X-ray powder diffraction. The concentration of aero sediments was also determined during the test period. Variety in the mineralogical composition and particle size depends on the position of the measuring sites, geology of the locations, the annual period of collecting as well as possible interactions. By applying the mentioned methods, the presence of inhalational and respiratory particles variously distributed in the winter and in the summer period was established. The most common minerals are quartz and feldspar. The presence of gypsum, clay minerals, calcite and dolomite as secondary minerals was determined, as well as the participation of organic and inorganic amorphic matter. The presence of quartz as a toxic mineral has a particular impact on human health.

  15. Characterization of Transient Receptor Potential Vanilloid-1 (TRPV1) Variant Activation by Coal Fly Ash Particles and Associations with Altered Transient Receptor Potential Ankyrin-1 (TRPA1) Expression and Asthma.

    Science.gov (United States)

    Deering-Rice, Cassandra E; Stockmann, Chris; Romero, Erin G; Lu, Zhenyu; Shapiro, Darien; Stone, Bryan L; Fassl, Bernhard; Nkoy, Flory; Uchida, Derek A; Ward, Robert M; Veranth, John M; Reilly, Christopher A

    2016-11-25

    Transient receptor potential (TRP) channels are activated by environmental particulate materials. We hypothesized that polymorphic variants of transient receptor potential vanilloid-1 (TRPV1) would be uniquely responsive to insoluble coal fly ash compared with the prototypical soluble agonist capsaicin. Furthermore, these changes would manifest as differences in lung cell responses to these agonists and perhaps correlate with changes in asthma symptom control. The TRPV1-I315M and -T469I variants were more responsive to capsaicin and coal fly ash. The I585V variant was less responsive to coal fly ash particles due to reduced translation of protein and an apparent role for Ile-585 in activation by particles. In HEK-293 cells, I585V had an inhibitory effect on wild-type TRPV1 expression, activation, and internalization/agonist-induced desensitization. In normal human bronchial epithelial cells, IL-8 secretion in response to coal fly ash treatment was reduced for cells heterozygous for TRPV1-I585V. Finally, both the I315M and I585V variants were associated with worse asthma symptom control with the effects of I315M manifesting in mild asthma and those of the I585V variant manifesting in severe, steroid-insensitive individuals. This effect may be due in part to increased transient receptor potential ankyrin-1 (TRPA1) expression by lung epithelial cells expressing the TRPV1-I585V variant. These findings suggest that specific molecular interactions control TRPV1 activation by particles, differential activation, and desensitization of TRPV1 by particles and/or other agonists, and cellular changes in the expression of TRPA1 as a result of I585V expression could contribute to variations in asthma symptom control. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Coal Mine Health and Safety Regulation 2006 under the Coal Mine Health and Safety Act 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-12-22

    The aim of the Act is to secure the health, safety and welfare of people in connection with coal operations (which include all places of work where coal is mined and certain other places). The Regulation contains provisions about the following matters: (a) places of work to which the Act does not apply, (b) duties relating to health, welfare and safety at coal operations, including the following: (i) the nomination of the operator of a coal operation and the provision of health and safety information for incoming operators, (ii) the contents of health and safety management systems for coal operations, (iii) major hazards and the contents of major hazard management plans for coal operations, (iv) duties relating to contractors, (v) the contents of management structures and emergency management systems for coal operations, escape and rescue plans and fire fighting plans and high risk activities, (c) notifications, including (i) notification of incidents, (ii) inquiries, (iii) notification of other matters to the Chief Inspector), (d) aspects of safety at coal operations, including the following: (i) controlled materials, plants and practices, (ii) coal dust explosion prevention and suppression, (iii) ventilation at coal operations, (iv) escape from coal operations, (v) the operation of transport at coal operations, (vi) surveys and certified plans, (vii) employment at coal operations, (e) the licensing of certain activities, (f) competence standards, (g) the Coal Competence Board, (h) check inspectors, (i) exemptions from provisions of this Regulation, (j) the following miscellaneous matters concerning coal mine health and safety: (i) the keeping of records and reporting, (ii) penalties, the review of decisions by the Administrative Decisions Tribunal, fees and charges, consultation, information and other miscellaneous matters, (k) savings and transitional provisions.

  17. Variance analysis of the Monte-Carlo perturbation source method in inhomogeneous linear particle transport problems

    International Nuclear Information System (INIS)

    Noack, K.

    1982-01-01

    The perturbation source method may be a powerful Monte-Carlo means to calculate small effects in a particle field. In a preceding paper we have formulated this methos in inhomogeneous linear particle transport problems describing the particle fields by solutions of Fredholm integral equations and have derived formulae for the second moment of the difference event point estimator. In the present paper we analyse the general structure of its variance, point out the variance peculiarities, discuss the dependence on certain transport games and on generation procedures of the auxiliary particles and draw conclusions to improve this method

  18. Freight Calculation Model: A Case Study of Coal Distribution

    Science.gov (United States)

    Yunianto, I. T.; Lazuardi, S. D.; Hadi, F.

    2018-03-01

    Coal has been known as one of energy alternatives that has been used as energy source for several power plants in Indonesia. During its transportation from coal sites to power plant locations is required the eligible shipping line services that are able to provide the best freight rate. Therefore, this study aims to obtain the standardized formulations for determining the ocean freight especially for coal distribution based on the theoretical concept. The freight calculation model considers three alternative transport modes commonly used in coal distribution: tug-barge, vessel and self-propelled barge. The result shows there are two cost components very dominant in determining the value of freight with the proportion reaching 90% or even more, namely: time charter hire and fuel cost. Moreover, there are three main factors that have significant impacts on the freight calculation, which are waiting time at ports, time charter rate and fuel oil price.

  19. Solitary Model of the Charge Particle Transport in Collisionless Plasma

    International Nuclear Information System (INIS)

    Simonchik, L.V.; Trukhachev, F.M.

    2006-01-01

    The one-dimensional MHD solitary model of charged particle transport in plasma is developed. It is shown that self-consistent electric field of ion-acoustic solitons can displace charged particles in space, which can be a reason of local electric current generation. The displacement amount is order of a few Debye lengths. It is shown that the current associated with soliton cascade has pulsating nature with DC component. Methods of built theory verification in dusty plasma are proposed

  20. Health effects of coal technologies: research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    In this 1977 Environmental Message, President Carter directed the establishment of a joint program to identify the health and environmental problems associated with advanced energy technologies and to review the adequacy of present research programs. In response to the President's directive, representatives of three agencies formed the Federal Interagency Committee on the Health and Environmental Effects of Energy Technologies. This report was prepared by the Health Effects Working Group on Coal Technologies for the Committee. In this report, the major health-related problems associated with conventional coal mining, storage, transportation, and combustion, and with chemical coal cleaning, in situ gasification, fluidized bed combustion, magnetohydrodynamic combustion, cocombustion of coal-oil mixtures, and cocombustion of coal with municipal solid waste are identified. The report also contains recommended research required to address the identified problems.

  1. Blackout: coal, climate and the last energy crisis

    Energy Technology Data Exchange (ETDEWEB)

    Heinberg, R. [Post Carbon Institute in California, CA (United States)

    2009-07-15

    Coal fuels more than 30 per cent of UK electricity production, and about 50 per cent in the US, providing a significant portion of total energy output. China and India's recent ferocious economic growth has been based almost entirely on coal-generated electricity. Coal currently looks like a solution to many of our fast-growing energy problems. However, while coal advocates are urging us full steam ahead, the increasing reliance on this dirtiest of all fossil fuels has crucial implications for energy policy, pollution levels, the global climate, world economy and geopolitics. Drawbacks to a coal-based energy strategy include: Scarcity - new studies suggest that the peak of world coal production may actually be less than two decades away; Cost - the quality of produced coal is declining, while the expense of transportation is rising, leading to spiralling costs and increasing shortages; and, Climate impacts - our ability to deal with the historic challenge of climate change may hinge on reducing coal consumption in future years.

  2. Application of State Quantization-Based Methods in HEP Particle Transport Simulation

    Science.gov (United States)

    Santi, Lucio; Ponieman, Nicolás; Jun, Soon Yung; Genser, Krzysztof; Elvira, Daniel; Castro, Rodrigo

    2017-10-01

    Simulation of particle-matter interactions in complex geometries is one of the main tasks in high energy physics (HEP) research. An essential aspect of it is an accurate and efficient particle transportation in a non-uniform magnetic field, which includes the handling of volume crossings within a predefined 3D geometry. Quantized State Systems (QSS) is a family of numerical methods that provides attractive features for particle transportation processes, such as dense output (sequences of polynomial segments changing only according to accuracy-driven discrete events) and lightweight detection and handling of volume crossings (based on simple root-finding of polynomial functions). In this work we present a proof-of-concept performance comparison between a QSS-based standalone numerical solver and an application based on the Geant4 simulation toolkit, with its default Runge-Kutta based adaptive step method. In a case study with a charged particle circulating in a vacuum (with interactions with matter turned off), in a uniform magnetic field, and crossing up to 200 volume boundaries twice per turn, simulation results showed speedups of up to 6 times in favor of QSS while it being 10 times slower in the case with zero volume boundaries.

  3. Morphology, Composition, and Mixing State of Individual Aerosol Particles in Northeast China during Wintertime

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2017-02-01

    Full Text Available Northeast China is located in a high latitude area of the world and undergoes a cold season that lasts six months each year. Recently, regional haze episodes with high concentrations of fine particles (PM2.5 have frequently been occurring in Northeast China during the heating period, but little information has been available. Aerosol particles were collected in winter at a site in a suburban county town (T1 and a site in a background rural area (T2. Morphology, size, elemental composition, and mixing state of individual aerosol particles were characterized by transmission electron microscopy (TEM. Aerosol particles were mainly composed of organic matter (OM and S-rich and certain amounts of soot and K-rich. OM represented the most abundant particles, accounting for 60.7% and 53.5% at the T1 and T2 sites, respectively. Abundant spherical OM particles were likely emitted directly from coal-burning stoves. Soot decreased from 16.9% at the T1 site to 4.6% at the T2 site and sulfate particles decrease from 35.9% at the T2 site to 15.7% at the T1 site, suggesting that long-range transport air masses experienced more aging processes and produced more secondary particles. Based on our investigations, we proposed that emissions from coal-burning stoves in most rural areas of the west part of Northeast China can induce regional haze episodes.

  4. Modular High Temperature Gas-Cooled Reactor heat source for coal conversion

    International Nuclear Information System (INIS)

    Schleicher, R.W. Jr.; Lewis, A.C.

    1992-09-01

    In the industrial nations, transportable fuels in the form of natural gas and petroleum derivatives constitute a primary energy source nearly equivalent to that consumed for generating electric power. Nations with large coal deposits have the option of coal conversion to meet their transportable fuel demands. But these processes themselves consume huge amounts of energy and produce undesirable combustion by-products. Therefore, this represents a major opportunity to apply nuclear energy for both the environmental and energy conservation reasons. Because the most desirable coal conversion processes take place at 800 degree C or higher, only the High Temperature Gas-Cooled Reactors (HTGRs) have the potential to be adapted to coal conversion processes. This report provides a discussion of this utilization of HTGR reactors

  5. Transport and fluxes of terrestrial polycyclic aromatic hydrocarbons in a small mountain river and submarine canyon system.

    Science.gov (United States)

    Lin, Bing-Sian; Lee, Chon-Lin; Brimblecombe, Peter; Liu, James T

    2016-08-01

    Polycyclic aromatic hydrocarbon (PAH) concentrations in the Gaoping River were investigated in the wet and dry seasons. PAH characteristics allowed us to trace the particulate matter transported in a river-sea system containing a small mountain river, continental shelf, and submarine canyon. PAH signatures of the Gaoping River showed that particles were rapidly transported from the high mountain to the Gaoping coastal areas in the wet season, even arriving at the deep ocean via the Gaoping Submarine Canyon. By contrast, in the dry season, the particles were delivered quite slowly and included mostly pyrogenic contaminants. The annual riverine flux estimates for PAHs were 2241 kg in the Gaoping river-sea system. Only 18.0 kg were associated with the dissolved phase; the rest was bound onto particles. The fluxes caused by typhoons and their effects accounted for 20.2% of the dissolved and 68.4% of the particulate PAH fluxes from the river. Normalized partition coefficients for organic carbon suggested that PAHs were rigid on the particles. Distinct source characteristics were evident for PAHs on riverine suspended particles and coastal surface sediments: the particles in the wet season (as background signals) were similar to petrogenic sources, whereas the particles in the dry season had characteristics of coal burning and vehicular emissions. The sediments in the northwestern shelf were similar to pyrogenic sources (including vehicular emissions and coal and biomass burning), whereas the sediments in the canyon and southeastern shelf arose from mixed sources, although some diesel signature was also evident. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Coal and potash flotation enhancement using a clay binder

    Energy Technology Data Exchange (ETDEWEB)

    Tao, D.; Chen, G.L.; Zhou, X.H.; Zhao, C.; Fan, M.M.; Aron, M.; Wright, J. [University of Kentucky, Lexington, KY (United States)

    2007-07-15

    The adverse effects of clay particles on coal and mineral processing operations such as gravity separation, flotation, filtration and thickening are well known in the mining industry. In particular, the presence of ultra-fine clay particles deteriorates froth flotation performance, which has been attributed to slime coatings that inhibit bubble attachment and to adsorption of the frother and/or collector by the clay particles. The present study was conducted to evaluate the performance of a clay binding agent developed by Georgia-Pacific Resins, Inc. in enhancing coal and mineral flotation performance. Mechanical flotation tests were carried out using coal and potash samples. Process parameters investigated included slurry solids percentage, impeller rotation speed, binder dosage, etc. Flotation results show that the use of GP reagents significantly enhanced flotation efficiency under different conditions. The required binder dosage and conditioning time were about 0.45 kg/t and 0.5 to 1 minute, respectively. More significant improvements in process performance were observed at higher solids percentage and higher impeller rotation speed.

  7. Modes of occurrence of potentially hazardous elements in coal: levels of confidence

    Science.gov (United States)

    Finkelman, R.B.

    1994-01-01

    The modes of occurrence of the potentially hazardous elements in coal will be of significance in any attempt to reduce their mobilization due to coal combustion. Antimony and selenium may be present in solid solution in pyrite, as minute accessory sulfides dispersed throughout the organic matrix, or in organic association. Because of these modes of occurrence it is anticipated that less than 50% of these elements will be routinely removed by conventional coal cleaning procedures. Arsenic and mercury occur primarily in late-stage coarse-grained pyrite therefore physical coal cleaning procedures should be successful in removing substantial proportions of these elements. Cadmium occurs in sphalerite and lead in galena. Both of these minerals exhibit a wide range of particle sizes and textural relations. Depending on the particle size and textural relations, physical coal cleaning may remove as little as 25% of these elements or as much as 75%. Manganese in bituminous coal occurs in carbonates, especially siderite. Physical coal cleaning should remove a substantial proportion of this element. More information is needed to elucidate the modes of occurrence of beryllium, chromium, cobalt, and nickel. ?? 1994.

  8. Reduced emissions from inexpensive high-sulphur coal briquettes

    International Nuclear Information System (INIS)

    Gammage, R.B.; Wachter, E.A.; Wade, J.; Wilson, D.L.; Haas, J.W.; Ahmad, N.; Siltain, F.; Raza, M.Z.

    1992-01-01

    Airborne emissions were measured during the combustion of Pakistani high-sulphur coal, cold briquetted with lime and clay; comparison was made to emissions from raw coal and traditional fuels burnt in a native, mud-lined Angethi stove. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) and threefold reduced total releases of SO 2 . In domestic cooking, substitution of the amended coal briquettes for traditional fuels will not worsen indoor air quality with respect to CO, SO 2 , NO x , and RSP. The high peak amounts of CO (100--250 ppm), SO 2 (2--5 ppm), and NO x (1--5 ppm) were limited to the early phase of burning. The high thermal value of the coal briquettes together with a simple briquetting technology, make this fuel an attractive energy alternative in countries that are underdeveloped, developing, or experiencing major restructuring

  9. Characteristic Study of Shenmu Bituminous Coal Combustion with Online TG-MS-FTIR

    Science.gov (United States)

    Pan, Guanfu

    2018-01-01

    The combustion characteristics of Shenmu bituminous pulverized coal (SBC) were comprehensively investigated with a combined TG-MS-FTIR system by considering the effect of particle size, heating rate and total flowrate. The combustion products were accurately quantified by normalization and numerical analysis of MS results. The results indicate that the decrease of the particle size, heating rate and total flowrate result in lower ignition and burnout temperatures. The activation energy tends to be lower with smaller particle size, lower heating rate and total flowrate. The MS and FTIR results demonstrate that lower concentrations of different products, such as NO, NO2, HCN, CH4 and SO2 were produced with smaller particle size, slower heating rate and lower total flowrate. The decrease of particle size would lead to more contact area with oxygen and slower heating rate could provide more sufficient time for the diffusion. High total flowrate would reduce the oxygen adsorbability on the coal particle surface and shorten the residence time of oxygen, which makes the ignition difficult to occur. This work will guide to understand the combustion kinetics of pulverized coals and be beneficial to control the formation of pollutants.

  10. Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash.

    Science.gov (United States)

    Shahbaz, Muhammad; Yusup, Suzana; Inayat, Abrar; Patrick, David Onoja; Pratama, Angga; Ammar, Muhamamd

    2017-10-01

    Catalytic steam gasification of palm kernel shell is investigated to optimize operating parameters for hydrogen and syngas production using TGA-MS setup. RSM is used for experimental design and evaluating the effect of temperature, particle size, CaO/biomass ratio, and coal bottom ash wt% on hydrogen and syngas. Hydrogen production appears highly sensitive to all factors, especially temperature and coal bottom ash wt%. In case of syngas, the order of parametric influence is: CaO/biomass>coal bottom ash wt%>temperature>particle size. The significant catalytic effect of coal bottom ash is due to the presence of Fe 2 O 3 , MgO, Al 2 O 3 , and CaO. A temperature of 692°C, coal bottom ash wt% of 0.07, CaO/biomass of 1.42, and particle size of 0.75mm are the optimum conditions for augmented yield of hydrogen and syngas. The production of hydrogen and syngas is 1.5% higher in the pilot scale gasifier as compared to TGA-MS setup. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Conversion of metallurgical coke and coal using a Coal Direct Chemical Looping (CDCL) moving bed reactor

    International Nuclear Information System (INIS)

    Luo, Siwei; Bayham, Samuel; Zeng, Liang; McGiveron, Omar; Chung, Elena; Majumder, Ankita; Fan, Liang-Shih

    2014-01-01

    Highlights: • Accumulated more than 300 operation hours were accomplished for the moving bed reducer reactor. • Different reactor operation variables were investigated with optimal conditions identified. • High conversions of sub-bituminous coal and bituminous coal were achieved without flow problems. • Co-current and counter-current contact modes were tested and their applicability was discussed. - Abstract: The CLC process has the potential to be a transformative commercial technology for a carbon-constrained economy. The Ohio State University Coal Direct Chemical Looping (CDCL) process directly converts coal, eliminating the need for a coal gasifier oran air separation unit (ASU). Compared to other solid-fuel CLC processes, the CDCL process is unique in that it consists of a countercurrent moving bed reducer reactor. In the proposed process, coal is injected into the middle of the moving bed, whereby the coal quickly heats up and devolatilizes, splitting the reactor roughly into two sections with no axial mixing. The top section consists of gaseous fuel produced from the coal volatiles, and the bottom section consists of the coal char mixed with the oxygen carrier. A bench-scale moving bed reactor was used to study the coal conversion with CO 2 as the enhancing gas. Initial tests using metallurgical cokefines as feedstock were conducted to test the effects of operational variables in the bottom section of the moving bed reducer, e.g., reactor temperature, oxygen carrier to char ratio, enhancer gas CO 2 flow rate, and oxygen carrier flow rates. Experiments directly using coal as the feedstock were subsequently carried out based on these test results. Powder River Basin (PRB) coal and Illinois #6 coal were tested as representative sub-bituminous and bituminous coals, respectively. Nearly complete coal conversion was achieved using composite iron oxide particles as the oxygen carriers without any flow problems. The operational results demonstrated that a

  12. Deposit Formation in a 150 MWe Utility PF-Boiler during Co-combustion of Coal and Straw

    DEFF Research Database (Denmark)

    Andersen, Karin Hedebo; Frandsen, Flemming; Hansen, P. F. B.

    2000-01-01

    A conventional pc-fired boiler at the Danish energy company I/S Midtkraft has been converted to coal-straw co-combustion, and a 2 year demonstration program was initiated in January 1996, addressing several aspects of coal-straw co-combustion. Deposition trials were performed as part of the demon......A conventional pc-fired boiler at the Danish energy company I/S Midtkraft has been converted to coal-straw co-combustion, and a 2 year demonstration program was initiated in January 1996, addressing several aspects of coal-straw co-combustion. Deposition trials were performed as part...... problematic deposits. Go-firing straw also caused a change in the structure of the upstream deposits. During coal combustion an ordered, "finger" structure of the larger particles with small particles between was observed, whereas during co-combustion a more random deposition of the larger particles among...... arise when burning other coals, particularly coals with a high S or alkali metal content or a low content of ash. The behavior of K, Ca, S, and Cl was evaluated by use of thermodynamic calculations. The thermodynamically stable species agree with the observed behavior in the experiments, i.e. formation...

  13. Modeling Solar Energetic Particle Transport near a Wavy Heliospheric Current Sheet

    Science.gov (United States)

    Battarbee, Markus; Dalla, Silvia; Marsh, Mike S.

    2018-02-01

    Understanding the transport of solar energetic particles (SEPs) from acceleration sites at the Sun into interplanetary space and to the Earth is an important question for forecasting space weather. The interplanetary magnetic field (IMF), with two distinct polarities and a complex structure, governs energetic particle transport and drifts. We analyze for the first time the effect of a wavy heliospheric current sheet (HCS) on the propagation of SEPs. We inject protons close to the Sun and propagate them by integrating fully 3D trajectories within the inner heliosphere in the presence of weak scattering. We model the HCS position using fits based on neutral lines of magnetic field source surface maps (SSMs). We map 1 au proton crossings, which show efficient transport in longitude via HCS, depending on the location of the injection region with respect to the HCS. For HCS tilt angles around 30°–40°, we find significant qualitative differences between A+ and A‑ configurations of the IMF, with stronger fluences along the HCS in the former case but with a distribution of particles across a wider range of longitudes and latitudes in the latter. We show how a wavy current sheet leads to longitudinally periodic enhancements in particle fluence. We show that for an A+ IMF configuration, a wavy HCS allows for more proton deceleration than a flat HCS. We find that A‑ IMF configurations result in larger average fluences than A+ IMF configurations, due to a radial drift component at the current sheet.

  14. Microbiological desulfurization and conversion of coal

    International Nuclear Information System (INIS)

    Quigley, D.R.; Stoner, D.L.; Dugan, P.R.

    1991-01-01

    Bio processing of coal is a young and emerging technology. Until the early 1980's it consisted primarily of coal depyritization using Thiobacillus ferro oxidans to either oxidize pyritic sulfur or to alter particle wettability or floatation properties by binding to exposed pyrite inclusions. Since then, other major avenues of research have been pursued. One of these is the microbiologically mediated liquefaction of coal. Initial work indicated that microorganisms were able to transform low rank coal into a black liquid that was later identified as water solubilized by alkaline substances produced by the microbes and could be enhanced by the removal of multi valent cations from coal. Current work at the INEL involves of the identification and characterization of microorganisms that are able to alter the structure of polymeric desulfurization of coal. This work initially focused on the ability of microorganisms to oxidatively remove organic sulfur from model compounds that were representative of those sulfur containing moieties identified as being in coals (e.g., dibenzo thiophene). The work also focused on those organisms that were could remove the organic sulfur without degrading the carbon structure. While some organisms that are able to perform such these reactions will effectively remove organo sulfur from coal. These concerns stem from steric hindrance considerations and the thermodynamically unfavourable nature of reaction. Current work at the INEL involves the isolation and biochemical characterization of microorganisms that are able to desulfurize and solubilized coals that have high organic sulfur contents. (author)

  15. Collective transport of Lennard–Jones particles through one-dimensional periodic potentials

    International Nuclear Information System (INIS)

    He Jian-hui; Wen Jia-le; Chen Pei-rong; Zheng Dong-qin; Zhong Wei-rong

    2017-01-01

    The surrounding media in which transport occurs contains various kinds of fields, such as particle potentials and external potentials. One of the important questions is how elements work and how position and momentum are redistributed in the diffusion under these conditions. For enriching Fick’s law, ordinary non-equilibrium statistical physics can be used to understand the complex process. This study attempts to discuss particle transport in the one-dimensional channel under external potential fields. Two kinds of potentials—the potential well and barrier—which do not change the potential in total, are built during the diffusion process. There are quite distinct phenomena because of the different one-dimensional periodic potentials. By the combination of a Monte Carlo method and molecular dynamics, we meticulously explore why an external potential field impacts transport by the subsection and statistical method. Besides, one piece of evidence of the Maxwell velocity distribution is confirmed under the assumption of local equilibrium. The simple model is based on the key concept that relates the flux to sectional statistics of position and momentum and could be referenced in similar transport problems. (rapid communication)

  16. High energy electromagnetic particle transportation on the GPU

    Energy Technology Data Exchange (ETDEWEB)

    Canal, P. [Fermilab; Elvira, D. [Fermilab; Jun, S. Y. [Fermilab; Kowalkowski, J. [Fermilab; Paterno, M. [Fermilab; Apostolakis, J. [CERN

    2014-01-01

    We present massively parallel high energy electromagnetic particle transportation through a finely segmented detector on a Graphics Processing Unit (GPU). Simulating events of energetic particle decay in a general-purpose high energy physics (HEP) detector requires intensive computing resources, due to the complexity of the geometry as well as physics processes applied to particles copiously produced by primary collisions and secondary interactions. The recent advent of hardware architectures of many-core or accelerated processors provides the variety of concurrent programming models applicable not only for the high performance parallel computing, but also for the conventional computing intensive application such as the HEP detector simulation. The components of our prototype are a transportation process under a non-uniform magnetic field, geometry navigation with a set of solid shapes and materials, electromagnetic physics processes for electrons and photons, and an interface to a framework that dispatches bundles of tracks in a highly vectorized manner optimizing for spatial locality and throughput. Core algorithms and methods are excerpted from the Geant4 toolkit, and are modified and optimized for the GPU application. Program kernels written in C/C++ are designed to be compatible with CUDA and OpenCL and with the aim to be generic enough for easy porting to future programming models and hardware architectures. To improve throughput by overlapping data transfers with kernel execution, multiple CUDA streams are used. Issues with floating point accuracy, random numbers generation, data structure, kernel divergences and register spills are also considered. Performance evaluation for the relative speedup compared to the corresponding sequential execution on CPU is presented as well.

  17. A model of the enhancement of coal combustion using high intensity acoustic fields

    International Nuclear Information System (INIS)

    Yavuzkurt, S.; Ha, M.Y.; Koopmann, G.H.; Scaroni, A.

    1989-01-01

    In this paper a model for the enhancement of coal combustion in the presence of high intensity acoustics is developed. A high intensity acoustic field induces an oscillating velocity over pulverized coal particles otherwise entrained in the main gas stream, resulting in increased heat and mass transfer. The augmented heat and mass transfer coefficients, expressed as space- and time-averaged Nusselt and Sherwood numbers for the oscillating flow, were implemented in an existing computer code (PCGC-2) capable of predicting various aspects of pulverized coal combustion and gasification. Increases in the Nusselt and Sherwood numbers of about 45, 60 and 82.5% at sound pressure levels of 160, 165, and 170 dB for 100 μm coal particles were obtained due to increases in the acoustic slop velocity associated with the increased sound pressure levels. The main effect of the acoustic field was observed during the char combustion phase in a diffusionally controlled situation. A decrease in the char burnout length (time) of 15.7% at 160 dB and 30.2% at 170 dB was obtained compared to the case with no sound for the 100 μm coal particles

  18. Simulation of the Fuel Reactor of a Coal-Fired Chemical Looping Combustor

    Science.gov (United States)

    Mahalatkar, Kartikeya; O'Brien, Thomas; Huckaby, E. David; Kuhlman, John

    2009-06-01

    Responsible carbon management (CM) will be required for the future utilization of coal for power generation. CO2 separation is the more costly component of CM, not sequestration. Most methods of capture require a costly process of gas separation to obtain a CO2-rich gas stream. However, recently a process termed Chemical Looping Combustion (CLC) has been proposed, in which an oxygen-carrier is used to provide the oxygen for combustion. This process quite naturally generates a separate exhaust gas stream containing mainly H2O and CO2 but requires two reaction vessels, an Air Reactor (AR) and a Fuel Reactor (FR). The carrier (M for metal, the usual carrier) is oxidized in the AR. This highly exothermic process provides heat for power generation. The oxidized carrier (MO) is separated from this hot, vitiated air stream and transported to the FR where it oxidizes the hydrocarbon fuel, yielding an exhaust gas stream of mainly H2O and CO2. This process is usually slightly endothermic so that the carrier must also transport the necessary heat of reaction. The reduced carrier (M) is then returned to the air reactor for regeneration, hence the term "looping." The net chemical reaction and energy release is identical to that of conventional combustion of the fuel. However, CO2 separation is easily achieved, the only operational penalty being the slight pressure losses required to circulate the carrier. CLC requires many unit operations involving gas-solid or granular flow. To utilize coal in the fuel reactor, in either a moving bed or bubbling fluidized bed, the granular flow is especially critical. The solid coal fuel must be heated by the recycled metal oxide, driving off moisture and volatile material. The remaining char must be gasified by H2O (or CO2), which is recycled from the product stream. The gaseous product of these reactions must then contact the MO before leaving the bed to obtain complete conversion to H2O and CO2. Further, the reduced M particles must be

  19. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  20. Giving peeps to my props: Using 3D printing to shed new light on particle transport in fractured rock.

    Science.gov (United States)

    Walsh, S. D.; Du Frane, W. L.; Vericella, J. J.; Aines, R. D.

    2014-12-01

    Smart tracers and smart proppants promise new methods for sensing and manipulating rock fractures. However, the correct use and interpretation of these technologies relies on accurate models of their transport. Even for less exotic particles, the factors controlling particle transport through fractures are poorly understood. In this presentation, we will describe ongoing research at Lawrence Livermore National Laboratory into the transport properties of particles in natural rock fractures. Using three dimensional printing techniques, we create clear-plastic reproductions of real-world fracture surfaces, thereby enabling direct observation of the particle movement. We will also discuss how particle tracking of dense particle packs can be further enhanced by using such specially tailored flow cells in combination with micro-encapsulated tracer particles. Experimental results investigating the transport behavior of smart tracers and proppants close to the neutrally buoyant limit will be presented and we will describe how data from these experiments can be used to improve large-scale models of particle transport in fractures. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  1. Enhancement of transport properties of a Brownian particle due to quantum effects: Smoluchowski limit

    International Nuclear Information System (INIS)

    Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2012-01-01

    Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: ► Transport of a quantum Brownian particle in a periodic potential has been addressed. ► Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. ► A coordinate transformation is used to recast QSE with constant diffusion. ► Transport properties increases in comparison to the corresponding classical result. ► This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.

  2. Laboratory observations of sediment transport using combined particle image and tracking velocimetry (Conference Presentation)

    Science.gov (United States)

    Frank, Donya; Calantoni, Joseph

    2017-05-01

    Improved understanding of coastal hydrodynamics and morphology will lead to more effective mitigation measures that reduce fatalities and property damage caused by natural disasters such as hurricanes. We investigated sediment transport under oscillatory flow over flat and rippled beds with phase-separated stereoscopic Particle Image Velocimetry (PIV). Standard PIV techniques severely limit measurements at the fluid-sediment interface and do not allow for the observation of separate phases in multi-phase flow (e.g. sand grains in water). We have implemented phase-separated Particle Image Velocimetry by adding fluorescent tracer particles to the fluid in order to observe fluid flow and sediment transport simultaneously. While sand grains scatter 532 nm wavelength laser light, the fluorescent particles absorb 532 nm laser light and re-emit light at a wavelength of 584 nm. Optical long-pass filters with a cut-on wavelength of 550 nm were installed on two cameras configured to perform stereoscopic PIV to capture only the light emitted by the fluorescent tracer particles. A third high-speed camera was used to capture the light scattered by the sand grains allowing for sediment particle tracking via particle tracking velocimetry (PTV). Together, these overlapping, simultaneously recorded images provided sediment particle and fluid velocities at high temporal and spatial resolution (100 Hz sampling with 0.8 mm vector spacing for the 2D-3C fluid velocity field). Measurements were made under a wide range of oscillatory flows over flat and rippled sand beds. The set of observations allow for the investigation of the relative importance of pressure gradients and shear stresses on sediment transport.

  3. Coal surface control for advanced physical fine coal cleaning technologies. Final report, September 19, 1988--August 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Morsi, B.I.; Chiang, S.H.; Sharkey, A.; Blachere, J.; Klinzing, G.; Araujo, G.; Cheng, Y.S.; Gray, R.; Streeter, R.; Bi, H.; Campbell, P.; Chiarlli, P.; Ciocco, M.; Hittle, L.; Kim, S.; Kim, Y.; Perez, L.; Venkatadri, R.

    1992-12-31

    This final report presents the research work carried out on the Coal Surface Control for Advanced Physical Fine Coal Cleaning Technologies project, sponsored by the US Department of Energy, Pittsburgh Energy Technology Center (DOE/PETC). The project was to support the engineering development of the selective agglomeration technology in order to reduce the sulfur content of US coals for controlling SO{sub 2} emissions (i.e., acid rain precursors). The overall effort was a part of the DOE/PETCs Acid Rain Control Initiative (ARCI). The overall objective of the project is to develop techniques for coal surface control prior to the advanced physical fine coal cleaning process of selective agglomeration in order to achieve 85% pyrite sulfur rejection at an energy recovery greater than 85% based on run-of-mine coal. The surface control is meant to encompass surface modification during grinding and laboratory beneficiation testing. The project includes the following tasks: Project planning; methods for analysis of samples; development of standard beneficiation test; grinding studies; modification of particle surface; and exploratory R&D and support. The coal samples used in this project include three base coals, Upper Freeport - Indiana County, PA, Pittsburgh NO. 8 - Belmont County, OH, and Illinois No. 6 - Randolph County, IL, and three additional coals, Upper Freeport - Grant County- WV, Kentucky No. 9 Hopkins County, KY, and Wyodak - Campbell County, WY. A total of 149 drums of coal were received.

  4. Microstructure of atmospheric particles revealed by TXM and a new mode of influenza virus transmission

    Energy Technology Data Exchange (ETDEWEB)

    Bao, L.M., E-mail: baoliangman@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhang, G.L., E-mail: zhangguilin@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Lei, Q.T.; Li, Y.; Li, X.L. [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Hwu, Y.K. [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Yi, J.M. [Advanced Photon Source, Argonne National Laboratory, Argonne 60439 (United States)

    2015-09-15

    For control of influenza, firstly it is important to find the real virus transmission media. Atmospheric aerosol particles are presumably one of the media. In this study, three typical atmospheric inhaled particles in Shanghai were studied by the synchrotron based transmission X-ray microscopes (TXM). Three dimensional microstructure of the particles reveals that there are many pores contained in, particularly the coal combustion fly particles which may be possible virus carrier. The particles can transport over long distance and cause long-range infections due to its light weight. We suggest a mode which is droplet combining with aerosol mode. By this mode the transmission of global and pandemic influenzas and infection between inland avian far from population and poultry or human living in cities along coast may be explained.

  5. Simulations of reactive transport and precipitation with smoothed particle hydrodynamics

    Science.gov (United States)

    Tartakovsky, Alexandre M.; Meakin, Paul; Scheibe, Timothy D.; Eichler West, Rogene M.

    2007-03-01

    A numerical model based on smoothed particle hydrodynamics (SPH) was developed for reactive transport and mineral precipitation in fractured and porous materials. Because of its Lagrangian particle nature, SPH has several advantages for modeling Navier-Stokes flow and reactive transport including: (1) in a Lagrangian framework there is no non-linear term in the momentum conservation equation, so that accurate solutions can be obtained for momentum dominated flows and; (2) complicated physical and chemical processes such as surface growth due to precipitation/dissolution and chemical reactions are easy to implement. In addition, SPH simulations explicitly conserve mass and linear momentum. The SPH solution of the diffusion equation with fixed and moving reactive solid-fluid boundaries was compared with analytical solutions, Lattice Boltzmann [Q. Kang, D. Zhang, P. Lichtner, I. Tsimpanogiannis, Lattice Boltzmann model for crystal growth from supersaturated solution, Geophysical Research Letters, 31 (2004) L21604] simulations and diffusion limited aggregation (DLA) [P. Meakin, Fractals, scaling and far from equilibrium. Cambridge University Press, Cambridge, UK, 1998] model simulations. To illustrate the capabilities of the model, coupled three-dimensional flow, reactive transport and precipitation in a fracture aperture with a complex geometry were simulated.

  6. A reactive transport modelling approach to assess the leaching potential of hydraulic fracturing fluids associated with coal seam gas extraction

    Science.gov (United States)

    Mallants, Dirk; Simunek, Jirka; Gerke, Kirill

    2015-04-01

    Coal Seam Gas production generates large volumes of "produced" water that may contain compounds originating from the use of hydraulic fracturing fluids. Such produced water also contains elevated concentrations of naturally occurring inorganic and organic compounds, and usually has a high salinity. Leaching of produced water from storage ponds may occur as a result of flooding or containment failure. Some produced water is used for irrigation of specific crops tolerant to elevated salt levels. These chemicals may potentially contaminate soil, shallow groundwater, and groundwater, as well as receiving surface waters. This paper presents an application of scenario modelling using the reactive transport model for variably-saturated media HP1 (coupled HYDRUS-1D and PHREEQC). We evaluate the fate of hydraulic fracturing chemicals and naturally occurring chemicals in soil as a result of unintentional release from storage ponds or when produced water from Coal Seam Gas operations is used in irrigation practices. We present a review of exposure pathways and relevant hydro-bio-geo-chemical processes, a collation of physico-chemical properties of organic/inorganic contaminants as input to a set of generic simulations of transport and attenuation in variably saturated soil profiles. We demonstrate the ability to model the coupled processes of flow and transport in soil of contaminants associated with hydraulic fracturing fluids and naturally occurring contaminants.

  7. Ultrafine coal classification using 150 mm gMax cyclone circuits

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Boaten, F.; Luttrell, G.H. [University of Kentucky, Lexington, KY (United States). Dept. of Mineral Engineering

    2007-11-15

    A two-stage classification circuit using 150 mm diameter gMax cyclones was installed and evaluated in a coal preparation plant in an effort to achieve a clean coal product without the use of froth flotation. Particle size separations of around 37 {mu}m were achieved while limiting ultrafine bypass to less than 10% in the circuit underflow stream. As a result, approximately 81% of the ash-bearing material in the circuit feed was rejected to the circuit overflow stream. The feed ash content was reduced from around 50% to values in the range of 22-30% in the circuit underflow stream with a mass recovery of about 30%. Further reductions in the coarse product ash content were limited due to the particle density effect and the remaining presence of a significant quantity of high-ash slime material in the coarse product. The typical D{sub 50} for the coal particles was 40 {mu} m while the estimated value for mineral matter was 17 {mu} m. Based on the findings of the study, the use of classification to recover a low-ash, coarse fraction in the feed of a fine coal circuit is limited by the density effect regardless of the ability to eliminate ultrafine bypass.

  8. Increasing the dust separation efficiency by water spray during the operation of coal combines

    Energy Technology Data Exchange (ETDEWEB)

    Feskov, M I; Kurdyukov, A N

    1974-08-01

    Possibilities of efficient wet dust separation around coal combines and their working members are described. The water consumption for dust separation around working members ranges from 0.3 to 1 l/cu m dust-laden air. The working member can be isolated from his surroundings by plastic walls or shields, while water or air curtains are rather unreliable. Such isolation requires a considerable increase in the water expenditure to improve the wettability of the coal particles by humidifying the air. Laboratory experiments revealed improved wettability and sedimentability of coal particles in humid air.

  9. acme: The Amendable Coal-Fire Modeling Exercise. A C++ Class Library for the Numerical Simulation of Coal-Fires

    Science.gov (United States)

    Wuttke, Manfred W.

    2017-04-01

    At LIAG, we use numerical models to develop and enhance understanding of coupled transport processes and to predict the dynamics of the system under consideration. Topics include geothermal heat utilization, subrosion processes, and spontaneous underground coal fires. Although the details make it inconvenient if not impossible to apply a single code implementation to all systems, their investigations go along similar paths: They all depend on the solution of coupled transport equations. We thus saw a need for a modular code system with open access for the various communities to maximize the shared synergistic effects. To this purpose we develop the oops! ( open object-oriented parallel solutions) - toolkit, a C++ class library for the numerical solution of mathematical models of coupled thermal, hydraulic and chemical processes. This is used to develop problem-specific libraries like acme( amendable coal-fire modeling exercise), a class library for the numerical simulation of coal-fires and applications like kobra (Kohlebrand, german for coal-fire), a numerical simulation code for standard coal-fire models. Basic principle of the oops!-code system is the provision of data types for the description of space and time dependent data fields, description of terms of partial differential equations (pde), their discretisation and solving methods. Coupling of different processes, described by their particular pde is modeled by an automatic timescale-ordered operator-splitting technique. acme is a derived coal-fire specific application library, depending on oops!. If specific functionalities of general interest are implemented and have been tested they will be assimilated into the main oops!-library. Interfaces to external pre- and post-processing tools are easily implemented. Thus a construction kit which can be arbitrarily amended is formed. With the kobra-application constructed with acme we study the processes and propagation of shallow coal seam fires in particular in

  10. Particle modeling of transport of α-ray generated ion clusters in air

    International Nuclear Information System (INIS)

    Tong, Lizhu; Nanbu, Kenichi; Hirata, Yosuke; Izumi, Mikio; Miyamoto, Yasuaki; Yamaguchi, Hiromi

    2006-01-01

    A particle model is developed using the test-particle Monte Carlo method to study the transport properties of α-ray generated ion clusters in a flow of air. An efficient ion-molecule collision model is proposed to simulate the collisions between ion and air molecule. The simulations are performed for a steady state of ion transport in a circular pipe. In the steady state, generation of ions is balanced with such losses of ions as absorption of the measuring sensor or pipe wall and disappearance by positive-negative ion recombination. The calculated ion current to the measuring sensor agrees well with the previous measured data. (author)

  11. Particle transport analysis in lower hybrid current drive discharges of JT-60U

    International Nuclear Information System (INIS)

    Nagashima, K.; Ide, S.; Naito, O.

    1996-01-01

    Particle transport is modified in lower hybrid current drive discharges of JT-60U. The density profile becomes broad during the lower hybrid wave injection and the profile change depends on the injected wave spectrum. Particle transport coefficients (diffusion coefficient and profile peaking factor) were evaluated using gas-puff modulation experiments. The diffusion coefficient in the current drive discharges is about three times larger than in the ohmic discharges. The profile peaking factor decreases in the current drive discharges and the evaluated values are consistent with the measured density profiles. (author)

  12. Particle transport simulation for spaceborne, NaI gamma-ray spectrometers

    International Nuclear Information System (INIS)

    Dyer, C.S.; Truscott, P.R.; Sims, A.J.; Comber, C.; Hammond, N.D.A.

    1988-11-01

    Radioactivity induced in detectors by protons and secondary neutrons limits the sensitivity of spaceborne gamma-ray spectrometers. Three dimensional Monte Carlo transport codes have been employed to simulate particle transport of cosmic rays and inner-belt protons in various representations of the Gamma Ray Observatory Spacecraft and the Oriented Scintillation Spectrometer Experiment. Results are used to accurately quantify the contributions to the radioactive background, assess shielding options and examine the effect of detector and space-craft orientation in anisotropic trapped proton fluxes. (author)

  13. Electrokinetics and flocculation studies of coal

    Energy Technology Data Exchange (ETDEWEB)

    Dhawan, N. [Punjab Engineering College, Chandigarh (India). Dept. of Metallurgical Engineering

    2008-07-01

    Coal from India contains 25-35 per cent ash content. This leads to high slag volume, lower calorific value and inferior coke. In order to remove ash content, coal is washed, however, it retains some water that makes it difficult to process. Mechanical dewatering is performed in which a large portion of solids is removed while the remainder remains in centrifuge. There is therefore a need to recover solids and water. This paper discussed the use of flocculation and electrokinetic studies such as the determination of the point of zero charge. The experimental studies considered factors such as turbidity, faster settling, and compactness. Flocculation is brought about by the action of high molecular weight materials such as polyelectrolytes, where the material physically forms a bridge between two or more particles, uniting the sold particles into a random, three-dimensional structure, which is loose and porous. This paper also described the materials and methods of the electrokinetic studies on coal samples. Materials that were described included nephelometer, zeta meter, and a flocculator. It was concluded that in selecting the best flocculant, the preference order should be turbidity; settling rate; dosage; and moisture content. 3 refs., 2 tabs., 8 figs.

  14. Lake-sediment record of PAH, mercury, and fly-ash particle deposition near coal-fired power plants in Central Alberta, Canada.

    Science.gov (United States)

    Barst, Benjamin D; Ahad, Jason M E; Rose, Neil L; Jautzy, Josué J; Drevnick, Paul E; Gammon, Paul R; Sanei, Hamed; Savard, Martine M

    2017-12-01

    We report a historical record of atmospheric deposition in dated sediment cores from Hasse Lake, ideally located near both currently and previously operational coal-fired power plants in Central Alberta, Canada. Accumulation rates of spheroidal carbonaceous particles (SCPs), an unambiguous marker of high-temperature fossil-fuel combustion, in the early part of the sediment record (pre-1955) compared well with historical emissions from one of North America's earliest coal-fired power plants (Rossdale) located ∼43 km to the east in the city of Edmonton. Accumulation rates in the latter part of the record (post-1955) suggested inputs from the Wabamun region's plants situated ∼17-25 km to the west. Increasing accumulation rates of SCPs, polycyclic aromatic hydrocarbons (PAHs) and Hg coincided with the previously documented period of peak pollution in the Wabamun region during the late 1960s to early 1970s, although Hg deposition trends were also similar to those found in western North American lakes not directly affected by point sources. A noticeable reduction in contaminant inputs during the 1970s is attributed in part to technological improvements and stricter emission controls. The over one hundred-year historical record of coal-fired power plant emissions documented in Hasse Lake sediments has provided insight into the impact that both environmental regulations and changes in electricity output have had over time. This information is crucial to assessing the current and future role of coal in the world's energy supply. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  15. PHITS: Particle and heavy ion transport code system, version 2.23

    International Nuclear Information System (INIS)

    Niita, Koji; Matsuda, Norihiro; Iwamoto, Yosuke; Sato, Tatsuhiko; Nakashima, Hiroshi; Sakamoto, Yukio; Iwase, Hiroshi; Sihver, Lembit

    2010-10-01

    A Particle and Heavy-Ion Transport code System PHITS has been developed under the collaboration of JAEA (Japan Atomic Energy Agency), RIST (Research Organization for Information Science and Technology) and KEK (High Energy Accelerator Research Organization). PHITS can deal with the transport of all particles (nucleons, nuclei, mesons, photons, and electrons) over wide energy ranges, using several nuclear reaction models and nuclear data libraries. Geometrical configuration of the simulation can be set with GG (General Geometry) or CG (Combinatorial Geometry). Various quantities such as heat deposition, track length and production yields can be deduced from the simulation, using implemented estimator functions called 'tally'. The code also has a function to draw 2D and 3D figures of the calculated results as well as the setup geometries, using a code ANGEL. Because of these features, PHITS has been widely used for various purposes such as designs of accelerator shielding, radiation therapy and space exploration. Recently PHITS introduces an event generator for particle transport parts in the low energy region. Thus, PHITS was completely rewritten for the introduction of the event generator for neutron-induced reactions in energy region less than 20 MeV. Furthermore, several new tallis were incorporated for estimation of the relative biological effects. This document provides a manual of the new PHITS. (author)

  16. Particle transport in breathing quantum graph

    International Nuclear Information System (INIS)

    Matrasulov, D.U.; Yusupov, J.R.; Sabirov, K.K.; Sobirov, Z.A.

    2012-01-01

    Full text: Particle transport in nanoscale networks and discrete structures is of fundamental and practical importance. Usually such systems are modeled by so-called quantum graphs, the systems attracting much attention in physics and mathematics during past two decades [1-5]. During last two decades quantum graphs found numerous applications in modeling different discrete structures and networks in nanoscale and mesoscopic physics (e.g., see reviews [1-3]). Despite considerable progress made in the study of particle dynamics most of the problems deal with unperturbed case and the case of time-dependent perturbation has not yet be explored. In this work we treat particle dynamics for quantum star graph with time-dependent bonds. In particular, we consider harmonically breathing quantum star graphs, the cases of monotonically contracting and expanding graphs. The latter can be solved exactly analytically. Edge boundaries are considered to be time-dependent, while branching point is assumed to be fixed. Quantum dynamics of a particle in such graphs is studied by solving Schrodinger equation with time-dependent boundary conditions given on a star graph. Time-dependence of the average kinetic energy is analyzed. Space-time evolution of the Gaussian wave packet is treated for harmonically breathing star graph. It is found that for certain frequencies energy is a periodic function of time, while for others it can be non-monotonically growing function of time. Such a feature can be caused by possible synchronization of the particles motion and the motions of the moving edges of graph bonds. (authors) References: [1] Tsampikos Kottos and Uzy Smilansky, Ann. Phys., 76, 274 (1999). [2] Sven Gnutzmann and Uzy Smilansky, Adv. Phys. 55, 527 (2006). [3] S. GnutzmannJ.P. Keating, F. Piotet, Ann. Phys., 325, 2595 (2010). [4] P.Exner, P.Seba, P.Stovicek, J. Phys. A: Math. Gen. 21, 4009 (1988). [5] J. Boman, P. Kurasov, Adv. Appl. Math., 35, 58 (2005)

  17. Large eddy simulations of coal jet flame ignition using the direct quadrature method of moments

    Science.gov (United States)

    Pedel, Julien

    The Direct Quadrature Method of Moments (DQMOM) was implemented in the Large Eddy Simulation (LES) tool ARCHES to model coal particles. LES coupled with DQMOM was first applied to nonreacting particle-laden turbulent jets. Simulation results were compared to experimental data and accurately modeled a wide range of particle behaviors, such as particle jet waviness, spreading, break up, particle clustering and segregation, in different configurations. Simulations also accurately predicted the mean axial velocity along the centerline for both the gas phase and the solid phase, thus demonstrating the validity of the approach to model particles in turbulent flows. LES was then applied to the prediction of pulverized coal flame ignition. The stability of an oxy-coal flame as a function of changing primary gas composition (CO2 and O2) was first investigated. Flame stability was measured using optical measurements of the flame standoff distance in a 40 kW pilot facility. Large Eddy Simulations (LES) of the facility provided valuable insight into the experimentally observed data and the importance of factors such as heterogeneous reactions, radiation or wall temperature. The effects of three parameters on the flame stand-off distance were studied and simulation predictions were compared to experimental data using the data collaboration method. An additional validation study of the ARCHES LES tool was then performed on an air-fired pulverized coal jet flame ignited by a preheated gas flow. The simulation results were compared qualitatively and quantitatively to experimental observations for different inlet stoichiometric ratios. LES simulations were able to capture the various combustion regimes observed during flame ignition and to accurately model the flame stand-off distance sensitivity to the stoichiometric ratio. Gas temperature and coal burnout predictions were also examined and showed good agreement with experimental data. Overall, this research shows that high

  18. Drift-Alfven wave mediated particle transport in an elongated density depression

    International Nuclear Information System (INIS)

    Vincena, Stephen; Gekelman, Walter

    2006-01-01

    Cross-field particle transport due to drift-Alfven waves is measured in an elongated density depression within an otherwise uniform, magnetized helium plasma column. The depression is formed by drawing an electron current to a biased copper plate with cross-field dimensions of 28x0.24 ion sound-gyroradii ρ s =c s /ω ci . The process of density depletion and replenishment via particle flux repeats in a quasiperiodic fashion for the duration of the current collection. The mode structure of the wave density fluctuations in the plane perpendicular to the background magnetic field is revealed using a two-probe correlation technique. The particle flux as a function of frequency is measured using a linear array of Langmuir probes and the only significant transport occurs for waves with frequencies between 15%-25% of the ion cyclotron frequency (measured in the laboratory frame) and with perpendicular wavelengths k perpendicular ρ s ∼0.7. The frequency-integrated particle flux is in rough agreement with observed increases in density in the center of the depletion as a function of time. The experiments are carried out in the Large Plasma Device (LAPD) [Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)] at the Basic Plasma Science Facility located at the University of California, Los Angeles

  19. Coupled Particle Transport and Pattern Formation in a Nonlinear Leaky-Box Model

    Science.gov (United States)

    Barghouty, A. F.; El-Nemr, K. W.; Baird, J. K.

    2009-01-01

    Effects of particle-particle coupling on particle characteristics in nonlinear leaky-box type descriptions of the acceleration and transport of energetic particles in space plasmas are examined in the framework of a simple two-particle model based on the Fokker-Planck equation in momentum space. In this model, the two particles are assumed coupled via a common nonlinear source term. In analogy with a prototypical mathematical system of diffusion-driven instability, this work demonstrates that steady-state patterns with strong dependence on the magnetic turbulence but a rather weak one on the coupled particles attributes can emerge in solutions of a nonlinearly coupled leaky-box model. The insight gained from this simple model may be of wider use and significance to nonlinearly coupled leaky-box type descriptions in general.

  20. Biological removal of sulfur from coal flotation concentrate by culture isolated from coal washery plant tailing dump

    Energy Technology Data Exchange (ETDEWEB)

    Jorjani, E. [Azad University, Tehran (Iran). Mining Engineering Dept.

    2005-10-15

    A combination of flotation and microbial leaching processes was used to achieve acceptable level of sulfur and ash in Tabas coal sample of Iran. Representative sample of the minus 500 micron size fraction was subjected to flotation separation for the removal of ash and sulfur. The final concentrate with recovery, combustion value and sulfur content of 86.03, 86.45 and 1.35% respectively was achieved at pH 8 and following reagent dosage and operating conditions: collector: diesel oil (1200 g/ton), frother: MIBC (5%) + pine oil (95%) with concentration of 120 (g/ton), depressant: sodium silicate (1000 g/ton), particle size: {lt} 500 {mu} m and pulp density: 7%. Because of fine distribution of sulfur on Tabas coal macerals and lithotypes, high percentage of total sulfur (79.9%) is distributed in flotation concentrate and only 20.1% is yielded in the tails. So microbial leaching using a species isolated from coal washery plant tailing dump was used in batch system to remove sulfur from flotation concentrate. The conditions were optimized for the maximum removal of sulfur. These conditions were found to be pH of 2, particle size less than 0.18 mm; pulp density: 8%, temperature: 30 {sup o}C, shaking rate: 150 rpm conditions. Total sulfur and ash content was reduced by bioleaching from 13.55 and 1.35 in flotation concentrate to 9.47 and 0.55 in the final leached concentrate, a reduction of 35 and 61.9% respectively. Sterilization of coal adversely affects the sulfur reduction. The results suggest that the isolated culture is sufficiently effective for depyritization of Tabas coal flotation concentrate in stirred system.