WorldWideScience

Sample records for transport greenhouse gas

  1. Incorporating greenhouse gas (GHG) emissions in long range transportation planning.

    Science.gov (United States)

    2014-05-01

    Greenhouse gas (GHG) emissions continue to be an important focus area for state, local, and federal : agencies. The transportation sector is the second biggest contributor to GHG emissions in the U.S., and : Texas contributes the highest emissions am...

  2. Greenhouse Gas Emissions Trading for the Transport Sector

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Belhaj, Mohammed; Gode, Jenny; Saernholm, Erik; Zetterberg, Lars; Aahman, Markus

    2006-12-01

    In this study we have analysed different options to apply emissions trading for greenhouse gas emissions to the transport sector. The main focus has been on the EU transport sector and the possibility to include it in the current EU ETS in the trading period beginning in 2013. The purpose was to study how different alternatives will affect different actors. Focus has been on three sub-sectors; road transport, aviation and shipping. The railway sector has only been treated on a general level. The study includes the following three parts: 1. An economic analysis of the consequences of greenhouse gas emissions trading for the transport sector including an analysis of how the total cost for reaching an emission target will be affected by an integrated emissions trading system for the transport sector and the industry (currently included sectors) compared to separate systems for the sectors, 2. An analysis of design possibilities for the different sub-sectors. Discussion of positive and negative aspects with different choices of design parameters, such as trading entity, covered greenhouse gases, allocation of emission allowances and monitoring systems, 3. Examination of the acceptance among different actors for different options of using greenhouse gas emissions trading in the transport sector. When setting up an emissions trading scheme there are a number of design parameters that have to be analysed in order to find an appropriate system, with limited administrative and transaction costs and as small distortions as possible to competitiveness

  3. Reducing greenhouse gas emissions from u.s. transportation

    Science.gov (United States)

    2010-01-01

    This report examines the prospects for substantially reducing the greenhouse gas (GHG) emissions from the U.S. transportation sector, which accounts for 27 percent of the GHG emissions of the entire U.S. economy and 30 percent of the world's transpor...

  4. Panorama 2009 - greenhouse gas emissions and the transport sector

    International Nuclear Information System (INIS)

    2008-01-01

    The fact that the transport sector is growing quickly brings advantages, such as quick access to any geographical location on earth, but also disadvantages: noise, congestion and polluting emissions such as carbon dioxide (CO 2 ), the greenhouse gas (GHG) primarily responsible for global warming. In the effort to bring GHG emissions under control, improving results in the transport sector is a prime long-term objective. What proportion of CO 2 emissions generated at global and national level are due to the road, air, maritime and rail transport sectors, respectively? What mechanisms can be used to reduce GHG emissions in the transport sector at large?

  5. The role of transportation technologies in reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    The potential role of passenger transportation technologies in reducing greenhouse gas emissions was discussed. The technologies considered in the report were those that affect ground transportation of passengers and were in at least the early stages of development in 1995. They were: (1) technologies to improve the fuel efficiency of cars and light trucks, (2) alternative fuels for internal combustion engines, (3) electric hybrid vehicles, (4) advanced technology transit buses, (5) intelligent transportation systems, (6) high speed rail, and (7) bicycles. For each option, the advantages and disadvantages were described. The feasibility of establishing a high-speed rail system serving Canada's most densely populated region, the Windsor to Quebec City corridor, was discussed. Economic and environmental studies of such a proposal are underway. tabs

  6. 0-6696 : incorporating greenhouse gas (GHG) emissions in long-range transportation planning : [project summary].

    Science.gov (United States)

    2013-08-01

    Greenhouse gas (GHG) emissions continue to be : an important focus area for state, local, and : federal agencies. The transportation sector is the : second biggest contributor to GHG emissions in : the United States, and Texas contributes the : highe...

  7. Greenhouse gas emissions from aviation and marine transportation : mitigation potential and policies

    Science.gov (United States)

    2009-12-01

    This paper provides an overview of greenhouse gas (GHG) emissions : from aviation and marine transportation and the various mitigation options to reduce these emissions. Reducing global emissions by 50 to 80 percent below 1990 levels by 2050reduct...

  8. Greenhouse gas emissions from the production and use of alternative transport fuels

    International Nuclear Information System (INIS)

    Le Cornu, J.K.

    1990-01-01

    A number of the commonly proposed alternative transport fuels were ranked according to both the cumulative greenhouse gas emissions and the production costs incurred between the recovery of the prime resource and the fuel's end use by the Australian transport fleet. An examination of the emissions of each greenhouse gas at each production stage confirmed the common presumption that the low levels of secondary greenhouse gas emissions involved contribute little to the overall greenhouse impact of a fuel's production and use. From a greenhouse point of view the transport fuels studied could be reasonable well ranked by considering their carbon dioxide emissions alone. A possible exception may apply in the case of the compressed natural gas option, which may need to separate consideration of the effect of fugitive emissions of methane from gas distribution systems. An assumption involved in reaching this result was that nitrous oxide emissions, on which there was inadequate hard data, would not form more than 1% of the total nitrogen oxide emissions. At such an emission level it could contribute up to 5% of a fuel's total greenhouse impact. It is concluded that apart from some small niche opportunities, there is no Australian alternative transport fuel option whose production cost and greenhouse impact makes it one which policy should favour over other fuels. It is stressed that this is no more than a preliminary scouting study of generic options, which addresses only greenhouse issues. 17 refs., 1 tab., 8 figs

  9. Estimation of Energy Consumption and Greenhouse Gas Emissions of Transportation in Beef Cattle Production

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2016-11-01

    Full Text Available Accounting for transportation is an important part of the life cycle analysis (LCA of beef cattle production because it is associated with energy consumption and greenhouse gas emissions. This paper describes the development and application of a model that estimates energy consumption and greenhouse gas emissions of transport in beef cattle production. The animal transport model is based on the weight and number of animals in each weight category, type of trailer, vehicle, and fuel used. The energy consumption and greenhouse gas emission estimates of animal feed transportation are based on the weight of a truckload and the number of truckloads of feed transported. Our results indicate that a truckload is travelling approximately 326 km in connection with beef cattle production in the study region. The fuel consumption amounts to 24 L of fossil fuel per 1000 kg of boneless beef. The corresponding greenhouse gas emission is 83 kg. It appears from our results that the majority of energy consumption and greenhouse gas emissions are associated with sending the finished cattle to slaughterhouses and bringing feeder cattle to feedlots. Our results point out appreciable reductions in energy consumption and greenhouse gas emissions by changing from conventional fuel to bio-fuel.

  10. Reducing Greenhouse Gas Emissions in Transport: All in One Basket?

    Directory of Open Access Journals (Sweden)

    Nicholas Rivers

    2018-02-01

    Full Text Available Analysis after analysis has shown consistently that if policy-makers aiming to meet climate goals are looking for the most-efficient, least-distortionary way to target emissions growth, there is simply nothing better than abandoning all emissions regulations except for one: A straight, revenue-neutral carbon tax. Nothing works through more channels, at a lower cost. Alas, policy-makers are not always looking for the most-efficient, least-distortionary way to target emissions growth. That’s because many of those same analyses show that in order to reach emissions targets, the price on carbon would have to be so punitive as to be politically unbearable, raising the price of gasoline, for example, by about a dollar a litre. That leads politicians to mix in other policies that are less visible to the consumer but also less efficient, less effective and more expensive in abating carbon dioxide. The recently negotiated Pan-Canadian Framework on Clean Growth and Climate Change intends to follow that model, relying on a blend of different policies to help reach Canada’s Paris climate targets. But while the government seems therefore determined to rule out the possibility of a nothing-but-a-carbon-tax plan, it is possible, through the careful application of just the right sort of emission-reduction approaches, to reduce the costs of abatement in a key policy target — namely, road transportation — to a level that at least approaches the lower cost of a carbon tax. The government will likely consider several options in trying to reduce emissions from road transportation. Typical tools include requiring manufacturers to meet standards for new vehicles that mandate fuel economy and greenhouse gas emissions; gasoline taxes; taxes on emissions-intensive vehicles; subsidies for low-emission or zero-emission vehicles; and subsidies for public transit. Indications are that a low-carbon fuel standard (LCFS will play a significant role in the Pan

  11. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brown, Austin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Markel, Tony [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yimin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chipman, Peter [U.S. Department of Transportation, Washington, D.C. (United States); Johnson, Shawn [U.S. Department of Transportation, Washington, D.C. (United States)

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  12. An integrated approach to transportation policy in BC : assessing greenhouse gas reductions opportunities in freight transportation

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, B.; Ries, F.; Reynolds, C.; Mazzi, E. [British Columbia Univ., Vancouver, BC (Canada). Inst. for Resources, Environment and Sustainability; Lim, C. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Civil Engineering, Bureau of Intelligent Transportation Systems and Freight Security; Dowlatabadi, H. [British Columbia Univ., Vancouver, BC (Canada). Inst. for Resources, Environment and Sustainability; British Columbia Univ., Vancouver, BC (Canada). Liu Inst. for Global Issues

    2008-11-15

    This paper presented an integrated assessment for the design of greenhouse gas (GHG) emission reduction policies in British Columbia (BC) with particular reference to the drivers of GHG emissions from the transportation sector. Transportation services are central to the movement of goods and people in modern economies and their provision involves tradeoffs between economic benefits, health effects, and social and environmental impacts. More than a dozen BC initiatives were reviewed, with a specific focus on freight movement. The paper emphasized that consequences of proposals such as low carbon fuel standards need to be carefully assessed, along with mandated vehicle technologies, congestion fees and investment in alternative transportation infrastructure. The Activity, Modal Share, Intensity and Fuel (ASIF) framework was shown to provide insight into drivers of GHG emissions and the potential impact of policy decisions. The framework refers to factors such as the amount of kilometres traveled, share of activity per mode of travel, energy intensity, and GHG emissions per unit of energy for fuel type used in the transportation mode. The relationship between factors indicates that GHG emissions increase as energy intensity increases and as the carbon intensity of fuel increases. The overall intensity of the fleet depends greatly on vehicle composition and the share of travel between different modes. refs., tabs., figs.

  13. Urban form, transportation and greenhouse gas emissions- Experiences in the Nordic Countries

    Energy Technology Data Exchange (ETDEWEB)

    Harmaajaervi, I; Heinonen, S.; Lahti, P. [VTT, Building and Transport (Finland)

    2004-07-01

    The main objective of the project was to identify instruments to develop urban form and transportation systems in a sustainable way to decrease greenhouse gas emissions in the Nordic countries. Instruments can be found on different levels: national, regional and local. The main sectors are land use and transportation planning, land use and transportation policies, tax policy, co-operation, information dissemination, interaction, monitoring and early warning systems. Instruments concern for example control of urban development, supporting residential activities in city centres, control of location of shopping malls, preventing long commuting trips, reduction of transportation need and car dependency, promotion of walking, cycling and public transport and eco-managed telework. (au)

  14. Energy utilization and greenhouse-gas emissions: Transportation sector, topical report

    International Nuclear Information System (INIS)

    Darrow, K.G.

    1992-06-01

    The objective of the report is to compare the emissions of greenhouse gases for alternative end-use technologies in the transportation sector. Scientists assert that global warming is occurring and will continue to occur as a result of increasing concentrations of certain gases in the atmosphere. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the focus of this analysis because they are believed to cause three-fourths of the global warming effect and because energy production and use are a significant source of these emissions. Greenhouse gas emissions in the energy sector occur during energy production, conversion, transportation and end-use. This analysis compares alternative transportation sector fuel/technology choices in terms of their total fuel-cycle emissions of greenhouse gases. The emphasis of this report is on the end use comparison. The fuel-cycle emissions comparison was developed in a companion report

  15. Transportation and Greenhouse Gas Emissions Trading. Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Steve Winkelman; Tim Hargrave; Christine Vanderlan

    1999-10-01

    The authors conclude in this report that an upstream system would ensure complete regulatory coverage of transportation sector emissions in an efficient and feasible manner, and as such represents a key component of a national least-cost GHG emissions abatement strategy. The broad coverage provided by an upstream system recommends this approach over vehicle-maker based approaches, which would not cover emissions from heavy-duty vehicles and the aviation, marine and off-road sub-sectors. The on-road fleet approach unfairly and inefficiently burdens vehicle manufacturers with responsibility for emissions that they cannot control. A new vehicles approach would exclude emissions from vehicles on the road prior to program inception. The hybrid approach faces significant technical and political complications, and it is not clear that the approach would actually change behavior among vehicle makers and users, which is its main purpose. They also note that a trading system would fail to encourage many land use and infrastructure measures that affect VMT growth and GHG emissions. They recommend that this market failure be addressed by complementing the trading system with a program specifically targeting land use- and infrastructure-related activities. A key issue that must be addressed in designing a national GHG control strategy is whether or not it is necessary to guarantee GHG reductions from the transport sector. Neither an upstream system nor a downstream approach would do so, since both would direct capital to the least-cost abatement opportunities wherever they were found. They review two reasons why it may be desirable to force transportation sector reductions: first, that the long-term response to climate change will require reductions in all sectors; and second, the many ancillary benefits associated with transportation-related, and especially VMT-related, emissions reduction activities. If policy makers find it desirable to establish transportation

  16. Greenhouse gas emissions from the international maritime transport of New Zealand's imports and exports

    International Nuclear Information System (INIS)

    Fitzgerald, Warren B.; Howitt, Oliver J.A.; Smith, Inga J.

    2011-01-01

    Greenhouse gas emissions from international maritime transport are exempt from liabilities under the Kyoto Protocol. Research into quantifying these emissions is ongoing, and influences policy proposals to reduce emissions. This paper presents a cargo-based analysis of fuel consumption and greenhouse gas emissions from New Zealand's international maritime transport of goods. Maritime transport moves 99.5% (by mass) of New Zealand's internationally traded products. It is estimated that 73% of visiting vessels' activity can be directly attributed to the movement of goods in and out of New Zealand. A cargo-based methodology was used to estimate that the international maritime transport of New Zealand's imports and exports consumed 2.5 million tonnes (Mt; 2.6 billion litres) of fuel during the year 2007, which generated 7.7 Mt of carbon dioxide (CO 2 ) emissions. Double-counting of emissions would occur if a similar method was applied to all New Zealand's trading partners. In contrast, since few large vessels refuel in New Zealand, the National Greenhouse Gas Inventory listed 2007 international maritime transportation emissions as 0.98 Mt of CO 2 , calculated from fuel bunkered for international transport. The results, therefore, show a significant difference between activity-based and bunker-fuel methodologies in quantifying New Zealand's emissions. International policy implications are discussed. - Research highlights: → Cargo-based analysis of GHG emissions from New Zealand's international maritime transport of goods. → 7.7 Mt of CO 2 estimated from international maritime transport of NZ's 2007 imports and exports. → 73% of visiting vessels' 2007 activity attributed to the movement of goods in and out of NZ. → The results were significantly different from NZ's GHG Inventory bunker-fuel derived emissions figure. → Detailed approach for international transport emissions regional/national assessments described.

  17. Life cycle energy and greenhouse gas emissions from transportation of Canadian oil sands to future markets

    International Nuclear Information System (INIS)

    Tarnoczi, Tyler

    2013-01-01

    Oil sands transportation diversification is important for preventing discounted crude pricing. Current life cycle assessment (LCA) models that assess greenhouse gas (GHG) emissions from crude oil transportation are linearly-scale and fail to account for project specific details. This research sets out to develop a detailed LCA model to compare the energy inputs and GHG emissions of pipeline and rail transportation for oil sands products. The model is applied to several proposed oils sands transportation routes that may serve as future markets. Comparison between transportation projects suggest that energy inputs and GHG emissions show a high degree of variation. For both rail and pipeline transportation, the distance over which the product is transported has a large impact on total emissions. The regional electricity grid and pump efficiency have the largest impact on pipeline emissions, while train engine efficiency and bitumen blending ratios have the largest impact on rail transportation emissions. LCA-based GHG regulations should refine models to account for the range of product pathways and focus efforts on cost-effective emission reductions. As the climate-change impacts of new oil sands transportation projects are considered, GHG emission boundaries should be defined according to operation control. -- Highlights: •A life cycle model is developed to compare transportation of oil sands products. •The model is applied to several potential future oil sands markets. •Energy inputs and GHG emissions are compared. •Model inputs are explored using sensitivity analysis. •Policy recommendations are provided

  18. Scenarios of high greenhouse gas emission reduction in transports and buildings by 2050

    International Nuclear Information System (INIS)

    Teissier, O.; Meunier, L.

    2008-01-01

    The authors report simulations of different environmental policy measures concerning transports and buildings in France. First, they review measures which may entail a reduction of greenhouse gas emissions, and comment their emission reduction potential and their implementation costs. These measures are then ranked, and only those presenting a significant potential and an economically and technologically feasibility are finally considered. Their impact is then simulated by using different models which are adapted to the both sectors and to time ranges. The obtained results are compared to those obtained with a calibrated trend scenario and with a 'factor 4' scenario

  19. Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories.

    Science.gov (United States)

    Reyna, Janet L; Chester, Mikhail V; Ahn, Soyoung; Fraser, Andrew M

    2015-01-06

    Metropolitan greenhouse gas and air emissions inventories can better account for the variability in vehicle movement, fleet composition, and infrastructure that exists within and between regions, to develop more accurate information for environmental goals. With emerging access to high quality data, new methods are needed for informing transportation emissions assessment practitioners of the relevant vehicle and infrastructure characteristics that should be prioritized in modeling to improve the accuracy of inventories. The sensitivity of light and heavy-duty vehicle greenhouse gas (GHG) and conventional air pollutant (CAP) emissions to speed, weight, age, and roadway gradient are examined with second-by-second velocity profiles on freeway and arterial roads under free-flow and congestion scenarios. By creating upper and lower bounds for each factor, the potential variability which could exist in transportation emissions assessments is estimated. When comparing the effects of changes in these characteristics across U.S. cities against average characteristics of the U.S. fleet and infrastructure, significant variability in emissions is found to exist. GHGs from light-duty vehicles could vary by -2%-11% and CAP by -47%-228% when compared to the baseline. For heavy-duty vehicles, the variability is -21%-55% and -32%-174%, respectively. The results show that cities should more aggressively pursue the integration of emerging big data into regional transportation emissions modeling, and the integration of these data is likely to impact GHG and CAP inventories and how aggressively policies should be implemented to meet reductions. A web-tool is developed to aide cities in improving emissions uncertainty.

  20. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  1. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  2. Potential of greenhouse gas emission reduction in Thai road transport by ethanol bus technology

    International Nuclear Information System (INIS)

    Chollacoop, Nuwong; Saisirirat, Peerawat; Sukkasi, Sittha; Tongroon, Manida; Fukuda, Tuenjai; Fukuda, Atsushi; Nivitchanyong, Siriluck

    2013-01-01

    Highlights: ► Energy demand modeling in Thai road transportation sector was developed. ► Such model was used to assess environment impact by ethanol bus technology (ED95). ► Ethanol bus technology (ED95) shows beneficial impacts to Thailand. ► Increase in ethanol demand and decrease in GHG emission in Thailand by ethanol bus. ► Ethanol bus (ED95) has been successfully demonstrated in Thailand. -- Abstract: Over decades, Thailand energy consumption has been concentrated in three main sectors, namely manufacturing, power and transportation. Energy consumption in transportation sector has also been dominated by road transport due to limited coverage by rail and water transportation. Hence, road transport has been a major contributor for greenhouse gas emission in Thailand over recent years. Along with global warming concern throughout the world, Thailand has taken various adaptation and mitigation measures, especially the strong policy push to use carbon–neutral biofuel in transportation sector due to Thailand competitive advantage in agriculture sector. National Renewable Energy Plan (2008–2022) has set challenging targets of 9 and 4.5 million liters/day of ethanol and biodiesel consumption by 2022, respectively. Various blends of ethanol in gasoline (10%, 20% and 85%) and biodiesel in diesel (up to 5%) have been commercially available. However, since current consumption of diesel is twice as much of gasoline, ethanol blend in gasoline would widen the imbalance consumption of gasoline and diesel. The present study however offers an insight into a possibility to use ethanol as diesel substitute. A case study of ethanol bus technology was investigated by recourse to energy demand modeling. Necessary data, such as a number of vehicles (NVs) for various vehicle types, vehicle kilometer of travel (VKT) and fuel economy (FE) were collected, with reasonable assumptions made for those unavailable data, to construct predicative energy demand model. Scenario

  3. Regional disparity of urban passenger transport associated GHG (greenhouse gas) emissions in China: A review

    International Nuclear Information System (INIS)

    Hao, Han; Geng, Yong; Wang, Hewu; Ouyang, Minggao

    2014-01-01

    With China’s urbanization and motorization, greenhouse gas (GHG) emissions from urban passenger transport increased rapidly over recent years. As we estimated, China’s urban passenger transport associated motorized travel, energy consumption and lifecycle GHG emissions reached 2815 billion passenger kilometers (pkm), 77 million tons of oil equivalent (toe) and 335 million ton CO 2 equivalent in 2010, over half of which were located in eastern provinces. Over national level, GHG emissions by private passenger vehicles, business passenger vehicles, taxis, motorcycles, E-bikes, transit buses and urban rails accounted for 57.7%, 13.0%, 7.7%, 8.6%, 1.8%, 10.5% and 0.7% of the total. Significant regional disparity was observed. The province-level per capita GHG emissions ranged from 285 kg/capita in Guizhou to 1273 kg/capita in Beijing, with national average of 486 kg/capita. Depending on province context and local policy orientation, the motorization pathways of China’s several highest motorized provinces are quite diverse. We concluded that motorization rate and transport structure were the substantial factors determining urban passenger transport associated GHG emissions. Considering the great potential of urban passenger transport growth in China, policies guiding the optimization of transport structure should be in place with priority in eastern provinces. - Highlights: • Province-leveled motorized travel, energy consumption and GHG emissions in China were studied. • Significant regional disparities on urban passenger transport were observed. • Region-specific sustainable transport energy policies were discussed

  4. Greenhouse gas options, policy and measures for the Canadian Transportation Equipment Manufacturing Industry - Final report

    International Nuclear Information System (INIS)

    2000-02-01

    This report summarizes and analyses the work that have been carried out by the Transportation Equipment Manufacturing Sector (TEMS) Working Group of the National Climate Change Industry Table over the last 14 months, and presents the Group's view of appropriate policies for greenhouse gas emission reduction in Canada. To develop its approach, the Working Group conducted five separate studies which are included in this report as annexes. Annex A is a Foundation Paper, which provides an overview of the sector's performance vis-a-vis energy use and greenhouse gas production. Annex B analyzes the competitive position of the industry by reviewing growth trends in each of the industry sub-sectors and the key factors in maintaining and enhancing the sector's international competitive position. Annex C is a technology assessment. It provides an overview of the uptake of energy saving technology in the sector. Annex D provides a facility level analysis focusing on energy use in the automotive parts manufacturing sector. Annex E is a review of American policies on climate change, summarizing the approach currently being taken towards greenhouse gas emission reduction in the United States. Some of the key findings of this report are: (1) business-as-usual emissions will greatly exceed the implicit Kyoto target of six per cent reduction from 1990 levels, (2) relatively few opportunities exist for major emissions reductions through the use of existing technology, (3) sector-specific policies appear to be ill-advised, but cross-cutting policies provide good opportunities for the transportation equipment manufacturing sector to do its part in helping Canada meeting its Kyoto commitment. The report recommends investigation of barriers to adoption of new technologies and examination of market imperfections, promotion of cogeneration where it makes economic sense, and consideration of the use of flexible instruments such as carbon taxes and tradable emission permits. Overall, the

  5. Greenhouse gas emissions from Thailand’s transport sector: Trends and mitigation options

    International Nuclear Information System (INIS)

    Pongthanaisawan, Jakapong; Sorapipatana, Chumnong

    2013-01-01

    Rapid growth of population and economy during the past two decades has resulted in continuing growth of transport’s oil demand and greenhouse gas (GHG) emissions. The objectives of this study are to examine pattern and growth in energy demand as well as related GHG emissions from the transport sector and to analyze potential pathways of energy demand and GHG emissions reduction from this sector of the measures being set by the Thai Government. A set of econometric models has been developed to estimate the historical trend of energy demand and GHG emissions in the transport sector during 1989–2007 and to forecast future trends to 2030. Two mitigation option scenarios of fuel switching and energy efficiency options have been designed to analyze pathways of energy consumption and GHG emissions reduction potential in Thailand’s transport sector compared with the baseline business-as-usual (BAU) scenario, which assumed to do nothing influences the long-term trends of transport energy demand. It has been found that these two mitigation options can reduce the GHG emissions differently. The fuel-switching option could significantly reduce the amount of GHG emissions in a relatively short time frame, albeit it will be limited by its supply resources, whereas the energy efficiency option is more effective for GHG emissions mitigation in the long term. Therefore, both measures should be implemented simultaneously for both short and long term mitigation effects in order to more effectively achieve GHG emissions reduction target.

  6. Building-Resolved CFD Simulations for Greenhouse Gas Transport and Dispersion over Washington DC / Baltimore

    Science.gov (United States)

    Prasad, K.; Lopez-Coto, I.; Ghosh, S.; Mueller, K.; Whetstone, J. R.

    2015-12-01

    The North-East Corridor project aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over urban domains such as Washington DC / Baltimore with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics generated by the flow around buildings and communities comprising a large city. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model that utilizes large eddy simulation methods to model flow around buildings at length scales much smaller than is practical with WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing difficult to simulate with a mesoscale atmospheric model. Such capabilities may be important in determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards that computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 10-20 m in a domain of 12 x 12 km. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in the North-East Corridor and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Results of this study will provide guidance regarding the importance of explicit simulations of urban atmospheric turbulence in obtaining accurate estimates of greenhouse gas emissions and transport.

  7. Measures applicable to transportation sector in order to improve their greenhouse gas emission balance

    International Nuclear Information System (INIS)

    Lamure, C.A.

    1991-01-01

    The greenhouse effect gases emitted by transport vehicles are mainly carbon dioxide, methane and nitrogen dioxide; CO 2 emissions from transport vehicles (automobiles, aircraft) are growing and their relative importance is growing even more due to lowering of other CO 2 sources. Greenhouse gases from thermal engines are assessed as a function of engine and fuel types. Several solutions are proposed in order to reduce pollutant emissions: road traffic control (road pricing), automobile restricted utilization (speed, access areas, traffic and parking regulation), consumption regulation, collective transports (buses, mini buses), urban organization for pedestrian and bicycle transport, fuel substitution, life style modification tele-commuting, etc

  8. Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.

    2013-03-01

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Transportation Energy Futures Series. Effects of the Built Environment on Transportation. Energy Use, Greenhouse Gas Emissions, and Other Factors

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Brown, A. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Dunphy, R. T. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States); Vimmerstedt, L. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Inc., Golden, CO (United States)

    2013-03-15

    Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. Benefits on public health from transport-related greenhouse gas mitigation policies in Southeastern European cities.

    Science.gov (United States)

    Sarigiannis, D A; Kontoroupis, P; Nikolaki, S; Gotti, A; Chapizanis, D; Karakitsios, S

    2017-02-01

    Climate change is a major environmental threat of our time. Cities have a significant impact on greenhouse gas emissions as most of the traffic, industry, commerce and more than 50% of world population is situated in urban areas. Southern Europe is a region that faces financial turmoil, enhanced migratory fluxes and climate change pressure. The case study of Thessaloniki is presented, one of the only two cities in Greece with established climate change action plans. The effects of feasible traffic policies in year 2020 are assessed and their potential health impact is compared to a business as usual scenario. Two types of measures are investigated: operation of underground rail in the city centre and changes in fleet composition. Potential co-benefits from reduced greenhouse gas emissions on public health by the year 2020 are computed utilizing state-of-the-art concentration response functions for PM x , NO 2 and C 6 H 6 . Results show significant environmental health and monetary co-benefits when the city metro is coupled with appropriate changes in the traffic composition. Monetary savings due to avoided mortality or leukaemia incidence corresponding to the reduction in PM 10 , PM 2.5, NO 2 and C 6 H 6 exposure will be 56.6, 45, 37.7 and 1.0 million Euros respectively. Promotion of 'green' transportation in the city (i.e. the wide use of electric vehicles), will provide monetary savings from the reduction in PM 10 , PM 2.5 , NO 2 and C 6 H 6 exposure up to 60.4, 49.1, 41.2 and 1.08 million Euros. Overall, it was shown that the respective GHG emission reduction policies resulted in clear co-benefits in terms of air quality improvement, public health protection and monetary loss mitigation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Coupling of WRF and Building-resolved CFD Simulations for Greenhouse Gas Transport and Dispersion

    Science.gov (United States)

    Prasad, K.; Hu, H.; McDermott, R.; Lopez-Coto, I.; Davis, K. J.; Whetstone, J. R.; Lauvaux, T.

    2014-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to use a top-down inversion methodology to quantify sources of Greenhouse Gas (GHG) emissions over an urban domain with high spatial and temporal resolution. Atmospheric transport of tracer gases from an emission source to a tower mounted receptor are usually conducted using the Weather Research and Forecasting (WRF) model. WRF is used extensively in the atmospheric community to simulate mesoscale atmospheric transport. For such simulations, WRF employs a parameterized turbulence model and does not resolve the fine scale dynamics that are generated by the flow around buildings and communities that are part of a large city. Since the model domain includes the city of Indianapolis, much of the flow of interest is over an urban topography. The NIST Fire Dynamics Simulator (FDS) is a computational fluid dynamics model to perform large eddy simulations of flow around buildings, but it has not been nested within a larger-scale atmospheric transport model such as WRF. FDS has the potential to evaluate the impact of complex urban topography on near-field dispersion and mixing that cannot be simulated with a mesoscale atmospheric model, and which may be important to determining urban GHG emissions using atmospheric measurements. A methodology has been developed to run FDS as a sub-grid scale model within a WRF simulation. The coupling is based on nudging the FDS flow field towards the one computed by WRF, and is currently limited to one way coupling performed in an off-line mode. Using the coupled WRF / FDS model, NIST will investigate the effects of the urban canopy at horizontal resolutions of 2-10 m. The coupled WRF-FDS simulations will be used to calculate the dispersion of tracer gases in an urban domain and to evaluate the upwind areas that contribute to tower observations, referred to in the inversion community as influence functions. Predicted mixing ratios will be compared with tower measurements and WRF simulations

  12. The regulation of greenhouse gas emissions in the field of transport

    International Nuclear Information System (INIS)

    2009-03-01

    Since 1990, CO 2 emissions in the transport sector have increased by nearly 20%, mainly because of increased car traffic. Reducing them by 20% between now and 2020, in accordance with the draft law tabled by the Grenelle Environment Forum - and by much more between now and 2050 in the context of reducing European emissions by 75% - presupposes recourse to economic instruments such as the climate-energy contribution envisaged by the Forum. However, the methods of evaluation and implementation remain to be defined. The order of magnitude of such instruments could correspond to the value defined for the socio-economic calculations of public projects by a Centre d'Analyse Strategique mission that was set up at the request of the Prime Minister and chaired by Alain Quinet. It will thus be close to 30 euros per CO 2 ton today, rising to 100 euros in 2030 and between 150 and 350 euros in 2050. However, this value cannot be used as such in the economy - and particularly in the form of a tax - without precautions, both for social reasons and reasons of economic competitiveness. The purpose of this Strategic Newswatch is to contribute to the debate by envisaging, within a European framework, the different forms that the regulation of transport greenhouse gas emissions could take. (author)

  13. Achieving deep reductions in US transport greenhouse gas emissions: Scenario analysis and policy implications

    International Nuclear Information System (INIS)

    McCollum, David; Yang, Christopher

    2009-01-01

    This paper investigates the potential for making deep cuts in US transportation greenhouse gas (GHG) emissions in the long-term (50-80% below 1990 levels by 2050). Scenarios are used to envision how such a significant decarbonization might be achieved through the application of advanced vehicle technologies and fuels, and various options for behavioral change. A Kaya framework that decomposes GHG emissions into the product of four major drivers is used to analyze emissions and mitigation options. In contrast to most previous studies, a relatively simple, easily adaptable modeling methodology is used which can incorporate insights from other modeling studies and organize them in a way that is easy for policymakers to understand. Also, a wider range of transportation subsectors is considered here-light- and heavy-duty vehicles, aviation, rail, marine, agriculture, off-road, and construction. This analysis investigates scenarios with multiple options (increased efficiency, lower-carbon fuels, and travel demand management) across the various subsectors and confirms the notion that there are no 'silver bullet' strategies for making deep cuts in transport GHGs. If substantial emission reductions are to be made, considerable action is needed on all fronts, and no subsectors can be ignored. Light-duty vehicles offer the greatest potential for emission reductions; however, while deep reductions in other subsectors are also possible, there are more limitations in the types of fuels and propulsion systems that can be used. In all cases travel demand management strategies are critical; deep emission cuts will not likely be possible without slowing growth in travel demand across all modes. Even though these scenarios represent only a small subset of the potential futures in which deep reductions might be achieved, they provide a sense of the magnitude of changes required in our transportation system and the need for early and aggressive action if long-term targets are to be met.

  14. Which is the preferable transport fuel on a greenhouse gas basis; biomethane or ethanol?

    International Nuclear Information System (INIS)

    Power, Niamh M.; Murphy, Jerry D.

    2009-01-01

    Biomethane and ethanol are both biofuels which are generated from agricultural crops that can be utilised to meet the Biofuels Directive. In Ireland with the demise of the sugar industry 48,000 Ha of land is readily available for biofuel production, without unduly effecting food production. Which biofuel should dominate? This paper investigates biofuel production for three different crop rotations: wheat, barley and sugar beet; wheat, wheat and sugar beet; wheat only. A greenhouse gas balance is performed to determine under what conditions each biofuel is preferable. For both biofuels, the preferred crop on a weight basis is wheat, while on an area basis the preferred crop is sugar beet. Biomethane scenarios produce more gross energy than ethanol scenarios. Under the base assumption (7.41% biogas losses, and biomethane utilised in a converted petrol engine, such as a bi-fuel car, and thus underperforming on a km/MJ basis) ethanol generated more net greenhouse gas savings than biomethane. This was unexpected as biomethane produces twice the net energy per hectare as ethanol. If either biogas losses were reduced or biomethane was utilised in a vehicular engine optimised for biomethane (such as a bus powered solely on gaseous biofuel) then biomethane would generate significantly more net greenhouse gas savings than ethanol. It was found that if biogas losses were eliminated and the biomethane was used in a vehicle optimised for biomethane, then the net greenhouse gas savings are 2.4 times greater than those from ethanol generated from the same feedstock.

  15. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  16. Greenhouse gas emissions from heavy-duty natural gas, hybrid, and conventional diesel on-road trucks during freight transport

    Science.gov (United States)

    Quiros, David C.; Smith, Jeremy; Thiruvengadam, Arvind; Huai, Tao; Hu, Shaohua

    2017-11-01

    Heavy-duty on-road vehicles account for 70% of all freight transport and 20% of transportation-sector greenhouse gas (GHG) emissions in the United States. This study measured three prevalent GHG emissions - carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) - from seven heavy-duty vehicles, fueled by diesel and compressed natural gas (CNG), and compliant to the MY 2007 or 2010 U.S. EPA emission standards, while operated over six routes used for freight movement in California. Total combined (tractor, trailer, and payload) weights were 68,000 ± 1000 lbs. for the seven vehicles. Using the International Panel on Climate Change (IPCC) radiative forcing values for a 100-year time horizon, N2O emissions accounted for 2.6-8.3% of total tailpipe CO2 equivalent emissions (CO2-eq) for diesel vehicles equipped with Diesel Oxidation Catalyst, Diesel Particulate Filter, and Selective Catalytic Reduction system (DOC + DPF + SCR), and CH4 emissions accounted for 1.4-5.9% of CO2-eq emissions from the CNG-powered vehicle with a three-way catalyst (TWC). N2O emissions from diesel vehicles equipped with SCR (0.17-0.30 g/mi) were an order of magnitude higher than diesel vehicles without SCR (0.013-0.023 g/mi) during highway operation. For the vehicles selected in this test program, we measured 11-22% lower CO2-eq emissions from a hybrid compared to conventional diesel vehicles during transport over lower-speed routes of the freight transport system, but 20-27% higher CO2-eq emissions during higher-speed routes. Similarly, a CNG vehicle emitted up to 15% lower CO2-eq compared to conventional diesel vehicles over more neutral-grade highway routes, but emitted up to 12% greater CO2-eq emissions over routes with higher engine loads.

  17. Greenhouse Gas Data Publication Tool

    Data.gov (United States)

    U.S. Environmental Protection Agency — This tool to gives you access to greenhouse gas data reported to EPA by large facilities and suppliers in the United States through EPA's Greenhouse Gas Reporting...

  18. A stochastic optimization approach to reduce greenhouse gas emissions from buildings and transportation

    International Nuclear Information System (INIS)

    Karan, Ebrahim; Asadi, Somayeh; Ntaimo, Lewis

    2016-01-01

    The magnitude of building- and transportation-related GHG (greenhouse gas) emissions makes the adoption of all-EVs (electric vehicles) powered with renewable power as one of the most effective strategies to reduce emission of GHGs. This paper formulates the problem of GHG mitigation strategy under uncertain conditions and optimizes the strategies in which EVs are powered by solar energy. Under a pre-specified budget, the objective is to determine the type of EV and power generation capacity of the solar system in such a way as to maximize GHG emissions reductions. The model supports the three primary solar systems: off-grid, grid-tied, and hybrid. First, a stochastic optimization model using probability distributions of stochastic variables and EV and solar system specifications is developed. The model is then validated by comparing the estimated values of the optimal strategies and actual values. It is found that the mitigation strategies in which EVs are powered by a hybrid solar system lead to the best cost-expected reduction of CO_2 emissions ratio. The results show an accuracy of about 4% for mitigation strategies in which EVs are powered by a grid-tied or hybrid solar system and 11% when applied to estimate the CO_2 emissions reductions of an off-grid system. - Highlights: • The problem of GHG mitigation is formulated as a stochastic optimization problem. • The objective is to maximize CO_2 emissions reductions within a specified budget. • The stochastic model is validated using actual data. • The results show an estimation accuracy of 4–11%.

  19. Greenhouse gas emissions from Spanish motorway transport: Key aspects and mitigation solutions

    International Nuclear Information System (INIS)

    Pérez-López, Paula; Gasol, Carles M.; Oliver-Solà, Jordi; Huelin, Sagrario; Moreira, Ma Teresa; Feijoo, Gumersindo

    2013-01-01

    The current increasing importance of road transport in the overall greenhouse gas (GHG) emissions has led to the adoption of diverse policies for the mitigation of global warming. These policies focus in two directions, depending on whether they involve the reduction of emissions or the mitigation through carbon dioxide (CO 2 ) sequestration. In this paper, the Tier 3 methodology from the European Monitoring and Evaluation Programme and the Environment Agency (EMEP/EEA) was applied to determine the evolution of Spanish motorway GHG emissions in the period 2005–2010. According to the results, though the average daily traffic (ADT) is the major parameter, the average fleet age and vehicle size also affect the level of emissions. Data analysis also revealed a clear connection between the decrease in European trade volume during the financial crisis and the GHG release, despite its temporary character. Among the three improvement scenarios evaluated, reduced speed limit seems the most direct measure while the consequences of afforestation strongly depend on the traffic density of the stretch of the motorway considered. Finally, technological improvement requires a drastic change in the fleet to obtain substantial decrease. The combination of different policies would allow a more robust strategy with lower GHG emissions. - Highlights: • Three model stretches, representative of Spanish motorway conditions, were evaluated. • Three environmental improvement scenarios were proposed. • Speed limit seemed the easiest measure to implement in a near future. • Afforestation showed limited effectiveness per unit of land surface. • A drastic technological improvement is required to obtain significant reductions

  20. Greenhouse gas strategy

    International Nuclear Information System (INIS)

    2001-03-01

    Because the overall effects of climate change will likely be more pronounced in the North than in other parts of the country, the Government of the Northwest Territories considers it imperative to support global and local actions to reduce greenhouse gas emissions. Government support is manifested through a coordinating role played by senior government representatives in the development of the NWT Greenhouse Gas Strategy, and by participation on a multi-party working committee to identify and coordinate northern actions and to contribute a northern perspective to Canada's National Climate Change Implementation Strategy. This document outlines the NWT Government's goals and objectives regarding greenhouse gas emission reduction actions. These will include efforts to enhance awareness and understanding; demonstrate leadership by putting the Government's own house in order; encouraging action across sectors; promote technology development and innovation; invest in knowledge and building the foundation for informed future decisions. The strategy also outlines the challenges peculiar to the NWT, such as the high per person carbon dioxide emissions compared to the national average (30 tonnes per person per year as opposed to the national average of 21 tonnes per person per year) and the increasing economic activity in the Territories, most of which are resource-based and therefore energy-intensive. Appendices which form part of the greenhouse gas strategy document, provide details of the potential climate change impact in the NWT, a detailed explanation of the proposed measures, an emission forecast to 2004 from industrial processes, fuel combustion and incineration, and a statement of the official position of the Government of the NWT on climate change

  1. Effects of seasonality, transport pathway, and spatial structure on greenhouse gas fluxes in a restored wetland.

    Science.gov (United States)

    McNicol, Gavin; Sturtevant, Cove S; Knox, Sara H; Dronova, Iryna; Baldocchi, Dennis D; Silver, Whendee L

    2017-07-01

    Wetlands can influence global climate via greenhouse gas (GHG) exchange of carbon dioxide (CO 2 ), methane (CH 4 ), and nitrous oxide (N 2 O). Few studies have quantified the full GHG budget of wetlands due to the high spatial and temporal variability of fluxes. We report annual open-water diffusion and ebullition fluxes of CO 2 , CH 4 , and N 2 O from a restored emergent marsh ecosystem. We combined these data with concurrent eddy-covariance measurements of whole-ecosystem CO 2 and CH 4 exchange to estimate GHG fluxes and associated radiative forcing effects for the whole wetland, and separately for open-water and vegetated cover types. Annual open-water CO 2 , CH 4 , and N 2 O emissions were 915 ± 95 g C-CO 2  m -2  yr -1 , 2.9 ± 0.5 g C-CH 4  m -2  yr -1 , and 62 ± 17 mg N-N 2 O m -2  yr -1 , respectively. Diffusion dominated open-water GHG transport, accounting for >99% of CO 2 and N 2 O emissions, and ~71% of CH 4 emissions. Seasonality was minor for CO 2 emissions, whereas CH 4 and N 2 O fluxes displayed strong and asynchronous seasonal dynamics. Notably, the overall radiative forcing of open-water fluxes (3.5 ± 0.3 kg CO 2 -eq m -2  yr -1 ) exceeded that of vegetated zones (1.4 ± 0.4 kg CO 2 -eq m -2  yr -1 ) due to high ecosystem respiration. After scaling results to the entire wetland using object-based cover classification of remote sensing imagery, net uptake of CO 2 (-1.4 ± 0.6 kt CO 2 -eq yr -1 ) did not offset CH 4 emission (3.7 ± 0.03 kt CO 2 -eq yr -1 ), producing an overall positive radiative forcing effect of 2.4 ± 0.3 kt CO 2 -eq yr -1 . These results demonstrate clear effects of seasonality, spatial structure, and transport pathway on the magnitude and composition of wetland GHG emissions, and the efficacy of multiscale flux measurement to overcome challenges of wetland heterogeneity. © 2017 John Wiley & Sons Ltd.

  2. Realizing the dream: greenhouse gas free transportation through the application of Canada's fuel cell technology

    International Nuclear Information System (INIS)

    Adams, W.

    2001-01-01

    thermodynamic factors that do not apply to the electric systems. Therefore, electric energy conversion of fuels by batteries, supercapacitors, and fuel cells is cheaper in fuel use and therefore more economical to the vehicle owners and produces less environmental impact. Furthermore, with deregulation of electric utilities in many parts of the world, serious concerns are being raised about the reliability of the electric grid. This paper will explore why there will be increased commercial incentives for joint ventures between the utilities and the automotive industry to develop new generations of electric and hybrid/electric vehicles and the supporting infrastructure. In some cases, the infrastructure will include the concepts of distributed generation. The 'multiple use hybrid electric vehicle' (MUHEV) suggested by ESTCO in 1995 is a concept in which the power plant on the electric vehicle will also be used to feed electric power and heat into the home/electric power grid. The MUHEV concept could offer very significant benefits in flexibility and operational performance and make a significant contribution to reduction in greenhouse gas production in transportation. (author)

  3. The national-economic cost of reduction of greenhouse gases emission. Comparison of investments aimed towards a reduced greenhouse gas emission in power industry, agriculture, transportation sector and other essential greenhouse gas sources

    International Nuclear Information System (INIS)

    1995-01-01

    For a number of years the cost of reducing CO 2 emissions in the energy sector in Denmark has been investigated in detail. The same has not been the case what concerns the cost of reducing other greenhouse gases (CH 4 and N 2 O) and especially not what concerns the possibilities of reducing greenhouse gases in other sectors in the Danish economy, i.e. agriculture, transport, industry, domestic waste and forestry. Thus, the objective of this project was twofold: 1) To calculate the national economic costs related to a number of options for reducing Danish greenhouse gas emissions (CO 2 , CH 4 and N 2 O) by using the same methodology for all important sectors in the economy and 2) To compare the cost efficiency of these options not only wihtin the individual sectors but also across the sectoral boundaries to achieve an overall view of the reduction possibilities in society and the associated costs. (au) 80 refs.; Prepared by Forskningscenter Risoe and Danmarks Miljoeundersoegelser. Afdeling for Systemanalyse

  4. Regression analysis of greenhouse gas emissions from freight transport; Regresjonsanalyse av klimagassutslipp fra godstransport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-03-01

    The following appendix is a presentation of the analytical work carried out by Klif in connection with the report 'Emissions of greenhouse gases in Norway 1990-2010 - trends and driving forces.' The analyzes are carried out with the intention to test and substantiate hypotheses about the various cause and effect relationships for emissions from the transport sector. To document this work Klif has prepared two reports describing the methodology and results of the work. These reports are not peer-reviewed research papers, but a documentation of Klif's internal analysis.(Author)

  5. Trends of greenhouse gas emissions from the road transport sector in India

    International Nuclear Information System (INIS)

    Singh, Anil; Gangopadhyay, S.; Nanda, P.K.; Bhattacharya, S.; Sharma, C.; Bhan, C.

    2008-01-01

    The road transport sector is the largest consumer of commercial fuel energy within the transportation system in India and accounts for nearly 35% of the total liquid commercial fuel consumption by all sectors. Gasoline and diesel consumption for road transportation have quadrupled between 1980 and 2000 due to about nine times increase in the number of vehicles and four-fold increase in freight and passenger travel demands. The paper elaborates the trends of energy consumption and consequent emissions of greenhouse gases such as CO 2 , CH 4 and N 2 O and ozone precursor gases like CO, NO x and NMVOC in the road transport sector in India for the period from 1980 to 2000. For the first time, efforts have been made to apportion the fuels, both diesel and gasoline, across different categories of vehicles operating on the Indian roads. In order to generate more comprehensive and complete emission estimates, additionally, other minor fuel types like light diesel oil and fuel oil along with lubricants have also been taken into account. Emission estimates have revealed that nearly 27 Mt of CO 2 were emitted in 1980, increasing to about 105 Mt in 2000. Similar trends have also been observed for other gases. Further scope for improvements in emission estimation is possible by generating country specific emission factors for different vehicle categories and improvement in documentation of fuel consumption at segregated levels by fuel types and vehicle types

  6. OPIC Greenhouse Gas Emissions Inventory

    Data.gov (United States)

    Overseas Private Investment Corporation — Independent analysis details quantifying the greenhouse gas ("GHG") emissions directly attributable to projects to which the Overseas Private Investment Corporation...

  7. Reduction of CO2 emissions from road transport in cities impact of dynamic route guidance system on greenhouse gas emission

    CERN Document Server

    Markiewicz, Michal

    2017-01-01

    Michal Markiewicz presents the outcomes of his research regarding the influence of dynamic route guidance system on overall emission of carbon dioxide from road transport in rural areas. Sustainable transportation in smart cities is a big challenge of our time, but before electric vehicles replace vehicles that burn fossil fuels we have to think about traffic optimization methods that reduce the amount of greenhouse gas emissions. Contents Comparison of Travel Time Measurements Using Floating Car Data and Intelligent Infrastructure Integration of Cellular Automata Traffic Simulator with CO2 Emission Model Impact of Dynamic Route Guidance System on CO2 Emission Naxos Vehicular Traffic Simulator Target Groups Lecturers and students of computer science, transportation and logistics Traffic engineers The Author Dr. Michal Markiewicz defended his PhD thesis in computer science at the University of Bremen,TZI Technologie-Zentrum Informatik und Informationstechnik, Germany. Currently, he is working on commercializat...

  8. Holistic greenhouse gas management

    Energy Technology Data Exchange (ETDEWEB)

    Read, P. [Dept. of Applied and International Economics, Massey Univ. (New Zealand); Parshotam, A. [Inst. of Fundamental Sciences, Massey Univ. (New Zealand)

    2005-07-01

    A holistic greenhouse gas management strategy is described. The first stage is the growth of a large-scale global bio-energy market with world trade in bio-fuels and with a strategic stock of biomass raw material in new plantation forests. Later stages, more costly - as needs may be in response to possible future precursors of abrupt climate change - would involve linking CO2 capture and sequestration to bio-energy, yielding a negative emissions energy system. Illustrative calculations point to the feasibility of a return to pre-industrial CO{sub 2} levels before mid-century. This result is subject to significant caveats, but, prima facie, the first stage can provide several environmental and socio-economic side-benefits while yielding a positive financial return if oil prices remain above 35$/bbl. The vision is that the polluter pays principle can be turned to a greening of the earth. (orig.)

  9. Greenhouse gas trading

    Energy Technology Data Exchange (ETDEWEB)

    Drazilov, P. [Natsource-Tullett Emissions Brokerage, Toronto, ON (Canada)

    2001-07-01

    Natsource-Tullett Emissions Brokerage is a market leader in natural gas, electricity, coal, and weather, emissions with a total of more than $2 billion by volume in emissions transactions in the United States, Canada, Australia, Japan, and Europe. This power point presentation addressed issues dealing with global warming, the Kyoto Protocol, and explained where we are in terms of reaching commitments for the first compliance period between 2008-2012. The paper focused on international emissions trading (IET), joint implementation (JI) and the clean development mechanism (CDM) and explained how greenhouse gases are traded. Emissions trading refers to the trade of carbon dioxide, methane, nitrous oxides, perfluoro-carbons, hydrofluorocarbons, and sulphur hexafluorides. The motivational drivers for trading were outlined in terms of liability for buyers and assets for sellers. To date, trading activity is nearly 120 transactions with nearly 70 million tons of carbon dioxide equivalent. tabs., figs.

  10. Trading greenhouse gas emission benefits from biofuel use in US transportation: Challenges and opportunities

    International Nuclear Information System (INIS)

    Kumarappan, Subbu; Joshi, Satish

    2011-01-01

    Replacing petroleum fuels with biofuels such as ethanol and biodiesel has been shown to reduce greenhouse gas (GHG) emissions. These GHG benefits can potentially be traded in the fledgling carbon markets, and methodologies for quantifying and trading are still being developed. We review the main challenges in developing such carbon trading frameworks and outline a proposed framework for the US, the main features of which include, lifecycle assessment of GHG benefits, a combination of project-specific and standard performance measures, and assigning GHG property rights to biofuel producers. At carbon prices of 10 $ t −1 , estimated monetary benefits from such trading can be 4.5 M$ hm −3 and 17 M$ hm −3 of corn ethanol and cellulosic ethanol respectively. -- Highlights: ▶ Develops a biofuel GHG trading protocol using life-cycle emissions. ▶ Discusses the differences in feedstock and impacts on GHG trading potential. ▶ Compares the developed protocol for biofuels with other existing protocols. ▶ Estimates the market potential, and challenges associated with trading GHG emissions.

  11. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  12. Greenhouse gas trading starts up

    Science.gov (United States)

    Showstack, Randy

    While nations decide on whether to sign on to the Kyoto Protocol on climate change, some countries and private companies are moving forward with greenhouse gas emissions trading.A 19 March report, "The Emerging International Greenhouse Gas Market," by the Pew Center on Global Climate Change, reports that about 65 greenhouse gas emissions trades for quantities above 1,000 metric tons of carbon dioxideequivalent already have occurred worldwide since 1996. Many of these trades have taken place under a voluntary, ad hoc framework, though the United Kingdom and Denmark have established their own domestic emissions trading programs.

  13. Analysis of policies to reduce oil consumption and greenhouse-gas emissions from the US transportation sector

    International Nuclear Information System (INIS)

    Ross Morrow, W.; Gallagher, Kelly Sims; Collantes, Gustavo; Lee, Henry

    2010-01-01

    Even as the US debates an economy-wide CO 2 cap-and-trade policy the transportation sector remains a significant oil security and climate change concern. Transportation alone consumes the majority of the US's imported oil and produces a third of total US Greenhouse-Gas (GHG) emissions. This study examines different sector-specific policy scenarios for reducing GHG emissions and oil consumption in the US transportation sector under economy-wide CO 2 prices. The 2009 version of the Energy Information Administration's (EIA) National Energy Modeling System (NEMS), a general equilibrium model of US energy markets, enables quantitative estimates of the impact of economy-wide CO 2 prices and various transportation-specific policy options. We analyze fuel taxes, continued increases in fuel economy standards, and purchase tax credits for new vehicle purchases, as well as the impacts of combining these policies. All policy scenarios modeled fail to meet the Obama administration's goal of reducing GHG emissions 14% below 2005 levels by 2020. Purchase tax credits are expensive and ineffective at reducing emissions, while the largest reductions in GHG emissions result from increasing the cost of driving, thereby damping growth in vehicle miles traveled. (author)

  14. Transit Greenhouse Gas Management Compendium

    Science.gov (United States)

    2011-01-12

    This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...

  15. Panorama 2015 - Greenhouse gas emissions in the road transport sector: moving towards inclusion in the European system of CO2 allowances?

    International Nuclear Information System (INIS)

    Coussy, Paula; Portenart, Philomene; Afriat, Marion; Alberola, Emilie

    2014-12-01

    In the year 2000, out of 41.8 Gt of global greenhouse gas (GHG) emissions, almost 10% came from transports sector. In Europe, this share of transports GHG emissions rises to 21% and emissions are forecast to rise. Against this background, should the road transport sector be included in the European Union Emissions Trading Scheme and thereby contribute to national GHG emission reduction targets? (authors)

  16. Lidar Characterization of Boundary Layer Transport and Mixing for Estimating Urban-Scale Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Hardesty R. Michael

    2016-01-01

    Full Text Available A compact commercial Doppler lidar has been deployed in Indianapolis for two years to measure wind profiles and mixing layer properties as part of project to improve greenhouse measurements from large area sources. The lidar uses vertical velocity variance and aerosol structure to measure mixing layer depth. Comparisons with aircraft and the NOAA HRDL lidar generally indicate good performance, although sensitivity might be an issue under low aerosol conditions.

  17. Cost-effectiveness of greenhouse gas mitigation in transport: A review of methodological approaches and their impact

    International Nuclear Information System (INIS)

    Kok, Robert; Annema, Jan Anne; Wee, Bert van

    2011-01-01

    A review is given of methodological practices for ex ante cost-effectiveness analysis (CEA) of transport greenhouse gas (GHG) mitigation measures, e.g. fuel economy and CO 2 standards for road vehicles in the US and EU. Besides the fundamental differences between different types of policies and abatement options which inherently result in different CEA outcomes, differences in methodological choices and assumptions are another important source of variation in CEA outcomes. Fourteen methodological issues clustered into six groups are identified on which thirty-three selected studies are systematically reviewed. The potential variation between lower and upper cost-effectiveness estimates for GHG mitigation measures in transport, resulting from different methodological choices and assumptions, lies in the order of $400 per tonne CO 2 -eq. The practise of using CEA for policy-making could improve considerably by clearly indicating the specific purpose of the CEA and its strengths and limitations for policy decisions. Another improvement is related to the dominant approach in transport GHG mitigation studies: the bottom-up financial technical approach which assesses isolated effects, implying considerable limitations for policy-making. A shift to welfare-economic approaches using a hybrid model has the potential to establish an improved assessment of transport GHG mitigation measures based on realistic market responses and behavioural change. - Highlights: ► We identify fourteen important methodological issues clustered into six groups. ► We systematically review thirty-three selected transport GHG mitigation studies. ► Methodological choices can lead to a difference by up to $400 per tonne CO 2 -eq. ► The dominant bottom-up approach has limitations for policy-making. ► Welfare-economic approaches could improve cost-effectiveness analysis.

  18. Inventory and Policy Reduction Potential of Greenhouse Gas and Pollutant Emissions of Road Transportation Industry in China

    Directory of Open Access Journals (Sweden)

    Ye Li

    2016-11-01

    Full Text Available In recent years, emissions from the road transportation industry in China have been increasing rapidly. To evaluate the reduction potential of greenhouse gas and pollutant emissions of the industry in China, its emission inventory was calculated and scenario analysis was created for the period between 2012 and 2030 in this paper. Based on the Long-range Energy Alternatives Planning System (LEAP model, the development of China’s road transportation industry in two scenarios (the business-as-usual (BAU scenario and the comprehensive-mitigation (CM scenario was simulated. In the Comprehensive Mitigation scenario, there are nine various measures which include Fuel Economy Standards, Auto Emission Standards, Energy-saving Technology, Tax Policy, Eco-driving, Logistics Informatization, Vehicle Liquidation, Electric Vehicles, and Alternative Fuels. The cumulative energy and emission reductions of these specific measures were evaluated. Our results demonstrate that China’s road transportation produced 881 million metric tons of CO2 and emitted 1420 thousand tons of CO, 2150 thousand tons of NOx, 148 thousand tons of PM10, and 745 thousand tons of HC in 2012. The reduction potential is quite large, and road freight transportation is the key mitigation subsector, accounting for 85%–92% of the total emission. For energy conservation and carbon emission mitigation, logistics informatization is the most effective method, potentially reducing 1.80 billion tons of coal equivalent and 3.83 billion tons of CO2 from 2012 to 2030. In terms of air pollutant emission mitigation, the auto emission standards measure performs best with respect to NOx, PM10, and HC emission mitigation, and logistic informatization measure is the best in CO emission reduction. In order to maximize the mitigation potential of China’s road transportation industry, the government needs to implement various measures in a timely and strict fashion.

  19. Reflections on greenhouse gas life cycle assessment

    International Nuclear Information System (INIS)

    Jarrell, J.; Phillips, B.; Pendergast, D.

    1999-01-01

    The amount of carbon dioxide equivalent greenhouse gas emitted per unit of electricity produced is an important consideration in the planning of future greenhouse gas reduced electricity supply systems. Useful estimates of emissions must also take into account the entire cradle to grave life cycle emissions of alternative systems. Thus emissions of greenhouse gases take into account all of the components of building operating, and decommissioning facilities. This requires an accounting of emissions from production of all materials used to build the plants, transportation of materials to the site as well as fuels used for their construction, operation, and decommissioning. The construction of facilities may also have effects which tend to affect greenhouse gas emissions through modification of the local environment. A notable example, often cited, is the evolution of methane from the decay of organic matter submerged by dams built to serve hydro power facilities. In the long term, we anticipate that some kind of cost will be associated with the release of greenhouse gases. In that event it may be argued that the modified economic system established by inclusion of this cost will naturally control the emission of greenhouse gases from competing means of electricity production. Greenhouse gas emissions from all stages involved in the birth and retirement of electricity producing plant could be suitably constrained as the least cost method of production is sought. Such an ideal system is far from in place. At this point in time the results of life cycle accounting of greenhouse gas emissions are a needed means of comparing emissions from alternative sources of electricity. Many life cycle studies have been undertaken in the past. Many of the estimates are based on past practice which does not take into account any possible need to limit the production of greenhouse gas during the design of the plant and operational processes. Sources of energy used to produce materials

  20. The impact of center city economic and cultural vibrancy on greenhouse gas emissions from transportation.

    Science.gov (United States)

    2012-03-01

    Urban planners and scholars have focused a great deal of attention on understanding the relationship between the built environment and transportation behavior. However, other aspects of the urban environment--including the vibrancy and quality of lif...

  1. Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions

    International Nuclear Information System (INIS)

    Leighty, Wayne; Ogden, Joan M.; Yang, Christopher

    2012-01-01

    California’s target for reducing economy-wide greenhouse gas (GHG) emissions is 80% below 1990 levels by 2050. We develop transition scenarios for meeting this goal in California’s transportation sector, with focus on light-duty vehicles (LDVs). We explore four questions: (1) what options are available to reduce transportation sector GHG emissions 80% below 1990 levels by 2050; (2) how rapidly would transitions in LDV markets, fuels, and travel behaviors need to occur over the next 40 years; (3) how do intermediate policy goals relate to different transition pathways; (4) how would rates of technological change and market adoption between 2010 and 2050 impact cumulative GHG emissions? We develop four LDV transition scenarios to meet the 80in50 target through a combination of travel demand reduction, fuel economy improvements, and low-carbon fuel supply, subject to restrictions on trajectories of technological change, potential market adoption of new vehicles and fuels, and resource availability. These scenarios exhibit several common themes: electrification of LDVs, rapid improvements in vehicle efficiency, and future fuels with less than half the carbon intensity of current gasoline and diesel. Availability of low-carbon biofuels and the level of travel demand reduction are “swing factors” that influence the degree of LDV electrification required. - Highlights: ► We model change in California LDVs for deep reduction in transportation GHG emissions. ► Reduced travel demand, improved fuel economy, and low-carbon fuels are all needed. ► Transitions must begin soon and occur quickly in order to achieve the 80in50 goal. ► Low-C biofuel supply and travel demand influence the need for rapid LDV electrification. ► Cumulative GHG emissions from LDVs can differ between strategies by up to 40%.

  2. Study on Greenhouse Gas Reduction Potential in Residential, Commercial and Transportation Sectors of Korea

    International Nuclear Information System (INIS)

    Kim, H. G.; Jeong, Y. J.

    2011-11-01

    The establishment of the sectoral model was made. The sectors cover residential, commercial and transportation sectors. The establishment of the model includes designing Reference Energy System, Development of the reference scenario, setting up various scenarios in which GHG reductions were taken into account by evaluating the reduction potential in the cost effective way

  3. Public Policy Issues in Transport. Taxes and standards for energy security and greenhouse gas objectives

    Energy Technology Data Exchange (ETDEWEB)

    Eskeland, Gunnar (Cicero, Oslo (Norway))

    2008-07-01

    The direct case for fuel economy standards on a stand alone basis dies in the textbook on the basis of first principles: the fuel tax is a better targeted instrument. In practice, the fuel economy standard, is killed by the 'rebound effect'. Vehicle users will, once they have more fuel efficient vehicles, respond to lower marginal costs by increased vehicle use. If an important part of negative externalities from transport are associated with vehicle kilometres (accidents, congestion, road wear) rather than fuel consumption, the rebound effect increases negative externalities from transport. The more direct way of addressing negative externalities from transport is to increase fuel taxes, and depending on their prior level, this is our first recommendation. But higher fuel taxes often raise political resistance. The fuel efficiency of existing cars is an important way by which people have adapted to present fuel taxes, determining their resistance to increases. A higher fuel efficiency standard is an instrument that faces little political resistance and which - over time - reduces the political resistance to increased fuel taxes. In efforts to reduce the fuel intensity of an economy, this interplay between an activity's fuel intensity, like gallons per vehicle mile, and the activity level, vehicle miles travelled or transported, nicely illustrates some important empirical questions and public policy issues: i) the first best policy proposition to reduce fuel related externalities is fuel taxes. Indeed, at the right level of fuel taxes, the externalities are zero: they are internalized. ii) the part of an economy's ability to shed fuel consumption lies in increased fuel efficiency in the individual activities, and this part can be stimulated with fuel efficiency standards. The other part, the activity level, should then be addressed with fuel tax increases. iv) We speculate that it may be difficult credibly to raise expected fuel taxes more than

  4. Life cycle greenhouse gas emission assessment of major petroleum oil products for transport and household sectors in India

    International Nuclear Information System (INIS)

    Garg, Amit; Vishwanathan, Saritha; Avashia, Vidhee

    2013-01-01

    Energy security concerns due to high oil import dependence and climate change concerns due to related greenhouse gas emissions are important policy discussions in India. Could life cycle assessment (LCA) of petroleum oil products provide inputs to crude oil sourcing and domestic oil pricing policies to address the two concerns? This paper presents a baseline study on LCA of petroleum products in India from Well to Storage depending on the oil source, type of refinery, product and the selected destinations. The LCA based GHG emissions are found to be higher by 4–12 per cent than GHG emissions from direct fuel consumption alone for LPG, 7–10 per cent for Gasoline, 3–9 per cent for Diesel and 4–10 per cent for Kerosene based on various supply chain routes supplying oil to six largest cities in India. Overall the energy used in oil exploration, refinery and transportation in the LCA have a share of 72–77 per cent, 11–15 per cent and 6–8 per cent, respectively. The paper proposes imposing a relative carbon cess for various oil products in different Indian cities. States could accommodate this additional carbon cess by reducing their respective state taxes without increasing the final delivery price to the consumers. - Highlights: ► LCA emissions are found to be higher by 4–12 per cent than direct fuel consumption emissions. ► Energy used in oil exploration, refinery and transportation in the LCA have a share of 72–77 per cent, 11–15 per cent and 6–8 per cent, respectively. ► Corresponding GHG emission shares are 60–66 per cent, 23–27 per cent and 5–8 per cent, respectively. ► The source of crude oil matters. E and P energy consumption is found highest for African countries. ► Differential carbon cess could be imposed without changing final delivery price to consumers

  5. Accounting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  6. Greenhouse gas emissions increase global warming

    OpenAIRE

    Mohajan, Haradhan

    2011-01-01

    This paper discusses the greenhouse gas emissions which cause the global warming in the atmosphere. In the 20th century global climate change becomes more sever which is due to greenhouse gas emissions. According to International Energy Agency data, the USA and China are approximately tied and leading global emitters of greenhouse gas emissions. Together they emit approximately 40% of global CO2 emissions, and about 35% of total greenhouse gases. The developed and developing industrialized co...

  7. Potential Greenhouse Gas Emissions Reductions from Optimizing Urban Transit Networks

    Science.gov (United States)

    2016-05-01

    Public transit systems with efficient designs and operating plans can reduce greenhouse gas (GHG) emissions relative to low-occupancy transportation modes, but many current transit systems have not been designed to reduce environmental impacts. This ...

  8. Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  9. Transportation Energy Futures Series. Effects of Travel Reduction and Efficient Driving on Transportation. Energy Use and Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Porter, C. D. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); Brown, A. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); DeFlorio, J. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); McKenzie, E. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); Tao, W. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States); Vimmerstedt, L. [National Renewable Energy Lab. (NREL) and Cambridge Systematics, Golden, CO (United States)

    2013-03-01

    Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.

  10. The greenhouse advantage of natural gas appliances

    International Nuclear Information System (INIS)

    Coombe, N.

    2000-01-01

    The life cycle report prepared recently by Energetics for the AGA, Assessment of Greenhouse Gas Emissions from Natural Gas, demonstrates clearly the greenhouse advantage natural gas has over coal in generating electricity. This study also goes one step further in applying this life cycle approach to the use of space and water heating within the home. The study shows the significant green-house advantage that natural gas appliances have over electric appliances. Findings from other studies also support this claim. The natural gas suppliers are encouraged to take advantage of the marketing opportunity that these studies provide, offering the householders the fuel that will significantly reduce their contribution to greenhouse emission

  11. A Comparative Assessment of Life-Cycle Greenhouse Gas Emissions from Hypothetical Electric Airport Transportation Services in Thailand

    Science.gov (United States)

    Koiwanit, J.

    2018-05-01

    Global warming is an increase of average temperature in the atmosphere, which causes adverse effects on the environment. Carbon dioxide (CO2) from transportation sector is one of the main contributors of the overall greenhouse gases (GHG). To cope with this issue, electric car services are increasingly seen as popular alternative modes of green transportation especially for urban cities as it is more flexible, more environmentally-friendly, and less expensive than the use of conventional vehicles. The study analyses and compare the hypothetical electric car systems from airport transportation services. Center of Environmental Science of Leiden University (CML) 2001, the Life Cycle Impact Assessment (LCIA) method, is applied to convert life cycle inventory data into environmental impacts. The observed results showed that the electric shuttle bus had the highest impact in global warming potential (GWP) compared to other transportation types. Alternatively, this Life Cycle Assessment (LCA) study that evaluated different transportations provided important information for decision makers on quantifying the differences between each scenario.

  12. OPIC Greenhouse Gas Emissions Analysis Details

    Data.gov (United States)

    Overseas Private Investment Corporation — Summary project inventory with independent analysis to quantify the greenhouse gas ("GHG") emissions directly attributable to projects to which the Overseas Private...

  13. Wellbeing impacts of city policies for reducing greenhouse gas emissions

    DEFF Research Database (Denmark)

    Hiscock, Rosemary; Mudu, Pierpaolo; Braubach, Matthias

    2014-01-01

    To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing...... and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported...

  14. Evaluation of uncertainty in the well-to-tank and combustion greenhouse gas emissions of various transportation fuels

    International Nuclear Information System (INIS)

    Di Lullo, Giovanni; Zhang, Hao; Kumar, Amit

    2016-01-01

    Highlights: • A Monte Carlo simulation is used to quantify uncertainty in the WTT + C emissions. • Gasoline WTT + C emissions ranged from 95.3 to 138.5 gCO_2 eq/MJ. • Saudi Arabia crude had the lowest emissions at 95.3–99.9 gCO_2 eq/MJ. • Venezuela crude had the highest emissions at 113.6–138.5 gCO_2 eq/MJ. • The largest source of uncertainty is the venting, fugitive, and flaring gas volumes. - Abstract: Growing concern over climate change has created pressure on the oil and gas industry to reduce their greenhouse gas emissions (GHG). There have been multiple well-to-tank + combustion (WTT + C) studies that have examined various crude oils in an attempt to determine their GHG emission intensities. The majority of these studies published deterministic point estimates with a limited sensitivity analysis. Due to the variation in results between studies and the lack of uncertainty analysis the usefulness of these studies to policy makers and industry representatives is limited. The goal of this study is to expand on the previous literature by identifying a range of WTT + C emissions for crude oils from Saudi Arabia, Venezuela, and Iran. First, the previously published FUNdamental ENgineering PrinciplEs-based ModeL for Estimation of GreenHouse Gases in Conventional Crude Oils (FUNNEL-GHG-CCO) was used to perform a WTT + C analysis of the crudes GHG emissions. Then a Monte Carlo simulation was carried out using existing literature to define input distributions for the key inputs. The resulting gasoline WTT + C GHG emission ranges are 113.6–138.5 (Venezuela High Steam), 101.6–109.9 (Venezuela Low Steam), 101.1–109.2 (Sirri, Iran), and 95.3–99.9 gCO_2eq/MJ (Saudi Arabia). This result indicates that even when uncertainty is taken into account the Venezuelan high steam crude clearly has higher emissions than the Saudi Arabia crude. The results of this study will give policy makers and industry representatives a better understanding of how the WTT + C

  15. Cost effectiveness comparison of certain transportation measures to mitigate greenhouse gas emissions in San Diego County, California

    International Nuclear Information System (INIS)

    Silva-Send, Nilmini; Anders, Scott; Narwold, Andrew

    2013-01-01

    California's overarching mandate to achieve 1990 levels of greenhouse gases (GHGs) in 2020 (AB 32, 2005), and the ensuing recent regulations (SB 375, CEQA updates) require local and regional governments to assess GHG mitigation policies, including on-road transportation. The regulations do not make cost-effectiveness a primary criteria for choosing measures but cost remains important to a variety of stakeholders. This communication summarizes results from GHG and cost analysis for seven actual San Diego County road transportation policies: telecommute, vanpools, a bicycle strategy, an increase in mass transit use, parking policies (parking pricing, preferred parking for electric vehicles), an increased local fuel tax and speed harmonization (signal re-timing, roundabouts). Net costs are calculated as the sum of direct costs and benefits to the administering agency, the employer and the individual. Net costs per metric ton GHG abated vary greatly across measures, from negative to high positive (more than US $1000). We find that local GHG cost cannot be sensibly compared to other carbon or GHG policy costs outside the local context for a variety of reasons, but especially because measures have not been adopted primarily for carbon or GHG abatement potential or on the basis of cost effectiveness

  16. Well-to-tank energy use and greenhouse gas emissions of transportation fuels vol. 1, 2, 3.; TOPICAL

    International Nuclear Information System (INIS)

    NONE

    2001-01-01

    There are differing yet strongly held views among the various ''stakeholders'' in the advanced fuel/propulsion system debate. In order for the introduction of advanced technology vehicles and their associated fuels to be successful, it seems clear that four important stakeholders must view their introduction as a ''win'': (1) Society, (2) Automobile manufacturers and their key suppliers, (3) Fuel providers and their key suppliers, and (4)Auto and energy company customers. If all four of these stakeholders, from their own perspectives, are not positive regarding the need for and value of these advanced fuels/vehicles, the vehicle introductions will fail. This study was conducted to help inform public and private decision makers regarding the impact of the introduction of such advanced fuel/propulsion system pathways from a societal point of view. The study estimates two key performance criteria of advanced fuel/propulsion systems on a total system basis, that is, ''well'' (production source of energy) to ''wheel'' (vehicle). These criteria are energy use and greenhouse gas emissions per unit of distance traveled. The study focuses on the U.S. light-duty vehicle market in 2005 and beyond, when it is expected that advanced fuels and propulsion systems could begin to be incorporated in a significant percentage of new vehicles. Given the current consumer demand for light trucks, the benchmark vehicle considered in this study is the Chevrolet Silverado full-size pickup

  17. Transportation fuel production from gasified biomass integrated with a pulp and paper mill - Part B: Analysis of economic performance and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Isaksson, Johan; Jansson, Mikael; Åsblad, Anders; Berntsson, Thore

    2016-01-01

    This paper presents a comparison between four gasification-based biorefineries integrated with a pulp and paper mill. It is a continuation of 'Transportation fuel production from gasified biomass integrated with a pulp and paper mill - Part A: Heat integration and system performance'. Synthesis into methanol, Fischer-Tropsch crude or synthetic natural gas, or electricity generation in a gas turbine combined cycle, were evaluated. The concepts were assessed in terms of GHG (greenhouse gas) emissions and economic performance. Net annual profits were positive for all biofuel cases for an annuity factor of 0.1 in the year 2030; however, the results are sensitive to biofuel selling prices and CO_2_,_e_q charge. Additionally, GHG emissions from grid electricity are highly influential on the results since all biofuel processes require external power. Credits for stored CO_2 might be necessary for processes to be competitive, i.e. storage of separated CO_2 from the syngas conditioning has an important role to play. Without CO_2 storage, the gas turbine case is better than, or equal to, biofuels regarding GHG emissions. Efficiency measures at the host mill prior to heat integration of a gasification process are beneficial from the perspective of GHG emissions, while having a negative impact on the economy. - Highlights: • Biomass gasification integrated with a pulp and paper mill was evaluated. • Greenhouse gas emission consequences and economic performance were assessed. • CCS has an important role to play, both in terms of emissions and economy. • Green electricity production is competitive compared to biofuel production in terms of GHG. • All biofuel cases are profitable in 2030 with assumed level of future policy instruments.

  18. Advancing agricultural greenhouse gas quantification*

    Science.gov (United States)

    Olander, Lydia; Wollenberg, Eva; Tubiello, Francesco; Herold, Martin

    2013-03-01

    1. Introduction Better information on greenhouse gas (GHG) emissions and mitigation potential in the agricultural sector is necessary to manage these emissions and identify responses that are consistent with the food security and economic development priorities of countries. Critical activity data (what crops or livestock are managed in what way) are poor or lacking for many agricultural systems, especially in developing countries. In addition, the currently available methods for quantifying emissions and mitigation are often too expensive or complex or not sufficiently user friendly for widespread use. The purpose of this focus issue is to capture the state of the art in quantifying greenhouse gases from agricultural systems, with the goal of better understanding our current capabilities and near-term potential for improvement, with particular attention to quantification issues relevant to smallholders in developing countries. This work is timely in light of international discussions and negotiations around how agriculture should be included in efforts to reduce and adapt to climate change impacts, and considering that significant climate financing to developing countries in post-2012 agreements may be linked to their increased ability to identify and report GHG emissions (Murphy et al 2010, CCAFS 2011, FAO 2011). 2. Agriculture and climate change mitigation The main agricultural GHGs—methane and nitrous oxide—account for 10%-12% of anthropogenic emissions globally (Smith et al 2008), or around 50% and 60% of total anthropogenic methane and nitrous oxide emissions, respectively, in 2005. Net carbon dioxide fluxes between agricultural land and the atmosphere linked to food production are relatively small, although significant carbon emissions are associated with degradation of organic soils for plantations in tropical regions (Smith et al 2007, FAO 2012). Population growth and shifts in dietary patterns toward more meat and dairy consumption will lead to

  19. Greenhouse gas mitigation options for Washington State

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, N.

    1996-04-01

    President Clinton, in 1993, established a goal for the United States to return emissions of greenhouse gases to 1990 levels by the year 2000. One effort established to help meet this goal was a three part Environmental Protection Agency state grant program. Washington State completed part one of this program with the release of the 1990 greenhouse gas emissions inventory and 2010 projected inventory. This document completes part two by detailing alternative greenhouse gas mitigation options. In part three of the program EPA, working in partnership with the States, may help fund innovative greenhouse gas reduction strategies. The greenhouse gas control options analyzed in this report have a wide range of greenhouse gas reductions, costs, and implementation requirements. In order to select and implement a prudent mix of control strategies, policy makers need to have some notion of the potential change in climate, the consequences of that change and the uncertainties contained therein. By understanding the risks of climate change, policy makers can better balance the use of scarce public resources for concerns that are immediate and present against those that affect future generations. Therefore, prior to analyzing alternative greenhouse gas control measures, this report briefly describes the phenomenon and uncertainties of global climate change, and then projects the likely consequences for Washington state.

  20. Economic growth and greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ansuategi, Alberto [Environment Department, University of York, York (United Kingdom); Escapa, Marta [Foundations of Economic Analysis Department, University of the Basque Country, Bilbao (Spain)

    2002-01-01

    Recent empirical research has examined the relationship between certain indicators of environmental degradation and income, concluding that in some cases an inverted U-shaped relationship, which has been called an environmental Kuznets curve (EKC), exists between these variables. Unfortunately, this inverted U-shaped relationship does not hold for greenhouse gas emissions. One explanation of the absence of EKC-like behavior in greenhouse gas emissions is that greenhouse gases are special pollutants that create global, not local, disutility. But the international nature of global warming is not the only reason that prevents de-linking greenhouse gas emissions from economic growth. The intergenerational nature of the negative impact of greenhouse gas emissions may have also been an important factor preventing the implementation of greenhouse gas abatement measures in the past. In this paper we explore the effect that the presence of intergenerational spillovers has on the emissions-income relationship. We use a numerically calibrated overlapping generations model of climate-economy interactions. We conclude that: (1) the intertemporal responsibility of the regulatory agency, (2) the institutional capacity to make intergenerational transfers and (3) the presence of intergenerationally lagged impact of emissions constitute important determinants of the relationship between economic growth and greenhouse gas emissions.

  1. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  2. Reservoir Greenhouse Gas Emissions at Russian HPP

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V. [St. Petersburg State Polytechnic University (Russian Federation); Savvichev, A. S. [Russian Academy of Sciences, S. N. Vinogradskii Institute of Microbiology (Russian Federation); Zinchenko, A. V. [A. I. Voeikov Main Geophysical Observatory (Russian Federation)

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  3. Greenhouse gas emissions from the energy sector

    International Nuclear Information System (INIS)

    Mbuthi, P.N.

    1998-01-01

    This study quantifies greenhouse gas emissions from Kenya's energy activities. It is organised in four major sections, namely, an overview of the energy sector; data sources and methodology of analysis; results and recommendations for future climate change mitigation

  4. Multiagency Initiative to Provide Greenhouse Gas Information

    Science.gov (United States)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  5. Sustainable passenger road transport scenarios to reduce fuel consumption, air pollutants and GHG (greenhouse gas) emissions in the Mexico City Metropolitan Area

    International Nuclear Information System (INIS)

    Chavez-Baeza, Carlos; Sheinbaum-Pardo, Claudia

    2014-01-01

    This paper presents passenger road transport scenarios that may assist the MCMA (Mexico City Metropolitan Area) in achieving lower emissions in both criteria air pollutants (CO, NO x , NMVOC (non-methane volatile organic compounds), and PM 10 ) and GHG (greenhouse gas) (CH 4 , N 2 O and CO 2 ), while also promoting better mobility and quality of life in this region. We developed a bottom-up model to estimate the historical trends of energy demand, criteria air pollutants and GHG emissions caused by passenger vehicles circulating in the Mexico City Metropolitan Area (MCMA) in order to construct a baseline scenario and two mitigation scenarios that project their impact to 2028. Mitigation scenario “eff” considers increasing fuel efficiencies and introducing new technologies for vehicle emission controls. Mitigation scenario “BRT” considers a modal shift from private car trips to a Bus Rapid Transport system. Our results show significant reductions in air pollutants and GHG emissions. Incentives and environmental regulations are needed to enable these scenarios. - Highlights: • More than 4.2 million passenger vehicles in the MCMA (Mexico City Metropolitan Area) that represent 61% of criteria pollutants and 44% of GHG (greenhouse gas) emissions. • Emissions of CO, NO x and NMVOC (non-methane volatile organic compounds) in baseline scenario decrease with respect to its 2008 value because emission standards. • Emissions of PM 10 and GHG increase in baseline scenario. • Emissions of PM 10 and GHG decrease in eff + BRT scenario from year 2020. • Additional reductions are possible with better standards for diesel vehicles and other technologies

  6. Bibliography of greenhouse-gas reduction strategies

    Energy Technology Data Exchange (ETDEWEB)

    Tompkins, M.M.; Mintz, M.M.

    1995-03-01

    A bibliography of greenhouse-gas reduction strategies has been compiled to assist the Climate change Action Plan Task Force in their consideration of strategies to reduce greenhouse-gas emissions from personal motor vehicles. The document contains a summary of the literature, including it major directions and implications; and annotated listing of 32 recent pertinent documents; and a listing of a larger group of related reports.

  7. Reducing the greenhouse gas footprint of shale gas

    International Nuclear Information System (INIS)

    Wang Jinsheng; Ryan, David; Anthony, Edward J.

    2011-01-01

    Shale gas is viewed by many as a global energy game-changer. However, serious concerns exist that shale gas generates more greenhouse gas emissions than does coal. In this work the related published data are reviewed and a reassessment is made. It is shown that the greenhouse gas effect of shale gas is less than that of coal over long term if the higher power generation efficiency of shale gas is taken into account. In short term, the greenhouse gas effect of shale gas can be lowered to the level of that of coal if methane emissions are kept low using existing technologies. Further reducing the greenhouse gas effect of shale gas by storing CO 2 in depleted shale gas reservoirs is also discussed, with the conclusion that more CO 2 than the equivalent CO 2 emitted by the extracted shale gas could be stored in the reservoirs at significantly reduced cost. - Highlights: ► The long-term greenhouse gas footprint of shale gas is smaller than that of coal. ► Carbon capture and storage should be considered for fossil fuels including shale gas. ► Depleted shale gas fields could store more CO 2 than the equivalent emissions. ► Linking shale gas development with CO 2 storage could largely reduce the total cost.

  8. Comparison of energy and greenhouse gas balances of biogas with other transport biofuel options based on domestic agricultural biomass in Finland

    Directory of Open Access Journals (Sweden)

    H. L. TUOMISTO

    2008-12-01

    Full Text Available Biofuels have been promoted as a way to reduce greenhouse gas (GHG emissions, but it is questionable whether they indeed do so. The study compared energy and GHG balances of transport biofuels produced in Finnish conditions. Energy and GHG balances were calculated from a life cycle perspective for biogas when timothy-clover and reed canary grass silages and green manure of an organic farm were used as a raw material. The results were compared with published data on barley-based ethanol, rape methyl ester (biodiesel and biowaste-based biogas. The energy input for biogas was 22–37% of the output depending on the raw material. The GHG emissions from field-based biogas were 21–36% of emissions from fossil-based fuels. The largest energy input was used in the processing of the biofuels while most of the greenhouse gases were emitted during farming. The GHG emissions of the field-based biogas were emitted mainly from fuels of farming machinery, nitrous oxide (N2O emissions of the soil and the production of ensiling additives. The energy efficiency was most sensitive to the methane yield, and GHG emissions to the N2O emissions. Biogas had clearly lower energy input and GHG emissions per unit energy output than domestic barley-based ethanol and biodiesel.;

  9. The role of transport sector within the German energy system under greenhouse gas reduction constraints and effects on other exhaust gases

    Energy Technology Data Exchange (ETDEWEB)

    Walbeck, M; Martinsen, D [Research Center Juelich (Germany)

    1996-12-01

    The German Federal Government pledged itself to make a 25% reduction in national CO{sub 2} emissions by 2005 on the basis of 1990 CO{sub 2} emissions. This reduction target is valid for the entire Federal Republic. Within that context the Federal Ministry of Education, Science, Research and Technology initiated the IKARUS project (Instruments for Greenhouse Gas Reduction Strategies) in 1990. The aim of the project is to provide tools for developing strategies to reduce energy-related emissions of greenhouse gases in Germany. A range of instruments has been developed consisting of models, a data base and various tools with the aid of which different action sequences can be simulated and evaluated until the year 2020. By using the database and mainly one of the models of the project a scenario in terms of energy and carbon dioxide emissions will be sown as it could be expected for the year 2005. For this scenario as base two different strategies that hit the 25% reduction target will be discussed. Special attention is given to the transport sector. (au)

  10. Greenhouse gas emissions from hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.

    1994-01-01

    In a recent paper, Rudd et al. have suggested that, per unit of electrical energy produced, greenhouse-gas emissions from some hydroelectric reservoirs in northern Canada may be comparable to emissions from fossil-fuelled power plants. The purpose of this comment is to elaborate these issues further so as to understand the potential contribution of hydroelectric reservoirs to the greenhouse effect. More than focusing on the total budget of carbon emissions (be they in the form of CH 4 or be they in the form of CO 2 ), this requires an evaluation of the accumulated greenhouse effect of gas emissions from hydroelectric reservoirs and fossil-fuelled power plants. Two issues will be considered: (a) global warming potential (GWP) for CH 4 ; and (b) how greenhouse-gas emissions from hydroelectric power plants stand against emissions from fossil-fuelled power plants with respect to global warming

  11. Greenhouse gas implications of using coal for transportation: Life cycle assessment of coal-to-liquids, plug-in hybrids, and hydrogen pathways

    International Nuclear Information System (INIS)

    Jaramillo, Paulina; Samaras, Constantine; Wakeley, Heather; Meisterling, Kyle

    2009-01-01

    Using coal to produce transportation fuels could improve the energy security of the United States by replacing some of the demand for imported petroleum. Because of concerns regarding climate change and the high greenhouse gas (GHG) emissions associated with conventional coal use, policies to encourage pathways that utilize coal for transportation should seek to reduce GHGs compared to petroleum fuels. This paper compares the GHG emissions of coal-to-liquid (CTL) fuels to the emissions of plug-in hybrid electric vehicles (PHEV) powered with coal-based electricity, and to the emissions of a fuel cell vehicle (FCV) that uses coal-based hydrogen. A life cycle approach is used to account for fuel cycle and use-phase emissions, as well as vehicle cycle and battery manufacturing emissions. This analysis allows policymakers to better identify benefits or disadvantages of an energy future that includes coal as a transportation fuel. We find that PHEVs could reduce vehicle life cycle GHG emissions by up to about one-half when coal with carbon capture and sequestration is used to generate the electricity used by the vehicles. On the other hand, CTL fuels and coal-based hydrogen would likely lead to significantly increased emissions compared to PHEVs and conventional vehicles using petroleum-based fuels.

  12. Greenhouse gas benefits of fighting obesity

    International Nuclear Information System (INIS)

    Michaelowa, Axel; Dransfeld, Bjoern

    2008-01-01

    Obesity has become a serious public health problem in both industrialized and rapidly industrializing countries. It increases greenhouse gas emissions through higher fuel needs for transportation of heavier people, lifecycle emissions from additional food production and methane emissions from higher amounts of organic waste. A reduction of average weight by 5 kg could reduce OECD transport CO 2 emissions by more than 10 million t. While the shift from beef to other forms of meat in industrialized and countries in transition has lead to lifecycle emissions savings of 20 million t CO 2 equivalent between 1990 and 2005, emissions due to obesity-promoting foodstuffs have increased by more than 400 million t in advanced developing countries. Emissions in OECD countries could be reduced by more than 4 million t through reduction of associated food waste. Due to the intimate behavioural nature of the obesity problem, policies to reduce obesity such as food taxation, subsidization of human-powered transport, incentives to reduce sedentary leisure and regulation of fat in foodstuffs have not yet been implemented to any extent. The emissions benefits of fiscal and regulatory measures to reduce obesity could accelerate the tipping point where a majority of voters feels that the problem warrants policy action. (author)

  13. Greenhouse gas benefits of fighting obesity

    Energy Technology Data Exchange (ETDEWEB)

    Michaelowa, Axel [University of Zuerich, Muehlegasse 21, 8001 Zuerich (Switzerland); Dransfeld, Bjoern [Perspectives GmbH, Sonnenredder 55, 22045 Hamburg (Germany)

    2008-06-15

    Obesity has become a serious public health problem in both industrialized and rapidly industrializing countries. It increases greenhouse gas emissions through higher fuel needs for transportation of heavier people, lifecycle emissions from additional food production and methane emissions from higher amounts of organic waste. A reduction of average weight by 5 kg could reduce OECD transport CO{sub 2} emissions by more than 10 million t. While the shift from beef to other forms of meat in industrialized and countries in transition has lead to lifecycle emissions savings of 20 million t CO{sub 2} equivalent between 1990 and 2005, emissions due to obesity-promoting foodstuffs have increased by more than 400 million t in advanced developing countries. Emissions in OECD countries could be reduced by more than 4 million t through reduction of associated food waste. Due to the intimate behavioural nature of the obesity problem, policies to reduce obesity such as food taxation, subsidization of human-powered transport, incentives to reduce sedentary leisure and regulation of fat in foodstuffs have not yet been implemented to any extent. The emissions benefits of fiscal and regulatory measures to reduce obesity could accelerate the tipping point where a majority of voters feels that the problem warrants policy action. (author)

  14. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Morthorst, P.E.; Grohnheit, P.E.

    1992-04-01

    The project initiated by the United Nations Environment Programme aims to clarify some economic issues involved in greenhouse gas limitation by carrying out comparative studies of various nations. The programme should contribute to the establishment of a consistent methodological framework for making cost assessments of greenhouse gas abatement and help to support countries in the process of establishing national and international agreements on actions to combat climate change. The publication gives a survey of Danish energy demand and supply, emissions and current energy policy issues and reviews existing studies of carbon dioxide reductions. This includes the overall national environmental policy and the plan of action for the transport sector. Conclusions are that there seems to be a long-term potential for significant reduction of CO 2 emission by 10-15% by 2010 with no additional costs, a 50% reduction will cost DKK 25-50 per kg reduced CO 2 . The most promising options include increased use of cogeneration of heat and electricity, and electricity conservation in households, services and in industry. Economic growth is forecast as ca. 2.7% and energy prices for oil products should increase by ca. 4.8%. A 40% reduction of CO 2 emission in the year 2005 would increase costs by 1-2%, and a reduction of two thirds of present emission should be possible at no additional cost compared to the reference cases. There is general agreement that a reduction of carbon dioxide emission of 15-30% by 2005-10 should involve no additional costs to society. (AB) (11 refs.)

  15. Wellbeing Impacts of City Policies for Reducing Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Rosemary Hiscock

    2014-11-01

    Full Text Available To mitigate climate change, city authorities are developing policies in areas such as transportation, housing and energy use, to reduce greenhouse gas emissions. In addition to their effects on greenhouse gas emissions, these policies are likely to have consequences for the wellbeing of their populations for example through changes in opportunities to take physical exercise. In order to explore the potential consequences for wellbeing, we first explore what ‘wellbeing’ is and how it can be operationalised for urban planners. In this paper, we illustrate how wellbeing can be divided into objective and subjective aspects which can be measured quantitatively; our review of measures informs the development of a theoretical model linking wellbeing to policies which cities use to reduce greenhouse gas emissions. Finally, we discuss the extent to which the links proposed in the conceptual model are supported by the literature and how cities can assess wellbeing implications of policies.

  16. State and Territory Greenhouse Gas Emissions 2004

    International Nuclear Information System (INIS)

    2006-06-01

    This document provides an overview of the latest available estimates of greenhouse gas emissions for Australia's States and Territories. Australia's total greenhouse gas emissions in 2004 amounted to 564.7 million tonnes. The State and Territory breakdown was: New South Wales: 158.7 million tonnes (Mt); Queensland: 158.5 Mt; Victoria: 123.0 Mt; Western Australia: 68.5 Mt; South Australia: 27.6 Mt; Northern Territory: 15.6 Mt; Tasmania: 10.7 Mt; ACT: 1.2 Mt. The summary of State and Territory inventories presented in this document reports estimates of greenhouse gas emissions for each State and Territory for the period 1990 to 2004. It is the first time that a complete annual time-series has been reported

  17. Long-term optimization of the transport sector to address greenhouse gas reduction targets under rapid growth. Application of an energy system model for Gauteng province, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschek, Jan

    2013-12-11

    The transport sector is seen as one of the key factors for driving future energy consumption and greenhouse gas (GHG) emissions. Especially in developing countries, significant growth in transport demand is expected. Gauteng province, as the economic centre of South Africa and transport hub for the whole of southern Africa, is one emerging urban region that faces rapid growth. However, the province is on its way to playing a leading role for supporting ways to adapt to climate change and mitigate GHG emissions. Conversely, there is a lack of scientific research on the promising measures for GHG mitigation in the transport sector. For the rapidly growing transport sector of the province in particular, research is focused primarily on extending and structuring the road infrastructure. Moreover, it is important that the transport sector is considered as part of the whole energy system, as significant contributions to GHG emissions and the associated costs arise from energy supply, provision and conversion. This research is the first application of an integrated energy system model (i.e. the TIMES-GEECO model) for the optimization of the transport sector of Gauteng. Optimizing energy system models allows finding least-cost measures for various scenarios, by considering dependencies and interlinkages in the energy system as well as environmental constraints. To do so, the transport sector and the energy supply sector had to be incorporated into the model application in terms of the characteristics of a developing urban region, which includes all relevant transport modes, vehicle technologies, fuel options, vehicle-to-grid energy storage, the consideration of road types as well as explicit expansions of the public transport system and income-dependent travel demand modelling. Additionally, GHG mitigation options outside the provincial boundaries were incorporated to allow for mitigation at least cost and to consider regional resource availability. Moreover, in TIMES

  18. Long-term optimization of the transport sector to address greenhouse gas reduction targets under rapid growth. Application of an energy system model for Gauteng province, South Africa

    International Nuclear Information System (INIS)

    Tomaschek, Jan

    2013-01-01

    The transport sector is seen as one of the key factors for driving future energy consumption and greenhouse gas (GHG) emissions. Especially in developing countries, significant growth in transport demand is expected. Gauteng province, as the economic centre of South Africa and transport hub for the whole of southern Africa, is one emerging urban region that faces rapid growth. However, the province is on its way to playing a leading role for supporting ways to adapt to climate change and mitigate GHG emissions. Conversely, there is a lack of scientific research on the promising measures for GHG mitigation in the transport sector. For the rapidly growing transport sector of the province in particular, research is focused primarily on extending and structuring the road infrastructure. Moreover, it is important that the transport sector is considered as part of the whole energy system, as significant contributions to GHG emissions and the associated costs arise from energy supply, provision and conversion. This research is the first application of an integrated energy system model (i.e. the TIMES-GEECO model) for the optimization of the transport sector of Gauteng. Optimizing energy system models allows finding least-cost measures for various scenarios, by considering dependencies and interlinkages in the energy system as well as environmental constraints. To do so, the transport sector and the energy supply sector had to be incorporated into the model application in terms of the characteristics of a developing urban region, which includes all relevant transport modes, vehicle technologies, fuel options, vehicle-to-grid energy storage, the consideration of road types as well as explicit expansions of the public transport system and income-dependent travel demand modelling. Additionally, GHG mitigation options outside the provincial boundaries were incorporated to allow for mitigation at least cost and to consider regional resource availability. Moreover, in TIMES

  19. Greenhouse gas neutral Germany in 2050

    International Nuclear Information System (INIS)

    Benndorf, Rosemarie; Bernicke, Maja; Bertram, Andreas

    2014-01-01

    In order to answer the question how a greenhouse gas neutral Germany would look like an interdisciplinary process was started by the Federal Environmental Agency. It was clear from the beginning of this work that a sustainable regenerative energy supply could not be sufficient. Therefore all relevant emission sources were included into the studies: traffic, industry, waste and waste water, agriculture, land usage, land usage changes and forestry. The necessary transformation paths to reach the aim of a greenhouse gas neutral Germany in 2050, economic considerations and political instruments were not part of this study.

  20. Selection of appropriate greenhouse gas mitigation options

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, R. [Indira Ghandi Institute of Development Research, Mumbai (India)

    1999-10-01

    Greenhouse gas mitigation options help in reducing greenhouse gas emissions so as to avoid the adverse environmental impacts due to global warming/climate change. They have different characteristics when evaluated using different criteria. For example, some options may be very cost effective, while some may have an additional advantage of reducing local pollution. Hence, selection of these options, for consideration by a national government or by a funding agency, has to incorporate multiple criteria. In this paper, some important criteria relevant to the selection are discussed, and a multi-criteria methodology is suggested for making appropriate selection. The methodology, called the Analytic Hierarchy Process, is described using two illustrations. (author)

  1. Greenhouse Gas Emissions From Cattle

    Directory of Open Access Journals (Sweden)

    Podkówka Zbigniew

    2015-03-01

    Full Text Available Cattle produce greenhouse gases (GHG which lead to changes in the chemical composition of the atmosphere. These gases which cause greenhouse effect include: methane (CH4, nitrous oxide (N2O, nitrogen oxides (NOx, sulphur dioxide (SO2, ammonia (NH3, dust particles and non-methane volatile organic compounds, commonly described as other than methane hydrocarbons. Fermentation processes taking place in the digestive tract produce ‘digestive gases’, distinguished from gases which are emitted during the decomposition of manure. Among these digestive gases methane and non-methane volatile organic compounds are of particular relevance importance. The amount of gases produced by cows can be reduced by choosing to rear animals with an improved genetically based performance. A dairy cow with higher production efficiency, producing milk with higher protein content and at the same time reduced fat content emits less GHG into the environment. Increasing the ratio of feed mixtures in a feed ration also reduces GHG emissions, especially of methane. By selection of dairy cows with higher production efficiency and appropriate nutrition, the farm's expected milk production target can be achieved while at the same time, the size of the herd is reduced, leading to a reduction of GHG emissions.

  2. Minimizing driving times and greenhouse gas emissions in timber transport with a near-exact solution approach

    DEFF Research Database (Denmark)

    Oberscheider, Marco; Zazgornik, Jan; Henriksen, Christian Bugge

    2013-01-01

    Efficient transport of timber for supplying industrial conversion and biomass power plants is a crucial factor for competitiveness in the forest industry. Throughout the recent years minimizing driving times has been the main focus of optimizations in this field. In addition to this aim the objec...

  3. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1996-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol form corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large non-linearities in carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues. (author). 5 refs, 5 figs

  4. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Seiner, J.; Suzuki, T.; Lackner, M.

    2012-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production and to waste

  5. Life Cycle Assessment of Greenhouse Gas Emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.Y.; Suzuki, T.; Lackner, M.

    2015-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products "from cradle to grave": from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  6. Life cycle assessment of greenhouse gas emissions

    NARCIS (Netherlands)

    Reijnders, L.; Chen, W.-Y.; Suzuki, T.; Lackner, M.

    2017-01-01

    Life cycle assessments of greenhouse gas emissions have been developed for analyzing products “from cradle to grave”: from resource extraction to waste disposal. Life cycle assessment methodology has also been applied to economies, trade between countries, aspects of production, and waste

  7. Modeling Greenhouse Gas Emissions from Enteric Fermentation

    NARCIS (Netherlands)

    Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J.

    2016-01-01

    Livestock directly contribute to greenhouse gas (GHG) emissions mainly through methane (CH4) and nitrous oxide (N2O) emissions. For cost and practicality reasons, quantification of GHG has been through development of various types of mathematical models. This chapter addresses the utility and

  8. Greenhouse gas emission from Australian coal mining

    International Nuclear Information System (INIS)

    Williams, D.

    1998-01-01

    Since 1997, when the Australian Coal Association (ACA) signed a letter of Intent in respect of the governments Greenhouse Challenge Program, it has encouraged its member companies to participate. Earlier this year, the ACA commissioned an independent scoping study on greenhouse gas emissions in the black coal mining industry This was to provide background information, including identification of information gaps and R and D needs, to guide the formulation of a strategy for the mitigation of greenhouse gas emissions associated with the mining, processing and handling of black coals in Australia. A first step in the process of reducing emission levels is an appreciation of the source, quantity and type of emissions om nine sites. It is shown that greenhouse gas emissions on mine sites come from five sources: energy consumption during mining activities, the coal seam gas liberated due to the extraction process i.e. fugitive emissions, oxidation of carbonaceous wastes, land use, and embodied energy. Also listed are indications of the degree of uncertainty associated with each of the estimates

  9. Greenhouse gas mitigation with scarce land

    DEFF Research Database (Denmark)

    Meyer-Aurich, A; Olesen, Jørgen E; Prochnow, A

    2013-01-01

    Agricultural lands have been identified to mitigate greenhouse gas (GHG) emissions primarily by production of energy crops and substituting fossil energy resources and through carbon sequestration in soils. Increased fertilizer input resulting in increased yields may reduce the area needed for crop...

  10. Improving the Greenlandic Greenhouse Gas Inventory

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Baunbæk, Lene; Gyldenkærne, Steen

    The project to improve the Greenlandic greenhouse gas (GHG) inventory was undertaken due to the recommendations made by the UNFCCC review team in connection with the 2008 and 2009 submissions by the Kingdom of Denmark. The improvements made to the Greenlandic GHG emission inventory were substantial...

  11. Earthworms and the soil greenhouse gas balance

    NARCIS (Netherlands)

    Lubbers, I.M.

    2014-01-01

    Earthworms play an essential part in determining the greenhouse gas (GHG) balance of soils worldwide. Their activity affects both biotic and abiotic soil properties, which in turn influence soil GHG emissions, carbon (C) sequestration and plant growth. Yet, the balance of earthworms

  12. Greenhouse gas balances of biomass energy systems

    International Nuclear Information System (INIS)

    Marland, G.; Schlamadinger, B.

    1994-01-01

    A full energy-cycle analysis of greenhouse gas emissions of biomass energy systems requires analysis well beyond the energy sector. For example, production of biomass fuels impacts on the global carbon cycle by altering the amount of carbon stored in the biosphere and often by producing a stream of by-products or co-products which substitute for other energy-intensive products like cement, steel, concrete or, in case of ethanol from corn, animal feed. It is necessary to distinguish between greenhouse gas emissions associated with the energy product as opposed to those associated with other products. Production of biomass fuels also has an opportunity cost because it uses large land areas which could have been used otherwise. Accounting for the greenhouse gas emissions from biomass fuels in an environment of credits and debits creates additional challenges because there are large nonlinearities in the carbon flows over time. This paper presents some of the technical challenges of comprehensive greenhouse gas accounting and distinguishes between technical and public policy issues

  13. Greenhouse gas emissions from industrial activities

    International Nuclear Information System (INIS)

    Kinyanjui, L.N.

    1998-01-01

    This study considers greenhouse gas emissions stemming from industrial activities such as cement production; limestone use and lime production. The Intergovernmental Panel on Climate Change (IPCC) (1995a) methodology for industrial sector was applied for the three components selected. Limitations hindering the handling of other industrial process are listed as budgetary and time. Data sources and recommendations are listed

  14. The EU Greenhouse Gas Emissions Trading Scheme

    NARCIS (Netherlands)

    Woerdman, Edwin; Woerdman, Edwin; Roggenkamp, Martha; Holwerda, Marijn

    2015-01-01

    This chapter explains how greenhouse gas emissions trading works, provides the essentials of the Directive on the European Union Emissions Trading Scheme (EU ETS) and summarizes the main implementation problems of the EU ETS. In addition, a law and economics approach is used to discuss the dilemmas

  15. Greenhouse gas emissions from South Africa

    CSIR Research Space (South Africa)

    Scholes, RJ

    1996-05-01

    Full Text Available of CO2. These gases included 350 Tg CO2 (65.6% of the effect), 183 Tg CH4 (34.2%) and 1.2 Tg N2O (0.2%). The mining and burning of coal contributed more than 80% of the greenhouse gas emissions from South African territory....

  16. Second Greenhouse Gas Information System Workshop

    Science.gov (United States)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  17. Assessing the greenhouse gas emissions from poultry fat biodiesel

    DEFF Research Database (Denmark)

    Jørgensen, Andreas; Bikker, Paul; Herrmann, Ivan Tengbjerg

    2012-01-01

    This article attempts to answer the question: What will most likely happen in terms of emitted greenhouse gases if the use of poultry fat for making biodiesel used in transportation is increased? Through a well-to-wheel assessment, several different possible scenarios are assessed, showing...... that under average conditions, the use of poultry fat biodiesel instead of diesel leads to a slight reduction (6%) in greenhouse gas emissions. The analysis shows that poultry fat is already used for different purposes and using poultry fat for biodiesel will therefore remove the poultry fat from its...... original use. This implies that even though the use of biodiesel is assumed to displace petrochemical diesel, the ‘original user’ of the poultry fat will have to find a substitute, whose production leads to a greenhouse gas emissions comparable to what is saved through driving on poultry fat biodiesel...

  18. TRANSPORT OUT OF THE GREENHOUSE

    DEFF Research Database (Denmark)

    Transport emissions are growing, while climate targets are getting stricter: the gap is closing. We are rapidly approaching a future where transport could occupy or even exceed all of the ‘allowed’ CO2 emissions, if measures are not taken. Many potential climate policies and strategies for transp...

  19. What are the health and greenhouse gas implications of travel patterns in different European settings?

    DEFF Research Database (Denmark)

    Woodcock, J.; Götschi, T.; Nielsen, Thomas Alexander Sick

    Modelling studies have indicated the potential for substitution of car use with walking and cycling to achieve both large health benefits and reductions in greenhouse gas emissions. There is considerable variation in walking, cycling, car and public transport use between different European settings....... However, there has been limited rigorous investigation of the impact of these differences on health and greenhouse gas emissions. In this paper we present modelled results on what would be the health and greenhouse gas implications if a setting with high levels of car use and low levels of cycling (urban......) and greenhouse gas modelling were conducted using ITHIM (Integrated Transport and Health Impact Modelling tool). The analysis suggests that differences in travel patterns are making an important contribution to population health but that lower transport related greenhouse gas emissions do not always coincide...

  20. Assessment of greenhouse gas emissions from natural gas

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The study, 'Assesment of greenhouse gas emission from natural gas' by independent consultants Energetics Pty Ltd, shows that natural gas has significantly fewer greenhouses gas emissions than either black or brown cola for the defined life cycle stages. The life cycle emissions from natural gas use by an Australian Major User are approximately 50% less than the emissions from Victorian brown coal and approximately 38% less than the emissions from Australian average black coal. Australian Best Practice gas fired electricity generation is estimated to emit between 514 and 658 kg CO 2 e/MWh. By comparison, Australian Best Practice coal-fired electricity generation is estimated to emit between 907 and 1,246 kg CO 2 e/MWh for black and brown coal respectively. Greenhouse gas emissions from Australian Best Practice gas-fired electricity generation using combined cycle gas turbines (including full fuel cycle emissions) vary from 41% to 46% of the emissions from brown coal-fired electricity generation and 57% to 64% of emissions from black coal-fired electricity generation. Greenhouse gas emissions from direct gas supply water heating range from 1,470 to 2,042 kilograms per annum. This compares with emissions of 1,922 to 2,499 kg for electric heating from gas-fired electricity generation and 3,975 to 5,393 kg for coal-fired electricity generation. The implications for greenhouse policy nationally are also discussed, emphasising the need to review national energy policy, currently tied to 'fuel neutrality' doctrine

  1. Accounting For Greenhouse Gas Emissions From Flooded Lands

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a method...

  2. Danish greenhouse gas reduction scenarios for 2020 and 2050

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K.; Joergensen, Kaj. (Risoe DTU, Roskilde (DK)); Werling, J.; OErsted Pedersen, H.; Kofoed-Wiuff, A. (Ea energy Analysis, Copenhagen (DK))

    2008-02-15

    The aim of the project presented in this report was to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and 2050. The scenarius provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the Danish Environmental Protection Agency focussing primarily on the reduction potentials in the transport sector and other emissions. COWI's results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, 2050. For each timeframe, we have set up indicative targets that the scenarios must reach: 1) 2020: 30 and 40 % reduction in greenhouse gas emissions compared to 1990 2) 2050: 60 and 80 % reduction in greenhouse gas emissions compared to 1990. The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO{sub 2} capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a 20-30 % reduction in greenhouse gas emissions in 2020 and 60-80 % in 2050 compared to 1990. The EU's 30 % objective is contingent upon global efforts to reduce the world's greenhouse gas

  3. Danish greenhouse gas reduction scenarios for 2020 and 2050

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, K; Joergensen, Kaj [Risoe DTU, Roskilde (DK); Werling, J; OErsted Pedersen, H; Kofoed-Wiuff, A [Ea energy Analysis, Copenhagen (DK)

    2008-02-15

    The aim of the project presented in this report was to develop scenarios for reducing Danish greenhouse gas emissions in 2020 and 2050. The scenarius provide a basis for estimating which technologies should be combined in order to obtain future reductions in greenhouse gas emissions in a cost-effective way. The scenarios include all emissions of greenhouse gases from agriculture, industry and oil extraction activities in the North Sea as well as the transport and energy sectors. Foreign air and sea carriage is not included because emissions related to such activities are not yet subject to international climate change agreements. The scenarios focus particularly on the technological possibilities and the necessary system changes in the Danish energy system and transport sector. Parallel to this, COWI has carried out analyses for the Danish Environmental Protection Agency focussing primarily on the reduction potentials in the transport sector and other emissions. COWI's results regarding agriculture and other emissions have been included in this analysis. Two timeframes are applied in the scenarios: the medium term, 2020, and the long term, 2050. For each timeframe, we have set up indicative targets that the scenarios must reach: 1) 2020: 30 and 40 % reduction in greenhouse gas emissions compared to 1990 2) 2050: 60 and 80 % reduction in greenhouse gas emissions compared to 1990. The scenarios for 2020 focus primarily on technologies that are already commercially available, whereas the scenarios for 2050 also examine technological options at the experimental or developmental stage. This includes hydrogen technologies and fuel cells as well as CO{sub 2} capture and sequestration (CCS) technologies. The scenarios should be seen in connection with the EU objectives of a 20-30 % reduction in greenhouse gas emissions in 2020 and 60-80 % in 2050 compared to 1990. The EU's 30 % objective is contingent upon global efforts to reduce the world's greenhouse gas emissions

  4. Continuous greenhouse gas measurements from ice cores

    DEFF Research Database (Denmark)

    Stowasser, Christopher

    Ice cores offer the unique possibility to study the history of past atmospheric greenhouse gases over the last 800,000 years, since past atmospheric air is trapped in bubbles in the ice. Since the 1950s, paleo-scientists have developed a variety of techniques to extract the trapped air from...... individual ice core samples, and to measure the mixing ratio of greenhouse gases such as carbon dioxide, methane and nitrous oxide in the extracted air. The discrete measurements have become highly accurate and reproducible, but require relatively large amounts of ice per measured species and are both time......-consuming and labor-intensive. This PhD thesis presents the development of a new method for measurements of greenhouse gas mixing ratios from ice cores based on a melting device of a continuous flow analysis (CFA) system. The coupling to a CFA melting device enables time-efficient measurements of high resolution...

  5. Use of California biomass in the production of transportation-fuel oxygenates: Estimates for reduction in CO2 emissions and greenhouse gas potential on a life cycle basis

    International Nuclear Information System (INIS)

    Kadam, K. L.; Camobreco, V. J.; Glazebrook, B. E.

    1999-01-01

    A set of environmental flows associated with two disposal options for thee types of California biomass - forest biomass, rice straw, chaparral - over their life cycles were studied, the emphasis being on energy consumption and greenhouse gas emissions. The two options studied were: producing ethyl-tertiary-butyl ether (ETBE) from biomass and biomass burning, and producing methyl-tertiary-butyl ether (MTBE) from natural gas. Results showed a lower (by 40 to 50 per cent) greenhouse effect impact, lower net values for carbon dioxide and fossil fuel energy consumption, and higher net values for renewable energy consumption for the ETBE option. Based on these results, the deployment of the biomass-to-ethanol ETBE option is recommended as the one that contributes most to the reduction of GHG emissions. 12 refs., 2 tabs., 5 figs

  6. Research on Greenhouse-Gas-Induced Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Schlesinger, M. E.

    2001-07-15

    During the 5 years of NSF grant ATM 95-22681 (Research on Greenhouse-Gas-Induced Climate Change, $1,605,000, 9/15/1995 to 8/31/2000) we have performed work which we are described in this report under three topics: (1) Development and Application of Atmosphere, Ocean, Photochemical-Transport, and Coupled Models; (2) Analysis Methods and Estimation; and (3) Climate-Change Scenarios, Impacts and Policy.

  7. Cogeneration, renewables and reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Naughten, B.; Dlugosz, J.

    1996-01-01

    The MENSA model is used to assess the potential role of cogeneration and selected new renewable energy technologies in cost-effectively reducing Greenhouse gas emissions. The model framework for analyzing these issues is introduced, together with an account of relevant aspects of its application. In the discussion of selected new renewable energy technologies, it is shown how microeconomic reform may encourage these technologies and fuels, and thereby reduce sector wide carbon dioxide emissions. Policy scenarios modelled are described and the simulation results are presented. Certain interventions in microeconomic reform may result in economic benefits while also reducing emissions: no regrets' opportunities. Some renewable energy technologies are also shown to be cost-effective in the event that targets and timetables for reducing Greenhouse gas emissions are imposed. However, ad hoc interventions in support of particular renewables options are unlikely to be consistent with a least cost approach to achieving environmental objectives. (author). 5 tabs., 5 figs., 21 refs

  8. Sectoral Approaches to Greenhouse Gas Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This paper explores sectoral approaches as a new set of options to enhance the effectiveness of greenhouse gas reduction policies and to engage emerging economies on a lower emission path. It surveys existing literature and recent policy trends in international climate change discussions, and provides an overview of sectoral approaches and related issues for trade-exposed, greenhouse-gas intensive industries (cement, iron and steel and aluminium). It is also based on interviews conducted by the IEA Secretariat in Australia, China, Europe, Japan, and the United States. Sectoral approaches were also discussed during workshops on technology and energy efficiency policies in industry, following the IEA's mandate under the Gleneagles Plan of Action.

  9. Greenhouse gas emissions - a global challenge

    International Nuclear Information System (INIS)

    Aarebrot, Eivind; Langvik, Sveinung

    2000-01-01

    The article describes some greenhouse gas emission challenges in the Norwegian petroleum industry. Some of the conclusions are that the national taxation policies are insufficient and that international co-operation is essential in order to obtain significant pollution abatement. The mechanisms for this are not yet in place. Some possible measures are mentioned. The main solution to the problems internationally seems to be international co-operation projects generally with quota trade in order to meet the Kyoto agreement obligations

  10. Accounting For Greenhouse Gas Emissions From Flooded ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the inundation of rivers and terrestrial ecosystems behind dams can lead to enhanced rates of greenhouse gas emissions, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. The research approaches include 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions. To inform th

  11. Accounting for Greenhouse Gas Emissions from Reservoirs ...

    Science.gov (United States)

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a ‘basis for future methodological development’ due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane em

  12. Accouting for Greenhouse Gas Emissions from Reservoirs

    Science.gov (United States)

    Beaulieu, J. J.; Deemer, B. R.; Harrison, J. A.; Nietch, C. T.; Waldo, S.

    2016-12-01

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes a methodology for estimating methane emissions from flooded lands, but the methodology was published as an appendix to be used as a `basis for future methodological development' due to a lack of data. Since the 2006 Guidelines were published there has been a 6-fold increase in the number of peer reviewed papers published on the topic including reports from reservoirs in India, China, Africa, and Russia. Furthermore, several countries, including Iceland, Switzerland, and Finland, have developed country specific methodologies for including flooded lands methane emissions in their National Greenhouse Gas Inventories. This presentation will include a review of the literature on flooded land methane emissions and approaches that have been used to upscale emissions for national inventories. We will also present ongoing research in the United States to develop a country specific methodology. In the U.S., research approaches include: 1) an effort to develop predictive relationships between methane emissions and reservoir characteristics that are available in national databases, such as reservoir size and drainage area, and 2) a national-scale probabilistic survey of reservoir methane emissions linked to the National Lakes Assessment.

  13. Urban form and greenhouse gas emissions in Finland

    International Nuclear Information System (INIS)

    Harmaajaervi, Irmeli

    2003-01-01

    Finland's regional form is becoming more concentrated, while urban sprawl is causing growth centres to become fragmented. The effects caused by these changes on greenhouse gas emissions were studied up to the year 2010, when, in accordance with the Kyoto protocol, Finland's greenhouse gas emissions should be reduced to the 1990 level. The urban form affects especially transportation inside regions, the potential to utilise district heating and the need for infrastructure. By preventing urban sprawl and by encouraging teleworking and some lifestyle changes, it would be possible to reduce annual transportation emissions by the year 2010 by 1.1 million tonnes CO 2 eq., i.e. 27%, the emissions from residential and service buildings by 1.1 million tonnes CO 2 eq., i.e. 5%, and the emissions from municipal infrastructure by 0.1 million tonnes CO 2 eq., i.e. 6%. Altogether, it is possible to reduce the greenhouse gas emissions by 2.3 million tonnes, which amounts to 15% of Finland's target for emissions reductions in 2010. If the target-oriented scenario is realised, the subsequent decrease of emissions would accelerate. To stop urban sprawl, measures are required in planning, land use and housing policy as well as in transportation and tax policies. Additionally, more needs to be done in regard to co-operation, interaction and information dissemination. This paper introduces a report which estimates, for the first time, the effects caused by changes in the regional and urban forms on the levels of greenhouse gas emissions in Finland

  14. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1998-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  15. CANDU reactors and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Andseta, S.; Thompson, M.J.; Jarrell, J.P.; Pendergast, D.R.

    1999-01-01

    This paper was originally presented at the 11th Pacific Basin Nuclear Conference, Banff, Alberta, Canada, May 3-7, 1998. It has been updated to include additional lifecycle data on chemical releases from ore treatment and CANDU fuel fabrication. It is sometimes stated that nuclear power plants can supply electricity with zero emissions of greenhouse gases. In fact, consideration of the entire fuel cycle indicates that some greenhouse gases are generated during their construction and decommissioning and by the preparation of fuel and other materials required for their operation. This follows from the use of fossil fuels in the preparation of materials and during the construction and decommissioning of the plants. This paper reviews life cycle studies of several different kinds of power plants. Greenhouse gases generated by fossil fuels during the preparation of fuel and heavy water used by operating CANDU power plants are estimated. The total greenhouse gas emissions from CANDU nuclear plants, per unit of electricity ultimately produced, are very small in comparison with emissions from most other types of power plants. (author)

  16. UNEP greenhouse gas abatement costing studies

    Energy Technology Data Exchange (ETDEWEB)

    Shakespeare Maya, R. (Southern Centre for Energy and Environment (Zimbabwe)); Muguti, E. (Ministry of Transport and Energy. Department of Energy (Zimbabwe)); Fenhann, J.; Morthorst, P.E. (Risoe National Laboratory. Systems Analysis Department (Denmark))

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB).

  17. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Shakespeare Maya, R.; Muguti, E.; Fenhann, J.; Morthorst, P.E.

    1992-08-01

    The UNEP (United Nations Environment Programme) programme of Greenhouse Gas Abatement Costing Studies is intended to clarify the economic issues involved in assessing the costs of limiting emissions of greenhouse gases and to propose approaches to comparable costing studies. Phase 1 of the Zimbabwe country study describes the current energy situation in Zimbabwe related to the national economy, energy supply and demand and amounts of greenhouse gas emissions. Factors regarding the geography, (including a map illustrating the degree and character of land degradation by erosion) population, politics, international relations, land-use and management of the energy sector are dealt with in detail and the text is illustrated with data compiled from the study. It is estimated that Zimbabwe consumed 270.4 Tj of energy during 1988 and emitted 21.7 tonnes of carbon dioxide. An emission intensity of 80.2 tonnes/Tj for the whole economy and 63.6 tonnes/Tj for electric power generation alone was calculated. Forecasting for the year 2020 estimated carbon dioxide emission intensities of 73.5 tonnes/Tj for the whole economy and 43.7 tonnes for power generation. Net carbon dioxide emissions are predicted to be 30-42 tonnes during 2020. (AB)

  18. Greenhouse gas emission reduction options and strategies

    International Nuclear Information System (INIS)

    Kane, R.L.

    1994-01-01

    This paper describes the energy-related components of the Clinton Administration's Climate Change Action Plan. The Action Plan was formulated to meet the Administration's commitment of returning US emissions of greenhouse gases to 1990 levels by the year 2000. The paper discusses what the energy industry and energy consumers will be requested to do in order to meet this commitment. Several themes addressed in this paper include: (1) the largely voluntary nature of the actions identified in the Action Plan; (2) consideration of diverse opportunities to reduce emissions; (3) the outlook for US greenhouse gas emissions after 2000; and (4) actions involved for speeding the utilization of new, energy efficient technologies both domestically and abroad. The value of employing a diverse set of activities and the important role of technology improvements will be explored further in section 10 of this volume: ''Greenhouse Gas Emission Mitigation Strategies.'' Papers presented there include the utilization of more efficient fossil energy technologies, energy conservation and demand-side management programs, renewable energy and reforestation, and carbon dioxide capture and disposal

  19. Joint implementation: Biodiversity and greenhouse gas offsets

    Science.gov (United States)

    Cutright, Noel J.

    1996-11-01

    One of the most pressing environmental issues today is the possibility that projected increases in global emissions of greenhouse gases from increased deforestation, development, and fossil-fuel combustion could significantly alter global climate patterns. Under the terms of the United Nations Framework Convention on Climate Change, signed in Rio de Janeiro during the June 1992 Earth Summit, the United States and other industrialized countries committed to balancing greenhouse gas emissions at 1990 levels in the year 2000. Included in the treaty is a provision titled “Joint Implementation,” whereby industrialized countries assist developing countries in jointly modifying long-term emission trends, either through emission reductions or by protecting and enhancing greenhouse gas sinks (carbon sequestration). The US Climate Action Plan, signed by President Clinton in 1993, calls for voluntary climate change mitigation measures by various sectors, and the action plan included a new program, the US Initiative on Joint Implementation. Wisconsin Electric decided to invest in a Jl project because its concept encourages creative, cost-effective solutions to environmental problems through partnering, international cooperation, and innovation. The project chosen, a forest preservation and management effort in Belize, will sequester more than five million tons of carbon dioxide over a 40-year period, will become economically selfsustaining after ten years, and will have substantial biodiversity benefits.

  20. Transit investments for greenhouse gas and energy reduction program : first assessment report.

    Science.gov (United States)

    2012-07-01

    The purpose of this report is to provide an overview and preliminary analysis of the U.S. Department of Transportation, Federal Transit Administrations TIGGER Program. TIGGER, which stands for Transit Investments for Greenhouse Gas and Energy Redu...

  1. Transit investments for greenhouse gas and energy reduction program : second assessment report.

    Science.gov (United States)

    2014-08-01

    This report is the second assessment of the U.S. Department of Transportation, Federal Transit Administrations Transit Investments for : Greenhouse Gas and Energy Reduction (TIGGER) Program. The TIGGER Program provides capital funds to transit age...

  2. Greenhouse gas emissions related to Dutch food consumption

    NARCIS (Netherlands)

    Kramer, KJ; Moll, HC; Nonhebel, S; Wilting, HC

    The consumption of food products involves emissions of greenhouse gases. Emissions occur in the various stages of the life cycle of food products. In this paper we discuss the greenhouse gas emissions, CO2, CH4, and N2O, related to Dutch household food consumption. Combinations of greenhouse gas

  3. Greenhouse gas measurements from aircraft during CARVE

    Science.gov (United States)

    Chang, R. Y.; Miller, C. E.; Dinardo, S. J.; Karion, A.; Sweeney, C.; Daube, B.; Pittman, J. V.; Miller, J. B.; Budney, J. W.; Gottlieb, E. W.; Santoni, G. W.; Kort, E. A.; Wofsy, S. C.

    2012-12-01

    Permafrost in the Arctic contain large carbon pools that are currently non-labile. As the polar regions warm, these carbon reserves can be released into the atmosphere and impact the greenhouse gas budget. In order to predict future climate scenarios, we need to understand the emissions of these greenhouse gases under varying environmental conditions. This study presents aircraft measurements made as a part of the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) which flew over Alaska from May to September 2012 and captured seasonal and spatial variations. Results from in situ cavity ring down spectroscopy measurements of CO2, CH4 and CO will be discussed and compared with aircraft measurements made during the summer of 1988 as a part of the Arctic Boundary Layer Expedition as well as relevant measurements from the HIAPER Pole-to-Pole Observations experiments (2009-2011).

  4. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 2988 the Congress requested DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. This report presents the results of that study. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity), and the relationship between energy production and use and the emission of radiactively important gases. Topics discussed include: energy and environmental technology to reduce greenhouse gas emissions, fossil energy production and electricity generation technologies, nuclear energy technology, renewable energy technologies, energy storage, transmission, and distribution technology, transportation, technology, industrial technology, residential and commercial building technology, greenhouse gas removal technology, approaches to restructuring the demand for energy.

  5. Shale gas production: potential versus actual greenhouse gas emissions

    OpenAIRE

    O'Sullivan, Francis Martin; Paltsev, Sergey

    2012-01-01

    Estimates of greenhouse gas (GHG) emissions from shale gas production and use are controversial. Here we assess the level of GHG emissions from shale gas well hydraulic fracturing operations in the United States during 2010. Data from each of the approximately 4000 horizontal shale gas wells brought online that year are used to show that about 900 Gg CH[subscript 4] of potential fugitive emissions were generated by these operations, or 228 Mg CH[subscript 4] per well—a figure inappropriately ...

  6. NATURAL GAS TRANSPORTATION

    OpenAIRE

    Stanis³aw Brzeziñski

    2007-01-01

    In the paper, Author presents chosen aspects of natural gas transportation within global market. Natural gas transportation is a technicaly complicated and economicly expensive process; in infrastructure construction and activities costs. The paper also considers last and proposed initiatives in natural gas transportation.

  7. Global initiatives to mitigate greenhouse gas emissions

    International Nuclear Information System (INIS)

    Helme, N.; Gille, J.A.

    1994-01-01

    Joint implementation (JI) is a provision, included in the Framework Convention on Climate Change, that allows for two or more nations to jointly plan and implement a greenhouse gas or offsetting project. Joint implementation is important environmentally for two principal reasons: (1) it provides an opportunity to select projects on a global basis that maximize both greenhouse gas reduction benefits and other environmental benefits such as air pollution reduction while minimizing cost, and (2) it creates incentives for developing countries as well as multinational companies to begin to evaluate potential investments through a climate-friendly lens. While the debate on how to establish the criteria and institutional capacity necessary to encourage joint implementation projects continues in the international community, the US government is creating new incentives for US companies to develop joint implementation pilot projects now. While delegates to the United Nations' International Negotiating Committee (INC) debate whether to permit all Parties to the convention to participate in JI, opportunities in Eastern and Central Europe and the former Soviet states abound. The US has taken a leadership role in joint implementation, establishing two complementary domestic programs that allow US companies to measure, track and score their net greenhouse gas reduction achievements now. With a financial investment by three US utilities, the Center for Clean Air Policy is developing a fuel-switching and energy efficiency project in the city of Decin in the Czech Republic which offers a concrete example of what a real-world JI project could look like. The Decin project provides an ideal test case for assessing the adequacy and potential impact of the draft criteria for the US Initiative on Joint Implementation, as well as for the draft criteria prepared by the INC Secretariat

  8. Turnover and transport of greenhouse gases in a Danish wetland

    DEFF Research Database (Denmark)

    Jørgensen, Christian Juncher

    2011-01-01

    involving plants, soil and microorganisms. These processes are regulated by different physio-chemical drivers such as soil moisture content, soil temperature, nutrient and oxygen (O2) availability. In wetlands, the position of the free standing water level (WL) influences the spatiotemporal variation...... in these drivers, thereby influencing the net emission or uptake of greenhouse gas. In this PhD thesis the complex aspects in the exchange of N2O across the soil-atmosphere is investigated with special focus on the spatiotemporal variations in drivers for N2O production and consumption in the soil...... net N2O dynamics. Similarly, plant-mediated gas transport by the subsurface aerating macrophyte Phalaris arundinacea played a major part in regulating and facilitating emissions of greenhouse gases across the soil-atmosphere interface. It is concluded that the spatiotemporal distribution of dominating...

  9. Greenhouse gas reductions; not warranted, not beneficial

    International Nuclear Information System (INIS)

    Green, K.

    2003-01-01

    This report deals with climate change and greenhouse gas emissions, especially regional climate change predictions, from a sceptic's point of view. It rejects all the conventional evidence supporting claims of extreme man-made climate changes, dismissing them as alarmist and inherently uncertain. Similarly, it characterizes policy prescriptions based on this evidence as faulty and as measures which, if implemented, would do both current and future generations considerably more harm than good. Calls for energy efficiency and conservation, reliance on renewable energy sources, improved efficiency of conventional vehicles, hybrid and fuel-cell-driven cars, reducing the amount of driving, establishing greenhouse gas registries, are all dismissed as impractical, imposing higher costs on energy generally, slowing economic growth in the process, and scaring people to adopt unwise public policies by exaggerating the certainty of predictions about man-made climate change. While dismissing the arguments advanced by 'old-school' environmentalists, the report does not question the validity of the overall theory or details of the core greenhouse effect, its main targets are the anthropogenic components of the observed temperature record, and the evidence of a clear cause-and-effect link between anthropogenic forcing and changes in the Earth's surface temperature. Overall, the report dismisses the 'conventional' view of the extent of climate change, the cause of that change and the risk it poses. It emphasizes the limitations on economic freedom that proposed policies would inflict, and argues in favour of more studies to provide the foundation for a societal response based on a solid understanding of the science behind climate change, and the impact of proposed policy options. 32 refs., 2 figs

  10. The marginal costs of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Tol, R.S.J.

    1999-01-01

    Estimates of the marginal costs of greenhouse gas emissions are on important input to the decision how much society would want to spend on greenhouse gas emission reduction. Marginal cost estimates in the literature range between $5 and $25 per ton of carbon. Using similar assumptions, the FUND model finds marginal costs of $9--23/tC, depending on the discount rate. If the aggregation of impacts over countries accounts for inequalities in income distribution or for risk aversion, marginal costs would rise by about a factor of 3. Marginal costs per region are an order of magnitude smaller than global marginal costs. The ratios between the marginal costs of CO 2 and those of CH 4 and N 2 O are roughly equal to the global warming potentials of these gases. The uncertainty about the marginal costs is large and right-skewed. The expected value of the marginal costs lies about 35% above the best guess, the 95-percentile about 250%

  11. Local and regional greenhouse gas management

    International Nuclear Information System (INIS)

    Fleming, P.D.; Webber, P.H.

    2004-01-01

    This paper discusses the role of local government, working at both the local and regional level, to achieve substantial (greater than 20%) greenhouse gas emissions reductions. It identifies many different funding regimes and organisations supporting greenhouse gas emissions reductions and a lack of data with which to measure progress. The work in the East Midlands and in the City of Leicester are summarised and an evaluation of progress towards Leicester's target of 50% carbon dioxide (CO 2 ) emission reduction by 2025 based on 1990 is presented. Leicester's initiatives to reduce carbon emissions for the domestic and non-domestic sectors between 1996 and 1999 are analysed. Progress has been made in reducing the rate of rise in energy demand in Leicester and where energy efficiency activities have been concentrated, savings of 20-30% have been obtained. Significant CO 2 savings are achievable at the local and regional level, but the streamlining of support mechanisms for local authorities and a clearer national framework to support implementation are needed to enable all, rather than a few, UK local authorities to make progress

  12. NWT greenhouse gas strategy 2007-2011

    International Nuclear Information System (INIS)

    2007-03-01

    In response to concerns about climate change, the Government of the Northwest Territories (GNWT) is committed to working with federal, provincial and territorial governments to develop an equitable approach to Canada's international commitment to reduce national emissions to 6 per cent below 1990 levels by the year 2012. In 2001, the GNWT released its greenhouse gas strategy, which was subsequently revised after a review in 2005. This report discussed the GNWT's greenhouse gas strategy. It provided background information on global climate change and impacts in the Northwest Territories (NWT), NWT emission challenges, as well as the 2001 strategy and its renewal. The report also presented the strategy framework with reference to goals and objectives; principles; emissions inventory; forest carbon sinks and sources; and targets and measures. The report also presented the action plan for the community and residential sector; commercial and industrial sector; government sector; cross-cutting; and a summary of actions. Some of these 39 actions include energy conservation initiatives by the NWT Housing Corporation; community woodlot planning; community energy planning; commercial energy efficiency audits; and energy efficiency measures in industry. 2 tabs, 3 figs., 2 appendices

  13. Technological substitution options for controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Barbier, E.B.; Burgess, J.C.; Pearce, D.W.

    1991-01-01

    This chapter is concerned with technological options for greenhouse gas substitution. The authors interpret the term substitution to exclude energy conservation/efficiency measures, investments in afforestation (sinks), and greenhouse gas removal or abatement technologies. Their working definition of greenhouse gas substitution includes (1) replacement technologies, for example, substituting a greenhouse gas technology with a nongreenhouse gas technology; and (2) reduction technologies, for example, substituting a greenhouse gas technology with an alternative technology that reduces greenhouse gas emissions. Essentially, replacement technologies involve 100 percent reduction in CO 2 ; reduction technologies involve a partial reduction in CO 2 . Of the man-made sources of greenhouse gases, energy is the most important and is expected to contribute to at least half of the global warming effect in the near future. The majority of this impact is from fossil fuel combustion as a source of carbon dioxide (CO 2 ), although fossil fuels also contribute significantly to methane (CH 4 ), to nitrous oxide (N 2 O), and to low-level ozone (O 3 ) through production of various nitrogen gases (NO x ) and carbon monoxide (CO). This study analyzes the available greenhouse gas substitutions and their costs. The authors concentrate particularly on substitutions for fossil-fuel combustion and CFC production and consumption. They conclude by summarizing the potential for greenhouse gas substitution, the cost-effectiveness of the various options and the design of incentives for substitution

  14. Mitigating greenhouse gas emissions: Voluntary reporting

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    The Voluntary Reporting Program, developed pursuant to Section 1605(b) of the Energy Policy Act of 1992, permits corporations, government agencies, households, and voluntary organizations to report on their emissions of greenhouse gases, and on actions taken that have reduced or avoided emissions or sequestered carbon, to the Energy Information Administration (EIA). This, the second annual report of the Voluntary Reporting Program, describes information provided by the participating organizations on their aggregate emissions and emissions reductions, as well as their emissions reduction or avoidance projects, through 1995. This information has been compiled into a database that includes reports from 142 organizations and descriptions of 967 projects that either reduced greenhouse gas emissions or sequestered carbon. Fifty-one reporters also provided estimates of emissions, and emissions reductions achieved, for their entire organizations. The projects described actions taken to reduce emissions of carbon dioxide from energy production and use; to reduce methane and nitrous oxide emissions from energy use, waste management, and agricultural processes; to reduce emissions of halocarbons, such as CFCs and their replacements; and to increase carbon sequestration.

  15. UNEP greenhouse gas abatement costing studies

    International Nuclear Information System (INIS)

    Maya, R.S.; Nziramasanga, N.; Muguti, E.; Fenhann, J.

    1993-10-01

    The aim was to assess options and cost of reducing emissions of greenhouse gases (with emphasis on carbon dioxide) from human activity in Zimbabwe. A brief description of the country's economy and energy sector, policy and pricing and regulations is given and substantial data related to the country's economy, technology, energy consumption, emission and fuel prices are presented. The energy demand in households and for other sectors in Zimbabwe are assessed, and documented in the case of the former. The reference scenarios on energy demand and supply assess greenhouse gas emissions under conditions whereby the present economic growth trends predominate. Energy efficiency improvements are discussed. Abatement technology options are stated as afforestation for carbon sequestration, more efficient coal-fired industrial boilers, extended use of hydroelectricity, prepayment electric meters, minimum tillage, optimization of coal-fired tobacco barns, industrial power factor correction equipment, domestic biogas digesters, solar water heating systems, time switches in electric geysers, optimization of industrial furnaces, photovoltaic water pumps, production of ammonia from coal for fertilizing purposes, and recovery of coke oven gases for use in thermal power generation. (AB)

  16. International workshop on greenhouse gas mitigation technologies and measures: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    More than 150 countries are now Party to the United Nations Framework Convention on Climate Change (FCCC), which seeks to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the global climate system. Climate change country studies are a significant step for developing countries and countries with economies in transition to meet their national reporting commitments to the FCCC. These studies also provide the basis for preparation of National Climate Change Action Plans and implementation of technologies and practices which reduce greenhouse gas emissions or enhance carbon sinks. The broad goals of the workshop were to: (1) present results of country study mitigation assessments, (2) identify promising no-regrets greenhouse gas mitigation options in land-use and energy sectors, (3) share information on development of mitigation technologies and measures which contribute to improved National Climate Change Actions Plans, and (4) begin the process of synthesizing mitigation assessments for use by FCCC subsidiary bodies. The 59 papers are arranged into the following topical sections: (1) national mitigation assessments, technology priorities, and measures; (2) sector-specific mitigation assessment results, subdivided further into: energy sector; non-energy sector; renewable energy; energy efficiency in industry and buildings; transportation; electricity supply; forestry; and methane mitigation; (3) support for mitigation technologies and measures; and (4) activities implemented jointly. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  17. Germany 2050 a greenhouse gas-neutral country. Background paper

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kathrin; Nissler, Diana (eds.)

    2013-10-15

    For several years, the German Federal Environment Agency (UBA) has been looking at the question how the climate target of a GHG-neutral Germany can be achieved. In a multi-disciplinary project launched by the agency, the first point of call was power generation because of its high emissions. It was shown in 2010 that power generation from 100 % renewable energy is possible. Even then it was understood that a renewable energy supply alone would not be enough to completely abolish greenhouse gas emissions. Other sectors of the economy would have to follow suit and undergo major changes, relying on low-GHG technology. Consequently, the study now submitted, ''Greenhouse gas-neutral Germany 2050'', includes in its research all relevant emission sources that are described in the annual National Inventory Report (NIR) on emissions and removal of greenhouse gases. Alongside complete energy supply, including heating and transport, we also look at emissions from industry, waste disposal, agriculture and forestry as well as changes in land use. We develop a target scenario. The transformations that lead to the target and related economic considerations or the selection of appropriate policy instruments, however, are not part of our study. The scenario analysis is based on the assumption that in 2050, Germany will still be an exporting industrial country with an average annual growth of 0.7 % of its gross domestic product.

  18. Stakeholder resource information on greenhouse gas emissions

    International Nuclear Information System (INIS)

    1997-01-01

    Some of the many measures which have already been taken by the petroleum industry to safeguard the air, land and water were described in a background paper produced by the Petroleum Communication Foundation. It is entitled 'Canada's oil and gas industry and our global environment'. This complementary report includes a brief review of greenhouse gases and related issues such as the nature of global warming, Canadian emissions in a global context, the relationship between the economy and the environment, mitigation possibilities and successes achieved by actions such as those undertaken by the Voluntary Challenge and Registry (VCR) program. Also included are notes and quotes from authoritative sources regarding emissions, emissions control and success stories. A sample presentation was also provided that could be used to discuss global warming issues with general audiences and other communication activities. figs

  19. Greenhouse gas accounting and waste management

    DEFF Research Database (Denmark)

    Gentil, Emmanuel; Christensen, Thomas Højlund; Aoustin, E.

    2009-01-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental...... specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited...... Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more...

  20. Modeling greenhouse gas emissions from dairy farms.

    Science.gov (United States)

    Rotz, C Alan

    2017-11-15

    Dairy farms have been identified as an important source of greenhouse gas emissions. Within the farm, important emissions include enteric CH 4 from the animals, CH 4 and N 2 O from manure in housing facilities during long-term storage and during field application, and N 2 O from nitrification and denitrification processes in the soil used to produce feed crops and pasture. Models using a wide range in level of detail have been developed to represent or predict these emissions. They include constant emission factors, variable process-related emission factors, empirical or statistical models, mechanistic process simulations, and life cycle assessment. To fully represent farm emissions, models representing the various emission sources must be integrated to capture the combined effects and interactions of all important components. Farm models have been developed using relationships across the full scale of detail, from constant emission factors to detailed mechanistic simulations. Simpler models, based upon emission factors and empirical relationships, tend to provide better tools for decision support, whereas more complex farm simulations provide better tools for research and education. To look beyond the farm boundaries, life cycle assessment provides an environmental accounting tool for quantifying and evaluating emissions over the full cycle, from producing the resources used on the farm through processing, distribution, consumption, and waste handling of the milk and dairy products produced. Models are useful for improving our understanding of farm processes and their interacting effects on greenhouse gas emissions. Through better understanding, they assist in the development and evaluation of mitigation strategies for reducing emissions and improving overall sustainability of dairy farms. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article

  1. Energy market reform and greenhouse gas emission reductions

    International Nuclear Information System (INIS)

    Anon.

    1999-01-01

    The report reviews micro-economic reform in the energy market and measures the impact that energy market reform is expected to have on greenhouse gas outcomes. It indicates that reform in the electricity and gas industries is delivering what was promised, an efficient market with lower energy prices and, over the longer term, will deliver a gradually reducing rate of greenhouse gas emissions per unit of energy produced. It also recognises that energy market reform has removed some barriers to the entry of less greenhouse gas intense fuels. These trends will result in reduced greenhouse gas intensity in the supply of energy and significant reductions in the growth in greenhouse gas emissions compared to what may have been expected without the reforms

  2. Net global warming potential and greenhouse gas intensity

    Science.gov (United States)

    Various methods exist to calculate global warming potential (GWP) and greenhouse gas intensity (GHG) as measures of net greenhouse gas (GHG) emissions from agroecosystems. Little is, however, known about net GWP and GHGI that account for all sources and sinks of GHG emissions. Sources of GHG include...

  3. Greenhouse Gas Emissions Calculator for Grain and Biofuel Farming Systems

    Science.gov (United States)

    McSwiney, Claire P.; Bohm, Sven; Grace, Peter R.; Robertson, G. Philip

    2010-01-01

    Opportunities for farmers to participate in greenhouse gas (GHG) credit markets require that growers, students, extension educators, offset aggregators, and other stakeholders understand the impact of agricultural practices on GHG emissions. The Farming Systems Greenhouse Gas Emissions Calculator, a web-based tool linked to the SOCRATES soil…

  4. USDA Northeast climate hub greenhouse gas mitigation workshop technical report

    Science.gov (United States)

    In April 2015, USDA Secretary Vilsack announced the Greenhouse Gas Building Blocks for Climate Smart Agriculture and Forestry in an effort to reduce greenhouse gas emissions, increase carbon sequestration, and expand renewable energy production in the agricultural and forestry sectors. This initiati...

  5. Evaluation of greenhouse gas emissions from waste management approaches in the islands.

    Science.gov (United States)

    Chen, Ying-Chu

    2017-07-01

    Concerns about waste generation and climate change have attracted worldwide attention. Small islands, which account for more than one-sixth of the global land area, are facing problems caused by global climate change. This study evaluated the greenhouse gas emissions from five small islands surrounding Taiwan. These islands - Penghu County, Liuqui Island, Kinmen County, Matsu Island and Green Island - have their own waste management approaches that can serve as a guideline for waste management with greenhouse gas mitigation. The findings indicate that the total annual greenhouse gas emissions of the islands ranged from 292.1 to 29,096.2 [metric] tonne CO 2 -equivalent. The loading waste volumes and shipping distances were positively related to greenhouse gas emissions from transportation. The greenhouse gas emissions from waste-to-energy plants, mainly carbon dioxide and nitrous oxide, can be offset by energy recovery (approximately 38.6% of greenhouse gas emissions from incineration). In addition, about 34% and 11% of waste generated on the islands was successfully recycled and composted, respectively. This study provides valuable insights into the applicability of a policy framework for waste management approaches for greenhouse gas mitigation.

  6. A review of greenhouse gas research in Canada

    International Nuclear Information System (INIS)

    Yundt, P.

    1995-11-01

    Greenhouse gas research programs and projects that relate to the Canadian natural gas industry were presented. Fossil fuel related emissions, primarily methane and carbon dioxide, impact on the atmospheric concentrations of the greenhouse gases. Therefore, strategies to reduce these emissions should impact on the Canadian natural gas industry. A list of 39 projects and 18 research programs of potential interest to the natural gas industry were presented in summary form. The involvement of CANMET (Canada Centre for Mineral and Energy Technology), Environment Canada, and NSERC (Natural Sciences and Engineering Research Council) in doing or sponsoring research projects directed towards greenhouse gas emission reduction was highlighted. Some potential options for member companies of the Canadian natural gas industry, to support climate change and greenhouse gas research, were outlined. 6 refs., 12 tabs

  7. Different palm oil production systems for energy purposes and their greenhouse gas implications

    NARCIS (Netherlands)

    Wicke, B.|info:eu-repo/dai/nl/306645955; Dornburg, V.|info:eu-repo/dai/nl/189955007; Junginger, H.M.|info:eu-repo/dai/nl/202130703; Faaij, A.P.C.|info:eu-repo/dai/nl/10685903X

    2008-01-01

    This study analyses the greenhouse gas (GHG) emissions of crude palm oil (CPO) and palm fatty acid distillate (PFAD) production in northern Borneo (Malaysia), their transport to the Netherlands and their co-firing with natural gas for electricity production. In the case of CPO, conversion to

  8. Recent data concerning contribution of various greenhouse effect gas sources

    International Nuclear Information System (INIS)

    Lambert, G.

    1991-01-01

    The greenhouse effect contributes to a +33 degrees C warming of the earth atmosphere (mean temperature of +15 deg C instead of -18 deg C without any greenhouse effect). The roles of water vapour, carbon dioxide and methane in greenhouse effect are discussed; the CH 4 raise seems to be due to rice cultivation and cattle farming; the CO 2 raise is mainly due oil, coal and natural gas burning. Greenhouse gas increase will cause a 2 to 4 deg C increase of the earth mean temperature but the anthropogenous causes will be obviously seen only during the next century

  9. Greenhouse gas emissions in Hawaii. Household and visitor expenditure analysis

    International Nuclear Information System (INIS)

    Konan, Denise Eby; Chan, Hing Ling

    2010-01-01

    This paper focuses on petroleum use and greenhouse gas emissions associated with economic activities in Hawaii. Data on economic activity, petroleum consumption by type (gasoline, diesel, aviation fuel, residual, propane), and emissions factors are compiled and analyzed. In the baseline year 1997, emissions are estimated to total approximately 23.2 million metric tons of carbon, 181 thousand metric tons of nitrous oxide, and 31 thousand metric tons of methane in terms of carbon-equivalent global warming potential over a 100-year horizon. Air transportation, electricity, and other transportation are the key economic activity responsible for GHG emissions associated with fossil fuel use. More than 22% of total emissions are attributed to visitor expenditures. On a per person per annum basis, emission rates generated by visitor demand are estimated to be higher than that of residents by a factor of 4.3 for carbon, 3.2 for methane, and 4.8 for nitrous oxide. (author)

  10. Reduction in greenhouse gas emissions from vinasse through anaerobic digestion

    DEFF Research Database (Denmark)

    Moraes, Bruna S.; Petersen, Søren O.; Zaiat, Marcelo

    2017-01-01

    Vinasse is a residue from bioethanol production that is produced in large quantities in Brazil and Europe and is applied to fields as a source of plant nutrients (fertirrigation). A side effect of this use is greenhouse gas (GHG) emissions during storage and transport in open channels to fields...... with digestate, ranging from 0.173 to 0.193 kg CO2eq m−2 in the former and from 0.045 to 0.100 kg CO2eq m−2 in the latter. Extrapolation of the results to a Brazilian case indicated that AD treatment prior to storage/transport and field application could reduce GHG emissions from the vinasse management chain...

  11. 77 FR 51499 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2012-08-24

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2012-0126] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium... purpose of reducing greenhouse gas (GHG) emissions because the GHG standards fundamentally regulate fuel...

  12. 76 FR 65971 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-10-25

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Parts 523 and 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions... fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles, responding to the...

  13. 76 FR 59922 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-28

    ... DEPARTMENT OF TRANSPORTATION National Highway Traffic Safety Administration 49 CFR Part 535 [NHTSA 2010-0079; EPA-HQ-OAR-2010-0162; FRL-9455-1] RIN 2127-AK74 Greenhouse Gas Emissions Standards and Fuel... comprehensive Heavy-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions...

  14. 77 FR 63537 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2012-10-16

    ... Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for Subpart I...-AR61 Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for... Manufacturing, of the Greenhouse Gas Reporting Rule. Proposed changes include revising certain calculation...

  15. Greenhouse gas accounting and waste management.

    Science.gov (United States)

    Gentil, Emmanuel; Christensen, Thomas H; Aoustin, Emmanuelle

    2009-11-01

    Accounting of emissions of greenhouse gas (GHG) is a major focus within waste management. This paper analyses and compares the four main types of GHG accounting in waste management including their special features and approaches: the national accounting, with reference to the Intergovernmental Panel on Climate Change (IPCC), the corporate level, as part of the annual reporting on environmental issues and social responsibility, life-cycle assessment (LCA), as an environmental basis for assessing waste management systems and technologies, and finally, the carbon trading methodology, and more specifically, the clean development mechanism (CDM) methodology, introduced to support cost-effective reduction in GHG emissions. These types of GHG accounting, in principle, have a common starting point in technical data on GHG emissions from specific waste technologies and plants, but the limited availability of data and, moreover, the different scopes of the accounting lead to many ways of quantifying emissions and producing the accounts. The importance of transparency in GHG accounting is emphasised regarding waste type, waste composition, time period considered, GHGs included, global warming potential (GWP) assigned to the GHGs, counting of biogenic carbon dioxide, choice of system boundaries, interactions with the energy system, and generic emissions factors. In order to enhance transparency and consistency, a format called the upstream-operating-downstream framework (UOD) is proposed for reporting basic technology-related data regarding GHG issues including a clear distinction between direct emissions from waste management technologies, indirect upstream (use of energy and materials) and indirect downstream (production of energy, delivery of secondary materials) activities.

  16. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J.; Alm, J.; Saarnio, S. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.J. [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1996-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  17. Modeling of greenhouse gas emission from livestock

    Directory of Open Access Journals (Sweden)

    Sanjo eJose

    2016-04-01

    Full Text Available The effects of climate change on humans and other living ecosystems is an area of on-going research. The ruminant livestock sector is considered to be one of the most significant contributors to the existing greenhouse gas (GHG pool. However the there are opportunities to combat climate change by reducing the emission of GHGs from ruminants. Methane (CH4 and nitrous oxide (N2O are emitted by ruminants via anaerobic digestion of organic matter in the rumen and manure, and by denitrification and nitrification processes which occur in manure. The quantification of these emissions by experimental methods is difficult and takes considerable time for analysis of the implications of the outputs from empirical studies, and for adaptation and mitigation strategies to be developed. To overcome these problems computer simulation models offer substantial scope for predicting GHG emissions. These models often include all farm activities while accurately predicting the GHG emissions including both direct as well as indirect sources. The models are fast and efficient in predicting emissions and provide valuable information on implementing the appropriate GHG mitigation strategies on farms. Further, these models help in testing the efficacy of various mitigation strategies that are employed to reduce GHG emissions. These models can be used to determine future adaptation and mitigation strategies, to reduce GHG emissions thereby combating livestock induced climate change.

  18. Greenhouse gas flux dynamics in wetlands

    Energy Technology Data Exchange (ETDEWEB)

    Silvola, J; Alm, J; Saarnio, S [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P J [National Public Health Inst., Kuopio (Finland). Dept. of Environmental Microbiology

    1997-12-31

    Two important greenhouse gases, CO{sub 2} and CH{sub 4}, are closely connected to the carbon cycling of wetlands. Although virgin wetlands are mostly carbon accumulating ecosystems, major proportion of the CO{sub 2} bound annually in photosynthesis is released back to the atmosphere. Main portion of the carbon cycling in wetlands is quite fast while a small proportion of carbon diffusing from soil is released from organic matter, which may be ten thousand years old. Methane is formed in the anaerobic layers of wetlands, from where it is released gradually to the atmosphere. The decomposition in anaerobic conditions is very slow, which means that usually only a few percent of the annual carbon cycling takes place as methane. Research on CO{sub 2} fluxes of different virgin and managed peatlands was the main topic of this project during the first phase of SILMU. The measurements were made during two seasons in varying conditions in c. 30 study sites. In the second phase of SILMU the research topics were the spatial and temporal variation of CO{sub 2} and CH{sub 4} fluxes, the relationships between vegetation and gas fluxes as well as carbon balance studies in wetlands at some intensive sites

  19. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...

  20. Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal: A case study of trolley buses in Ring Road

    International Nuclear Information System (INIS)

    Pradhan, Shreekar; Ale, Bhakta Bahadur; Amatya, Vishwa Bhusan

    2006-01-01

    This paper estimates the consequences in fuel consumption and greenhouse gas emission due to the possible intervention of the electric run trolley buses in the existing public transport system in a particular road up to the year 2025 in Kathmandu Valley. It projects the scenarios on the basis that the passenger travel demand is the function of population and income. Basically, it uses the Long Range Energy Alternatives Planning System software to develop Business as Usual scenario and the five alternative scenarios. The alternative scenarios are 100% replacement of vehicles catering to mass-transit in the concerned routes, 50% replacement, 25% replacement, stopping future growth of other vehicles catering to mass-transit in the concerned routes and 25% replacement in the first year, and combination scenarios. The results estimate that the passenger travel demand will increase by three folds from the year 2003 to the year 2025. It projects the three-fold increase of the existing vehicle activity by the year 2025 in Business as Usual scenario. The fuel consumption will increase by 2.4 times compared to the year 2003. It estimates the total greenhouse gas (GHG) emission as 8.5 thousands tons in year 2003 which will increase by more than 3 times in year 2025. It estimates that 174.3 thousands t CO 2 e can be avoided in combination scenario. The paper concludes that the intervention of clean energy transport in the existing public transport can have a significant positive impact on the GHG emission and current fuel consumption

  1. Greenhouse Gas Emissions from Brazilian Sugarcane Soils

    Science.gov (United States)

    Carmo, J.; Pitombo, L.; Cantarella, H.; Rosseto, R.; Andrade, C.; Martinelli, L.; Gava, G.; Vargas, V.; Sousa-Neto, E.; Zotelli, L.; Filoso, S.; Neto, A. E.

    2012-04-01

    Bioethanol from sugarcane is increasingly seen as a sustainable alternative energy source. Besides having high photosynthetic efficiency, sugarcane is a perennial tropical grass crop that can re-grow up to five or more years after being planted. Brazil is the largest producer of sugarcane in the world and management practices commonly used in the country lead to lower rates of inorganic N fertilizer application than sugarcane grown elsewhere, or in comparison to other feedstocks such as corn. Therefore, Brazilian sugarcane ethanol potentially promotes greenhouse gas savings. For that reason, several recent studies have attempted to assess emissions of greenhouse gases (GHG) during sugarcane production in the tropics. However, estimates have been mainly based on models due to a general lack of field data. In this study, we present data from in situ experiments on emission of three GHG (CO2, N2O, and CH4) in sugarcane fields in Brazil. Emissions are provided for sugarcane in different phases of the crop life cycle and under different management practices. Our results show that the use of nitrogen fertilizer in sugarcane crops resulted in an emission factor for N2O similar to those predicted by IPCC (1%), ranging from 0.59% in ratoon cane to 1.11% in plant cane. However, when vinasse was applied in addition to mineralN fertilizer, emissions of GHG increased in comparison to those from the use of mineral N fertilizer alone. Emissions increased significantly when experiments mimicked the accumulation of cane trash on the soil surface with 14 tons ha-1and 21 tons ha-1, which emission factor were 1.89% and 3.03%, respectively. This study is representative of Brazilian sugarcane systems under specific conditions for key factors affecting GHG emissions from soils. Nevertheless, the data provided will improve estimates of GHG from Brazilian sugarcane, and efforts to assess sugarcane ethanol sustainability and energy balance. Funding provided by the São Paulo Research

  2. Air passenger transport and the greenhouse effect

    International Nuclear Information System (INIS)

    Hubert, M.

    2004-11-01

    The commercial aviation sector accounts for 2.5 % of total worldwide anthropogenic carbon dioxide (CO 2 ) emissions. Water vapour (H 2 O) and NO x emissions, the formation of condensation trails and increased formation of cirrus clouds due to altitude (indirect effects) also accentuate the greenhouse effect. The Intergovernmental Panel on Climate Change (IPCC) estimates that the effects apart from CO 2 emissions are relatively higher for aviation than for other human activities. For one tonne of CO 2 emissions, the radiative forcing of aviation is twice as important as other activities. On this basis, a Paris-New York return trip for one passenger on a charter flight corresponds to a quarter of the total climate impact caused by the annual consumption of a French person. Increased mobility and a rise in international tourism suggest that past trends in the growth of air passenger transport will continue. The improvements in energy efficiency achieved are seemingly not sufficient to prevent a significant increase in the impact of air transport on climate change. (author)

  3. CF3SF5 : a ‘super’ greenhouse gas

    OpenAIRE

    Tuckett, R. P.

    2008-01-01

    One molecule of the anthropogenic pollutant trifluoromethyl sulphur pentafluoride (CF\\(_3\\)SF\\(_5\\)), an adduct of the CF\\(_3\\) and SF\\(_5\\) free radicals, causes more global warming than one molecule of any other greenhouse gas yet detected in the Earth’s atmosphere. That is, it has the highest per molecule radiative forcing of any greenhouse pollutant, and the value of its global warming potential is only exceeded by that of SF\\(_6\\). First, the greenhouse effect is described, the propertie...

  4. Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa

    Directory of Open Access Journals (Sweden)

    Brett Cohen

    2014-03-01

    Full Text Available There is increased interest, both in South Africa and globally, in the use of shale gas for electricity and energy supply. The exploitation of shale gas is, however, not without controversy, because of the reported environmental impacts associated with its extraction. The focus of this article is on the greenhouse gas footprint of shale gas, which some literature suggests may be higher than what would have been expected as a consequence of the contribution of fugitive emissions during extraction, processing and transport. Based on some studies, it has been suggested that life-cycle emissions may be higher than those from coal-fired power. Here we review a number of studies and analyse the data to provide a view of the likely greenhouse gas emissions from producing electricity from shale gas, and compare these emissions to those of coal-fired power in South Africa. Consideration was given to critical assumptions that determine the relative performance of the two sources of feedstock for generating electricity � that is the global warming potential of methane and the extent of fugitive emissions. The present analysis suggests that a 100-year time horizon is appropriate in analysis related to climate change, over which period the relative contribution is lower than for shorter periods. The purpose is to limit temperature increase in the long term and the choice of metric should be appropriate. The analysis indicates that, regardless of the assumptions about fugitive emissions and the period over which global warming potential is assessed, shale gas has lower greenhouse gas emissions per MWh of electricity generated than coal. Depending on various factors, electricity from shale gas would have a specific emissions intensity between 0.3 tCO2/MWh and 0.6 tCO2/MWh, compared with about 1 tCO2/MWh for coal-fired electricity in South Africa.

  5. Can savannas help balance the South African greenhouse gas budget?

    CSIR Research Space (South Africa)

    Scholes, RJ

    1996-02-01

    Full Text Available This article discusses the South African Greenhouse Experiment on Savannas (SAGES) study conducted by the CSIR' Division of Forest Science and Technology (Foretek) on the role of savannas in the balance of the greenhouse gas budget of South Africa...

  6. Greenhouse-gas emissions from soils increased by earthworms

    NARCIS (Netherlands)

    Lubbers, I.M.; Groenigen, van K.J.; Fonte, S.J.; Six, J.; Brussaard, L.; Groenigen, van J.W.

    2013-01-01

    Earthworms play an essential part in determining the greenhouse-gas balance of soils worldwide, and their influence is expected to grow over the next decades. They are thought to stimulate carbon sequestration in soil aggregates, but also to increase emissions of the main greenhouse gases carbon

  7. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  8. Embodied greenhouse gas emission by Macao

    International Nuclear Information System (INIS)

    Li, J.S.; Chen, G.Q.; Lai, T.M.; Ahmad, B.; Chen, Z.M.; Shao, L.; Ji, Xi

    2013-01-01

    Comprehensive inventory of cities' greenhouse gas emissions (GHG) is the basis for cities to make appropriate mitigation plans. However, previous studies on cities' GHG emissions consider emissions occurring within the city boundary (Scope 1) and out of boundary electricity emissions (Scope 2), but neglect indirect emissions associated with commodities consumed by cities (Scope 3), resulting in emission leakage. To cope with this problem, a systematic accounting covering all 3 scopes is presented in a case study of Macao for the years 2005–2009, based on the latest embodied emission intensity databases for China and for the world. The results show that total emissions are dominated by indirect emissions mainly embodied in imports, which is 3–4 times direct emissions during the period concerned. It is verified that accounting under Scopes 1 and 2 cannot capture the full picture of cities' emissions, especially cities like Macao which are dominated by service industry and inevitably sustained by massive materials and services from other regions. Our study suggests that Macao should adjust its current GHG mitigation policies which consider only its emissions occurring within its border, as Macao is a net GHG emissions importer. This work is the first assessment of Macao's embodied GHG emissions. - Highlights: • A systematic accounting procedure is presented to inventory a city's GHG emissions. • A comprehensive review of GHG emissions is performed for Macao. • Indirect GHG emissions dominate Macao's embodied GHG emissions. • Macao induced large amount of GHG emissions in other regions through trade. • The variation in GHG emission structure against socio-economic changes is revealed

  9. Measuring and controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bourrier, Herve; LAFONT, Bruno; Fischer, Severin; Leonard, Damien; Tutenuit, Claire

    2011-05-01

    As providing a reporting of their greenhouse gas emissions has become mandatory for a large number of French companies, this publication proposes a methodology to perform an assessment or measurement, and a control of such emissions. In its first part, it explains why measurements are required: indication of concerned gases, international consensus to limit temperature rise, definition and chronology of the main steps adopted at the international level and which must be considered in the approach adopted by enterprises in this respect. It outlines the benefits of such a measurement for the enterprise in terms of competitiveness, personnel commitment, new markets and products, image, compliance with the law, operational and financial aspects, and so on. It identifies the various stakeholders to be informed: civil society, financial community, public authorities, clients and consumers, personnel, suppliers. It outlines the diversity and evolution of legal frameworks at the international level as well as at national levels. While evoking many examples of French companies (SNCF, EDF, Seche Environnement, RTE, Michelin, Arcelormittal, AREVA, Air France, EADS-Airbus, AXA, Veolia, and so on), the next part addresses how to measure emissions. It outlines the complexity of the methodological landscape with its various criteria, evokes the various existing standards, outlines the distinction between organisation-based, product-based and project-based approaches, and the distinction between direct and indirect emissions in relationship with the notion of scope. It comments the existence of sector-based methodologies and guidelines, and discusses some difficulties and methodological decisions. The third part proposes some lessons learned from the experience which could lead to a harmonisation of methodologies, proposes a synthesis of reporting approaches, outlines risks and opportunities related to communication

  10. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  11. Interagency Pilot of Greenhouse Gas Accounting Tools: Lessons Learned

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, A.; Hotchkiss, E.; Kandt, A.

    2013-02-01

    The Greater Yellowstone Area (GYA) and Tongass National Forest (Tongass) partnered with the National Renewable Energy Laboratory (NREL) to conduct a pilot study of three greenhouse gas (GHG) inventorying tools.

  12. Regulations for Greenhouse Gas Emissions from Passenger Cars and Trucks

    Science.gov (United States)

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  13. Greenhouse gas emission impacts of carsharing in North America

    Science.gov (United States)

    2010-06-01

    This report presents the results of a study evaluating the greenhouse gas (GHG) emission changes that result from individuals participating in a carsharing organization. In this study, the authors conducted a survey of carsharing members across the c...

  14. Detection of Greenhouse-Gas-Induced Climatic Change

    Energy Technology Data Exchange (ETDEWEB)

    Jones, P.D.; Wigley, T.M.L.

    1998-05-26

    The objective of this report is to assemble and analyze instrumental climate data and to develop and apply climate models as a basis for (1) detecting greenhouse-gas-induced climatic change, and (2) validation of General Circulation Models.

  15. FY2010 Federal Government Greenhouse Gas Inventory by Agency

    Data.gov (United States)

    Council on Environmental Quality, Executive Office of the President — The comprehensive Greenhouse Gas (GHG) Emissions Inventory for the Federal Government accounts for emissions associated with Federal operations in FY 2010. Attached...

  16. Air quality and greenhouse gas emissions (Chapter 3)

    CSIR Research Space (South Africa)

    Winkler, H

    2016-01-01

    Full Text Available Shale gas development (SGD) presents opportunities and risks with regards to air pollution and greenhouse gas (GHG) emissions. There is a potential opportunity to reduce emissions, if shale gas replaces ‘dirtier’ (more emissions-intensive) fuels...

  17. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    Science.gov (United States)

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  18. Accounting for greenhouse gas emissions outside the national borders in FENCH-GHG energy planning

    International Nuclear Information System (INIS)

    Vate, J.F. van de

    1996-01-01

    This paper aims at providing guidance to the workshop discussion on the accountability of full-energy-chain greenhouse gas emissions from the use of energy sources if emissions did not take place inside the national borders of a country. Examples of such emissions are those from the generation of imported electricity or from mining and transportation of coal and natural gas. The FENCH-GHG approach, if used in energy planning, would automatically take such greenhouse gas emissions, which are inherent to energy systems, into account. The paper raises the basics, practicality and the feasibility of dealing with extra-boundary emissions in energy planning. (author). 3 refs

  19. Sectoral trends in global energy use and greenhouse gas emissions

    International Nuclear Information System (INIS)

    de Ia Rue du Can, Stephane; Price, Lynn

    2008-01-01

    Integrated assessment models have been used to project both baseline and mitigation greenhouse gas emissions scenarios. Results of these scenarios are typically presented for a number of world regions and end-use sectors, such as industry, transport, and buildings. Analysts interested in particular technologies and policies, however, require more detailed information to understand specific mitigation options in relation to business-as-usual trends. This paper presents sectoral trend for two of the scenarios produced by the Intergovernmental Panel on Climate Change's Special Report on Emissions Scenarios. Global and regional historical trends in energy use and carbon dioxide emissions over the past 30 years are examined and contrasted with projections over the next 30 years. Macro-activity indicators are analyzed as well as trends in sectoral energy and carbon demand. This paper also describes a methodology to calculate primary energy and carbon dioxide emissions at the sector level, accounting for the full energy and emissions due to sectoral activities. (author)

  20. Greenhouse gas emission inventory based on full energy chain analysis

    International Nuclear Information System (INIS)

    Dones, R.; Hirschberg, S.; Knoepfel, I.

    1996-01-01

    Methodology, characteristics, features and results obtained for greenhouse gases within the recent Swiss LCA study 'Environmental Life-Cycle Inventories of Energy Systems' are presented. The focus of the study is on existing average Full Energy Chains (FENCHs) in the electricity generation mixes in Europe and in Switzerland. The systems, including coal (hard coal and lignite), oil, natural gas, nuclear and hydro, are discussed one by one as well as part of the electricity mixes. Photovoltaic systems are covered separately since they are not included in the electricity mixes. A sensitivity analysis on methane leakage during long-range transport via pipeline is shown. Whilst within the current study emissions are not attributed to specific countries, the main sectors contributing to the total GHGs emissions calculated for the various FENCHs are specified. (author). 10 refs, 10 figs, 9 tabs

  1. Greenhouse gas emission inventory based on full energy chain analysis

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R; Hirschberg, S [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Knoepfel, I [Federal Inst. of Technology Zurich, Zurich (Switzerland)

    1996-07-01

    Methodology, characteristics, features and results obtained for greenhouse gases within the recent Swiss LCA study `Environmental Life-Cycle Inventories of Energy Systems` are presented. The focus of the study is on existing average Full Energy Chains (FENCHs) in the electricity generation mixes in Europe and in Switzerland. The systems, including coal (hard coal and lignite), oil, natural gas, nuclear and hydro, are discussed one by one as well as part of the electricity mixes. Photovoltaic systems are covered separately since they are not included in the electricity mixes. A sensitivity analysis on methane leakage during long-range transport via pipeline is shown. Whilst within the current study emissions are not attributed to specific countries, the main sectors contributing to the total GHGs emissions calculated for the various FENCHs are specified. (author). 10 refs, 10 figs, 9 tabs.

  2. Innovative technologies for greenhouse gas emission reduction in steel production

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2016-01-01

    Full Text Available The main goal of the study was to present the most significant technological innovations aiming at reduction of greenhouse gas emission in steel production. Reduction of greenhouse gas and dust pollution is a very important aspect in the iron and steel industry. New solutions are constantly being searched for to reduce greenhouse gases (GHG. The article presents the most recent innovative technologies which may be applied in the steel industry in order to limit the emission of GHG. The significance of CCS (CO2 Capture and Storage and CCU (CO2 Capture and Utilization in the steel industry are also discussed.

  3. Modeling of municipal greenhouse gas emissions. Calculation of greenhouse gas emissions and the reduction possibilities of Dutch municipalities

    NARCIS (Netherlands)

    Vries de, Willem

    2011-01-01

    Summary Municipalities represent an active governmental layer in the Netherlands. They often have ambitions to reduce greenhouse gas emissions. In this way the municipalities take responsibility to reduce the threat of global warming. To implement effect

  4. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.

    Science.gov (United States)

    Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M

    2018-02-20

    In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.

  5. 6.1 Greenhouse gas emissions and climate change

    International Nuclear Information System (INIS)

    2004-01-01

    In Austria, greenhouse gas emissions (GHG) have increased by about 10 % between 1990 and 2001. This means that already in 2001 the emissions reached the level projected with current measures for 2010. Thus Austria is far from complying with the 13 % reduction required under the Kyoto Protocol, meaning that GHG emissions will have to be reduce annually by 1.4 million tons of CO 2 -equivalents to fulfill its protocol obligation. It is shown that 2001 GHG emissions had increased by 9.6 % since the base year 1990, the main reason for this increase is the growing use of fossil fuels and the resulting increase in CO 2 emissions. The highest growth rates can be observed in the transport sector by almost half (+ 49 %). Basically, greenhouse gas emission trends depend on a number of factors, about two thirds of them are caused by energy production, so the most important parameters affecting GHG are the trends of energy consumption, the energy mix and the following factors: population growth, economic growth, outdoor temperature and the resulting heating requirements, improvement of energy efficiency, the proportion of renewable energy sources such as electricity generation in hydroelectric power stations (which influences the need for supplementary power production in thermal power plants), the mix of fossil fuels, for example in caloric power plants (natural gas combustion produces about 40 % less CO 2 per energy unit than coal combustion), the structure and price effects of energy market liberalization, which influence the use of various fuels in electricity production and the import of electricity, world market prices for energy, structural changes in the economy and in the behavior of consumers. Changes in important driving forces and in GHG emissions, sector emissions trends and Austrian, European and global emissions projections are provided. (nevyjel)

  6. Nuclear power for greenhouse gas mitigation

    International Nuclear Information System (INIS)

    Rogner, H.-H.

    2000-11-01

    The possibility of global climate change resulting from an increase in greenhouse gas (GHG) concentrations in the atmosphere is a major global concern. At the Third Conference of the Parties (CoP 3) to the United Nations Framework Convention on Climate Change (UNFCCC) held at Kyoto, in December 1997, industrialized countries agreed to accept binding commitments that would reduce their collective GHG emissions, in the 2008-2012 commitment period, by at least 5% below 1990 levels. These countries also agreed to make demonstrable progress towards reducing GHG emissions by 2005. Because climate change is a global problem, i.e. it does not matter where on the globe GHGs are emitted - they all end up in the same atmosphere, many market economists maintain that mitigation should first occur wherever it is cheapest. Thus Article 12 of the Kyoto Protocol makes provisions by which whose signatories who are required to limit emissions can gain credit for financing cost-effective mitigation projects in developing countries, while at the same time promoting sustainable development through the provision of financial and technical assistance. This option is known as the Clean Development Mechanism (CDM). The CDM could be of particular interest to developing countries, which are not subject to emission limitations in the Kyoto Protocol. For example, the use of capital-intensive nuclear power instead of less costly coal-fired electricity generation would result in a significant reduction in GHG emissions. Because many developing countries may not be able to afford the higher investments associated with a nuclear power project, or because nuclear may simply not be the least-cost generation option for a given country, CDM offers an opportunity for (incremental) capital and technology transfer sponsored by countries of the CoP 3 in exchange for GHG emission credits. The benefit to the sponsor would be compliance with the emission limits set out in the Protocol, at a lower cost than if

  7. Assessing the difference. Greenhouse gas emissions of electricity generation chains

    International Nuclear Information System (INIS)

    Spadaro, J.V.; Langlois, L.; Hamilton, B.

    2000-01-01

    Greenhouse gases have to the potential to influence global climate change by interfering with the natural process of heat exchange between the earth's atmosphere and outer space. Reducing atmospheric GHG concentrations have become an international priority as evidenced by the signing of the Kyoto Protocol, which would reduce emissions from industrialized countries (Annex 1) by about 5% below 1990 levels during the commitment period 2008-12. There are a number of technical options that could be implemented in order to achieve the proposed reduction target. As for emissions related to electricity generation, perhaps the most important factor over the near term is the improvement in efficiency of using energy at all the stages of the fuel cycle, including fuel preparation and transportation, fuel-to-electricity conversion at the power plant and at the point of end-use (which has not been considered here). Strategies for reducing methane releases during fuel mining and during gas transmission are very relevant. Switching to less carbon intensive or low carbon fuels, such as gas, nuclear power and renewables, will play a major role in reducing emissions. These changes are technically feasible using present day knowledge and experience, require minimal changes in consumer lifestyle, and represent reasonable capital turnover (gas and nuclear for baseload generation and renewables in niche markets or for peak load applications). This article has presented information on GHG emission factors for different fuels using a Full Energy Chain approach, which attempts to quantify the environmental emissions from all stages of electricity generation, i.e. 'cradle-to-grave'. Fossil-fueled technologies have the highest emission factors, with coal typically twice as high as natural gas. Considering the large variations in fuel- to-electricity conversion technology, it can be said that GHG emission factors can be an order of magnitude higher than current solar PV systems and up to two

  8. Detection of greenhouse-gas-induced climatic change

    International Nuclear Information System (INIS)

    Wigley, T.M.L.; Jones, P.D.

    1992-01-01

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO 2 and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs)

  9. FETC Programs for Reducing Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called 'greenhouse gases.' Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth's atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide

  10. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  11. Greenhouse gas emissions from Savanna ( Miombo ) woodlands ...

    African Journals Online (AJOL)

    Natural vegetation represents an important sink for greenhouse gases (GHGs); however, there is relatively little information available on emissions from southern African savannas. The effects of clearing savanna woodlands for crop production on soil fluxes of N2O, CO2 and CH4 were studied on clay (Chromic luvisol) and ...

  12. Greenhouse gas mitigation in animal production

    DEFF Research Database (Denmark)

    De Boer, IJM; Cederberg, C; Eady, S

    2011-01-01

    The animal food chain contributes significantly to emission of greenhouse gases (GHGs). We explored studies that addressed options to mitigate GHG emissions in the animal production chain and concluded that most studies focused on production systems in developed countries and on a single GHG...

  13. Manure management for greenhouse gas mitigation

    DEFF Research Database (Denmark)

    Petersen, Søren O; Blanchard, M.; Chadwick, D.

    2013-01-01

    Ongoing intensification and specialisation of livestock production lead to increasing volumes of manure to be managed, which are a source of the greenhouse gases (GHGs) methane (CH4) and nitrous oxide (N2O). Net emissions of CH4 and N2O result from a multitude of microbial activities in the manure...

  14. Pakistan: Preliminary National Greenhouse Gas Inventory | KHAN ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... The gases covered in the inventory are the direct greenhouse gases (carbon ... Industrial processes, Agriculture, Land?use change and forestry and Waste (guided by Intergovernmental Panel on Climate Change). ... EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT

  15. Greenhouse gas abatement strategies for animal husbandry

    NARCIS (Netherlands)

    Monteny, G.J.; Bannink, A.; Chadwick, D.

    2006-01-01

    Agriculture contributes significantly to the anthropogenic emissions of non-CO2 greenhouse gases methane and nitrous oxide. In this paper, a review is presented of the agriculture related sources of methane and nitrous oxide, and of the main strategies for mitigation. The rumen is the most important

  16. Better greenhouse gas emissions accounting for biofuels : A key to biofuels sustainability

    NARCIS (Netherlands)

    Peeters, Marjan; Yue, Taotao

    2016-01-01

    Biofuels are promoted by governments as a replacement for fossil fuels in the transport sector. However, according to current scientific evidence, their use does not necessarily significantly reduce greenhouse gas emissions. This article examines issues related to the regulation of biofuels’

  17. Contribution of N2O to the greenhouse gas balance of first-generation biofuels

    NARCIS (Netherlands)

    Smeets, E.W.M.; Bouwman, A.F.; Stehfest, E.; Vuuren, van P.; Posthuma, A.

    2009-01-01

    n this study, we analyze the impact of fertilizer- and manure-induced N2O emissions due to energy crop production on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first-generation biofuels (also taking account of other GHG emissions during the

  18. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    National Lab Directors, . .

    2001-04-05

    The rise in greenhouse gas emissions from fossil fuel combustion and industrial and agricultural activities has aroused international concern about the possible impacts of these emissions on climate. Greenhouse gases--mostly carbon dioxide, some methane, nitrous oxide and other trace gases--are emitted to the atmosphere, enhancing an effect in which heat reflected from the earth's surface is kept from escaping into space, as in a greenhouse. Thus, there is concern that the earth's surface temperature may rise enough to cause global climate change. Approximately 90% of U.S. greenhouse gas emissions from anthropogenic sources come from energy production and use, most of which are a byproduct of the combustion of fossil fuels. On a per capita basis, the United States is one of the world's largest sources of greenhouse gas emissions, comprising 4% of the world's population, yet emitting 23% of the world's greenhouse gases. Emissions in the United States are increasing at around 1.2% annually, and the Energy Information Administration forecasts that emissions levels will continue to increase at this rate in the years ahead if we proceed down the business-as-usual path. President Clinton has presented a two-part challenge for the United States: reduce greenhouse gas emissions and grow the economy. Meeting the challenge will mean that in doing tomorrow's work, we must use energy more efficiently and emit less carbon for the energy expended than we do today. To accomplish these goals, President Clinton proposed on June 26, 1997, that the United States ''invest more in the technologies of the future''. In this report to Secretary of Energy Pena, 47 technology pathways are described that have significant potential to reduce carbon dioxide emissions. The present study was completed before the December 1997 United Nations Framework Convention on Climate Change and is intended to provide a basis to evaluate technology

  19. Potential for greenhouse gas emission reductions using surplus electricity in hydrogen, methane and methanol production via electrolysis

    International Nuclear Information System (INIS)

    Uusitalo, Ville; Väisänen, Sanni; Inkeri, Eero; Soukka, Risto

    2017-01-01

    Highlights: • Greenhouse gas emission reductions using power-to-x processes are studied using life cycle assessment. • Surplus electricity use led to greenhouse gas emission reductions in all studied cases. • Highest reductions can be achieved by using hydrogen to replace fossil based hydrogen. • High reductions are also achieved when fossil transportation fuels are replaced. - Abstract: Using a life cycle perspective, potentials for greenhouse gas emission reductions using various power-to-x processes via electrolysis have been compared. Because of increasing renewable electricity production, occasionally surplus renewable electricity is produced, which leads to situations where the price of electricity approach zero. This surplus electricity can be used in hydrogen, methane and methanol production via electrolysis and other additional processes. Life cycle assessments have been utilized to compare these options in terms of greenhouse gas emission reductions. All of the power-to-x options studied lead to greenhouse gas emission reductions as compared to conventional production processes based on fossil fuels. The highest greenhouse gas emission reductions can be gained when hydrogen from steam reforming is replaced by hydrogen from the power-to-x process. High greenhouse gas emission reductions can also be achieved when power-to-x products are utilized as an energy source for transportation, replacing fossil transportation fuels. A third option with high greenhouse gas emission reduction potential is methane production, storing and electricity conversion in gas engines during peak consumption hours. It is concluded that the power-to-x processes provide a good potential solution for reducing greenhouse gas emissions in various sectors.

  20. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

    DEFF Research Database (Denmark)

    Elsgaard, Lars; Olesen, Jørgen E; Hermansen, John Erik

    2013-01-01

    Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced...... by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO2 equivalents...

  1. Economics of lifecycle analysis and greenhouse gas regulations

    Science.gov (United States)

    Rajagopal, Deepak

    2009-11-01

    Interest in alternatives to fossil fuels has risen significantly during the current decade. Although a variety of different alternative technologies have experienced rapid growth, biofuels have emerged as the main alternative transportation fuel. Energy policies in several countries envision blending biofuels with fossil fuels as the main mechanism to increase energy independence and energy security. Climate change policies in several regions are also riding on the same hope for reducing emissions from transportation. The main advantage of biofuels is that they are technically mature, cheaper to produce and more convenient to use relative to other alternative fuels. However, the impact of current biofuels on the environment and on economic welfare, is controversial. In my dissertation I focus on three topics relevant to future energy and climate policies. The first is the economics of lifecycle analysis and its application to the assessment of environmental impact of biofuel policies. The potential of biofuel for reducing greenhouse gas emissions was brought to the fore by research that relied on the methodology called lifecycle analysis (LCA). Subsequent research however showed that the traditional LCA fails to account for market-mediated effects that will arise when biofuel technologies are scaled up. These effects can increase or decrease emissions at each stage of the lifecycle. I discuss how the LCA will differ depending on the scale, a single firm versus a region and why LCA of the future should be distinguished from LCA of the past. I describe some approaches for extending the LCA methodology so that it can be applied under these different situations. The second topic is the economic impact of biofuels. Biofuels reduce the demand for oil and increase the demand for agricultural goods. To high income countries which tend to be both large importers of oil and large exporters of agricultural goods, this implies two major benefits. One of the one hand it reduces

  2. A primer for trading greenhouse gas reductions from landfills

    International Nuclear Information System (INIS)

    2000-06-01

    This introductory level primer on domestic greenhouse gas emissions trading addresses the challenge of dealing with landfill gas emissions of carbon dioxide (CO 2 ) and methane (CH 4 ). It describes the first major emissions trading projects in Canada, the Pilot Emission Reduction Trading (PERT) and the Greenhouse Gas Emission Reduction Trading (GERT) pilot projects which calculate and document the GHG emission reductions that are available from landfill sites. PERT initially focused on nitrogen oxides, volatile organic compounds, carbon monoxide, sulphur dioxide and carbon dioxide. PERT uses the Clean Air Emission Reduction Registry for its emissions trading. Canada completed negotiations of the Kyoto Protocol in December 1997 along with 160 other countries. Upon ratification, Canada will commit to reducing 6 greenhouse gases by 6 per cent below 1990 levels in the period 2008 to 2012. Canada has recognized that it must reduce domestic greenhouse gas emissions to slow global warming which leads to climate change. It has been shown that the capture and destruction of landfill gas can profoundly contribute to meeting the target. One tool that can be used to help meet the objective of reducing GHG emissions is domestic GHG emission trading, or carbon trading, as a result of landfill gas capture and flaring. Landfill gas is generally composed of equal parts of carbon dioxide and methane with some other trace emissions. Accounting for quantities of greenhouse gas emissions is done in equivalent tonnes of carbon dioxide where one tonne of methane reduction is equivalent to 21 tonnes of carbon dioxide in terms of global warming potential. Organics in landfills which lead to the generation of methane are considered to be coming from renewable biomass, therefore, the collection and combustion of landfill gas is also considered to reduce GHG emissions from landfills by 100 per cent on a global basis. Destroying landfill gases can also reduce volatile organic compounds, which

  3. Natural gas marketing and transportation

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Overview of the natural gas industry; Federal regulation of marketing and transportation; State regulation of transportation; Fundamentals of gas marketing contracts; Gas marketing options and strategies; End user agreements; Transportation on interstate pipelines; Administration of natural gas contracts; Structuring transactions with the nonconventional source fuels credit; Take-or-pay wars- a cautionary analysis for the future; Antitrust pitfalls in the natural gas industry; Producer imbalances; Natural gas futures for the complete novice; State non-utility regulation of production, transportation and marketing; Natural gas processing agreements and Disproportionate sales, gas balancing, and accounting to royalty owners

  4. 2012 Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas Emissions and Sinks

    Science.gov (United States)

    This page describes EPA's September 2012 stakeholder workshop on key aspects of the estimates of greenhouse gas emissions from the natural gas sector in the Inventory of U.S. Greenhouse Gas Emissions and Sinks.

  5. Relative Greenhouse Gas Abatement Cost Competitiveness of Biofuels in Germany

    Directory of Open Access Journals (Sweden)

    Markus Millinger

    2018-03-01

    Full Text Available Transport biofuels derived from biogenic material are used for substituting fossil fuels, thereby abating greenhouse gas (GHG emissions. Numerous competing conversion options exist to produce biofuels, with differing GHG emissions and costs. In this paper, the analysis and modeling of the long-term development of GHG abatement and relative GHG abatement cost competitiveness between crop-based biofuels in Germany are carried out. Presently dominant conventional biofuels and advanced liquid biofuels were found not to be competitive compared to the substantially higher yielding options available: sugar beet-based ethanol for the short- to medium-term least-cost option and substitute natural gas (SNG for the medium to long term. The competitiveness of SNG was found to depend highly on the emissions development of the power mix. Silage maize-based biomethane was found competitive on a land area basis, but not on an energetic basis. Due to land limitations, as well as cost and GHG uncertainty, a stronger focus on the land use of crop-based biofuels should be laid out in policy.

  6. Request for Correction 12003 Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    Request for Correction by the U.S. Chamber of Commerce for information in Greenhouse Gas Emissions Reporting from the Petroleum Gas Industry that regarding methane emissions, volatile organic compounds, and hazardous air pollutants.

  7. REDUCING GREENHOUSE GAS EMISSIONS AND THE INFLUENCES ON ECONOMIC DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    ANGHELUȚĂ PETRICĂ SORIN

    2016-06-01

    Full Text Available In the recent years, there has been observed a degradation of the environment. This has negative effects on human activities. Besides the influence of the environment on people, also the economic crisis had a negative contribution. The imbalances manifested in the environment influence the economic systems. This article presents an analysis of the greenhouse gas emissions. Also, there is a link between the greenhouse gas emissions and the economic development. In the situation in which the environmental pollution is increasingly affecting humanity, the transition to an economy with reduced greenhouse gas emissions appears to be a viable solution. This transition provides a number of opportunities, as well. Therefore, one of these opportunities is the one related to the employment. In this regard, retraining people working in polluting industries is very important

  8. National greenhouse gas accounts: Current anthropogenic sources and sinks

    International Nuclear Information System (INIS)

    Subak, S.; Raskin, P.; Hippel, David von

    1992-01-01

    This study provides spatially disaggregated estimates of greenhouse gas emissions from the major anthropogenic sources for 145 countries. The data compilation is comprehensive in approach, including emissions from CO, CH 4 , N 2 O and ten halocarbons, in addition to CO 2 . The sources include emissions from fossil fuel production and use, cement production, halocarbons, landfills, land use changes, biomass burning, rice and livestock production and fertilizer consumption. The approach used to derive these estimates corresponds closely with the simple methodologies proposed by the Greenhouse Gas Emissions Task Force of the Intergovernmental Panel on Climate Change. The inventory includes a new estimate of greenhouse gas emissions from fossil fuel combustion based principally on data from the International Energy Agency. The research methodologies for estimating emissions from all sources is briefly described and compared with other recent studies in the literature. (112 refs.)

  9. Quality manual for the Danish greenhouse gas inventory. Version 2

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, O.-K.; Plejdrup, M.S.; Winther, M. [and others

    2013-02-15

    This report outlines the quality work undertaken by the emission inventory group at the Department of Environmental Science, Aarhus University in connection with the preparation and reporting of the Danish greenhouse gas inventory. This report updates and expands on the first version of the quality manual published in 2005. The report fulfils the mandatory requirements for a quality assurance/quality control (QA/QC) plan as lined out in the UNFCCC reporting guidelines and the specifications related to reporting under the Kyoto Protocol. The report describes all elements of the internal QC procedures as well as the QA and verification activities carried out in connection with the Danish greenhouse gas inventory. (Author)

  10. Quality manual for the Danish greenhouse gas inventory

    DEFF Research Database (Denmark)

    Nielsen, Ole-Kenneth; Plejdrup, Marlene Schmidt; Winther, Morten

    The report outlines the quality work undertaken by the emission inventory group at the Department of Environmental Science, Aarhus University in connection with the preparation and reporting of the Danish greenhouse gas inventory. The report updates and expands on the first version of the quality...... manual published in 2005. The report fulfils the mandatory requirements for a quality assurance/quality control (QA/QC) plan as lined out in the UNFCCC reporting guidelines and the specifications related to reporting under the Kyoto Protocol. The report describes all elements of the internal QC...... procedures as well as the QA and verification activities carried out in connection with the Danish greenhouse gas inventory....

  11. Reducing greenhouse gas emissions through operations and supply chain management

    International Nuclear Information System (INIS)

    Plambeck, Erica L.

    2012-01-01

    The experiences of the largest corporation in the world and those of a start-up company show how companies can profitably reduce greenhouse gas emissions in their supply chains. The operations management literature suggests additional opportunities to profitably reduce emissions in existing supply chains, and provides guidance for expanding the capacity of new “zero emission” supply chains. The potential for companies to profitably reduce emissions is substantial but (without effective climate policy) likely insufficient to avert dangerous climate change. - Highlights: ► Describes how firms are profitably reducing greenhouse gas emissions in their supply chains ► Highlights academic literature relevant to supply chain emission reduction

  12. Planning level assessment of greenhouse gas emissions for alternative transportation construction projects : carbon footprint estimator, phase II, volume I - GASCAP model.

    Science.gov (United States)

    2014-03-01

    The GASCAP model was developed to provide a software tool for analysis of the life-cycle GHG : emissions associated with the construction and maintenance of transportation projects. This phase : of development included techniques for estimating emiss...

  13. Theme 10: greenhouse effect transport policies and urban organization

    International Nuclear Information System (INIS)

    2002-07-01

    This document describes the reference framework of the theme 10 ''greenhouse effect, transport policies and urban organization'' which is a part of the urban transports interface. It presents the specific actions realized by the theme 10 for a future integration in theme 1, 5 and 8. (A.L.B.)

  14. Evaluation of greenhouse gas emission risks from storage of wood residue

    International Nuclear Information System (INIS)

    Wihersaari, Margareta

    2005-01-01

    The use of renewable energy sources instead of fossil fuels is one of the most important means of limiting greenhouse gas emissions in the near future. In Finland, wood energy is considered to be a very important potential energy source in this sense. There might, however, still be some elements of uncertainty when evaluating biofuel production chains. By combining data from a stack of composting biodegradable materials and forest residue storage research there was an indication that rather great amounts of greenhouse gases maybe released during storage of wood chip, especially if there is rapid decomposition. Unfortunately, there have not been many evaluations of greenhouse gas emissions of biomass handling and storage heaps. The greenhouse gas emissions are probably methane, when the temperature in the fuel stack is above the ambient temperature, and nitrous oxide, when the temperature is falling and the decaying process is slowing down. Nowadays it is still rather unusual to store logging residue as chips, because the production is small, but in Finland storage of bark and other by-products from the forest industry is a normal process. The evaluations made indicate that greenhouse gas emissions from storage can, in some cases, be much greater than emissions from the rest of the biofuel production and transportation chain

  15. Potential for the reduction of greenhouse gas emissions through the use of mobility services

    DEFF Research Database (Denmark)

    Grischkat, Sylvie; Hunecke, Marcel; Böhler, Susanne

    2014-01-01

    gas emissions per person and year was found to be 78 kg in an optimistic scenario and 25 kg in a pessimistic scenario. Extrapolated to the German metropolitan population, behaviour-related measures alone could result in a 1.8 million ton (optimistic scenario) or 0.6 million ton (pessimistic scenario......This study evaluates potential for the reduction of greenhouse gas emissions in the passenger transport sector achievable through the use of mobility services. Beside car-sharing and -pooling, six services targeted at improving and encouraging the use of urban public transportation were considered......) reduction of greenhouse gas emissions, respectively. In order to exploit this potential fully, however, target group specific information should be obtained and communication strategies developed, as addressed in this paper. This study further presents the limitation of reduction potential quantification...

  16. Canada's nuclear industry, greenhouse gas emissions, and the Kyoto Protocol

    International Nuclear Information System (INIS)

    Pendergast, D.R.; Duffey, R.B.; Tregunno, D.

    1998-01-01

    The Kyoto Protocol of the United Nations Framework Convention on Climate change, dated December 10, 1997 committed Canada to reduce greenhouse gases to 6% below 1990 levels by 2008-2012. Other nations also committed to varying degrees of reduction. The Protocol includes provisions for credit to the 'developed' counties for initiatives which lead to greenhouse gas reduction in the 'developing' countries and for the sharing of credit between 'developed' countries for projects undertaken jointly. The rules and details for implementation of these guidelines remain to be negotiated. We begin our study by establishing the magnitude of greenhouse gas emissions already avoided by the nuclear industry in Canada since the inception of commercial power plants in 1971. We then review projections of energy use in Canada and anticipated increase in electricity use up to the year 2020. These studies have anticipated no (or have 'not permitted') further development of nuclear electricity production in spite of the clear benefit with respect to greenhouse gas emission. The studies also predict a relatively small growth of electricity use. In fact the projections indicate a reversal of a trend toward increased per capita electricity use which is contrary to observations of electricity usage in national economies as they develop. We then provide estimates of the magnitude of greenhouse gas reduction which would result from replacing the projected increase in fossil fuel electricity by nuclear generation through the building of more plants and/or making better use of existing installations. This is followed by an estimate of additional nuclear capacity needed to avoid CO 2 emissions while providing the electricity needed should per capita usage remain constant. Canada's greenhouse gas reduction goal is a small fraction of international commitments. The Kyoto agreement's 'flexibility mechanism' provisions provide some expectation that Canada could obtain some credit for greenhouse gas

  17. Reducing greenhouse gas emissions from the Ontario automotive sector

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    A variety of options to reduce greenhouse gas emissions from the automotive sector in Ontario over the next decade were discussed. Each option was assessed in terms of practicality and implications for implementation. I was concluded that improvements in fuel economy anticipated from advancing technology, with or without new mandated standards, will not be enough to offset the impact of growth in vehicle fleet size and kilometres driven. If the goal is to stabilize greenhouse gas emissions, other measures such as reducing the fleet size and vehicle kilometres travelled and accelerated vehicle retirement (scrappage) programs must be considered. Key constraints on expansion of the alternative fuel fleet were identified. These include: (1) limited availability of an adequate range of alternative fuel vehicles at competitive prices, (2) limited refuelling facility infrastructure in the case of natural gas, limited range and fuel storage capacity for natural gas; (3)current limited fuel ethanol production capacity, and (4) market perceptions of performance, reliability and safety. tabs

  18. Greenhouse Gas Emissions from Hydroelectric Reservoirs in Tropical Regions

    International Nuclear Information System (INIS)

    Pinguelli Rosa, L.; Aurelio dos Santos, M.; Oliveira dos Santos, E.; Matvienko, B.; Sikar, E.

    2004-01-01

    This paper discusses emissions by power-dams in the tropics. Greenhouse gas emissions from tropical power-dams are produced underwater through biomass decomposition by bacteria. The gases produced in these dams are mainly nitrogen, carbon dioxide and methane. A methodology was established for measuring greenhouse gases emitted by various power-dams in Brazil. Experimental measurements of gas emissions by dams were made to determine accurately their emissions of methane (CH4) and carbon dioxide (CO2) gases through bubbles formed on the lake bottom by decomposing organic matter, as well as rising up the lake gradient by molecular diffusion. The main source of gas in power-dams reservoirs is the bacterial decomposition (aerobic and anaerobic) of autochthonous and allochthonous organic matter that basically produces CO2 and CH4. The types and modes of gas production and release in the tropics are reviewed

  19. Aligning corporate greenhouse-gas emissions targets with climate goals

    NARCIS (Netherlands)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis; Crijns-Graus, Wina; Vuuren, Van Detlef P.; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-01-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of

  20. Aligning corporate greenhouse-gas emissions targets with climate goals

    NARCIS (Netherlands)

    Krabbe, Oskar; Linthorst, Giel; Blok, Kornelis|info:eu-repo/dai/nl/07170275X; Crijns-Graus, Wina|info:eu-repo/dai/nl/308005015; Van Vuuren, Detlef P.|info:eu-repo/dai/nl/11522016X; Höhne, Niklas; Faria, Pedro; Aden, Nate; Pineda, Alberto Carrillo

    2015-01-01

    Corporate climate action is increasingly considered important in driving the transition towards a low-carbon economy. For this, it is critical to ensure translation of global goals to greenhouse-gas (GHG) emissions reduction targets at company level. At the moment, however, there is a lack of clear

  1. Scenarios for a Nordic Power System without Greenhouse Gas Emissions

    DEFF Research Database (Denmark)

    Graabak, Ingeborg; Nilsson, Måns; Wu, Qiuwei

    2014-01-01

    The paper presents scenarios for power production without greenhouse gas (GHG) emissions in Denmark, Finland, Norway and Sweden by 2050. The Nordic region already has a high share of renewables in its power production portfolio (about 60% in 2010), and possibilities for further deployment are very...

  2. Effects of treated poultry litter on potential Greenhouse Gas ...

    African Journals Online (AJOL)

    This study examined the effects of different treatments of poultry faecal matter on potential greenhouse gas emission and its field application. Poultry litters were randomly assigned to four treatments viz; salt solution, alum, air exclusion and the control (untreated). Alum treated faeces had higher (p<0.05) percentage nitrogen ...

  3. An alternative method for the estimation of greenhouse gas ...

    African Journals Online (AJOL)

    Lindeque

    Abstract. Previous greenhouse gas (GHG) inventories did not include game as an emissions source. Recently game farming has become a recognized commercial enterprise in the agricultural sector in South Africa, contributing approximately R10 billion to the sectorial gross domestic product. The objective of this study.

  4. Australia’s Consumption-based Greenhouse Gas Emissions

    DEFF Research Database (Denmark)

    Levitt, Clinton J.; Saaby, Morten; Sørensen, Anders

    2017-01-01

    We use data from the World Input-Output Database in a multiregional input–output model to analyse Australian consumption-based greenhouse gas emissions for the years 1995 to 2009. We find that the emission content of Australian macroeconomic activity has changed over the 15-year period. Consumption...

  5. Greenhouse gas footprints of different biofuel production systems

    NARCIS (Netherlands)

    Hoefnagels, E.T.A.; Smeets, E.M.W.; Faaij, A.P.C.

    2010-01-01

    The aim of this study is to show the impact of different assumptions and methodological choices on the life-cycle greenhouse gas (GHG) performance of biofuels by providing the results for different key parameters on a consistent basis. These include co-products allocation or system expansion, N2O

  6. Decarbonising meat : Exploring greenhouse gas emissions in the meat sector

    NARCIS (Netherlands)

    Aan Den Toorn, S. I.; Van Den Broek, M. A.; Worrell, E.

    Consumption of meat is an important source of global greenhouse gas (GHG) emission and deep decarbonisation of the whole meat production chain is required to be able to meet global climate change (CC) mitigation goals. Emissions happen in different stages of meat production ranging from agricultural

  7. Greenhouse gas emissions from integrated urban drainage systems

    DEFF Research Database (Denmark)

    Mannina, Giorgio; Butler, David; Benedetti, Lorenzo

    2018-01-01

    As sources of greenhouse gas (GHG) emissions, integrated urban drainage systems (IUDSs) (i.e., sewer systems, wastewater treatment plants and receiving water bodies) contribute to climate change. This paper, produced by the International Working Group on Data and Models, which works under the IWA...

  8. Quantifying greenhouse gas sources and sinks in managed wetland systems

    Science.gov (United States)

    Stephen M Ogle; Patrick Hunt; Carl Trettin

    2014-01-01

    This chapter provides methodologies and guidance for reporting greenhouse gas (GHG) emissions and sinks at the entity scale for managed wetland systems. More specifically, it focuses on methods for managed palustrine wetlands.1 Section 4.1 provides an overview of wetland systems and resulting GHG emissions, system boundaries and temporal scale, a summary of the...

  9. Effects of treated poultry litter on potential greenhouse gas emission ...

    African Journals Online (AJOL)

    A study was conducted to evaluate the effects of different treatments of poultry faecal waste on potential greenhouse gas emission and inherent agronomic potentials. Sugar solution at 100g/l salt solution at 350g/l and oven-drying were the various faecal treatments examined using a completely randomized design.

  10. Aerosol Observing System Greenhouse Gas (AOS GhG) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Biraud, S. C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Reichl, K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-03-01

    The Greenhouse Gas (GhG) Measurement system is a combination of two systems in series: (1) the Tower Gas Processing (TGP) System, an instrument rack which pulls, pressurizes, and dries air streams from an atmospheric sampling tower through a series of control and monitoring components, and (2) the Picarro model G2301 cavity ringdown spectrometer (CRDS), which measures CO2, CH4, and H2O vapor; the primary measurements of the GhG system.

  11. Monitoring greenhouse gas emissions from landfill sites

    International Nuclear Information System (INIS)

    Eade, G.

    2001-01-01

    Methane is the chief component of natural gas, but also occurs naturally by the anaerobic decomposition of organic matter in swamp areas, at landfill sites, in fact at any location where organic deposits are present. Carbon dioxide is also produced by the decomposition of organic material as well as being the primary by-product of combustion. This article focuses on techniques to test a wide variety of combustible and toxic gases, including surface emission testing of landfill sites. Specifically, it describes the Methane Emission Monitoring System (MEMS) developed by Hetek Solutions Inc., whose primary objective is to to effectively locate surface emissions of methane gas from active landfill sites using flame ionization (FI) technology, and to plot the 'hot spots' using a Differential Global Positioning System (DGPS), which provides sub-metre accuracy for plotting emissions locations at landfill sites. The FI equipment is installed on all-terrain vehicles (ATVs). Several thousand kilometers of pipeline inspections have been performed in Alberta and Saskatchewan using this system in the mid-1990s. The mobile FI/ATV units have been redesigned for landfill gas emission testing, equipped with new DGPS equipment and interface software. They meet the New Source Performance Standards (NSPS) drafted in the United States in 1996, which requires all landfill sites to be inspected for methane gas emissions. Using the FI/ATV combination, productivity over conventional walking inspection procedures increased some 400 per cent, while monitoring accuracy is equivalent to or better than those provided by previous conventional methods. The company can also provide the Optical Methane Detector (OMD) system using infrared technology. They are capable of performing 14,000 measurements per second, thus providing immediate response. To date, ATV emissions testing has been proven to be very effective in various types of gas detection. When interfaced with DGPS technology, computer

  12. Agricultural opportunities to mitigate greenhouse gas emissions

    International Nuclear Information System (INIS)

    Johnson, Jane M.-F.; Franzluebbers, Alan J.; Weyers, Sharon Lachnicht; Reicosky, Donald C.

    2007-01-01

    Agriculture is a source for three primary greenhouse gases (GHGs): CO 2 , CH 4 , and N 2 O. It can also be a sink for CO 2 through C sequestration into biomass products and soil organic matter. We summarized the literature on GHG emissions and C sequestration, providing a perspective on how agriculture can reduce its GHG burden and how it can help to mitigate GHG emissions through conservation measures. Impacts of agricultural practices and systems on GHG emission are reviewed and potential trade-offs among potential mitigation options are discussed. Conservation practices that help prevent soil erosion, may also sequester soil C and enhance CH 4 consumption. Managing N to match crop needs can reduce N 2 O emission and avoid adverse impacts on water quality. Manipulating animal diet and manure management can reduce CH 4 and N 2 O emission from animal agriculture. All segments of agriculture have management options that can reduce agriculture's environmental footprint. - Management options can be used to reduce agriculture's environmental impacts

  13. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types

    International Nuclear Information System (INIS)

    Wang, Michael; Wu, May; Hong Huo

    2007-01-01

    Since the United States began a programme to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types-categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly-from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path

  14. Reducing greenhouse gas emissions for climate stabilization: framing regional options.

    Science.gov (United States)

    Olabisi, Laura Schmitt; Reich, Peter B; Johnson, Kris A; Kapuscinski, Anne R; Su, Sangwon H; Wilson, Elizabeth J

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO2 concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term.

  15. Reducing greenhouse gas emissions for climate stabilization: framing regional options

    Energy Technology Data Exchange (ETDEWEB)

    Laura Schmitt Olabisi; Peter B. Reich; Kris A. Johnson; Anne R. Kapuscinski; Sangwon Suh; Elizabeth J. Wilson [University of Minnesota, Saint Paul, MN (United States). Ecosystem Science and Sustainability Initiative

    2009-03-15

    The Intergovernmental Panel on Climate Change (IPCC) has stated that stabilizing atmospheric CO{sub 2} concentrations will require reduction of global greenhouse gas (GHG) emissions by as much as 80% by 2050. Subnational efforts to cut emissions will inform policy development nationally and globally. We projected GHG mitigation strategies for Minnesota, which has adopted a strategic goal of 80% emissions reduction by 2050. A portfolio of conservation strategies, including electricity conservation, increased vehicle fleet fuel efficiency, and reduced vehicle miles traveled, is likely the most cost-effective option for Minnesota and could reduce emissions by 18% below 2005 levels. An 80% GHG reduction would require complete decarbonization of the electricity and transportation sectors, combined with carbon capture and sequestration at power plants, or deep cuts in other relatively more intransigent GHG-emitting sectors. In order to achieve ambitious GHG reduction goals, policymakers should promote aggressive conservation efforts, which would probably have negative net costs, while phasing in alternative fuels to replace coal and motor gasoline over the long-term. 31 refs., 3 figs., 1 tab.

  16. Methodology for inventorying greenhouse gas emissions from global cities

    International Nuclear Information System (INIS)

    Kennedy, Christopher; Steinberger, Julia; Gasson, Barrie; Hansen, Yvonne; Hillman, Timothy; Havranek, Miroslav; Pataki, Diane; Phdungsilp, Aumnad; Ramaswami, Anu; Mendez, Gara Villalba

    2010-01-01

    This paper describes the methodology and data used to determine greenhouse gas (GHG) emissions attributable to ten cities or city-regions: Los Angeles County, Denver City and County, Greater Toronto, New York City, Greater London, Geneva Canton, Greater Prague, Barcelona, Cape Town and Bangkok. Equations for determining emissions are developed for contributions from: electricity; heating and industrial fuels; ground transportation fuels; air and marine fuels; industrial processes; and waste. Gasoline consumption is estimated using three approaches: from local fuel sales; by scaling from regional fuel sales; and from counts of vehicle kilometres travelled. A simplified version of an intergovernmental panel on climate change (IPCC) method for estimating the GHG emissions from landfill waste is applied. Three measures of overall emissions are suggested: (i) actual emissions within the boundary of the city; (ii) single process emissions (from a life-cycle perspective) associated with the city's metabolism; and (iii) life-cycle emissions associated with the city's metabolism. The results and analysis of the study will be published in a second paper.

  17. Multi-Objective Design Of Optimal Greenhouse Gas Observation Networks

    Science.gov (United States)

    Lucas, D. D.; Bergmann, D. J.; Cameron-Smith, P. J.; Gard, E.; Guilderson, T. P.; Rotman, D.; Stolaroff, J. K.

    2010-12-01

    One of the primary scientific functions of a Greenhouse Gas Information System (GHGIS) is to infer GHG source emission rates and their uncertainties by combining measurements from an observational network with atmospheric transport modeling. Certain features of the observational networks that serve as inputs to a GHGIS --for example, sampling location and frequency-- can greatly impact the accuracy of the retrieved GHG emissions. Observation System Simulation Experiments (OSSEs) provide a framework to characterize emission uncertainties associated with a given network configuration. By minimizing these uncertainties, OSSEs can be used to determine optimal sampling strategies. Designing a real-world GHGIS observing network, however, will involve multiple, conflicting objectives; there will be trade-offs between sampling density, coverage and measurement costs. To address these issues, we have added multi-objective optimization capabilities to OSSEs. We demonstrate these capabilities by quantifying the trade-offs between retrieval error and measurement costs for a prototype GHGIS, and deriving GHG observing networks that are Pareto optimal. [LLNL-ABS-452333: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Assessing the greenhouse gas emissions from poultry fat biodiesel

    NARCIS (Netherlands)

    Jorgensen, A.; Bikker, P.; Herrmann, I.T.

    2012-01-01

    This article attempts to answer the question: What will most likely happen in terms of emitted greenhouse gases if the use of poultry fat for making biodiesel used in transportation is increased? Through a well-to-wheel assessment, several different possible scenarios are assessed, showing that

  19. Towards a comprehensive greenhouse gas emissions inventory for biosolids.

    Science.gov (United States)

    Alvarez-Gaitan, J P; Short, Michael D; Lundie, Sven; Stuetz, Richard

    2016-06-01

    Effective handling and treatment of the solids fraction from advanced wastewater treatment operations carries a substantial burden for water utilities relative to the total economic and environmental impacts from modern day wastewater treatment. While good process-level data for a range of wastewater treatment operations are becoming more readily available, there remains a dearth of high quality operational data for solids line processes in particular. This study seeks to address this data gap by presenting a suite of high quality, process-level life cycle inventory data covering a range of solids line wastewater treatment processes, extending from primary treatment through to biosolids reuse in agriculture. Within the study, the impacts of secondary treatment technology and key parameters such as sludge retention time, activated sludge age and primary-to-waste activated sludge ratio (PS:WAS) on the life cycle inventory data of solids processing trains for five model wastewater treatment plant configurations are presented. BioWin(®) models are calibrated with real operational plant data and estimated electricity consumption values were reconciled against overall plant energy consumption. The concept of "representative crop" is also introduced in order to reduce the uncertainty associated with nitrous oxide emissions and soil carbon sequestration offsets under biosolids land application scenarios. Results indicate that both the treatment plant biogas electricity offset and the soil carbon sequestration offset from land-applied biosolids, represent the main greenhouse gas mitigation opportunities. In contrast, fertiliser offsets are of relatively minor importance in terms of the overall life cycle emissions impacts. Results also show that fugitive methane emissions at the plant, as well as nitrous oxide emissions both at the plant and following agricultural application of biosolids, are significant contributors to the overall greenhouse gas balance and combined are

  20. Optimizing Location of Bulk Metallic Minerals Processing Based on Greenhouse Gas Avoidance

    Directory of Open Access Journals (Sweden)

    Benjamin C. McLellan

    2011-12-01

    Full Text Available The bulk minerals iron ore and bauxite cause significant greenhouse emissions in their processing to steel and aluminum respectively. The level of these emissions is highly dependent on the source of electrical and thermal energy. However, they also cause significant greenhouse gas emissions from their transportation across the globe for processing. This study examines these minerals from the perspective of greenhouse gas avoidance, examining the location of processing as an option for reducing transportation-based and process-based emissions. The analysis proposes a “radius of reduction” to define the potential for transporting ore to reduce emissions by offshore processing. Overall scenarios for localized steel production indicate potential for 85% reduction of transport emissions in the steel industry and 14% of overall industry emissions. Local high-carbon electricity grids and inefficient production mean that the benefit of reduced transportation is partially counteracted by increased processing emissions. The transportation of all global bauxite to Norway and other nations with low-emissions electricity for production of aluminum could result in an overall reduction of industry emissions of up to 44%.

  1. Greenhouse Gas Emissions from Educational Facilities and the EPA Greenhouse Gas Reporting Rule: Actions You Need to Take Now

    Science.gov (United States)

    Wurmbrand, Mitchell M.; Klotz, Thomas C.

    2010-01-01

    On September 22, 2009, The United States Environmental Protection Agency (EPA) issued its final rule on greenhouse gas (GHG) emission reporting. The informational literature that EPA has published to support the rule clearly states that EPA believes the vast majority of smaller GHG-emitting facilities, such as educational facilities, will not be…

  2. How to design greenhouse gas trading in the EU?

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard; Vesterdal, Morten

    2001-01-01

    A new and remarkable Green Paper about how to trade Greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green Paper raises ten questions about how greenhouse gas permit trading should...... be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision...... concerning the future design of GHG permit trading in the EU....

  3. How to Design Greenhouse Gas Trading in the EU?

    DEFF Research Database (Denmark)

    Svendsen, Gert Tinggaard; Vesterdal, Morten

    2003-01-01

    A new and remarkable Green Paper about how to trade Greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green Paper raises ten questions about how greenhouse gas permit trading should...... be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision...... concerning the future design of GHG permit trading in the EU. Udgivelsesdato: NOV...

  4. Preface: Towards a full greenhouse gas balance of the biosphere

    DEFF Research Database (Denmark)

    Merbold, L.; Wohlfahrt, G.; Butterbach-Bahl, K.

    2015-01-01

    Ecosystem greenhouse gas (GHG) emissions (CO2, CH4, and N2O) represent a major driver of global environmental change (IPCC, 2014). While there exists an emerging understanding on the net exchange of CO2 across terrestrial and aquatic ecosystems due in part to the existence of large measurement...... and modeling networks (Baldocchi et al., 2001; Friend et al., 2007; Raymond et al., 2013; Tranvik et al., 2009), similar information on the biosphere–atmosphere exchange of non-CO2 greenhouse gases (i.e., CH4 and N2O) is sparsely available in comparison. To date, a strong focus has been given to so-called high...

  5. Greenhouse Gas Emissions from Excavation on Residential Construction Sites

    Directory of Open Access Journals (Sweden)

    Perry Forsythe

    2014-12-01

    Full Text Available Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area, exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation.

  6. Greenhouse Gas Emissions from Excavation on Residential Construction Sites

    Directory of Open Access Journals (Sweden)

    Perry Forsythe

    2014-12-01

    Full Text Available Despite considerable research concerning the manifestation of greenhouse gases in the usage of buildings, little has been done concerning emissions arising from the construction process itself. This paper specifically examines emissions arising from cut and fill excavation on residential construction sites. Even though such excavation is often seen as being economical in terms of providing a flat base for concrete raft slab construction, the environmental consequences of this approach need to be considered more fully in terms of impact on the environment. This is particularly important when steeply sloping sites are involved and for different soil types. The paper undertakes a study that quantitatively assesses the cumulative greenhouse gas emissions caused by cut and fill excavation on 52 residential projects in Australia for a range of slope and soil types. The paper presents results from the study and concludes that greenhouse gas emissions increase as site slope increases; the building footprint area (as distinct from Gross Floor Area, exposes the need to reduce the area of the building to reduce greenhouse gas emissions; excavation of rock soils creates higher emissions than other soil types; and cut and fill excavation on steeply slope sites increase emissions. Potential alternative construction includes suspended floor construction systems which involve less excavation. 

  7. Requirements for a Global Greenhouse Gas Information System

    Science.gov (United States)

    Duren, R.; Boland, S.; Lempert, R.; Miller, C.

    2008-12-01

    A global greenhouse gas information system will prove a critical component of any successful effort to mitigate climate change which relies on limiting the atmospheric concentration of greenhouse gases. The system will provide the situational awareness necessary to actively reduce emissions, influence land use change, and sequester carbon. The information from such a system will be subject to intense scrutiny. Therefore, an effective system must openly and transparently produce data of unassailable quality. A global greenhouse gas information system will likely require a combination of space-and air-based remote- sensing assets, ground-based measurements, carbon cycle modeling and self-reporting. The specific requirements on such a system will be shaped by the degree of international cooperation it enjoys and the needs of the policy regime it aims to support, which might range from verifying treaty obligations, to certifying the tradable permits and offsets underlying a market in greenhouse gas emission reductions, to providing a comprehensive inventory of high and low emitters that could be used by non-governmental organizations and other international actors. While some technical studies have examined particular system components in single scenarios, there remains a need for a comprehensive survey of the range of potential requirements, options, and strategies for the overall system. We have initiated such a survey and recently hosted a workshop which engaged a diverse community of stakeholders to begin synthesizing requirements for such a system, with an initial focus on carbon dioxide. In this paper we describe our plan for completing the definition of the requirements, options, and strategies for a global greenhouse gas monitoring system. We discuss our overall approach and provide a status on the initial requirements synthesis activity.

  8. The greenhouse impact of unconventional gas for electricity generation

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, Nathan; Ramig, Christopher [School of Public Policy, University of Maryland, 2101 Van Munching Hall, College Park, MD 20742 (United States); Rebois, Dylan [Department of Mechanical Engineering, University of Maryland, 2181 Glenn L Martin Hall, Building 088, College Park, MD 20742 (United States); Scholten, Michael [Joint Quantum Institute, University of Maryland, 2207 Computer and Space Sciences Building, College Park, MD 20742 (United States)

    2011-10-15

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels-altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas-its relatively moderate GHG impact compared to coal-has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  9. 75 FR 63823 - Final Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-10-18

    ... COUNCIL ON ENVIRONMENTAL QUALITY Final Guidance, ``Federal Greenhouse Gas Accounting and Reporting...''), entitled ``Federal Leadership in Environmental, Energy, and Economic Performance.'' 74 FR 52117, Oct. 8... emissions associated with agency operations. This Final Guidance, ``Federal Greenhouse Gas Accounting and...

  10. 77 FR 69585 - Greenhouse Gas Reporting Program: Proposed Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2012-11-20

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 98 [EPA-HQ-OAR-2011-0028; FRL-9753-2] Greenhouse Gas... announcing an extension of the public comment period for the proposed rule titled ``Greenhouse Gas Reporting... [[Page 69586

  11. Direct greenhouse gas emissions of the game industry in South Africa

    African Journals Online (AJOL)

    Direct greenhouse gas emissions of the game industry in South Africa. ... Previous greenhouse gas (GHG) inventories did not include game as an emissions source. Recently game farming has ... AJOL African Journals Online. HOW TO USE ...

  12. [Greenhouse gas emissions, carbon leakage and net carbon sequestration from afforestation and forest management: A review.

    Science.gov (United States)

    Liu, Bo Jie; Lu, Fei; Wang, Xiao Ke; Liu, Wei Wei

    2017-02-01

    Forests play an important role in climate change mitigation and concentration of CO 2 reduction in the atmosphere. Forest management, especially afforestation and forest protection, could increase carbon stock of forests significantly. Carbon sequestration rate of afforestation ranges from 0.04 to 7.52 t C·hm -2 ·a -1 , while that of forest protection is 0.33-5.20 t C·hm -2 ·a -1 . At the same time, greenhouse gas (GHG) is generated within management boundary due to the production and transportation of the materials consumed in relevant activities of afforestation and forest management. In addition, carbon leakage is also generated outside boundary from activity shifting, market effects and change of environments induced by forest management. In this review, we summarized the definition of emission sources of GHG, monitoring methods, quantity and rate of greenhouse gas emissions within boundary of afforestation and forest management. In addition, types, monitoring methods and quantity of carbon leakage outside boundary of forest management were also analyzed. Based on the reviewed results of carbon sequestration, we introduced greenhouse gas emissions within boundary and carbon leakage, net carbon sequestration as well as the countervailing effects of greenhouse gas emissions and carbon leakage to carbon sequestration. Greenhouse gas emissions within management boundary counteract 0.01%-19.3% of carbon sequestration, and such counteraction could increase to as high as 95% considering carbon leakage. Afforestation and forest management have substantial net carbon sequestration benefits, when only taking direct greenhouse gas emissions within boundary and measurable carbon leakage from activity shifting into consideration. Compared with soil carbon sequestration measures in croplands, afforestation and forest management is more advantageous in net carbon sequestration and has better prospects for application in terms of net mitigation potential. Along with the

  13. Reducing Greenhouse Gas Emissions from Agricultural Wetlands in Borneo

    Science.gov (United States)

    Abdul, H.; Fatah, L.; Nursyamsi, D.; Kazuyuki, I.

    2011-12-01

    At the forum G20 meeting in 2009, Indonesian President delivered Indonesia's commitment to reduce national greenhouse gas (GHG) emissions by 26% in 2020 by unilateral action and by 41% with support of other countries. To achieve the target, Indonesian government has put forestry, agriculture (including peatlands), energy, industry and transportation as main responsible sectors. Development of crop with low GHG emissions, increasing C sequestration and the use of organic fertilizers are among the activities to be carried out in 2010-2020 period to minimize GHG emissions from agricultural sectors. Three experiments have been carried out to elucidate the reflectivity of crop selection, soil ameliorants and organic fertilizers on GHG emissions from agricultural wetlands in Borneo. Firstly, gas samples were collected in weekly basis from oil palm, paddy, and vegetables fields and analyzed for methane (CH4) and nitrous oxide (N2O) concentrations by a gas chromatography. Secondly, coal fly ash, dolomite and ZnSO4 were incorporated into a pot containing peat and/or alluvial soils taken from wetlands in South Kalimantan. The air samples were taken and analyzed for CH4 by a gas chromatography. Finally, microbial consortium are isolated from soil, sediment and cow dung. The microbes were then propagated and used in a rice straw composting processes. The CO2, CH4 and N2O emissions from composting vessel were measured at one, two and four weeks of composting processes. The results showed that shifting the use of peatlands for oil palm to vegetable field reduced the GHG emissions by about 74% and that to paddy field reduce the GHG emissions by about 82%. The CH4 emissions from paddy field can be further reduced by applying dolomite. However, the use of coal fly ash and ZnSO4 increased CH4 emissions from peat soil cultivated to rice. The use of microbe isolated from saline soil could reduce GHG emissions during the composting of rice straw. The social aspect of GHG reduction in

  14. The greenhouse impact of unconventional gas for electricity generation

    International Nuclear Information System (INIS)

    Hultman, Nathan; Ramig, Christopher; Rebois, Dylan; Scholten, Michael

    2011-01-01

    New techniques to extract natural gas from unconventional resources have become economically competitive over the past several years, leading to a rapid and largely unanticipated expansion in natural gas production. The US Energy Information Administration projects that unconventional gas will supply nearly half of US gas production by 2035. In addition, by significantly expanding and diversifying the gas supply internationally, the exploitation of new unconventional gas resources has the potential to reshape energy policy at national and international levels—altering geopolitics and energy security, recasting the economics of energy technology investment decisions, and shifting trends in greenhouse gas (GHG) emissions. In anticipation of this expansion, one of the perceived core advantages of unconventional gas—its relatively moderate GHG impact compared to coal—has recently come under scrutiny. In this paper, we compare the GHG footprints of conventional natural gas, unconventional natural gas (i.e. shale gas that has been produced using the process of hydraulic fracturing, or 'fracking'), and coal in a transparent and consistent way, focusing primarily on the electricity generation sector. We show that for electricity generation the GHG impacts of shale gas are 11% higher than those of conventional gas, and only 56% that of coal for standard assumptions.

  15. Towards European organisation for integrated greenhouse gas observation system

    Science.gov (United States)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  16. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    Science.gov (United States)

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  17. Greenhouse gas emissions from municipal wastewater treatment plants

    Science.gov (United States)

    Parravicini, Vanessa; Svardal, Karl

    2016-04-01

    Operating wastewater treatment plants (WWTP) represent a source of greenhouse gases (GHG). Direct GHG emissions include emissions of methane (CH4) and nitrous oxide (N2O) that can be biologically produced during wastewater and sewage sludge treatment. This is also highlighted in the Intergovernmental Panel on Climate Change (IPCC 2006) guidelines used for national GHG inventories. Indirect GHG emissions occur at WWTPs mainly by the consumption of electricity, fossil fuel for transportation and by the use of chemicals (e.g. coagulants). In this study, the impact of direct and indirect GHG emissions was quantified for two model WWTPs of 50.000 person equivalents (p.e.) using carbon footprint analyses. It was assumed that at one WWTP sewage sludge is digested anaerobically, at the other one it is aerobically stabilised in the activated sludge tank. The carbon footprint analyses were performed using literature emission factors. A new estimation model based on measurements at eight Austrian WWTPs was used for the assessment of N2O direct emissions (Parravicini et al., 2015). The results of the calculations show that, under the selected assumptions, the direct N2O emission from the activated sludge tank can dominate the carbon footprint of WWTP with a poor nitrogen removal efficiency. Through an improved operation of nitrogen removal several advantages can be gained: direct N2O emissions can be reduced, the energy demand for aeration can be decreased and a higher effluent quality can be achieved. Anaerobic digesters and anaerobic sludge storage tanks can become a relevant source of direct CH4 emissions. Minimising of CH4 losses from these sources improves the carbon footprint of the WWTP also increasing the energy yield achievable by combusting this renewable energy carrier in a combined heat and power unit. The estimated carbon footprint of the model WWTPs lies between 20 and 40 kg CO2e/p.e./a. This corresponds to 0.2 to 0.4% of the CO2e average emission caused yearly

  18. How to globally reduce the greenhouse gas emissions from sewage systems?

    International Nuclear Information System (INIS)

    Batz, S. de; Bonardet, P.; Trouve, J.P.

    2007-01-01

    A reliable and exhaustive measurement of the global greenhouse gas emissions from a given sewage plant must be performed prior to the implementation of any abatement measure. The method presented in this paper takes into consideration both the direct emissions but also the indirect ones generated by the plant activity and identified using a life cycle-type approach. Three examples of projects or realizations are presented in this paper to illustrate the different means of abatement of greenhouse gas emissions from a sewage plant in a global way. The first example concerns a project of abatement of the electricity consumption of a plant for sludges and fats digestion and biogas valorization. A 85% global abatement of CO 2 emissions is obtained thanks to the substitution of the aerobic digestion process by an anaerobic one. The second example presents an optimization of the greenhouse gas emissions of the municipal sewage plant of Valenton (Paris region) thanks to a valorization of sludges as fertilizers and fuels and to the recovery of the process heat. The last example concerns the Seine-aval sewage plant which gathers several projects of improvement: setting up of a second biogas turbine, redesign of the heat loop, use of river transport for a significant abatement of greenhouse gas emissions. (J.S.)

  19. 78 FR 68161 - Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...

    Science.gov (United States)

    2013-11-13

    ... 98 Greenhouse Gas Reporting Program: Final Amendments and Confidentiality Determinations for...-HQ-OAR-2011-0028; FRL-9845-6] RIN 2060-AR61 Greenhouse Gas Reporting Program: Final Amendments and... monitoring methodologies for electronics manufacturers covered by the Greenhouse Gas Reporting Rule. These...

  20. 78 FR 69337 - Greenhouse Gas Reporting Program: Amendments and Confidentiality Determinations for Fluorinated...

    Science.gov (United States)

    2013-11-19

    ...-AR78 Greenhouse Gas Reporting Program: Amendments and Confidentiality Determinations for Fluorinated... Greenhouse Gas Reporting Rule. The proposed changes would reduce the level of detail in which emissions were..., please go to the Greenhouse Gas Reporting Rule Program Web site at http://www.epa.gov/climatechange...

  1. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    Science.gov (United States)

    2012-02-22

    ... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... final rule will also be available through the WWW on the EPA's Greenhouse Gas Reporting Program Web site...

  2. Vision for an Open, Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, R. M.; Butler, J. H.; Rotman, D.; Ciais, P.; Greenhouse Gas Information System Team

    2010-12-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through the earth system. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, synthesis analysis, and an extensive data integration and distribution system, to provide information about anthropogenic and natural sources, sinks, and fluxes of greenhouse gases at temporal and spatial scales relevant to decision making. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a vision for an open, global GHGIS including latest analysis of system requirements, critical gaps, and relationship to related efforts at various agencies, the Group on Earth Observations, and the Intergovernmental Panel on Climate Change.

  3. Risk Assessment from Radon Gas in the Greenhouses

    International Nuclear Information System (INIS)

    Fahmi, N.M.; El-Khatib, A.M.; Abd El-Zaher, M

    2009-01-01

    Radon is a naturally occurring radioactive gas found in varying amounts in all soils. Therefore, it is very important to study radon emanation from different soils in different circumstances; especially, in green houses which widely used to propagate and cultivate of plants. In greenhouses radon comes from either soil or the substances which make suitable flooring in the greenhouse. Radon and its progeny are accumulated in the air and on the plants themselves, which causes hazard for workers and customers in a later stage. Radon gas is measured in two kinds of greenhouses, one of them is constructed from plastic sheet and the other from glass (Agriculture Research Center - Horticulture Research Institute) using CR-39 NTDs as a passive technique. It based on the production of track in the detector due to alpha-particles emitted from radon and its progeny. The observed track densities are then converted to annual radon dose to be 12.36 mSv and 8.3 mSv for the plastic and glass greenhouses under investigation, respectively. It is also found that the workers have been subject to regulatory control

  4. Towards a Global Greenhouse Gas Information System (GHGIS)

    Science.gov (United States)

    Duren, Riley; Butler, James; Rotman, Doug; Miller, Charles; Decola, Phil; Sheffner, Edwin; Tucker, Compton; Mitchiner, John; Jonietz, Karl; Dimotakis, Paul

    2010-05-01

    Over the next few years, an increasing number of entities ranging from international, national, and regional governments, to businesses and private land-owners, are likely to become more involved in efforts to limit atmospheric concentrations of greenhouse gases. In such a world, geospatially resolved information about the location, amount, and rate of greenhouse gas (GHG) emissions will be needed, as well as the stocks and flows of all forms of carbon through terrestrial ecosystems and in the oceans. The ability to implement policies that limit GHG concentrations would be enhanced by a global, open, and transparent greenhouse gas information system (GHGIS). An operational and scientifically robust GHGIS would combine ground-based and space-based observations, carbon-cycle modeling, GHG inventories, meta-analysis, and an extensive data integration and distribution system, to provide information about sources, sinks, and fluxes of greenhouse gases at policy-relevant temporal and spatial scales. The GHGIS effort was initiated in 2008 as a grassroots inter-agency collaboration intended to rigorously identify the needs for such a system, assess the capabilities of current assets, and suggest priorities for future research and development. We will present a status of the GHGIS effort including our latest analysis and ideas for potential near-term pilot projects with potential relevance to European initiatives including the Global Monitoring for Environment and Security (GMES) and the Integrated Carbon Observing System (ICOS).

  5. Quantification and Controls of Wetland Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    McNicol, Gavin [Univ. of California, Berkeley, CA (United States)

    2016-05-10

    Wetlands cover only a small fraction of the Earth’s land surface, but have a disproportionately large influence on global climate. Low oxygen conditions in wetland soils slows down decomposition, leading to net carbon dioxide sequestration over long timescales, while also favoring the production of redox sensitive gases such as nitrous oxide and methane. Freshwater marshes in particular sustain large exchanges of greenhouse gases under temperate or tropical climates and favorable nutrient regimes, yet have rarely been studied, leading to poor constraints on the magnitude of marsh gas sources, and the biogeochemical drivers of flux variability. The Sacramento-San Joaquin Delta in California was once a great expanse of tidal and freshwater marshes but underwent drainage for agriculture during the last two centuries. The resulting landscape is unsustainable with extreme rates of land subsidence and oxidation of peat soils lowering the surface elevation of much of the Delta below sea level. Wetland restoration has been proposed as a means to slow further subsidence and rebuild peat however the balance of greenhouse gas exchange in these novel ecosystems is still poorly described. In this dissertation I first explore oxygen availability as a control on the composition and magnitude of greenhouse gas emissions from drained wetland soils. In two separate experiments I quantify both the temporal dynamics of greenhouse gas emission and the kinetic sensitivity of gas production to a wide range of oxygen concentrations. This work demonstrated the very high sensitivity of carbon dioxide, methane, and nitrous oxide production to oxygen availability, in carbon rich wetland soils. I also found the temporal dynamics of gas production to follow a sequence predicted by thermodynamics and observed spatially in other soil or sediment systems. In the latter part of my dissertation I conduct two field studies to quantify greenhouse gas exchange and understand the carbon sources for

  6. Indicators for Danish greenhouse gas emissions from 1990 to 2007

    Energy Technology Data Exchange (ETDEWEB)

    Lyck, E.; Nielsen, Malene; Nielsen, Ole-Kenneth; Winther, M.; Hoffmann, L.; Thomsen, M.

    2009-12-15

    The indicators defined according to the obligations under decisions of the EU Monitoring Mechanism have been worked out for 1990-2007. Discussions and comments on the definitions and the guidance of the indicators and their numerator and denominator were worked out. For many indicators the definitions and guidance were clear, for some indicators further text as definition and guidance would have been appropriate. Explanations on the data collection for the indicators for Denmark are given in this report. For the greenhouse gas emissions the source is the Danish inventories and the Danish inventory databases. For Economic data the source is Eurostat and for building data the source is Statistics Denmark. Only the energy, industry and transport sectors and only emissions of CO{sub 2} are covered by the indicators defined. A major result is that the main indicator (macro indicator 1) shows that the steady increase of gross domestic product is decoupled from the trend of the Danish national emissions of CO{sub 2}, since the indicator (the emissions divided by the GDP) in 2005-2007 decreased by 23-30 % compared to 1990. This decrease is mainly caused by higher efficiency in the heat and electricity production, a gradual shift to lesser CO{sub 2} emitting fuels, e.g. from coal to gas, and an increased use of biomass fuels. An important indicator for the industry sector is the CO{sub 2} emission over gross value added (priority indicator 4). The overall trend is a decrease from 1996 to 2007 after slightly fluctuating levels for the years 1990 to 1996. The rather steady increase of gross value added of industry, in 2007 27% above the 1990 level, simultaneously with an increase of CO{sub 2} emission of 5% only, is as for the macro indicator a decoupling. This causes the indicator in 2007 to be at 83 % of the 1990 level. The change to lower emitting fuels plays a role probably interplaying with the changes in industry structure towards less energy demanding industry. For

  7. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  8. Greenhouse gas and livestock emissions and climate change

    DEFF Research Database (Denmark)

    Caro, Dario

    2018-01-01

    The paper summarizes the current knowledge about the impact of livestock sector on climate change. The main sources of greenhouse gas (GHG) emissions from livestock are described and the contribution of livestock sector to the global GHG emissions is presented on the basis of the latest results...... obtained from the scientific research. The most recent mitigation strategies for reducing greenhouse gas emissions from livestock sector are also discussed. The paper aims to provide a general overview of an emergent environmental issue such as the impact of livestock sector on climate change. While...... the paper is easy to understand for non-expert readers, it may also be a relevant reference point for academic researchers and for policy makers aimed at achieving the sustainability of livestock/food sector....

  9. Greenhouse gas emissions in milk and dairy product chains

    DEFF Research Database (Denmark)

    Flysjö, Anna Maria

    Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon ...... throughout the value chain – from cow to consumer.......Reducing greenhouse gas emissions from dairy products is one important step towards a more sustainable dairy sector. To ensure effective mitigation, reliable assessment methods are required. The present PhD thesis focuses on some of the most critical methodological aspects influencing the carbon...... footprint (CF) of milk and dairy products, namely; estimating CH4 and N2O emissions; accounting for land use change; co-product handling; and defining the functional unit. In addition, the CF is calculated for different types of dairy products, and suggestions on various mitigation measures are presented...

  10. An energy balance and greenhouse gas profile for county Wexford, Ireland in 2006

    International Nuclear Information System (INIS)

    Curtin, Richard

    2011-01-01

    Highlights: → Residential sector emits 38% of total CO 2 emissions. → Transport and industry/commerce sectors emit 28% each. → Oil composes 91% of total primary energy requirement (TPER). → Methane accounts for 25% of total greenhouse gas emissions. → Agriculture accounts for 36% of total greenhouse gas emissions. -- Abstract: In this paper an energy balance and a greenhouse gas profile has been formulated for the county of Wexford, situated in the south east of Ireland. The energy balance aims to aggregate all energy consumption in the county for the year 2006 across the following sectors; residential, agriculture, commerce and industry, and transport. The results of the energy balance are compared with the previous energy balance of 2001 where it is found that the residential sector is the biggest emitter of CO 2 with 38% of total emissions with the transport and industry/commerce sectors sharing second place on 28%. Consumption of oil is seen to have increased significantly in nearly all sectors, accounting for over 70% of the total final energy consumed (TFC) while the total primary energy requirement (TPER) sees oil consumption accounting for 91% of all fuels consumed. To take into account the contribution of agriculture in total GHG emissions the gases CH 4 and N 2 O will be estimated from the agricultural and waste sectors. The results show that methane contributes 25% of total GHG emissions with agriculture being the primary contributor accounting for 36% of total emissions.

  11. Life cycle greenhouse gas emissions of anesthetic drugs.

    Science.gov (United States)

    Sherman, Jodi; Le, Cathy; Lamers, Vanessa; Eckelman, Matthew

    2012-05-01

    Anesthesiologists must consider the entire life cycle of drugs in order to include environmental impacts into clinical decisions. In the present study we used life cycle assessment to examine the climate change impacts of 5 anesthetic drugs: sevoflurane, desflurane, isoflurane, nitrous oxide, and propofol. A full cradle-to-grave approach was used, encompassing resource extraction, drug manufacturing, transport to health care facilities, drug delivery to the patient, and disposal or emission to the environment. At each stage of the life cycle, energy, material inputs, and emissions were considered, as well as use-specific impacts of each drug. The 4 inhalation anesthetics are greenhouse gases (GHGs), and so life cycle GHG emissions include waste anesthetic gases vented to the atmosphere and emissions (largely carbon dioxide) that arise from other life cycle stages. Desflurane accounts for the largest life cycle GHG impact among the anesthetic drugs considered here: 15 times that of isoflurane and 20 times that of sevoflurane on a per MAC-hour basis when administered in an O(2)/air admixture. GHG emissions increase significantly for all drugs when administered in an N(2)O/O(2) admixture. For all of the inhalation anesthetics, GHG impacts are dominated by uncontrolled emissions of waste anesthetic gases. GHG impacts of propofol are comparatively quite small, nearly 4 orders of magnitude lower than those of desflurane or nitrous oxide. Unlike the inhaled drugs, the GHG impacts of propofol primarily stem from the electricity required for the syringe pump and not from drug production or direct release to the environment. Our results reiterate previous published data on the GHG effects of these inhaled drugs, while providing a life cycle context. There are several practical environmental impact mitigation strategies. Desflurane and nitrous oxide should be restricted to cases where they may reduce morbidity and mortality over alternative drugs. Clinicians should avoid

  12. Inventory of greenhouse gas emissions from on-road vehicles in Midwestern USA States and integrated approach to achieving environmental sustainability in transportation : USDOT Region V Regional University Transportation Center final report : technical su

    Science.gov (United States)

    2016-12-29

    Two project objectives one technical and one educational- were laid out in this project. The technical objective was to assess current inventory of greenhouse gases (GHG) in the six Midwestern states of the nation and to estimate improvements as ...

  13. Price-related sensitivities of greenhouse gas intensity targets

    International Nuclear Information System (INIS)

    Muller, Benito; Muller-Furstenberger, Georg

    2003-12-01

    Greenhouse gas intensities are an appealing tool to foster abatement without imposing constraints on economic growth. This paper shows, however, that the computation of intensities is subject to some significant statistical and conceptual problems which relate to the inflation proofing of GDP growth. It is shown that the choice of price-index, the updating of quantity weights and the choice of base year prices can have a significant impact upon the commitment of intensity targets

  14. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    International Nuclear Information System (INIS)

    Dones, R.; Heck, T.; Hirschberg, S.

    2004-01-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  15. Combining policy instruments to curb greenhouse gas emissions

    International Nuclear Information System (INIS)

    Bahn, O.

    2001-01-01

    The Kyoto Protocol has set greenhouse gas emission reduction targets for selected countries. To comply with these reduction requirements, decision-makers may use market-based instruments on a national or international basis. This paper advocates the combining of national emission taxes with international trade of emission permits. As a numerical application, this paper analyses macro-economic impacts of such a strategy for Switzerland. (Author)

  16. Idaho National Laboratory FY12 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Kimberly Frerichs

    2013-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2012 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho.

  17. Bayesian Learning and the Regulation of Greenhouse Gas Emissions

    OpenAIRE

    Karp, Larry; Zhang, Jiangfeng

    2001-01-01

    We study the importance of anticipated learning - about both environmental damages and abatement costs - in determining the level and the method of controlling greenhouse gas emissions. We also compare active learning, passive learning, and parameter uncertainty without learning. Current beliefs about damages and abatement costs have an important effect on the optimal level of emissions, However, the optimal level of emissions is not sensitive either to the possibility of learning about damag...

  18. Greenhouse Gas Emissions From Energy Systems: Comparison And Overview

    Energy Technology Data Exchange (ETDEWEB)

    Dones, R.; Heck, T.; Hirschberg, S

    2004-03-01

    The paper provides an overview and comparison of Greenhouse Gas Emissions associated with fossil, nuclear and renewable energy systems. In this context both the direct technology-specific emissions and the contributions from full energy chains within the Life Cycle Assessment framework are considered. Examples illustrating the differences between countries and regional electricity mixes are also provided. Core results presented here are based on the work performed at PSI, and by partners within the Swiss Centre for Life-Cycle Inventories. (author)

  19. Energy and greenhouse gas balances of cassava-based ethanol

    International Nuclear Information System (INIS)

    Le, Loan T.; Ierland, Ekko C. van; Zhu, Xueqin; Wesseler, Justus

    2013-01-01

    Biofuel production has been promoted to save fossil fuels and reduce greenhouse gas (GHG) emissions. However, there have been concerns about the potential of biofuel to improve energy efficiency and mitigate climate change. This paper investigates energy efficiency and GHG emission saving of cassava-based ethanol as energy for transportation. Energy and GHG balances are calculated for a functional unit of 1 km of road transportation using life-cycle assessment and considering effects of land use change (LUC). Based on a case study in Vietnam, the results show that the energy input for and GHG emissions from ethanol production are 0.93 MJ and 34.95 g carbon dioxide equivalent per megajoule of ethanol respectively. The use of E5 and E10 as a substitute for gasoline results in energy savings, provided that their fuel consumption in terms of liter per kilometer of transportation is not exceeding the consumption of gasoline per kilometer by more than 2.4% and 4.5% respectively. It will reduce GHG emissions, provided that the fuel consumption of E5 and E10 is not exceeding the consumption of gasoline per kilometer by more than 3.8% and 7.8% respectively. The quantitative effects depend on the efficiency in production and on the fuel efficiency of E5 and E10. The variations in results of energy input and GHG emissions in the ethanol production among studies are due to differences in coverage of effects of LUC, CO 2 photosynthesis of cassava, yields of cassava, energy efficiency in farming, and by-product analyses. -- Highlights: ► Cassava-based ethanol substitution for gasoline in form of E5 could save 1.4 MJ km −1 ► Ethanol substitution for gasoline in form of E5 reduces a CO 2 e emission of 156 g km −1 ► We examined changes in fuel efficiency of blends affecting energy and GHG balances. ► LUC and change in soil management lead to a CO 2 e emission of 942 g L −1 of ethanol. ► LUC effects, energy inputs, yields, and by-products explain results among

  20. Greenhouse Gas Source Attribution: Measurements Modeling and Uncertainty Quantification

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Zhen [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Safta, Cosmin [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Sargsyan, Khachik [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Najm, Habib N. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); van Bloemen Waanders, Bart Gustaaf [Sandia National Lab. (SNL-CA), Livermore, CA (United States); LaFranchi, Brian W. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ivey, Mark D. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schrader, Paul E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Michelsen, Hope A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Bambha, Ray P. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2014-09-01

    In this project we have developed atmospheric measurement capabilities and a suite of atmospheric modeling and analysis tools that are well suited for verifying emissions of green- house gases (GHGs) on an urban-through-regional scale. We have for the first time applied the Community Multiscale Air Quality (CMAQ) model to simulate atmospheric CO2 . This will allow for the examination of regional-scale transport and distribution of CO2 along with air pollutants traditionally studied using CMAQ at relatively high spatial and temporal resolution with the goal of leveraging emissions verification efforts for both air quality and climate. We have developed a bias-enhanced Bayesian inference approach that can remedy the well-known problem of transport model errors in atmospheric CO2 inversions. We have tested the approach using data and model outputs from the TransCom3 global CO2 inversion comparison project. We have also performed two prototyping studies on inversion approaches in the generalized convection-diffusion context. One of these studies employed Polynomial Chaos Expansion to accelerate the evaluation of a regional transport model and enable efficient Markov Chain Monte Carlo sampling of the posterior for Bayesian inference. The other approach uses de- terministic inversion of a convection-diffusion-reaction system in the presence of uncertainty. These approaches should, in principle, be applicable to realistic atmospheric problems with moderate adaptation. We outline a regional greenhouse gas source inference system that integrates (1) two ap- proaches of atmospheric dispersion simulation and (2) a class of Bayesian inference and un- certainty quantification algorithms. We use two different and complementary approaches to simulate atmospheric dispersion. Specifically, we use a Eulerian chemical transport model CMAQ and a Lagrangian Particle Dispersion Model - FLEXPART-WRF. These two models share the same WRF

  1. Designing optimal greenhouse gas monitoring networks for Australia

    Science.gov (United States)

    Ziehn, T.; Law, R. M.; Rayner, P. J.; Roff, G.

    2016-01-01

    Atmospheric transport inversion is commonly used to infer greenhouse gas (GHG) flux estimates from concentration measurements. The optimal location of ground-based observing stations that supply these measurements can be determined by network design. Here, we use a Lagrangian particle dispersion model (LPDM) in reverse mode together with a Bayesian inverse modelling framework to derive optimal GHG observing networks for Australia. This extends the network design for carbon dioxide (CO2) performed by Ziehn et al. (2014) to also minimise the uncertainty on the flux estimates for methane (CH4) and nitrous oxide (N2O), both individually and in a combined network using multiple objectives. Optimal networks are generated by adding up to five new stations to the base network, which is defined as two existing stations, Cape Grim and Gunn Point, in southern and northern Australia respectively. The individual networks for CO2, CH4 and N2O and the combined observing network show large similarities because the flux uncertainties for each GHG are dominated by regions of biologically productive land. There is little penalty, in terms of flux uncertainty reduction, for the combined network compared to individually designed networks. The location of the stations in the combined network is sensitive to variations in the assumed data uncertainty across locations. A simple assessment of economic costs has been included in our network design approach, considering both establishment and maintenance costs. Our results suggest that, while site logistics change the optimal network, there is only a small impact on the flux uncertainty reductions achieved with increasing network size.

  2. Communicating the Uncertainty in Greenhouse Gas Emissions from Agriculture

    Science.gov (United States)

    Milne, Alice; Glendining, Margaret; Perryman, Sarah; Whitmore, Andy

    2014-05-01

    Effective communication of the uncertainty in estimates of greenhouse gas emissions is important. It allows an individual, whether they are a scientist, policy maker or member of the public, to draw proper conclusions and so make sound decisions. Communicating uncertainty is challenging, however. There is no single best method for communicating uncertainty and the success of a particular method will depend on the subject matter and the target audience. Our interest is in communicating the uncertainty in estimates of greenhouse gas emissions from agriculture to those who might directly use the results from a national inventory. We tested six methods of communication. These were: calibrated phrases such as 'very uncertain' and 'likely'; probabilities, whereby the probability of being within a defined range of values is given; confidence intervals for the expected value; histograms; box plots and shaded arrays. We asked 64 individuals who use results from the greenhouse gas inventory for their opinions on how successfully these methods communicated uncertainty. We analysed the results to see which methods were preferred and to see whether this preference was affected either by the professional group to which individuals belonged or the level of mathematics to which they were educated. The professional groups represented in our study were categorised as (i) those who influence policy (ii) research scientists (iii) those representing the environment and (iv) those representing the agricultural industry. The responses to our questionnaire were varied but some clear messages came through. Our analysis showed that although calibrated phrases were thought to be a good method of communication they did not convey enough information and were open to misinterpretation. Shaded arrays were similarly criticized for being open to misinterpretation, but proved to give the best indication of uncertainty when individuals were asked to interpret results from the greenhouse gas

  3. Greenhouse gas emissions of Dutch biomass. Quantification of greenhouse gases emission of Dutch biomass for electricity and heat

    International Nuclear Information System (INIS)

    Koop, K.; Yildiz, I.

    2010-09-01

    The greenhouse gas emissions of all available flows of the biomass chain have been established. This report has the following aims: (1) to establish the greenhouse gas emission of Dutch biomass available for generating electricity and heat; (2) to obtain insight in the opportunities and threats for using the potential of the biomass chains that have the highest potential to reduce greenhouse gas emissions. This report can be seen as a supplement to the report 'Availability of Dutch biomass for electricity and heat in 2020' (2009) [nl

  4. Emissions of greenhouse gases from the use of transportation fuels and electricity

    International Nuclear Information System (INIS)

    DeLuchi, M.A.

    1991-11-01

    This report presents estimates of full fuel-cycle emissions of greenhouse gases from using transportation fuels and electricity. The data cover emissions of carbon dioxide (CO 2 ), methane, carbon monoxide, nitrous oxide, nitrogen oxides, and nonmethane organic compounds resulting from the end use of fuels, compression or liquefaction of gaseous transportation fuels, fuel distribution, fuel production, feedstock transport, feedstock recovery, manufacture of motor vehicles, maintenance of transportation systems, manufacture of materials used in major energy facilities, and changes in land use that result from using biomass-derived fuels. The results for electricity use are in grams of CO 2 -equivalent emissions per kilowatt-hour of electricity delivered to end users and cover generating plants powered by coal, oil, natural gas, methanol, biomass, and nuclear energy. The transportation analysis compares CO 2 -equivalent emissions, in grams per mile, from base-case gasoline and diesel fuel cycles with emissions from these alternative- fuel cycles: methanol from coal, natural gas, or wood; compressed or liquefied natural gas; synthetic natural gas from wood; ethanol from corn or wood; liquefied petroleum gas from oil or natural gas; hydrogen from nuclear or solar power; electricity from coal, uranium, oil, natural gas, biomass, or solar energy, used in battery-powered electric vehicles; and hydrogen and methanol used in fuel-cell vehicles

  5. Greenhouse gas emission impacts of electric vehicles under varying driving cycles in various counties and US cities

    International Nuclear Information System (INIS)

    Wang, M.Q.; Marr, W.W.

    1994-01-01

    Electric vehicles (EVs) can reduce greenhouse gas emissions, relative to emissions from gasoline-fueled vehicles. However, those studies have not considered all aspects that determine greenhouse gas emissions from both gasoline vehicles (GVs) and EVs. Aspects often overlooked include variations in vehicle trip characteristics, inclusion of all greenhouse gases, and vehicle total fuel cycle. In this paper, we estimate greenhouse gas emission reductions for EVs, including these important aspects. We select four US cities (Boston, Chicago, Los Angeles, and Washington, D.C.) and six countries (Australia, France, Japan, Norway, the United Kingdom, and the United States) and analyze greenhouse emission impacts of EVs in each city or country. We also select six driving cycles developed around the world (i.e., the US federal urban driving cycle, the Economic Community of Europe cycle 15, the Japanese 10-mode cycle, the Los Angeles 92 cycle, the New York City cycle, and the Sydney cycle). Note that we have not analyzed EVs in high-speed driving (e.g., highway driving), where the results would be less favorable to EVs; here, EVs are regarded as urban vehicles only. We choose one specific driving cycle for a given city or country and estimate the energy consumption of four-passenger compact electric and gasoline cars in the given city or country. Finally, we estimate total fuel cycle greenhouse gas emissions of both GVs and EVs by accounting for emissions from primary energy recovery, transportation, and processing; energy product transportation; and powerplant and vehicle operations

  6. Greenhouse gas emissions and energy balance of palm oil biofuel

    Energy Technology Data Exchange (ETDEWEB)

    de Souza, Simone Pereira; Pacca, Sergio [Graduate Program on Environmental Engineering Science, School of Engineering of Sao Carlos, University of Sao Paulo, Rua Arlindo Bettio, 1000 Sao Paulo (Brazil); de Avila, Marcio Turra; Borges, Jose Luiz B. [Brazilian Agricultural Research Corporation (Embrapa - Soja) (Brazil)

    2010-11-15

    The search for alternatives to fossil fuels is boosting interest in biodiesel production. Among the crops used to produce biodiesel, palm trees stand out due to their high productivity and positive energy balance. This work assesses life cycle emissions and the energy balance of biodiesel production from palm oil in Brazil. The results are compared through a meta-analysis to previous published studies: Wood and Corley (1991) [Wood BJ, Corley RH. The energy balance of oil palm cultivation. In: PORIM intl. palm oil conference - agriculture; 1991.], Malaysia; Yusoff and Hansen (2005) [Yusoff S, Hansen SB. Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. International Journal of Life Cycle Assessment 2007;12:50-8], Malaysia; Angarita et al. (2009) [Angarita EE, Lora EE, Costa RE, Torres EA. The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renewable Energy 2009;34:2905-13], Colombia; Pleanjai and Gheewala (2009) [Pleanjai S, Gheewala SH. Full chain energy analysis of biodiesel production from palm oil in Thailand. Applied Energy 2009;86:S209-14], Thailand; and Yee et al. (2009) [Yee KF, Tan KT, Abdullah AZ, Lee KT. Life cycle assessment of palm biodiesel: revealing facts and benefits for sustainability. Applied Energy 2009;86:S189-96], Malaysia. In our study, data for the agricultural phase, transport, and energy content of the products and co-products were obtained from previous assessments done in Brazil. The energy intensities and greenhouse gas emission factors were obtained from the Simapro 7.1.8. software and other authors. These factors were applied to the inputs and outputs listed in the selected studies to render them comparable. The energy balance for our study was 1:5.37. In comparison the range for the other studies is between 1:3.40 and 1:7.78. Life cycle emissions determined in our assessment resulted in 1437 kg CO{sub 2}e/ha, while our analysis

  7. Biomass energy: Sustainable solution for greenhouse gas emission

    Science.gov (United States)

    Sadrul Islam, A. K. M.; Ahiduzzaman, M.

    2012-06-01

    Biomass is part of the carbon cycle. Carbon dioxide is produced after combustion of biomass. Over a relatively short timescale, carbon dioxide is renewed from atmosphere during next generation of new growth of green vegetation. Contribution of renewable energy including hydropower, solar, biomass and biofuel in total primary energy consumption in world is about 19%. Traditional biomass alone contributes about 13% of total primary energy consumption in the world. The number of traditional biomass energy users expected to rise from 2.5 billion in 2004 to 2.6 billion in 2015 and to 2.7 billion in 2030 for cooking in developing countries. Residential biomass demand in developing countries is projected to rise from 771 Mtoe in 2004 to 818 Mtoe in 2030. The main sources of biomass are wood residues, bagasse, rice husk, agro-residues, animal manure, municipal and industrial waste etc. Dedicated energy crops such as short-rotation coppice, grasses, sugar crops, starch crops and oil crops are gaining importance and market share as source of biomass energy. Global trade in biomass feedstocks and processed bioenergy carriers are growing rapidly. There are some drawbacks of biomass energy utilization compared to fossil fuels viz: heterogeneous and uneven composition, lower calorific value and quality deterioration due to uncontrolled biodegradation. Loose biomass also is not viable for transportation. Pelletization, briquetting, liquefaction and gasification of biomass energy are some options to solve these problems. Wood fuel production is very much steady and little bit increase in trend, however, the forest land is decreasing, means the deforestation is progressive. There is a big challenge for sustainability of biomass resource and environment. Biomass energy can be used to reduce greenhouse emissions. Woody biomass such as briquette and pellet from un-organized biomass waste and residues could be used for alternative to wood fuel, as a result, forest will be saved and

  8. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    Energy Technology Data Exchange (ETDEWEB)

    Pucker, J.; Jungmeier, G. [JOANNEUM RESEARCH Forschungsgesellschaft mbH, RESOURCES - Institute for Water, Energy and Sustainability, Steyrergasse 17, 8010 Graz (Austria); Zwart, R. [Energy Research Centre of The Netherlands (ECN), Westerduinweg 3, 1755 LE Petten (Netherlands)

    2012-03-15

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO{sub 2}-eq.) - carbon dioxide, methane and nitrous oxide - and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O{sub 2}-blown entrained flow, O{sub 2}-blown circulating fluidised bed and air-steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air-steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO{sub 2}-eq. 32 kg MWh{sup -1} of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O{sub 2}-blown entrained flow and O{sub 2}-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO{sub 2}-eq. 41 to 75 kg MWh{sup -1} of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57-75 kg MWh{sup -1} of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59-2.13 MWh MWh{sup -1} of heat output) than for the reference systems (in 1.37-1.51 MWh MWh{sup -1} of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by

  9. Future forecast for life-cycle greenhouse gas emissions of LNG and city gas 13A

    International Nuclear Information System (INIS)

    Okamura, Tomohito; Furukawa, Michinobu; Ishitani, Hisashi

    2007-01-01

    The objective of this paper is to analyze the most up-to-date data available on total greenhouse-gas emissions of a LNG fuel supply chain and life-cycle of city gas 13A based on surveys of the LNG projects delivering to Japan, which should provide useful basic-data for conducting life-cycle analyses of other product systems as well as future alternative energy systems, because of highly reliable data qualified in terms of its source and representativeness. In addition, the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 were also predicted, taking into account not only the improvement of technologies, but also the change of composition of LNG projects. As a result of this analysis, the total amount of greenhouse-gas emissions of the whole city-gas 13A chain at present was calculated to be 61.91 g-CO 2 /MJ, and the life-cycle greenhouse-gas emissions of LNG and city-gas 13A in 2010 could be expected to decrease by about 1.1% of the current emissions

  10. Greenhouse gas emissions from energy production in Russia: Current status and possible scenarios for the future

    International Nuclear Information System (INIS)

    Ginzburg, V.

    1998-01-01

    In accordance with the framework Convention on Climate Change that was signed and ratified by Russian Federation, periodical reports about the actions of Russia are published. An inventory of human origin sources of greenhouse gas was prepared. Carbondioxide represented 72% of total greenhouse das emissions. Policy and action plans for limiting of greenhouse gas emissions are developing

  11. Greenhouse gas emissions in the Netherlands 1990-1996: Updated methodology

    NARCIS (Netherlands)

    Spakman J; Olivier JGJ; Loon MMJ van; LAE

    1997-01-01

    This inventory of greenhouse gas emissions in the Netherlands has been prepared according to the IPCC Guidelines and complies with the obligations under the European Union's Greenhouse Gas Monitoring Mechanism and the UN-FCCC for emission reports on greenhouse gases not covered under the Montreal

  12. OSPW contamination transport through peat soils : laboratory and greenhouse study

    Energy Technology Data Exchange (ETDEWEB)

    Rezanezhad, F.; Price, J.S. [Waterloo Univ., ON (Canada). Dept. of Geography; Rochefort, L.; Pouliot, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Andersen, R. [Laval Univ., Quebec City, PQ (Canada). Dept. of Phytology; Macaulay Land Use Research Inst., Aberdeen (United Kingdom); Daly, C. [Suncor Energy, Fort McMurray, AB (Canada)

    2010-07-01

    Large portions of northern Canada are covered by peatlands, and the majority of post-mined landscapes have increased salinity, heavy metals and naphthenic acids (NA). This PowerPoint presentation discussed laboratory and greenhouse studies conducted to determine oil sands process water (OSPW) contamination transport through peat soils. Peat is a highly complex porous media. The presence of sodium and NA has a toxic effect on aquatic life. Greenhouse studies were conducted to determine the changes caused by OSPW in the microbial community of a peat matrix over 2 growing seasons. The study showed that peat has an exceptional ability to absorb the contaminants in OSPW water. NA and sodium transport through peat was significantly delayed by sorption, and by diffusion into immobile water contained in the peat matrix. The vegetation in the study was healthy and tolerant to the contaminants in the OSPW. tabs., figs.

  13. Structural decomposition analysis of Australia's greenhouse gas emissions

    International Nuclear Information System (INIS)

    Wood, Richard

    2009-01-01

    A complex system of production links our greenhouse gas emissions to our consumer demands. Whilst progress may be made in improving efficiency, other changes in the production structure may easily annul global improvements. Utilising a structural decomposition analysis, a comparative-static technique of input-output analysis, over a time period of around 30 years, net greenhouse emissions are decomposed in this study into the effects, due to changes in industrial efficiency, forward linkages, inter-industry structure, backward linkages, type of final demand, cause of final demand, population affluence, population size, and mix and level of exports. Historically, significant competing forces at both the whole of economy and industrial scale have been mitigating potential improvements. Key sectors and structural influences are identified that have historically shown the greatest potential for change, and would likely have the greatest net impact. Results clearly reinforce that the current dichotomy of growth and exports are the key problems in need of address.

  14. Multi-sectorial convergence in greenhouse gas emissions.

    Science.gov (United States)

    Oliveira, Guilherme de; Bourscheidt, Deise Maria

    2017-07-01

    This paper uses the World Input-Output Database (WIOD) to test the hypothesis of per capita convergence in greenhouse gas (GHG) emissions for a multi-sectorial panel of countries. The empirical strategy applies conventional estimators of random and fixed effects and Arellano and Bond's (1991) GMM to the main pollutants related to the greenhouse effect. For reasonable empirical specifications, the model revealed robust evidence of per capita convergence in CH 4 emissions in the agriculture, food, and services sectors. The evidence of convergence in CO 2 emissions was moderate in the following sectors: agriculture, food, non-durable goods manufacturing, and services. In all cases, the time for convergence was less than 15 years. Regarding emissions by energy use, the largest source of global warming, there was only moderate evidence in the extractive industry sector-all other pollutants presented little or no evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. How to design greenhouse gas trading in the EU?

    International Nuclear Information System (INIS)

    Svendsen, G.T.

    2003-01-01

    A new and remarkable Green Paper about how to trade greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green Paper raises ten questions about how greenhouse gas permit trading should be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision-makers and stimulate academic debates concerning the actual design of a simple and workable GHG market model for the EU. This model must take both economic, administrative and political concerns into account so that it is feasible in practice. Based on our findings, we therefore develop a policy recommendation concerning the future design of GHG permit trading in the EU. (author)

  16. How to design greenhouse gas trading in the EU?

    International Nuclear Information System (INIS)

    Tinggaard Svendsen, G.; Vesterdal, M.

    2001-01-01

    A new and remarkable Green Paper about how to trade Greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green paper raises ten questions about how greenhouse gas permit trading should be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision-makers and stimulate academic debates concerning the actual design of a simple and workable GHG market model for the EU. This model must take both economic, administrative and political concerns into account so that it is feasible in practice. Based on our findings, we therefore develop a policy recommendation concerning the future design of GHG permit trading in the EU. (au)

  17. How to design greenhouse gas trading in the EU?

    Energy Technology Data Exchange (ETDEWEB)

    Tinggaard Svendsen, G; Vesterdal, M

    2001-07-01

    A new and remarkable Green Paper about how to trade Greenhouse gases (GHG) in the EU has recently been published by the Commission of the European Union. This to achieve the stated 8% reduction target level. The Green paper raises ten questions about how greenhouse gas permit trading should be designed in the EU before year 2005. These ten questions can be compressed into four main issues, namely target group, allocation of emission allowances, how to mix emission trading with other instruments and fourth enforcement. In the literature, there is a strong need to guide decision-makers and stimulate academic debates concerning the actual design of a simple and workable GHG market model for the EU. This model must take both economic, administrative and political concerns into account so that it is feasible in practice. Based on our findings, we therefore develop a policy recommendation concerning the future design of GHG permit trading in the EU. (au)

  18. What are we missing? Scope 3 greenhouse gas emissions accounting in the metals and minerals industry

    Science.gov (United States)

    Greene, Suzanne E.

    2018-05-01

    Metal and mineral companies have significant greenhouse gas emissions in their upstream and downstream value chains due to outsourced extraction, beneficiation and transportation activities, depending on a firm's business model. While many companies move towards more transparent reporting of corporate greenhouse gas emissions, value chain emissions remain difficult to capture, particularly in the global supply chain. Incomplete reports make it difficult for companies to track emissions reductions goals or implement sustainable supply chain improvements, especially for commodity products that form the base of many other sector's value chains. Using voluntarily-reported CDP data, this paper sheds light on hotspots in value chain emissions for individual metal and mineral companies, and for the sector as a whole. The state of value chain emissions reporting for the industry is discussed in general, with a focus on where emissions could potentially be underestimated and how estimates could be improved.

  19. Contribution of sugarcane bioenergy to the Country's greenhouse gas emission reduction

    Energy Technology Data Exchange (ETDEWEB)

    Leal, Manoel Regis Lima Verde; Seabra, Joaquim Eugenio A.; Cortez, Luis Augusto B.

    2012-07-01

    Throughout this book several alternatives to improve the sustainability of Brazilian sugarcane bioethanol have been grouped into four themes, as follows: agricultural-industrial technology paths; production systems, environment and land use; certification, indicators and impacts; energy and greenhouse gas balances. The main international legislation covering the qualification of bio fuels (Renewal Fuel Standard - Sfs in USA, Low Carbon Fuel Standard - LCFS in California and the Renewable Energy Directives in the EU) and the most important bio fuel certification programs are unanimous to indicate the greenhouse gas (GHG) abatement potential of bio fuels as a key parameter and the first step in the qualification system. This is easy to understand since bio fuels are considered as ona of the mitigation alternative for GHG emissions from the transport sector, responsible today for the 14% of global emissions, and from the energy source that accounts for 25% of global GHG emissions (WRI, 2009)

  20. Good practices reducing the greenhouse gases in the transport sector

    International Nuclear Information System (INIS)

    Crespo Garcia, L.; Garcia Cortes, A.; Jimenez Arroyo, F.; Montane Lopez, M. M.

    2010-01-01

    Public policies addressing the reduction of the greenhouse gases emission have to give response to the improvement of mobility in three aspects: passengers, freights, and urban and metropolitan areas. Passenger transport, because it involves long transportation distances consuming an important part of transport energy and raises difficult organizational problems. Freight transport, due to the complexity of interconnecting a lot of modes of transportation and the big range for improvement. Urban and metropolitan mobility, by the impact of actions in this field in the quality of life of a big part of the population. According to the peculiarities of their respective territories, different strategies of sustainable mobility that address the three considered aspects have been set up in Spain and its neighbouring countries. This article reviews some action lines implemented in spain, France and Germany, as a previous step to assess their possible adaptation to other territories. (Author) 6 refs.

  1. Strategic regulation of gas transport

    International Nuclear Information System (INIS)

    Nese, Gjermund; Straume, Odd Rune

    2005-01-01

    The basis of the article has been the steadily increasing focus particularly from EU, on increased competition in the natural gas markets. This could influence the profit distribution between the gas producing and consuming counties which is an important problem situation for Norway as a gas producer. The gas market value chain consist of three parts (production, transport and distribution). How the countries may use strategic regulation of the transport tariff for the transport and distribution systems in order to move as much as possible of the total profit to the part of the value chain in control is studied. The focus has been on how increased competition influences the incentives of the authorities through low or high transport tariff and to what extent increased competition influences the welfare level in the producer and consumer counties when strategic regulations of the transport occur. The analysis is based on a theoretical model developed in 2005. Some central mechanisms related to the natural gas market are mapped and Norway may counteract some negative effects of liberalisation of the European gas market through strategic adaptation of the transport tariff to the Norwegian gas transport systems

  2. Reductions in greenhouse gas emissions and cost by shipping at lower speeds

    International Nuclear Information System (INIS)

    Lindstad, Haakon; Asbjornslett, Bjorn E.; Stromman, Anders H.

    2011-01-01

    CO 2 emissions from maritime transport represent a significant part of total global greenhouse gas (GHG) emissions. According to the International Maritime Organization (), maritime transport emitted 1046 million tons (all tons are metric) of CO 2 in 2007, representing 3.3% of the world's total CO 2 emissions. The International Maritime Organization (IMO) is currently debating both technical and market-based measures for reducing greenhouse gas emissions from shipping. This paper presents investigations on the effects of speed reductions on the direct emissions and costs of maritime transport, for which the selection of ship classes was made to facilitate an aggregated representation of the world fleet. The results show that there is a substantial potential for reducing CO 2 emissions in shipping. Emissions can be reduced by 19% with a negative abatement cost (cost minimization) and by 28% at a zero abatement cost. Since these emission reductions are based purely on lower speeds, they can in part be performed now. - Highlights: → We investigates the effects of speed reductions for maritime transport. → The selection of ship classes represent the words fleet. → The transport volumes are kept constant. → The model includes both cost and emissions as a function of speed. → The results show that there is a substantial potential for reducing CO 2 emissions from shipping.

  3. Greenhouse gas quotas on the Norwegian continental shelf

    International Nuclear Information System (INIS)

    Torvanger, Asbjoern; Godal, Odd; Kolshus, Hans H.; Aaheim, Asbjoern

    2002-01-01

    This report discusses advantages and disadvantages of voluntary quota obligations in a greenhouse gas emissions trading system at the company level, and advantages and disadvantages associated with various initial allocation mechanisms in a quota system. The analysis is based on the situation for the Norwegian oil industry in an early Norwegian emissions trading system in the period 2005-2007, and on oil companies' participation in international emissions trading under the Kyoto Protocol in the period 2008-2012. The report has been commissioned by the Norwegian Oil Industry Association, and was written in the period March-April 2002. (author)

  4. Preparing US community greenhouse gas inventories for climate action plans

    International Nuclear Information System (INIS)

    Blackhurst, Michael; Scott Matthews, H; Hendrickson, Chris T; Sharrard, Aurora L; Azevedo, Ines Lima

    2011-01-01

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  5. Greenhouse gas emissions from nitrogen fertilizer use in China

    International Nuclear Information System (INIS)

    Kahrl, Fredrich; Li, Yunju; Su, Yufang; Tennigkeit, Timm; Wilkes, Andreas; Xu, Jianchu

    2010-01-01

    The use of synthetic nitrogen (N) fertilizers is an important driver of energy use and greenhouse gas (GHG) emissions in China. This paper develops a GHG emission factor for synthetic N fertilizer application in China. Using this emission factor, we estimate the scale of GHG emissions from synthetic nitrogen fertilizer use in Chinese agriculture and explore the potential for GHG emission reductions from efficiency improvements in N fertilizer production and use. The paper concludes with a discussion on costs and financing for a large-scale fertilizer efficiency improvement program in China, and how a GHG mitigation framework might contribute to program design.

  6. Potential of greenhouse gas emission reductions in soybean farming

    DEFF Research Database (Denmark)

    Mohammadi, Ali; Dalgaard, Tommy; Knudsen, Marie Trydeman

    2013-01-01

    Joint implementation of Life Cycle Assessment (LCA) and Data Envelopment Analysis (DEA) has recently showed to be a suitable tool for measuring efficiency in agri-food systems. In the present study, LCA + DEA methodologies were applied for a total of 94 soybean farms in Iran to benchmark the leve...... residue in the field generate significantly more greenhouse gas emissions than other farms. The raising of operational input efficiency and limiting of crop residue burning in the field are recommended options to ensure more environmental friendly soybean farming systems in the region....

  7. The economics of greenhouse gas mitigation in developing Asia

    OpenAIRE

    Aleluia Reis, Lara; Emmerling, Johannes; Tavoni, Massimo; Raitzer, David

    2016-01-01

    Developing Asia has the world's fastest greenhouse gas emissions growth. This study uses an economy-energy-climate model to assess the effects of Paris Agreement pledges on Asia, in comparison with business as usual (BAU) and more ambitious scenarios. Results confirm that pledges must be strongly increased in ambition to achieve the Paris Agreement's goal of less than 2 degrees Celsius (2êC) warming. The policy costs of Asia's pledges are found to be less than 1% of gross domestic product (GD...

  8. Liability rules for international trading of greenhouse gas emissions quotas

    DEFF Research Database (Denmark)

    Haites, E.; Missfeldt, F.

    2001-01-01

    To reduce the costs of mitigating greenhouse gas emissions in accordance with the Kyoto protocol, international trades of emissions quotas are allowed. The revenue from the sale of quotas may exceed the sanctions for non-compliance if these penalties are weak or poorly enforced. Under...... these circumstances emissions trading enables a country to benefit financially through non-compliance. To counter non-compliance due to trading a range of liability proposals have been suggested. Using a simple global model, we analyze the economic and environmental performance of these proposals for the first...

  9. Preparing US community greenhouse gas inventories for climate action plans

    Energy Technology Data Exchange (ETDEWEB)

    Blackhurst, Michael [Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, 1 University Station C1752, Austin, TX 78712-0276 (United States); Scott Matthews, H; Hendrickson, Chris T [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Sharrard, Aurora L [Green Building Alliance, 333 East Carson Street, Suite 331, Pittsburgh, PA 15219 (United States); Azevedo, Ines Lima, E-mail: mblackhurst@gmail.com, E-mail: hsm@cmu.edu, E-mail: auroras@gbapgh.org, E-mail: cth@andrew.cmu.edu, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-07-15

    This study illustrates how alternative and supplemental community-level greenhouse gas (GHG) inventory techniques could improve climate action planning. Eighteen US community GHG inventories are reviewed for current practice. Inventory techniques could be improved by disaggregating the sectors reported, reporting inventory uncertainty and variability, and aligning inventories with local organizations that could facilitate emissions reductions. The potential advantages and challenges of supplementing inventories with comparative benchmarks are also discussed. While GHG inventorying and climate action planning are nascent fields, these techniques can improve CAP design, help communities set more meaningful emission reduction targets, and facilitate CAP implementation and progress monitoring.

  10. Technology Opportunities to Reduce U.S. Greenhouse Gas Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Pena, Federico [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    1997-10-01

    This report serves as the technology basis of a needed national climate change technology strategy, with the confidence that a strong technology R&D program will deliver a portfolio of technologies with the potential to provide very substantial greenhouse gas emission reductions along with continued economic growth. Much more is needed to define such a strategy, including identification of complementary deployment policies and analysis to support the seeping and prioritization of R&D programs. A national strategy must be based upon governmental, industrial, and academic partnerships.

  11. 77 FR 29935 - 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule...

    Science.gov (United States)

    2012-05-21

    .... Fluorinated Gas Production..... 325120 Industrial gases manufacturing facilities. Industrial Waste Landfills... 2012 Technical Corrections, Clarifying and Other Amendments to the Greenhouse Gas Reporting Rule, and Proposed Confidentiality Determinations for Certain Data Elements of the Fluorinated Gas Source Category...

  12. Contribution of N2O to the greenhouse gas balance of first-generation biofuels : climate change and biofuels

    NARCIS (Netherlands)

    Smeets, E.M.W.; Bouwman, A.F.; Stehfest, E.; van Vuuren, D.P.; Posthuma, A.

    2009-01-01

    In this study, we analyze the impact of fertilizer- and manure-induced N2O emissions due to energy crop production on the reduction of greenhouse gas (GHG) emissions when conventional transportation fuels are replaced by first-generation biofuels (also taking account of other GHG emissions during

  13. Monitoring soil greenhouse gas emissions from managed grasslands

    Science.gov (United States)

    Díaz-Pinés, Eugenio; Lu, Haiyan; Butterbach-Bahl, Klaus; Kiese, Ralf

    2014-05-01

    Grasslands in Central Europe are of enormous social, ecological and economical importance. They are intensively managed, but the influence of different common practices (i.e. fertilization, harvesting) on the total greenhouse gas budget of grasslands is not fully understood, yet. In addition, it is unknown how these ecosystems will react due to climate change. Increasing temperatures and changing precipitation will likely have an effect on productivity of grasslands and on bio-geo-chemical processes responsible for emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). In the frame of the TERENO Project (www.tereno.net), a long-term observatory has been implemented in the Ammer catchment, southern Germany. Acting as an in situ global change experiment, 36 big lysimeters (1 m2 section, 150 cm height) have been translocated along an altitudinal gradient, including three sites ranging from 600 to 860 meters above sea level. In addition, two treatments have been considered, corresponding to different management intensities. The overall aim of the pre-alpine TERENO observatory is improving our understanding of the consequences of climate change and management on productivity, greenhouse gas balance, soil nutritional status, nutrient leaching and hydrology of grasslands. Two of the sites are equipped with a fully automated measurement system in order to continuously and accurately monitor the soil-atmosphere greenhouse gas exchange. Thus, a stainless steel chamber (1 m2 section, 80 cm height) is controlled by a robotized system. The chamber is hanging on a metal structure which can move both vertically and horizontally, so that the chamber is able to be set onto each of the lysimeters placed on the field. Furthermore, the headspace of the chamber is connected with a gas tube to a Quantum Cascade Laser, which continuously measures CO2, CH4, N2O and H2O mixing ratios. The chamber acts as a static chamber and sets for 15 minutes onto each lysimeter

  14. NF ISO 14064-1 Greenhouse gases. Part 1: specifications and guidance at the organization level for quantification and reporting of greenhouse gas emissions and removals

    International Nuclear Information System (INIS)

    2005-01-01

    This document describes methodology for quantification, monitoring of greenhouse gas as well as for drafting of inventory report for organisms. Thus it suggests a method for inventory declarations for organism greenhouse gas and provides support for the monitoring and the management of their emission. It provides the terms and definitions, the principles, the greenhouse gases inventory design, development and components, the greenhouse inventory quality management, the reporting of greenhouse gases and the organization role in verification activities. (A.L.B.)

  15. Greenhouse gas emissions from tropical forest degradation: an underestimated source

    Directory of Open Access Journals (Sweden)

    Timothy R. H. Pearson

    2017-02-01

    Full Text Available Abstract Background The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. Results Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. Conclusions The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.

  16. Gas transport in porous media

    CERN Document Server

    Ho, Clifford K

    2006-01-01

    This book presents a compilation of state-of-the art studies on gas and vapor transport processes in porous and fractured media. A broad set of models and processes are presented, including advection/diffusion, the Dusty Gas Model, enhanced vapor diffusion, phase change, coupled processes, solid/vapor sorption, and vapor-pressure lowering. Numerous applications are also presented that illustrate these processes and models in current problems facing the scientific community. This book fills a gap in the general area of transport in porous and fractured media; an area that has historically been dominated by studies of liquid-phase flow and transport. This book identifies gas and vapor transport processes that may be important or dominant in various applications, and it exploits recent advances in computational modeling and experimental methods to present studies that distinguish the relative importance of various mechanisms of transport in complex media.

  17. Deep greenhouse gas emission reductions in Europe: Exploring different options

    International Nuclear Information System (INIS)

    Deetman, Sebastiaan; Hof, Andries F.; Pfluger, Benjamin; Vuuren, Detlef P. van; Girod, Bastien; Ruijven, Bas J. van

    2013-01-01

    Most modelling studies that explore emission mitigation scenarios only look into least-cost emission pathways, induced by a carbon tax. This means that European policies targeting specific – sometimes relatively costly – technologies, such as electric cars and advanced insulation measures, are usually not evaluated as part of cost-optimal scenarios. This study explores an emission mitigation scenario for Europe up to 2050, taking as a starting point specific emission reduction options instead of a carbon tax. The purpose is to identify the potential of each of these policies and identify trade-offs between sectoral policies in achieving emission reduction targets. The reduction options evaluated in this paper together lead to a reduction of 65% of 1990 CO 2 -equivalent emissions by 2050. More bottom-up modelling exercises, like the one presented here, provide a promising starting point to evaluate policy options that are currently considered by policy makers. - Highlights: ► We model the effects of 15 climate change mitigation measures in Europe. ► We assess the greenhouse gas emission reduction potential in different sectors. ► The measures could reduce greenhouse gas emissions by 60% below 1990 levels in 2050. ► The approach allows to explore arguably more relevant climate policy scenarios

  18. ICT and greenhouse gas emissions; IKT og klimagassutslipp

    Energy Technology Data Exchange (ETDEWEB)

    2009-08-15

    ICT can go from being a part of the climate challenge to be an important part of the solution by simplify, rationalize and replace a variety of features and services. ICT's contribute through production and operation for approx. 2.5 % of global greenhouse gas emissions. At the same time estimates show that ICT could help to reduce total greenhouse gas emissions by up to 15 % by 2020 through a series of measures. ICT can, for example. contribute to reduce travel activity through remote collaboration, the transition from material to virtual products and by greater energy efficiency in buildings and vehicles. Through remote collaboration, green tender rounds and change of focus from products to services, can authorities reduce their own emissions. In addition, the authorities go ahead as good examples by illustrating how environment benefits from governmental ICT investments. If we assume that video conferencing can replace 1 of 5 flights among the 140 000 state employees, this can lead to a reducted emission of 14 600 tonnes of CO{sub 2} per year. (AG)

  19. State and Territory Greenhouse Gas Emissions. An overview

    International Nuclear Information System (INIS)

    2005-04-01

    This document is a summary of the latest available estimates of greenhouse gas emissions for the States and Territories. They are taken from the national inventory and show emissions for 2002, the latest year for which national statistics on fuel and electricity consumption are available. The report shows that Australia's total greenhouse gas emissions in 2002 amounted to 541.8 million tonnes. The State and Territory breakdown was: New South Wales: 151.5 million tonnes (Mt); Queensland: 145.1 Mt; Victoria: 117.0 Mt; Western Australia: 70.4 Mt; South Australia: 30.9 Mt; Northern Territory: 17.7 Mt; Tasmania: 7.2 Mt; ACT: 1.3 Mt. The State and Territory inventories are the first of what will be an annual series. The national inventory and State and Territory inventories are all prepared according to the international rules and procedures applicable to Australia's Kyoto 108% emissions target. The national inventory undergoes regular independent international review

  20. Quantifying and reporting greenhouse gas emissions at local level

    Directory of Open Access Journals (Sweden)

    Sόwka Izabela

    2017-01-01

    Full Text Available Cities as global centers of consumption and production often are a significant and growing source of greenhouse gas (GHG emissions. At the same time, local authorities are increasingly taking action on climate change by focusing on reducing GHG emissions and efficiency improvement opportunities. To assess and reduce the overall greenhouse gas emission level from an urban area, it is necessary to identify all the activities and processes which generate these emissions. GHG inventory gives an opportunity to get wider knowledge for city’s community about spatial emission processes and emissions contribution of key sources categories at the local scale. Inventory is being used for decision-making purposes and strategic planning in emission reduction policy. The goal of this paper was to clarify the major methodological challenges of GHG monitoring at the urban level. The paper is based on the discussion of different methods and approaches to assessing GHG emissions at the local level. It is presented sectoral GHGs emission trends in selected urban areas and compared CO2 emission level in different countries and metropolises and variable European cities guidance. The study determines the inventory tools of GHGs emission taking into account the characteristics of main sources at local levels.

  1. Lessons learnt from a sectoral analysis of greenhouse gas mitigation potential in the Balkans

    International Nuclear Information System (INIS)

    Georgopoulou, E.; Mirasgedis, S.; Sarafidis, Y.; Gakis, N.; Hontou, V.; Lalas, D.P.; Steiner, D.; Tuerk, A.; Fruhmann, C.; Pucker, J.

    2015-01-01

    Balkan countries in the process of joining the European Union shall adopt greenhouse gas emissions reduction targets and implement appropriate mitigation policies and measures. This paper presents a simplified methodological framework based on marginal abatement cost curves for estimating the technical and economic mitigation potential at sectoral level (buildings and road transport) in selected Balkan countries. The results of the analysis provide to decision makers useful information regarding the availability of background data, the potential for setting ambitious mitigation targets, and detailed tools for assisting the selection of policies and measures to meet these targets. The analysis performed shows that a significant part of the greenhouse gas emissions abatement potential can be achieved through win–win measures. The incorporation of environmental externalities associated with these interventions, estimated through benefits transfer, further improves the economic performance of these measures, especially in the buildings sector. Moreover, the implementation of these measures is shown to result in positive macroeconomic effects through increases in GDP (gross domestic product) and creation of new jobs. Finally, the rebound effect may restrict the estimated greenhouse gas emission reductions in the buildings of the countries examined due to the low energy performance of the existing building stock. - Highlights: • Analysis of the technical and economic GHG mitigation potential in western Balkans. • Marginal abatement cost curves highlight several win–win interventions. • Incorporation of environmental benefits improves the performance of measures. • Mitigation measures result in significant positive macroeconomic effects. • The investment costs and the rebound effect may influence measures' effectiveness.

  2. The challenge of meeting Canada's greenhouse gas reduction targets

    International Nuclear Information System (INIS)

    Hughes, Larry; Chaudhry, Nikhil

    2011-01-01

    In 2007, the Government of Canada announced its medium- and long-term greenhouse gas (GHG) emissions reduction plan entitled Turning the Corner, proposed emission cuts of 20% below 2006 levels by 2020 and 60-70% below 2006 levels by 2050. A report from a Canadian government advisory organization, the National Round Table on Environment and Economy (NRTEE), Achieving 2050: A carbon pricing policy for Canada, recommended 'fast and deep' energy pathways to emissions reduction through large-scale electrification of Canada's economy by relying on a major expansion of hydroelectricity, adoption of carbon capture and storage for coal and natural gas, and increasing the use of nuclear. This paper examines the likelihood of the pathways being met by considering the report's proposed energy systems, their associated energy sources, and the magnitude of the changes. It shows that the pathways assume some combination of technological advances, access to secure energy supplies, or rapid installation in order to meet both the 2020 and 2050 targets. This analysis suggests that NRTEE's projections are optimistic and unlikely to be achieved. The analysis described in this paper can be applied to other countries to better understand and develop strategies that can help reduce global greenhouse gas emissions. - Research highlights: → An analysis of a Canadian government advisory organization's GHG reduction plans. → Hydroelectricity and wind development is overly optimistic. → Declining coal and natural gas supplies and lack of CO 2 storage may hamper CCS. → Changing precipitation patterns may limit nuclear and hydroelectricity. → Bioenergy and energy reduction policies largely ignored despite their promise.

  3. Gas Transport in Bentonite

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.; Gutierre-Rodrigo, V.; Martin, P. I.; Romero, F. J.; Barcala, J. M.

    2013-07-01

    The gas permeability of the Spanish FEBEX bentonite compacted at dry densities of between 1.4 and 1.8 g/cm{sup 3} with high water contents was measured for different confining, injection and back pressures. The results were compared with results obtained in previous investigations for lower degrees of saturation. It was checked that gas permeability was greatly affected by dry density, decreasing about three orders of magnitude when it increased from 1.5 to 1.8 g/cm{sup 3} for similar water content. The increase of water content caused also a decrease in gas permeability. It was found that both gas permeability and the relative gas permeability were mainly related to the accessible porosity. These relationships could be fitted to potential expressions with exponents between 3 and 4, as well as the relationship between intrinsic permeability and void ratio. For gas pressures below 1.2 MPa no effect of the injection or confining pressures on the value of permeability was detected. For a given confining pressure the permeability value decreased as the effective pressure increased, especially if the increase in effective pressure was due to a decrease in gas back pressure. It was checked that the Klinkenberg effect was not significant for this material in the range of pressures applied in the tests. The gas breakthrough pressure values in FEBEX saturated bentonite were determined for different dry densities. They increased clearly with dry density and were always higher than the swelling pressure of the bentonite. In high density samples gas flow tended to stop abruptly after breakthrough, whereas in lower density samples gas flow decreased gradually until a given pressure gradient was reached. The permeabilities computed after breakthrough (which usually did not stabilise) were inversely related to dry density. This would indicate that, even if the flow took place predominantly through preferential pathways that sometimes closed quickly after breakthrough and others

  4. Gas Transport in Bentonite

    International Nuclear Information System (INIS)

    Villar, M. V.; Gutierrez-Rodrigo, V.; Martin, P. L.; Romero, F. J.; Barcala, J. M.

    2013-01-01

    The gas permeability of the Spanish FEBEX bentonite compacted at dry densities of between 1.4 and 1.8 g/cm 3 with high water contents was measured for different confining, injection and back pressures. The results were compared with results obtained in previous investigations for lower degrees of saturation. It was checked that gas permeability was greatly affected by dry density, decreasing about three orders of magnitude when it increased from 1.5 to 1.8 g/cm 3 for similar water content. The increase of water content caused also a decrease in gas permeability. It was found that both gas permeability and the relative gas permeability were mainly related to the accessible porosity. These relationships could be fitted to potential expressions with exponents between 3 and 4, as well as the relationship between intrinsic permeability and void ratio. For gas pressures below 1.2 MPa no effect of the injection or confining pressures on the value of permeability was detected. For a given confining pressure the permeability value decreased as the effective pressure increased, especially if the increase in effective pressure was due to a decrease in gas back pressure. It was checked that the Klinkenberg effect was not significant for this material in the range of pressures applied in the tests. The gas breakthrough pressure values in FEBEX saturated bentonite were determined for different dry densities. They increased clearly with dry density and were always higher than the swelling pressure of the bentonite. In high density samples gas flow tended to stop abruptly after breakthrough, whereas in lower density samples gas flow decreased gradually until a given pressure gradient was reached. The permeabilities computed after breakthrough (which usually did not stabilise) were inversely related to dry density. This would indicate that, even if the flow took place predominantly through preferential pathways that sometimes closed quickly after breakthrough and others remained

  5. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  6. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    Energy Technology Data Exchange (ETDEWEB)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-09-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions.

  7. Sector trends and driving forces of global energy use and greenhouse gas emissions: focus in industry and buildings

    International Nuclear Information System (INIS)

    Price, Lynn; Worrell, Ernst; Khrushch, Marta

    1999-01-01

    Disaggregation of sectoral energy use and greenhouse gas emissions trends reveals striking differences between sectors and regions of the world. Understanding key driving forces in the energy end-use sectors provides insights for development of projections of future greenhouse gas emissions. This report examines global and regional historical trends in energy use and carbon emissions in the industrial, buildings, transport, and agriculture sectors, with a more detailed focus on industry and buildings. Activity and economic drivers as well as trends in energy and carbon intensity are evaluated. The authors show that macro-economic indicators, such as GDP, are insufficient for comprehending trends and driving forces at the sectoral level. These indicators need to be supplemented with sector-specific information for a more complete understanding of future energy use and greenhouse gas emissions

  8. Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Jungmeier, G.; Apps, M.; Bohlin, F.; Gustavsson, L.; Marland, G.; Pingoud, K.; Savolainen, I.

    1997-01-01

    In this paper, which was prepared as part of IEA Bioenergy Task XV (''Greenhouse Gas Balances of Bioenergy Systems''), we outline a standard methodology for comparing the greenhouse gas balances of bioenergy systems with those of fossil energy systems. Emphasis is on a careful definition of system boundaries. The following issues are dealt with in detail: time interval analysed and changes of carbon stocks; reference energy systems; energy inputs required to produce, process and transport fuels; mass and energy losses along the entire fuel chain; energy embodied in facility infrastructure; distribution systems; cogeneration systems; by-products; waste wood and other biomass waste for energy; reference land use; and other environmental issues. For each of these areas recommendations are given on how analyses of greenhouse gas balances should be performed. In some cases we also point out alternative ways of doing the greenhouse gas accounting. Finally, the paper gives some recommendations on how bioenergy systems should be optimized from a greenhouse-gas emissions point of view. (author)

  9. The possibilities of municipal operations to control greenhouse gas emissions of road traffic

    Energy Technology Data Exchange (ETDEWEB)

    Saeily, S.

    2004-07-01

    aimed to decrease greenhouse gases generated by municipal operations include different types of actions. These actions are making the public transport system more attractive, improving the preconditions of walking and biking, using a parking policy, arranging education of economical and proactive driving, making the possibilities better for telecommuting and car pooling as well as increasing people's environmental knowledge. Selecting the measures always starts by defining the municipal operations' emission sources and setting targets for these actions. Special features of different operations are considered when actions are chosen. After the implementation of actions the results of these actions are estimated. Implemented actions are further developed and new needs are recognized to complement the operations model. Decreasing greenhouse gas emissions generated by municipal operations demands constant monitoring, developing actions and identifying new needs to regenerate the operations model. (orig.)

  10. Designing building energy efficiency programs for greenhouse gas reductions

    International Nuclear Information System (INIS)

    Blackhurst, Michael; Lima Azevedo, Ines; Scott Matthews, H.; Hendrickson, Chris T.

    2011-01-01

    Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO 2 eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators. - Highlights: → We use public data to estimate local building energy costs, benefits and greenhouse gas reductions. → We use optimization to evaluate trade-offs between program objectives and capital constraints. → Local energy market conditions significantly influence efficiency expectations. → Different program objectives can lead to different effective investment strategies. → We reflect on the implications of our results for efficiency program design.

  11. Designing building energy efficiency programs for greenhouse gas reductions

    Energy Technology Data Exchange (ETDEWEB)

    Blackhurst, Michael, E-mail: mfb@andrew.cmu.edu [Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 1 University Station C1752, Austin, TX 78712 (United States); Lima Azevedo, Ines, E-mail: iazevedo@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Scott Matthews, H., E-mail: hsm@cmu.edu [Department of Engineering and Public Policy, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States); Hendrickson, Chris T., E-mail: cth@andrew.cmu.edu [Department of Civil and Environmental Engineering, Carnegie Mellon University, 119 Porter Hall, Pittsburgh, PA 15213 (United States)

    2011-09-15

    Costs and benefits of building energy efficiency are estimated as a means of reducing greenhouse gas emissions in Pittsburgh, PA and Austin, TX. The analysis includes electricity and natural gas consumption, covering 75% of building energy consumption in Pittsburgh and 85% in Austin. Two policy objectives were evaluated: maximize GHG reductions given initial budget constraints or maximize social savings given target GHG reductions. This approach evaluates the trade-offs between three primary and often conflicting program design parameters: initial capital constraints, social savings, and GHG reductions. Results suggest uncertainty in local stocks, demands, and efficiency significantly impacts anticipated outcomes. Annual GHG reductions of 1 ton CO{sub 2} eq/capita/yr in Pittsburgh could cost near nothing or over $20 per capita annually. Capital-constrained policies generate slightly less social savings (a present value of a few hundred dollars per capita) than policies that maximize social savings. However, sectors and end uses targeted for intervention vary depending on policy objectives and constraints. Optimal efficiency investment strategies for some end uses vary significantly (in excess of 100%) between Pittsburgh and Austin, suggesting that resources and guidance conducted at the national scale may mislead state and local decision-makers. Results are used to provide recommendations for efficiency program administrators. - Highlights: > We use public data to estimate local building energy costs, benefits and greenhouse gas reductions. > We use optimization to evaluate trade-offs between program objectives and capital constraints. > Local energy market conditions significantly influence efficiency expectations. > Different program objectives can lead to different effective investment strategies. > We reflect on the implications of our results for efficiency program design.

  12. The Importance of Policy Neutrality for Lowering Greenhouse Gas Emissions

    Directory of Open Access Journals (Sweden)

    Trevor Tombe

    2013-03-01

    Full Text Available The drive by Canadian governments, at the provincial and federal level, to lower greenhouse gas emissions has resulted in a hodgepodge of different policy approaches. Some governments have opted for energy taxes, others for regulated limits on total emissions or emission intensity. Unfortunately, not all policy solutions are created equal; some are more effective than others in lowering total emissions and, worse still, may exact a heavy price on the economy. Policy-makers require a better understanding of how various policies affect the health of an economy and of how to mitigate the most pernicious costs. Key to gaining this improved understanding is to recognize one simple fact: some firms are more productive than others. As a consequence, it matters how workers, machines, energy, and other inputs are distributed between these firms. More productive firms should be larger — it is that simple. Some policies, however, increase input costs differently across firms and create costly distortions. Energy intensity targets are a clear example of a policy that disproportionately burdens lower productivity firms, changing firm sizes for the worse and even leading some to shut down altogether. Using a detailed model of production and energy use that matches the Canadian economy, we explore the consequences of the several forms that energy intensity regulations can take. We find the best approach to lowering greenhouse gas emissions is one that is neutral across firms — one that affects the cost of energy for smaller firms no more, or less, than larger ones. The only policy that fulfils this criterion is a flat energy tax. However, a flat tax on energy could well be politically unsellable in Canada, leaving governments to resort to politically palatable but economically risky intensity targets instead. Recognizing this, we explore a number of ways to improve the performance of intensity targets. First, governments should allow firms the option to

  13. Uncertainties in the Norwegian greenhouse gas emission inventory

    Energy Technology Data Exchange (ETDEWEB)

    Flugsrud, Ketil; Hoem, Britta

    2011-11-15

    The national greenhouse gas (GHG) emission inventory is compiled from estimates based on emission factors and activity data and from direct measurements by plants. All these data and parameters will contribute to the overall inventory uncertainty. The uncertainties and probability distributions of the inventory input parameters have been assessed based on available data and expert judgements.Finally, the level and trend uncertainties of the national GHG emission inventory have been estimated using Monte Carlo simulation. The methods used in the analysis correspond to an IPCC tier 2 method, as described in the IPCC Good Practice Guidance (IPCC 2000) (IPCC 2000). Analyses have been made both excluding and including the sector LULUCF (land use, land-use change and forestry). The uncertainty analysis performed in 2011 is an update of the uncertainty analyses performed for the greenhouse gas inventory in 2006 and 2000. During the project we have been in contact with experts, and have collected information about uncertainty from them. Main focus has been on the source categories where changes have occured since the last uncertainty analysis was performed in 2006. This includes new methodology for several source categories (for example for solvents and road traffic) as well as revised uncertainty estimates. For the installations included in the emission trading system, new information from the annual ETS reports about uncertainty in activity data and CO2 emission factor (and N2O emission factor for nitric acid production) has been used. This has improved the quality of the uncertainty estimates for the energy and manufacturing sectors. The results show that the uncertainty level in the total calculated greenhouse gas emissions for 2009 is around 4 per cent. When including the LULUCF sector, the total uncertainty is around 17 per cent in 2009. The uncertainty estimate is lower now than previous analyses have shown. This is partly due to a considerable work made to improve

  14. Climate Golden Age or Greenhouse Gas Dark Age Legacy?

    Science.gov (United States)

    Carter, P.

    2016-12-01

    Relying on the IPCC Assessments, this paper assesses legacy from total committed global warming over centuries, correlated with comprehensive projected impacts. Socio-economic inertia, climate system inertia, atmospheric greenhouse gas (GHG) concentrations, amplifying feedback emissions, and unmasking of cooling aerosols are determinants. Stabilization of global temperature (and ocean acidification for CO2) requires emissions of "long lived greenhouse gases" to be "about zero," including feedbacks. "The feedback … is positive" this century; many large feedback sources tend to be self- and inter-reinforcing. Only timely total conversion of all fossil fuel power to clean, virtually zero-carbon renewable power can achieve virtual zero carbon emissions. This results in multiple, increasing benefits for the entire world population of today's and all future generations, as laid out here. Conversions of methane- and nitrous oxide-emitting sources have large benefits. Without timely conversion to virtual zero emissions, the global climate and ocean disruptions are predicted to become progressively more severe and practically irreversible. "Continued emission of greenhouse gases will increase the likelihood of severe, pervasive and irreversible impacts for people and ecosystems." Crop yields in all main food-producing regions are projected to decline progressively with rising temperature (as proxy to multiple adverse effects) (AR5). Ocean heating, acidification, and de-oxygenation are projected to increase under all scenarios, as is species extinction. The legacy for humanity depends on reducing long-lived global emissions fast enough to virtual zero. Today's surface warming with unprecedented and accelerating atmospheric GHG concentrations requires an immediate response. The only IPCC scenario to possibly meet this and not exceed 2ºC by and after 2100 is the best-case RCP2.6, which requires CO2 eq. emissions to peak right away and decline at the latest by 2020.

  15. Agriculture and the greenhouse gas emissions: A literature review

    International Nuclear Information System (INIS)

    Kulmala, A.; Esala, M.

    2000-01-01

    Agriculture contributes to the greenhouse effect by increasing carbon dioxide, nitrous oxide and methane emissions. This literature review examines agricultural sources and sinks of greenhouse gases as well as factors affecting emissions. Options for mitigating emissions are presented as well the results of greenhouse gas emission measurements on Finnish agricultural soils. In addition, some basic information is given about Finnish agriculture, and the estimation of emissions using the IPCC Guidelines is described. Carbon dioxide sources include decomposition of soil organic matter, combustion and liming. The agricultural sector can mitigate CO 2 emissions by increasing carbon stocks in soils and vegetation, reducing fossil fuel consumption, and increasing the production of bioenergy. There is little opportunity to decrease the amount of liming in Finland. The main nitrous oxide sources are nitrification and denitrification. N 2 O emissions can be reduced by enhancing plants' ability to compete for soil nitrogen and by keeping the rate of emission processes as low and the duration of emissions as short as possible. Special attention should be paid to manure management because manure contains abundant nitrogen that can be lost as N 2 O. Improvements in the protein feeding of livestock could also reduce potential N 2 O emissions from manure. Methane is emitted, for example, in the course of enteric fermentation and the anaerobic decomposition of organic matter in manure. The emission of CH 4 from soils depends on the relative amounts of methane production and consumption. Cattle with high productivity emit less methane per unit of milk or meat than do animals with low productivity. The number of breeding animals could be reduced by improving animal reproduction efficiency. Methane emitted from manure should be utilized as an energy source, or the formation of it should be prevented by keeping manure under aerobic conditions

  16. Energy efficiency and fuel switching in Canadian industry under greenhouse gas regulation

    International Nuclear Information System (INIS)

    Margolick, M.

    1992-01-01

    The application of financial instruments to greenhouse gas control, particularly a greenhouse gas tax, is discussed. As of June 1991, Finland, the Netherlands, Sweden and Norway have imposed taxes on greenhouse gas emissions, while taxes are imminent in Denmark and Germany. A study has been carried out to model the effects of such taxes on greenhouse gas emissions in Canada, using the Intra-Sectoral Technology Use Model (ISTUM) and an end-use energy demand computer model. Only carbon dioxide and methane were considered. The limitations of the ISTUM model are discussed. Industry results are presented by sector, including an overview of greenhouse gas-producing processes, emission reduction measures possible, energy and greenhouse emissions, and results of taxes at varying levels. Different basic physical and chemical processes among industries would cause widely varying responses to a greenhouse gas tax. Issues which bear directly on greenhouse gas emissions include the burning of biomass fuels in the pulp and paper industry, strategic choices between existing and new technologies in the iron and steel sector, the possibility of a nearly greenhouse gas-free aluminum smelting sector, and the advent of reformulated gasoline requirements and declining crude oil quantity in the petroleum refining sector. 15 refs., 6 figs

  17. Analyzing the Effects of Car Sharing Services on the Reduction of Greenhouse Gas (GHG Emissions

    Directory of Open Access Journals (Sweden)

    Jiyeon Jung

    2018-02-01

    Full Text Available This study examines the environmental impacts of roundtrip car sharing services by investigating transportation behavior. Car sharing should contribute to reduced greenhouse gas GHG emissions; however, such schemes include both positive and negative environmental effects, including: (1 reduced CO2e (carbon dioxide equivalent from substituting private vehicle use for more fuel-efficient car sharing vehicles, (2 increased CO2e as car-less individuals switch from public transit to car sharing vehicles and (3 reduced CO2e due to fewer vehicles. This study examines the impacts of this modal shift on greenhouse gas (GHG emissions using three types of models: a mixed logit model to analyze car sharing service preferences; a binary logit model to analyze whether individuals are willing to forgo vehicle ownership or planned purchases to use car sharing services; and a linear regression to determine how much private vehicle or public transportation use would be replaced by car sharing and the resulting effects on mobility. Total emissions from the current car sharing market equal 1,025,589.36 t CO2e/year. However, an increase in electric vehicle (EV charging stations to 50% of the number of gasoline-fuel stations would increase the probability of electric car sharing vehicle use, thereby reducing emissions by 655,773 t CO2e. This study shows that forgoing vehicle purchases does not offset the increased GHG emissions caused by the shift from public transportation or private vehicle use to car sharing.

  18. Strategies to Reduce Greenhouse Gas Emissions from Laparoscopic Surgery.

    Science.gov (United States)

    Thiel, Cassandra L; Woods, Noe C; Bilec, Melissa M

    2018-04-01

    To determine the carbon footprint of various sustainability interventions used for laparoscopic hysterectomy. We designed interventions for laparoscopic hysterectomy from approaches that sustainable health care organizations advocate. We used a hybrid environmental life cycle assessment framework to estimate greenhouse gas emissions from the proposed interventions. We conducted the study from September 2015 to December 2016 at the University of Pittsburgh (Pittsburgh, Pennsylvania). The largest carbon footprint savings came from selecting specific anesthetic gases and minimizing the materials used in surgery. Energy-related interventions resulted in a 10% reduction in carbon footprint per case but would result in larger savings for the whole facility. Commonly implemented approaches, such as recycling surgical waste, resulted in less than a 5% reduction in greenhouse gases. To reduce the environmental emissions of surgeries, health care providers need to implement a combination of approaches, including minimizing materials, moving away from certain heat-trapping anesthetic gases, maximizing instrument reuse or single-use device reprocessing, and reducing off-hour energy use in the operating room. These strategies can reduce the carbon footprint of an average laparoscopic hysterectomy by up to 80%. Recycling alone does very little to reduce environmental footprint. Public Health Implications. Health care services are a major source of environmental emissions and reducing their carbon footprint would improve environmental and human health. Facilities seeking to reduce environmental footprint should take a comprehensive systems approach to find safe and effective interventions and should identify and address policy barriers to implementing more sustainable practices.

  19. Intertemporal Permit Trading for the Control of Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Leiby, P.; Rubin, J.

    2001-01-01

    This paper integrates two themes in the intertemporal permit literature through the construction of an intertemporal banking system for a pollutant that creates both stock and flow damages. A permit banking system for the special case of a pollutant that only causes stock damages is also developed. This latter, simpler case corresponds roughly to the greenhouse gas emission reduction regime proposed by the U.S. Department of State as a means of fulfilling the U.S. commitment to the Framework Convention on Climate Change. This paper shows that environmental regulators can achieve the socially optimal level of emissions and output through time by setting the correct total sum of allowable emissions, and specifying the correct intertemporal trading ratio for banking and borrowing. For the case of greenhouse gases, we show that the optimal growth rate of permit prices, and therefore the optimal intertemporal trading rate, has the closed-form solution equal to the ratio of current marginal stock damages to the discounted future value of marginal stock damages less the decay rate of emissions in the atmosphere. Given a non-optimal negotiated emission path we then derive a permit banking system that has the potential to lower net social costs by adjusting the intertemporal trading ratio taking into account the behavior of private agents. We use a simple numerical simulation model to illustrate the potential gains from various possible banking systems. 24 refs

  20. Limiting net greenhouse gas emissions in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, R A; Watts, E C; Williams, E R [eds.

    1991-09-01

    In 1988, Congress requested that DOE produce a study on carbon dioxide inventory and policy to provide an inventory of emissions sources and to analyze policies to achieve a 20% reduction in carbon dioxide emissions in 5 to 10 years and a 50% reduction in 15 to 20 years. Energy and environmental technology data were analyzed using computational analysis models. This information was then evaluated, drawing on current scientific understanding of global climate change, the possible consequences of anthropogenic climate change (change caused by human activity) and the relationship between energy production and use and the emission of radiatively important gases. Topics discussed include: state of the science in estimating atmosphere/climate change relationships, the potential consequences of atmosphere/climate change, us greenhouse emissions past and present, an approach to analyzing the technical potential and cost of reducing US energy-related greenhouse gas emissions, current policy base and National Energy Strategy actions, fiscal instruments, regulatory instruments, combined strategies and instruments, macroeconomic impacts, carbon taxation and international trade, a comparison to other studies.

  1. Sustainable supply of global energy needs and greenhouse gas reductions

    International Nuclear Information System (INIS)

    Miller, A.I.; Duffey, R.B.

    2009-01-01

    Nuclear plants emit virtually no greenhouse gases over their full life-cycle. Consequently, continued operation of existing nuclear plants is recognized as essential to meeting even the modest greenhouse gas reduction targets of the Kyoto Accord. However, much expanded nuclear deployment will be needed as developing economies aggressively grow GDP with its associated growth in electrical power. Projecting to 2040 and based on the scenarios of the United Nations Intergovernmental Panel on Climate Change's (IPCC), we have examined deploying increased non-carbon energy sources for electricity production, including further conversion of electricity to hydrogen using conventional low-temperature water electrolysis. Our NuWind model has been used to calculate the production costs for hydrogen in typical potential markets, using the actual prices of electricity paid by the Alberta Power Pool and by the Ontario Grid. The analysis shows clearly that by optimizing the co-production of hydrogen and electricity (referred to as the H2/e process) the cost for hydrogen produced can comfortably meet the US Department of Energy's target for realistic nuclear investment costs, hydrogen generation systems, and wind capacity factors. The synergy of nuclear plus wind power for hydrogen generation plus co-production of electricity improves the economics of harnessing wind energy to produce hydrogen. (author)

  2. Policy Considerations for Greenhouse Gas Emissions from Freshwater Reservoirs

    Directory of Open Access Journals (Sweden)

    Kirsi Mäkinen

    2010-06-01

    Full Text Available Emerging concern over greenhouse gas (GHG emissions from wetlands has prompted calls to address the climate impact of dams in climate policy frameworks. Existing studies indicate that reservoirs can be significant sources of emissions, particularly in tropical areas. However, knowledge on the role of dams in overall national emission levels and abatement targets is limited, which is often cited as a key reason for political inaction and delays in formulating appropriate policies. Against this backdrop, this paper discusses the current role of reservoir emissions in existing climate policy frameworks. The distance between a global impact on climate and a need for local mitigation measures creates a challenge for designing appropriate mechanisms to combat reservoir emissions. This paper presents a range of possible policy interventions at different scales that could help address the climate impact of reservoirs. Reservoir emissions need to be treated like other anthropogenic greenhouse gases. A rational treatment of the issue requires applying commonly accepted climate change policy principles as well as promoting participatory water management plans through integrated water resource management frameworks. An independent global body such as the UN system may be called upon to assess scientific information and develop GHG emissions policy at appropriate levels.

  3. Identification studies about take measures for mitigate of gas emissions greenhouse effect in energy Sector

    International Nuclear Information System (INIS)

    1999-11-01

    In the Unit Nations Convention about Climatic change has get stability of greenhouse effects in atmosphere concentrations. In the framework to Uruguay Project URU/95/631 have been defined the need to identify, measures, practices, process and technologies for reduce some emissions furthermore in Energy sector. Emission impact, cost-benefit, direct or iundirect, national programs, factibility such as social, politics and Institutional agreements was considered in the present work. It was given emissions proyected for 15 years period 1999-2013 of the following atmospheric pollutants: carbon dioxide,carbon monoxide, nitrogen oxides, sulfur oxides and methane.Eight stages was applied the emission evaluation: natural gas; without natural gas; transport; industrial; Montevidean bus- car demand; natural gas uses in bus-taxi; nitrogen oxides control in thermic centrals; catalytic converters in gasoline cars

  4. Agriculture and greenhouse gas effect: status and perspectives

    International Nuclear Information System (INIS)

    2010-01-01

    In a first part, this report analyses the interactions between climate and agriculture: understanding of climate changes and their global impacts, understanding of carbon and nitrogen life cycles and their relationship with anthropic greenhouse gas emissions, emissions by agriculture and impacts of climate change on agriculture, N 2 O, CH 4 and CO 2 emissions by agriculture. The authors address how to reduce emissions and increase carbon storage by crop management and N 2 O emission reduction, by breeding management and CH 4 and CO 2 emission reduction, and by energy CO 2 emission reduction. They discuss emission reduction policies in agriculture within the international political, European and French frameworks. They also identify possible economic tools

  5. Decoupling of greenhouse gas emissions from global agricultural production

    DEFF Research Database (Denmark)

    Bennetzen, Eskild Hohlmann; Smith, Pete; Porter, John Roy

    2016-01-01

    Since 1970 global agricultural production has more than doubled; contributing ~1/4 of total anthropogenic greenhouse gas (GHG) burden in 2010. Food production must increase to feed our growing demands, but to address climate change, GHG emissions must decrease. Using an identity approach, we...... estimate and analyse past trends in GHG emission intensities from global agricultural production and land-use change and project potential future emissions. The novel Kaya-Porter identity framework deconstructs the entity of emissions from a mix of multiple sources of GHGs into attributable elements...... to increase food security whilst reducing emissions. The identity approach presented here could be used as a methodological framework for more holistic food systems analysis....

  6. The role of peat in finnish greenhouse gas balances

    International Nuclear Information System (INIS)

    Crill, P.; Hargreaves, K.; Korhola, A.

    2000-06-01

    Over the past, total annual greenhouse gas (GHG) emissions from Finland, not considering land use change, forestry or peatlands, have remained between 70 000 and 80 000 Gg of CO 2 equivalents. A large portion of which (84% in 1998) is from energy and energy related sources. Signatory members to the 1997 Kyoto protocol of the United Nation's Framework Convention on Climate Change convention, which includes Finland, are compelled to assess their emissions at the national level. This study was undertaken to examine the issues of the role of Finnish peatlands in the national greenhouse gas inventory specifically within the context of the utilization of peatlands for energy production. Our analysis is essentially a literature review and assessment of what has been measured from Finnish peatlands. We are particularly fortunate that there have been a series of recent Ph.D. theses published at the Universities of Helsinki and Joensuu and graduate work at the University of Kuopio on carbon dynamics and greenhouse gas exchange in Finnish peatlands that have both expanded our database and our understanding of peatland processes. Chapter 1 provides a background of the role of peatlands in carbon cycling within the context of changing climate and land use. In Finland about 56 x 103 ha of peatland area were being harvested in 1997, 94% for energy. Even though this is a relatively small area, the implications, on a national scale, for GHG fluxes and carbon balance can be significant The magnitude of GHG fluxes and a qualitative assessment of extant data quality and quantity under different Finnish land use forms and activities is considered in chapter 2. CO 2 fluxes derived from long term C accumulation rates indicate that 3 010 Gg CON and 9 400 Gg CO 2 are sequestered annually from the atmosphere into undrained and peatlands drained for forestry, respectively. Peatlands drained for agriculture emit CO 2 at a rate of 3 200-7 800 Gg annually. Peat harvesting activities and

  7. Statistical polarization in greenhouse gas emissions: Theory and evidence.

    Science.gov (United States)

    Remuzgo, Lorena; Trueba, Carmen

    2017-11-01

    The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990-2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Greenhouse gas emissions of realistic dietary choices in Denmark

    DEFF Research Database (Denmark)

    Werner, Louise Bruun; Flysjö, Anna; Tholstrup, Tine

    2014-01-01

    to nutritional recommendation and climate impact for solid food items; high index values were those with the highest nutrient density scores in relation to the GHGE. RESULTS: The high-dairy scenario resulted in 27% higher protein, 13% higher vitamin D; 55% higher calcium; 48% higher riboflavin; and 18% higher...... selenium than the non-dairy scenario. There was a significant correlation between changes in calcium and changes in vitamin D, selenium, and riboflavin content (P=0.0001) throughout all of the diets. The estimated GHGE for the dietary scenario with average-dairy consumption was 4,631 g CO2e......BACKGROUND: Dairy products are important in a healthy diet due to their high nutritional value; they are, however, associated with relatively large greenhouse gas emissions (GHGE) per kg product. When discussing the need to reduce the GHGE caused by the food system, it is crucial to consider...

  9. Greenhouse gas emissions trading - implications for the coal industry

    Energy Technology Data Exchange (ETDEWEB)

    Joshua, F. [Arthur Andersen, London (United Kingdom). Greenhouse Gas Emissions Trading Services

    2000-07-01

    The Kyoto Protocol has initiated a process whereby greenhouse gas emissions markets are beginning to emerge and risks can be assessed at the corporate level. The talk discussed the three flexible market mechanisms to be available to companies for the management of carbon risk. It explained how a carbon-constrained environment will increase the emphasis on an efficient risk management strategy and infrastructure. The 'Clean Development Mechanism market place' may provide business opportunities. Recent increases in energy use and emissions, and forecasts to 2020, were discussed. Issues to be tackled at the next conference of the parties, COP6, in finalising the Kyoto Protocol are outlined. The proceedings contain only overheads/viewgraphs presented at the conference.

  10. Fuel use and greenhouse gas emissions of world fisheries

    Science.gov (United States)

    Parker, Robert W. R.; Blanchard, Julia L.; Gardner, Caleb; Green, Bridget S.; Hartmann, Klaas; Tyedmers, Peter H.; Watson, Reg A.

    2018-04-01

    Food production is responsible for a quarter of anthropogenic greenhouse gas (GHG) emissions globally. Marine fisheries are typically excluded from global assessments of GHGs or are generalized based on a limited number of case studies. Here we quantify fuel inputs and GHG emissions for the global fishing fleet from 1990-2011 and compare emissions from fisheries to those from agriculture and livestock production. We estimate that fisheries consumed 40 billion litres of fuel in 2011 and generated a total of 179 million tonnes of CO2-equivalent GHGs (4% of global food production). Emissions from the global fishing industry grew by 28% between 1990 and 2011, with little coinciding increase in production (average emissions per tonne landed grew by 21%). Growth in emissions was driven primarily by increased harvests from fuel-intensive crustacean fisheries. The environmental benefit of low-carbon fisheries could be further realized if a greater proportion of landings were directed to human consumption rather than industrial uses.

  11. The Role of Bioenergy in Greenhouse Gas Mitigation

    International Nuclear Information System (INIS)

    Spitzer, J.

    1998-01-01

    Biomass can play a dual role in greenhouse gas mitigation related to the objectives of the UNFCCC, i.e. as an energy source to substitute fossil fuels and as a carbon store. However, compared to the maintenance and enhancement of carbon sinks and reservoirs, it appears that the use of bioenergy has so far received less attenuation as a means of mitigating climate change. Modern bioenergy options offer significant, cost-effective and perpetual opportunities toward meeting emission reduction targets while providing additional ancillary benefits. Moreover, via the sustainable use of the accumulated carbon, bioenergy has the potential for resolving some of the critical issues surrounding long-term maintenance of biotic carbon stocks. < finally, wood products can act as substitutes for more energy-intensive products, can constitute carbon sinks, and can be used as biofuels at the end of their lifetime. (author)

  12. Cost-effective greenhouse gas reduction of various bioenergies

    International Nuclear Information System (INIS)

    Dressler, Daniela; Engelmann, Karsten; Boeswirth, Tobias

    2016-01-01

    The overriding long-term goal, which is to be worked on and supported by the ExpRessBio expert group, is to reduce greenhouse gas emissions (GHG emissions) in consideration of other important environmental impacts in Bavaria. For this purpose, energy and material flows of agricultural and forestry production of biomass for the provision of raw materials for energy conversion and material use are analysed. Based on these analyses, recommendations for the optimization of the mentioned production chains are worked out. At the same time, an economic and business assessment of the investigated process chains is to be carried out at different levels so that the most sustainable use of agricultural and forestry resources in Bavaria can be ensured. [de

  13. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  14. Rice management interventions to mitigate greenhouse gas emissions: a review.

    Science.gov (United States)

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  15. The relative greenhouse gas impacts of realistic dietary choices

    International Nuclear Information System (INIS)

    Berners-Lee, M.; Hoolohan, C.; Cammack, H.; Hewitt, C.N.

    2012-01-01

    The greenhouse gas (GHG) emissions embodied in 61 different categories of food are used, with information on the diet of different groups of the population (omnivorous, vegetarian and vegan), to calculate the embodied GHG emissions in different dietary scenarios. We calculate that the embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person −1 day −1 , or 2.7 t CO 2 e person −1 y −1 . This gives total food-related GHG emissions of 167 Mt CO 2 e (1 Mt=10 6 metric tonnes; CO 2 e being the mass of CO 2 that would have the same global warming potential, when measured over 100 years, as a given mixture of greenhouse gases) for the entire UK population in 2009. This is 27% of total direct GHG emissions in the UK, or 19% of total GHG emissions from the UK, including those embodied in goods produced abroad. We calculate that potential GHG savings of 22% and 26% can be made by changing from the current UK-average diet to a vegetarian or vegan diet, respectively. Taking the average GHG saving from six vegetarian or vegan dietary scenarios compared with the current UK-average diet gives a potential national GHG saving of 40 Mt CO 2 e y −1 . This is equivalent to a 50% reduction in current exhaust pipe emissions from the entire UK passenger car fleet. Hence realistic choices about diet can make substantial differences to embodied GHG emissions. - Highlights: ► We calculate the greenhouse gas emissions embodied in different diets. ► The embodied GHG content of the current UK food supply is 7.4 kg CO 2 e person −1 day −1 . ► Changing to a vegetarian or vegan diet reduces GHG emissions by 22–26%. ► Changing to a vegetarian or vegan diet would reduce UK GHG emissions by 40 Mt CO 2 e y −1 .

  16. A comparative analysis of vehicle-related greenhouse gas emissions between organic and conventional dairy production.

    Science.gov (United States)

    Aggestam, Vivianne; Buick, Jon

    2017-08-01

    Agricultural industrialisation and globalisation have steadily increased the transportation of food across the world. In efforts to promote sustainability and self-sufficiency, organic milk producers in Sweden are required to produce a higher level of cattle feed on-farm in the hope that increased self-sufficiency will reduce reliance on external inputs and reduce transport-related greenhouse gas emissions. Using data collected from 20 conventional and 20 organic milk producers in Sweden this paper aims to assess the global warming impact of farmyard vehicles and the transportation of feed produced 'off-farm' in order to compare the impact of vehicle-related emissions from the different production methods. The findings show organic and conventional production methods have different vehicle-related emission outputs that vary according to a reliance on either road transportation or increased farmyard machinery use. Mechanical weeding is more fuel demanding than conventional agrichemical sprayers. However, artificial fertilising is one of the highest farmyard vehicle-related emitters. The general findings show organic milk production emits higher levels of farm vehicle-related emissions that fail to be offset by reduced emissions occurring from international transport emissions. This paper does not propose to cover a comprehensive supply chain carbon footprint for milk production or attempt to determine which method of production has the largest climatic impact. However, it does demonstrate that Sweden's legal requirements for organic producers to produce more feed on-farm to reduce transport emissions have brought emissions back within Sweden's greenhouse gas inventory and raises questions around the effectiveness of policies to reduce vehicle-related emissions. Further research is needed into the effectiveness of climate change mitigation on food production policies, in particular looking at various trade-offs that affects the entire food supply chain.

  17. 77 FR 14507 - Revision to Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2012-03-12

    ... accounting procedures. CEQ provides this draft revision of the guidance for public review and comment to... COUNCIL ON ENVIRONMENTAL QUALITY Revision to Guidance, ``Federal Greenhouse Gas Accounting and..., ``Federal Greenhouse Gas Accounting and Reporting''. SUMMARY: On October 5, 2009, President Obama signed...

  18. Greenhouse gas emissions in an agroforestry system in the southeastern USA

    Science.gov (United States)

    Agroforestry systems may provide diverse ecosystem services and economic benefits that conventional agriculture cannot, e.g. potentially mitigating greenhouse gas emissions by enhancing nutrient cycling, since tree roots can capture nutrients not taken up by crops. However, greenhouse gas emission ...

  19. 75 FR 57275 - Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot

    Science.gov (United States)

    2010-09-20

    ...] Information Collection; Supplier Greenhouse Gas Emissions Inventory Pilot AGENCY: Federal Acquisition Service... Greenhouse Gas (GHG) Emissions Inventory pilot. Public comments are particularly invited on: Whether this... Inventory pilot, and whether it will have practical utility; whether our estimate of the public burden of...

  20. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  1. 75 FR 41452 - Draft Guidance, “Federal Greenhouse Gas Accounting and Reporting”

    Science.gov (United States)

    2010-07-16

    ... COUNCIL ON ENVIRONMENTAL QUALITY Draft Guidance, ``Federal Greenhouse Gas Accounting and Reporting... Greenhouse Gas Accounting and Reporting.'' SUMMARY: On October 5, 2009, President Obama signed Executive Order (E.O.) 13514--Federal Leadership in Environmental, Energy, and Economic Performance (74 FR 52117...

  2. Greenhouse Gas Mitigation Options Database and Tool - Data repository of GHG mitigation technologies.

    Science.gov (United States)

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emi...

  3. Implications of greenhouse gas emission mitigation scenarios for the main Asian regions

    NARCIS (Netherlands)

    van Ruijven, B.J.|info:eu-repo/dai/nl/304834521; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; van Vliet, J.; Mendoza Beltran, A.; Deetman, S.; den Elzen, M.G.J.

    2012-01-01

    In order to limit global mean temperature increase, long-term greenhouse gas emissions need to be reduced. This paper discusses the implications of greenhouse gas emission reductions for major Asian regions (China, India, Indonesia, South-East Asia, Japan and Korea) based on results from the IMAGE

  4. Greenhouse gas emissions from on-site wastewater treatment systems

    Science.gov (United States)

    Somlai-Haase, Celia; Knappe, Jan; Gill, Laurence

    2016-04-01

    Nearly one third of the Irish population relies on decentralized domestic wastewater treatment systems which involve the discharge of effluent into the soil via a percolation area (drain field). In such systems, wastewater from single households is initially treated on-site either by a septic tank and an additional packaged secondary treatment unit, in which the influent organic matter is converted into carbon dioxide (CO2) and methane (CH4) by microbial mediated processes. The effluent from the tanks is released into the soil for further treatment in the unsaturated zone where additional CO2 and CH4 are emitted to the atmosphere as well as nitrous oxide (N2O) from the partial denitrification of nitrate. Hence, considering the large number of on-site systems in Ireland and internationally, these are potential significant sources of greenhouse gas (GHG) emissions, and yet have received almost no direct field measurement. Here we present the first attempt to quantify and qualify the production and emissions of GHGs from a septic tank system serving a single house in the County Westmeath, Ireland. We have sampled the water for dissolved CO2, CH4 and N2O and measured the gas flux from the water surface in the septic tank. We have also carried out long-term flux measurements of CO2 from the drain field, using an automated soil gas flux system (LI-8100A, Li-Cor®) covering a whole year semi-continuously. This has enabled the CO2 emissions from the unsaturated zone to be correlated against different meteorological parameters over an annual cycle. In addition, we have integrated an ultraportable GHG analyser (UGGA, Los Gatos Research Inc.) into the automated soil gas flux system to measure CH4 flux. Further, manual sampling has also provided a better understanding of N2O emissions from the septic tank system.

  5. The role of process intensification in cutting greenhouse gas emissions

    International Nuclear Information System (INIS)

    Reay, David

    2008-01-01

    Between 1900 and 1955 the average rate of global energy use rose from about 1 TW to 2 TW. Between 1955 and 1999 energy use rose from 2 TW to about 12 TW, and to 2006 a further 16% growth in primary energy use was recorded world-wide. There are recommendations by the UK Royal Commission on Environmental Pollution, subsequently supported by others in the UK, that we need to reduce CO 2 emissions by over 50% in order to stabilise their impact on global warming (CO 2 being the principal gas believed to be contributing to this phenomenon). One way in which we can address this is by judicious use of process intensification technology. Process intensification may be defined as: 'Any engineering development that leads to a substantially smaller, cleaner, safer and more energy-efficient technology.' It is most often characterised by a huge reduction in plant volume - orders of magnitude - but its contribution to reducing greenhouse gas emissions may also be significant. Potential energy savings due to investment in process intensification were studied by several UK organisations in the mid 1990s, to assist the UK Government in formulating a strategy on intensification. It is relevant to the themes of the PRES 07 Conference that process integration features in these analyses. Overall plant intensification in the UK was identified as having a technical potential of 40 PJ/year (about 1 million tonnes of oil equivalent/annum). The total potential energy savings due to investment in process intensification in a range of process unit operations were predicted to be over 74 PJ/year (1 PJ = 10 15 J). Projections for The Netherlands suggest that savings of 50-100 PJ/year should be achieved across chemicals and food processing by 2050. Substantial benefits to industry in the USA are highlighted by US Department of Energy studies. This paper relates by discussion and example process intensification to the main themes of the PRES 07 Conference, including process integration. It also

  6. Open-source LCA tool for estimating greenhouse gas emissions from crude oil production using field characteristics.

    Science.gov (United States)

    El-Houjeiri, Hassan M; Brandt, Adam R; Duffy, James E

    2013-06-04

    Existing transportation fuel cycle emissions models are either general and calculate nonspecific values of greenhouse gas (GHG) emissions from crude oil production, or are not available for public review and auditing. We have developed the Oil Production Greenhouse Gas Emissions Estimator (OPGEE) to provide open-source, transparent, rigorous GHG assessments for use in scientific assessment, regulatory processes, and analysis of GHG mitigation options by producers. OPGEE uses petroleum engineering fundamentals to model emissions from oil and gas production operations. We introduce OPGEE and explain the methods and assumptions used in its construction. We run OPGEE on a small set of fictional oil fields and explore model sensitivity to selected input parameters. Results show that upstream emissions from petroleum production operations can vary from 3 gCO2/MJ to over 30 gCO2/MJ using realistic ranges of input parameters. Significant drivers of emissions variation are steam injection rates, water handling requirements, and rates of flaring of associated gas.

  7. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes.

    Science.gov (United States)

    Schmittner, Andreas; Galbraith, Eric D

    2008-11-20

    Earth's climate and the concentrations of the atmospheric greenhouse gases carbon dioxide (CO(2)) and nitrous oxide (N(2)O) varied strongly on millennial timescales during past glacial periods. Large and rapid warming events in Greenland and the North Atlantic were followed by more gradual cooling, and are highly correlated with fluctuations of N(2)O as recorded in ice cores. Antarctic temperature variations, on the other hand, were smaller and more gradual, showed warming during the Greenland cold phase and cooling while the North Atlantic was warm, and were highly correlated with fluctuations in CO(2). Abrupt changes in the Atlantic meridional overturning circulation (AMOC) have often been invoked to explain the physical characteristics of these Dansgaard-Oeschger climate oscillations, but the mechanisms for the greenhouse-gas variations and their linkage to the AMOC have remained unclear. Here we present simulations with a coupled model of glacial climate and biogeochemical cycles, forced only with changes in the AMOC. The model simultaneously reproduces characteristic features of the Dansgaard-Oeschger temperature, as well as CO(2) and N(2)O fluctuations. Despite significant changes in the land carbon inventory, CO(2) variations on millennial timescales are dominated by slow changes in the deep ocean inventory of biologically sequestered carbon and are correlated with Antarctic temperature and Southern Ocean stratification. In contrast, N(2)O co-varies more rapidly with Greenland temperatures owing to fast adjustments of the thermocline oxygen budget. These results suggest that ocean circulation changes were the primary mechanism that drove glacial CO(2) and N(2)O fluctuations on millennial timescales.

  8. Assessing Greenhouse Gas emissions in the Greater Toronto Area using atmospheric observations (Invited)

    Science.gov (United States)

    Vogel, F. R.; Chan, E.; Huang, L.; Levin, I.; Worthy, D.

    2013-12-01

    Urban areas are said to be responsible for approximately 75% of anthropogenic Greenhouse Gases (GHGs) emissions while comprising only two percent of the land area [1]. This limited spatial expansion should facilitate a monitoring of anthropogenic GHGs from atmospheric observations. As major sources of emissions, cities also have a huge potential to drive emissions reductions. To effectively manage emissions, cities must however, first measure and report these publicly [2]. Modelling studies and measurements of CO2 from fossil fuel burning (FFCO2) in densely populated areas does, however, pose several challenges: Besides continuous in-situ observations, i.e. finding an adequate atmospheric transport model, a sufficiently fine-grained FFCO2 emission model and the proper background reference observations to distinguish the large-scale from the local/urban contributions to the observed FFCO2 concentration offsets ( ΔFFCO2) are required. Pilot studies which include the data from two 'sister sites*' in the vicinity of Toronto, Canada helped to derive flux estimates for Non-CO2 GHGs [3] and improve our understanding of urban FFCO2 emissions. Our 13CO2 observations reveal that the contribution of natural gas burning (mostly due to domestic heating) account for 80%×7% of FFCO2 emissions in the Greater Toronto Area (GTA) during winter. Our 14CO2 observations in the GTA, furthermore, show that the local offset of CO2 (ΔCO2) between our two sister sites can be largely attributed to urban FFCO2 emissions. The seasonal cycle of the observed ΔFFCO2 in Toronto, combined with high-resolution atmospheric modeling, helps to independently assess the contribution from different emission sectors (transportation, primary energy and industry, domestic heating) as predicted by a dedicated city-scale emission inventory, which deviates from a UNFCCC-based inventory. [1] D. Dodman. 2009. Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories

  9. Numerical Simulation of Dispersion from Urban Greenhouse Gas Sources

    Science.gov (United States)

    Nottrott, Anders; Tan, Sze; He, Yonggang; Winkler, Renato

    2017-04-01

    Cities are characterized by complex topography, inhomogeneous turbulence, and variable pollutant source distributions. These features create a scale separation between local sources and urban scale emissions estimates known as the Grey-Zone. Modern computational fluid dynamics (CFD) techniques provide a quasi-deterministic, physically based toolset to bridge the scale separation gap between source level dynamics, local measurements, and urban scale emissions inventories. CFD has the capability to represent complex building topography and capture detailed 3D turbulence fields in the urban boundary layer. This presentation discusses the application of OpenFOAM to urban CFD simulations of natural gas leaks in cities. OpenFOAM is an open source software for advanced numerical simulation of engineering and environmental fluid flows. When combined with free or low cost computer aided drawing and GIS, OpenFOAM generates a detailed, 3D representation of urban wind fields. OpenFOAM was applied to model scalar emissions from various components of the natural gas distribution system, to study the impact of urban meteorology on mobile greenhouse gas measurements. The numerical experiments demonstrate that CH4 concentration profiles are highly sensitive to the relative location of emission sources and buildings. Sources separated by distances of 5-10 meters showed significant differences in vertical dispersion of plumes, due to building wake effects. The OpenFOAM flow fields were combined with an inverse, stochastic dispersion model to quantify and visualize the sensitivity of point sensors to upwind sources in various built environments. The Boussinesq approximation was applied to investigate the effects of canopy layer temperature gradients and convection on sensor footprints.

  10. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  11. Greenhouse

    Data.gov (United States)

    Federal Laboratory Consortium — PurposeThe greenhouse at ERDC’s Cold Regions Research and Engineering Laboratory (CRREL) is used for germination and root-growth studies to support basic and field...

  12. Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe

    International Nuclear Information System (INIS)

    Arteconi, A.; Brandoni, C.; Evangelista, D.; Polonara, F.

    2010-01-01

    The aim of the present study was to compare the life cycle, in terms of greenhouse gas (GHG) emissions, of diesel and liquefied natural gas (LNG) used as fuels for heavy-duty vehicles in the European market (EU-15). A literature review revealed that the numerous studies conducted have reported different results when the authors departed from different baseline assumptions and reference scenarios. For our study, we concentrated on the European scenario and on heavy-duty road transport vehicles, given their important incidence on the global emissions of GHG. Two possible LNG procurement strategies were considered i.e. purchasing it directly from the regasification terminal (LNG-TER) or producing LNG locally (at the service station) with small-scale plants (LNG-SSL). We ascertained that the use of LNG-TER enables a 10% reduction in GHG emissions by comparison with diesel, while the emissions resulting from the LNG-SSL solution are comparable with those of diesel.

  13. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    International Nuclear Information System (INIS)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-01-01

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and

  14. Measuring Greenhouse Gas Emissions and Sinks Across California Land Cover

    Science.gov (United States)

    Fischer, M. L.

    2017-12-01

    Significant reductions in greenhouse gas (GHG) emissions are needed to limit rising planetary temperatures that will otherwise limit Earth's capacity to support life, introducing geopolitical instability. To help mitigate this threat, California has legislated landmark reductions in state-level greenhouse gas (GHG) emissions that set an example for broader action. Beginning with relatively assured reduction of current emissions to 1990 levels by 2020, future goals are much more challenging with 40% and 80% reductions below 1990 emissions by 2030 and 2050, respectively. While the majority of the reductions must focus on fossil fuels, inventory estimates of non-CO2 GHG emissions (i.e., CH4, N2O, and industrial compounds) constitute 15% of the total, suggesting reductions are required across multiple land use sectors. However, recent atmospheric inversion studies show methane and nitrous oxide (CH4 & N2O) emissions exceed current inventory estimates by factors of 1.2-1.8 and 1.6-2.6 (at 95% confidence), respectively, perhaps constituting up to 30% of State total emissions. The discrepancy is likely because current bottom-up models used for inventories do not accurately capture important management or biophysical factors. In the near term, process level experiments and sector-specific inversions are being planned to quantify the factors controlling non-CO2 GHG emissions for several of the dominant emission sectors. For biosphere carbon, California forests lands, which also depend on the combination of management, climate, and weather, lost above ground carbon from 2001-2010, and may be expected to lose soil and root carbon as a longer-term result. Here, it is important to identify and apply the best principles in forestry and agriculture to increase carbon stocks in depleted forest and agricultural areas, focusing on approaches that provide resilience to future climate and weather variations. Taken together, improved atmospheric, plant, and soil observations, together

  15. Climate change science : high quality greenhouse gas emissions data are a cornerstone of programs to address climate change

    Science.gov (United States)

    2009-02-24

    This testimony focuses on (1) the importance of quality data on emissions in the context of a program intended to limit greenhouse gas emissions, and (2) key considerations in developing reliable data on greenhouse gas emissions. This testimony is ba...

  16. 76 FR 80553 - Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas...

    Science.gov (United States)

    2011-12-23

    ... permeability gas, shale gas, coal seam, or other tight reservoir rock. For example, wells producing coal bed... separation means one or more of the following processes: forced extraction of natural gas liquids, sulfur and... Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas Systems...

  17. Effort Optimization in Minimizing Food Related Greenhouse Gas Emissions, a look at "Organic" and "Local"

    Science.gov (United States)

    Bowen, E.; Martin, P. A.; Eshel, G.

    2008-12-01

    The adverse environmental effects, especially energy use and resultant GHG emissions, of food production and consumption are becoming more widely appreciated and increasingly well documented. Our insights into the thorny problem of how to mitigate some of those effects, however, are far less evolved. Two of the most commonly advocated strategies are "organic" and "local", referring, respectively, to growing food without major inputs of fossil fuel based synthetic fertilizers and pesticides and to food consumption near its agricultural origin. Indeed, both agrochemical manufacture and transportation of produce to market make up a significant percentage of energy use in agriculture. While there can be unique environmental benefits to each strategy, "organic" and "local" each may potentially result in energy and emissions savings relative to conventionally grown produce. Here, we quantify the potential energy and greenhouse gas emissions savings associated with "organic" and "local". We take note of energy use and actual GHG costs of the major synthetic fertilizers and transportation by various modes routinely employed in agricultural distribution chains, and compare them for ~35 frequently consumed nutritional mainstays. We present new, current, lower-bound energy and greenhouse gas efficiency estimates for these items and compare energy consumption and GHG emissions incurred during producing those food items to consumption and emissions resulting from transporting them, considering travel distances ranging from local to continental and transportation modes ranging from (most efficient) rail to (least efficient) air. In performing those calculations, we demonstrate the environmental superiority of either local or organic over conventional foods, and illuminate the complexities involved in entertaining the timely yet currently unanswered, and previously unanswerable, question of "Which is Environmentally Superior, Organic or Local?". More broadly, we put forth a

  18. The role of nuclear power in the reduction of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Baratta, A.J.

    2010-01-01

    Nuclear energy is a low greenhouse gas emitter and is capable of providing large amounts of power using proven technology. In the immediate future, it can contribute to greenhouse gas reduction but only on a modest scale, replacing a portion of the electricity produced by coal fired power plants. While it has the potential to do more, there are significant resource issues that must be addressed if nuclear power is to replace coal or natural gas as a source of electricity

  19. Gas transport in graphitic materials

    International Nuclear Information System (INIS)

    Hoinkis, E.

    1995-02-01

    The characterization of the gas transport properties of porous solids is of interest in several fields of science and technology. Many catalysts, adsorbents, soils, graphites and carbons are porous. The gas transport through most porous solids can be well described by the dusty gas model invented by Evans, Watson and Mason. This model includes all modes of gas tranport under steady-state conditions, which are Knudsen diffusion, combined Knudsen/continuum diffusion and continuum diffusion, both for gas pairs with equal and different molecular weights. In the absence of a pressure difference gas transport in a pore system can be described by the combined Knudsen/continuum diffusion coefficient D 1 for component 1 in the pores, the Knudsen diffusion coefficient D 1K in the pores, and the continuum diffusion coefficient D 12 for a binary mixture in the pores. The resistance to stationary continuum diffusion of the pores is characterized by a geometrical factor (ε/τ) 12 = (ε/τ)D 12 , were D 12 is the continuum diffusion coefficient for a binary mixture in free space. The Wicke-Kallenbach method was often used to measure D 1 as function of pressure. D 12 and D 1K can be derived from a plot 1/D 1 νs P, and ε/τcan be calculated since D 12 is known. D 1K and the volume of dead end pores can be derived from transient measurements of the diffusional flux at low pressures. From D 1K the expression (ε/τ c ) anti l por may be calculated, which characterizes the pore system for molecular diffusion, where collisions with the pore walls are predominant. (orig.)

  20. Using greenhouse gas fluxes to define soil functional types

    Energy Technology Data Exchange (ETDEWEB)

    Petrakis, Sandra; Barba, Josep; Bond-Lamberty, Ben; Vargas, Rodrigo

    2017-12-04

    Soils provide key ecosystem services and directly control ecosystem functions; thus, there is a need to define the reference state of soil functionality. Most common functional classifications of ecosystems are vegetation-centered and neglect soil characteristics and processes. We propose Soil Functional Types (SFTs) as a conceptual approach to represent and describe the functionality of soils based on characteristics of their greenhouse gas (GHG) flux dynamics. We used automated measurements of CO2, CH4 and N2O in a forested area to define SFTs following a simple statistical framework. This study supports the hypothesis that SFTs provide additional insights on the spatial variability of soil functionality beyond information represented by commonly measured soil parameters (e.g., soil moisture, soil temperature, litter biomass). We discuss the implications of this framework at the plot-scale and the potential of this approach at larger scales. This approach is a first step to provide a framework to define SFTs, but a community effort is necessary to harmonize any global classification for soil functionality. A global application of the proposed SFT framework will only be possible if there is a community-wide effort to share data and create a global database of GHG emissions from soils.

  1. Greenhouse gas emission factors of purchased electricity from interconnected grids

    International Nuclear Information System (INIS)

    Ji, Ling; Liang, Sai; Qu, Shen; Zhang, Yanxia; Xu, Ming; Jia, Xiaoping; Jia, Yingtao; Niu, Dongxiao; Yuan, Jiahai; Hou, Yong; Wang, Haikun; Chiu, Anthony S.F.; Hu, Xiaojun

    2016-01-01

    Highlights: • A new accounting framework is proposed for GHG emission factors of power grids. • Three cases are used to demonstrate the proposed framework. • Comparisons with previous system boundaries approve the necessity. - Abstract: Electricity trade among power grids leads to difficulties in measuring greenhouse gas (GHG) emission factors of purchased electricity. Traditional methods assume either electricity purchased from a grid is entirely produced locally (Boundary I) or imported electricity is entirely produced by the exporting grid (Boundary II) (in fact a blend of electricity produced by many grids). Both methods ignore the fact that electricity can be indirectly traded between grids. Failing to capture such indirect electricity trade can underestimate or overestimate GHG emissions of purchased electricity in interconnected grid networks, potentially leading to incorrectly accounting for the effects of emission reduction policies involving purchased electricity. We propose a “Boundary III” framework to account for emissions both directly and indirectly caused by purchased electricity in interconnected gird networks. We use three case studies on a national grid network, an Eurasian Continent grid network, and North Europe grid network to demonstrate the proposed Boundary III emission factors. We found that the difference on GHG emissions of purchased electricity estimated using different emission factors can be considerably large. We suggest to standardize the choice of different emission factors based on how interconnected the local grid is with other grids.

  2. Greenhouse gas mitigation potentials in the livestock sector

    Science.gov (United States)

    Herrero, Mario; Henderson, Benjamin; Havlík, Petr; Thornton, Philip K.; Conant, Richard T.; Smith, Pete; Wirsenius, Stefan; Hristov, Alexander N.; Gerber, Pierre; Gill, Margaret; Butterbach-Bahl, Klaus; Valin, Hugo; Garnett, Tara; Stehfest, Elke

    2016-05-01

    The livestock sector supports about 1.3 billion producers and retailers, and contributes 40-50% of agricultural GDP. We estimated that between 1995 and 2005, the livestock sector was responsible for greenhouse gas emissions of 5.6-7.5 GtCO2e yr-1. Livestock accounts for up to half of the technical mitigation potential of the agriculture, forestry and land-use sectors, through management options that sustainably intensify livestock production, promote carbon sequestration in rangelands and reduce emissions from manures, and through reductions in the demand for livestock products. The economic potential of these management alternatives is less than 10% of what is technically possible because of adoption constraints, costs and numerous trade-offs. The mitigation potential of reductions in livestock product consumption is large, but their economic potential is unknown at present. More research and investment are needed to increase the affordability and adoption of mitigation practices, to moderate consumption of livestock products where appropriate, and to avoid negative impacts on livelihoods, economic activities and the environment.

  3. Statistical polarization in greenhouse gas emissions: Theory and evidence

    International Nuclear Information System (INIS)

    Remuzgo, Lorena; Trueba, Carmen

    2017-01-01

    The current debate on climate change is over whether global warming can be limited in order to lessen its impacts. In this sense, evidence of a decrease in the statistical polarization in greenhouse gas (GHG) emissions could encourage countries to establish a stronger multilateral climate change agreement. Based on the interregional and intraregional components of the multivariate generalised entropy measures (Maasoumi, 1986), Gigliarano and Mosler (2009) proposed to study the statistical polarization concept from a multivariate view. In this paper, we apply this approach to study the evolution of such phenomenon in the global distribution of the main GHGs. The empirical analysis has been carried out for the time period 1990–2011, considering an endogenous grouping of countries (Aghevli and Mehran, 1981; Davies and Shorrocks, 1989). Most of the statistical polarization indices showed a slightly increasing pattern that was similar regardless of the number of groups considered. Finally, some policy implications are commented. - Highlights: • We study the evolution of global polarization in GHG emissions. • We consider the four main GHGs: CO2, CH4, N2O and F-gases. • We use the multidimensional polarization indices (). • We consider an endogenous grouping of countries (). • Most of the polarization indices showed a slightly increasing pattern.

  4. Globally significant greenhouse-gas emissions from African inland waters

    Science.gov (United States)

    Borges, Alberto V.; Bouillon, Steven

    2017-04-01

    The relevance of inland waters to global biogeochemical cycles is increasingly recognized, and of particular importance is their contribution of greenhouse gases to the atmosphere. The latter remain largely unreported in African inland waters. Here we report dissolved CO2, CH4 and N2O from 12 rivers in Sub-Saharan Africa acquired during >30 field expeditions and additional seasonally resolved sampling at >30 sites between 2006 and 2014. Fluxes were calculated from reported gas transfer velocity values, and upscaled using available spatial datasets, with an estimated uncertainty of about ±19%. CO2 equivalent emissions ( 0.4±0.1 PgC yr-1) match 2/3 of the overall net carbon sink previously reported for Africa. Including emissions from wetlands of the Congo, the putative total emission ( 0.9±0.1 PgC yr-1) is about half of the global oceanic or land carbon sinks. In-situ respiration supported <14% of riverine CO2 emissions, which must therefore largely be driven by mineralization in wetlands or uplands. Riverine CO2 and CH4 emissions were directly correlated to wetland coverage and aboveground vegetation biomass, implying that future changes in wetland and upland vegetation cover will strongly impact GHG emissions from African inland waters.

  5. Greenhouse gas emissions from agricultural soils in Austria

    International Nuclear Information System (INIS)

    Strebl, F.; Gebetsroither, E.; Orthofer, R.

    2002-07-01

    This report documents the calculations of anthropogenic greenhouse gas emissions in Austria of the IPCC-sector 'Agricultural Soils' for the period 1980 to 2001. According to available information, CH 4 emissions from agricultural soils are very small and thus irrelevant. N 2 O emissions were calculated according to the IPCC method; emission sources considered include direct emissions from nitrogen inputs to soils (mineral and organic fertilizers, crop residues, sewage sludge application, biological fixation) as well as indirect emissions (from atmospheric nitrogen deposition and nitrogen leaching) plus emissions from nitrogen input through grazing animal excreta. NH 3 and NO x emissions were calculated according to the CORINAIR method; sources considered were nitrogen inputs through fertilization as well as emissions from unfertilized cultures. In the year 1990 total emissions were 5.680 t N 2 O-N, 24.628 t NH 3 -N and 1.376 t NO x N. In the period 1980-2001 there were considerable fluctuations of emissions, caused by an inter annual variability of crop production and fertilizer consumption data. However, there are no significant emission trends in the past 20 years. Uncertainties were determined through a Monte-Carlo-based simulation; the standard deviation of a normal uncertainty distribution is 24 % for N 2 O, 13 % for NH 3 , and 18 % for NO x . (author)

  6. Assessing Embodied Energy and Greenhouse Gas Emissions in Infrastructure Projects

    Directory of Open Access Journals (Sweden)

    Jan Krantz

    2015-10-01

    Full Text Available Greenhouse gas (GHG emissions from construction processes are a serious concern globally. Of the several approaches taken to assess emissions, Life Cycle Assessment (LCA based methods do not just take into account the construction phase, but consider all phases of the life cycle of the construction. However, many current LCA approaches make general assumptions regarding location and effects, which do not do justice to the inherent dynamics of normal construction projects. This study presents a model to assess the embodied energy and associated GHG emissions, which is specifically adapted to address the dynamics of infrastructure construction projects. The use of the model is demonstrated on the superstructure of a prefabricated bridge. The findings indicate that Building Information Models/Modeling (BIM and Discrete Event Simulation (DES can be used to efficiently generate project-specific data, which is needed for estimating the embodied energy and associated GHG emissions in construction settings. This study has implications for the advancement of LCA-based methods (as well as project management as a way of assessing embodied energy and associated GHG emissions related to construction.

  7. UK emissions of the greenhouse gas nitrous oxide

    Science.gov (United States)

    Skiba, U.; Jones, S. K.; Dragosits, U.; Drewer, J.; Fowler, D.; Rees, R. M.; Pappa, V. A.; Cardenas, L.; Chadwick, D.; Yamulki, S.; Manning, A. J.

    2012-01-01

    Signatories of the Kyoto Protocol are obliged to submit annual accounts of their anthropogenic greenhouse gas emissions, which include nitrous oxide (N2O). Emissions from the sectors industry (3.8 Gg), energy (14.4 Gg), agriculture (86.8 Gg), wastewater (4.4 Gg), land use, land-use change and forestry (2.1 Gg) can be calculated by multiplying activity data (i.e. amount of fertilizer applied, animal numbers) with simple emission factors (Tier 1 approach), which are generally applied across wide geographical regions. The agricultural sector is the largest anthropogenic source of N2O in many countries and responsible for 75 per cent of UK N2O emissions. Microbial N2O production in nitrogen-fertilized soils (27.6 Gg), nitrogen-enriched waters (24.2 Gg) and manure storage systems (6.4 Gg) dominate agricultural emission budgets. For the agricultural sector, the Tier 1 emission factor approach is too simplistic to reflect local variations in climate, ecosystems and management, and is unable to take into account some of the mitigation strategies applied. This paper reviews deviations of observed emissions from those calculated using the simple emission factor approach for all anthropogenic sectors, briefly discusses the need to adopt specific emission factors that reflect regional variability in climate, soil type and management, and explains how bottom-up emission inventories can be verified by top-down modelling. PMID:22451103

  8. Potential greenhouse gas benefits of transatlantic wood pellet trade

    International Nuclear Information System (INIS)

    Dwivedi, Puneet; Khanna, Madhu; Bailis, Robert; Ghilardi, Adrian

    2014-01-01

    Power utility companies in the United Kingdom are using imported wood pellets from the southern region of the United States for electricity generation to meet the legally binding mandate of sourcing 15% of the nation’s total energy consumption from renewable sources by 2020. This study ascertains relative savings in greenhouse gas (GHG) emissions for a unit of electricity generated using imported wood pellet in the United Kingdom under 930 different scenarios: three woody feedstocks (logging residues, pulpwood, and logging residues and pulpwood combined), two forest management choices (intensive and non-intensive), 31 plantation rotation ages (year 10 to year 40 in steps of 1 year), and five power plant capacities (20–100 MW in steps of 20 MW). Relative savings in GHG emissions with respect to a unit of electricity derived from fossil fuels in the United Kingdom range between 50% and 68% depending upon the capacity of power plant and rotation age. Relative savings in GHG emissions increase with higher power plant capacity. GHG emissions related to wood pellet production and transatlantic shipment of wood pellets typically contribute about 48% and 31% of total GHG emissions, respectively. Overall, use of imported wood pellets for electricity generation could help in reducing the United Kingdom’s GHG emissions. We suggest that future research be directed to evaluation of the impacts of additional forest management practices, changing climate, and soil carbon on the overall savings in GHG emissions related to transatlantic wood pellet trade. (paper)

  9. Opportunities for reducing greenhouse gas emissions in tropical peatlands.

    Science.gov (United States)

    Murdiyarso, D; Hergoualc'h, K; Verchot, L V

    2010-11-16

    The upcoming global mechanism for reducing emissions from deforestation and forest degradation in developing countries should include and prioritize tropical peatlands. Forested tropical peatlands in Southeast Asia are rapidly being converted into production systems by introducing perennial crops for lucrative agribusiness, such as oil-palm and pulpwood plantations, causing large greenhouse gas (GHG) emissions. The Intergovernmental Panel on Climate Change Guidelines for GHG Inventory on Agriculture, Forestry, and Other Land Uses provide an adequate framework for emissions inventories in these ecosystems; however, specific emission factors are needed for more accurate and cost-effective monitoring. The emissions are governed by complex biophysical processes, such as peat decomposition and compaction, nutrient availability, soil water content, and water table level, all of which are affected by management practices. We estimate that total carbon loss from converting peat swamp forests into oil palm is 59.4 ± 10.2 Mg of CO(2) per hectare per year during the first 25 y after land-use cover change, of which 61.6% arise from the peat. Of the total amount (1,486 ± 183 Mg of CO(2) per hectare over 25 y), 25% are released immediately from land-clearing fire. In order to maintain high palm-oil production, nitrogen inputs through fertilizer are needed and the magnitude of the resulting increased N(2)O emissions compared to CO(2) losses remains unclear.

  10. Canadian options for greenhouse gas emission reduction (COGGER)

    International Nuclear Information System (INIS)

    Robinson, J.; Fraser, M.; Haites, E.; Harvey, D.; Jaccard, M.; Reinsch, A.; Torrie, R.

    1993-09-01

    A panel was formed to assess the feasibility and cost of energy-related greenhouse gas (GHG) emissions reduction in Canada. The panel studies focused on the potential for increased energy efficiency and fuel switching and their effect in reducing CO 2 emissions by reviewing the extensive literature available on those topics and assessing their conclusions. Economically feasible energy savings are estimated mostly in the range of 20-40% savings by the year 2010 relative to a reference-case projection, with a median of 23%. The panel concluded that achieving the identified economic potential for increased energy efficiency by 2010 will depend on development of additional demand-side management or energy efficiency programs that go well beyond current policies and programs. Fuel switching will play a much smaller role in stabilizing energy-related CO 2 emissions than improved energy efficiency. Technology substitution and broader structural change would enable Canada to achieve significant reductions in CO 2 emissions; however, more research is needed on achieving emission reductions that would approach the levels estimated to be required globally for stabilization of atmospheric CO 2 concentrations. Achieving such emissions reductions would likely require a combination of significant improvements in energy efficiency, major changes in energy sources, and substantial changes in economic activity and life styles, relative to that projected in most reference-case forecasts. 5 refs., 1 fig., 10 tabs

  11. Forgotten carbon: indirect CO2 in greenhouse gas emission inventories

    International Nuclear Information System (INIS)

    Gillenwater, Michael

    2008-01-01

    National governments that are Parties to the United Nations Framework Convention on Climate Change (UNFCCC) are required to submit greenhouse gas (GHG) inventories accounting for the emissions and removals occurring within their geographic territories. The Intergovernmental Panel on Climate Change (IPCC) provides inventory methodology guidance to the Parties of the UNFCCC. This methodology guidance, and national inventories based on it, omits carbon dioxide (CO 2 ) from the atmospheric oxidation of methane, carbon monoxide, and non-methane volatile organic compounds emissions that result from several source categories. The inclusion of this category of 'indirect' CO 2 in GHG inventories increases global anthropogenic emissions (excluding land use and forestry) between 0.5 and 0.7%. However, the effect of inclusion on aggregate UNFCCC Annex I Party GHG emissions would be to reduce the growth of total emissions, from 1990 to 2004, by 0.2% points. The effect on the GHG emissions and emission trends of individual countries varies. The paper includes a methodology for calculating these emissions and discusses uncertainties. Indirect CO 2 is equally relevant for GHG inventories at other scales, such as global, regional, organizational, and facility. Similarly, project-based methodologies, such as those used under the Clean Development Mechanism, may need revising to account for indirect CO 2

  12. Carbon soundings: greenhouse gas emissions of the UK music industry

    Science.gov (United States)

    Bottrill, C.; Liverman, D.; Boykoff, M.

    2010-01-01

    Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors—such as businesses, non-government organizations, celebrities—have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO2e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO2e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO2e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

  13. Establishing a greenhouse gas inventory and reduction goal: case study

    International Nuclear Information System (INIS)

    Carli, G.A.; Richardson, S.L.

    2009-01-01

    'Full text:' Since 1976, Conestoga-Rovers & Associates (CRA) has grown from a small, regional engineering company, to one of the world's most sought-after, multi-disciplinary engineering and consulting firms with over 90 offices and more than 2,700 people working on projects worldwide. CRA is committed to helping its clients meet or exceed their environmental performance goals while achieving its own sustainability objectives. CRA is continuously striving to implement social and environmental performance improvements in each and every work place where CRA conducts business. CRA's Corporate Sustainability, Social Responsibility, and Environmental Policy reflects this commitment. CRA is working to reduce its environmental footprint and invest in the communities in which we live and conduct business. CRA undertook a corporate-wide greenhouse gas (GHG) inventory and set aggressive GHG reduction goals. This presentation provides an overview of the steps CRA has taken to quantify corporate GHG emissions, including establishing boundary conditions, data collection activities, calculation of GHG emissions, and development of and inventory management plant consistent with the U.S. EPA Climate Leaders program. The presentation discusses the primary challenges addressed in developing a GHG inventory for multiple facilities located throughout North America, including obtaining verifiable data, addressing corporate travel, and communicating climate change goals within the organization. The presentation concludes with an overview of the key considerations necessary to establish a credible reduction goal. (author)

  14. Equity effects of economic instruments for greenhouse gas abatement

    International Nuclear Information System (INIS)

    Harrison, D. Jr.

    1994-01-01

    This paper discusses the equity effects of using economic instruments--such as a carbon tax or carbon emissions trading program--to regulate greenhouse gas emissions. Determining these equity effects is more complicated than assessing overall costs and benefits, although some of the same issues arise. Among the key issues are the following: (1) benchmark for evaluating impacts of economic instruments (status quo or regulatory program that achieves the same emission reductions); (2) use of any government revenues collected, which are transfers overall but affect gains and losses; (3) time period (long-term or transitional impacts); and (4) groupings (income groups, sectors or regions). Empirical studies suggest that a national tax is regressive in the US but may be less so in other countries. The equity impacts of an international carbon tax or emissions trading program differ greatly depending upon the specific elements. The paper considers options to compensate or mitigate adverse effects to income groups, sectors, or regions of the world. Although impossible to avoid all losses to every group, it would be possible to avoid major equity effects if carbon taxes or carbon trading programs were used to control global warming

  15. Choosing greenhouse gas emission reduction policies in Canada

    International Nuclear Information System (INIS)

    Demerse, C.; Bramley, M.; Craig, L.

    2008-10-01

    There is a growing consensus in Canada that climate change needs to be addressed through concrete actions. The implementation of specific policies have been impeded by concerns over economic costs. However, uncertainty over the course of policy creates a cost since businesses have little idea how to factor future environmental policies into their planning. This report examined the policy tools that federal and provincial governments have at their disposal to reduce greenhouse gas (GHG) emissions, including carbon pricing (through cap-and-trade systems or carbon taxes), regulated standards, subsidies, infrastructure spending, research and development, and voluntary initiatives. In order to understand the strengths and weaknesses of these policy options, the study assessed them against a set of criteria that included environmental effectiveness, economic efficiency, fairness and cost-effectiveness. The report also reviewed the real-world experience with the implementation of these policy options in Canada and internationally. In particular, the report examined carbon pricing mechanisms in detail and explored the best ways to use revenues raised through carbon pricing, and the best options to mitigate any reduced international competitiveness that Canadian industries may encounter. The report concluded with a discussion of areas for further research. It was concluded that climate policy in Canada raises a host of jurisdictional questions that would benefit from further research. 7 tabs., 2 appendices

  16. Carbon soundings: greenhouse gas emissions of the UK music industry

    Energy Technology Data Exchange (ETDEWEB)

    Bottrill, C [Centre for Environmental Strategy, School of Engineering (D3), University of Surrey, Guildford, Surrey GU2 7XH (United Kingdom); Liverman, D [Institute of the Environment, University of Arizona, Tucson, AZ 85721 (United States); Boykoff, M, E-mail: c.bottrill@surrey.ac.u, E-mail: liverman@u.arizona.ed, E-mail: boykoff@colorado.ed [CIRES Center for Science and Technology Policy, Environmental Studies and Geography, University of Colorado - Boulder, 1333 Grandview Ave, Campus Box 488, Boulder, CO 80309 (United States)

    2010-01-15

    Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors-such as businesses, non-government organizations, celebrities-have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO{sub 2}e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO{sub 2}e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO{sub 2}e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

  17. Hydrological controls on the tropospheric ozone greenhouse gas effect

    Directory of Open Access Journals (Sweden)

    Le Kuai

    2017-03-01

    Full Text Available The influence of the hydrological cycle in the greenhouse gas (GHG effect of tropospheric ozone (O3 is quantified in terms of the O3longwave radiative effect (LWRE, which is defined as the net reduction of top-of-atmosphere flux due to total tropospheric O3absorption. The O3LWRE derived from the infrared spectral measurements by Aura’s Tropospheric Emission Spectrometer (TES show that the spatiotemporal variation of LWRE is relevant to relative humidity, surface temperature, and tropospheric O3column. The zonally averaged subtropical LWRE is ~0.2 W m-2higher than the zonally averaged tropical LWRE, generally due to lower water vapor concentrations and less cloud coverage at the downward branch of the Hadley cell in the subtropics. The largest values of O3LWRE over the Middle East (>1 W/m2 are further due to large thermal contrasts and tropospheric ozone enhancements from atmospheric circulation and pollution. Conversely, the low O3LWRE over the Inter-Tropical Convergence Zone (on average 0.4 W m-2 is due to strong water vapor absorption and cloudiness, both of which reduce the tropospheric O3absorption in the longwave radiation. These results show that changes in the hydrological cycle due to climate change could affect the magnitude and distribution of ozone radiative forcing.

  18. Incentive aspects of point implementation of greenhouse gas reduction

    International Nuclear Information System (INIS)

    Michaelowa, A.

    1996-01-01

    The costs of a national climate policy instruments can be reduced if a reduction of greenhouse gas emission achieved abroad can be credited to a national target. Reductions carried through by agents of one country in another country are called Joint Implementation and have been a major topic in the negotiations on the UN Framework Convention on Climate Change. The first Conference of the parties in Berlin decided that the concept should be tested in a pilot phase without crediting. To induce private investments in Joint Implementation projects, primary instruments such as emission taxes, subsidies, tradeable emission rights or regulation are a necessary condition. Tax concessions, subsidies, additional emission rights or relaxation of regulation act as incentives. These must be proportional to the emission reduction achieved through the projects. Tax concessions and subsidies are preferable to other instruments for efficiency reasons. Examples are given for calculating tax concessions on a range of projects, including the installation of new boilers at a foreign power plant, the building of a new lignite power plant abroad, and the replacement of a coal-fired power plant with a hydroelectric power plant. 18 refs., 7 figs., 1 tab

  19. Greenhouse gas emissions for the EU in four future scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lesschen, J.P.; Rienks, W.; Staritsky, I. [Alterra, Wageningen-UR, Wageningen (Netherlands); Eickhout, B.; Prins, A.G. [Netherlands Environmental Assessment Agency PBL, Bilthoven (Netherlands)

    2009-12-15

    The European Common Agricultural Policy (CAP) will be revised in the near future. A proposed agricultural policy reform will affect many dimensions of the sustainable development of agriculture. One of these dimensions are greenhouse gas (GHG) emissions. The objective of this study was to assess the impact of four scenarios of the future, from the Eururalis study, and the effects of CAP options on GHG emissions from agriculture. The results provide an indication of the range of GHG emissions between the four diverging base scenarios and the differences with current emission levels in Member States and on EU level. Analysis of the possible impact of the measures on GHG emissions showed that this would be much larger from mitigation measures than from CAP options. Full implementation of the mitigation measures could lead to a reduction in GHG emissions from agriculture of 127 Mt CO2 equivalents. This is about a quarter of current GHG emissions from agriculture. Promoting mitigation measures, therefore, is more effective for reducing GHG emissions from agriculture, than influencing income and price subsidies within the CAP. On the global scale, CAP options hardly play a role in total GHG emissions from land use. Much more important are developments in global population, economic growth, policies and technological developments, as depicted in the various scenarios.

  20. Addressing biogenic greenhouse gas emissions from hydropower in LCA.

    Science.gov (United States)

    Hertwich, Edgar G

    2013-09-03

    The ability of hydropower to contribute to climate change mitigation is sometimes questioned, citing emissions of methane and carbon dioxide resulting from the degradation of biogenic carbon in hydropower reservoirs. These emissions are, however, not always addressed in life cycle assessment, leading to a bias in technology comparisons, and often misunderstood. The objective of this paper is to review and analyze the generation of greenhouse gas emissions from reservoirs for the purpose of technology assessment, relating established emission measurements to power generation. A literature review, data collection, and statistical analysis of methane and CO2 emissions are conducted. In a sample of 82 measurements, methane emissions per kWh hydropower generated are log-normally distributed, ranging from micrograms to 10s of kg. A multivariate regression analysis shows that the reservoir area per kWh electricity is the most important explanatory variable. Methane emissions flux per reservoir area are correlated with the natural net primary production of the area, the age of the power plant, and the inclusion of bubbling emissions in the measurement. Even together, these factors fail to explain most of the variation in the methane flux. The global average emissions from hydropower are estimated to be 85 gCO2/kWh and 3 gCH4/kWh, with a multiplicative uncertainty factor of 2. GHG emissions from hydropower can be largely avoided by ceasing to build hydropower plants with high land use per unit of electricity generated.

  1. Carbon soundings: greenhouse gas emissions of the UK music industry

    International Nuclear Information System (INIS)

    Bottrill, C; Liverman, D; Boykoff, M

    2010-01-01

    Over the past decade, questions regarding how to reduce human contributions to climate change have become more commonplace and non-nation state actors-such as businesses, non-government organizations, celebrities-have increasingly become involved in climate change mitigation and adaptation initiatives. For these dynamic and rapidly expanding spaces, this letter provides an accounting of the methods and findings from a 2007 assessment of greenhouse gas (GHG) emissions in the UK music industry. The study estimates that overall GHG emissions associated with the UK music market are approximately 540 000 t CO 2 e per annum. Music recording and publishing accounted for 26% of these emissions (138 000 t CO 2 e per annum), while three-quarters (74%) derived from activities associated with live music performances (400 000 t CO 2 e per annum). These results have prompted a group of music industry business leaders to design campaigns to reduce the GHG emissions of their supply chains. The study has also provided a basis for ongoing in-depth research on CD packaging, audience travel, and artist touring as well as the development of a voluntary accreditation scheme for reducing GHG emissions from activities of the UK music industry.

  2. Greenhouse gas mitigation using poultry litter management techniques in Bangladesh

    International Nuclear Information System (INIS)

    Mainali, Brijesh; Emran, Saad Been; Silveira, Semida

    2017-01-01

    Poultry activities have expanded significantly in Bangladesh in recent years. The litter generated from rural poultry farms is often dumped in low ground neighboring areas resulting in greenhouse gas emissions, as well as water and air pollution. This study estimates the GHG emissions of a typical rural layer poultry farm in Bangladesh, and identifies the GHG emissions reduction potential when poultry litter management techniques are used to produce biogas, generating electricity and bio-fertilizer. Life-cycle assessment (LCA) has been used for a systematic evaluation of GHG-emissions considering the local supply chain in a typical rural layer poultry farm. The analysis shows that the GHG-emissions at the poultry farm amount to 1735 KgCO_2_e_q/10000 eggs produced if the litter is untreated. With the installation of an anaerobic digester, the emission intensity could be reduced by 65% if the gas is used to replace LPG for cooking purposes. If 100% digested slurry is utilized as bio-fertilizer, the emissions intensity could be further reduced by 17 times compared to the case without slurry utilization. These results justify the consideration of national programs to improve conditions in poultry farms in Bangladesh. - Highlights: • This study estimates GHG-emissions reduction potential of utilizing poultry litter for energy production in a rural farm. • Energy/mass flow and GHG balances are evaluated considering the local supply chain. • On-farm activities significantly affect GHG emissions among others across the supply chain. • Biogas production and use of slurry as bio-fertilizer significantly reduces the emission intensity. • Results from LCA and sensitivity analysis have been discussed to identify key influential parameters.

  3. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  4. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  5. Competitiveness of terrestrial greenhouse gas offsets. Are they a bridge to the future?

    International Nuclear Information System (INIS)

    McCarl, B.A.; Sands, R.D.

    2007-01-01

    Activities to reduce net greenhouse gas emissions by biological soil or forest carbon sequestration predominantly utilize currently known, readily implementable technologies. Many other greenhouse gas emission reduction options require future technological development or must wait for turnover of capital stock. Carbon sequestration options in soils and forests, while ready to go now, generally have a finite life, allowing use until other strategies are developed. This paper reports on an investigation of the competitiveness of biological carbon sequestration from a dynamic and multiple strategy viewpoint. Key factors affecting the competitiveness of terrestrial mitigation options are land availability and cost effectiveness relative to other options including CO2 capture and storage, energy efficiency improvements, fuel switching, and non-CO2 greenhouse gas emission reductions. The analysis results show that, at lower CO2 prices and in the near term, soil carbon and other agricultural/forestry options can be important bridges to the future, initially providing a substantial portion of attainable reductions in net greenhouse gas emissions, but with a limited role in later years. At higher CO2 prices, afforestation and biofuels are more dominant among terrestrial options to offset greenhouse gas emissions. But in the longer run, allowing for capital stock turnover, options to reduce greenhouse gas emissions from the energy system and biofuels provide an increasing share of potential reductions in total US greenhouse gas emissions

  6. 76 FR 57105 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2011-09-15

    ... CFR Parts 523, 534, and 535 Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for...-2010-0079; FRL-9455-1] RIN 2060-AP61; 2127-AK74 Greenhouse Gas Emissions Standards and Fuel Efficiency... Heavy-Duty National Program that will reduce greenhouse gas emissions and fuel consumption for on-road...

  7. 75 FR 81952 - Greenhouse Gas Emissions Standards and Fuel Efficiency Standards for Medium- and Heavy-Duty...

    Science.gov (United States)

    2010-12-29

    ...-HQ-OAR-2010-0162; FRL-9219-4; NHTSA 2010-0079] RIN 2060-AP61; RIN 2127-AK74 Greenhouse Gas Emissions... will increase fuel efficiency and reduce greenhouse gas emissions for on-road heavy-duty vehicles...-Duty National Program that will increase fuel efficiency and reduce greenhouse gas emissions for on...

  8. Estimating Policy-Driven Greenhouse Gas Emissions Trajectories in California: The California Greenhouse Gas Inventory Spreadsheet (GHGIS) Model

    Energy Technology Data Exchange (ETDEWEB)

    Greenblatt, Jeffery B.

    2013-10-10

    A California Greenhouse Gas Inventory Spreadsheet (GHGIS) model was developed to explore the impact of combinations of state policies on state greenhouse gas (GHG) and regional criteria pollutant emissions. The model included representations of all GHG- emitting sectors of the California economy (including those outside the energy sector, such as high global warming potential gases, waste treatment, agriculture and forestry) in varying degrees of detail, and was carefully calibrated using available data and projections from multiple state agencies and other sources. Starting from basic drivers such as population, numbers of households, gross state product, numbers of vehicles, etc., the model calculated energy demands by type (various types of liquid and gaseous hydrocarbon fuels, electricity and hydrogen), and finally calculated emissions of GHGs and three criteria pollutants: reactive organic gases (ROG), nitrogen oxides (NOx), and fine (2.5 ?m) particulate matter (PM2.5). Calculations were generally statewide, but in some sectors, criteria pollutants were also calculated for two regional air basins: the South Coast Air Basin (SCAB) and the San Joaquin Valley (SJV). Three scenarios were developed that attempt to model: (1) all committed policies, (2) additional, uncommitted policy targets and (3) potential technology and market futures. Each scenario received extensive input from state energy planning agencies, in particular the California Air Resources Board. Results indicate that all three scenarios are able to meet the 2020 statewide GHG targets, and by 2030, statewide GHG emissions range from between 208 and 396 MtCO2/yr. However, none of the scenarios are able to meet the 2050 GHG target of 85 MtCO2/yr, with emissions ranging from 188 to 444 MtCO2/yr, so additional policies will need to be developed for California to meet this stringent future target. A full sensitivity study of major scenario assumptions was also performed. In terms of criteria pollutants

  9. Does the Swedish consumer's choice of food influence greenhouse gas emissions?

    International Nuclear Information System (INIS)

    Wallen, Anna; Brandt, Nils; Wennersten, Ronald

    2004-01-01

    Consumer's choice of food can influence the environment. In Sweden, in common with many other countries, consumers need to be given information so they can make environmentally informed shopping choices. However, what is the most advantageous dietary choice to lower greenhouse emissions? This study investigates the greenhouse gas emissions associated with food production for food consumed in Sweden annually. Specifically, this study compares greenhouse gas emissions associated with a nutritionally and environmentally sustainable diet with the average consumption of food in Sweden 1999. The study concludes that the change in energy use and greenhouse gas emission associated with this change of diet is negligible. Lowering greenhouse gas emissions by changing food production processes results in more profound changes than teaching consumers to make environmentally correct choices. There is a basic need for a reduction or a replacement of the use of fossil fuels to produce and distribute our food in order to reach any significant reduction in the emission of greenhouse gases. Swedish agricultural policy does not provide ways to reduce greenhouse gas emissions. In Sweden therefore there is an immediate need to design policy instruments with the primary aim of reducing the greenhouse effect

  10. Regional greenhouse gas emissions from cultivation of winter wheat and winter rapeseed for biofuels in Denmark

    Energy Technology Data Exchange (ETDEWEB)

    Elsgaard, Lars; Olesen, Joergen E.; Hermansen, John E.; Kristensen, Inge T.; Boergesen, Christen D. [Dept. of Agroecology, Aarhus Univ., Tjele (Denmark)], E-mail: lars.elsgaard@agrsci.dk

    2013-04-15

    Biofuels from bioenergy crops may substitute a significant part of fossil fuels in the transport sector where, e.g., the European Union has set a target of using 10% renewable energy by 2020. Savings of greenhouse gas emissions by biofuels vary according to cropping systems and are influenced by such regional factors as soil conditions, climate and input of agrochemicals. Here we analysed at a regional scale the greenhouse gas (GHG) emissions associated with cultivation of winter wheat for bioethanol and winter rapeseed for rapeseed methyl ester (RME) under Danish conditions. Emitted CO{sub 2} equivalents (CO{sub 2}eq) were quantified from the footprints of CO{sub 2}, CH{sub 4} and N{sub 2}O associated with cultivation and the emissions were allocated between biofuel energy and co-products. Greenhouse gas emission at the national level (Denmark) was estimated to 22.1 g CO{sub 2}eq MJ{sup 1} ethanol for winter wheat and 26.0 g CO{sub 2}eq MJ{sup 1} RME for winter rapeseed. Results at the regional level (level 2 according to the Nomenclature of Territorial Units for Statistics [NUTS]) ranged from 20.0 to 23.9 g CO{sub 2}eq MJ{sup 1} ethanol and from 23.5 to 27.6 g CO{sub 2}eq MJ{sup 1} RME. Thus, at the regional level emission results varied by up to 20%. Differences in area-based emissions were only 4% reflecting the importance of regional variation in yields for the emission result. Fertilizer nitrogen production and direct emissions of soil N{sub 2}O were major contributors to the final emission result and sensitivity analyses showed that the emission result depended to a large extent on the uncertainty ranges assumed for soil N{sub 2}O emissions. Improvement of greenhouse gas balances could be pursued, e.g., by growing dedicated varieties for energy purposes. However, in a wider perspective, land-use change of native ecosystems to bioenergy cropping systems could compromise the CO{sub 2} savings of bioenergy production and challenge the targets set for biofuel

  11. Are greenhouse gas emissions from international shipping a type of marine pollution?

    Science.gov (United States)

    Shi, Yubing

    2016-12-15

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of 'conditional' marine pollution. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Possibilities of using ISO 1406X standards in the management of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Fabian, G.; Priesol, J.

    2009-01-01

    Aim of this paper is to define and describe using of ISO 1406X standards for organization, which production of greenhouse gas emissions represents an important environmental aspect especially in terms of financial benefits accruing from trading with saved / reduced emissions. Following the main aim of this paper, we have set the following sub-objectives and tasks: - Define and describe the algorithm of implementation of program on greenhouse gas emissions according to the requirements and guidelines of the ISO 1406X in the organization; - Create a model of comprehensive management of greenhouse gas emissions standards as described.

  13. The greenhouse gas intensity of the tourism sector: The case of Switzerland

    International Nuclear Information System (INIS)

    Perch-Nielsen, Sabine; Sesartic, Ana; Stucki, Matthias

    2010-01-01

    Greenhouse gas intensity is a ratio comparing the greenhouse gas (GHG) emissions of an activity or economic sector to the economic value it generates. In recent years, many countries have calculated the GHG intensity of their economic sectors as a basis for policy making. The GHG intensity of tourism, however, has not been determined since tourism is not measured as an economic sector in the national accounts. While for tourism-reliant countries it would be useful to know this quantity, a number of difficulties exist in its determination. In this study, we determine the GHG intensity of tourism's value added in Switzerland by means of a detailed bottom-up approach with the main methodological focus on how to achieve consistent system boundaries. For comparison, we calculate the tourism sector's GHG intensity for selected European countries using a simpler top-down approach. Our results show that the Swiss tourism sector is more than four times more GHG intensive than the Swiss economy on average. Of all tourism's sub-sectors, air transport stands out as the sector with by far largest emissions (80%) and highest GHG intensity. The results for other countries make similar, if not as pronounced, patterns apparent. We discuss the results and possible mitigation options against the background of the goal to prevent dangerous climate change.

  14. Microtrap assembly for greenhouse gas and air pollution monitoring

    Science.gov (United States)

    Mitra, Somenath; Saridara, Chutarat

    2015-08-25

    A microtrap assembly includes a carbon nanotube sorbent. The microtrap assembly may be employed as a preconcentrator operable to deliver a sample to an analytical device to measure the concentrations of greenhouse gases. A system includes a microtrap having a carbon nanotube sorbent for measuring the concentrations of greenhouse gases in a sample.

  15. Taming of the few-The unequal distribution of greenhouse gas emissions from personal travel in the UK

    International Nuclear Information System (INIS)

    Brand, Christian; Boardman, Brenda

    2008-01-01

    Greenhouse gas emissions from personal transport have risen steadily in the UK. Yet, surprisingly little is known about who exactly is contributing to the problem and the extent to which different groups of the population will be affected by any policy responses. This paper describes an innovative methodology and evaluation tool for profiling annual greenhouse gas emissions from personal travel across all modes of travel. A case study application of the methodology involving a major survey of UK residents provides an improved understanding of the extent to which individual and household travel activity patterns, choice of transport mode, geographical location, socio-economic and other factors impact on greenhouse gas emissions. Air and car travel dominate overall emissions. Conversely, land-based public transport accounts for a very small proportion of emissions on average. There is a highly unequal distribution of emissions amongst the population, independent of the mode of travel, location and unit of analysis. The top 10% of emitters are responsible for 43% of emissions and the bottom 10% for only 1%. Income, economic activity, age, household structure and car availability significantly influence emissions levels. Key policy implications of the results are discussed. The paper concludes by suggesting potential applications of the methodology and evaluation tool

  16. Land-Use Implications to Energy Balances and Greenhouse Gas Emissions on Biodiesel from Palm Oil Production in Indonesia

    Directory of Open Access Journals (Sweden)

    Soni HARSONO

    2013-06-01

    Full Text Available The objectives of this study are to identify the energy balance of Indonesian palm oil biodiesel production, including the stages of land use change, transport and milling and biodiesel processing, and to estimate the amount of greenhouse gas emissions from different production systems, including large and small holder plantations either dependent or independent, located in Kalimantan and in Sumatra. Results show that the accompanied implications of palm oil biodiesel produced in Kalimantan and Sumatra are different: energy input in Sumatra is higher than in Kalimantan, except for transport processes; the input/output ratios are positive in both regions and all production systems. The findings demonstrate that there are considerable differences between the farming systems and the locations in net energy yields (43.6 to 49.2 GJ t-1 biodiesel yr-1 as well as greenhouse gas emissions (1969.6 to 5626.4 kg CO2eq t-1 biodiesel yr-1. The output to input ratios are positive in all cases. The largest greenhouse gas emissions result from land use change effects, followed by the transesterification, fertilizer production, agricultural production processes, milling and transportation. Ecosystem carbon payback times range from 11 to 42 years.

  17. Strategic regulation of gas transport

    International Nuclear Information System (INIS)

    Nese, Gjermund; Straume, Odd Rune

    2005-02-01

    The basis of the article has been the growing focus on competition within the natural gas markets particularly in the EU. Increased competition whether upstream or downstream may influence the distribution of profit between producing and consuming countries. For Norway as a large exporter of natural gas to the European market this would be an important problem. The chain of values in the gas market consists of three complementary parts (production, problem definition and distribution). With this in mind it is studied how the countries would use strategic availability pricing for transport and distribution systems for moving as large a part of the total profit as possible to the parts of the chain of value they control themselves. The focus has been on how increased competition in the market for natural gas influence the authority incentives for stipulating a high or low availability price and to what extent increased competition influence the welfare level in the producing and consuming countries when they use strategic availability pricing. The analysis builds on a theoretical model developed by the company Nese and Straume (2005). Finally some of the more interesting results as to the Norwegian position as a gas producer are presented. One of the more surprising results was that for an exporting country and an importing country increased competition upwards may be an advantage for the exporting country while negative for the importing country. The result was valid also when a competing export country was included when this country did not use strategic availability pricing. If the competing country also acted strategically the result inverted. However, if the gas exporting countries were capable of perfect coordination of their availability pricing the case would revert to the situation with only one exporting country and the result would be valid. If a future formation of a ''gas-OPEC'' is considered where for example Norway and Russia cooperate in a gas

  18. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300

    NARCIS (Netherlands)

    Meinhausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; Thomson, A.; Velders, G.J.M.; van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X

    2011-01-01

    We present the greenhouse gas concentrations for the Representative Concentration Pathways (RCPs) and their extensions beyond 2100, the Extended Concentration Pathways (ECPs). These projections include all major anthropogenic greenhouse gases and are a result of a multi-year effort to produce new

  19. Results using flue gas desulfurization gypsum in soilless substrates for greenhouse crops

    Science.gov (United States)

    Recent availability of Flue Gas Desulfurization gypsum (FGDG) has led to interested in its possible use in horticulture greenhouse production. Three studies were conducted to determine the effects of increasing rates of FGDG on six greenhouse crops. In the first study, substrates (6:1 pine bark:san...

  20. Greenhouse gas and carbon profile of the U.S. forest products industry value chain

    Science.gov (United States)

    Linda S. Heath; Van Maltby; Reid Miner; Kenneth E. Skog; James E. Smith; Jay Unwin; Brad Upton

    2010-01-01

    A greenhouse gas and carbon accounting profile was developed for the U.S. forest products industry value chain for 1990 and 2004-2005 by examining net atmospheric fluxes of CO2 and other greenhouse gases (GHGs) using a variety of methods and data sources. Major GHG emission sources include direct and indirect (from purchased electricity...

  1. The Energy Policy Act of 1992 and reductions in greenhouse gas emissions: The petroleum industry perspective

    International Nuclear Information System (INIS)

    Baer, M.T.

    1994-01-01

    The Energy Policy Act of 1992 (EPAct) directs the US Department of Energy policies, programs and regulations to stabilize and reduce the quantities of greenhouse gas emissions. These objectives will be accomplished through the regulation of sources associated with the production, transportation/distribution, and end-use of energy resources. Almost all of the 30 titles of the Act affect these sources: from the energy efficiency provisions of Titles 1 and XXI to the alternative fuels and vehicles programs of Titles 3 through 5; from the global climate change requirements of Title XVI to the petroleum alternative research programs of Titles VI, XII, XIII, XX, and XXI; and from the multiple titles pertaining to the development and regulation of nuclear facilities, supplies, and waste. The goals of the law are to: (1) reduce the use of oil in the domestic energy mix from 40% in 1990 to 35% by the year 2005, (2) require the use of alternative fuels and alternative fuel vehicles in designated fleets, (3) replace up to 30% of motor fuels with ''replacement fuels'' by the year 2010, (4) increase the overall efficiency of consumer, residential, and commercial products, (5) reduce and stabilize the emissions of greenhouse gases, and (6) encourage the development and commercialization of renewable and non petroleum energy resources. All these goals are intended to reduce the emissions of greenhouse gases as well. The EPAct's potential to impact all forms of energy and all energy producers and suppliers is obvious and substantial. This paper assesses three goals of the EPAct, now under study by the petroleum industry, that will affect the production, supply, composition, and use of petroleum products, most notably gasoline and natural gas

  2. Policy recommendations for Canadian municipal greenhouse gas trading

    International Nuclear Information System (INIS)

    Seskus, A.

    2002-01-01

    The municipal policies regarding greenhouse gas (GHG) emissions trading from municipalities in developed countries outside of Canada were examined in an effort to help establish a position on municipal carbon trading in Canada. The main uncertainty regarding this new concept of GHG emissions trading is the fate of the Kyoto Protocol, when or if it will be ratified. It is premature for municipalities to have well-established polices about emissions trading because the country in which a municipality is located determines the position towards GHG emissions trading. For this study, an extensive literature search of municipal policies was conducted for both GHG trading and domestic national GHG trading. This was followed by a survey on emissions trading which was distributed to more than 350 member cities (including the United States, Europe and Australia) of the International Council for Environmental Initiatives (ICLEI) Cities for Climate Protection (CCP) Campaign. The literature search revealed that municipalities outside of Canada have not yet formulated policies to address the issue of emissions trading. Only 7 per cent of the cities felt that they were informed about emissions trading, even in Europe and Australia where domestic emissions trading is closer to becoming a reality. This paper demonstrated that it is evident that more training is needed for municipalities regarding this issue. For the very few cities that had developed a GHG trading policy, each municipal policy supported municipal participation in emissions trading under conditions that included an environmental retirement, a do-no-harm clause, or an obligation to meet voluntary commitments before excess emissions can be traded. refs., tabs., figs

  3. Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands

    Science.gov (United States)

    Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.

    2017-12-01

    Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.

  4. Greenhouse gas emissions of hydropower in the Mekong River Basin

    Science.gov (United States)

    Räsänen, Timo A.; Varis, Olli; Scherer, Laura; Kummu, Matti

    2018-03-01

    The Mekong River Basin in Southeast Asia is undergoing extensive hydropower development, but the magnitudes of related greenhouse gas emissions (GHG) are not well known. We provide the first screening of GHG emissions of 141 existing and planned reservoirs in the basin, with a focus on atmospheric gross emissions through the reservoir water surface. The emissions were estimated using statistical models that are based on global emission measurements. The hydropower reservoirs (119) were found to have an emission range of 0.2-1994 kg CO2e MWh-1 over a 100 year lifetime with a median of 26 kg CO2e MWh-1. Hydropower reservoirs facilitating irrigation (22) had generally higher emissions reaching over 22 000 kg CO2e MWh-1. The emission fluxes for all reservoirs (141) had a range of 26-1813 000 t CO2e yr-1 over a 100 year lifetime with a median of 28 000 t CO2e yr-1. Altogether, 82% of hydropower reservoirs (119) and 45% of reservoirs also facilitating irrigation (22) have emissions comparable to other renewable energy sources (equalling even the emission from fossil fuel power plants (>380 kg CO2e MWh-1). These results are tentative and they suggest that hydropower in the Mekong Region cannot be considered categorically as low-emission energy. Instead, the GHG emissions of hydropower should be carefully considered case-by-case together with the other impacts on the natural and social environment.

  5. Reducing greenhouse gas emissions: Lessons from state climate action plans

    Energy Technology Data Exchange (ETDEWEB)

    Pollak, Melisa, E-mail: mpollak@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States); Meyer, Bryn, E-mail: meye1058@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States); Wilson, Elizabeth, E-mail: ewilson@umn.edu [Humphrey Institute of Public Affairs, University of Minnesota, 301 19th Avenue South, Minneapolis, MN 55455 (United States)

    2011-09-15

    We examine how state-level factors affect greenhouse gas (GHG) reduction policy preference across the United States by analyzing climate action plans (CAPs) developed in 11 states and surveying the CAP advisory group members. This research offers insights into how states approach the problem of choosing emissions-abatement options that maximize benefits and minimize costs, given their unique circumstances and the constellation of interest groups with power to influence state policy. The state CAPs recommended ten popular GHG reduction strategies to accomplish approximately 90% of emissions reductions, but they recommended these popular strategies in different proportions: a strategy that is heavily relied on in one state's overall portfolio may play a negligible role in another state. This suggests that any national policy to limit GHG emissions should encompass these key strategies, but with flexibility to allow states to balance their implementation for the state's unique geographic, economic, and political circumstances. Survey results strongly support the conclusion that decisions regarding GHG reductions are influenced by the mix of actors at the table. Risk perception is associated with job type for all strategies, and physical and/or geographic factors may underlie the varying reliance on certain GHG reduction strategies across states. - Highlights: > This study analyzed climate action plans from 12 states and surveyed the advisory group members. > Ten strategies supply 90% of recommended emission reductions, but states weigh them differently. > Advisory group members perceived different opportunities and risks in the top-ten strategies. > Both geographic and socio-political factors may underlie the varying reliance on certain strategies. > Cost, business practices and consumer behavior were ranked as the top barriers to reducing emissions.

  6. Energy Consumption and Greenhouse Gas Emission of Korean Offshore Fisheries

    Science.gov (United States)

    Lee, Jihoon; Kim, Taeho; Ellingsen, Harald; Hognes, Erik Skontorp; Hwang, Bokyu

    2018-06-01

    This paper presents the energy and greenhouse gas (GHG) emission assessments of Korean offshore fisheries. The consumption of energy by fisheries is a significant concern because of its attendant environmental effect, as well as the cost of the fuel consumed in fishing industry. With the global attention of reducing GHG emission and increasing energy efficiency of fuel, the seafood industry needs to further understand its energy use and reduce its GHG emission. In the present study, the amount of energy consumed and the GHG emission of Korean offshore fisheries in a period from 2009 to 2013 were examined. Offshore fisheries accounted for 24% of Korean production in 2013 and 60% of fuel consumption related GHG emission. Whereas the total GHG emission intensity of this sector improved slightly between 2009 and 2012; as such emission decreased by approximately 1.9%, which increased again in 2013. The average amount of total GHG emission in this five years period was 1.78 × 106 tons of carbon dioxide equivalent/year (t CO2 eq. y-1). Active fishing gear was found to consume 20% more fuel than passive gear. However, the production from passive gear was 28%, lower than 72% from active gear. The reason for this is that less abundant stationary resources are harvested using passive gear. Furthermore, the consumption of fuel was significantly influenced by the fishing method. Implementation and development of new fishing technologies and methods are important for improving energy efficiency and reducing the climate impact on fisheries. To realize these purposes, the fishery management system needs to be established by centralizing on energy efficiency and climate effect.

  7. Reducing greenhouse gas emissions: Lessons from state climate action plans

    International Nuclear Information System (INIS)

    Pollak, Melisa; Meyer, Bryn; Wilson, Elizabeth

    2011-01-01

    We examine how state-level factors affect greenhouse gas (GHG) reduction policy preference across the United States by analyzing climate action plans (CAPs) developed in 11 states and surveying the CAP advisory group members. This research offers insights into how states approach the problem of choosing emissions-abatement options that maximize benefits and minimize costs, given their unique circumstances and the constellation of interest groups with power to influence state policy. The state CAPs recommended ten popular GHG reduction strategies to accomplish approximately 90% of emissions reductions, but they recommended these popular strategies in different proportions: a strategy that is heavily relied on in one state's overall portfolio may play a negligible role in another state. This suggests that any national policy to limit GHG emissions should encompass these key strategies, but with flexibility to allow states to balance their implementation for the state's unique geographic, economic, and political circumstances. Survey results strongly support the conclusion that decisions regarding GHG reductions are influenced by the mix of actors at the table. Risk perception is associated with job type for all strategies, and physical and/or geographic factors may underlie the varying reliance on certain GHG reduction strategies across states. - Highlights: → This study analyzed climate action plans from 12 states and surveyed the advisory group members. → Ten strategies supply 90% of recommended emission reductions, but states weigh them differently. → Advisory group members perceived different opportunities and risks in the top-ten strategies. → Both geographic and socio-political factors may underlie the varying reliance on certain strategies. → Cost, business practices and consumer behavior were ranked as the top barriers to reducing emissions.

  8. Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE)

    Energy Technology Data Exchange (ETDEWEB)

    Dobler, Jeremy [Exelis Inc., Fort Wayne, IN (United States); Zaccheo, T. Scott [Exelis Inc., Fort Wayne, IN (United States); Blume, Nathan [Exelis Inc., Fort Wayne, IN (United States); Pernini, Timothy [Exelis Inc., Fort Wayne, IN (United States); Braun, Michael [Exelis Inc., Fort Wayne, IN (United States); Botos, Christopher [Exelis Inc., Fort Wayne, IN (United States)

    2016-03-31

    This report describes the development and testing of a novel system, the Greenhouse gas Laser Imaging Tomography Experiment (GreenLITE), for Monitoring, Reporting and Verification (MRV) of CO2 at Geological Carbon Storage (GCS) sites. The system consists of a pair of laser based transceivers, a number of retroreflectors, and a set of cloud based data processing, storage and dissemination tools, which enable 2-D mapping of the CO2 in near real time. A system was built, tested locally in New Haven, Indiana, and then deployed to the Zero Emissions Research and Technology (ZERT) facility in Bozeman, MT. Testing at ZERT demonstrated the ability of the GreenLITE system to identify and map small underground leaks, in the presence of other biological sources and with widely varying background concentrations. The system was then ruggedized and tested at the Harris test site in New Haven, IN, during winter time while exposed to temperatures as low as -15 °CºC. Additional testing was conducted using simulated concentration enhancements to validate the 2-D retrieval accuracy. This test resulted in a high confidence in the reconstruction ability to identify sources to tens of meters resolution in this configuration. Finally, the system was deployed for a period of approximately 6 months to an active industrial site, Illinois Basin – Decatur Project (IBDP), where >1M metric tons of CO2 had been injected into an underground sandstone basin. The main objective of this final deployment was to demonstrate autonomous operation over a wide range of environmental conditions with very little human interaction, and to demonstrate the feasibility of the system for long term deployment in a GCS environment.

  9. Determining greenhouse gas balances of biomass fuel cycles. Results to date from task 15 of IEA bio-energy

    International Nuclear Information System (INIS)

    Schlamadinger, B.; Spitzer, J.

    1997-01-01

    Selected activities of IEA Bio-energy Task 15 are described. Task 15 of IEA Bio-energy, entitled 'Greenhouse Gas Balances of Bio-energy Systems', aims at investigating processes involved in the use of bio-energy systems on a full fuel-cycle basis to establish overall greenhouse gas balances. The work of Task 15 includes, among other things, a compilation of existing data on greenhouse gas emissions from various biomass production and conversion processes, a standard methodology for greenhouse gas balances of bio-energy systems, a bibliography, and recommendations for selection of appropriate national strategies for greenhouse gas mitigation. (K.A.)

  10. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    Science.gov (United States)

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  11. Greenhouse Gas reduction for scenarios of power sources development of the Republic of Moldova

    Directory of Open Access Journals (Sweden)

    Comendant I.

    2010-04-01

    Full Text Available For the new power market conditions, Moldova power sources development options up to 2033 are evaluated, and for the six scenarios selected the greenhouse gas reduction impact is determined.

  12. Climate Leadership webinar on Greenhouse Gas Management Resources for Small Businesses

    Science.gov (United States)

    Small businesses can calculate their carbon footprint and construct a greenhouse gas inventory to help track progress towards reaching emissions reduction goals. One strategy for this is EPA's Simplified GHG Emissions Calculator.

  13. Greenhouse gas emissions in an agroforestry system in the southeastern U.S.

    Science.gov (United States)

    Agroforestry systems can provide diverse ecosystem services and economic benefits that conventional farming practices cannot. Importantly, these systems have the potential to mitigate greenhouse gas emissions by reducing the need for external inputs, enhancing nutrient cycling and promoting C seques...

  14. Microsimulation of household and firm behaviors: anticipation of greenhouse gas emissions for Austin, Texas.

    Science.gov (United States)

    2009-05-01

    Anthropogenic greenhouse gas (GHG) emissions can be attributed to household and firm travel and : building decisions. This study demonstrates the development and application of a microsimulation model : for household and firm evolution and location c...

  15. Policy and tecnological constraints to implementation of greenhouse gas mitigation options in agriculture

    CSIR Research Space (South Africa)

    Smith, P

    2007-01-01

    Full Text Available A recent assessment of agricultural greenhouse gas (GHG) emissions has demonstrated significant potential for mitigation, but suggests that the full mitigation will not be realized due to significant barriers to implementation. In this paper, we...

  16. Greenhouse gas emissions trading and project-based mechanisms. Proceedings - CATEP

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-01-01

    Greenhouse gas emissions trading and project-based mechanisms for greenhouse gas reduction are emerging market-based instruments for climate change policy. This book presents a selection of papers from an international workshop co-sponsored by the OECD and Concerted Action on Tradeable Emissions Permits (CATEP), to discuss key research and policy issues relating to the design and implementation of these instruments. The papers cover the experience of developing and transition countries with greenhouse gas emissions trading and project-based mechanisms. In addition, the papers examine the use of tradeable permits in policy mixes and harmonisation of emissions trading schemes, as well as transition issues relating to greenhouse gas emissions trading markets.

  17. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries

    Science.gov (United States)

    2017-01-01

    This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990–2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal. PMID:29165399

  18. Are greenhouse gas emissions from international shipping a type of marine pollution?

    International Nuclear Information System (INIS)

    Shi, Yubing

    2016-01-01

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of ‘conditional’ marine pollution. - Highlights: • Greenhouse gas (GHG) emissions from international shipping are a type of ‘conditional’ marine pollution. • Shipping CO 2 may be treated as marine pollution under the 1972 London Dumping Convention. • Countries have adopted different legislation concerning the legal nature of GHG emissions from ships. • Regulating CO 2 emissions from ships as marine pollution may expedite global GHG emissions reduction.

  19. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries.

    Science.gov (United States)

    Lu, Wen-Cheng

    2017-11-22

    This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990-2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal.

  20. Methodology for reporting 2011 B.C. public sector greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    In order to reduce its greenhouse gas emissions, British Columbia promulgated legislation under which the public sector is expected to become carbon neutral starting in 2010 and provincial public sector organizations (PSOs) must report their emissions annually. The aim of this report is to present the emission factors and methodology for calculating and reporting PSO emissions used in 2011. Emission factors represent the amount of greenhouse gas emitted from a specific activity. This document provides emission factors for all in scope categories: stationary sources, indirect emissions, mobile sources and business travel; it also presents a sample calculation of greenhouse gas emissions. The government of British Columbia developed SMARTTool, a web-based program which calculates and reports emissions from stationary sources, indirect emissions and mobile sources. In addition the SMART Travel Emissions Calculator was created to report business travel greenhouse gas emissions through SMARTTool.

  1. Greenhouse Gas Emissions, Energy Consumption and Economic Growth: A Panel Cointegration Analysis for 16 Asian Countries

    Directory of Open Access Journals (Sweden)

    Wen-Cheng Lu

    2017-11-01

    Full Text Available This research investigates the co-movement and causality relationships between greenhouse gas emissions, energy consumption and economic growth for 16 Asian countries over the period 1990–2012. The empirical findings suggest that in the long run, bidirectional Granger causality between energy consumption, GDP and greenhouse gas emissions and between GDP, greenhouse gas emissions and energy consumption is established. A non-linear, quadratic relationship is revealed between greenhouse gas emissions, energy consumption and economic growth, consistent with the environmental Kuznets curve for these 16 Asian countries and a subsample of the Asian new industrial economy. Short-run relationships are regionally specific across the Asian continent. From the viewpoint of energy policy in Asia, various governments support low-carbon or renewable energy use and are reducing fossil fuel combustion to sustain economic growth, but in some countries, evidence suggests that energy conservation might only be marginal.

  2. U.S. Airport Greenhouse Gas Emissions Inventories: State of the Practice and Recommendations for Airports.

    Science.gov (United States)

    2016-03-01

    This document presents highlights from five research reports on airport greenhouse gas (GHG) emissions inventories. It presents the most salient findings for policy makers and U.S. airports seeking to better understand and inventory airport GHG emiss...

  3. Light-duty vehicle greenhouse gas emission standards and corporate average fuel economy standards : final rule

    Science.gov (United States)

    2010-05-07

    Final Rule to establish a National Program consisting of new standards for light-duty vehicles that will reduce greenhouse gas emissions and improve fuel economy. This joint : Final Rule is consistent with the National Fuel Efficiency Policy announce...

  4. Executive Summary: EPA's Waiver Decision on California's Greenhouse Gas Emission Standards for New Motor Vehicles

    Science.gov (United States)

    This letter from EPA Administrator Stephen Johnson to Governor Schwarzenegger denies California's request for a waiver of Federal preemption for motor vehicle greenhouse gas emission standards submitted by the California Air Resources Board (CARB).

  5. Greenhouse gas emissions, energy consumption and economic growth: A panel cointegration analysis from Canadian industrial sector perspective

    International Nuclear Information System (INIS)

    Hamit-Haggar, Mahamat

    2012-01-01

    This paper investigates the long-run and the causal relationship between greenhouse gas emissions, energy consumption and economic growth for Canadian industrial sectors over the period 1990–2007. The empirical findings suggest that in the long-run equilibrium, energy consumption has a positive and statistically significant impact on greenhouse gas emissions whereas a non-linear relationship is found between greenhouse gas emissions and economic growth, consistent with the environmental Kuznets curve. The short-run dynamics conveys that there is a unidirectional Granger causality running from energy consumption to greenhouse gas emissions; from economic growth to greenhouse gas emissions and a weak unidirectional causality running from greenhouse gas emissions to energy consumption; from economic growth to energy consumption. In the long-run however, there seems to be a weak one way causality flowing from energy consumption and economic growth to greenhouse gas emissions. - Highlights: ► A long-run and a causal relationship between greenhouse gas emissions, energy consumption and economic growth is investigated. ► Energy consumption has a positive impact on greenhouse gas emissions in the long run. ► Unidirectional causality runs from energy consumption and economic growth to greenhouse gas emissions. ► A weak unidirectional causality runs from greenhouse gas emissions and economic growth to energy consumption.

  6. Multi Wavelength Greenhouse gas LIDAR (MUGGLE), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Climate change is a growing concern, leading NASA to the need to track concentrations of such greenhouse gases as CO2 and CH4, including the need to detect them...

  7. Livestock greenhouse gas emissions inventory of South Africa

    African Journals Online (AJOL)

    Lindeque

    The methodology utilized is based on the Australian national greenhouse account's ... dairy industry and calculated from the number of dairy producers per province .... provincial basis were sourced from Statistics South Africa (Stats SA), the ...

  8. Comparing the greenhouse gas emissions from three alternative waste combustion concepts.

    Science.gov (United States)

    Vainikka, Pasi; Tsupari, Eemeli; Sipilä, Kai; Hupa, Mikko

    2012-03-01

    Three alternative condensing mode power and combined heat and power (CHP) waste-to-energy concepts were compared in terms of their impacts on the greenhouse gas (GHG) emissions from a heat and power generation system. The concepts included (i) grate, (ii) bubbling fluidised bed (BFB) and (iii) circulating fluidised bed (CFB) combustion of waste. The BFB and CFB take advantage of advanced combustion technology which enabled them to reach electric efficiency up to 35% and 41% in condensing mode, respectively, whereas 28% (based on the lower heating value) was applied for the grate fired unit. A simple energy system model was applied in calculating the GHG emissions in different scenarios where coal or natural gas was substituted in power generation and mix of fuel oil and natural gas in heat generation by waste combustion. Landfilling and waste transportation were not considered in the model. GHG emissions were reduced significantly in all of the considered scenarios where the waste combustion concepts substituted coal based power generation. With the exception of condensing mode grate incinerator the different waste combustion scenarios resulted approximately in 1 Mton of fossil CO(2)-eq. emission reduction per 1 Mton of municipal solid waste (MSW) incinerated. When natural gas based power generation was substituted by electricity from the waste combustion significant GHG emission reductions were not achieved. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. The importance of grid integration for achievable greenhouse gas emissions reductions from alternative vehicle technologies

    International Nuclear Information System (INIS)

    Tarroja, Brian; Shaffer, Brendan; Samuelsen, Scott

    2015-01-01

    Alternative vehicles must appropriately interface with the electric grid and renewable generation to contribute to decarbonization. This study investigates the impact of infrastructure configurations and management strategies on the vehicle–grid interface and vehicle greenhouse gas reduction potential with regard to California's Executive Order S-21-09 goal. Considered are battery electric vehicles, gasoline-fueled plug-in hybrid electric vehicles, hydrogen-fueled fuel cell vehicles, and plug-in hybrid fuel cell vehicles. Temporally resolved models of the electric grid, electric vehicle charging, hydrogen infrastructure, and vehicle powertrain simulations are integrated. For plug-in vehicles, consumer travel patterns can limit the greenhouse gas reductions without smart charging or energy storage. For fuel cell vehicles, the fuel production mix must be optimized for minimal greenhouse gas emissions. The plug-in hybrid fuel cell vehicle has the largest potential for emissions reduction due to smaller battery and fuel cells keeping efficiencies higher and meeting 86% of miles on electric travel keeping the hydrogen demand low. Energy storage is required to meet Executive Order S-21-09 goals in all cases. Meeting the goal requires renewable capacities of 205 GW for plug-in hybrid fuel cell vehicles and battery electric vehicle 100s, 255 GW for battery electric vehicle 200s, and 325 GW for fuel cell vehicles. - Highlights: • Consumer travel patterns limit greenhouse gas reductions with immediate charging. • Smart charging or energy storage are required for large greenhouse gas reductions. • Fuel cells as a plug-in vehicle range extender provided the most greenhouse gas reductions. • Energy storage is required to meet greenhouse gas goals regardless of vehicle type. • Smart charging reduces the required energy storage size for a given greenhouse gas goal

  10. Climate and greenhouse effect gas: glaciated archives data

    International Nuclear Information System (INIS)

    Lorius, C.

    1991-01-01

    Ice caps in Antarctica or Greenland have recorded the anthropogenic effect on atmospheric composition and especially on greenhouse effect gases such as carbon dioxide and methane. 2000 meter depth drilling samples allowed to study the climates for 150 000 years ago; hot and cold climates are ruled by periodic movement of the Earth around the sun and by more or less elevated concentration of greenhouse effect gases in the atmosphere. Prospects for to morrow climates and anthropogenic contribution are then possible [fr

  11. The factor 4 in France: dividing by 4 greenhouse gas emissions by 2050 - Final report

    International Nuclear Information System (INIS)

    Brunetiere, Jean-Rene; Alexandre, Sylvie; D'Aubreby, Marc; Debiesse, Georges; Guerin, Andre-Jean; Perret, Bernard; Schwartz, Dominique

    2013-02-01

    After a methodological presentation (reason for a sector-based approach, implemented method, global economic approaches and models), this voluminous report discusses the French commitments in terms of greenhouse gas emission and the monitoring system: commitment status and predictions, measurement sources and methods, emission levels and evolution trajectories, prospective approach. Then, the author address the different sectors: transports (current status of emissions, prospective studies, sub-sector issues), industry (current status of emissions and prospective, economic tools), agriculture, land uses and their changes and forest (emissions, prospective studies and emission evolution trajectories, specific issues), building (current status and objectives, issues related to housing and office building) and energy (prospective and choices for the future). A last chapter addresses inter-sector issues: biomass and CO 2 , land and urban planning, innovation or energy 2.0, evolution of behaviour (building use, mobility)

  12. GASDUC-3: a gas pipeline with neutralization of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    D' Oliveira, Celso A.; Paula, Eliane H. de; Freire, Dilian A.D. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2009-07-01

    PETROBRAS seeks to develop its projects following the contemporary premises of sustainable development. The Cabiunas-REDUC-3 Gas Pipeline (GASDUC-3), an undertaking from the Transportadora Associada de Gas - TAG (Associated Gas Transporter) in progress by PETROBRAS, is an example showing that interfacing with the environment can overcome legal questions to reach the realm of awareness and community spirit. In addition to the many programs directed specifically towards the fulfillment of environmental regulations, as defined by competent agencies, the GASDUC-3 is also inserted in the Carbon Free Program. In the Carbon Free Program, all the GHG emissions into the atmosphere during the construction of the gas pipeline will be compensated for with the neutralization of carbon through reforestation. Such initiative is considered unheard of in works with pipelines worldwide. An inventory that quantified the emission of GHG during the implementation of GASDUC-3 made it possible to quantify the reforestation to be implemented and to calculate the number of native species to be planted for absorption - during the course of their growth - of this same amount of carbon dioxide from the atmosphere. The trees are being planted especially in Permanent Preservation Areas (PPA), located in the Unidades de Conservacao do Bioma Mata Atlantica (Conservation Units of the Atlantic Forest Biome), inside the influence region of the gas pipeline, in accordance with the competent environmental agencies and owners. In this way, in addition to fixing carbon and contributing to the deceleration of global warming, the project also cooperates with the preservation of hydro and soil resources and the local and regional biodiversity. The recapturing of the already emitted GHG through reforestation faces bureaucratic and economic difficulties in order to be implemented, different from the emission reduction projects which are widely disseminated by means of Clean Development Mechanisms (CDM

  13. Towards a Novel Integrated Approach for Estimating Greenhouse Gas Emissions in Support of International Agreements

    Science.gov (United States)

    Reimann, S.; Vollmer, M. K.; Henne, S.; Brunner, D.; Emmenegger, L.; Manning, A.; Fraser, P. J.; Krummel, P. B.; Dunse, B. L.; DeCola, P.; Tarasova, O. A.

    2016-12-01

    In the recently adopted Paris Agreement the community of signatory states has agreed to limit the future global temperature increase between +1.5 °C and +2.0 °C, compared to pre-industrial times. To achieve this goal, emission reduction targets have been submitted by individual nations (called Intended Nationally Determined Contributions, INDCs). Inventories will be used for checking progress towards these envisaged goals. These inventories are calculated by combining information on specific activities (e.g. passenger cars, agriculture) with activity-related, typically IPCC-sanctioned, emission factors - the so-called bottom-up method. These calculated emissions are reported on an annual basis and are checked by external bodies by using the same method. A second independent method estimates emissions by translating greenhouse gas measurements made at regionally representative stations into regional/global emissions using meteorologically-based transport models. In recent years this so-called top-down approach has been substantially advanced into a powerful tool and emission estimates at the national/regional level have become possible. This method is already used in Switzerland, in the United Kingdom and in Australia to estimate greenhouse gas emissions and independently support the national bottom-up emission inventories within the UNFCCC framework. Examples of the comparison of the two independent methods will be presented and the added-value will be discussed. The World Meteorological Organization (WMO) and partner organizations are currently developing a plan to expand this top-down approach and to expand the globally representative GAW network of ground-based stations and remote-sensing platforms and integrate their information with atmospheric transport models. This Integrated Global Greenhouse Gas Information System (IG3IS) initiative will help nations to improve the accuracy of their country-based emissions inventories and their ability to evaluate the

  14. Australia's Greenhouse Challenge is a positive step towards abatement of gas emissions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Australian industry has responded favourably to the Federal Government's Greenhouse Clallenge Program (GCP) which has focused on curbing greenhouse gas emission from the manufacturing, mining and energy sector. It is a carefully shaped program which prompts companies and groups to thoroughly review their individual operations and identify areas where credible new or addition emission control can be employed. There are now 42 companies and associations that have signed agreements in GCP. Together they account for some 15 % of Australia's total greenhouse gas emissions. It is expected that by 2000 the emission increase will be cut to 7 % and the total emissions cut by 16 million tonnes for the 42 companies concerned

  15. City of North Vancouver greenhouse gas local action plan : final report

    International Nuclear Information System (INIS)

    Hood, I.

    2005-02-01

    This paper presented details of a greenhouse gas (GHG) local action plan developed as a result of the City of North Vancouver's participation in the Partners for Climate Protection Program (PCPP). The plan is intended to better manage the impacts of urban development related to GHG and air quality, while also achieving community objectives related to affordable housing, transportation management, job creation and economic development. The report reviewed the local emissions inventory in addition to various programs, plans, policies and by-laws relating to energy management. Potential policies and programs were identified to achieve GHG emissions reductions in accordance with the PCPP. A plan for emissions reductions was also presented. A situation analysis was presented with details of population, transportation, residential and commercial building and industry. Solid waste management and transportation plans were outlined. A GHG emissions profile and forecast was presented. An outline of a GHG management framework included information on initiatives in the city as well as details of public consultation feedback. A program implementation plan includes forecasts of the program's impact, as well as details of program delivery and a performance measurement framework. Proposed initiatives in the plan included new building guidelines; fuel switching for light and heavy duty vehicles; driver training and enhanced vehicle maintenance programs; and, an environmental procurement policy. Community programs include residential and commercial building retrofits; land use planning; support for community energy systems; green building design guidelines; transportation demand management; and, public engagement and outreach programs. 21 tabs., 9 figs

  16. Greenhouse-gas emissions from biomass energy use: Comparison with other energy technologies

    International Nuclear Information System (INIS)

    Morris, G.P.; Norman, N.A.; Gleick, P.H.

    1991-01-01

    Recently a major new concern has arisen: the accumulation of greenhouse gases in the atmosphere. It is now generally believed that continued emissions of these gases are current or increasing levels will lead to significant climatic changes with the potential for dramatic, adverse impacts. Since the major anthropogenic source of greenhouse gas emissions is energy production and use, it is essential to future energy policy to understand how energy sources differ with respect to greenhouse gas emissions. Characterizing the greenhouse gas emissions associated with biomass energy use is extremely complicated. It is necessary to consider both the source and alternative use of the biomass material and its alternative disposal (if any), as well as the biomass energy application itself. It is desirable also to consider not just CO 2 emissions, but also CH 4 and N 2 O, both potent greenhouse gases. The authors' analysis shows that in many cases biomass energy use can actually help to ameliorate the greenhouse effect by converting emissions that would have been CH 4 into the less potent greenhouse gas CO 2 . In many cases the beneficial effect is very dramatic. This major new research result should help increase public support for biomass research and development, and for further development of waste conversion technology and installations

  17. Greenhouse gas emissions in the Netherlands 1990 - 1995. Methodology and data for 1994 and provisional data for 1995

    NARCIS (Netherlands)

    Spakman J; Olivier JGJ; Amstel AR van; LAE

    1996-01-01

    The inventory presented in this report complies with the obligations under the European Union's Greenhouse Gas Monitoring Mechanism and the UN-FCCC for emission reports on all greenhouse gases not covered under the Montreal protocol. This inventory of greenhouse gas emissions in the Netherlands has

  18. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production.

    Science.gov (United States)

    Cerri, Carlos Eduardo Pellegrino; You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente

    2017-01-01

    Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42-51%) for B100 produced in integrated systems and the production stage (46-52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in this

  19. How to choose methods for lake greenhouse gas flux measurements?

    Science.gov (United States)

    Bastviken, David

    2017-04-01

    Lake greenhouse gas (GHG) fluxes are increasingly recognized as important for lake ecosystems as well as for large scale carbon and GHG budgets. However, many of our flux estimates are uncertain and it can be discussed if the presently available data is representative for the systems studied or not. Data are also very limited for some important flux pathways. Hence, many ongoing efforts try to better constrain fluxes and understand flux regulation. A fundamental challenge towards improved knowledge and when starting new studies is what methods to choose. A variety of approaches to measure aquatic GHG exchange is used and data from different methods and methodological approaches have often been treated as equally valid to create large datasets for extrapolations and syntheses. However, data from different approaches may cover different flux pathways or spatio-temporal domains and are thus not always comparable. Method inter-comparisons and critical method evaluations addressing these issues are rare. Emerging efforts to organize systematic multi-lake monitoring networks for GHG fluxes leads to method choices that may set the foundation for decades of data generation and therefore require fundamental evaluation of different approaches. The method choices do not only regard the equipment but also for example consideration of overall measurement design and field approaches, relevant spatial and temporal resolution for different flux components, and accessory variables to measure. In addition, consideration of how to design monitoring approaches being affordable, suitable for widespread (global) use, and comparable across regions is needed. Inspired by discussions with Prof. Dr. Cristian Blodau during the EGU General Assembly 2016, this presentation aims to (1) illustrate fundamental pros and cons for a number of common methods, (2) show how common methodological approaches originally adapted for other environments can be improved for lake flux measurements, (3) suggest

  20. Reducing greenhouse gas emissions in agriculture without compromising food security?

    Science.gov (United States)

    Frank, Stefan; Havlík, Petr; Soussana, Jean-François; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael

    2017-10-01

    To keep global warming possibly below 1.5 °C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and economic sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price would substantially affect food availability. Here, we assess the implications of climate change mitigation in the land use sector for agricultural production and food security using an integrated partial equilibrium modelling framework and explore ways of relaxing the competition between mitigation in agriculture and food availability. Using a scenario that limits global warming cost-efficiently across sectors to 1.5 °C, results indicate global food calorie losses ranging from 110-285 kcal per capita per day in 2050 depending on the applied demand elasticities. This could translate into a rise in undernourishment of 80-300 million people in 2050. Less ambitious greenhouse gas (GHG) mitigation in the land use sector reduces the associated food security impact significantly, however the 1.5 °C target would not be achieved without additional reductions outside the land use sector. Efficiency of GHG mitigation will also depend on the level of participation globally. Our results show that if non-Annex-I countries decide not to contribute to mitigation action while other parties pursue their mitigation efforts to reach the global climate target, food security impacts in these non-Annex-I countries will be higher than if they participate in a global agreement, as inefficient mitigation increases agricultural production costs and therefore food prices. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast

  1. Multiyear greenhouse gas balances at a rewetted temperate peatland.

    Science.gov (United States)

    Wilson, David; Farrell, Catherine A; Fallon, David; Moser, Gerald; Müller, Christoph; Renou-Wilson, Florence

    2016-12-01

    Drained peat soils are a significant source of greenhouse gas (GHG) emissions to the atmosphere. Rewetting these soils is considered an important climate change mitigation tool to reduce emissions and create suitable conditions for carbon sequestration. Long-term monitoring is essential to capture interannual variations in GHG emissions and associated environmental variables and to reduce the uncertainty linked with GHG emission factor calculations. In this study, we present GHG balances: carbon dioxide (CO 2 ), methane (CH 4 ) and nitrous oxide (N 2 O) calculated for a 5-year period at a rewetted industrial cutaway peatland in Ireland (rewetted 7 years prior to the start of the study); and compare the results with an adjacent drained area (2-year data set), and with ten long-term data sets from intact (i.e. undrained) peatlands in temperate and boreal regions. In the rewetted site, CO 2 exchange (or net ecosystem exchange (NEE)) was strongly influenced by ecosystem respiration (R eco ) rather than gross primary production (GPP). CH 4 emissions were related to soil temperature and either water table level or plant biomass. N 2 O emissions were not detected in either drained or rewetted sites. Rewetting reduced CO 2 emissions in unvegetated areas by approximately 50%. When upscaled to the ecosystem level, the emission factors (calculated as 5-year mean of annual balances) for the rewetted site were (±SD) -104 ± 80 g CO 2 -C m -2  yr -1 (i.e. CO 2 sink) and 9 ± 2 g CH 4 -C m -2  yr -1 (i.e. CH 4 source). Nearly a decade after rewetting, the GHG balance (100-year global warming potential) had reduced noticeably (i.e. less warming) in comparison with the drained site but was still higher than comparative intact sites. Our results indicate that rewetted sites may be more sensitive to interannual changes in weather conditions than their more resilient intact counterparts and may switch from an annual CO 2 sink to a source if triggered by slightly drier

  2. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production

    Science.gov (United States)

    You, Xin; Cherubin, Maurício Roberto; Moreira, Cindy Silva; Raucci, Guilherme Silva; Castigioni, Bruno de Almeida; Alves, Priscila Aparecida; Cerri, Domingos Guilherme Pellegrino; Mello, Francisco Fujita de Castro; Cerri, Carlos Clemente

    2017-01-01

    Soybean biodiesel (B100) has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG) emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42–51%) for B100 produced in integrated systems and the production stage (46–52%) for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route) of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected scenarios in

  3. Nordic regionalisation of a greenhouse-gas stabilisation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Wyser, Klaus; Rummukainen, Markku; Strandberg, Gustav

    2006-10-15

    The impact of a CO{sub 2} stabilisation on the Swedish climate is investigated with the regional climate model RCA3 driven by boundary conditions obtained from a global coupled climate system model (CCSM3). The global model has been forced with observed greenhouse gas concentrations from pre-industrial conditions until today's, and with an idealised further increase until the stabilisation level is reached. After stabilisation the model integration continues for another 150+ years in order to follow the delayed response of the climate system over a period of time. Results from the global and regional climate model are compared against observations and ECMWF reanalysis for 1961-1990. For this period, the global model is found to be too cold over Europe and with a zonal flow from the North Atlantic towards Europe that is too strong. The climate of the driving global model controls the climate of the regional model and the same deviations from one are thus inherited by the other. We therefore analyse the relative climate changes differences, or ratios, of climate variables between future's and today's climate. Compared to pre-industrial conditions, the global mean temperature changes by about 1.5 deg C as a result of the stabilisation at 450 ppmv equivalent CO{sub 2}. Averaged over Europe, the temperature change is slightly larger, and it is even larger for Sweden and Northern Europe. Annual mean precipitation for Europe is unaffected, but Sweden receives more precipitation under higher CO{sub 2} levels. The inter-annual and decadal variability of annual mean temperature and precipitation does not change with any significant degree. The changes in temperature and precipitation are not evenly distributed with the season: the largest warming and increased precipitation in Northern Europe occurs during winter months while the summer climate remains more or less unchanged. The opposite is true for the Mediterranean region where the precipitation decreases

  4. Greenhouse Gas Emissions Reporting through Integrated Business Solutions

    Science.gov (United States)

    Smith, D.

    2010-12-01

    Given the risks posed by global climate change, it is important that society as a whole responds in order to reduce the emission of greenhouse gas (GHG) into the atmosphere. Whether you are an environmentalist, a small-to-medium business owner, or a corporate risk manager - the need to act is now in order to reduce future environmental damage. While this sounds overwhelming, it’s really quite simple. Carbon Management is the process of understanding where your commercial activities generate GHG emissions, so that you can reduce those emissions in a planned, financially responsible way. Specifically, governments have the capacity to lead in this area and reduce these costs throughout their cities. Village Green Global develops and manages demonstration projects for the government that act as exemplar models to assist in gathering verifiable GHG reporting within selected regions and cities. This model highlights opportunities for the capture of conservation and energy credit commodities for local financial markets to use in global trading. Information gathered will prepare government for the ongoing changing global requirements and mitigate risk of unnecessary market exposure and cost; allow government to take a measured, responsible approach to its environmental responsibilities; reduce operational costs, improving the government’s asset utilization and more effectively streamlining its operations; and establish the government as responsible and proactive due to its creative approach to environmental challenges. Village Green Global’s government partnership model aims to deliver new jobs and technologies in the emerging “green economy;” a linkage to education at both at College and University levels, then assisting industry and community needs; and the involvement of industry leaders ensures training is targeted to job creation and local capacity building opportunities, in turn creating new skills and career pathways for the displaced workforce from the

  5. Assessing the greenhouse gas emissions of Brazilian soybean biodiesel production.

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Pellegrino Cerri

    Full Text Available Soybean biodiesel (B100 has been playing an important role in Brazilian energy matrix towards the national bio-based economy. Greenhouse gas (GHG emissions is the most widely used indicator for assessing the environmental sustainability of biodiesels and received particular attention among decision makers in business and politics, as well as consumers. Former studies have been mainly focused on the GHG emissions from the soybean cultivation, excluding other stages of the biodiesel production. Here, we present a holistic view of the total GHG emissions in four life cycle stages for soybean biodiesel. The aim of this study was to assess the GHG emissions of Brazilian soybean biodiesel production system with an integrated life cycle approach of four stages: agriculture, extraction, production and distribution. Allocation of mass and energy was applied and special attention was paid to the integrated and non-integrated industrial production chain. The results indicated that the largest source of GHG emissions, among four life cycle stages, is the agricultural stage (42-51% for B100 produced in integrated systems and the production stage (46-52% for B100 produced in non-integrated systems. Integration of industrial units resulted in significant reduction in life cycle GHG emissions. Without the consideration of LUC and assuming biogenic CO2 emissions is carbon neutral in our study, the calculated life cycle GHG emissions for domestic soybean biodiesel varied from 23.1 to 25.8 gCO2eq. MJ-1 B100 and those for soybean biodiesel exported to EU ranged from 26.5 to 29.2 gCO2eq. MJ-1 B100, which represent reductions by 65% up to 72% (depending on the delivery route of GHG emissions compared with the EU benchmark for diesel fuel. Our findings from a life cycle perspective contributed to identify the major GHG sources in Brazilian soybean biodiesel production system and they can be used to guide mitigation priority for policy and decision-making. Projected

  6. Idaho National Laboratory’s FY14 Greenhouse Gas Report

    Energy Technology Data Exchange (ETDEWEB)

    Frerichs, Kimberly Irene [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    A greenhouse gas (GHG) inventory is a systematic approach to account for the production and release of certain gases generated by an institution from various emission sources. The gases of interest are those that climate science has identified as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during Fiscal Year (FY) 2014 by Idaho National Laboratory (INL), a Department of Energy (DOE) sponsored entity, located in southeastern Idaho. In recent years, concern has grown about the environmental impact of GHGs. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of an inventory of the total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions. INL’s GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries, but are a consequence of INL’s activities). This inventory found that INL generated 73,521 metric tons (MT) of CO2 equivalent (CO2e ) emissions during FY14. The following conclusions were made from looking at the results of the individual contributors to INL’s FY14 GHG inventory: • Electricity (including the associated transmission and distribution losses) is the largest contributor to INL’s GHG inventory, with over 50% of the CO2e emissions • Other sources with high emissions were

  7. Greenhouse Gas Exchange in Small Arctic Thaw Ponds

    Science.gov (United States)

    Laurion, I.; Bégin, P. N.; Bouchard, F.; Preskienis, V.

    2014-12-01

    Arctic lakes and ponds can represent up to one quarter of the land surface in permafrost landscapes, particularly in lowland tundra landscapes characterized by ice wedge organic polygons. Thaw ponds can be defined as the aquatic ecosystems associated to thawing of organic soils, either resulting from active layer processes and located above low-center peat polygons (hereafter low-center polygonal or LCP ponds), or resulting from thermokarst slumping above melting ice wedges linked to the accelerated degradation of permafrost (hereafter ice-wedge trough or IWT ponds). These ponds can merge together forming larger water bodies, but with relatively stable shores (hereafter merged polygonal or MPG ponds), and with limnological characteristics similar to LCP ponds. These aquatic systems are very small and shallow, and present a different physical structure than the larger thermokarst lakes, generated after years of development and land subsidence. In a glacier valley on Bylot Island, Nunavut, Canada, thermokarst and kettle lakes together represent 29% of the aquatic area, with a thermal profile resembling those of more standard arctic lakes (mixed epilimnion). The IWT ponds (44% of the area) are stratified for a large fraction of the summer despite their shallowness, while LCP and MPG ponds (27% of the area) show a more homogeneous water column. This will affect gas exchange in these diverse aquatic systems, in addition to their unique microbiota and organic carbon lability that control the production and consumption rates of greenhouse gases. The stratification in IWT ponds generates hypoxic conditions at the bottom, and together with the larger availability of organic carbon, stimulates methanogenesis and limits the mitigating action of methanotrophs. Overall, thaw ponds are largely supersaturated in methane, with IWT ponds dominating the emissions in this landscape (92% of total aquatic emissions estimated for the same valley), and they present large variations in

  8. The FAOSTAT database of greenhouse gas emissions from agriculture

    International Nuclear Information System (INIS)

    Tubiello, Francesco N; Salvatore, Mirella; Rossi, Simone; Ferrara, Alessandro; Fitton, Nuala; Smith, Pete

    2013-01-01

    Greenhouse gas (GHG) emissions from agriculture, including crop and livestock production, forestry and associated land use changes, are responsible for a significant fraction of anthropogenic emissions, up to 30% according to the Intergovernmental Panel on Climate Change (IPCC). Yet while emissions from fossil fuels are updated yearly and by multiple sources—including national-level statistics from the International Energy Agency (IEA)—no comparable efforts for reporting global statistics for agriculture, forestry and other land use (AFOLU) emissions exist: the latest complete assessment was the 2007 IPCC report, based on 2005 emission data. This gap is critical for several reasons. First, potentially large climate funding could be linked in coming decades to more precise estimates of emissions and mitigation potentials. For many developing countries, and especially the least developed ones, this requires improved assessments of AFOLU emissions. Second, growth in global emissions from fossil fuels has outpaced that from AFOLU during every decade of the period 1961–2010, so the relative contribution of the latter to total climate forcing has diminished over time, with a need for regular updates. We present results from a new GHG database developed at FAO, providing a complete and coherent time series of emission statistics over a reference period 1961–2010, at country level, based on FAOSTAT activity data and IPCC Tier 1 methodology. We discuss results at global and regional level, focusing on trends in the agriculture sector and net deforestation. Our results complement those available from the IPCC, extending trend analysis to a longer historical period and, critically, beyond 2005 to more recent years. In particular, from 2000 to 2010, we find that agricultural emissions increased by 1.1% annually, reaching 4.6 Gt CO 2 yr −1 in 2010 (up to 5.4–5.8 Gt CO 2 yr −1 with emissions from biomass burning and organic soils included). Over the same decade

  9. Contingency planning for rapid reduction of greenhouse gas emissions

    Directory of Open Access Journals (Sweden)

    Larsson, Nils K.

    2010-03-01

    Full Text Available The current and predicted levels of greenhouse gas (GHG emissions are, according to the best international scientific estimates, leading the world towards climate change that will have serious consequences for all countries. The problem is aggravated by the tendency of people and institutions not to take action until catastrophic consequences emerge. The history of crises in other sectors show us that reactions are likely to focus on ad-hoc reactions or using plans that are readily available, with negative results. However, the alternative of developing public plans for drastic and rapid reductions is not likely to gain support because of their radical nature. The author therefore proposes that large organizations with direct or indirect control over substantial GHG emissions should prepare private contingency plans for very rapid reductions in emissions, so that more rational and less destructive plans will be available when the appropriate moment comes for last-minute action. Examples of the type of specific plans that may be appropriate are suggested.

    Según las estimaciones científicas internacionales más optimistas, los niveles actuales y previstos de emisiones de gases de efecto invernadero (GEI están llevando al mundo hacia un cambio climático que tendrá graves consecuencias para todos los países. El problema se ve agravado por la tendencia de personas e instituciones a no tomar medidas hasta que no se perciben las catastróficas consecuencias. El historial de crisis ocurridas en otros sectores nos demuestra que las reacciones probablemente se centren en medidas ad hoc o en emplear planes que ya existían, pero sin resultados. Sin embargo, es poco probable que la alternativa al desarrollo de planes públicos para las reducciones drásticas y rápidas consiga el apoyo necesario, debido precisamente a su radicalidad. El autor recomienda por tanto que las grandes organizaciones que tengan control directo o indirecto sobre un

  10. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios.

    Science.gov (United States)

    Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad

    2014-12-02

    The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.

  11. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  12. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  13. Essays on the economics of energy markets. Security of supply and greenhouse gas abatement

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline

    2013-01-01

    In summary, the presented thesis analyzes two distinct economic subjects: security of supply in natural gas markets and greenhouse gas abatement potentials in the residential heating market. These subjects considered both reflect key points in the triangle of energy policy and are both associated with transnational market failures within energy markets. The security of supply analyses in an intermeshed network are approached from a rather normative, top-down perspective of a social planner. On the contrary, the analyses of greenhouse gases emitted by households are positive analyses of consumer choices. The normative analyses of security of supply in natural gas markets and the positive analyses on greenhouse gas abatement in the residential heating market are organized in two parts of the thesis. 1. Normative analyses - Security of supply in natural gas markets: The two papers of the first part of the dissertation thesis are based on a normative approach with the European natural gas market and infrastructure model TIGER that allows for security of supply analyses. The general idea behind the modeling approach is based on the assumption of a social planner and finds an efficient utilization of the natural gas infrastructure. More precisely, the security of supply analyses conducted in the first part of the thesis refer to scenario simulations of disrupted supply routes in the European natural gas network. The effects of these security of supply scenarios on the usage of other infrastructure components, on marginal supply costs and disruptions to consumers are investigated. 2. Positive analyses of greenhouse gas abatement potentials - Econometric modeling of consumer choices and evaluation of public policies: The second part of the thesis includes two positive analyses which investigate household choices to derive greenhouse gas abatement potentials. In the residential heating market, the energy efficiency level exhibited and the type of energy carrier used are

  14. Essays on the economics of energy markets. Security of supply and greenhouse gas abatement

    Energy Technology Data Exchange (ETDEWEB)

    Dieckhoener, Caroline

    2013-02-01

    In summary, the presented thesis analyzes two distinct economic subjects: security of supply in natural gas markets and greenhouse gas abatement potentials in the residential heating market. These subjects considered both reflect key points in the triangle of energy policy and are both associated with transnational market failures within energy markets. The security of supply analyses in an intermeshed network are approached from a rather normative, top-down perspective of a social planner. On the contrary, the analyses of greenhouse gases emitted by households are positive analyses of consumer choices. The normative analyses of security of supply in natural gas markets and the positive analyses on greenhouse gas abatement in the residential heating market are organized in two parts of the thesis. 1. Normative analyses - Security of supply in natural gas markets: The two papers of the first part of the dissertation thesis are based on a normative approach with the European natural gas market and infrastructure model TIGER that allows for security of supply analyses. The general idea behind the modeling approach is based on the assumption of a social planner and finds an efficient utilization of the natural gas infrastructure. More precisely, the security of supply analyses conducted in the first part of the thesis refer to scenario simulations of disrupted supply routes in the European natural gas network. The effects of these security of supply scenarios on the usage of other infrastructure components, on marginal supply costs and disruptions to consumers are investigated. 2. Positive analyses of greenhouse gas abatement potentials - Econometric modeling of consumer choices and evaluation of public policies: The second part of the thesis includes two positive analyses which investigate household choices to derive greenhouse gas abatement potentials. In the residential heating market, the energy efficiency level exhibited and the type of energy carrier used are

  15. Greenhouse Gas Emissions from Rubber Industry in Thailand

    NARCIS (Netherlands)

    Jawjit, W.; Kroeze, C.; Rattanapan, S.

    2010-01-01

    Rubber production has been taking place in Thailand for many decades. Thailand is currently the world's largest natural rubber producer. We present emissions of greenhouse gases associated with the production of fresh latex, and three primary rubber products, including concentrated latex, block

  16. Effect of greenhouse gas emissions on stratospheric ozone depletion

    NARCIS (Netherlands)

    Velders GJM; LLO

    1997-01-01

    The depletion of the ozone layer is caused mainly by the increase in emissions of chlorine- and bromine-containing compounds like CFCs, halons, carbon tetrachloride, methyl chloroform and methyl bromide. Emissions of greenhouse gases can affect the depletion of the ozone layer through atmospheric

  17. Mitigating greenhouse gas emissions from beef cattle housing

    Science.gov (United States)

    Beef cattle are potential sources of greenhouse gases (GHG). These emissions include methane produced by fermentation within the gut (enteric), and methane and nitrous oxide emissions from manure. Life Cycle Analysis of North American (NA) beef cattle production systems consistently indicate that...

  18. Energy Consumption and Greenhouse Gas Emissions Resulting From Tourism Travel in an Alpine Setting

    Directory of Open Access Journals (Sweden)

    Rainer Unger

    2016-11-01

    Full Text Available Tourism—with its social, economic, and ecological dimensions—can be an important driver of sustainable development of alpine communities. Tourism is essential for local people's incomes and livelihoods, but it can also have a major impact on the local environment, landscape aesthetics, and (mainly through tourist transport global climate change. A project currently underway is developing the Austrian mountain municipality of Alpbach into a role model for competitive and sustainable year-round alpine tourism using an integrated and spatially explicit approach that considers energy demand and supply related to housing, infrastructure, and traffic in the settlement and the skiing area. As the first outcome of the project, this article focuses on the development of the Model of Alpine Tourism and Transportation, a geographic information system–based tool for calculating, in detail, energy consumption and greenhouse gas emissions resulting from travel to a single alpine holiday destination. Analysis results show that it is crucial to incorporate both direct and indirect energy use and emissions as each contributes significantly to the climate impact of travel. The study fills a research gap in carbon impact appraisal studies of tourism transport in the context of alpine tourism at the destination level. Our findings will serve as a baseline for the development of comprehensive policies and agendas promoting the transformation toward sustainable alpine tourism.

  19. RE: Request for Correction, Technical Support Document, Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    The Industrial Energy Consumers of America (IECA) joins the U.S. Chamber of Commerce in its request for correction of information developed by the Environmental Protection Agency (EPA) in a background technical support document titled Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

  20. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A. [Univ. Politecnica de Madrid, Madrid (Spain); Brook, B.W. [Univ. of Tasmania, Hobart TAS (Australia); Meneley, D.A. [Candu Energy Inc., Mississauga, Ontario (Canada); Misak, J. [UJV-Rez, Prague (Czech Republic); Blees, T. [Science Council for Global Initiatives, Chicago, Illinois (United States); Van Erp, J.B. [Illinois Commission on Atomic Energy, Chicago, Illinois (United States)

    2015-12-15

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)