WorldWideScience

Sample records for transport chemistry results

  1. Waste Preparation and Transport Chemistry: Results of the FY 2001 Studies

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.D.

    2002-03-25

    of researchers from AEA Technology, Florida International University (FIU), Fluor Hanford, Mississippi State University (MSU), Oak Ridge National Laboratory (ORNL), and Savannah River Technology Center (SRTC) to evaluate various aspects of the waste preparation and transport chemistry. The majority of this effort was focused on saltcake dissolution and saltwell pumping. The results of the AEA Technology, FIU, and MSU studies of saltcake dissolution and slurry transfers for Hanford are discussed in detail in a companion report prepared by T. D. Welch in 2001 (ORNIJTM-2001097). Staff members at Fluor Hanford have continued to conduct saltcake dissolution tests on actual tank waste (documented in reports prepared by D. L. Herting in 2000 and 2001). It should be noted that full-scale saltcake dissolution at Hanford is scheduled to begin in FY 2002. While the Hanford effort is focused on the transfer of waste from one tank to another, the objective of the SRTC study is the formation of aluminosilicates at elevated temperatures, which are present in the waste evaporator.

  2. Undulator Transportation Test Results

    International Nuclear Information System (INIS)

    Wolf, Zachary

    2010-01-01

    A test was performed to determine whether transporting and handling the undulators makes any changes to their properties. This note documents the test. No significant changes to the test undulator were observed. After the LCLS undulators are tuned and fiducialized in the Magnetic Measurement Facility (MMF), they must be transported to storage buildings and transported to the tunnel. It has been established that the undulators are sensitive to temperature. We wish to know whether the undulators are also sensitive to the vibrations and shocks of transportation. To study this issue, we performed a test in which an undulator was measured in the MMF, transported to the tunnel, brought back to the MMF, and re-measured. This note documents the test and the results.

  3. Aespoe HRL - Geoscientific evaluation 1997/4. Results from pre-investigation and detailed site characterization. Comparison of predictions and observations. Hydrogeology, groundwater chemistry and transport of solutes

    International Nuclear Information System (INIS)

    Rhen, I.; Gustafson, Gunnar; Wikberg, P.

    1997-06-01

    The pre-investigations for the Aespoe Hard Rock Laboratory were started in 1986 and involved extensive field measurements, aimed at characterizing the rock formations with regard to geology, hydrogeology, hydrochemistry and rock mechanics. Prior to the excavation in 1990 predictions were made for the excavation phase concerning: geology, ground water flow and chemistry, transport of solutes and mechanical stability. This report presents a comparison between these predictions and the observations made during the excavation. Also, investigation methods for the 700-2874 m sections of the tunnel are evaluated

  4. GEOS-5 Chemistry Transport Model User's Guide

    Science.gov (United States)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  5. Coordination Chemistry of Microbial Iron Transport.

    Science.gov (United States)

    Raymond, Kenneth N; Allred, Benjamin E; Sia, Allyson K

    2015-09-15

    This Account focuses on the coordination chemistry of the microbial iron chelators called siderophores. The initial research (early 1970s) focused on simple analogs of siderophores, which included hydroxamate, catecholate, or hydroxycarboxylate ligands. The subsequent work increasingly focused on the transport of siderophores and their microbial iron transport. Since these are pseudo-octahedral complexes often composed of bidentate ligands, there is chirality at the metal center that in principle is independent of the ligand chirality. It has been shown in many cases that chiral recognition of the complex occurs. Many techniques have been used to elucidate the iron uptake processes in both Gram-positive (single membrane) and Gram-negative (double membrane) bacteria. These have included the use of radioactive labels (of ligand, metal, or both), kinetically inert metal complexes, and Mössbauer spectroscopy. In general, siderophore recognition and transport involves receptors that recognize the metal chelate portion of the iron-siderophore complex. A second, to date less commonly found, mechanism called the siderophore shuttle involves the receptor binding an apo-siderophore. Since one of the primary ways that microbes compete with each other for iron stores is the strength of their competing siderophore complexes, it became important early on to characterize the solution thermodynamics of these species. Since the acidity of siderophores varies significantly, just the stability constant does not give a direct measure of the relative competitive strength of binding. For this reason, the pM value is compared. The pM, like pH, is a measure of the negative log of the free metal ion concentration, typically calculated at pH 7.4, and standard total concentrations of metal and ligand. The characterization of the electronic structure of ferric siderophores has done much to help explain the high stability of these complexes. A new chapter in siderophore science has emerged

  6. Influence of Intense secondary aerosol formation and long range transport on aerosol chemistry and properties in the Seoul Metropolitan Area during spring time: Results from KORUS-AQ

    Science.gov (United States)

    Kim, H.; Zhang, Q.

    2017-12-01

    Non-refractory submicrometer particulate matter (NR-PM1) was measured in the Seoul Metropolitan Area (SMA), Korea, using an HR-ToF-AMS from April 14 to June 15, 2016, as a part of the KORUS-AQ campaign. The average concentration of PM1 was 22.1 µg m-3, which was composed of 44% organics, 20% SO4, 17% NO3, and 12 % NH4. Organics had an average O/C ratio of 0.49 and an average OM/OC ratio of 1.82. Four distinct sources of OA were identified via PMF analysis of the HR-ToF-AMS data: hydrocarbon like OA (HOA), cooking OA (COA),semi-volatile oxygenated OA (SV-OOA) and a low volatility oxygenated OA (LV-OOA). Our results indicate that air quality in SMA during KORUS-AQ was influenced strongly by secondary aerosol formation with SO4, NO3, NH4, SV-OOA, and LV-OOA together accounting for 76% of the PM1 mass. Due to high temperature and elevated ozone concentrations, photochemical reactions during daytime promoted the formation of SV-OOA, LV-OOA and SO4. In addition, aqueous-phase or heterogeneous reactions likely promoted efficient formation of NO3 whereas gas-to-particle partitioning processes appeared to have enhanced nighttime SV-OOA and NO3 formation. From May 20 to May 23, LV-OOA was significantly enhanced and accounted for up to 41% of the PM1 mass. Since this intense LV-OOA formation event was associated with large enhancement of VOCs, high concentration of Ox , strong solar radiation, and stagnant conditions, it appeared to be related to local photochemical formation. We also have investigated the formation and evolution mechanisms of severe haze episodes. Unlike the cases observed in winter when haze episodes were mainly caused by intense local emissions coupled with stagnant meteorological conditions, the spring haze events observed in this study appeared to be attributed by both regional and local factors. For example, episodes of long range transport of plumes were followed by calm meteorology conditions, which promoted the formation and accumulation of local

  7. Titan's organic chemistry: Results of simulation experiments

    Science.gov (United States)

    Sagan, Carl; Thompson, W. Reid; Khare, Bishun N.

    1992-01-01

    Recent low pressure continuous low plasma discharge simulations of the auroral electron driven organic chemistry in Titan's mesosphere are reviewed. These simulations yielded results in good accord with Voyager observations of gas phase organic species. Optical constants of the brownish solid tholins produced in similar experiments are in good accord with Voyager observations of the Titan haze. Titan tholins are rich in prebiotic organic constituents; the Huygens entry probe may shed light on some of the processes that led to the origin of life on Earth.

  8. Modifying Thermal Transport in Colloidal Nanocrystal Solids with Surface Chemistry.

    Science.gov (United States)

    Liu, Minglu; Ma, Yuanyu; Wang, Robert Y

    2015-12-22

    We present a systematic study on the effect of surface chemistry on thermal transport in colloidal nanocrystal (NC) solids. Using PbS NCs as a model system, we vary ligand binding group (thiol, amine, and atomic halides), ligand length (ethanedithiol, butanedithiol, hexanedithiol, and octanedithiol), and NC diameter (3.3-8.2 nm). Our experiments reveal several findings: (i) The ligand choice can vary the NC solid thermal conductivity by up to a factor of 2.5. (ii) The ligand binding strength to the NC core does not significantly impact thermal conductivity. (iii) Reducing the ligand length can decrease the interparticle distance, which increases thermal conductivity. (iv) Increasing the NC diameter increases thermal conductivity. (v) The effect of surface chemistry can exceed the effect of NC diameter and becomes more pronounced as NC diameter decreases. By combining these trends, we demonstrate that the thermal conductivity of NC solids can be varied by an overall factor of 4, from ∼0.1-0.4 W/m-K. We complement these findings with effective medium approximation modeling and identify thermal transport in the ligand matrix as the rate-limiter for thermal transport. By combining these modeling results with our experimental observations, we conclude that future efforts to increase thermal conductivity in NC solids should focus on the ligand-ligand interface between neighboring NCs.

  9. Can a 'state of the art' chemistry transport model really simulate Anazonian tropospheric chemistry

    NARCIS (Netherlands)

    Barkley, M.; Palmer, P.I.; Ganzeveld, L.N.

    2011-01-01

    We present an evaluation of a nested high-resolution Goddard Earth Observing System (GEOS)-Chem chemistry transport model simulation of tropospheric chemistry over tropical South America. The model has been constrained with two isoprene emission inventories: (1) the canopy-scale Model of Emissions

  10. Effects of different representations of transport in the new EMAC-SWIFT chemistry climate model

    Science.gov (United States)

    Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Kreyling, Daniel; Rex, Markus

    2017-04-01

    It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Interactively coupled chemistry climate models (CCMs) provide a means to realistically simulate the interaction between atmospheric chemistry and dynamics. The calculation of chemistry in CCMs, however, is computationally expensive which renders the use of complex chemistry models not suitable for ensemble simulations or simulations with multiple climate change scenarios. In these simulations ozone is therefore usually prescribed as a climatological field or included by incorporating a fast linear ozone scheme into the model. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. An alternative approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. When using SWIFT in EMAC, there are several possibilities to represent the effect of transport inside the polar vortex: the semi-Lagrangian transport scheme of EMAC and a transport parameterisation that can be useful when using SWIFT in models not having transport of their own. Here, we present results of equivalent simulations with different handling of transport, compare with EMAC simulations with full interactive chemistry and evaluate the results with observations.

  11. Meteorological implementation issues in chemistry and transport models

    Directory of Open Access Journals (Sweden)

    S. E. Strahan

    2006-01-01

    Full Text Available Offline chemistry and transport models (CTMs are versatile tools for studying composition and climate issues requiring multi-decadal simulations. They are computationally fast compared to coupled chemistry climate models, making them well-suited for integrating sensitivity experiments necessary for understanding model performance and interpreting results. The archived meteorological fields used by CTMs can be implemented with lower horizontal or vertical resolution than the original meteorological fields in order to shorten integration time, but the effects of these shortcuts on transport processes must be understood if the CTM is to have credibility. In this paper we present a series of sensitivity experiments on a CTM using the Lin and Rood advection scheme, each differing from another by a single feature of the wind field implementation. Transport effects arising from changes in resolution and model lid height are evaluated using process-oriented diagnostics that intercompare CH4, O3, and age tracer carried in the simulations. Some of the diagnostics used are derived from observations and are shown as a reality check for the model. Processes evaluated include tropical ascent, tropical-midlatitude exchange, poleward circulation in the upper stratosphere, and the development of the Antarctic vortex. We find that faithful representation of stratospheric transport in this CTM is possible with a full mesosphere, ~1 km resolution in the lower stratosphere, and relatively low vertical resolution (>4 km spacing in the middle stratosphere and above, but lowering the lid from the upper to lower mesosphere leads to less realistic constituent distributions in the upper stratosphere. Ultimately, this affects the polar lower stratosphere, but the effects are greater for the Antarctic than the Arctic. The fidelity of lower stratospheric transport requires realistic tropical and high latitude mixing barriers which are produced at 2°×2.5°, but not lower

  12. Systematic evaluation of atmospheric chemistry-transport model CHIMERE

    Science.gov (United States)

    Khvorostyanov, Dmitry; Menut, Laurent; Mailler, Sylvain; Siour, Guillaume; Couvidat, Florian; Bessagnet, Bertrand; Turquety, Solene

    2017-04-01

    Regional-scale atmospheric chemistry-transport models (CTM) are used to develop air quality regulatory measures, to support environmentally sensitive decisions in the industry, and to address variety of scientific questions involving the atmospheric composition. Model performance evaluation with measurement data is critical to understand their limits and the degree of confidence in model results. CHIMERE CTM (http://www.lmd.polytechnique.fr/chimere/) is a French national tool for operational forecast and decision support and is widely used in the international research community in various areas of atmospheric chemistry and physics, climate, and environment (http://www.lmd.polytechnique.fr/chimere/CW-articles.php). This work presents the model evaluation framework applied systematically to the new CHIMERE CTM versions in the course of the continuous model development. The framework uses three of the four CTM evaluation types identified by the Environmental Protection Agency (EPA) and the American Meteorological Society (AMS): operational, diagnostic, and dynamic. It allows to compare the overall model performance in subsequent model versions (operational evaluation), identify specific processes and/or model inputs that could be improved (diagnostic evaluation), and test the model sensitivity to the changes in air quality, such as emission reductions and meteorological events (dynamic evaluation). The observation datasets currently used for the evaluation are: EMEP (surface concentrations), AERONET (optical depths), and WOUDC (ozone sounding profiles). The framework is implemented as an automated processing chain and allows interactive exploration of the results via a web interface.

  13. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    Science.gov (United States)

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple

  14. Drone Transport of Chemistry and Hematology Samples Over Long Distances.

    Science.gov (United States)

    Amukele, Timothy K; Hernandez, James; Snozek, Christine L H; Wyatt, Ryan G; Douglas, Matthew; Amini, Richard; Street, Jeff

    2017-11-02

    We addressed the stability of biological samples in prolonged drone flights by obtaining paired chemistry and hematology samples from 21 adult volunteers in a single phlebotomy event-84 samples total. Half of the samples were held stationary, while the other samples were flown for 3 hours (258 km) in a custom active cooling box mounted on the drone. After the flight, 19 chemistry and hematology tests were performed. Seventeen analytes had small or no bias, but glucose and potassium in flown samples showed an 8% and 6.2% bias, respectively. The flown samples (mean, 24.8°C) were a mean of 2.5°C cooler than the stationary samples (mean, 27.3°C) during transportation to the flight field as well as during the flight. The changes in glucose and potassium are consistent with the magnitude and duration of the temperature difference between the flown and stationary samples. Long drone flights of biological samples are feasible but require stringent environmental controls to ensure consistent results. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  15. Solving vertical transport and chemistry in air pollution models

    NARCIS (Netherlands)

    P.J.F. Berkvens (Patrick); M.A. Botchev; J.G. Verwer (Jan); M.C. Krol; W. Peters

    2000-01-01

    textabstractFor the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived

  16. Solving Vertical Transport and Chemistry in Air Pollution Models.

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, Mikhail A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  17. Solving vertical transport and chemistry in air pollution models

    NARCIS (Netherlands)

    Berkvens, P.J.F.; Bochev, M.A.; Krol, M.C.; Peters, W.; Verwer, J.G.; Chock, David P.; Carmichael, Gregory R.; Brick, Patricia

    2002-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species.

  18. One-Dimensional Transport with Equilibrium Chemistry (OTEQ) - A Reactive Transport Model for Streams and Rivers

    Science.gov (United States)

    Runkel, Robert L.

    2010-01-01

    OTEQ is a mathematical simulation model used to characterize the fate and transport of waterborne solutes in streams and rivers. The model is formed by coupling a solute transport model with a chemical equilibrium submodel. The solute transport model is based on OTIS, a model that considers the physical processes of advection, dispersion, lateral inflow, and transient storage. The equilibrium submodel is based on MINTEQ, a model that considers the speciation and complexation of aqueous species, acid-base reactions, precipitation/dissolution, and sorption. Within OTEQ, reactions in the water column may result in the formation of solid phases (precipitates and sorbed species) that are subject to downstream transport and settling processes. Solid phases on the streambed may also interact with the water column through dissolution and sorption/desorption reactions. Consideration of both mobile (waterborne) and immobile (streambed) solid phases requires a unique set of governing differential equations and solution techniques that are developed herein. The partial differential equations describing physical transport and the algebraic equations describing chemical equilibria are coupled using the sequential iteration approach. The model's ability to simulate pH, precipitation/dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between instream chemistry and hydrologic transport at the field scale. This report details the development and application of OTEQ. Sections of the report describe model theory, input/output specifications, model applications, and installation instructions. OTEQ may be obtained over the Internet at http://water.usgs.gov/software/OTEQ.

  19. Modular coupling of transport and chemistry: theory and model applications

    International Nuclear Information System (INIS)

    Pfingsten, W.

    1994-06-01

    For the description of complex processes in the near-field of a radioactive waste repository, the coupling of transport and chemistry is necessary. A reason for the relatively minor use of coupled codes in this area is the high amount of computer time and storage capacity necessary for calculations by conventional codes, and lack of available data. The simple application of the sequentially coupled code MCOTAC, which couples one-dimensional advective, dispersive and diffusive transport with chemical equilibrium complexation and precipitation/dissolution reactions in a porous medium, shows some promising features with respect to applicability to relevant problems. Transport, described by a random walk of multi-species particles, and chemical equilibrium calculations are solved separately, coupled only by an exchange term to ensure mass conservation. The modular-structured code was applied to three problems: a) incongruent dissolution of hydrated silicate gels, b) dissolution of portlandite and c) calcite dissolution and hypothetical dolomite precipitation. This allows for a comparison with other codes and their applications. The incongruent dissolution of cement phases, important for degradation of cementitious materials in a repository, can be included in the model without the problems which occur with a directly coupled code. The handling of a sharp multi-mineral front system showed a much faster calculation time compared to a directly coupled code application. Altogether, the results are in good agreement with other code calculations. Hence, the chosen modular concept of MCOTAC is more open to an easy extension of the code to include additional processes like sorption, kinetically controlled processes, transport in two or three spatial dimensions, and adaptation to new developments in computing (hardware and software), an important factor for applicability. (author) figs., tabs., refs

  20. Report of scientific results 1976. Section nuclear chemistry and reactor

    International Nuclear Information System (INIS)

    1976-01-01

    The report of the section Nuclear Chemistry and Reactor presents the results of R and D in the fields of neutron scattering, radiation damage in solids, reactor chemistry, trace elements research in biomedicine, geochemistry, reactor operation, radioisotope production, and gives a survey of publications and lectures. (HK) [de

  1. An evaluation of the Cray T3D programming paradigms in atmospheric chemistry/transport models

    NARCIS (Netherlands)

    J.G. Blom (Joke); C. Keßler (Carsten); J.G. Verwer (Jan)

    1996-01-01

    textabstractIn this paper we compare the different programming paradigms available on the Cray T3D for the implementation of a 3D prototype of an Atmospheric Chemistry/Transport Model. We discuss the amount of work needed to convert existing codes to the T3D and the portability of the resulting

  2. Solving vertical transport and chemistry in air pollution models

    International Nuclear Information System (INIS)

    Berkvens, P.J.F.; Botchev, M.A.; Verwer, J.G.; Krol, M.C.; Peters, W.

    2000-01-01

    For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species. This complicates the chemistry solution, easily causing large errors for such species. In the framework of an operational global air pollution model, we focus on the problem formed by chemistry and vertical transport, which is based on diffusion, cloud-related vertical winds, and wet deposition. Its specific nature leads to full Jacobian matrices, ruling out standard implicit integration. We compare Strang operator splitting with two alternatives: source splitting and an (unsplit) Rosenbrock method with approximate matrix factorization, all having equal computational cost. The comparison is performed with real data. All methods are applied with half-hour time steps, and give good accuracies. Rosenbrock is the most accurate, and source splitting is more accurate than Strang splitting. Splitting errors concentrate in short-lived species sensitive to solar radiation and species with strong emissions and depositions. 30 refs

  3. Machine learning of atmospheric chemistry. Applications to a global chemistry transport model.

    Science.gov (United States)

    Evans, M. J.; Keller, C. A.

    2017-12-01

    Atmospheric chemistry is central to many environmental issues such as air pollution, climate change, and stratospheric ozone loss. Chemistry Transport Models (CTM) are a central tool for understanding these issues, whether for research or for forecasting. These models split the atmosphere in a large number of grid-boxes and consider the emission of compounds into these boxes and their subsequent transport, deposition, and chemical processing. The chemistry is represented through a series of simultaneous ordinary differential equations, one for each compound. Given the difference in life-times between the chemical compounds (mili-seconds for O(1D) to years for CH4) these equations are numerically stiff and solving them consists of a significant fraction of the computational burden of a CTM.We have investigated a machine learning approach to solving the differential equations instead of solving them numerically. From an annual simulation of the GEOS-Chem model we have produced a training dataset consisting of the concentration of compounds before and after the differential equations are solved, together with some key physical parameters for every grid-box and time-step. From this dataset we have trained a machine learning algorithm (random regression forest) to be able to predict the concentration of the compounds after the integration step based on the concentrations and physical state at the beginning of the time step. We have then included this algorithm back into the GEOS-Chem model, bypassing the need to integrate the chemistry.This machine learning approach shows many of the characteristics of the full simulation and has the potential to be substantially faster. There are a wide range of application for such an approach - generating boundary conditions, for use in air quality forecasts, chemical data assimilation systems, centennial scale climate simulations etc. We discuss our approches' speed and accuracy, and highlight some potential future directions for

  4. Modelling stratospheric chemistry in a global three-dimensional chemical transport model

    Energy Technology Data Exchange (ETDEWEB)

    Rummukainen, M. [Finnish Meteorological Inst., Sodankylae (Finland). Sodankylae Observatory

    1995-12-31

    Numerical modelling of atmospheric chemistry aims to increase the understanding of the characteristics, the behavior and the evolution of atmospheric composition. These topics are of utmost importance in the study of climate change. The multitude of gases and particulates making up the atmosphere and the complicated interactions between them affect radiation transfer, atmospheric dynamics, and the impacts of anthropogenic and natural emissions. Chemical processes are fundamental factors in global warming, ozone depletion and atmospheric pollution problems in general. Much of the prevailing work on modelling stratospheric chemistry has so far been done with 1- and 2-dimensional models. Carrying an extensive chemistry parameterisation in a model with high spatial and temporal resolution is computationally heavy. Today, computers are becoming powerful enough to allow going over to 3-dimensional models. In order to concentrate on the chemistry, many Chemical Transport Models (CTM) are still run off-line, i.e. with precalculated and archived meteorology and radiation. In chemistry simulations, the archived values drive the model forward in time, without interacting with the chemical evolution. This is an approach that has been adopted in stratospheric chemistry modelling studies at the Finnish Meteorological Institute. In collaboration with the University of Oslo, a development project was initiated in 1993 to prepare a stratospheric chemistry parameterisation, fit for global 3-dimensional modelling. This article presents the parameterisation approach. Selected results are shown from basic photochemical simulations

  5. Validation of Global Ozone Monitoring Experiment ozone profiles and evaluation of stratospheric transport in a global chemistry transport model

    NARCIS (Netherlands)

    de Laat, A.T.J.; Landgraf, J.; Aben, I.; Hasekamp, O.; Bregman, B.

    2007-01-01

    This paper presents a validation of Global Ozone Monitoring Experiment (GOME) ozone (O3) profiles which are used to evaluate stratospheric transport in the chemistry transport model (CTM) Tracer Model version 5 (TM5) using a linearized stratospheric O3 chemistry scheme. A

  6. Validation of Global Ozone Monitoring Experiment zone profiles and evaluation of stratospheric transport in a global chemistry transport model

    NARCIS (Netherlands)

    Laat, A.T.J.de; Landgraf, J.; Aben, I.; Hasekamp, O.; Bregman, B.

    2007-01-01

    This paper presents a validation of Global Ozone Monitoring Experiment (GOME) ozone (O3) profiles which are used to evaluate stratospheric transport in the chemistry transport model (CTM) Tracer Model version 5 (TM5) using a linearized stratospheric O3 chemistry scheme. A comparison of GOME O3

  7. UV spectroscopy applied to stratospheric chemistry, methods and results

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, K.

    1996-03-01

    The publication from the Norwegian Institute for Air Research (NILU) deals with an investigation done on stratospheric chemistry by UV spectroscopy. The scientific goals are briefly discussed, and it gives the results from the measuring and analysing techniques used in the investigation. 6 refs., 11 figs.

  8. Evaluating the effects of variable water chemistry on bacterial transport during infiltration.

    Science.gov (United States)

    Zhang, Haibo; Nordin, Nahjan Amer; Olson, Mira S

    2013-07-01

    Bacterial infiltration through the subsurface has been studied experimentally under different conditions of interest and is dependent on a variety of physical, chemical and biological factors. However, most bacterial transport studies fail to adequately represent the complex processes occurring in natural systems. Bacteria are frequently detected in stormwater runoff, and may present risk of microbial contamination during stormwater recharge into groundwater. Mixing of stormwater runoff with groundwater during infiltration results in changes in local solution chemistry, which may lead to changes in both bacterial and collector surface properties and subsequent bacterial attachment rates. This study focuses on quantifying changes in bacterial transport behavior under variable solution chemistry, and on comparing the influences of chemical variability and physical variability on bacterial attachment rates. Bacterial attachment rate at the soil-water interface was predicted analytically using a combined rate equation, which varies temporally and spatially with respect to changes in solution chemistry. Two-phase Monte Carlo analysis was conducted and an overall input-output correlation coefficient was calculated to quantitatively describe the importance of physiochemical variation on the estimates of attachment rate. Among physical variables, soil particle size has the highest correlation coefficient, followed by porosity of the soil media, bacterial size and flow velocity. Among chemical variables, ionic strength has the highest correlation coefficient. A semi-reactive microbial transport model was developed within HP1 (HYDRUS1D-PHREEQC) and applied to column transport experiments with constant and variable solution chemistries. Bacterial attachment rates varied from 9.10×10(-3)min(-1) to 3.71×10(-3)min(-1) due to mixing of synthetic stormwater (SSW) with artificial groundwater (AGW), while bacterial attachment remained constant at 9.10×10(-3)min(-1) in a constant

  9. Evaluating the effects of variable water chemistry on bacterial transport during infiltration

    Science.gov (United States)

    Zhang, Haibo; Nordin, Nahjan Amer; Olson, Mira S.

    2013-07-01

    Bacterial infiltration through the subsurface has been studied experimentally under different conditions of interest and is dependent on a variety of physical, chemical and biological factors. However, most bacterial transport studies fail to adequately represent the complex processes occurring in natural systems. Bacteria are frequently detected in stormwater runoff, and may present risk of microbial contamination during stormwater recharge into groundwater. Mixing of stormwater runoff with groundwater during infiltration results in changes in local solution chemistry, which may lead to changes in both bacterial and collector surface properties and subsequent bacterial attachment rates. This study focuses on quantifying changes in bacterial transport behavior under variable solution chemistry, and on comparing the influences of chemical variability and physical variability on bacterial attachment rates. Bacterial attachment rate at the soil-water interface was predicted analytically using a combined rate equation, which varies temporally and spatially with respect to changes in solution chemistry. Two-phase Monte Carlo analysis was conducted and an overall input-output correlation coefficient was calculated to quantitatively describe the importance of physiochemical variation on the estimates of attachment rate. Among physical variables, soil particle size has the highest correlation coefficient, followed by porosity of the soil media, bacterial size and flow velocity. Among chemical variables, ionic strength has the highest correlation coefficient. A semi-reactive microbial transport model was developed within HP1 (HYDRUS1D-PHREEQC) and applied to column transport experiments with constant and variable solution chemistries. Bacterial attachment rates varied from 9.10 × 10- 3 min- 1 to 3.71 × 10- 3 min- 1 due to mixing of synthetic stormwater (SSW) with artificial groundwater (AGW), while bacterial attachment remained constant at 9.10 × 10- 3 min- 1 in a

  10. Expression of results in quantum chemistry physical chemistry division commission on physicochemical symbols, terminology and units

    CERN Document Server

    Whiffen, D H

    2013-01-01

    Expression of Results in Quantum Chemistry recommends the appropriate insertion of physical constants in the output information of a theoretical paper in order to make the numerical end results of theoretical work easily transformed to SI units by the reader. The acceptance of this recommendation would circumvent the need for a set of atomic units each with its own symbol and name. It is the traditional use of the phrase """"atomic units"""" in this area which has obscured the real problem. The four SI dimensions of length, mass, time, and current require four physical constants to be permitte

  11. The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0

    Directory of Open Access Journals (Sweden)

    V. Huijnen

    2010-10-01

    Full Text Available We present a comprehensive description and benchmark evaluation of the tropospheric chemistry version of the global chemistry transport model TM5 (Tracer Model 5, version TM5-chem-v3.0. A full description is given concerning the photochemical mechanism, the interaction with aerosol, the treatment of the stratosphere, the wet and dry deposition parameterizations, and the applied emissions. We evaluate the model against a suite of ground-based, satellite, and aircraft measurements of components critical for understanding global photochemistry for the year 2006.

    The model exhibits a realistic oxidative capacity at a global scale. The methane lifetime is ~8.9 years with an associated lifetime of methyl chloroform of 5.86 years, which is similar to that derived using an optimized hydroxyl radical field.

    The seasonal cycle in observed carbon monoxide (CO is well simulated at different regions across the globe. In the Northern Hemisphere CO concentrations are underestimated by about 20 ppbv in spring and 10 ppbv in summer, which is related to missing chemistry and underestimated emissions from higher hydrocarbons, as well as to uncertainties in the seasonal variation of CO emissions. The model also captures the spatial and seasonal variation in formaldehyde tropospheric columns as observed by SCIAMACHY. Positive model biases over the Amazon and eastern United States point to uncertainties in the isoprene emissions as well as its chemical breakdown.

    Simulated tropospheric nitrogen dioxide columns correspond well to observations from the Ozone Monitoring Instrument in terms of its seasonal and spatial variability (with a global spatial correlation coefficient of 0.89, but TM5 fields are lower by 25–40%. This is consistent with earlier studies pointing to a high bias of 0–30% in the OMI retrievals, but uncertainties in the emission inventories have probably also contributed to the discrepancy.

    TM5 tropospheric

  12. Transport of titanium dioxide nanoparticles in saturated porous media under various solution chemistry conditions

    International Nuclear Information System (INIS)

    Wang Yu; Gao Bin; Morales, Verónica L.; Tian Yuan; Wu Lei; Gao Jie; Bai Wei; Yang Liuyan

    2012-01-01

    Because of its wide applications, nanosized titanium dioxide may become a potential environmental risk to soil and groundwater system. It is therefore important to improve current understanding of the environmental fate and transport of titanium oxides nanoparticles (TONPs). In this work, the effect of solution chemistry (i.e., pH, ionic strength, and natural organic matter (NOM) concentration) on the deposition and transport of TONPs in saturated porous media was examined in detail. Laboratory columns packed with acid-cleaned quartz sand were used in the experiment as porous media. Transport experiments were conducted with various chemistry combinations, including four ionic strengths, three pH levels, and two NOM concentrations. The results showed that TONP mobility increased with increasing solution pH, but decreased with increasing solution ionic strength. It is also found that the presence of NOM in the system enhanced the mobility of TONPs in the saturated porous media. The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory was used to justify the mobility trends observed in the experimental data. Predictions from the theory agreed excellently with the experimental data.

  13. Electron tunneling in chemistry

    International Nuclear Information System (INIS)

    Zamaraev, K.I.; Khajrutdinov, R.F.; Zhdanov, V.P.; Molin, Yu.N.

    1985-01-01

    Results of experimental and theoretical investigations are outlined systematically on electron tunnelling in chemical reactions. Mechanism of electron transport to great distances is shown to be characteristic to chemical compounds of a wide range. The function of tunnel reactions is discussed for various fields of chemistry, including radiation chemistry, electrochemistry, chemistry of solids, chemistry of surface and catalysis

  14. Metal transport across biomembranes: emerging models for a distinct chemistry.

    Science.gov (United States)

    Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel

    2012-04-20

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.

  15. Transient groundwater chemistry near a river: Effects on U(VI) transport in laboratory column experiments

    Science.gov (United States)

    Yin, Jun; Haggerty, Roy; Stoliker, Deborah L.; Kent, Douglas B.; Istok, Jonathan D.; Greskowiak, Janek; Zachara, John M.

    2011-01-01

    In the 300 Area of a U(VI)-contaminated aquifer at Hanford, Washington, USA, inorganic carbon and major cations, which have large impacts on U(VI) transport, change on an hourly and seasonal basis near the Columbia River. Batch and column experiments were conducted to investigate the factors controlling U(VI) adsorption/desorption by changing chemical conditions over time. Low alkalinity and low Ca concentrations (Columbia River water) enhanced adsorption and reduced aqueous concentrations. Conversely, high alkalinity and high Ca concentrations (Hanford groundwater) reduced adsorption and increased aqueous concentrations of U(VI). An equilibrium surface complexation model calibrated using laboratory batch experiments accounted for the decrease in U(VI) adsorption observed with increasing (bi)carbonate concentrations and other aqueous chemical conditions. In the column experiment, alternating pulses of river and groundwater caused swings in aqueous U(VI) concentration. A multispecies multirate surface complexation reactive transport model simulated most of the major U(VI) changes in two column experiments. The modeling results also indicated that U(VI) transport in the studied sediment could be simulated by using a single kinetic rate without loss of accuracy in the simulations. Moreover, the capability of the model to predict U(VI) transport in Hanford groundwater under transient chemical conditions depends significantly on the knowledge of real-time change of local groundwater chemistry.

  16. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  17. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  18. Chemistry teachers training from the explanation of everyday phenomena: a proposal with results

    OpenAIRE

    Morales Pérez, Roy Waldhiersen;; Manrique Rodríguez, Franklin Alberto

    2012-01-01

    This paper shows the research results obtained with a group of pre-service chemistry teachers at Universidad Pedagógica Nacional, employing didactic units focused in everyday chemistry as strategy for chemistry teaching. The explanations of pre-service chemistry teachers for the analyzed everyday chemical phenomena were characterized according to its admissibility and chemical levels of representation. The project allowed consolidating a space which employs coherently disciplinary and didacti...

  19. Secondary water chemistry control practices and results of the Japanese PWR plants

    International Nuclear Information System (INIS)

    Maeda, Akihiro; Shoda, Yasuhiko; Ishihara, Nobuo; Murata, Kazutoyo; Fujiwara, Hiroyuki; Hayakawa, Hitoshi; Matsuda, Tadashi

    2012-09-01

    In Japan, since the start of the operation of the first PWR plant, Mihama Unit-1 in 1970, 24 PWR plants have been built by 2010, and all of them are in operation. Due to the plant-specific needs of management, and by flexibly incorporating the state-of-the-art insights into the design, the system configurations of the plants vary so many as 15 types. Meanwhile, the geographical feature of Japan makes all the Japanese PWR plants to have condensers cooled by sea water, and all the plants have a common system with a full-flow Condensate Polisher System (CPS). To prevent corrosion, continued improvements of the secondary water chemistry management has been performed like other countries, and one of the major features of the Japanese PWR plants is an enhanced provision for the condenser leakage. The water quality of SG (Steam Generator) has been significantly improved by the provision for the sea water leakage, in combination with other improvements in water chemistry management. Also in Japan, almost all of the treatments of the spent polisher resin and the wastewater are performed within the power plant sites. To facilitate the treatment of the waste water and the regeneration of the spent resins, either ammonia or ETA (Ethanol Amine) is selected as the pH adjustment agent for the secondary system water. Also at the ammonia treatment, high pH accomplishes the inhibition of the piping wall thinning and the lower iron transportation into SGs. In addition, the iron transported into the SG is removed by the chemical conditioning treatment called ASCA (Advanced Scale Conditioning Agent). This provides the effective recovery of the SG heat-transfer performance, and the improved SG support plate BEC (Broached Egg Crate) hole blockage rates. Basically in Japan, the secondary water chemistry management has been improved based on a single basic specification, for the variety of the plant configurations, with the plant-specific investigations and analyses. This paper summarizes

  20. Foundation Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    Science.gov (United States)

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in foundation-level courses in inorganic chemistry at the postsecondary level; the American Chemical Society's Committee on Professional Training defines a foundation course as one at the conclusion of which, "a student should have mastered the vocabulary,…

  1. Production and transport chemistry of atomic fluorine in remote plasma source and cylindrical reaction chamber

    International Nuclear Information System (INIS)

    Gangoli, S P; Johnson, A D; Fridman, A A; Pearce, R V; Gutsol, A F; Dolgopolsky, A

    2007-01-01

    Increasingly, NF 3 -based plasmas are being used in semiconductor manufacturing to clean chemical vapour deposition (CVD) chambers. With advantages such as faster clean times, substantially lower emissions of gases having high global warming potentials, and reduced chamber damage, NF 3 plasmas are now favoured over fluorocarbon-based processes. Typically, a remote plasma source (RPS) is used to dissociate the NF 3 gas and produce atomic fluorine that etches the CVD residues from the chamber surfaces. However, it is important to efficiently transport F atoms from the plasma source into the process chamber. The current work is aimed at understanding and improving the key processes involved in the production and transport of atomic fluorine atoms. A zero-dimensional model of NF 3 dissociation and F production chemistry in the RPS is developed based on various known and derived plasma parameters. Additionally, a model describing the transport of atomic fluorine is proposed that includes both physical (diffusion, adsorption and desorption) and chemical processes (surface and three-body volume recombination). The kinetic model provides an understanding of the impact of chamber geometry, gas flow rates, pressure and temperature on fluorine recombination. The plasma-kinetic model is validated by comparing model predictions (percentage F atom density) with experimental results (etch rates)

  2. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

  3. Regulating Ion Transport in Peptide Nanotubes by Tailoring the Nanotube Lumen Chemistry.

    Science.gov (United States)

    Ruiz, Luis; Benjamin, Ari; Sullivan, Matthew; Keten, Sinan

    2015-05-07

    We use atomistic nonequilibrium molecular dynamics simulations to demonstrate how specific ionic flux in peptide nanotubes can be regulated by tailoring the lumen chemistry through single amino acid substitutions. By varying the size and polarity of the functional group inserted into the nanotube interior, we are able to adjust the Na(+) flux by over an order of magnitude. Cl(-) is consistently denied passage. Bulky, nonpolar groups encourage interactions between the Na(+) and the peptide backbone carbonyl groups, disrupting the Na(+) solvation shell and slowing the transport of Na(+). Small groups have the opposite effect and accelerate flow. These results suggest that relative ion flux and selectivity can be precisely regulated in subnanometer pores by molecularly defining the lumen according to biological principles.

  4. Performance of European chemistry transport models as function of horizontal resolution

    NARCIS (Netherlands)

    Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J.M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M.T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.

    2015-01-01

    Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision

  5. Local and regional ozone production: Chemistry and transport

    International Nuclear Information System (INIS)

    Geiss, H.; Volz-Thomas, A.

    1992-12-01

    The EUROTRAC sub-project ''Tropospheric Ozone Research'' (TOR) follows a dual strategy: - Observation of the chemical processes contributing to the oxygen balance directly in the atmosphere; - Establishment of a validated data base for model calculations. Both tasks require simultaneous measurements of a wide range of chemical and meteorological components. In the case of the investigation of the chemical processes, it is also desirable to measure the free radicals directly involved in ozone production. In the project described, a measuring station was set up. For a period of two years and a half, continuous measurements were made of ozone and its chemical precursors (NO, NO 2 , NO y , VOC, CO), as well as other photooxidants (H 2 O 2 and organic hydroperoxides, organic nitrates), the photolysis frequency of NO 2 , and meteorological parameters (wind, temperature, moisture, aerosols). The station was located on the Schauinsland mountain in the southern Black Forest, at the edge of the Upper Rhine valley. At this site, there is a wide dynamic range of precursor concentrations, and the geographical and topographic site conditions make it easy to separate the air masses with different pollutant concentrations. In addition to the continuous measurements, the radical chemistry was monitored in several measuring campaigns. (orig.) [de

  6. Chemistry and mass transport of iodine in containment

    International Nuclear Information System (INIS)

    Beahm, E.C.; Weber, C.F.; Kress, T.S.; Shockley, W.E.; Daish, S.R.

    1988-01-01

    TRENDS is a computer code for modeling behavior of iodine in containment. It tracks both chemical and physical changes and features such as calculation of radiation dose rates in water pools , radiolysis effects, hydrolysis, and deposition/revaporization on aerosols and structural surfaces. Every attempt has been made to account for all significant processes. Reaction rate constants for iodine hydrolysis and radiolysis were obtained by a variable algorithm that gives values closely modeling experimental data. TRENDS output provides the distribution of iodine in containment and release from containment as a function of time during a severe accident sequence. Initial calculations with TRENDS have shown that the amount of volatile iodine released from containment is sensitive to the value of the liquid-gas (evaporation) mass transport coefficient for I 2 . 7 refs., 4 figs., 3 tabs

  7. On the use of mass-conserving wind fields in chemistry-transport models

    Directory of Open Access Journals (Sweden)

    B. Bregman

    2003-01-01

    Full Text Available A new method has been developed that provides mass-conserving wind fields for global chemistry-transport models. In previous global Eulerian modeling studies a mass-imbalance was found between the model mass transport and the surface pressure tendencies. Several methods have been suggested to correct for this imbalance, but so far no satisfactory solution has been found. Our new method solves these problems by using the wind fields in a spherical harmonical form (divergence and vorticity by mimicing the physics of the weather forecast model as closely as possible. A 3-D chemistry-transport model was used to show that the calculated ozone fields with the new processing method agree remarkably better with ozone observations in the upper troposphere and lower stratosphere. In addition, the calculated age of air in the lower stratosphere show better agreement with observations, although the air remains still too young in the extra-tropical stratosphere.

  8. Chemistry

    International Nuclear Information System (INIS)

    Gomez G, H.

    1989-01-01

    A brief description about the development and activities executed in chemistry, in the Instituto de Asuntos Nucleares, during the last years is presented. The plans and feasibility of nuclear techniques in Colombia are also described

  9. Chemistry-transport coupling and retroactive effects on material properties within the context of a deep geological repository

    International Nuclear Information System (INIS)

    Bildstein, O.

    2010-06-01

    The author gives an overview of his research and teaching activities. His researches first dealt with the development of a simulation of the chemistry/transport coupling and of the retroactive effects on transport parameters, then with the chemistry/transport modelling and its coupling with mechanics, and finally with the multi-scale investigation of porous materials. Perspectives are discussed and publications are indicated

  10. Illustration of the Alliances platform chemistry/transport coupling capacities through the simulation of a cement/clay interaction

    International Nuclear Information System (INIS)

    Dimier, A.; Michau, N.; Montarnal, Ph.; Corrihons, F.

    2003-01-01

    Safety studies in a subsurface environment and in an underground waste disposal necessitate numerical tools for reactive transport modelling. In these systems, hydrogeological and chemical processes are closely related and their interdependence must be analysed to study migration of species. We will illustrate here the capacities of the Alliances tool to simulate such a phenomenology by studying the evolution of a clay/cement interface over time. The goal being defined, the two main employed software to build up a multidimensional tool have been chosen, namely PhreeqC and Chess for chemistry. A common model has been developed whose aim is to allow models comparison while switching between the chemistry tools. For transport, Castem and Mt3d-99 have been introduced with the same philosophy of structure. It is worth noting that other tools could be introduced, the only requirement being to satisfy the specific data-model and building up the appropriate methods. Qualification cases have been built up to define the platform application field. It has been defined with one and two dimensional cases enabling a comparison with analytic solutions or an intercomparison with other reactive transport codes. To illustrate this in the chemistry coupling field, we focus on a clay cement interface with an ion exchange linked to the Ca-montmorillonite. This case has been defined at ANDRA to be used as a reference test case for chemistry coupling validation. Results show a good agreement between platform results and whose of PhreeqC with its own internal coupling. The clay/cement interface is reproduced with the same accuracy

  11. Comparison of pneumatic tube system with manual transport for routine chemistry, hematology, coagulation and blood gas tests.

    Science.gov (United States)

    Pupek, Alex; Matthewson, Beverly; Whitman, Erin; Fullarton, Rachel; Chen, Yu

    2017-08-28

    The pneumatic tube system (PTS) is commonly used in modern clinical laboratories to provide quick specimen delivery. However, its impact on sample integrity and laboratory testing results are still debatable. In addition, each PTS installation and configuration is unique to its institution. We sought to validate our Swisslog PTS by comparing routine chemistry, hematology, coagulation and blood gas test results and sample integrity indices between duplicate samples transported either manually or by PTS. Duplicate samples were delivered to the core laboratory manually by human courier or via the Swisslog PTS. Head-to-head comparisons of 48 routine chemistry, hematology, coagulation and blood gas laboratory tests, and three sample integrity indices were conducted on 41 healthy volunteers and 61 adult patients. The PTS showed no impact on sample hemolysis, lipemia, or icterus indices (all pcoagulation and blood gas (in syringe and capillary tube) laboratory tests.

  12. Recent results on the FRC transport

    International Nuclear Information System (INIS)

    Tuszewski, M.

    1984-01-01

    Some recent transport studies of field-reversed configurations (FRC) during their equilibrium phase are presented. The FRC confinement times of interest tau/sub N/, tau/sub E/, and tau/ sub phi/ are for particles, energy, and trapped-flux, respectively. An analytical expression for tau/sub N/ based on Lower-Hybrid-Drift (LHD) resistivity is presented. Some progress in assessing the respective contributions of radiation and thermal conduction to tau/sub E/ is given. Finally, the relation tau/sub E/ less than or equal to tau/sub phi/ is discussed

  13. Can Unmanned Aerial Systems (Drones) Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    Science.gov (United States)

    Amukele, Timothy K; Sokoll, Lori J; Pepper, Daniel; Howard, Dana P; Street, Jeff

    2015-01-01

    Unmanned Aerial Systems (UAS or drones) could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests. Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total): two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results. Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program) performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic) CV's and the CV's of our flown versus terrestrial sample pairs however CV's from the sample pairs tended to be slightly higher than analytic CV's. The overall concordance, based on clinical stratification (normal versus abnormal), was 97%. Length of flight had no impact on the results. Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes.

  14. Can Unmanned Aerial Systems (Drones Be Used for the Routine Transport of Chemistry, Hematology, and Coagulation Laboratory Specimens?

    Directory of Open Access Journals (Sweden)

    Timothy K Amukele

    Full Text Available Unmanned Aerial Systems (UAS or drones could potentially be used for the routine transport of small goods such as diagnostic clinical laboratory specimens. To the best of our knowledge, there is no published study of the impact of UAS transportation on laboratory tests.Three paired samples were obtained from each one of 56 adult volunteers in a single phlebotomy event (336 samples total: two tubes each for chemistry, hematology, and coagulation testing respectively. 168 samples were driven to the flight field and held stationary. The other 168 samples were flown in the UAS for a range of times, from 6 to 38 minutes. After the flight, 33 of the most common chemistry, hematology, and coagulation tests were performed. Statistical methods as well as performance criteria from four distinct clinical, academic, and regulatory bodies were used to evaluate the results.Results from flown and stationary sample pairs were similar for all 33 analytes. Bias and intercepts were <10% and <13% respectively for all analytes. Bland-Altman comparisons showed a mean difference of 3.2% for Glucose and <1% for other analytes. Only bicarbonate did not meet the strictest (Royal College of Pathologists of Australasia Quality Assurance Program performance criteria. This was due to poor precision rather than bias. There were no systematic differences between laboratory-derived (analytic CV's and the CV's of our flown versus terrestrial sample pairs however CV's from the sample pairs tended to be slightly higher than analytic CV's. The overall concordance, based on clinical stratification (normal versus abnormal, was 97%. Length of flight had no impact on the results.Transportation of laboratory specimens via small UASs does not affect the accuracy of routine chemistry, hematology, and coagulation tests results from selfsame samples. However it results in slightly poorer precision for some analytes.

  15. Chemistry

    International Nuclear Information System (INIS)

    Ferris, L.M.

    1975-01-01

    The chemical research and development efforts related to the design and ultimate operation of molten-salt breeder reactor systems are concentrated on fuel- and coolant-salt chemistry, including the development of analytical methods for use in these systems. The chemistry of tellurium in fuel salt is being studied to help elucidate the role of this element in the intergranular cracking of Hastelloy N. Studies were continued of the effect of oxygen-containing species on the equilibrium between dissolved UF 3 and dissolved UF 4 , and, in some cases, between the dissolved uranium fluorides and graphite, and the UC 2 . Several aspects of coolant-salt chemistry are under investigation. Hydroxy and oxy compounds that could be formed in molten NaBF 4 are being synthesized and characterized. Studies of the chemistry of chromium (III) compounds in fluoroborate melts were continued as part of a systematic investigation of the corrosion of structural alloys by coolant salt. An in-line voltammetric method for determining U 4+ /U 3+ ratios in fuel salt was tested in a forced-convection loop over a six-month period. (LK)

  16. Recent results from the chemistry of recoiling carbon and silicon atoms: The interplay between hot atom chemistry and gas kinetics

    International Nuclear Information System (INIS)

    Gaspar, P.P.; Garmestani, K.; Ferrieri, R.A.; Wolf, A.P.

    1990-01-01

    Recent results from the chemistry of recoiling carbon and silicon atoms illustrate the power of an experimental approach to the solution of complex mechanistic problems that combines the study of the reactions of recoiling atoms with conventional gas kinetic techniques. Included will be the reactions of 11 C atoms with anisole, addressing the question whether an aromatic pi-electron system can compete as a reactive site with carbon-hydrogen bonds

  17. Effects of two types of medical contrast media on routine chemistry results by three automated chemistry analyzers.

    Science.gov (United States)

    Park, Yu Jin; Rim, John Hoon; Yim, Jisook; Lee, Sang-Guk; Kim, Jeong-Ho

    2017-08-01

    The use of iodinated contrast media has grown in popularity in the past two decades, but relatively little attention has been paid to the possible interferential effects of contrast media on laboratory test results. Herein, we investigate medical contrast media interference with routine chemistry results obtained by three automated chemistry analyzers. Ten levels of pooled serum were used in the study. Two types of medical contrast media [Iopamiro (iopamidol) and Omnipaque (iohexol)] were evaluated. To evaluate the dose-dependent effects of the contrast media, iopamidol and iohexol were spiked separately into aliquots of serum for final concentrations of 1.8%, 3.6%, 5.5%, 7.3%, and 9.1%. The 28 analytes included in the routine chemistry panel were measured by using Hitachi 7600, AU5800, and Cobas c702 analyzers. We calculated the delta percentage difference (DPD) between the samples and the control, and examined dose-dependent trends. When the mean DPD values were compared with the reference cut-off criteria, the only uniformly interferential effect observed for all analyzers was in total protein with iopamidol. Two additional analytes that showed trends toward interferential effects only in few analyzers and exceeded the limits of the allowable error were the serum iron and the total CO 2 . The other combinations of analyzer and contrast showed no consistent dose-dependent propensity for change in any analyte level. Our study suggests that many of the analytes included in routine chemistry results, except total protein and serum iron, are not significantly affected by iopamidol and iohexol. These results suggest that it would be beneficial to apply a flexible medical evaluation process for patients requiring both laboratory tests and imaging studies, minimizing the need for strict regulations for sequential tests. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  18. Implementation and evaluation of pH-dependent cloud chemistry and wetdeposition in the chemical transport model REM-Calgrid

    NARCIS (Netherlands)

    Banzhaf, S.; Schaap, M.; Kerschbaumer, A.; Reimer, E.; Stern, R.; Swaluw, E. van der; Builtjes, P.

    2012-01-01

    The Chemistry Transport Model REM-Calgrid (RCG) has been improved by implementing an enhanced description of aqueous-phase chemistry and wet deposition processes including droplet pH. A sensitivity study on cloud and rain droplet pH has been performed to investigate its impact on model sulphate

  19. Subalpine Pyrenees received higher nitrogen deposition than predicted by EMEP and CHIMERE chemistry-transport models

    Science.gov (United States)

    Boutin, Marion; Lamaze, Thierry; Couvidat, Florian; Pornon, André

    2015-08-01

    Deposition of reactive nitrogen (N) from the atmosphere is expected to be the third greatest driver of biodiversity loss by the year 2100. Chemistry-transport models are essential tools to estimate spatially explicit N deposition but the reliability of their predictions remained to be validated in mountains. We measured N deposition and air concentration over the subalpine Pyrenees. N deposition was found to range from 797 to 1,463 mg N m-2 year-1. These values were higher than expected from model predictions, especially for nitrate, which exceeded the estimations of EMEP by a factor of 2.6 and CHIMERE by 3.6. Our observations also displayed a reversed reduced-to-oxidized ratio in N deposition compared with model predictions. The results highlight that the subalpine Pyrenees are exposed to higher levels of N deposition than expected according to standard predictions and that these levels exceed currently recognized critical loads for most high-elevation habitats. Our study reveals a need to improve the evaluation of N deposition in mountains which are home to a substantial and original part of the world’s biodiversity.

  20. The terminator "toy" chemistry test: a simple tool to assess errors in transport schemes

    Directory of Open Access Journals (Sweden)

    P. H. Lauritzen

    2015-05-01

    Full Text Available This test extends the evaluation of transport schemes from prescribed advection of inert scalars to reactive species. The test consists of transporting two interacting chemical species in the Nair and Lauritzen 2-D idealized flow field. The sources and sinks for these two species are given by a simple, but non-linear, "toy" chemistry that represents combination (X + X → X2 and dissociation (X2 → X + X. This chemistry mimics photolysis-driven conditions near the solar terminator, where strong gradients in the spatial distribution of the species develop near its edge. Despite the large spatial variations in each species, the weighted sum XT = X + 2X2 should always be preserved at spatial scales at which molecular diffusion is excluded. The terminator test demonstrates how well the advection–transport scheme preserves linear correlations. Chemistry–transport (physics–dynamics coupling can also be studied with this test. Examples of the consequences of this test are shown for illustration.

  1. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2006-03-30

    Professors and graduate students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and hydrocarbon gases and liquids produced from coal. An Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center, and Tier Associates provides guidance on the practicality of the research. The current report summarizes the results obtained in this program during the period October 1, 2002 through March 31, 2006. The results are presented in detailed reports on 16 research projects headed by professors at each of the five CFFS Universities and an Executive Summary. Some of the highlights from these results are: (1) Small ({approx}1%) additions of acetylene or other alkynes to the Fischer-Tropsch (F-T) reaction increases its yield, causes chain initiation, and promotes oxygenate formation. (2) The addition of Mo to Fe-Cu-K/AC F-T catalysts improves catalyst lifetime and activity. (3) The use of gas phase deposition to place highly dispersed metal catalysts on silica or ceria aerogels offers promise for both the F-T and the water-gas shift WGS reactions. (4) Improved activity and selectivity are exhibited by Co F-T catalysts in supercritical hexane. (5) Binary Fe

  2. Comparison of the Transportation Risks Resulting from Accidents during the Transportation of the Spent Fuel

    International Nuclear Information System (INIS)

    Jeong Jong Tae; Cho, Dong Kuen; Choi, Heui Joo; Choi, Jong Won

    2007-01-01

    The safe, environmentally sound and publicly acceptable disposal of high level wastes and spent fuels is becoming a very important issue. The operational safety assessment of a repository including a transportation safety assessment is a fundamental part in order to achieve this goal. According to the long term management strategy for spent fuels in Korea, they will be transported from the spent fuel pools in each nuclear power plant to the central interim storage facility (CISF) which is to start operation in 2016. Therefore, we have to determine the safe and economical logistics for the transportation of these spent fuels by considering their transportation risks and costs. In this study, we developed four transportation scenarios by considering the type of transportation casks and transport means in order to suggest safe and economical transportation logistics for spent fuels. Also, we estimated and compared the transportation risks resulting from the accidents during the transportation of spent fuels for these four transportation scenarios

  3. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  4. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  5. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure

  6. ICON-ART-ISO: Water isotopologues implemented in the chemistry- transport model ICON-ART

    Science.gov (United States)

    Eckstein, Johannes; Ruhnke, Roland; Reinert, Daniel; Pfahl, Stephan

    2017-04-01

    Stable isotopes of water can help to understand processes that have influenced the distribution of water in the atmosphere. Isotope enabled models, capable of simulating the distribution of HDO and H218O, can be a very useful tool for understanding these processes and the distribution of isotope ratios which are observed. We present ICON-ART-ISO, the implementation of water isotopes into the chemistry-transport model ICON-ART. The core of this global model is the ICOsahedral Non-hydrostatic (ICON) modelling framework (Zaengl et al, 2015 (Q. J. R. Meteorol. Soc.)), a joint development of the German Weather Service (DWD) and the Max Planck Institute for Meteorology. The model system ICON-ART (Aerosols and Reactive Trace gases, Rieger et al, 2015 (GMD)) is a two-way coupled extension to ICON, which allows to study the influence of aerosols, trace gases and their chemistry on the atmosphere. We set up ICON-ART-ISO within this framework, profitting from the model infrastructure. We follow the implementation of COSMOiso (Pfahl et al., 2012 (ACP)), the isotope-enabled version of the COSMO model, the predecessor of ICON. In order to include the isotopes in the model, the water cycle is doubled diagnostically for each isotope. By the choice of physical parameters, these modelled isotopes are set to HDO and H218O, but the simulation of a purely diagnostic H2O is also possible. Fractionation, i.e. the change of the isotope ratio changes during phase changes, is considered in evaporation, grid-scale precipitation and convection. For the source of evaporation, a constant isotope ratio is currently used. To consider grid scale precipitation, the processes in the two-moment microphysical scheme by Seifert and Beheng, 2005 (Meteorol. Atmos. Phys.) are diagnostically applied to the isotopes. For convection, the Tiedtke-Bechtold scheme (Bechtold et al., 2013 (JAS)) is used. We present the current status of the model system. All processes have been implemented and we show first

  7. Evaluation of a regional chemistry transport model using a newly developed regional OMI NO2 retrieval

    Science.gov (United States)

    Kuhlmann, G.; Lam, Y. F.; Cheung, H. M.; Hartl, A.; Fung, J. C. H.; Chan, P. W.; Wenig, M. O.

    2014-12-01

    In this paper, we evaluate a high-resolution chemistry transport model (CTM) (3 km x 3 km spatial resolution) with the new Hong Kong (HK) NO2 retrieval developed for the Ozone Monitoring Instrument (OMI) on-board the Aura satellite. The three-dimensional atmospheric chemistry was modelled in the Pearl River Delta (PRD) region in southern China by the Models-3 Community Multiscale Air Quality (CMAQ) modelling system from October 2006 to January 2007. In the HK NO2 retrieval, tropospheric air mass factors (AMF) were recalculated using high-resolution ancillary parameters of surface reflectance, NO2 profile shapes and aerosol profiles of which the latter two were taken from the CMAQ simulation. We also tested four different aerosol parametrizations. Ground level measurements by the PRD Regional Air Quality Monitoring (RAQM) network were used as additional independent measurements. The HK NO2 retrieval increases the NO2 vertical column densities (VCD) by (+31 ± 38) %, when compared to NASA's standard product (SP2), and reduces the mean bias (MB) between satellite and ground measurements by 26 percentage points from -41 to -15 %. The correlation coefficient r is low for both satellite datasets (r = 0.35) due to the high spatial variability of NO2 concentrations. The correlation between CMAQ and the RAQM network is low (r ≈ 0.3) and the model underestimates the NO2 concentrations in the north-western model domain (Foshan and Guangzhou). We compared the CMAQ NO2 time series of the two main plumes with our regional OMI NO2 product. The model overestimates the NO2 VCDs by about 15 % in Hong Kong and Shenzhen, while the correlation coefficient is satisfactory (r = 0.56). In Foshan and Guangzhou, the correlation is low (r = 0.37) and the model underestimates the VCDs strongly (MB = -40 %). In addition, we estimated that the OMI VCDs are also underestimated by about 10 to 20 % in Foshan and Guangzhou because of the influence of the model parameters on the AMF. In this study

  8. Diagnostic tools for evaluating quasi-horizontal transport in global-scale chemistry models

    Science.gov (United States)

    Lee, Huikyo; Youn, Daeok; Patten, Kenneth O.; Olsen, Seth C.; Wuebbles, Donald J.

    2012-10-01

    The upper troposphere and lower stratosphere (UTLS) plays an important role in climate and atmospheric chemistry. Despite its importance on the point of causing deep intrusions of tropics originated air into the midlatitudes, the quasi-horizontal transport process in the UTLS, represented by global chemistry-transport models (CTMs) or chemistry-climate models (CCMs), cannot easily be diagnosed with conventional analyses on isobaric surfaces. We use improved diagnostic tools to better evaluate CTMs and CCMs relative to satellite observations in the region of UTLS. Using the Hellinger distance, vertical profiles of probability density functions (PDFs) of chemical tracers simulated by the Model for OZone And Related chemical Tracers 3.1 (MOZART-3.1) are quantitatively compared with satellite data from the Microwave Limb Sounder (MLS) instrument in the tropopause relative altitude coordinate to characterize features of tracer distributions near the tropopause. Overall, the comparison of PDFs between MLS and MOZART-3.1 did not satisfy the same population assumption. Conditional PDFs are used to understand the meteorological differences between global climate models and the real atmosphere and the conditional PDFs between MOZART-3.1 and MLS showed better agreement compared to the original PDFs. The low static stability during high tropopause heights at midlatitudes suggests that the variation of tropopause height is related to transport processes from the tropics to midlatitudes. MOZART-3.1 with the GEOS4 GCM winds reproduces episodes of the tropical air intrusions. However, our diagnostic analyses show that the GEOS4 GCM did not properly reproduce the high tropopause cases at midlatitudes especially in spring.

  9. Molecular dynamic results on transport properties

    Energy Technology Data Exchange (ETDEWEB)

    Alder, B.J.; Alley, W.E.

    1978-06-01

    Following a broad discussion of generalized hydrodynamics, three examples are given to illustrate how useful this approach is in extending hydrodynamics to nearly the scale of molecular dimensions and the time between collisions, principally by including viscoelastic effects. The three examples concern the behavior of the velocity autocorrelation function, the decay of fluctuations in a resonating system, and the calculation of the dynamic structure factor obtained from neutron scattering. In the latter case the molecular dynamics results are also compared to the predictions of generalized kinetic theory. Finally it is shown how to implement generalized hydrodynamics both on a microscopic and macroscopic level. Hydrodynamics is unable to account for the long time tails in the velocity autocorrelation functions and the divergent Burnett coefficients observed for the Lorentz gas. Instead, the long time behavior of the Burnett coefficient and the distribution of displacements (the self part of the dynamic structure factor) can be accounted for by a random walk with a waiting time distribution which is chosen to give the correct velocity autocorrelation function. This random walk predicts, in agreement with the observations, that this displacement distribution is Gaussian at long times for the Lorentz gas, while for hard disks it has been found not to be so.

  10. Model for diffusion and porewater chemistry in compacted bentonite. Experimental arrangements and preliminary results of the porewater chemistry studies

    International Nuclear Information System (INIS)

    Muurinen, A.; Lehikoinen, J.

    1997-01-01

    This report describes the progress of the experimental research on the porewater chemistry in bentonite. The research is part of the project Microstructural and chemical parameters of bentonite as determinants of waste isolation efficiency within the Nuclear Fission Safety Program organized by The Commission of the European Communities. The study was started by a literature overview on the properties of bentonite, porewater-sampling methods and obtained results. On the basis of the literature study, porewater extraction by squeezing seemed the most promising method for further development. The apparatus developed in this study consists of a pressing apparatus, which is used to create the necessary long-term compression, and of the compaction cell where porewater is separated from bentonite and collected in a syringe. The constant log-term force is maintained by a strong spring. An experimental study of solution-bentonite interactions was initiated. The parameters varied are the bentonite density, bentonite-water ratio, composition of the solutions, and the composition of bentonite. The report presents the experimental arrangements, the preliminary results for studying the evolution of water chemistry and the results of pre-modelling. (orig.) (27 refs.)

  11. Investigation of silicate surface chemistry and reaction mechanisms associated with mass transport in geologic media

    International Nuclear Information System (INIS)

    White, A.F.; Perry, D.L.

    1982-01-01

    The concentration and rate of transport of radionuclides through geologic media can be strongly influenced by the extent of sorption on aquifer surfaces. Over time intervals relevant to such transport processes, rock and mineral surfaces cannot be considered as inert, unreactive substrates but rather as groundwater/solidphase interfaces which are commonly in a state of natural or artificially induced disequilibrium. The goal of the present research is to define experimentally the type of water/rock interactions that will influence surface chemistry and hence sorption characteristics and capacities of natural aquifers. As wide a range of silicate minerals as possible was selected for study to represent rock-forming minerals in basalt, tuff, and granite. The minerals include K-feldspar, plagioclase feldspar, olivine, hornblende, biotite, and volcanic glass

  12. Meso-scale modeling of air pollution transport/chemistry/deposition and its application

    International Nuclear Information System (INIS)

    Kitada, Toshihiro

    2007-01-01

    Transport/chemistry/deposition model for atmospheric trace chemical species is now regarded as an important tool for an understanding of the effects of various human activities, such as fuel combustion and deforestation, on human health, eco-system, and climate and for planning of appropriate control of emission sources. Several 'comprehensive' models have been proposed such as RADM (Chang, et al., 1987), STEM-II (Carmichael, et al., 1986), and CMAQ (Community Multi-scale Air Quality model, e.g., EPA website, 2003); the 'comprehensive' models include not only gas/aerosol phase chemistry but also aqueous phase chemistry in cloud/rain water in addition to the processes of advection, diffusion, wet deposition (mass transfer between aqueous and gas/aerosol phases), and dry deposition. The target of the development of the 'comprehensive' model will be that the model can correctly reproduce mass balance of various chemical species in the atmosphere with keeping adequate accuracy for calculated concentration distributions of chemical species. For the purpose, one of the important problems is a reliable wet deposition modeling, and here, we introduce two types of methods of 'cloud-resolving' and 'non-cloud-resolving' modeling for the wet deposition of pollutants. (author)

  13. CRACKER - a program coupling chemistry and transport. Version 92-11

    International Nuclear Information System (INIS)

    Emren, A.

    1992-12-01

    CRACKER is a program coupling chemistry and transport. It simulates chemical reactions of groundwater flowing through a plane fracture. Properties like initial composition of the water, mineralogical composition of the rock and temperature gradients and flow velocity of the water serve as input for the modelling. The program is designed to handle heterogeneous rock properties, like redox fronts, regions with different mineralogy etc. It is even able to handle the common situation of a rock violating the phase rule. In the CRACKER model, a rock is formed by a more or less random distribution of minerals across the surfaces of a fracture. Water moves along the fracture (in present version at a constant velocity). No diffusion parallel to the flow direction is simulated. CRACKER is a package of several programs, most of them written in C. Chemical equilibrium calculations are mostly performed by the well-known geochemical program PHREEQE. The main program, CRACKER, manages information flow and determines which subprograms to use for specific tasks. Further it is responsible for the user interface. Essentially a simulation proceeds by alternate call to the HACKER and PHREEQE subprograms. HACKER is responsible for generating the rock, water propagation, mixing of waters and sampling the results. PHREEQE is used to solve the chemical equilibrium equations. The directory structure and the data structures used by CRACKER are described in separate sections. Further, the different subprograms are described with respect to purposes and methods used to handle the problems. The purpose of each first level function in the subprograms is described. (author)

  14. High-resolution air quality simulation over Europe with the chemistry transport model CHIMERE

    Directory of Open Access Journals (Sweden)

    E. Terrenoire

    2015-01-01

    The results suggest that future work should focus on the development of national bottom-up emission inventories including a better account for semi-volatile organic compounds and their conversion to SOA, the improvement of the CHIMERE urban parameterization, the introduction into CHIMERE of the coarse nitrate chemistry and an advanced parameterization accounting for windblown dust emissions.

  15. Transport of oxidized multi-walled carbon nanotubes through silica based porous media: influences of aquatic chemistry, surface chemistry, and natural organic matter.

    Science.gov (United States)

    Yang, Jin; Bitter, Julie L; Smith, Billy A; Fairbrother, D Howard; Ball, William P

    2013-12-17

    This paper provides results from studies of the transport of oxidized multi-walled carbon nanotubes (O-MWCNTs) of varying surface oxygen concentrations under a range of aquatic conditions and through uniform silica glass bead media. In the presence of Na(+), the required ionic strength (IS) for maximum particle attachment efficiency (i.e., the critical deposition concentration, or CDC) increased as the surface oxygen concentration of the O-MWCNTs or pH increased, following qualitative tenets of theories based on electrostatic interactions. In the presence of Ca(2+), CDC values were lower than those with Na(+) present, but were no longer sensitive to surface oxygen content, suggesting that Ca(2+) impacts the interactions between O-MWCNTs and glass beads by mechanisms other than electrostatic alone. The presence of Suwannee River natural organic matter (SRNOM) decreased the attachment efficiency of O-MWCNTs in the presence of either Na(+) or Ca(2+), but with more pronounced effects when Na(+) was present. Nevertheless, low concentrations of SRNOM (organic carbon) were sufficient to mobilize all O-MWCNTs studied at CaCl2 concentrations as high as 10 mM. Overall, this study reveals that NOM content, pH, and cation type show more importance than surface chemistry in affecting O-MWCNTs deposition during transport through silica-based porous media.

  16. Results of an interactively coupled atmospheric chemistry – general circulation model: Comparison with observations

    Directory of Open Access Journals (Sweden)

    R. Hein

    2001-04-01

    Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic

  17. Results of an interactively coupled atmospheric chemistry – general circulation model: Comparison with observations

    Directory of Open Access Journals (Sweden)

    R. Hein

    Full Text Available The coupled climate-chemistry model ECHAM4.L39(DLR/CHEM is presented which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks. This is the first model which interactively combines a general circulation model with a chemical model, employing most of the important reactions and species necessary to describe the stratospheric and upper tropospheric ozone chemistry, and which is computationally fast enough to allow long-term integrations with currently available computer resources. This is possible as the model time-step used for the chemistry can be chosen as large as the integration time-step for the dynamics. Vertically the atmosphere is discretized by 39 levels from the surface up to the top layer which is centred at 10 hPa, with a relatively high vertical resolution of approximately 700 m near the extra-tropical tropopause. We present the results of a control simulation representing recent conditions (1990 and compare it to available observations. The focus is on investigations of stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. ECHAM4.L39(DLR/CHEM reproduces main features of stratospheric dynamics in the arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to earlier model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their inter-hemispheric differences are reproduced. Considering methane oxidation as part of the dynamic-chemistry feedback results in an improved representation of the spatial distribution of stratospheric water vapour concentrations. The current model constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic

  18. Ordinary Level as Results Predictors of Students' Academic Performance in Chemistry in Nigerian Universities

    Science.gov (United States)

    Kolawole, E. B.; Oginni, O. I.; Fayomi, E. O.

    2011-01-01

    This paper examined ordinary level result as predictors of students' academic performance in chemistry in South-west Nigeria universities. It also examined the relationship between the academic performance of students in each level of the university examinations and their corresponding secondary school certificates examination. The sample of the…

  19. The Titan Haze Simulation Experiment: Latest Laboratory Results and Dedicated Plasma Chemistry Model

    Science.gov (United States)

    Sciamma-O'Brien, Ella; Raymond, Alexander; Mazur, Eric; Salama, Farid

    2017-10-01

    Here, we present the latest results on the gas- and solid phase analyses in the Titan Haze Simulation (THS) experiment, developed at the NASA Ames COSmIC simulation chamber. The THS is a unique experimental platform that allows us to simulate Titan’s complex atmospheric chemistry at Titan-like temperature (200 K) by cooling down N2-CH4-based mixtures in a supersonic expansion before inducing the chemistry by plasma. Because of the accelerated gas flow in the expansion, the residence time of the gas in the active plasma region is less than 3 µs. This results in a truncated chemistry that enables us to control how far in the chain of chemical reactions chemistry processes[1], by adding, in the initial gas mixture, heavier molecules that have been detected as trace elements on Titan.We discuss the results of recent Mid-infrared (MIR) spectroscopy[2] and X-ray Absorption Near Edge Structure spectroscopy studies of THS Titan tholins produced in different gas mixtures (with and without acetylene and benzene). Both studies have shown the presence of nitrogen chemistry, and differences in the level and nature of the nitrogen incorporation depending on the initial gas mixture. A comparison of THS MIR spectra to VIMS data has shown that the THS aerosols produced in simpler mixtures, i.e., that contain more nitrogen and where the N-incorporation is in isocyanide-type molecules instead of nitriles, are more representative of Titan’s aerosols.In addition, a new model has been developed to simulate the plasma chemistry in the THS. Electron impact and chemical kinetics equations for more than 120 species are followed. The calculated mass spectra[3] are in good agreement with the experimental THS mass spectra[1], confirming that the short residence time in the plasma cavity limits the growth of larger species and results in a truncated chemistry, a main feature of the THS.References:[1] Sciamma-O'Brien E. et al., Icarus, 243, 325 (2014)[2] Sciamma-O'Brien E. et al., Icarus

  20. Variation in material transport and water chemistry along a large ephemeral river in the Namib Desert

    Science.gov (United States)

    Jacobson, P.J.; Jacobson, K.M.; Angermeier, P.L.; Cherry, D.S.

    2000-01-01

    1. The chemical characteristics of floodwaters in ephemeral rivers are little known, particularly with regard to their organic loads. These rivers typically exhibit a pronounced downstream hydrological decay but few studies have documented its effect on chemical characteristics and material transport. To develop a better understanding of the dynamics of floods and associated material transport in large ephemeral rivers, floods of the ephemeral Kuiseb River in south-western Africa were tracked and repeatedly sampled at multiple points along the river's lower 220 km. 2. We quantified the composition and transport of solute and sediment loads in relation to longitudinal hydrological patterns associated with downstream hydrological decay. Source and sink areas for transported materials were identified, and the composition and transport dynamics of the organic matter load were compared to those described from more mesic systems. 3. Concentrations of sediments and solutes transported by floods in the Kuiseb River tended to increase downstream in association with pronounced hydrological decay. The contribution of particulate organic matter to total organic load is among the highest recorded, despite our observation of unusually high levels of dissolved organic matter. Hydrological decay resulted in deposition of all transported material within the lower Kuiseb River, with no discharge of water or materials to the Atlantic Ocean. 4. Our results suggest that longitudinal variation in surface flow and associated patterns of material transport renders the lower Kuiseb River a sink for materials transported from upstream. The downstream transport and deposition of large amounts of labile organic matter provides an important carbon supplement to heterotrophic communities within the river's lower reaches.

  1. Results of an interactively coupled atmospheric chemistry - general circulation model. Comparison with observations

    Energy Technology Data Exchange (ETDEWEB)

    Hein, R.; Dameris, M.; Schnadt, C. [and others

    2000-01-01

    An interactively coupled climate-chemistry model which enables a simultaneous treatment of meteorology and atmospheric chemistry and their feedbacks is presented. This is the first model, which interactively combines a general circulation model based on primitive equations with a rather complex model of stratospheric and tropospheric chemistry, and which is computational efficient enough to allow long-term integrations with currently available computer resources. The applied model version extends from the Earth's surface up to 10 hPa with a relatively high number (39) of vertical levels. We present the results of a present-day (1990) simulation and compare it to available observations. We focus on stratospheric dynamics and chemistry relevant to describe the stratospheric ozone layer. The current model version ECHAM4.L39(DLR)/CHEM can realistically reproduce stratospheric dynamics in the Arctic vortex region, including stratospheric warming events. This constitutes a major improvement compared to formerly applied model versions. However, apparent shortcomings in Antarctic circulation and temperatures persist. The seasonal and interannual variability of the ozone layer is simulated in accordance with observations. Activation and deactivation of chlorine in the polar stratospheric vortices and their interhemispheric differences are reproduced. The consideration of the chemistry feedback on dynamics results in an improved representation of the spatial distribution of stratospheric water vapor concentrations, i.e., the simulated meriodional water vapor gradient in the stratosphere is realistic. The present model version constitutes a powerful tool to investigate, for instance, the combined direct and indirect effects of anthropogenic trace gas emissions, and the future evolution of the ozone layer. (orig.)

  2. Computational Flame Diagnostics for Direct Numerical Simulations with Detailed Chemistry of Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Tianfeng [Univ. of Connecticut, Storrs, CT (United States)

    2017-02-16

    The goal of the proposed research is to create computational flame diagnostics (CFLD) that are rigorous numerical algorithms for systematic detection of critical flame features, such as ignition, extinction, and premixed and non-premixed flamelets, and to understand the underlying physicochemical processes controlling limit flame phenomena, flame stabilization, turbulence-chemistry interactions and pollutant emissions etc. The goal has been accomplished through an integrated effort on mechanism reduction, direct numerical simulations (DNS) of flames at engine conditions and a variety of turbulent flames with transport fuels, computational diagnostics, turbulence modeling, and DNS data mining and data reduction. The computational diagnostics are primarily based on the chemical explosive mode analysis (CEMA) and a recently developed bifurcation analysis using datasets from first-principle simulations of 0-D reactors, 1-D laminar flames, and 2-D and 3-D DNS (collaboration with J.H. Chen and S. Som at Argonne, and C.S. Yoo at UNIST). Non-stiff reduced mechanisms for transportation fuels amenable for 3-D DNS are developed through graph-based methods and timescale analysis. The flame structures, stabilization mechanisms, local ignition and extinction etc., and the rate controlling chemical processes are unambiguously identified through CFLD. CEMA is further employed to segment complex turbulent flames based on the critical flame features, such as premixed reaction fronts, and to enable zone-adaptive turbulent combustion modeling.

  3. Coupled effects of solution chemistry and hydrodynamics on the mobility and transport of quantum dot nanomaterials in the Vadose Zone

    Science.gov (United States)

    To investigate the coupled effects of solution chemistry and vadose zone processes on the mobility of quantum dot (QD) nanoparticles, laboratory scale transport experiments were performed. The complex coupled effects of ionic strength, size of QD aggregates, surface tension, contact angle, infiltrat...

  4. Measurement and modelling of the defect chemistry and transport properties of ceramic oxide mixed ionic and electronic conductors

    NARCIS (Netherlands)

    Dalslet, Bjarke Thomas

    2008-01-01

    The mixed ionic and electronic conducting fluorite and perovskite materials examined in this thesis are all oxide ion conducting materials. The defect chemistry and transport properties of a number of these materials are measured using: 1) a measurement technique using an oxygen pump and an

  5. A modeling study of secondary organic aerosol formation from sesquiterpenes using the STOCHEM global chemistry and transport model

    Science.gov (United States)

    Khan, M. A. H.; Jenkin, M. E.; Foulds, A.; Derwent, R. G.; Percival, C. J.; Shallcross, D. E.

    2017-04-01

    Sesquiterpenes are one of the precursors of secondary organic aerosol (SOA) which can be an important global sources of organic aerosol (OA). Updating the chemistry scheme in the global chemistry transport model by incorporating an oxidation mechanism for β-caryophyllene (representing all sesquiterpenes), adding global sesquiterpene emissions of 29 Tg/yr, and revising global monoterpene emissions up to 162 Tg/yr [Guenther et al., 2012] led to an increase of SOA burden by 95% and SOA production rate by 106% relative to the base case described in Utembe et al. [2011]. Including the emissions of sesquiterpenes resulted in increase of SOA burden of 0.11 Tg and SOA production rate of 12.9 Tg/yr relative to the base case. The highest concentrations of sesquiterpene-derived SOA (by up to 1.2 μg/m3) were found over central Africa and South America, the regions having high levels of biogenic emissions with significant biomass burning. In the updated model simulation, the multigeneration oxidation products from sesquiterpenes and monoterpenes transported above the boundary layer and condensed to the aerosol phase at higher altitude led to an increase of OA by up to 30% over the tropics and northern midlatitude to higher altitude. The model evaluation showed an underestimation of model OA mostly for the campaigns dominated by regional anthropogenic pollution. The increase of SOA production from sesquiterpenes reduced the discrepancies between modeled and observed OA concentrations over the remote and rural areas. The increase of SOA concentrations by up to 200% from preindustrial to present scenarios was found over the tropical oceans.

  6. Cold flame on Biofilm - Transport of Plasma Chemistry from Gas to Liquid Phase

    Science.gov (United States)

    Kong, Michael

    2014-10-01

    One of the most active and fastest growing fields in low-temperature plasma science today is biological effects of gas plasmas and their translation in many challenges of societal importance such as healthcare, environment, agriculture, and nanoscale fabrication and synthesis. Using medicine as an example, there are already three FDA-approved plasma-based surgical procedures for tissue ablation and blood coagulation and at least five phase-II clinical trials on plasma-assisted wound healing therapies. A key driver for realizing the immense application potential of near room-temperature ambient pressure gas plasmas, commonly known as cold atmospheric plasmas or CAP, is to build a sizeable interdisciplinary knowledge base with which to unravel, optimize, and indeed design how reactive plasma species interact with cells and their key components such as protein and DNA. Whilst a logical objective, it is a formidable challenge not least since existing knowledge of gas discharges is largely in the gas-phase and therefore not directly applicable to cell-containing matters that are covered by or embedded in liquid (e.g. biofluid). Here, we study plasma inactivation of biofilms, a jelly-like structure that bacteria use to protect themselves and a major source of antimicrobial resistance. As 60--90% of biofilm is made of water, we develop a holistic model incorporating physics and chemistry in the upstream CAP-generating region, a plasma-exit region as a buffer for as-phase transport, and a downstream liquid region bordering the gas buffer region. A special model is developed to account for rapid chemical reactions accompanied the transport of gas-phase plasma species through the gas-liquid interface and for liquid-phase chemical reactions. Numerical simulation is used to illustrate how key reactive oxygen species (ROS) are transported into the liquid, and this is supported with experimental data of both biofilm inactivation using plasmas and electron spin spectroscopy (ESR

  7. Iterative ensemble variational methods for nonlinear data assimilation: Application to transport and atmospheric chemistry

    International Nuclear Information System (INIS)

    Haussaire, Jean-Matthieu

    2017-01-01

    Data assimilation methods are constantly evolving to adapt to the various application domains. In atmospheric sciences, each new algorithm has first been implemented on numerical weather prediction models before being ported to atmospheric chemistry models. It has been the case for 4D variational methods and ensemble Kalman filters for instance. The new 4D ensemble variational methods (4D EnVar) are no exception. They were developed to take advantage of both variational and ensemble approaches and they are starting to be used in operational weather prediction centers, but have yet to be tested on operational atmospheric chemistry models. The validation of new data assimilation methods on these models is indeed difficult because of the complexity of such models. It is hence necessary to have at our disposal low-order models capable of synthetically reproducing key physical phenomena from operational models while limiting some of their hardships. Such a model, called L95-GRS, has therefore been developed. Il combines the simple meteorology from the Lorenz-95 model to a tropospheric ozone chemistry module with 7 chemical species. Even though it is of low dimension, it reproduces some of the physical and chemical phenomena observable in real situations. A data assimilation method, the iterative ensemble Kalman smoother (IEnKS), has been applied to this model. It is an iterative 4D EnVar method which solves the full non-linear variational problem. This application validates 4D EnVar methods in the context of non-linear atmospheric chemistry, but also raises the first limits of such methods, most noticeably when they are applied to weakly coupled stable models. After this experiment, results have been extended to a realistic atmospheric pollution prediction model. 4D EnVar methods, via the IEnKS, have once again shown their potential to take into account the non-linearity of the chemistry model in a controlled environment, with synthetic observations. However, the

  8. Manipulating NiFe/AlOx interfacial chemistry for the spin-polarized electrons transport

    International Nuclear Information System (INIS)

    Zhao, Chong-Jun; Sun, Li; Ding, Lei; Li, Jian-Wei; Zhang, Jing-Yan; Cao, Yi; Yu, Guang-Hua

    2013-01-01

    Through vacuum annealing, interfacial chemical composition of sputter-deposited AlO x /NiFe/AlO x can be controlled for electron transport manipulation. Chemical status change at the NiFe/AlO x interface was quantified by X-ray photoelectron spectroscopy and correlated to the structure and electron transport properties of the heterostructure. It is found that elemental Al existed in the insulting AlO x after annealing at intermediate temperature can improve the AlO x /NiFe interface and thus favor the electronic transport. Annealing at higher temperature will result in native AlO x formation and degrade transport properties due to the NiFe/AlO x interfaces deterioration caused by significant difference in thermal expansion coefficients of the two materials.

  9. Sensitivity of chemistry-transport model simulations to the duration of chemical and transport operators: a case study with GEOS-Chem v10-01

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V.; Keller, Christoph A.

    2016-05-01

    Chemistry-transport models involve considerable computational expense. Fine temporal resolution offers accuracy at the expense of computation time. Assessment is needed of the sensitivity of simulation accuracy to the duration of chemical and transport operators. We conduct a series of simulations with the GEOS-Chem chemistry-transport model at different temporal and spatial resolutions to examine the sensitivity of simulated atmospheric composition to operator duration. Subsequently, we compare the species simulated with operator durations from 10 to 60 min as typically used by global chemistry-transport models, and identify the operator durations that optimize both computational expense and simulation accuracy. We find that longer continuous transport operator duration increases concentrations of emitted species such as nitrogen oxides and carbon monoxide since a more homogeneous distribution reduces loss through chemical reactions and dry deposition. The increased concentrations of ozone precursors increase ozone production with longer transport operator duration. Longer chemical operator duration decreases sulfate and ammonium but increases nitrate due to feedbacks with in-cloud sulfur dioxide oxidation and aerosol thermodynamics. The simulation duration decreases by up to a factor of 5 from fine (5 min) to coarse (60 min) operator duration. We assess the change in simulation accuracy with resolution by comparing the root mean square difference in ground-level concentrations of nitrogen oxides, secondary inorganic aerosols, ozone and carbon monoxide with a finer temporal or spatial resolution taken as "truth". Relative simulation error for these species increases by more than a factor of 5 from the shortest (5 min) to longest (60 min) operator duration. Chemical operator duration twice that of the transport operator duration offers more simulation accuracy per unit computation. However, the relative simulation error from coarser spatial resolution generally

  10. Quantum dot DNA bioconjugates: attachment chemistry strongly influences the resulting composite architecture.

    Science.gov (United States)

    Boeneman, Kelly; Deschamps, Jeffrey R; Buckhout-White, Susan; Prasuhn, Duane E; Blanco-Canosa, Juan B; Dawson, Philip E; Stewart, Michael H; Susumu, Kimihiro; Goldman, Ellen R; Ancona, Mario; Medintz, Igor L

    2010-12-28

    The unique properties provided by hybrid semiconductor quantum dot (QD) bioconjugates continue to stimulate interest for many applications ranging from biosensing to energy harvesting. Understanding both the structure and function of these composite materials is an important component in their development. Here, we compare the architecture that results from using two common self-assembly chemistries to attach DNA to QDs. DNA modified to display either a terminal biotin or an oligohistidine peptidyl sequence was assembled to streptavidin/amphiphilic polymer- or PEG-functionalized QDs, respectively. A series of complementary acceptor dye-labeled DNA were hybridized to different positions on the DNA in each QD configuration and the separation distances between the QD donor and each dye-acceptor probed with Förster resonance energy transfer (FRET). The polyhistidine self-assembly yielded QD-DNA bioconjugates where predicted and experimental separation distances matched reasonably well. Although displaying efficient FRET, data from QD-DNA bioconjugates assembled using biotin-streptavidin chemistry did not match any predicted separation distances. Modeling based upon known QD and DNA structures along with the linkage chemistry and FRET-derived distances was used to simulate each QD-DNA structure and provide insight into the underlying architecture. Although displaying some rotational freedom, the DNA modified with the polyhistidine assembles to the QD with its structure extended out from the QD-PEG surface as predicted. In contrast, the random orientation of streptavidin on the QD surface resulted in DNA with a wide variety of possible orientations relative to the QD which cannot be controlled during assembly. These results suggest that if a particular QD biocomposite structure is desired, for example, random versus oriented, the type of bioconjugation chemistry utilized will be a key influencing factor.

  11. Quantum Dot DNA Bioconjugates: Attachment Chemistry Strongly Influences the Resulting Composite Architecture

    Science.gov (United States)

    Boeneman, Kelly; Deschamps, Jeffrey R.; Buckhout-White, Susan; Prasuhn, Duane E.; Blanco-Canosa, Juan B.; Dawson, Philip E.; Stewart, Michael H.; Susumu, Kimihiro; Goldman, Ellen R.; Ancona, Mario; Medintz, Igor L.

    2010-01-01

    The unique properties provided by hybrid semiconductor quantum dot- (QD) bioconjugates continue to stimulate interest for many applications ranging from biosensing to energy harvesting. Understanding both the structure and function of these composite materials is an important component in their development. Here, we compare the architecture that results from using two common self-assembly chemistries to attach DNA to QDs. DNA modified to display either a terminal biotin or an oligohistidine peptidyl sequence was assembled to streptavidin/amphiphilic polymer- or PEG-functionalized QDs, respectively. A series of complementary acceptor dye-labeled DNA were hybridized to different positions on the DNA in each QD configuration and the separation distances between the QD donor and each dye-acceptor probed with Förster resonance energy transfer (FRET). The polyhistidine self-assembly yielded QD-DNA bioconjugates where predicted and experimental separation distances matched reasonably well. Although displaying efficient FRET, data from QD-DNA bioconjugates assembled using biotin-streptavidin chemistry did not match any predicted separation distances. Modeling based upon known QD and DNA structures along with the linkage chemistry and FRET-derived distances was used to simulate each QD-DNA structure and provide insight into the underlying architecture. Although displaying some rotational freedom, the DNA modified with the polyhistidine assembles to the QD with its structure extended out from the QD-PEG surface as predicted. In contrast, the random orientation of streptavidin on the QD surface resulted in DNA with a wide variety of possible orientations relative to the QD which cannot be controlled during assembly. These results suggest that if a particular QD-biocomposite structure is desired, for example, random versus oriented, the type of bioconjugation chemistry utilized will be a key influencing factor. PMID:21082822

  12. Recent results on heterojunctions and superlattices: transport and optics

    International Nuclear Information System (INIS)

    Voos, M.

    1983-01-01

    Recent experimental results obtained on two-dimensional semiconductor structures, namely heterojunctions and superlattices are presented. This review, which includes both optical and transport experiments, is not exhaustive, but describes briefly some investigations which are thought to be important from the point of view of fundamental physics. (Author) [pt

  13. In-Depth Coursework in Undergraduate Inorganic Chemistry: Results from a National Survey of Inorganic Chemistry Faculty

    Science.gov (United States)

    Raker, Jeffrey R.; Reisner, Barbara A.; Smith, Sheila R.; Stewart, Joanne L.; Crane, Johanna L.; Pesterfield, Les; Sobel, Sabrina G.

    2015-01-01

    A national survey of inorganic chemists explored the self-reported topics covered in in-depth inorganic chemistry courses at the postsecondary level; an in-depth course is defined by the American Chemical Society's Committee on Professional Training as a course that integrates and covers topics that were introduced in introductory and foundation…

  14. On-site production of a dialysis bath from dry salts. Results of solute concentration control by routine clinical chemistry.

    Science.gov (United States)

    Beige, Joachim; Lutter, Steffen; Martus, Peter

    2012-06-01

    BACKGROUND.: Dialysis bath production, at least in Europe, is currently based on pre-produced aqueous solutions of dialysis salts (concentrate), which are re-handled by dialysis machines to deliver the final dialysate concentrations. Because of the logistics of aqueous solution creation, a large amount of transportation capacity is needed. Therefore, we changed this process to use pre-produced dry salt containers and to undertake in-clinic dissolution of salts and concentration production. Because no preclinical control for solute concentrations is available so far using this new process, we employed routine clinical chemistry analytics. METHODS.: We report the controls of solute concentrations created by these methods for 746 samples of concentrates and 151 dissolution processes. For analysis, absolute and relative deviations from prescriptions and associations between the solute concentrations and the density controls of the concentrates were computed. RESULTS.: A total of 98% of all the concentrates were found to be within a 10% margin of error from the prescriptions. The mean relative deviation of the solute concentrations from the prescriptions was -0.635 ± 3.83%. Among particular solutes, sodium had the highest maximum deviation of 26 mmol/L from the prescription. Calcium and magnesium (small concentration solutes) exhibited small systematic errors of 1.37 and 1.22%, respectively. Other solute concentrations showed random errors only and no associations with the mean relative deviations of all the solutes within a production batch or with the density controls. CONCLUSIONS.: Single solute concentration control by routine clinical chemistry after dry salt production of concentrates is a valuable additional tool for monitoring clinical risk with dialysate concentrates. The analytical random error of clinical chemistry exceeds the weight tolerance of production; therefore, such analytics cannot be used for precision production and control of dry salt containers.

  15. Ground water chemistry in SFR. Results from a sampling and analysis campaign year 2000

    International Nuclear Information System (INIS)

    Nilsson, Ann-Chatrin

    2002-02-01

    The ground water chemistry is regularly controlled at four observation points/boreholes within the control program for the operational stage in SFR. Initially, samples were taken twice a year, but after a revision of the control program in 1996, it was limited to yearly sampling with a more comprehensive sampling from several boreholes every fifth year. Such a comprehensive program was performed in year 2000. In three boreholes tests were made using a mobile field laboratory for 'on-line' analysis of pH-value, redox potential, conductivity, free oxygen and temperature. Gas analysis and determination of microbes were also made. In the other boreholes with sufficient flow, manual samples were taken. In this report the new results are presented together with a complete compilation of chemistry data since the start of the control program in 1989

  16. Np(V) transport in clayey porous medium: study of solution chemistry, sorption and flow coupling

    International Nuclear Information System (INIS)

    Andre, Christine

    1997-01-01

    To assess the safety of radioactive waste disposal, the behaviour of radionuclides in porous media has to be known. The solute transport is controlled by hydrodynamics, physicochemical interactions and aqueous chemistry. When each main term is known independently, their coupling can be predicted. The aim is to study the migration of Np(V). Experiments are carried out on chromatography columns packed with a mixture of sand and Fo-Ca-7 clay. Column hydrodynamics is characterised with RTD measurements and is modelled thanks to a cell network model. Sorption properties of the clay are determined thanks to sodium/calcium and sodium/caesium exchange experiments. The sorption is modelled with ion exchange on three sites. The Na + /H + , Na + /Ca 2+ and Na + /Cs + exchange constants have been determined. Transport experiments of Np(V) have been carried out in IM Na + bicarbonate/carbonate media and is interpreted with H + /NpO 2+ /Na + cationic exchanges on the third site of the clay, and NpO 2 CO 3- , NpO 2 (CO 3 ) 2 3- and NpO 2 (CO 3 ) 3 5- formation. This mechanism has been validated by varying pH and carbonate concentration. An anion exchange site of low exchange capacity has been found through 14 C experiments. A selective elimination of goethite contained in Fo-Ca-7 shows that this iron oxide is not responsible for the anions retention. As expected, temperature influence on calcium and neptunium migration is quite small. It is used to estimate entropy and enthalpy changes for the corresponding ionic exchange reactions. (author) [fr

  17. Equity in transportation: new approach in transport planning – preliminary results of case study in Cracow

    Directory of Open Access Journals (Sweden)

    Lidia ZAKOWSKA

    2014-09-01

    Full Text Available The goal of the paper is to present the concept of equity as a new approach in transport and land-use planning. This concept is consistent with the objectives of sustainable development and it is becoming more common in European and world literature. Understanding the idea of equity in the context of the transport system development is very important in creating sustainable cities and regions without discriminating any social groups and creating a cohesive society not exposed to social exclusion due to lack of access to primary and secondary activities. The paper presents some results of the preliminary analysis on transport equity in Cracow. The basic equity level which has been considered here concerns senior citizens, older people living in Cracow area, in terms of their accessibility to transport infrastructure. Taking into account living conditions of elderly pedestrians, contour measures were used, in order to determine accessibility as equity indicator.

  18. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality

    Directory of Open Access Journals (Sweden)

    D. Wang

    2013-07-01

    Full Text Available Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2 has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050 H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem. Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%, CO (14%, NOx (16%, soot (17%, sulfate aerosol (4%, and ammonium nitrate aerosol (12% in the A1FI scenario, and would decrease those of ozone (5%, CO (4%, NOx (11%, soot (7%, sulfate aerosol (4%, and ammonium nitrate aerosol (9% in the B1 scenario

  19. The Contributions of Chemistry and Transport to Low Arctic Ozone in March 2011 Derived from Aura MLS Observations

    Science.gov (United States)

    Strahan, S. E.; Douglass, A. R.; Newman, P. A.

    2012-01-01

    Stratospheric and total columns of Arctic O3 (63-90 N) in late March 2011 averaged 320 and 349 DU, respectively. These values are 74 DU lower than averages for the previous 6 years. We use Aura MLS O3 observations to quantify the roles of chemistry and transport and find there are two major reasons for low O3 in March 2011: heterogeneous chemical loss and a late final warming that delayed the resupply of O3 until April. Daily vortex-averaged partial columns in the lowermost stratosphere (p greater than 133 hPa) and middle stratosphere (p less than 29 hPa) are unaffected by local heterogeneous chemistry and show a near total lack of transport into the vortex between late January and late March, contributing to the observed low column. The lower stratospheric (LS) column (133-29 hPa) is affected by both heterogeneous chemistry and transport. Low interannual variability of Aura MLS 0 3 columns and temperature inside the Arctic vortex (2004-2011) shows that the transport contribution to vortex O3 in fall and early winter is nearly the same each year. The descent of MLS N2O vortex profiles in 2011 provides an estimate of O3 transported into the LS column during late winter. By quantifying the role of transport we determine that PSC-driven chemical loss causes 80 (plus or minus 10) DU of vortex-averaged O3 loss by late March 2011. Without heterogeneous chemical loss, March 2011 vortex O3 would have been 40 DU lower than normal due to the late final warming and resupply of O3 which did not occur until April.

  20. Baseline hematology and clinical chemistry results from captive-raised trumpeter swans

    Science.gov (United States)

    Olsen, Glenn H.; Rininger, D.L.; Ets, M.K.; Sladen, William J. L.; Rees, Eileen C.; Earnst, Susan L.; Coulson, John C.

    2002-01-01

    Results from hematology and clinical chemistry tests are presented for healthy captive-raised Trumpeter Swans (Cygnus buccinator) to help establish baseline data. Blood samples were obtained from 14 cygnets between the ages of three to four and seven to eight months that were the subjects of a study to teach migration routes to swans. Males and females differed significantly in asparatate aminotransferase, alanine aminotransferase and total protein. Age categories differed significantly in hematocrit, white blood cell counts, alkaline phosphatase, aspar-rate aminotransferase, glucose, cholesterol and uric acid. There were no significant differences among age categories in values of alanine aminotransferase, calcium, triglycerides and total protein.

  1. Benchmarking NNWSI flow and transport codes: COVE 1 results

    International Nuclear Information System (INIS)

    Hayden, N.K.

    1985-06-01

    The code verification (COVE) activity of the Nevada Nuclear Waste Storage Investigations (NNWSI) Project is the first step in certification of flow and transport codes used for NNWSI performance assessments of a geologic repository for disposing of high-level radioactive wastes. The goals of the COVE activity are (1) to demonstrate and compare the numerical accuracy and sensitivity of certain codes, (2) to identify and resolve problems in running typical NNWSI performance assessment calculations, and (3) to evaluate computer requirements for running the codes. This report describes the work done for COVE 1, the first step in benchmarking some of the codes. Isothermal calculations for the COVE 1 benchmarking have been completed using the hydrologic flow codes SAGUARO, TRUST, and GWVIP; the radionuclide transport codes FEMTRAN and TRUMP; and the coupled flow and transport code TRACR3D. This report presents the results of three cases of the benchmarking problem solved for COVE 1, a comparison of the results, questions raised regarding sensitivities to modeling techniques, and conclusions drawn regarding the status and numerical sensitivities of the codes. 30 refs

  2. Development of an aerosol-chemistry transport model coupled to non-hydrostatic icosahedral atmospheric model (NICAM) through applying a stretched grid system to regional simulations around Japan

    Science.gov (United States)

    Goto, D.; Nakajima, T.; Masaki, S.

    2014-12-01

    Air pollution has a great impact on both climate change and human health. One effective way to tackle with these issues is a use of atmospheric aerosol-chemistry models with high-resolution in a global scale. For this purpose, we have developed an aerosol-chemistry model based on a global cloud-resolving model (GCRM), Nonhydrostatic Icosahedral Atmospheric Model (NICAM; Tomita and Satoh, Fluid. Dyn. Res. 2004; Satoh et al., J. Comput. Phys. 2008, PEPS, 2014) under MEXT/RECCA/SALSA project. In the present study, we have simulated aerosols and tropospheric ozone over Japan by our aerosol-chemistry model "NICAM-Chem" with a stretched-grid system of approximately 10 km resolution, for saving the computer resources. The aerosol and chemistry modules are based on Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS; Takemura et al., J. Geophys. Res., 2005) and Chemical AGCM for Study of Atmospheric Environment and Radiative Forcing (CHASER; Sudo et al., J. Geophys. Res., 2002). We found that our model can generally reproduce both aerosols and ozone, in terms of temporal variations (daily variations of aerosols and diurnal variations of ozone). Under MEXT/RECCA/SALSA project, we also have used these results obtained by NICAM-Chem for the assessment of their impact on human health.

  3. Carbon Flux Estimation By Using AGCM-Based Chemistry Transport Model for the Period 1990-2011

    Science.gov (United States)

    Saeki, T.; Patra, P. K.

    2014-12-01

    Carbon fluxes were estimated for 84 regions (54 lands + 30 oceans) over the globe during the period of 1990-2011. We used (1) the CCSR/NIES/FRCGC AGCM-based Chemistry Transport Model (ACTM), (2) atmospheric CO2 concentrations at 74 sites from GLOBALVIEW-CO2 (2013) data product, (3) Seasonally varying a presubtracted fluxes for atmosphere-ocean exchange (Takahashi et al., 2009), (4) interannually varying a priori fossil fuel fluxes (incl. cement production) from CDIAC global totals and EDGAR4.2 spatial distributions, and (5) 3-hourly terrestrial biosphere fluxes are constructed from the annually balanced CASA and JRA-25 reanalysis meteorology (Y. Niwa, Pers. Comm., 2013). As a result of time-dependent inversions, mean total flux (excluding fossil fuel) for the period 1990-2011 is estimated to be -3.33 GtC/yr, where land (incl. biomass burning and land use change) and ocean absorb an average rate of -1.98 and -1.35 GtC/yr, respectively. The land uptake is mainly due to northern land (-1.57 GtC/yr), while the tropical and southern lands contribute -0.03 and -0.38 GtC/yr, respectively. It is also found that Boreal North America and Boreal Eurasia show negative trends in the estimated fluxes during the analysis period. The global ocean sink has no clear long-term trend in the period. Results with different inversion settings and for other regions will be discussed. Our analysis suggests that no known transport bias in ACTM forward simulation allow us to estimate CO2 fluxes at good accuracy at hemispheric and regional scale. Acknowledgements. This study is supported by the JSPS KANEHI Kiban-A and Global Environment Research Fund (2-1401) of the Ministry of the Environment, Japan.

  4. Atmospheric and precipitation chemistry over the North Atlantic Ocean: Shipboard results, April-May 1984

    Science.gov (United States)

    Church, T. M.; Tramontano, J. M.; Whelpdale, D. M.; Andreae, M. O.; Galloway, J. N.; Keene, W. C.; Knap, A. H.; Tokos, J.

    1991-10-01

    During a North Atlantic cruise from Dakar, Senegal, to Woods Hole, Massachusetts (April 14-May 11, 1984), crossing the area of 14°-48°N; 17°-70°W, we collected atmospheric aerosols (C, N, S species), gases (SO4, HNO3, dimethyl sulfide (DMS), synthetic organic chemicals), and precipitation (major inorganic/organic ions, trace metals). Air masses that had not contacted land for over 5 days had a composition close to that from the remote marine atmosphere. Oxidation of biogenic DMS to SO4= aerosol accounted for most nss-SO4= in these air masses. Air masses that had transected densely populated North America (in the westerlies) or the Mediterranean/North Africa ( in the easterlies) within 2-5 days of being sampled over the North Atlantic were enriched in acid precursor compounds and synthetic hydrocarbons relative to air that had spent longer over the North Atlantic. Strong acids and trace metals were also elevated in precipitation. Air masses that had transected regions of strong emissions within the preceding 2 days had concentrations of atmospheric pollutants approaching those typically found in continental air masses. More frequent storm tracks between the Icelandic low and the Bermuda high favored transport of North American emissions northeasterly, toward Europe. Trajectory analyses suggested that air masses sampled off the northwest African coast had passed over the Mediterranean. Composition of the aerosol and precipitation of these air masses was also indicative of continental emissions, including biomass and petroleum burning. Transport and deposition of continental emissions to the North Atlantic were significantly influencing surface atmospheric and oceanic chemistry of this region.

  5. Primary water chemistry optimization for extended fuel cycle operation. Results of the 'Duo experimentation' after three cycles

    International Nuclear Information System (INIS)

    Viricel, L.; Andrieu, C.; Segura, J.C.; Rocher, A.; Thomazet, J.; Clinard, M.H.; Dacquait, F.

    2002-01-01

    The primary coolant conditioning in French nuclear power plants is essentially based on the boron-lithium coordinated chemistry, with a target pH of 7.2 at 300 C and a maximum lithium concentration of 2.2 mg/kg. In 1996, EDF 1300 MWe units began operating 18-month fuel cycles, increasing boron concentrations at the beginning of the cycles. Since today the maximum lithium concentration in normal operation is 2.2 mg/kg, extended cycle operation results in a decrease in the pH at the beginning of the cycles, which may possibly lead to deposits in RCS, and particularly on the fuel cladding, and increased dose rates. It has to be noted that today, the fuel assemblies maximum burnup is set at 52 GWd/tU. One solution is to adjust the pH by increasing the lithium content at the beginning of the cycles, which is easy to implement and does not require any modification on the units. Hence, EDF is testing a ''modified'' chemistry regime in the > during 4 fuel cycles, with a maximum authorized lithium content of 3.5 mg/kg at the beginning of the cycles in the Cattenom 2 pilot unit. The Golfech 1 reference unit implements a standard boron-lithium coordination pH 300 7.2. The major goal of the experimentation is to assess the impact of elevated lithium concentrations at the beginning of the cycles on fuel cladding oxide behavior, mass transport and dose rates. This paper presents the results of the first three cycles of the Duo experimentation. (author)

  6. Graphical Synthesis of Colloid Transport Results on Quirk-Schofield Diagrams

    Science.gov (United States)

    Mays, D. C.

    2008-05-01

    The degree of colloid dispersion, or conversely the degree of flocculation, is crucial for understanding colloid transport in natural porous media, since it determines whether colloids are mobile or immobile. Additionally, in porous media containing more than a few percent fines, the degree of colloid dispersion also influences the permeability, and consequently the practicality of fluid extraction or injection. Colloid dispersion is largely determined by the aqueous chemistry, specifically pH, ionic strength, and sodium adsorption ratio (SAR). In the soil science literature, the effects of these three variables on colloid dispersion are commonly illustrated on Quirk-Schofield diagrams. In contrast, Quirk-Schofield diagrams appear to have been overlooked in the contaminant hydrology literature. This presentation will demonstrate the usefulness of Quirk-Schofield diagrams for presenting and interpreting a diversity of published colloid transport results, ranging from microbial pathogens to engineered nanoparticles to colloid-facilitated transport of metals. In particular, a quantitative analysis of published findings is presented using new Quirk-Schofield diagrams for kaolinite, illite, and montmorillonite, three clay minerals that are common in natural porous media. Additionally, because there is a relationship between colloid dispersion and permeability, this presentation will also show how Quirk-Schofield diagrams can provide insight into permeability changes, with applications to aquifer hydraulics and reservoir damage. The common aspects of all these results will be apparent, demonstrating that Quirk-Schofield diagrams are a simple, graphical technique that can be used to synthesize findings across the diverse applications where colloids play a central role. This study also suggests a framework for consistent reporting of colloid transport results: (1) measure the effects of pH, ionic strength, and SAR on colloid dispersion; (2) report results on Quirk

  7. K1-95-HW, cruise report 1995: preliminary results. Phase III: sediment chemistry and biological sampling survey

    Science.gov (United States)

    Torresan, M.E.; Hampton, M.A.; Barber, J.H.; Wong, F.L.

    1995-01-01

    Mamala Bay, off the south shore of the island of Oahu, has been used as a repository of dredged material primarily from Pearl and Honolulu Harbors for over a century. The U.S. Geological Survey, U.S. Army Corps of Engineers, and the U.S. Environmental Protection Agency are conducting an integrated study on the distribution and character of dredged materials as well as the effects of dredged material on the marine environment. A three phase study is providing information to evaluate the effects on seafloor substrate and the benthic fauna. The studies include geophysical profiling and imaging, bottom photography, sampling, chemical and physical analyses of sediment, and evaluations of the benthic population, population density, and adverse impacts to the benthic fauna. Phase 1, conducted in 1993, inventoried the seafloor via remote sensing. Sidescan sonar and subbottom profilers characterized the seafloor in and around the disposal sites, and the resulting products reveal the character and extent of the dredged material. These data were used to plan Phase 2 in 1994, a sampling program that employed subbottom profilers, video and still photography, and seafloor sampling to ground truth the sonar mosaic and identify the seafloor substrates responsible for the various acoustic signatures on the sonar images and subbottom profiles. Box coring provided the samples necessary to distinguish dredged material from native sediment, and for the chemical analyses used to determine contaminant concentrations. Phase 3 studies conducted in June of 1995 consisted of box core sampling for chemical and biological analyses. Specific studies include: infaunal taxonomy and population density, bioassay/bioaccumulation, sediment chemistry, and post-disposal resuspension and transport. The 1995 survey, conducted June 14 through 17, resulted in the collection of 39 box cores from 20 different stations. Multiple box cores were composited at 7 different locations occupied in 1994, to provide

  8. Results of focus group assessments of transportation financing options.

    Science.gov (United States)

    2013-01-01

    The Wisconsin Commission on Transportation Finance and Policy was created in the 2011-2013 biennial state budget to : identify and evaluate transportation finance options to address needs into the future. As part of its scope, the Commission : needed...

  9. Using MOPITT data and a Chemistry and Transport Model to Investigate Injection Height of Plumes from Boreal Forest Fires

    Science.gov (United States)

    Hyer, E. J.; Allen, D. J.; Kasischke, E. S.; Warner, J. X.

    2003-12-01

    Trace gas emissions from boreal forest fires are a significant factor in atmospheric composition and its interannual variability. A number of recent observations of emissions plumes above individual fire events (Fromm and Servranckx, 2003; COBRA 2003; Lamarque et al., 2003; Wotawa and Trainer, 2000) suggest that vertical properties of forest fire emission plumes can be very different from fossil fuel emission plumes. Understanding and constraining the vertical properties of forest fire emission plumes and their injection into the atmosphere during fire events is critical for accurate modeling of atmospheric transport and chemistry. While excellent data have been collected in a handful of experiments on individual fire events, a systematic examination of the range of behavior observed in fire events has been hampered by the scarcity of vertical profiles of atmospheric composition. In this study, we used a high-resolution model of boreal forest fire emissions (Kasischke et al, in review) as input to the Goddard/UM CTM driven by the GEOS-3 DAS, operating at 2 by 2.5 degrees with 35 vertical levels. We modeled atmospheric injection and transport of CO emissions during the fire season of 2000 (May-September). We altered the parameters of the model to simulate a range of scenarios of plume injection, and compared the resulting output to the CO profiles from the MOPITT instrument. The results presented here pertain to the boreal forest, but our methods should be useful for atmospheric modelers hoping to more realistically model transport of emission plumes from biomass burning. References: COBRA2003: see http://www.fas.harvard.edu/~cobra/smoke_canada_030530.pdf Fromm, M. and R. Servranckx, 2003. "Stratospheric Injection of Forest Fire Emissions on August 4, 1998: A Satellite Image Analysis of the Causal Supercell Convection." Geophysical Research Abstracts 5:13118. Kasischke, E.S.; E.J. Hyer, N.H.F. French, A.I. Sukhinin, J.H. Hewson, B.J. Stocks, in review. "Carbon

  10. Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York

    Science.gov (United States)

    Cronan, C.S.; Aiken, G.R.

    1985-01-01

    Studies were conducted in conjunction with the Integrated Lake-Watershed Acidification Study (ILWAS) to examine the chemistry and leaching patterns of soluble humic substances in forested watersheds of the Adirondack region. During the summer growing season, mean dissolved organic carbon (DOC) concentrations in the ILWAS watersheds ranged from 21-32 mg C l-1 in O/A horizon leachates, from 5-7 mg C l-1 in B horizon leachates, from 2-4 mg C l-1 in groundwater solutions, from 6-8 mg C l-1 in first order streams, from 3-8 mg C l-1 in lake inlets, and from 2-7 mg C l-1 in lake outlets. During the winter, mean DOC concentrations dropped significantly in the upper soil profile. Soil solutions from mixed and coniferous stands contained as much as twice the DOC concentration of lysimeter samples from hardwood stands. Results of DOC fractionation analysis showed that hydrophobia and hydrophilic acids dominate the organic solute composition of natural waters in these watersheds. Charge balance and titration results indicated that the general acid-base characteristics of the dissolved humic mixture in these natural waters can be accounted for by a model organic acid having an averagepKa of 3.85, an average charge density of 4-5 ??eq mg-1 C at ambient pH, and a total of 6-7 meq COOH per gram carbon. ?? 1985.

  11. 3-D evaluation of tropospheric ozone simulations by an ensemble of regional Chemistry Transport Model

    Directory of Open Access Journals (Sweden)

    D. Zyryanov

    2012-04-01

    Full Text Available A detailed 3-D evaluation of an ensemble of five regional Chemistry Transport Models (RCTM and one global CTM with focus on free tropospheric ozone over Europe is presented. It is performed over a summer period (June to August 2008 in the context of the GEMS-RAQ project. A data set of about 400 vertical ozone profiles from balloon soundings and commercial aircraft at 11 different locations is used for model evaluation, in addition to satellite measurements with the infrared nadir sounder (IASI showing largest sensitivity to free tropospheric ozone. In the middle troposphere, the four regional models using the same top and boundary conditions from IFS-MOZART exhibit a systematic negative bias with respect to observed profiles of about −20%. Root Mean Square Error (RMSE values are constantly growing with altitude, from 22% to 32% to 53%, respectively for 0–2 km, 2–8 km and 8–10 km height ranges. Lowest correlation is found in the middle troposphere, with minimum coefficients (R between 0.2 to 0.45 near 8 km, as compared to 0.7 near the surface and similar values around 10 km. A sensitivity test made with the CHIMERE mode also shows that using hourly instead of monthly chemical boundary conditions generally improves the model skill (i.e. improve RMSE and correlation. Lower tropospheric 0–6 km partial ozone columns derived from IASI show a clear North-South gradient over Europe, which is qualitatively reproduced by the models. Also the temporal variability showing decreasing ozone concentrations in the lower troposphere (0–6 km columns during summer is well reproduced by models even if systematic bias remains (the value of the bias being also controlled by the type of used boundary conditions. A multi-day case study of a trough with low tropopause was conducted and showed that both IASI and models were able to resolve strong horizontal gradients of middle and upper tropospheric ozone occurring in the vicinity of an upper

  12. porewater chemistry experiment at Mont Terri rock laboratory. Reactive transport modelling including bacterial activity

    International Nuclear Information System (INIS)

    Tournassat, Christophe; Gaucher, Eric C.; Leupin, Olivier X.; Wersin, Paul

    2010-01-01

    Document available in extended abstract form only. An in-situ test in the Opalinus Clay formation, termed pore water Chemistry (PC) experiment, was run for a period of five years. It was based on the concept of diffusive equilibration whereby traced water with a composition close to that expected in the formation was continuously circulated and monitored in a packed off borehole. The main original focus was to obtain reliable data on the pH/pCO 2 of the pore water, but because of unexpected microbially- induced redox reactions, the objective was then changed to elucidate the biogeochemical processes happening in the borehole and to understand their impact on pH/pCO 2 and pH in the low permeability clay formation. The biologically perturbed chemical evolution of the PC experiment was simulated with reactive transport models. The aim of this modelling exercise was to develop a 'minimal-' model able to reproduce the chemical evolution of the PC experiment, i.e. the chemical evolution of solute inorganic and organic compounds (organic carbon, dissolved inorganic carbon etc...) that are coupled with each other through the simultaneous occurrence of biological transformation of solute or solid compounds, in-diffusion and out-diffusion of solute species and precipitation/dissolution of minerals (in the borehole and in the formation). An accurate description of the initial chemical conditions in the surrounding formation together with simplified kinetics rule mimicking the different phases of bacterial activities allowed reproducing the evolution of all main measured parameters (e.g. pH, TOC). Analyses from the overcoring and these simulations evidence the high buffer capacity of Opalinus clay regarding chemical perturbations due to bacterial activity. This pH buffering capacity is mainly attributed to the carbonate system as well as to the clay surfaces reactivity. Glycerol leaching from the pH-electrode might be the primary organic source responsible for

  13. Curriculum vitae of the LOTOS–EUROS (v2.0 chemistry transport model

    Directory of Open Access Journals (Sweden)

    A. M. M. Manders

    2017-11-01

    Full Text Available The development and application of chemistry transport models has a long tradition. Within the Netherlands the LOTOS–EUROS model has been developed by a consortium of institutes, after combining its independently developed predecessors in 2005. Recently, version 2.0 of the model was released as an open-source version. This paper presents the curriculum vitae of the model system, describing the model's history, model philosophy, basic features and a validation with EMEP stations for the new benchmark year 2012, and presents cases with the model's most recent and key developments. By setting the model developments in context and providing an outlook for directions for further development, the paper goes beyond the common model description.With an origin in ozone and sulfur modelling for the models LOTOS and EUROS, the application areas were gradually extended with persistent organic pollutants, reactive nitrogen, and primary and secondary particulate matter. After the combination of the models to LOTOS–EUROS in 2005, the model was further developed to include new source parametrizations (e.g. road resuspension, desert dust, wildfires, applied for operational smog forecasts in the Netherlands and Europe, and has been used for emission scenarios, source apportionment, and long-term hindcast and climate change scenarios. LOTOS–EUROS has been a front-runner in data assimilation of ground-based and satellite observations and has participated in many model intercomparison studies. The model is no longer confined to applications over Europe but is also applied to other regions of the world, e.g. China. The increasing interaction with emission experts has also contributed to the improvement of the model's performance. The philosophy for model development has always been to use knowledge that is state of the art and proven, to keep a good balance in the level of detail of process description and accuracy of input and output, and to keep a good record

  14. HMI Department of Radiation Chemistry: Results of scientific activities in 1984

    International Nuclear Information System (INIS)

    1985-01-01

    In the radiation chemistry department of the Hahn-Meitner-Institute in Berlin, 4 subjects are treated largely the progress of which made in 1984 is herein reported: 1) Interface processes and energy conversion (reaction pathways of photoinduced charge carriers and their in energy conversion mechanisms); 2) Pulse radiolysis (generation and investigation of shortlived chemically quick-reacting particles); 3) Kinematics (reciprocal action with ion, atom and molecule collisions; clarification of the dynamics of chemical reactions; 4) Insulators and plastics/physical and chemical primary processes when these materials are subjected to high-energy radiation, light or UV light). A list of publications and lectures is added to complement the description of results gained from R and D work. (BR) [de

  15. A linear CO chemistry parameterization in a chemistry-transport model: evaluation and application to data assimilation

    Directory of Open Access Journals (Sweden)

    M. Claeyman

    2010-07-01

    Full Text Available This paper presents an evaluation of a new linear parameterization valid for the troposphere and the stratosphere, based on a first order approximation of the carbon monoxide (CO continuity equation. This linear scheme (hereinafter noted LINCO has been implemented in the 3-D Chemical Transport Model (CTM MOCAGE (MOdèle de Chimie Atmospherique Grande Echelle. First, a one and a half years of LINCO simulation has been compared to output obtained from a detailed chemical scheme output. The mean differences between both schemes are about ±25 ppbv (part per billion by volume or 15% in the troposphere and ±10 ppbv or 100% in the stratosphere. Second, LINCO has been compared to diverse observations from satellite instruments covering the troposphere (Measurements Of Pollution In The Troposphere: MOPITT and the stratosphere (Microwave Limb Sounder: MLS and also from aircraft (Measurements of ozone and water vapour by Airbus in-service aircraft: MOZAIC programme mostly flying in the upper troposphere and lower stratosphere (UTLS. In the troposphere, the LINCO seasonal variations as well as the vertical and horizontal distributions are quite close to MOPITT CO observations. However, a bias of ~−40 ppbv is observed at 700 Pa between LINCO and MOPITT. In the stratosphere, MLS and LINCO present similar large-scale patterns, except over the poles where the CO concentration is underestimated by the model. In the UTLS, LINCO presents small biases less than 2% compared to independent MOZAIC profiles. Third, we assimilated MOPITT CO using a variational 3D-FGAT (First Guess at Appropriate Time method in conjunction with MOCAGE for a long run of one and a half years. The data assimilation greatly improves the vertical CO distribution in the troposphere from 700 to 350 hPa compared to independent MOZAIC profiles. At 146 hPa, the assimilated CO distribution is also improved compared to MLS observations by reducing the bias up to a factor of 2 in the tropics

  16. The economic impact of poor sample quality in clinical chemistry laboratories: results from a global survey.

    Science.gov (United States)

    Erdal, Erik P; Mitra, Debanjali; Khangulov, Victor S; Church, Stephen; Plokhoy, Elizabeth

    2017-03-01

    Background Despite advances in clinical chemistry testing, poor blood sample quality continues to impact laboratory operations and the quality of results. While previous studies have identified the preanalytical causes of lower sample quality, few studies have examined the economic impact of poor sample quality on the laboratory. Specifically, the costs associated with workarounds related to fibrin and gel contaminants remain largely unexplored. Methods A quantitative survey of clinical chemistry laboratory stakeholders across 10 international regions, including countries in North America, Europe and Oceania, was conducted to examine current blood sample testing practices, sample quality issues and practices to remediate poor sample quality. Survey data were used to estimate costs incurred by laboratories to mitigate sample quality issues. Results Responses from 164 participants were included in the analysis, which was focused on three specific issues: fibrin strands, fibrin masses and gel globules. Fibrin strands were the most commonly reported issue, with an overall incidence rate of ∼3%. Further, 65% of respondents indicated that these issues contribute to analyzer probe clogging, and the majority of laboratories had visual inspection and manual remediation practices in place to address fibrin- and gel-related quality problems (55% and 70%, respectively). Probe maintenance/replacement, visual inspection and manual remediation were estimated to carry significant costs for the laboratories surveyed. Annual cost associated with lower sample quality and remediation related to fibrin and/or gel globules for an average US laboratory was estimated to be $100,247. Conclusions Measures to improve blood sample quality present an important step towards improved laboratory operations.

  17. Multi-Path Transportation Futures Study. Results from Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Phil Patterson, Phil [U.S. Dept. of Energy, Washington, DC (United States); Singh, Margaret [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steve [Argonne National Lab. (ANL), Argonne, IL (United States); Moore, Jim [TAE

    2007-03-09

    Presentation reporting Phase 1 results, 3/9/2007. Projecting the future role of advanced drivetrains and fuels in the light vehicle market is inherently difficult, given the uncertainty (and likely volatility) of future oil prices, inadequate understanding of likely consumer response to new technologies, the relative infancy of several important new technologies with inevitable future changes in their performance and costs, and the importance — and uncertainty — of future government marketplace interventions (e.g., new regulatory standards or vehicle purchase incentives). The Multi-Path Transportation Futures (MP) Study has attempted to improve our understanding of this future role by examining several scenarios of vehicle costs, fuel prices, government subsidies, and other key factors. These are projections, not forecasts, in that they try to answer a series of “what if” questions without assigning probabilities to most of the basic assumptions.

  18. Tracing natural gas transport into shallow groundwater using dissolved nitrogen and alkane chemistry in Parker County, Texas

    Science.gov (United States)

    Larson, T.; Nicot, J. P.; Mickler, P. J.; Darvari, R.

    2015-12-01

    Dissolved methane in shallow groundwater drives public concern about the safety of hydraulic fracturing. We report dissolved alkane and nitrogen gas concentrations and their stable isotope values (δ13C and δ15N, respectively) from 208 water wells in Parker county, Texas. These data are used to differentiate 'stray' natural gas and low temperature microbial methane, and (2) estimate the ratio of stray gas to groundwater. The ratio of (gas-phase) stray natural gas to groundwater is estimated by correlating dissolved methane and nitrogen concentrations and dissolved nitrogen δ15N values. Our hypothesis is groundwater exposed to high volumes of stray natural gas have high dissolved methane concentrations and low dissolved nitrogen concentrations and δ15N values. Alternatively, groundwater exposed to low volumes of stray gas-phase natural gas have elevated dissolved methane, but the concentration of dissolved nitrogen and its d15N value is atmospheric. A cluster of samples in Parker county have high concentrations of dissolved methane (>10mg/L) with d13Cmethane and alkane ratios (C1/C2+C3) typical of natural gas from the Barnett Shale and the Strawn Formation. Coupling dissolved nitrogen concentrations and δ15N values with these results, we suggest that few of the wells in this cluster preserve large gas to water ratios. Many samples with high dissolved methane concentrations have atmospheric dissolved nitrogen concentrations and δ15N values, providing evidence against high flux natural gas transport into shallow groundwater. These results demonstrate that dissolved nitrogen chemistry, in addition to dissolved alkane and noble gas measurements, may be useful to discern sources of dissolved methane and estimate ratios of stray natural gas-water ratios.

  19. Molecular dynamics study on mechanism of preformed particle gel transporting through nanopores: Surface chemistry and heterogeneity

    Science.gov (United States)

    Cui, Peng; Zhang, Heng; Ma, Ying; Hao, Qingquan; Liu, Gang; Sun, Jichao; Yuan, Shiling

    2017-10-01

    The translocation behavior of preformed particle gel (PPG) in porous media is crucial for its application in enhanced oil recovery. By means of non-equilibrium molecular dynamics simulation, the translocation mechanism of PPG confined in different silica nanopores were investigated. The influence of surface chemistry and chemical heterogeneity of silica nanopore on the translocation process was revealed. As the degree of surface hydroxylation increases and the heterogeneity decreases, the pulling force needed to drive PPG decreases. We infer that the nanopore's surface (i.e. surface chemistry and heterogeneity) affects the translocation of PPG indirectly by forming different hydration layers.

  20. Vadose Zone Nitrate Transport Dynamics Resulting from Agricultural Groundwater Banking

    Science.gov (United States)

    Murphy, N. P.; McLaughlin, S.; Dahlke, H. E.

    2017-12-01

    In recent years, California's increased reliance on groundwater resources to meet agricultural and municipal demands has resulted in significant overdraft and water quality issues. Agricultural groundwater banking (AGB) has emerged as a promising groundwater replenishment opportunity in California; AGB is a form of managed aquifer recharge where farmland is flooded during the winter using excess surface water in order to recharge the underlying groundwater. Suitable farmland that is connected to water delivery systems is available for AGB throughout the Central Valley. However, questions remain how AGB could be implemented on fertilized agricultural fields such that nitrate leaching from the root zone is minimized. Here, we present results from field and soil column studies that investigate the transport dynamics of nitrogen in the root and deeper vadose zone during flooding events. We are specifically interested in estimating how timing and duration of flooding events affect percolation rates, leaching and nitrification/denitrification processes in three soil types within the Central Valley. Laboratory and field measurements include nitrogen (NO3-, NH4+, NO2-, N2O), redox potentials, total organic carbon, dissolved oxygen, moisture content and EC. Soil cores are collected in the field before and after recharge events up to a depth of 4m, while other sensors monitor field conditions continuously. Preliminary results from the three field sites show that significant portions of the applied floodwater (12-62 cm) infiltrated below the root zone: 96.1% (Delhi), 88.6% (Modesto) and 76.8% (Orland). Analysis of the soil cores indicate that 70% of the residual nitrate was flushed from the sandy soil, while the fine sandy loam showed only a 5% loss and in some cores even an increase in soil nitrate (in the upper 20cm). Column experiments support these trends and indicate that increases in soil nitrate in the upper root zone might be due to organic nitrogen mineralization and

  1. Workshop on spent fuel performance, radionuclide chemistry and geosphere transport parameters, Lidingoe 2008: Overview and evaluation of recent SKB procedures

    International Nuclear Information System (INIS)

    Meinrath, Guenther; Stenhouse, Mike; Brown, Paul; Ekberg, Christian; Jegou, Christophe; Nitsche, Heino

    2009-08-01

    The safety assessment for disposal of spent nuclear fuel canister in the Swedish bedrock should thoroughly address the time period after a containment failure. Such a failure could be expected as a result of corrosion damage or mechanical failure due to rock movement. This report mainly covers some issues connected to parameters used for radionuclide transport calculations in the areas of spent fuel performance (for fuel in contact with groundwater), radionuclide chemistry, and sorption and geosphere transport parameters. Some examples of topics that are elaborated in some detail include statistical treatment of measurement data (for sorption measurements), handling of uncertainties in speciation calculations, use of triangular distributions in safety assessment and physical processes in connection with spent fuel aging. The results emerged from discussions among international experts at a workshop in May 2008. The purpose of this work is providing an overview of ongoing work within the Swedish Nuclear Fuel and Waste Management Co. (SKB), to provide ideas and suggestions for methodology development and to develop review capability within the SSM. The authors conclude that SKB's treatment of uncertainty in speciation calculations has improved, but that additional efforts in the area of error propagation are recommended. In efforts to condense the scope of utilised thermodynamic databases, the authors recommend that exclusion criteria should be explicitly stated. In the area of sorption, there is a need for more thorough analysis of errors in order to establish uncertainty ranges. The most essential improvements concern dose-limiting nuclides (e.g. Ra-226). Triangular distributions are often featured in SKB safety assessment, but it is not clear that the use of such distributions is based on a firm understanding of its properties. Regarding fuel performance, while safety assessment parameters are supported by measurement data there is still a need for better

  2. Workshop on spent fuel performance, radionuclide chemistry and geosphere transport parameters, Lidingoe 2008: Overview and evaluation of recent SKB procedures

    Energy Technology Data Exchange (ETDEWEB)

    Meinrath, Guenther; Stenhouse, Mike; Brown, Paul; Ekberg, Christian; Jegou, Christophe; Nitsche, Heino

    2009-08-15

    The safety assessment for disposal of spent nuclear fuel canister in the Swedish bedrock should thoroughly address the time period after a containment failure. Such a failure could be expected as a result of corrosion damage or mechanical failure due to rock movement. This report mainly covers some issues connected to parameters used for radionuclide transport calculations in the areas of spent fuel performance (for fuel in contact with groundwater), radionuclide chemistry, and sorption and geosphere transport parameters. Some examples of topics that are elaborated in some detail include statistical treatment of measurement data (for sorption measurements), handling of uncertainties in speciation calculations, use of triangular distributions in safety assessment and physical processes in connection with spent fuel aging. The results emerged from discussions among international experts at a workshop in May 2008. The purpose of this work is providing an overview of ongoing work within the Swedish Nuclear Fuel and Waste Management Co. (SKB), to provide ideas and suggestions for methodology development and to develop review capability within the SSM. The authors conclude that SKB's treatment of uncertainty in speciation calculations has improved, but that additional efforts in the area of error propagation are recommended. In efforts to condense the scope of utilised thermodynamic databases, the authors recommend that exclusion criteria should be explicitly stated. In the area of sorption, there is a need for more thorough analysis of errors in order to establish uncertainty ranges. The most essential improvements concern dose-limiting nuclides (e.g. Ra-226). Triangular distributions are often featured in SKB safety assessment, but it is not clear that the use of such distributions is based on a firm understanding of its properties. Regarding fuel performance, while safety assessment parameters are supported by measurement data there is still a need for better

  3. Strong Coupling between Nanofluidic Transport and Interfacial Chemistry: How Defect Reactivity Controls Liquid-Solid Friction through Hydrogen Bonding.

    Science.gov (United States)

    Joly, Laurent; Tocci, Gabriele; Merabia, Samy; Michaelides, Angelos

    2016-04-07

    Defects are inevitably present in nanofluidic systems, yet the role they play in nanofluidic transport remains poorly understood. Here, we report ab initio molecular dynamics (AIMD) simulations of the friction of liquid water on defective graphene and boron nitride sheets. We show that water dissociates at certain defects and that these "reactive" defects lead to much larger friction than the "nonreactive" defects at which water molecules remain intact. Furthermore, we find that friction is extremely sensitive to the chemical structure of reactive defects and to the number of hydrogen bonds they can partake in with the liquid. Finally, we discuss how the insight obtained from AIMD can be used to quantify the influence of defects on friction in nanofluidic devices for water treatment and sustainable energy harvesting. Overall, we provide new insight into the role of interfacial chemistry on nanofluidic transport in real, defective systems.

  4. Notification: Evaluation of EPA's Green Chemistry Challenge Awards and Use of Data from the Award Results

    Science.gov (United States)

    Project #OPE-FY18-0003, January 9, 2018. The OIG plans to begin preliminary research to evaluate the agency's Presidential Green Chemistry Challenge Awards and how the agency uses the data from the award nominations.

  5. Development of a chemistry module for GCMs: first results of a multiannual integration

    Directory of Open Access Journals (Sweden)

    B. Steil

    1998-02-01

    Full Text Available The comprehensive chemistry module CHEM has been developed for application in general circulation models (GCMs describing tropospheric and stratospheric chemistry, including photochemical reactions and heterogeneous reactions on sulphate aerosols and polar stratospheric clouds. It has been coupled to the spectral atmospheric GCM ECHAM3. The model configuration used in the current study has been run in an "off-line" mode, i.e. the calculated chemical species do not affect the radiative forcing of the dynamic fields. First results of a 15-year model integration indicate that the model ECHAM3/CHEM runs are numerically efficient and stable, i.e. that no model drift can be detected in dynamic and chemical parameters. The model reproduces the main features regarding ozone, in particular intra- and interannual variability. The ozone columns are somewhat higher than observed (approximately 10%, while the amplitude of the annual cycle is in agreement with observations. A comparison with HALOE data reveals, however, a serious model deficiency regarding lower-stratosphere dynamics at high latitudes. Contrary to what is concluded by observations, the lower stratosphere is characterized by slight upward motions in the polar regions, so that some of the mentioned good agreements must be considered as fortuitous. Nevertheless, ECHAM3/CHEM well describes the chemical processes leading to ozone reduction. It has been shown that the mean fraction of the northern hemisphere, which is covered by polar stratospheric clouds (PSCs as well as the temporal appearance of PSCs in the model, is in fair agreement with observations. The model results show an activation of chlorine inside the polar vortex which is stronger in the southern than in the northern winter hemisphere, yielding an ozone hole over the Antarctic; this hole, however, is also caused to a substantial degree by the dynamics. Interhemispheric differences concerning reformation of chlorine reservoir species

  6. Development of a chemistry module for GCMs: first results of a multiannual integration

    Directory of Open Access Journals (Sweden)

    B. Steil

    Full Text Available The comprehensive chemistry module CHEM has been developed for application in general circulation models (GCMs describing tropospheric and stratospheric chemistry, including photochemical reactions and heterogeneous reactions on sulphate aerosols and polar stratospheric clouds. It has been coupled to the spectral atmospheric GCM ECHAM3. The model configuration used in the current study has been run in an "off-line" mode, i.e. the calculated chemical species do not affect the radiative forcing of the dynamic fields. First results of a 15-year model integration indicate that the model ECHAM3/CHEM runs are numerically efficient and stable, i.e. that no model drift can be detected in dynamic and chemical parameters. The model reproduces the main features regarding ozone, in particular intra- and interannual variability. The ozone columns are somewhat higher than observed (approximately 10%, while the amplitude of the annual cycle is in agreement with observations. A comparison with HALOE data reveals, however, a serious model deficiency regarding lower-stratosphere dynamics at high latitudes. Contrary to what is concluded by observations, the lower stratosphere is characterized by slight upward motions in the polar regions, so that some of the mentioned good agreements must be considered as fortuitous. Nevertheless, ECHAM3/CHEM well describes the chemical processes leading to ozone reduction. It has been shown that the mean fraction of the northern hemisphere, which is covered by polar stratospheric clouds (PSCs as well as the temporal appearance of PSCs in the model, is in fair agreement with observations. The model results show an activation of chlorine inside the polar vortex which is stronger in the southern than in the northern winter hemisphere, yielding an ozone hole over the Antarctic; this hole, however, is also caused to a substantial degree by the dynamics. Interhemispheric differences concerning reformation of chlorine reservoir species

  7. Development of an integrated reporting system for verifying hemolysis, icterus, and lipemia in clinical chemistry results.

    Science.gov (United States)

    Shin, Dong Hoon; Kim, Juwon; Uh, Young; Lee, Se Il; Seo, Dong Min; Kim, Kab Seung; Jang, Jae Yun; Lee, Man Hee; Yoon, Kwang Ro; Yoon, Kap Jun

    2014-07-01

    Hemolysis, icterus, and lipemia (HIL) cause preanalytical interference and vary unpredictably with different analytical equipments and measurement methods. We developed an integrated reporting system for verifying HIL status in order to identify the extent of interference by HIL on clinical chemistry results. HIL interference data from 30 chemical analytes were provided by the manufacturers and were used to generate a table of clinically relevant interference values that indicated the extent of bias at specific index values (alert index values). The HIL results generated by the Vista 1500 system (Siemens Healthcare Diagnostics, USA), Advia 2400 system (Siemens Healthcare Diagnostics), and Modular DPE system (Roche Diagnostics, Switzerland) were analyzed and displayed on physicians' personal computers. Analytes 11 and 29 among the 30 chemical analytes were affected by interference due to hemolysis, when measured using the Vista and Modular systems, respectively. The hemolysis alert indices for the Vista and Modular systems were 0.1-25.8% and 0.1-64.7%, respectively. The alert indices for icterus and lipemia were integrated HIL reporting system provides an effective screening tool for verifying specimen quality with regard to HIL and simplifies the laboratory workflow.

  8. UV-VIS Spectroscopy Applied to Stratospheric Chemistry, Methods and Results

    Energy Technology Data Exchange (ETDEWEB)

    Karlsen, K.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Numerous observations and modeling have shown with a very high degree of certainty that the man-made emissions of chlorofluorocarbons (CFC) and halons are responsible for the Antarctica ozone hole. It is also evident that the ozone layer of the Northern Hemisphere has suffered a certain decline over the last 10-15 years, possibly because of CFC and halons. 20-30% of the observed reduction is ascribed to coupled chlorine and bromine chemistry via a catalytic cycle resulting in the net conversion of 2O{sub 3} to 3O{sub 2}. But the details are not fully understood. The author plans to assemble a UV-VIS spectrometer for measuring the species OClO and BrO and to compare and discuss measured diurnal variations of OClO and BrO with model calculations. The use of Differential Optical Absorption Spectroscopy (DOAS) is discussed and some results from late 1995 presented. 6 refs., 2 figs.

  9. Climatology of the aerosol optical depth by components from the Multi-angle Imaging SpectroRadiometer (MISR and chemistry transport models

    Directory of Open Access Journals (Sweden)

    H. Lee

    2016-06-01

    Full Text Available The Multi-angle Imaging SpectroRadiometer (MISR Joint Aerosol (JOINT_AS Level 3 product has provided a global, descriptive summary of MISR Level 2 aerosol optical depth (AOD and aerosol type information for each month over 16+ years since March 2000. Using Version 1 of JOINT_AS, which is based on the operational (Version 22 MISR Level 2 aerosol product, this study analyzes, for the first time, characteristics of observed and simulated distributions of AOD for three broad classes of aerosols: spherical nonabsorbing, spherical absorbing, and nonspherical – near or downwind of their major source regions. The statistical moments (means, standard deviations, and skewnesses and distributions of AOD by components derived from the JOINT_AS are compared with results from two chemistry transport models (CTMs, the Goddard Chemistry Aerosol Radiation and Transport (GOCART and SPectral RadIatioN-TrAnSport (SPRINTARS. Overall, the AOD distributions retrieved from MISR and modeled by GOCART and SPRINTARS agree with each other in a qualitative sense. Marginal distributions of AOD for each aerosol type in both MISR and models show considerable high positive skewness, which indicates the importance of including extreme AOD events when comparing satellite retrievals with models. The MISR JOINT_AS product will greatly facilitate comparisons between satellite observations and model simulations of aerosols by type.

  10. Development of a custom OMI NO2 data product for evaluating biases in a regional chemistry transport model

    Science.gov (United States)

    Kuhlmann, G.; Lam, Y. F.; Cheung, H. M.; Hartl, A.; Fung, J. C. H.; Chan, P. W.; Wenig, M. O.

    2015-05-01

    In this paper, we present the custom Hong Kong NO2 retrieval (HKOMI) for the Ozone Monitoring Instrument (OMI) on board the Aura satellite which was used to evaluate a high-resolution chemistry transport model (CTM) (3 km x 3 km spatial resolution). The atmospheric chemistry transport was modelled in the Pearl River Delta (PRD) region in southern China by the Models-3 Community Multiscale Air Quality (CMAQ) modelling system from October 2006 to January 2007. In the HKOMI NO2 retrieval, tropospheric air mass factors (AMFs) were recalculated using high-resolution ancillary parameters of surface reflectance, a priori NO2 and aerosol profiles, of which the latter two were taken from the CMAQ simulation. We tested the influence of the ancillary parameters on the data product using four different aerosol parametrizations. Ground-level measurements by the PRD Regional Air Quality Monitoring (RAQM) network were used as additional independent measurements. The HKOMI retrieval increases estimated tropospheric NO2 vertical column densities (VCD) by (+31 ± 38)%, when compared to NASA's standard product (OMNO2-SP), and improves the normalized mean bias (NMB) between satellite and ground observations by 26 percentage points from -41 to -15%. The individual influences of the parameters are (+11.4 ± 13.4)% for NO2 profiles, (+11.0 ± 20.9)% for surface reflectance and (+6.0 ± 8.4)% for the best aerosol parametrization. The correlation coefficient r is low between ground and satellite observations (r = 0.35). The low r and the remaining NMB can be explained by the low model performance and the expected differences when comparing point measurements with area-averaged satellite observations. The correlation between CMAQ and the RAQM network is low (r ~ 0.3) and the model underestimates the NO2 concentrations in the northwestern model domain (Foshan and Guangzhou). We compared the CMAQ NO2 time series of the two main plumes with our best OMI NO2 data set (HKOMI-4). The model

  11. Constitutional dynamic chemistry: bridge from supramolecular chemistry to adaptive chemistry.

    Science.gov (United States)

    Lehn, Jean-Marie

    2012-01-01

    Supramolecular chemistry aims at implementing highly complex chemical systems from molecular components held together by non-covalent intermolecular forces and effecting molecular recognition, catalysis and transport processes. A further step consists in the investigation of chemical systems undergoing self-organization, i.e. systems capable of spontaneously generating well-defined functional supramolecular architectures by self-assembly from their components, thus behaving as programmed chemical systems. Supramolecular chemistry is intrinsically a dynamic chemistry in view of the lability of the interactions connecting the molecular components of a supramolecular entity and the resulting ability of supramolecular species to exchange their constituents. The same holds for molecular chemistry when the molecular entity contains covalent bonds that may form and break reversibility, so as to allow a continuous change in constitution by reorganization and exchange of building blocks. These features define a Constitutional Dynamic Chemistry (CDC) on both the molecular and supramolecular levels.CDC introduces a paradigm shift with respect to constitutionally static chemistry. The latter relies on design for the generation of a target entity, whereas CDC takes advantage of dynamic diversity to allow variation and selection. The implementation of selection in chemistry introduces a fundamental change in outlook. Whereas self-organization by design strives to achieve full control over the output molecular or supramolecular entity by explicit programming, self-organization with selection operates on dynamic constitutional diversity in response to either internal or external factors to achieve adaptation.The merging of the features: -information and programmability, -dynamics and reversibility, -constitution and structural diversity, points to the emergence of adaptive and evolutive chemistry, towards a chemistry of complex matter.

  12. Predicting tropospheric ozone and hydroxyl radical in a global, three-dimensional, chemistry, transport, and deposition model

    Energy Technology Data Exchange (ETDEWEB)

    Atherton, C.S.

    1995-01-05

    Two of the most important chemically reactive tropospheric gases are ozone (O{sub 3}) and the hydroxyl radical (OH). Although ozone in the stratosphere is a necessary protector against the sun`s radiation, tropospheric ozone is actually a pollutant which damages materials and vegetation, acts as a respiratory irritant, and is a greenhouse gas. One of the two main sources of ozone in the troposphere is photochemical production. The photochemistry is initiated when hydrocarbons and carbon monoxide (CO) react with nitrogen oxides (NO{sub x} = NO + NO{sub 2}) in the presence of sunlight. Reaction with the hydroxyl radical, OH, is the main sink for many tropospheric gases. The hydroxyl radical is highly reactive and has a lifetime on the order of seconds. Its formation is initiated by the photolysis of tropospheric ozone. Tropospheric chemistry involves a complex, non-linear set of chemical reactions between atmospheric species that vary substantially in time and space. To model these and other species on a global scale requires the use of a global, three-dimensional chemistry, transport, and deposition (CTD) model. In this work, I developed two such three dimensional CTD models. The first model incorporated the chemistry necessary to model tropospheric ozone production from the reactions of nitrogen oxides with carbon monoxide (CO) and methane (CH{sub 4}). The second also included longer-lived alkane species and the biogenic hydrocarbon isoprene, which is emitted by growing plants and trees. The models` ability to predict a number of key variables (including the concentration of O{sub 3}, OH, and other species) were evaluated. Then, several scenarios were simulated to understand the change in the chemistry of the troposphere since preindustrial times and the role of anthropogenic NO{sub x} on present day conditions.

  13. Combinatorial chemistry

    DEFF Research Database (Denmark)

    Nielsen, John

    1994-01-01

    An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds.......An overview of combinatorial chemistry is presented. Combinatorial chemistry, sometimes referred to as `irrational drug design,' involves the generation of molecular diversity. The resulting chemical library is then screened for biologically active compounds....

  14. Preliminary Results on Sediment Sorting Under Intense Bedload Transport

    Science.gov (United States)

    Hernandez Moreira, R. R.; Vautin, D.; Mathews, S. L.; Kuprenas, R.; Viparelli, E.

    2014-12-01

    Previous experiments show that parallel-laminated deposits are emplaced under upper plane bed regime by the migration of small-amplitude, long-wavelength bedforms. The present research focuses on how sediment is sorted under upper plane bed and sheet flow transport regimes, and whether parallel-lamination is inhibited during sheet flow transport. The problem of studying the sorting of sediment under so intense transport conditions is plagued by the uncertainties related to flow resistances and bedload transport rates. We simplify the problem by first running the experiments with uniform sediment, to establish a baseline that will aid in the design of the experiments with poorly sorted material. We are running experiments at the Hydraulics Laboratory of the Department of Civil and Environmental Engineering at the University of South Carolina in Columbia, in a unidirectional sediment-feed flume, 9 meters long by 0.2 meters wide, of which 7 meters are used as test section. During the experiments, water surface and bed elevations are periodically measured to characterize the global parameters of the flow, e.g. mean flow velocity and bed shear stress. When the flow and the sediment transport reach conditions of mobile bed equilibrium, bed elevation fluctuations are measured with ultrasonic transducer systems at six fixed locations. Channel bed aggradation is then induced by slowly raising the tail gate of the flume such that there is no change in transport regime, as confirmed by additional measurements of water surface and bed elevation and bed elevation fluctuations. Preliminary observations under upper plane bed regime show the formation of the small-amplitude and long-wavelength bedforms, as well as hints of parallel lamination in the deposits. In the near future we aim to achieve sheet flow transport conditions with both uniform and non-uniform grain size distributions to look at the internal structure of the emplaced deposit.

  15. COLLOID RELEASE AND TRANSPORT IN AGRICULTURAL SOIL AS IMPACTED BY SOLUTION CHEMISTRY

    OpenAIRE

    Sandip Patil; Kamal Tawfiq; Gang Chen

    2011-01-01

    Colloid release from the agricultural soil under unsaturated conditions was controlled by the hydrodynamic force, capillary force and electrostatic force that were determined by the solution chemistry in terms of solution ionic strength and pH. In this research, colloid release from the agricultural soil was investigated using an intact soil column collected from an agricultural site in Gadsden County of Florida. Colloid release was monitored and the colloid release curve was simulated using ...

  16. Modelling the urban air quality in Hamburg with the new city-scale chemistry transport model CityChem

    Science.gov (United States)

    Karl, Matthias; Ramacher, Martin; Aulinger, Armin; Matthias, Volker; Quante, Markus

    2017-04-01

    Air quality modelling plays an important role by providing guidelines for efficient air pollution abatement measures. Currently, most urban dispersion models treat air pollutants as passive tracer substances or use highly simplified chemistry when simulating air pollutant concentrations on the city-scale. The newly developed urban chemistry-transport model CityChem has the capability of modelling the photochemical transformation of multiple pollutants along with atmospheric diffusion to produce pollutant concentration fields for the entire city on a horizontal resolution of 100 m or even finer and a vertical resolution of 24 layers up to 4000 m height. CityChem is based on the Eulerian urban dispersion model EPISODE of the Norwegian Institute for Air Research (NILU). CityChem treats the complex photochemistry in cities using detailed EMEP chemistry on an Eulerian 3-D grid, while using simple photo-stationary equilibrium on a much higher resolution grid (receptor grid), i.e. close to industrial point sources and traffic sources. The CityChem model takes into account that long-range transport contributes to urban pollutant concentrations. This is done by using 3-D boundary concentrations for the city domain derived from chemistry-transport simulations with the regional air quality model CMAQ. For the study of the air quality in Hamburg, CityChem was set-up with a main grid of 30×30 grid cells of 1×1 km2 each and a receptor grid of 300×300 grid cells of 100×100 m2. The CityChem model was driven with meteorological data generated by the prognostic meteorology component of the Australian chemistry-transport model TAPM. Bottom-up inventories of emissions from traffic, industry, households were based on data of the municipality of Hamburg. Shipping emissions for the port of Hamburg were taken from the Clean North Sea Shipping project. Episodes with elevated ozone (O3) were of specific interest for this study, as these are associated with exceedances of the World

  17. Important options available - from start to finish -for translating proteomics results to clinical chemistry

    DEFF Research Database (Denmark)

    Heegaard, Niels H H; Ostergaard, Ole; Bahl, Justyna M C

    2015-01-01

    In the realm of clinical chemistry the field of clinical proteomics, i.e., the application of proteomic methods for understanding mechanisms and enabling diagnosis, prediction, measurement of activity, and treatment response in disease, is first and foremost a discovery and research tool that feed......, execution, and interpretation of clinical proteomics studies is thus necessary for translation into clinical practice. We here review and discuss important options associated with clinical proteomics endeavors stretching from the planning phases to the final use in clinical chemistry. This article...

  18. Final results of the FY'78 chemistry and materials science research program review

    International Nuclear Information System (INIS)

    Frazer, J.W.

    1977-01-01

    18 projects which were selected to be sponsored by ''Chemistry Research Program'' are summarized. These include: lasers for chemical analysis; multi-element analysis systems; spectroscopic analysis of surface passivation; non-aqueous titrimetry; materials damage prediction for fiber composites; safe high energy explosives; single photon absorption reaction chemistry; reaction in shock waves; cryogenic heavy hydrogen technology; acoustic emission; metallic alloy glasses; basic study of toughness in steel; static equation-of-state at 100 GPa; transuranium element research; nuclear structure research; neutron capture gamma measurements; x-ray fluorescence analysis; and pyrochemical investigation

  19. Effects of the Mt. Pinatubo eruption on the chemistry, radiative, and transport processes in the stratosphere

    International Nuclear Information System (INIS)

    Wuebbles, D.J.; Kinnison, D.E.; Grant, K.E.; Connell, P.S.

    1992-09-01

    Volcanic eruptions can significantly impact trace gas distribution in the upper troposphere and lower stratosphere. Massive eruptions, produce large quantities of SO 2 , H 2 O, chlorine compounds, and particulates. Modeling the effects of these impulsive increases in traces gases and comparing the results with observations from ground and satellite measurements provide unique opportunities to test current multi-dimensional chemical-radiative-transport models of the global atmosphere. Since these models are currently being used in assessment studies for future anthropogenic emissions of trace gases quantitative understanding of the accuracy of these models is essential. In this study, we have used observed data from the Stratospheric Aerosol and Gas Experiment II (SAGE II) aboard the Earth Radiation Budget Satellite (ERBS) to realistically represent both the time dependent change in aerosol surface area density and wavelength dependent extinction values from the Mt. Pinatubo Eruption. Increases in the aerosol loading increase the rate of important heterogeneous chemical reactions converting odd nitrogen in both ClONO 2 and N 2 O 5 to HNO 3 . Radiative effects of increases aerosol optical thickness include changes to net radiative heating rates and to actinic fluxes. Changes to heating rates will indirectly change chemical reaction rates via changes in atmospheric temperatures. changes in actinic fluxes will directly modify photodissociation rates

  20. Citymobil, Advanced Road transport for the Urban Environment. First results

    NARCIS (Netherlands)

    Dijke, J.P. van

    2010-01-01

    CityMobil is an Integrated Project in the 6th Framework Programme of the European Union. The project addresses the topic "Advanced Road transport for the Urban Environment." The project started in May 2006 and will run for 5.5 years until the end of 2011. The project is carried out by a group of 29

  1. Radiation exposure resulting from the transport of radioactive materials within the United Kingdom

    International Nuclear Information System (INIS)

    Shaw, K.B.; Mairs, J.H.; Gelder, R.; Hughes, J.S.; Holyoak, B.

    1983-01-01

    The transport of technetium generators for hospital use accounts for some 50% of the occupational exposure from the normal transport of radioactive materials. Other isotopes for medical and industrial use contribute about 35% of the occupational exposure and some 15% can be attributed to transportation as a result of the nuclear fuel cycle including the transport of irradiated nuclear fuel. 5 references, 6 tables

  2. Modeling ecohydrologic processes at Hubbard Brook: Initial results for Watershed 6 stream discharge and chemistry

    Science.gov (United States)

    The Hubbard Brook Long Term Ecological Research site has produced some of the most extensive and long-running databases on the hydrology, biology and chemistry of forest ecosystem responses to climate and forest harvest. We used these long-term databases to calibrate and apply G...

  3. Transport and retention of biochar nanoparticles in a paddy soil under environmentally-relevant solution chemistry conditions.

    Science.gov (United States)

    Chen, Ming; Wang, Dengjun; Yang, Fan; Xu, Xiaoyun; Xu, Nan; Cao, Xinde

    2017-11-01

    Land application of biochar has been increasingly recommended as a powerful strategy for carbon sequestration and soil remediation. However, the biochar particles, especially those in the nanoscale range, may migrate or carry the inherent contaminants along the soil profile, posing a potential risk to the groundwater. This study investigated the transport and retention of wood chip-derived biochar nanoparticles (NPs) in water-saturated columns packed with a paddy soil. The environmentally-relevant soil solution chemistry including ionic strength (0.10-50 mM), electrolyte type (NaCl and CaCl 2 ), and natural organic matter (0-10 mg L -1 humic acid) were tested to elucidate their effects on the biochar NPs transport. Higher mobility of biochar NPs was observed in the soil at lower ionic strengths, with CaCl 2 electrolyte being more effective than NaCl in decreasing biochar NPs transport. The retained biochar NPs in NaCl was re-entrained (∼57.7%) upon lowering transient pore-water ionic strength, indicating that biochar NPs were reversibly retained in the secondary minimum. In contrast, negligible re-entrainment of biochar NPs occurred in CaCl 2 due to the primary minimum and/or particle aggregation. Humic acid increased the mobility of biochar NPs, likely due to enhanced electrosteric repulsive interactions. The transport behaviors of biochar NPs can be well interpreted by a two-site kinetic retention model that assumes reversible retention for one site, and irreversible retention for the other site. Our findings indicated that the transport of wood chip biochar NPs is significant in the paddy soil, highlighting the importance of understanding the mobility of biochar NPs in natural soils for accurately assessing their environmental impacts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Multicompartmental fate of persistent substances. Comparison of predictions from multi-media box models and a multicompartment chemistry-atmospheric transport model.

    Science.gov (United States)

    Lammel, Gerhard; Klöpffer, Walter; Semeena, V S; Schmidt, Elisabeth; Leip, Adrian

    2007-05-01

    Modelling of the fate of environmental chemicals can be done by relatively simple multi-media box models or using complex atmospheric transport models. It was the aim of this work to compare the results obtained for both types of models using a small set of non-ionic and non-polar or moderately polar organic chemicals, known to be distributed over long distances. Predictions of multimedia exposure models of different types, namely three multimedia mass-balance box models (MBMs), two in the steady state and one in the non-steady state mode, and one non-steady state multicompartment chemistry-atmospheric transport model (MCTM), are compared for the first time. The models used are SimpleBox, Chemrange, the MPI-MBM and the MPI-MCTM. The target parameters addressed are compartmental distributions (i.e. mass fractions in the compartments), overall environmental residence time (i.e. overall persistence and eventually including other final sinks, such as loss to the deep sea) and a measure for the long-range transport potential. These are derived for atrazine, benz-[a]-pyrene, DDT, alpha and gamma-hexachlorocyclohexane, methyl parathion and various modes of substance entry into the model world. Compartmental distributions in steady state were compared. Steady state needed 2-10 years to be established in the MCTM. The highest fraction of the substances in air is predicted by the MCTM. Accordingly, the other models predict longer substance persistence in most cases. The results suggest that temperature affects the compartmental distribution more in the box models, while it is only one among many climate factors acting in the transport model. The representation of final sinks in the models, e.g. burial in the sediment, is key for model-based compartmental distribution and persistence predictions. There is a tendency of MBMs to overestimate substance sinks in air and to underestimate atmospheric transport velocity as a consequence of the neglection of the temporal and spatial

  5. COLLOID RELEASE AND TRANSPORT IN AGRICULTURAL SOIL AS IMPACTED BY SOLUTION CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Sandip Patil

    2011-12-01

    Full Text Available Colloid release from the agricultural soil under unsaturated conditions was controlled by the hydrodynamic force, capillary force and electrostatic force that were determined by the solution chemistry in terms of solution ionic strength and pH. In this research, colloid release from the agricultural soil was investigated using an intact soil column collected from an agricultural site in Gadsden County of Florida. Colloid release was monitored and the colloid release curve was simulated using an implicit, finite-difference scheme to obtain the colloid release coefficient. It was found that the hydrodynamic force and electrostatic force overcame the capillary force under the experimental conditions of this research and consequently, colloids were released. For the colloid release, solution chemistry played a key role by controlling the colloid repulsive electrostatic force within the pore system. Colloid release exponentially decreased with the increase of solution ionic strength and increased with the increase of solution pH. Colloid release was finally found to be correlated to the colloid repulsive electrostatic force within the pore system, i.e., the greater the repulsive electrostatic force, the more colloids released.

  6. COLLOID RELEASE AND TRANSPORT IN AGRICULTURAL SOIL AS IMPACTED BY SOLUTION CHEMISTRY

    Directory of Open Access Journals (Sweden)

    Sandip Patil

    2011-01-01

    Full Text Available Colloid release from the agricultural soil under unsaturated conditions was controlled by the hydrodynamic force, capillary force and electrostatic force that were determined by the solution chemistry in terms of solution ionic strength and pH. In this research, colloid release from the agricultural soil was investigated using an intact soil column collected from an agricultural site in Gadsden County of Florida. Colloid release was monitored and the colloid release curve was simulated using an implicit, finite-difference scheme to obtain the colloid release coefficient. It was found that the hydrodynamic force and electrostatic force overcame the capillary force under the experimental conditions of this research and consequently, colloids were released. For the colloid release, solution chemistry played a key role by controlling the colloid repulsive electrostatic force within the pore system. Colloid release exponentially decreased with the increase of solution ionic strength and increased with the increase of solution pH. Colloid release was finally found to be correlated to the colloid repulsive electrostatic force within the pore system, i.e., the greater the repulsive electrostatic force, the more colloids released.

  7. Stability result for Navier-Stokes equations with entropy transport

    Czech Academy of Sciences Publication Activity Database

    Michálek, Martin

    2015-01-01

    Roč. 17, č. 2 (2015), s. 279-285 ISSN 1422-6928 R&D Projects: GA ČR GA13-00522S Institutional support: RVO:67985840 Keywords : compressible Navier-Stokes system * entropy transport * effective viscous flux Subject RIV: BA - General Mathematics Impact factor: 1.023, year: 2015 http://link.springer.com/article/10.1007%2Fs00021-015-0205-x

  8. Parameterized isoprene and monoterpene emissions from the boreal forest floor: Implementation into a 1D chemistry-transport model and investigation of the influence on atmospheric chemistry

    Science.gov (United States)

    Mogensen, Ditte; Aaltonen, Hermanni; Aalto, Juho; Bäck, Jaana; Kieloaho, Antti-Jussi; Gierens, Rosa; Smolander, Sampo; Kulmala, Markku; Boy, Michael

    2015-04-01

    Volatile organic compounds (VOCs) are emitted from the biosphere and can work as precursor gases for aerosol particles that can affect the climate (e.g. Makkonen et al., ACP, 2012). VOC emissions from needles and leaves have gained the most attention, however other parts of the ecosystem also have the ability to emit a vast amount of VOCs. This, often neglected, source can be important e.g. at periods where leaves are absent. Both sources and drivers related to forest floor emission of VOCs are currently limited. It is thought that the sources are mainly due to degradation of organic matter (Isidorov and Jdanova, Chemosphere, 2002), living roots (Asensio et al., Soil Biol. Biochem., 2008) and ground vegetation. The drivers are biotic (e.g. microbes) and abiotic (e.g. temperature and moisture). However, the relative importance of the sources and the drivers individually are currently poorly understood. Further, the relative importance of these factors is highly dependent on the tree species occupying the area of interest. The emission of isoprene and monoterpenes where measured from the boreal forest floor at the SMEAR II station in Southern Finland (Hari and Kulmala, Boreal Env. Res., 2005) during the snow-free period in 2010-2012. We used a dynamic method with 3 automated chambers analyzed by Proton Transfer Reaction - Mass Spectrometer (Aaltonen et al., Plant Soil, 2013). Using this data, we have developed empirical parameterizations for the emission of isoprene and monoterpenes from the forest floor. These parameterizations depends on abiotic factors, however, since the parameterizations are based on field measurements, biotic features are captured. Further, we have used the 1D chemistry-transport model SOSAA (Boy et al., ACP, 2011) to test the seasonal relative importance of inclusion of these parameterizations of the forest floor compared to the canopy crown emissions, on the atmospheric reactivity throughout the canopy.

  9. Defect chemistry of ''BaCuO2''. Pt. 2. Transport properties and nature of defects

    International Nuclear Information System (INIS)

    Chiodelli, G.; Consiglio Nazionale delle Ricerche, Pavia; Anselmi-Tamburini, U.; Consiglio Nazionale delle Ricerche, Pavia; Arimondi, M.; Consiglio Nazionale delle Ricerche, Pavia; Spinolo, G.; Consiglio Nazionale delle Ricerche, Pavia; Flor, G.; Consiglio Nazionale delle Ricerche, Pavia

    1995-01-01

    The charge transport properties of ''BaCuO 2 '' with 88:90 (Ba:Cu) cation ratio were characterized by thermopower, electrical conductivity and ionic transport number measurements in a wide range of temperature and oxygen partial pressure conditions. The nature of carriers is always represented by small polarons due to self-trapping of the electronic holes generated by the oxygen non-stoichiometry equilibrium. Some anomalies in carrier mobility as a function of temperature are shown not to be related to incomplete ionization of oxygen atoms on interstitial sites (orig.)

  10. Uncertainty estimation and ensemble forecast with a chemistry-transport model - Application to air-quality modeling and simulation

    International Nuclear Information System (INIS)

    Mallet, Vivien

    2005-01-01

    The thesis deals with the evaluation of a chemistry-transport model, not primarily with classical comparisons to observations, but through the estimation of its a priori uncertainties due to input data, model formulation and numerical approximations. These three uncertainty sources are studied respectively on the basis of Monte Carlos simulations, multi-models simulations and numerical schemes inter-comparisons. A high uncertainty is found, in output ozone concentrations. In order to overtake the limitations due to the uncertainty, a solution is ensemble forecast. Through combinations of several models (up to forty-eight models) on the basis of past observations, the forecast can be significantly improved. The achievement of this work has also led to develop the innovative modelling-system Polyphemus. (author) [fr

  11. Ozone impacts of gas-aerosol uptake in global chemistry transport models

    Science.gov (United States)

    Stadtler, Scarlet; Simpson, David; Schröder, Sabine; Taraborrelli, Domenico; Bott, Andreas; Schultz, Martin

    2018-03-01

    The impact of six heterogeneous gas-aerosol uptake reactions on tropospheric ozone and nitrogen species was studied using two chemical transport models, the Meteorological Synthesizing Centre-West of the European Monitoring and Evaluation Programme (EMEP MSC-W) and the European Centre Hamburg general circulation model combined with versions of the Hamburg Aerosol Model and Model for Ozone and Related chemical Tracers (ECHAM-HAMMOZ). Species undergoing heterogeneous reactions in both models include N2O5, NO3, NO2, O3, HNO3, and HO2. Since heterogeneous reactions take place at the aerosol surface area, the modelled surface area density (Sa) of both models was compared to a satellite product retrieving the surface area. This comparison shows a good agreement in global pattern and especially the capability of both models to capture the extreme aerosol loadings in east Asia. The impact of the heterogeneous reactions was evaluated by the simulation of a reference run containing all heterogeneous reactions and several sensitivity runs. One reaction was turned off in each sensitivity run to compare it with the reference run. The analysis of the sensitivity runs confirms that the globally most important heterogeneous reaction is the one of N2O5. Nevertheless, NO2, HNO3, and HO2 heterogeneous reactions gain relevance particularly in east Asia due to the presence of high NOx concentrations and high Sa in the same region. The heterogeneous reaction of O3 itself on dust is of minor relevance compared to the other heterogeneous reactions. The impacts of the N2O5 reactions show strong seasonal variations, with the biggest impacts on O3 in springtime when photochemical reactions are active and N2O5 levels still high. Evaluation of the models with northern hemispheric ozone surface observations yields a better agreement of the models with observations in terms of concentration levels, variability, and temporal correlations at most sites when the heterogeneous reactions are

  12. A comparison of sea salt emission parameterizations in northwestern Europe using a chemistry transport model setup

    Directory of Open Access Journals (Sweden)

    D. Neumann

    2016-08-01

    Full Text Available Atmospheric sea salt particles affect chemical and physical processes in the atmosphere. These particles provide surface area for condensation and reaction of nitrogen, sulfur, and organic species and are a vehicle for the transport of these species. Additionally, HCl is released from sea salt. Hence, sea salt has a relevant impact on air quality, particularly in coastal regions with high anthropogenic emissions, such as the North Sea region. Therefore, the integration of sea salt emissions in modeling studies in these regions is necessary. However, it was found that sea salt concentrations are not represented with the necessary accuracy in some situations.In this study, three sea salt emission parameterizations depending on different combinations of wind speed, salinity, sea surface temperature, and wave data were implemented and compared: GO03 (Gong, 2003, SP13 (Spada et al., 2013, and OV14 (Ovadnevaite et al., 2014. The aim was to identify the parameterization that most accurately predicts the sea salt mass concentrations at different distances to the source regions. For this purpose, modeled particle sodium concentrations, sodium wet deposition, and aerosol optical depth were evaluated against measurements of these parameters. Each 2-month period in winter and summer 2008 were considered for this purpose. The shortness of these periods limits generalizability of the conclusions on other years.While the GO03 emissions yielded overestimations in the PM10 concentrations at coastal stations and underestimations of those at inland stations, OV14 emissions conversely led to underestimations at coastal stations and overestimations at inland stations. Because of the differently shaped particle size distributions of the GO03 and OV14 emission cases, the deposition velocity of the coarse particles differed between both cases which yielded this distinct behavior at inland and coastal stations. The PM10 concentrations produced by the SP13 emissions

  13. Benchmark studies of computer prediction techniques for equilibrium chemistry and radionuclide transport in groundwater flow

    International Nuclear Information System (INIS)

    Broyd, T.W.

    1988-01-01

    A brief review of two recent benchmark exercises is presented. These were separately concerned with the equilibrium chemistry of groundwater and the geosphere migration of radionuclides, and involved the use of a total of 19 computer codes by 11 organisations in Europe and Canada. A similar methodology was followed for each exercise, in that series of hypothetical test cases were used to explore the limits of each code's application, and so provide an overview of current modelling potential. Aspects of the user-friendliness of individual codes were also considered. The benchmark studies have benefited participating organisations by providing a means of verifying current codes, and have provided problem data sets by which future models may be compared. (author)

  14. Important options available--from start to finish--for translating proteomics results to clinical chemistry.

    Science.gov (United States)

    Heegaard, Niels H H; Østergaard, Ole; Bahl, Justyna M C; Overgaard, Martin; Beck, Hans C; Rasmussen, Lars Melholt; Larsen, Martin R

    2015-02-01

    In the realm of clinical chemistry, the field of clinical proteomics, that is, the application of proteomic methods for understanding mechanisms and enabling diagnosis, prediction, measurement of activity, and treatment response in disease, is first and foremost a discovery and research tool that feeds assay development downstream. Putative new assay candidates generated by proteomics discovery projects compete with well-established assays with known indications, well-described performance, and of known value in specific clinical settings. Careful attention to the many options available in the design, execution, and interpretation of clinical proteomics studies is thus necessary for translation into clinical practice. We here review and discuss important options associated with clinical proteomics endeavors stretching from the planning phases to the final use in clinical chemistry. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Multi-path transportation futures study: Results from Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Patterson, Phil [Department of Energy, Washington, D.C. (United States); Singh, Margaret [Argonne National Lab. (ANL), Argonne, IL (United States); Plotkin, Steve [Argonne National Lab. (ANL), Argonne, IL (United States); Moore, Jim [TAE

    2007-03-09

    This PowerPoint briefing provides documentation and details for Phase 1 of the Multi-Path Transportation Futures Study, which compares alternative ways to make significant reductions in oil use and carbon emissions from U.S. light vehicles to 2050. Phase I, completed in 2006, was a scoping study, aimed at identifying key analytic issues and constructing a study design. The Phase 1 analysis included an evaluation of several pathways and scenarios; however, these analyses were limited in number and scope and were designed to be preliminary.

  16. Principal trends and results of investigations in the field of chemistry of condensed phosphates

    International Nuclear Information System (INIS)

    Tananaev, I.V.; Gruntse, Kh.; Chudinova, N.N.; Akademie der Wissenschaften der DDR, Berlin. Zentralinstitut fuer Anorganische Chemie)

    1984-01-01

    Investigations into the chemistry of condensed phosphates (oligomeric or polymeric phosphorus (5) derivatives, containing POP bonds) jointly performed by the Institute of General and Inorganic Chemistry of the USSR Academy of Sciences and the Central Institute of Inorganic Chemistry of the GDR Academy of Sciences are reviewed. Investigations followed two trends: 1) development of scientific grounds for the synthesis of phosphate polymers (studying the mechanism of crystallization, condensation and polymerization reactions in the phosphate systems); 2) preparing phosphates of various compositions and structure (cyclic, branched and chain structure of anions), jnvestigating their structure and properties, establishing correlations between the composition, structure and properties for directed synthesis of compounds with definite properties. Phosphates of Al, Ga, In, rare earths, Cr, Bi, Zn, Cd, Ti, Ge, Zr, Hf, Th, V, Nb, Ta, Mo, W, U, Mn, Fe, Co, Ni are considered as well as binary phosphates with alakali metals. The studied inorganic polymers exhibited a wide range of properties which seem to be promising for their use in various fields of technology

  17. Transport of radioactive wastes to the planned final waste repository Konrad: Radiation exposure resulting from normal transport and radiological risks from transport accidents

    International Nuclear Information System (INIS)

    Lange, F.; Fett, H.J.; Gruendler, D.; Schwarz, G.

    1993-01-01

    Radiation exposures of members of critical groups of the general population and of transport personnel resulting from normal transport of radioactive wastes to the planned final waste repository Konrad have been evaluated in detail. By applying probabilistic safety assessment techniques radiological risks from transport accidents have been analysed by quantifying potential radiation exposures and contaminations of the biosphere in connection with their expected frequencies of occurrence. The Konrad transport study concentrates on the local region of the waste repository, where all transports converge. (orig.) [de

  18. What do we learn on bromoform transport and chemistry in deep convection from fine scale modelling?

    OpenAIRE

    V. Marécal; M. Pirre; G. Krysztofiak; B. Josse

    2011-01-01

    Bromoform is one of the main sources of halogenated Very Short-Lived Species (VSLS) that possibly contributes when degradated to the inorganic halogen loading in the stratosphere. Because of its short lifetime of about four weeks, its pathway to the stratosphere is mainly the transport by convection up to the tropical tropopause layer (TTL) and then by radiative ascent in the low stratosphere. Some of its degradation product gases (PGs) that are soluble can be scavenged and not reach the TTL....

  19. Dynamic combinatorial chemistry to identify binders of ThiT, an S-component of the energy-coupling factor transporter for thiamine

    NARCIS (Netherlands)

    Monjas, Leticia; Swier, Lotteke J Y M; Setyawati, Inda; Slotboom, Dirk Jan; Hirsch, Anna Katharina Herta

    2017-01-01

    We applied dynamic combinatorial chemistry (DCC) to identify ligands of ThiT, the S-component of the energy-coupling factor (ECF) transporter for thiamine in Lactococcus lactis. We used a pre-equilibrated dynamic combinatorial library (DCL) and saturation-transfer difference (STD) NMR spectroscopy

  20. Polar Processes in a 50-year Simulation of Stratospheric Chemistry and Transport

    Science.gov (United States)

    Kawa, S.R.; Douglass, A. R.; Patrick, L. C.; Allen, D. R.; Randall, C. E.

    2004-01-01

    The unique chemical, dynamical, and microphysical processes that occur in the winter polar lower stratosphere are expected to interact strongly with changing climate and trace gas abundances. Significant changes in ozone have been observed and prediction of future ozone and climate interactions depends on modeling these processes successfully. We have conducted an off-line model simulation of the stratosphere for trace gas conditions representative of 1975-2025 using meteorology from the NASA finite-volume general circulation model. The objective of this simulation is to examine the sensitivity of stratospheric ozone and chemical change to varying meteorology and trace gas inputs. This presentation will examine the dependence of ozone and related processes in polar regions on the climatological and trace gas changes in the model. The model past performance is base-lined against available observations, and a future ozone recovery scenario is forecast. Overall the model ozone simulation is quite realistic, but initial analysis of the detailed evolution of some observable processes suggests systematic shortcomings in our description of the polar chemical rates and/or mechanisms. Model sensitivities, strengths, and weaknesses will be discussed with implications for uncertainty and confidence in coupled climate chemistry predictions.

  1. Waste Preparation and Transport Chemistry: Results of the FY 2002 Studies

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, R.D.

    2003-07-10

    The initial step in the remediation of nuclear waste stored at Hanford and the Savannah River Site (SRS) involves the retrieval and transfer of the waste to another tank or to a treatment facility. The retrieved waste can range from a filtered supernatant to a slurry. Nearly all of the recent solid formation problems encountered during waste transfers and subsequent treatment steps have involved decanted or filtered supernatants. Problems with slurry transfers have not yet surfaced, because tank farm operations at Hanford and the SRS have focused primarily on supernatant transfers and treatment. For example, the interim stabilization program at Hanford continues to reduce the level of supernatants and interstitial liquids in its single-shell tanks through saltwell pumping of filtered liquid. In addition, at present, the cross-site transfer lines at Hanford can be used only to transfer liquids. Another reason for fewer problems with slurry transfers involves the additions of large quantities of dilution water prior to the transfer. When the waste is transferred, a drop in temperature is expected because most transfer lines are not heated. However, the dilution water reduces or eliminates solid formation caused by this temperature drop. In sharp contrast, decanted or filtered supernatants are near or at saturation for certain compounds. In such cases, tank farm operators must continue to evaporate their liquid waste since available tank space is quite limited. Solid formation can occur when the temperature of saturated solutions drops even slightly. The evaporation step can also lead to the formation of problematic solids. At the SRS, the evaporation of a relatively dilute waste stream was suspended due to the formation of deposits in the evaporator system. Therefore, small drops in temperature or evaporation can lead to problematic solid formations.

  2. Numerical simulation of advective-dispersive multisolute transport with sorption, ion exchange and equilibrium chemistry

    Science.gov (United States)

    Lewis, F.M.; Voss, C.I.; Rubin, Jacob

    1986-01-01

    A model was developed that can simulate the effect of certain chemical and sorption reactions simultaneously among solutes involved in advective-dispersive transport through porous media. The model is based on a methodology that utilizes physical-chemical relationships in the development of the basic solute mass-balance equations; however, the form of these equations allows their solution to be obtained by methods that do not depend on the chemical processes. The chemical environment is governed by the condition of local chemical equilibrium, and may be defined either by the linear sorption of a single species and two soluble complexation reactions which also involve that species, or binary ion exchange and one complexation reaction involving a common ion. Partial differential equations that describe solute mass balance entirely in the liquid phase are developed for each tenad (a chemical entity whose total mass is independent of the reaction process) in terms of their total dissolved concentration. These equations are solved numerically in two dimensions through the modification of an existing groundwater flow/transport computer code. (Author 's abstract)

  3. Impact of Transport Zone Number in Simulation Models on Cost-Benefit Analysis Results in Transport Investments

    Science.gov (United States)

    Chmielewski, Jacek

    2017-10-01

    Nowadays, feasibility studies need to be prepared for all planned transport investments, mainly those co-financed with UE grants. One of the fundamental aspect of feasibility study is the economic justification of an investment, evaluated in an area of so called cost-benefit analysis (CBA). The main goal of CBA calculation is to prove that a transport investment is really important for the society and should be implemented as economically efficient one. It can be said that the number of hours (PH - passengers hours) in trips and travelled kilometres (PK - passengers kilometres) are the most important for CBA results. The differences between PH and PK calculated for particular investment scenarios are the base for benefits calculation. Typically, transport simulation models are the best source for such data. Transport simulation models are one of the most powerful tools for transport network planning. They make it possible to evaluate forecast traffic volume and passenger flows in a public transport system for defined scenarios of transport and area development. There are many different transport models. Their construction is often similar, and they mainly differ in the level of their accuracy. Even models for the same area may differ in this matter. Typically, such differences come from the accuracy of supply side representation: road and public transport network representation. In many cases only main roads and a public transport network are represented, while local and service roads are eliminated as a way of reality simplification. This also enables a faster and more effective calculation process. On the other hand, the description of demand part of these models based on transport zones is often stable. Difficulties with data collection, mainly data on land use, resulted in the lack of changes in the analysed land division into so called transport zones. In this paper the author presents an influence of land division on the results of traffic analyses, and hence

  4. Secondary organic aerosol in the global aerosol - chemistry transport model Oslo CTM2

    Science.gov (United States)

    Hoyle, C. R.; Berntsen, T.; Myhre, G.; Isaksen, I. S. A.

    2007-06-01

    The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA). Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics). A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 76 Tg yr-1 by allowing semi-volatile species to condense on ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated, raising the possibility of an unaccounted for SOA source. Allowing SOA to form on ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to almost 9% of the total production. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%-60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas. This study underscores the need for SOA to be represented in a more realistic way in global aerosol models in order to better reproduce observations of organic aerosol burdens in industrialised and biomass burning regions.

  5. Compendium of NASA data base for the global tropospheric experiment's Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE-A)

    Science.gov (United States)

    Gregory, Gerald L.; Scott, A. Donald, Jr.

    1995-01-01

    This compendium describes aircraft data that are available from NASA's Transport and Atmospheric Chemistry near the Equator - Atlantic (TRACE-A) conducted in September/October 1992. The broad objectives of TRACE-A were to study chemical processes and long-range transport associated with South American and African continental outflow during periods of widespread vegetation burning, and to understand the ozone enhancements observed from satellite data measured over the southern tropical Atlantic Ocean during the September/October time period. Flight experiments were conducted from Brazil, South Africa, Namibia, and the Ascension Island. This document provides a representation of aircraft data that are available from NASA Langley's Distributed Active Archive Center (DAAC). The data format of time series and altitude profile plots is not intended to support original analyses, but to assist the reader in identifying data that are of interest. This compendium is for only the NASA aircraft data. The DAAC data base includes numerous supporting data-meteorological products, results from surface studies, satellite observations, and data from sonde releases.

  6. A field study on chemistry, S(IV) oxidation rates and vertical transport during fog conditions

    Science.gov (United States)

    Joos, F.; Baltensperger, U.

    An extensive fog study was carried out in the central plateu of Switzerland. Ninety-seven fog samples were collected along with aerosol filter and cascade impactor samples, and measurements of O 3, SO 2, NO, NO x, PAN, temperature, and wind speed and direction. Maximum levels in fogwater were 4.3, 4.4., 0.033, 1.7, 0.5, 0.024 and 9.2 mmol ℓ -1 for Cl -, NO 3-, NO 2-, SO 42-, S(IV), oxalate and NH 4+, respectively. pH varied between 2.9 and 7.1. Sixteen additional elements were determined in the fog samples by ICP. The sum of the concentrations of SO 42- and S(IV) agreed very with the total sulfur concentration as determined by ICP. A substantial excess of S(IV) (up to 0.2 mmol ℓ -1) compared to Henry and acid-base equilibrium calculations was found, which can probably be attributed to complex formations with aldehydes. S(IV) oxidation rates of up to 650 nmol ℓ -1 s -1 with ozone and of up to 100 nmol ℓ -1 s -1 with NO 2 were calculated. S(IV) oxidation due to PAN, NO 2- and Fe(III) was of minor importance. A substantial fraction of the major ions was present in the intersitial aerosol (aerosol particles < 4 μm) even during fog conditions. High correlations were found for NH 4+, NO 32-. From their ratios in the fog water and the aerosol (< 4 μm) it could be concluded that at least 40% of NO 3- and 20% of NH 4+ in fog water was due to gas phase scavenging. Increasing concentrations in fog water were found during fog dissipation. Concentrations decreased with increasing height. A vertical transport model including turbulent diffusion and droplet sedimentation is introduced, which matches the experimental data of this vertical profile.

  7. Integral Transport Analysis Results for Ions Flowing Through Neutral Gas

    Science.gov (United States)

    Emmert, Gilbert; Santarius, John

    2017-10-01

    Results of a computational model for the flow of energetic ions and neutrals through a background neutral gas will be presented. The method models reactions as creating a new source of ions or neutrals if the energy or charge state of the resulting particle is changed. For a given source boundary condition, the creation and annihilation of the various species is formulated as a 1-D Volterra integral equation that can quickly be solved numerically by finite differences. The present work focuses on multiple-pass, 1-D ion flow through neutral gas and a nearly transparent, concentric anode and cathode pair in spherical, cylindrical, or linear geometry. This has been implemented as a computer code for atomic (3He, 3He +, 3He + +) and molecular (D, D2, D-, D +, D2 +, D3 +) ion and neutral species, and applied to modeling inertial-electrostatic connement (IEC) devices. The code yields detailed energy spectra of the various ions and energetic neutral species. Calculations for several University of Wisconsin IEC and ion implantation devices will be presented. Research supported by US Dept. of Homeland Security Grant 2015-DN-077-ARI095, Dept. of Energy Grant DE-FG02-04ER54745, and the Grainger Foundation.

  8. Kinetic modeling of microbially-driven redox chemistry of radionuclides in subsurface environments: Coupling transport, microbial metabolism and geochemistry

    International Nuclear Information System (INIS)

    Wang, Yifeng; Papenguth, Hans W.

    2000-01-01

    Microbial degradation of organic matter is a driving force in many subsurface geochemical systems, and therefore may have significant impacts on the fate of radionuclides released into subsurface environments. In this paper, the authors present a general reaction-transport model for microbial metabolism, redox chemistry, and radionuclide migration in subsurface systems. The model explicitly accounts for biomass accumulation and the coupling of radionuclide redox reactions with major biogeochemical processes. Based on the consideration that the biomass accumulation in subsurface environments is likely to achieve a quasi-steady state, they have accordingly modified the traditional microbial growth kinetic equation. They justified the use of the biogeochemical models without the explicit representation of biomass accumulation, if the interest of modeling is in the net impact of microbial reactions on geochemical processes. They then applied their model to a scenario in which an oxic water flow containing both uranium and completing organic ligands is recharged into an oxic aquifer in a carbonate formation. The model simulation shows that uranium can be reduced and therefore immobilized in the anoxic zone created by microbial degradation

  9. Actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP): FY94 results

    International Nuclear Information System (INIS)

    Novak, C.F.

    1995-08-01

    This document contains six reports on actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP). These reports, completed in FY94, are relevant to the estimation of the potential dissolved actinide concentrations in WIPP brines under repository breach scenarios. Estimates of potential dissolved actinide concentrations are necessary for WIPP performance assessment calculations. The specific topics covered within this document are: the complexation of oxalate with Th(IV) and U(VI); the stability of Pu(VI) in one WIPP-specific brine environment both with and without carbonate present; the solubility of Nd(III) in a WIPP Salado brine surrogate as a function of hydrogen ion concentration; the steady-state dissolved plutonium concentrations in a synthetic WIPP Culebra brine surrogate; the development of a model for Nd(III) solubility and speciation in dilute to concentrated sodium carbonate and sodium bicarbonate solutions; and the development of a model for Np(V) solubility and speciation in dilute to concentrated sodium Perchlorate, sodium carbonate, and sodium chloride media

  10. Chemistry Characterization of Jet Aircraft Engine Particulate by XPS: Results from APEX III

    Science.gov (United States)

    Vander Wal, Randy L.; Bryg, Victoria M.

    2014-01-01

    This paper reports XPS analysis of jet exhaust particulate from a B737, Lear, ERJ, and A300 aircraft during the APEX III NASA led field campaign. Carbon hybridization and bonding chemistry are identified by high-resolution scans about the C1s core-shell region. Significant organic content as gauged by the sp3/sp2 ratio is found across engines and platforms. Polar oxygen functional groups include carboxylic, carbonyl and phenol with combined content of 20 percent or more. By lower resolution survey scans various elements including transition metals are identified along with lighter elements such as S, N, and O in the form of oxides. Burning additives within lubricants are probable sources of Na, Ba, Ca, Zn, P and possibly Sn. Elements present and their percentages varied significantly across all engines, not revealing any trend or identifiable cause for the differences, though the origin is likely the same for the same element when observed. This finding suggests that their presence can be used as a tracer for identifying soots from aircraft engines as well as diagnostic for monitoring engine performance and wear.

  11. Perceived risks of radioactive waste transport through Oregon: Results of a statewide survey

    International Nuclear Information System (INIS)

    MacGregor, D.; Slovic, P.; Mason, R.G.; Detweiler, J.; Binney, S.E.; Dodd, B.

    1994-01-01

    Transportation of hazardous materials, and particularly radioactive wastes, on public highways has become an important risk management issue. The unfavorability of public attitudes regarding hazardous and nuclear waste signals the potential for strong public opposition to programs for transporting these materials. This paper presents the results of a survey conducted to assess public reactions to a long-term nuclear waste transport program planned to follow a route through a portion of rural Oregon. The survey assessed a number of key risk perception issues, including perceived health and safety risks of nuclear waste transport, relative risks of transport vs. storage at an existing site, trust in state officials, and satisfaction with life in communities along the transport route. The survey identified a number of attitudes and concerns that need to be understood and considered by those in charge of designing and implementing the waste-transportation program. 22 refs., 1 fig., 5 tabs

  12. Different pathways but same result? Comparing chemistry and biological effects of burned and decomposed litter

    Science.gov (United States)

    Mazzoleni, Stefano; Bonanomi, Giuliano; Incerti, Guido; El-Gawad, Ahmed M. Abd; Sarker, Tushar Chandra; Cesarano, Gaspare; Saulino, Luigi; Saracino, Antonio; Castro Rego, Francisco

    2017-04-01

    Litter burning and biological decomposition are oxidative processes co-occurring in many terrestrial ecosystems, producing organic matter with different chemical properties and differently affecting plant growth and soil microbial activity. Here, we tested the chemical convergence hypothesis (i.e. materials with different initial chemistry tend to converge towards a common profile, with similar biological effects, as the oxidative process advances) for burning and decomposition. We compared the molecular composition of 63 organic materials - 7 litter types either fresh, decomposed for 30, 90, 180 days, or heated at 100, 200, 300, 400, 500 °C - as assessed by 13C NMR. We used litter water extracts (5% dw) as treatments in bioassays on plant (Lepidium sativum) and fungal (Aspergillus niger) growth, and a washed quartz sand amended with litter materials (0.5 % dw) to assess heterotrophic respiration by CO2 flux chamber. We observed different molecular variations for materials either burning (i.e. a sharp increase of aromatic C and a decrease of most other fractions above 200 °C) or decomposing (i.e. early increase of alkyl, methoxyl and N-alkyl C and decrease of O-alkyl and di-O-alkyl C fractions). Soil respiration and fungal growth progressively decreased with litter age and temperature. Plant growth underwent an inhibitory effect by untreated litter, more and less rapidly released over decomposing and burning materials, respectively. Correlation analysis between NMR and bioassay data showed that opposite responses for soil respiration and fungi, compared to plants, are related to essentially the same C molecular types. Our findings suggest a functional convergence of decomposed and burnt organic substrates, emerging from the balance between the bioavailability of labile C sources and the presence of recalcitrant and pyrogenic compounds, oppositely affecting different trophic levels.

  13. Phosphate availability in the soil-root system : integration of oxide surface chemistry, transport and uptake

    NARCIS (Netherlands)

    Geelhoed, J.S.

    1998-01-01

    A study is presented on the adsorption of phosphate on goethite, the interaction of phosphate with other adsorbing ions at the goethite surface, and the resulting availability of phosphate to plants. The plant-availability of sorbed phosphate was determined from phosphorus uptake of plants

  14. Modeling lightning-NOx chemistry on a sub-grid scale in a global chemical transport model

    Directory of Open Access Journals (Sweden)

    A. Gressent

    2016-05-01

    Full Text Available For the first time, a plume-in-grid approach is implemented in a chemical transport model (CTM to parameterize the effects of the nonlinear reactions occurring within high concentrated NOx plumes from lightning NOx emissions (LNOx in the upper troposphere. It is characterized by a set of parameters including the plume lifetime, the effective reaction rate constant related to NOx–O3 chemical interactions, and the fractions of NOx conversion into HNO3 within the plume. Parameter estimates were made using the Dynamical Simple Model of Atmospheric Chemical Complexity (DSMACC box model, simple plume dispersion simulations, and the 3-D Meso-NH (non-hydrostatic mesoscale atmospheric model. In order to assess the impact of the LNOx plume approach on the NOx and O3 distributions on a large scale, simulations for the year 2006 were performed using the GEOS-Chem global model with a horizontal resolution of 2° × 2.5°. The implementation of the LNOx parameterization implies an NOx and O3 decrease on a large scale over the region characterized by a strong lightning activity (up to 25 and 8 %, respectively, over central Africa in July and a relative increase downwind of LNOx emissions (up to 18 and 2 % for NOx and O3, respectively, in July. The calculated variability in NOx and O3 mixing ratios around the mean value according to the known uncertainties in the parameter estimates is at a maximum over continental tropical regions with ΔNOx [−33.1, +29.7] ppt and ΔO3 [−1.56, +2.16] ppb, in January, and ΔNOx [−14.3, +21] ppt and ΔO3 [−1.18, +1.93] ppb, in July, mainly depending on the determination of the diffusion properties of the atmosphere and the initial NO mixing ratio injected by lightning. This approach allows us (i to reproduce a more realistic lightning NOx chemistry leading to better NOx and O3 distributions on the large scale and (ii to focus on other improvements to reduce remaining uncertainties from processes

  15. THE ANALYSIS OF SEVERAL RESULTS OBTAINED BY ROMANIA IN THE FIELD OF SUSTAINABLE TRANSPORT

    Directory of Open Access Journals (Sweden)

    Perțicaș Diana Claudia

    2015-07-01

    Full Text Available We know that between the transport sector and all other branches of economy there is a strong interdependence link but also between it and the surrounding environment, being one of the most polluting sectors of activity. Transport is considered a primary field in any national economy development context, especially if we take into account its interdependence with other branches of national economy. Developing of transports also includes improving road, rail, river and sea services, as well as air transports. The objectives of the EU aim especially to modernize the transport infrastructures, be them by road, ship or by air, which would result in increasing the speed of freight transport, fluidizing traffic, attracting new foreign investors in various areas, accelerating the renewal of the auto park and decommissioning morally and physically worn vehicles which are extremely pollutant, the revival of maritime transports through Romanian ports, progressive completion of imposed performances through standards and regulations on the transport market, etc. All these objectives have as a main purpose the reducing of energy consumption, reducing transport costs as well as increasing competition in the national transport system.The development of transport has the role of stimulating public transport services and to guarantee a minimum general accessibility to public services for all citizens. Children, the elderly, disabled people or other vulnerable categories of people are not and will not be forgotten, for which certain standards set by the European Union must be respected.The present paper wishes to analyze a part of the results, either positive or negative, in the field of transports, made by our country.

  16. Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: An ensemble approach applied to ozone modeling

    OpenAIRE

    Mallet , Vivien; Sportisse , Bruno

    2006-01-01

    International audience; This paper estimates the uncertainty in the outputs of a chemistry-transport model due to physical parameterizations and numerical approximations. An ensemble of 20 simulations is generated from a reference simulation in which one key parameterization (chemical mechanism, dry deposition parameterization, turbulent closure, etc.) or one numerical approximation (grid size, splitting method, etc.) is changed at a time. Intercomparisons of the simulations and comparisons w...

  17. Atmospheric methane and carbon dioxide from SCIAMACHY satellite data: initial comparison with chemistry and transport models

    Directory of Open Access Journals (Sweden)

    M. Buchwitz

    2005-01-01

    Full Text Available The remote sensing of the atmospheric greenhouse gases methane (CH4 and carbon dioxide (CO2 in the troposphere from instrumentation aboard satellites is a new area of research. In this manuscript, results obtained from observations of the up-welling radiation in the near-infrared by SCIAMACHY on board ENVISAT are presented. Vertical columns of CH4, CO2 and oxygen (O2 have been retrieved and the (air or O2-normalised CH4 and CO2 column amounts, the dry air column averaged mixing ratios XCH4 and XCO2 derived. In this manuscript the first results, obtained by using the version 0.4 of the Weighting Function Modified (WFM DOAS retrieval algorithm applied to SCIAMACHY data, are described and compared with global models. For the set of individual cloud free measurements over land the standard deviation of the difference with respect to the models is in the range ~100–200 ppbv (5–10% for XCH4 and ~14–32 ppmv (4–9% for XCO2. The inter-hemispheric difference of the methane mixing ratio, as determined from single day data, is in the range 30–110 ppbv and in reasonable agreement with the corresponding model data (48–71 ppbv. The weak inter-hemispheric difference of the CO2 mixing ratio can also be detected with single day data. The spatiotemporal pattern of the measured and the modelled XCO2 are in reasonable agreement. However, the amplitude of the difference between the maximum and the minimum for SCIAMACHY XCO2 is about ±20 ppmv which is about a factor of four larger than the variability of the model data which is about ±5 ppmv. More studies are needed to explain the observed differences. The XCO2 model field shows low CO2 concentrations beginning of January 2003 over a spatially extended CO2 sink region located in southern tropical/sub-tropical Africa. The SCIAMACHY data also show low CO2 mixing ratios over this area. According to the model the sink region becomes a source region about six months later and exhibits higher mixing ratios

  18. Error apportionment for atmospheric chemistry-transport models – a new approach to model evaluation

    Directory of Open Access Journals (Sweden)

    E. Solazzo

    2016-05-01

    Full Text Available In this study, methods are proposed to diagnose the causes of errors in air quality (AQ modelling systems. We investigate the deviation between modelled and observed time series of surface ozone through a revised formulation for breaking down the mean square error (MSE into bias, variance and the minimum achievable MSE (mMSE. The bias measures the accuracy and implies the existence of systematic errors and poor representation of data complexity, the variance measures the precision and provides an estimate of the variability of the modelling results in relation to the observed data, and the mMSE reflects unsystematic errors and provides a measure of the associativity between the modelled and the observed fields through the correlation coefficient. Each of the error components is analysed independently and apportioned to resolved processes based on the corresponding timescale (long scale, synoptic, diurnal, and intra-day and as a function of model complexity.The apportionment of the error is applied to the AQMEII (Air Quality Model Evaluation International Initiative group of models, which embrace the majority of regional AQ modelling systems currently used in Europe and North America.The proposed technique has proven to be a compact estimator of the operational metrics commonly used for model evaluation (bias, variance, and correlation coefficient, and has the further benefit of apportioning the error to the originating timescale, thus allowing for a clearer diagnosis of the processes that caused the error.

  19. Results from a model of course-based undergraduate research in the first- and second-year chemistry curriculum

    Science.gov (United States)

    Weaver, Gabriela

    2014-03-01

    The Center for Authentic Science Practice in Education (CASPiE) is a project funded by the URC program of the NSF Chemistry Division. The purpose of CASPiE was to provide students in first and second year laboratory courses with authentic research experiences as a gateway to more traditional forms of undergraduate research. Each research experience is a 6- to 8-week laboratory project based on and contributing to the research work of the experiment's author through data or preparation of samples. The CASPiE program has resulted in a model for engaging students in undergraduate research early in their college careers. To date, CASPiE has provided that experience to over 6000 students at 17 different institutions. Evaluation data collected has included student surveys, interviews and longitudinal analysis of performance. We have found that students' perceptions of their understanding of the material and the discipline increase over the course of the semester, whereas they are seen to decrease in the control courses. Students demonstrate a greater ability to explain the meaning and purpose of their experimental procedures and results and provide extensions to the experimental design, compared not only to control courses but also compared to inquiry-based courses. Longitudinal analysis of grades indicates a possible benefit to performance in courses related to the discipline two and three years later. A similar implementation in biology courses has demonstrated an increase in critical thinking scores. Work supported by the National Science Foundation, Division of Chemistry.

  20. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 2: Stratospheric ozone

    Directory of Open Access Journals (Sweden)

    D. Wang

    2013-07-01

    Full Text Available The prospective future adoption of molecular hydrogen (H2 to power the road transportation sector could greatly improve tropospheric air quality but also raises the question of whether the adoption would have adverse effects on the stratospheric ozone. The possibility of undesirable impacts must be fully evaluated to guide future policy decisions. Here we evaluate the possible impact of a future (2050 H2-based road transportation sector on stratospheric composition and chemistry, especially on the stratospheric ozone, with the MOZART (Model for OZone And Related chemical Tracers model. Since future growth is highly uncertain, we evaluate the impact of two world evolution scenarios, one based on an IPCC (Intergovernmental Panel on Climate Change high-emitting scenario (A1FI and the other on an IPCC low-emitting scenario (B1, as well as two technological options: H2 fuel cells and H2 internal combustion engines. We assume a H2 leakage rate of 2.5% and a complete market penetration of H2 vehicles in 2050. The model simulations show that a H2-based road transportation sector would reduce stratospheric ozone concentrations as a result of perturbed catalytic ozone destruction cycles. The magnitude of the impact depends on which growth scenario evolves and which H2 technology option is applied. For the evolution growth scenario, stratospheric ozone decreases more in the H2 fuel cell scenarios than in the H2 internal combustion engine scenarios because of the NOx emissions in the latter case. If the same technological option is applied, the impact is larger in the A1FI emission scenario. The largest impact, a 0.54% decrease in annual average global mean stratospheric column ozone, is found with a H2 fuel cell type road transportation sector in the A1FI scenario; whereas the smallest impact, a 0.04% increase in stratospheric ozone, is found with applications of H2 internal combustion engine vehicles in the B1 scenario. The impacts of the other two

  1. Experimental studies and modelling of cation interactions with solid materials: application to the MIMICC project. (Multidimensional Instrumented Module for Investigations on chemistry-transport Coupled Codes)

    International Nuclear Information System (INIS)

    Hardin, Emmanuelle

    1999-01-01

    The study of cation interactions with solid materials is useful in order to define the chemistry interaction component of the MIMICC project (Multidimensional Instrumented Module for Investigations on chemistry-transport Coupled Codes). This project will validate the chemistry-transport coupled codes. Database have to be supplied on the cesium or ytterbium interactions with solid materials in suspension. The solid materials are: a strong cation exchange resin, a natural sand which presents small impurities, and a zirconium phosphate. The cation exchange resin is useful to check that the surface complexation theory can be applied on a pure cation exchanger. The sand is a natural material, and its isotherms will be interpreted using pure oxide-cation system data, such as pure silica-cation data. Then the study on the zirconium phosphate salt is interesting because of the increasing complexity in the processes (dissolution, sorption and co-precipitation). These data will enable to approach natural systems, constituted by several complex solids which can interfere on each other. These data can also be used for chemistry-transport coupled codes. Potentiometric titration, sorption isotherms, sorption kinetics, cation surface saturation curves are made, in order to obtain the different parameters relevant to the cation sorption at the solid surface, for each solid-electrolyte-cation system. The influence of different parameters such as ionic strength, pH, and electrolyte is estimated. All the experimental curves are fitted with FITEQL code based on the surface complexation theory using the constant capacitance model, in order to give a mechanistic interpretation of the ion retention phenomenon at the solid surface. The speciation curves of all systems are plotted, using the FITEQL code too. Systems with an increasing complexity are studied: dissolution, sorption and coprecipitation coexist in the cation-salt systems. Then the data obtained on each single solid, considered

  2. Transport of the South China Sea subsurface water outflow and its influence on carbon chemistry of Kuroshio waters off southeastern Taiwan

    Science.gov (United States)

    Chou, Wen-Chen; Sheu, David D.; Chen, C. T. Arthur; Wen, Liang-Saw; Yang, Yih; Wei, Ching-Ling

    2007-12-01

    Depth distributions of pH, dissolved oxygen, dissolved inorganic carbon (DIC), total alkalinity (TA), and δ13CDIC in the water column across the Luzon Strait from the South China Sea to the west Philippine Sea were investigated thoroughly to attest whether the South China Sea subsurface water outflow could act like a "shelf pump" to export the carbon from the interior of the South China Sea into the open Pacific. Results show that the outflow is capable of transporting 17.6 ± 9.0 Tg C a-1 in DIC form out from the South China Sea to the western Pacific, a quantity equivalent to ˜35 ± 18% of the annual export production of the entire South China Sea. Furthermore, owing to the input of this South China Sea outflow, the subsurface waters of the Kuroshio Current become enriched in DIC/TA ratio but depleted in δ13CDIC. Such a change in seawater carbon chemistry might further attenuate the capacity of CO2 sequestration and hamper the use of δ13CDIC data as a tracer to estimate anthropogenic CO2 uptake rate in seawaters around the Kuroshio main path. More importantly, since these modifications can make all their ways northward along with the Kuroshio Current, the effect may reach even as far as to the higher-latitude region in the northwestern Pacific.

  3. Fugacity based modeling for pollutant fate and transport during floods. Preliminary results

    Science.gov (United States)

    Deda, M.; Fiorini, M.; Massabo, M.; Rudari, R.

    2010-09-01

    Fugacity based modeling for pollutant fate and transport during floods. Preliminary results Miranda Deda, Mattia Fiorini, Marco Massabò, Roberto Rudari One of the concerns that arises during floods is whether the wide-spreading of chemical contamination is associated with the flooding. Many potential sources of toxics releases during floods exists in cities or rural area; hydrocarbons fuel storage system, distribution facilities, commercial chemical storage, sewerage system are only few examples. When inundated homes and vehicles can also be source of toxics contaminants such as gasoline/diesel, detergents and sewage. Hazardous substances released into the environment are transported and dispersed in complex environmental systems that include air, plant, soil, water and sediment. Effective environmental models demand holistic modelling of the transport and transformation of the materials in the multimedia arena. Among these models, fugacity-based models are distribution based models incorporating all environmental compartments and are based on steady-state fluxes of pollutants across compartment interfaces (Mackay "Multimedia Environmental Models" 2001). They satisfy the primary objective of environmental chemistry which is to forecast the concentrations of pollutants in the environments with respect to space and time variables. Multimedia fugacity based-models has been used to assess contaminant distribution at very different spatial and temporal scales. The applications range from contaminant leaching to groundwater, runoff to surface water, partitioning in lakes and streams, distribution at regional and even global scale. We developped a two-dimensional fugacity based model for fate and transport of chemicals during floods. The model has three modules: the first module estimates toxins emission rates during floods; the second modules is the hydrodynamic model that simulates the water flood and the third module simulate the dynamic distribution of chemicals in

  4. Developing an undergraduate degree in public transportation administration and management : feasibility study results.

    Science.gov (United States)

    2006-11-01

    Experiences and results of research by the North Carolina Central University Department of Public Administration while a : conducting feasibility study for establishing a new multidisciplinary undergraduate degree in public transportation administrat...

  5. RESULTS OF RESEARCH OF AIR POLLUTION BY AUTOMOBILE TRANSPORT IN THE STREETS OF KHARKIV

    Directory of Open Access Journals (Sweden)

    Lezhneva, E.

    2013-06-01

    Full Text Available Results of the research of the atmospheric air of residential area roadside territory at functioning of motor transport are presented. Architectural and planning activities to improve the environmental performance of the local area of Kharkiv are offered.

  6. Water chemistry and behavior of materials in PWRs and BWRs

    International Nuclear Information System (INIS)

    Aaltonen, P.; Hanninen, H.

    1997-01-01

    Water chemistry plays a major role in corrosion and in activity transport in NPP's. Although a full understanding of all mechanisms involved in corrosion does not exist, controlling of the water chemistry has achieved good results in recent years. Water chemistry impacts upon the operational safety of LWR's in two main ways: integrity of pressure boundary materials and, activity transport and out-of-core radiation fields. This paper will describe application of water chemistry control in operating reactors to prevent corrosion. Some problems experienced in LWR's will be reviewed for the design of the nuclear heating reactors (NHR). (author). 18 refs, 10 figs, 5 tabs

  7. Quantum chemistry

    CERN Document Server

    Lowe, John P

    1993-01-01

    Praised for its appealing writing style and clear pedagogy, Lowe's Quantum Chemistry is now available in its Second Edition as a text for senior undergraduate- and graduate-level chemistry students. The book assumes little mathematical or physical sophistication and emphasizes an understanding of the techniques and results of quantum chemistry, thus enabling students to comprehend much of the current chemical literature in which quantum chemical methods or concepts are used as tools. The book begins with a six-chapter introduction of standard one-dimensional systems, the hydrogen atom,

  8. Sensitivity of a two-dimensional chemistry-transport model to changes in parameterizations of radiative processes

    International Nuclear Information System (INIS)

    Grant, K.E.; Ellingson, R.G.; Wuebbles, D.J.

    1988-08-01

    Radiative processes strongly effect equilibrium trace gas concentrations both directly, through photolysis reactions, and indirectly through temperature and transport processes. As part of our continuing radiative submodel development and validation, we have used the LLNL 2-D chemical-radiative-transport (CRT) model to investigate the net sensitivity of equilibrium ozone concentrations to several changes in radiative forcing. Doubling CO 2 from 300 ppmv to 600 ppmv resulted in a temperature decrease of 5 K to 8 K in the middle stratosphere along with an 8% to 16% increase in ozone in the same region. Replacing our usual shortwave scattering algorithms with a simplified Rayleigh algorithm led to a 1% to 2% increase in ozone in the lower stratosphere. Finally, modifying our normal CO 2 cooling rates by corrections derived from line-by-line calculations resulted in several regions of heating and cooling. We observed temperature changes on the order of 1 K to 1.5 K with corresponding changes of 0.5% to 1.5% in O 3 . Our results for doubled CO 2 compare favorably with those by other authors. Results for our two perturbation scenarios stress the need for accurately modeling radiative processes while confirming the general validity of current 2-D CRT models. 15 refs., 5 figs

  9. Organic Chemistry in Interstellar Ices: Connection to the Comet Halley Results

    Science.gov (United States)

    Schutte, W. A.; Agarwal, V. K.; deGroot, M. S.; Greenberg, J. M.; McCain, P.; Ferris, J. P.; Briggs, R.

    1997-01-01

    Mass spectroscopic measurements on the gas and dust in the coma of Comet Halley revealed the presence of considerable amounts of organic species. Greenberg (1973) proposed that prior to the formation of the comet UV processing of the ice mantles on grains in dense clouds could lead to the formation of complex organic molecules. Theoretical predictions of the internal UV field in dense clouds as well as the discovery in interstellar ices of species like OCS and OCN- which have been formed in simulation experiments by photoprocessing of interstellar ice analogues point to the importance of such processing. We undertook a laboratory simulation study of the formation of organic molecules in interstellar ices and their possible relevance to the Comet Halley results.

  10. Turbulent transport of the Earth magnitisphere: Review of the results of observations and modeling

    Science.gov (United States)

    Ovchinnikov, I. L.; Antonova, E. E.

    2017-11-01

    The results of observations of turbulent transport in the Earth's magnetosphere tail are summarized. The results of recent works on the projection of the auroral oval onto the equatorial plane, according to which the main part of the oval is not projected onto the plasma sheet, are taken into account. Analysis of the eddy diffusion coefficient dependences on the geocentric distance and on the phase of a magnetosphere substorm, both across the sheet and in the azimuthal direction, is carried out. The role of eddy diffusion in the creation of quasi-equilibrium plasma structures and in the plasma transport from the magnetospheric flanks into the plasma sheet is considered. The transport along the sheet is discussed. The problems of turbulent transport that can be solved by analysis the data of multisatellite projects are indicated.

  11. Analytical chemistry

    International Nuclear Information System (INIS)

    Choi, Jae Seong

    1993-02-01

    This book is comprised of nineteen chapters, which describes introduction of analytical chemistry, experimental error and statistics, chemistry equilibrium and solubility, gravimetric analysis with mechanism of precipitation, range and calculation of the result, volume analysis on general principle, sedimentation method on types and titration curve, acid base balance, acid base titration curve, complex and firing reaction, introduction of chemical electro analysis, acid-base titration curve, electrode and potentiometry, electrolysis and conductometry, voltammetry and polarographic spectrophotometry, atomic spectrometry, solvent extraction, chromatograph and experiments.

  12. PWR secondary water chemistry study

    International Nuclear Information System (INIS)

    Pearl, W.L.; Sawochka, S.G.

    1977-02-01

    Several types of corrosion damage are currently chronic problems in PWR recirculating steam generators. One probable cause of damage is a local high concentration of an aggressive chemical even though only trace levels are present in feedwater. A wide variety of trace chemicals can find their way into feedwater, depending on the sources of condenser cooling water and the specific feedwater treatment. In February 1975, Nuclear Water and Waste Technology Corporation (NWT), was contracted to characterize secondary system water chemistry at five operating PWRs. Plants were selected to allow effects of cooling water chemistry and operating history on steam generator corrosion to be evaluated. Calvert Cliffs 1, Prairie Island 1 and 2, Surry 2, and Turkey Point 4 were monitored during the program. Results to date in the following areas are summarized: (1) plant chemistry variations during normal operation, transients, and shutdowns; (2) effects of condenser leakage on steam generator chemistry; (3) corrosion product transport during all phases of operation; (4) analytical prediction of chemistry in local areas from bulk water chemistry measurements; and (5) correlation of corrosion damage to chemistry variation

  13. Sensitivity to grid resolution in the ability of a chemical transport model to simulate observed oxidant chemistry under high-isoprene conditions

    Directory of Open Access Journals (Sweden)

    K. Yu

    2016-04-01

    Full Text Available Formation of ozone and organic aerosol in continental atmospheres depends on whether isoprene emitted by vegetation is oxidized by the high-NOx pathway (where peroxy radicals react with NO or by low-NOx pathways (where peroxy radicals react by alternate channels, mostly with HO2. We used mixed layer observations from the SEAC4RS aircraft campaign over the Southeast US to test the ability of the GEOS-Chem chemical transport model at different grid resolutions (0.25°  ×  0.3125°, 2°  ×  2.5°, 4°  ×  5° to simulate this chemistry under high-isoprene, variable-NOx conditions. Observations of isoprene and NOx over the Southeast US show a negative correlation, reflecting the spatial segregation of emissions; this negative correlation is captured in the model at 0.25°  ×  0.3125° resolution but not at coarser resolutions. As a result, less isoprene oxidation takes place by the high-NOx pathway in the model at 0.25°  ×  0.3125° resolution (54 % than at coarser resolution (59 %. The cumulative probability distribution functions (CDFs of NOx, isoprene, and ozone concentrations show little difference across model resolutions and good agreement with observations, while formaldehyde is overestimated at coarse resolution because excessive isoprene oxidation takes place by the high-NOx pathway with high formaldehyde yield. The good agreement of simulated and observed concentration variances implies that smaller-scale non-linearities (urban and power plant plumes are not important on the regional scale. Correlations of simulated vs. observed concentrations do not improve with grid resolution because finer modes of variability are intrinsically more difficult to capture. Higher model resolution leads to decreased conversion of NOx to organic nitrates and increased conversion to nitric acid, with total reactive nitrogen oxides (NOy changing little across model resolutions. Model concentrations in the

  14. Presentation of the EURODELTA III intercomparison exercise – evaluation of the chemistry transport models' performance on criteria pollutants and joint analysis with meteorology

    Directory of Open Access Journals (Sweden)

    B. Bessagnet

    2016-10-01

    Full Text Available The EURODELTA III exercise has facilitated a comprehensive intercomparison and evaluation of chemistry transport model performances. Participating models performed calculations for four 1-month periods in different seasons in the years 2006 to 2009, allowing the influence of different meteorological conditions on model performances to be evaluated. The exercise was performed with strict requirements for the input data, with few exceptions. As a consequence, most of differences in the outputs will be attributed to the differences in model formulations of chemical and physical processes. The models were evaluated mainly for background rural stations in Europe. The performance was assessed in terms of bias, root mean square error and correlation with respect to the concentrations of air pollutants (NO2, O3, SO2, PM10 and PM2.5, as well as key meteorological variables. Though most of meteorological parameters were prescribed, some variables like the planetary boundary layer (PBL height and the vertical diffusion coefficient were derived in the model preprocessors and can partly explain the spread in model results. In general, the daytime PBL height is underestimated by all models. The largest variability of predicted PBL is observed over the ocean and seas. For ozone, this study shows the importance of proper boundary conditions for accurate model calculations and then on the regime of the gas and particle chemistry. The models show similar and quite good performance for nitrogen dioxide, whereas they struggle to accurately reproduce measured sulfur dioxide concentrations (for which the agreement with observations is the poorest. In general, the models provide a close-to-observations map of particulate matter (PM2.5 and PM10 concentrations over Europe rather with correlations in the range 0.4–0.7 and a systematic underestimation reaching −10 µg m−3 for PM10. The highest concentrations are much more underestimated, particularly in

  15. Steady-state transport equation resolution by particle methods, and numerical results

    International Nuclear Information System (INIS)

    Mercier, B.

    1985-10-01

    A method to solve steady-state transport equation has been given. Principles of the method are given. The method is studied in two different cases; estimations given by the theory are compared to numerical results. Results got in 1-D (spherical geometry) and in 2-D (axisymmetric geometry) are given [fr

  16. On the comparison of numerical methods for the integration of kinetic equations in atmospheric chemistry and transport models

    Science.gov (United States)

    Saylor, Rick D.; Ford, Gregory D.

    The integration of systems of ordinary differential equations (ODEs) that arise in atmospheric photochemistry is of significant concern to tropospheric and stratospheric chemistry modelers. As a consequence of the stiff nature of these ODE systems, their solution requires a large fraction of the total computational effort in three-dimensional chemical model simulations. Several integration techniques have been proposed and utilized over the years in an attempt to provide computationally efficient, yet accurate, solutions to chemical kinetics ODES. In this work, we present a comparison of some of these techniques and argue that valid comparisons of ODE solvers must take into account the trade-off between solution accuracy and computational efficiency. Misleading comparison results can be obtained by neglecting the fact that any ODE solution method can be made faster or slower by manipulation of the appropriate error tolerances or time steps. Comparisons among ODE solution techniques should therefore attempt to identify which technique can provide the most accurate solution with the least computational effort over the entire range of behavior of each technique. We present here a procedure by which ODE solver comparisons can achieve this goal. Using this methodology, we compare a variety of integration techniques, including methods proposed by Hesstvedt et al. (1978, Int. J. Chem. Kinet.10, 971-994), Gong and Cho (1993, Atmospheric Environment27A, 2147-2160), Young and Boris (1977, J. phys. Chem.81, 2424-2427) and Hindmarsh (1983, In Scientific Computing (edited by Stepleman R. S. et al.), pp. 55-64. North-Holland, Amsterdam). We find that Gear-type solvers such as the Livermore Solver for ordinary differential equations (LSODE) and the sparse-matrix version of LSODE (LSODES) provide the most accurate solution of our test problems with the least computational effort.

  17. Radioactive contamination level of vehicles resulted from transporting fine rare-earth minerals by rail

    International Nuclear Information System (INIS)

    Han Kaichun; Yu Boyong; Gao Shengwei

    1997-01-01

    This paper presents monitoring results of radioactive contamination level of steel open wagon surface resulted from transporting fine rare-earth minerals. Under promising transport conditions (the packaging consists of two layers of plastic bags and two layers of plastic net sacks, each package contains 50 kg of minerals, each vehicle carries 60 t), the surface radioactivity (total α and total β) of 16 vehicles on two lines from Baotou to Wujiachuan (924 km) and from Baotou to Sankeshu (2236 km) was measured before loading, after unloading and washing, using α and β surface contamination detector. The results showed that the radioactive contamination level of the vehicle surface after unloading appeared significantly different. The contamination level of vehicle bases was higher than that of both sides, long distance vehicles was higher than that of short distance vehicles. The radioactive contamination level of vehicles surface after washing was below the standard limits, these vehicles can be used for ordinary goods transport

  18. Public transport policy and performance: The results of a South African public opinion poll

    Directory of Open Access Journals (Sweden)

    Rose Luke

    2013-07-01

    Full Text Available Public opinion plays a vital role in a democracy, as democracies are, by nature responsive to the people. In South Africa, public participation is entrenched in the Constitution. Despite this, the spate of service delivery protests in South Africa in recent years would appear to indicate that the government is out of touch with the opinions of the South African citizens. Public  transport  policy  in  South  Africa  is  described  by  a  number  of  documents,  mainly the  White  Paper  on  National  Transport  Policy,  Moving  South  Africa  and,  more  recently, the National Development Plan. An annual survey of 1000 South Africans is conducted to gauge opinion on transport related matters. The purpose of this article was to compare the current public transport policies (as stated above and the public opinion on public transport (as gauged by the survey in order to determine the extent to which these are aligned. The results  show  that  current  public  transport  policy  is  relatively  strongly  aligned  with  the public transport needs of the South African population, however, concerns regarding public transport such as mobility, accessibility, affordability and safety have not yet to be addressed satisfactorily.

  19. Thermal, chemical, and mass transport processes induced in abyssal sediments by the emplacement of nuclear wastes: Experimental and modelling results

    International Nuclear Information System (INIS)

    McVey, D.F.; Erickson, K.L.; Seyfried, W.E. Jr.

    1983-01-01

    In this chapter the authors discuss the current status of heat and mass transport studies in the marine red clay sediments that are being considered as a nuclear waste isolation medium and review analytical and experimental studies. Calculations based on numerical models indicate that for a maximum allowable sediment-canister interface temperatures of 200 0 to 250 0 C, the sediment can absorb about 1.5kW initial power from waste buried 30 m in the sediment in a canister that is 3 m long and 0.3 m in diameter. The resulting fluid displacement due to convections is found to be small, less than 1 m. Laboratory studies of the geochemical effects induced by heating sediment-seawater mixtures indicate that the canister and waste form should be designed to resist a hot, relatively acidic oxidizing environment. Since the thermally altered sediment volume of about 5.5 m/sup 3/ is small relative to the sediment volume overlying the canister, the acid and oxidizing conditions should significantly affect the properties of the far field only if thermodiffusional process (Soret effect) prove to be significant. If thermodiffusional effects are important, however, near-field chemistry will differ considerably from that predicted from results of constant temperature sediment-seawater interaction experiments

  20. Run-of-River Impoundments Can Remain Unfilled While Transporting Gravel Bedload: Numerical Modeling Results

    Science.gov (United States)

    Pearson, A.; Pizzuto, J. E.

    2015-12-01

    Previous work at run-of-river (ROR) dams in northern Delaware has shown that bedload supplied to ROR impoundments can be transported over the dam when impoundments remain unfilled. Transport is facilitated by high levels of sand in the impoundment that lowers the critical shear stresses for particle entrainment, and an inversely sloping sediment ramp connecting the impoundment bed (where the water depth is typically equal to the dam height) with the top of the dam (Pearson and Pizzuto, in press). We demonstrate with one-dimensional bed material transport modeling that bed material can move through impoundments and that equilibrium transport (i.e., a balance between supply to and export from the impoundment, with a constant bed elevation) is possible even when the bed elevation is below the top of the dam. Based on our field work and previous HEC-RAS modeling, we assess bed material transport capacity at the base of the sediment ramp (and ignore detailed processes carrying sediment up and ramp and over the dam). The hydraulics at the base of the ramp are computed using a weir equation, providing estimates of water depth, velocity, and friction, based on the discharge and sediment grain size distribution of the impoundment. Bedload transport rates are computed using the Wilcock-Crowe equation, and changes in the impoundment's bed elevation are determined by sediment continuity. Our results indicate that impoundments pass the gravel supplied from upstream with deep pools when gravel supply rate is low, gravel grain sizes are relatively small, sand supply is high, and discharge is high. Conversely, impoundments will tend to fill their pools when gravel supply rate is high, gravel grain sizes are relatively large, sand supply is low, and discharge is low. The rate of bedload supplied to an impoundment is the primary control on how fast equilibrium transport is reached, with discharge having almost no influence on the timing of equilibrium.

  1. InnoDemo Survey Report: Aims and results of demonstration projects in renewable energy and transport

    OpenAIRE

    Olsen, Dorothy Sutherland

    2014-01-01

    This report summarises the findings of a survey of demonstration projects related to energy and transport. The survey was designed to develop an overview of the aims of these projects and the results they have achieved. The projects were carried out in Norway, Sweden and Denmark in the period between 2002 and 2012 and all of them received public funding.

  2. Radiation exposures of workers resulting from the transport of gamma radiography sources in Germany

    International Nuclear Information System (INIS)

    Sentuc, F.N.; Schwarz, G.

    2006-01-01

    Gamma radiation sources are widely used for industrial purposes e.g. for non-destructive material testing. Many of these sources are permanently installed at a facility within instruments e.g. for level or thickness gauging. Other radioactive sources are implemented in portable devices for industrial gamma radiography which have to be carried to the various remote usage sites. In Germany, approximately 20 000 - 25 000 shipments of gamma radiography sources are proceeding annually on public transport routes. Since routine radiation monitoring programmes do not permit task-specific determination of occupational doses e.g. doses incurred during the movement phase and handling related doses, work has been carried out with the objective to determine the radiation exposures of the personnel attributable to transportation. For this purpose, a survey was launched in 2005 collecting data about e.g. the number and conditions of transports, the activity and type of transported radiation sources and the radiation level within the driver's cab to allow a dose assessment to be made for transport workers. The results of this survey covering the most important companies for gamma radiography services in Germany are presented in this paper. (authors)

  3. Improving chemistry performance in CANDU plants

    International Nuclear Information System (INIS)

    Turner, C.; Guzonas, D.

    2010-01-01

    There is a strong interplay between coolant chemistry and materials selection in any nuclear power plant system. To achieve the design life of reactor components it is necessary to monitor and control relevant chemistry parameters, such as ionic conductivity, pH, concentrations of dissolved ions and redox species (e.g., hydrogen, hydrazine, oxygen) and the concentrations of suspended corrosion products. Chemistry specifications are set to achieve a balance between the sometimes conflicting requirements to minimize corrosion and radiological dose and to minimize operating and maintenance costs over the lifetime of the plant. For the past decade, Atomic Energy of Canada Limited (AECL) has taken a rigorous and disciplined approach to reviewing and updating all aspects of chemistry control in the CANDU® nuclear power plant (NPP). This approach has included proactively reviewing chemistry operating experience from existing CANDU® and other water-cooled NPPs worldwide to identify and address emerging issues, updating all of our chemistry control documentation to ensure that each chemistry parameter is linked to a specific requirement (e.g., reduce activity transport, monitor for condenser leak) and incorporating the latest results from our Research and Development (R and D) programs to ensure that all chemistry specifications are supported by a sound rationale. The results of this review and update have been incorporated into updated chemistry specifications and, in some cases, modified operating procedures for new and existing plants. In addition, recommendations have been made for design modifications to improve chemistry control in new build plants, especially during periods of shutdown and startup when chemistry control has traditionally been more challenging. Chemistry control in new-build CANDU® plants will rely increasingly on the use of on-line instrumentation interfaced directly to AECL's state-of-the-art chemistry monitoring, diagnostics and analysis

  4. Isocyanic acid in a global chemistry transport model: Tropospheric distribution, budget, and identification of regions with potential health impacts

    Science.gov (United States)

    Young, Paul. J.; Emmons, Louisa K.; Roberts, James M.; Lamarque, Jean-FrançOis; Wiedinmyer, Christine; Veres, Patrick; Vandenboer, Trevor C.

    2012-05-01

    This study uses a global chemical transport model to estimate the distribution of isocyanic acid (HNCO). HNCO is toxic, and concentrations exceeding 1 ppbv have been suggested to have negative health effects. Based on fire studies, HNCO emissions were scaled to those of hydrogen cyanide (30%), resulting in yearly total emissions of 1.5 Tg for 2008, from both anthropogenic and biomass burning sources. Loss processes included heterogeneous uptake (pH dependent), dry deposition (like formic acid), and reaction with the OH radical (k = 1 × 10-15 molecule-1 cm3 s-1). Annual mean surface HNCO concentrations were highest over parts of China (maximum of 470 pptv), but episodic fire emissions gave much higher levels, exceeding 4 ppbv in tropical Africa and the Amazon, and exceeding 10 ppbv in Southeast Asia and Siberia. This suggests that large biomass burning events could result in deleterious health effects for populations in these regions. For the tropospheric budget, using the model-calculated pH the HNCO lifetime was 37 days, with the split between dry deposition and heterogeneous loss being 95%:5%. Fixing the heterogeneous loss rate at pH = 7 meant that this process dominated, accounting for ˜70% of the total loss, giving a lifetime of 6 days, and resulting in upper tropospheric concentrations that were essentially zero. However, changing the pH does not notably impact the high concentrations found in biomass burning regions. More observational data is needed to evaluate the model, as well as a better representation of the likely underestimated biofuel emissions, which could mean more populations exposed to elevated HNCO concentrations.

  5. Nutrient transports in the Baltic Sea - results from a 30-year physical-biogeochemical reanalysis

    Science.gov (United States)

    Liu, Ye; Meier, H. E. Markus; Eilola, Kari

    2017-04-01

    Long-term oxygen and nutrient transports in the Baltic Sea are reconstructed using the Swedish Coastal and Ocean Biogeochemical model (SCOBI) coupled to the Rossby Centre Ocean model (RCO). Two simulations with and without data assimilation covering the period 1970-1999 are carried out. Here, the weakly coupled scheme with the Ensemble Optimal Interpolation (EnOI) method is adopted to assimilate observed profiles in the reanalysis system. The reanalysis shows considerable improvement in the simulation of both oxygen and nutrient concentrations relative to the free run. Further, the results suggest that the assimilation of biogeochemical observations has a significant effect on the simulation of the oxygen-dependent dynamics of biogeochemical cycles. From the reanalysis, nutrient transports between sub-basins, between the coastal zone and the open sea, and across latitudinal and longitudinal cross sections are calculated. Further, the spatial distributions of regions with nutrient import or export are examined. Our results emphasize the important role of the Baltic proper for the entire Baltic Sea, with large net transport (export minus import) of nutrients from the Baltic proper into the surrounding sub-basins (except the net phosphorus import from the Gulf of Riga and the net nitrogen import from the Gulf of Riga and Danish Straits). In agreement with previous studies, we found that the Bothnian Sea imports large amounts of phosphorus from the Baltic proper that are retained in this sub-basin. For the calculation of sub-basin budgets, the location of the lateral borders of the sub-basins is crucial, because net transports may change sign with the location of the border. Although the overall transport patterns resemble the results of previous studies, our calculated estimates differ in detail considerably.

  6. Circumstellar chemistry

    International Nuclear Information System (INIS)

    Glassgold, A.E.

    1989-01-01

    Circumstellar chemistry has a special role in astrochemistry because the astrophysical conditions in the circumstellar envelopes of red giants are frequently well known and clear tests of chemical models are feasible. Recent advances in astronomical observations now offer opportunities to test relevant theories of molecule formation, especially in carbon-rich environments. Many new molecules have recently been discovered using radio and infrared techniques and high spatial resolution maps obtained with large telescopes and interferometers indicate where complex molecules are being formed in these envelopes. A large body of observational data can be understood in terms of the photochemical model, which embraces relevant elements of equilibrium chemistry, photodissociation, and ion-molecule chemistry of the photo-products. A critical review of the photochemical model will be presented together with new results on the synthesis of hydrocarbon molecules and silicon and sulfur compounds

  7. PROSPECTS FOR TRANSPORT ENERGY CONSUMPTION: METHODOLOGICAL APPROACHES AND RESULTS OF FORECASTING

    Directory of Open Access Journals (Sweden)

    Eder L.V.

    2016-03-01

    Full Text Available The direction and effectiveness of the using mineral resources, as well as the development trend of the mineral markets, especially energy markets - is one of the central topics of the development of relevant industries. The article discusses the consumption of mineral energy resources in transport with the differentiation by the countries of the world. It proposed to improve the methods of forecasting of energy consumption in the transport sector in the medium and long term. Relevance of the work associated with the leading role of the transport sector in the formation of oil demand in the world. In most developed and developing countries vehicle transport accounts for 60-70% of the total domestic oil consumption. Forecasting of energy demand is particular important to ensure energy security of the countries in the transport sector in the medium and long term. Predicting energy consumption by road vehicles includes two main areas: the forecast of specific energy consumption vehicle and the forecast of the number of cars. The authors examined historical data of specific energy consumption of road vehicle with the differentiation by the countries of Europe and Russia. The analysis revealed a steady decline in energy intensity in most advanced countries. However, this process is different in intensity decrease specific energy consumption and the time of occurrence of the trend. An analysis of the specific energy consumption in the past 25 years has shown that the dynamics of the index most accurately described by an exponential function: the initial stage of reduction of energy consumption is more intensive than in subsequent periods. As a result, the general pattern was derived convergence of energy consumption and the parameters depending on the speed of lowering the energy intensity of its initial value. On basis of trend models and identified reducing energy consumption depending on the speed of its entry-level may carry out the forecast of

  8. Prospects for transport energy consumption: methodological approaches and results of forecasting companies.

    Directory of Open Access Journals (Sweden)

    Nemov V. Yu.

    2016-03-01

    Full Text Available The direction and effectiveness of the using mineral resources, as well as the development trend of the mineral markets, especially energy markets – is one of the central topics of the development of relevant industries. The article discusses the consumption of mineral energy resources in transport with the differentiation by the countries of the world. It proposed to improve the methods of forecasting of energy consumption in the transport sector in the medium and long term. Relevance of the work associated with the leading role of the transport sector in the formation of oil demand in the world. In most developed and developing countries vehicle transport accounts for 60-70% of the total domestic oil consumption. Forecasting of energy demand is particular important to ensure energy security of the countries in the transport sector in the medium and long term. Predicting energy consumption by road vehicles includes two main areas: the forecast of specific energy consumption vehicle and the forecast of the number of cars. The authors examined historical data of specific energy consumption of road vehicle with the differentiation by the countries of Europe and Russia. The analysis revealed a steady decline in energy intensity in most advanced countries. However, this process is different in intensity decrease specific energy consumption and the time of occurrence of the trend. An analysis of the specific energy consumption in the past 25 years has shown that the dynamics of the index most accurately described by an exponential function: the initial stage of reduction of energy consumption is more intensive than in subsequent periods. As a result, the general pattern was derived convergence of energy consumption and the parameters depending on the speed of lowering the energy intensity of its initial value. On basis of trend models and identified reducing energy consumption depending on the speed of its entry-level may carry out the forecast of

  9. Intermediate-Scale Laboratory Experiments of Subsurface Flow and Transport Resulting from Tank Leaks

    Energy Technology Data Exchange (ETDEWEB)

    Oostrom, Martinus; Wietsma, Thomas W.

    2014-09-30

    Washington River Protection Solutions contracted with Pacific Northwest National Laboratory to conduct laboratory experiments and supporting numerical simulations to improve the understanding of water flow and contaminant transport in the subsurface between waste tanks and ancillary facilities at Waste Management Area C. The work scope included two separate sets of experiments: •Small flow cell experiments to investigate the occurrence of potential unstable fingering resulting from leaks and the limitations of the STOMP (Subsurface Transport Over Multiple Phases) simulator to predict flow patterns and solute transport behavior under these conditions. Unstable infiltration may, under certain conditions, create vertically elongated fingers potentially transporting contaminants rapidly through the unsaturated zone to groundwater. The types of leak that may create deeply penetrating fingers include slow release, long duration leaks in relatively permeable porous media. Such leaks may have occurred below waste tanks at the Hanford Site. •Large flow experiments to investigate the behavior of two types of tank leaks in a simple layered system mimicking the Waste Management Area C. The investigated leaks include a relatively large leak with a short duration from a tank and a long duration leak with a relatively small leakage rate from a cascade line.

  10. The reactive transport benchmark proposed by GdR MoMaS: presentation and first results

    Energy Technology Data Exchange (ETDEWEB)

    Carrayrou, J. [Institut de Mecanique des Fluides et des Solides, UMR ULP-CNRS 7507, 67 - Strasbourg (France); Lagneau, V. [Ecole des Mines de Paris, Centre de Geosciences, 77 - Fontainebleau (France)

    2007-07-01

    We present here the actual context of reactive transport modelling and the major numerical challenges. GdR MoMaS proposes a benchmark on reactive transport. We present this benchmark and some results obtained on it by two reactive transport codes HYTEC and SPECY. (authors)

  11. The reactive transport benchmark proposed by GdR MoMaS: presentation and first results

    International Nuclear Information System (INIS)

    Carrayrou, J.; Lagneau, V.

    2007-01-01

    We present here the actual context of reactive transport modelling and the major numerical challenges. GdR MoMaS proposes a benchmark on reactive transport. We present this benchmark and some results obtained on it by two reactive transport codes HYTEC and SPECY. (authors)

  12. Urban structure and transport behaviour. Results from the survey of transport habits; Bystruktur og transportadfaerd. Hvad siger transportvaneundersoegelsen?

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, L.

    2001-12-01

    The purpose of this report is to analyse the effects on private transport and environmental impact from urban size and structure, and the localisation. In this analysis, the CO{sub 2}-emission is used as the indicator of the environmental impact of the transport i.e. as a result of the energy consumption. The report is organised in 3 main chapters concerning localisation of residential areas, workplace, and centre functions. One of the important results from the analyses is the environmental benefit of avoiding residential development in smaller towns and villages. It is especially important to avoid urban sprawl around the big cities. Concentration in the big cities or in the neighbouring cities is environmentally much more promising. On the other hand it might be expedient to promote a slow development with workplaces in smaller towns to get a good balance between inhabitants and workplaces but it is important to give priority to non-specialised workplaces. Residential or business development in whichever size of the cities above 10,000 inhabitants makes no difference. On the other hand an expansion of centre activities has substantial effect on the CO{sub 2}-emission especially in cities with more than 22,000 inhabitants. Variation in localization inside the cities influences the CO{sub 2}-emission much more than the variability between cities. Residential areas as well as workplace intensive business ought to be promoted at central places near the stations. Upon deciding whether to give priority to residential areas or business at an actual area, more aspects need to be considered. One problem is that a residence and a workplace generate different person kilometres and the areas they occupy vary. It seems to be best to give priority to residential areas in the central areas and to business development around the stations. But this depends on the actual conditions and more detailed analyses might also be revealed. A planning policy promoting a development with

  13. Assimilation of OMI NO2 retrievals into the limited-area chemistry-transport model DEHM (V2009.0) with a 3-D OI algorithm

    DEFF Research Database (Denmark)

    Silver, J. D.; Brandt, J.; Hvidberg, M.

    2013-01-01

    conditions for air quality forecasts. We implemented a three-dimensional optimal interpolation (OI) scheme to assimilate retrievals of NO2 tropospheric columns from the Ozone Monitoring Instrument into the Danish Eulerian Hemispheric Model (DEHM, version V2009.0), a three-dimensional, regional-scale, offline...... to an independent set of observations: ground-based measurements from European air-quality monitoring stations. The analysed NO2 and O3 concentrations were more accurate than those from a reference simulation without assimilation, with increased temporal correlation for both species. Thinning of satellite data...... chemistry-transport model. The background error covariance matrix, B, was estimated based on differences in the NO2 concentration field between paired simulations using different meteorological inputs. Background error correlations were modelled as non-separable, horizontally homogeneous and isotropic...

  14. Changes in Flow and Transport Patterns in Fen Peat as a Result of Soil Degradation

    Science.gov (United States)

    Liu, Haojie; Janssen, Manon; Lennartz, Bernd

    2016-04-01

    The preferential movement of water and transport of substances play an important role in soils and are not yet fully understood especially in degraded peat soils. In this study, we aimed at deducing changes in flow and transport patterns in the course of soil degradation as resulting from peat drainage, using titanium dioxide (TiO2) as a dye tracer. The dye tracer experiments were conducted on columns of eight types of differently degraded peat soils from three sites taken both in vertical and horizontal directions. The titanium dioxide suspension (average particle size of 0.3 μm; 10 g l-1) was applied in a pulse of 40 mm to each soil core. Twenty-four hours after the application of the tracer, cross sections of the soil cores were prepared for photo documentation. In addition, the saturated hydraulic conductivity (Ks) was determined. Preferential flow occurred in all investigated peat types. From the stained soil structural elements, we concluded that undecomposed plant remains are the major preferential flow pathways in less degraded peat. For more strongly degraded peat, bio-pores, such as root and earthworm channels, operated as the major transport domain. Results show that Ks and the effective pore network in less degraded peat soils are anisotropic. With increasing peat degradation, the Ks and cross section of effective pore network decreased. The results also indicate a strong positive relationship between Ks and number of macropores as well as pore continuity. Hence, we conclude that changes in flow and transport pathways as well as Ks with an increasing peat degradation are due to the disintegration of the peat forming plant material and decrement of number and continuity of macropores after drainage.

  15. Numerical Verification Of Equilibrium Chemistry

    International Nuclear Information System (INIS)

    Piro, Markus; Lewis, Brent; Thompson, William T.; Simunovic, Srdjan; Besmann, Theodore M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.

  16. Bad chemistry

    OpenAIRE

    Petsko, Gregory A

    2004-01-01

    General chemistry courses haven't changed significantly in forty years. Because most basic chemistry students are premedical students, medical schools have enormous influence and could help us start all over again to create undergraduate chemistry education that works.

  17. Computer-assisted comparison of analysis and test results in transportation experiments

    International Nuclear Information System (INIS)

    Knight, R.D.; Ammerman, D.J.; Koski, J.A.

    1998-01-01

    As a part of its ongoing research efforts, Sandia National Laboratories' Transportation Surety Center investigates the integrity of various containment methods for hazardous materials transport, subject to anomalous structural and thermal events such as free-fall impacts, collisions, and fires in both open and confined areas. Since it is not possible to conduct field experiments for every set of possible conditions under which an actual transportation accident might occur, accurate modeling methods must be developed which will yield reliable simulations of the effects of accident events under various scenarios. This requires computer software which is capable of assimilating and processing data from experiments performed as benchmarks, as well as data obtained from numerical models that simulate the experiment. Software tools which can present all of these results in a meaningful and useful way to the analyst are a critical aspect of this process. The purpose of this work is to provide software resources on a long term basis, and to ensure that the data visualization capabilities of the Center keep pace with advancing technology. This will provide leverage for its modeling and analysis abilities in a rapidly evolving hardware/software environment

  18. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    Directory of Open Access Journals (Sweden)

    D. E. Young

    2016-05-01

    associated with residential space heating from wood combustion, and semivolatile oxygenated OA (SV-OOA; 16 % of total OA, O / C  =  0.63 and low-volatility oxygenated OA (LV-OOA; 24 % of total OA, O / C  =  0.90 formed via chemical reactions in the atmosphere. Large differences in aerosol chemistry at Fresno were observed between the current campaign (winter 2013 and a previous campaign in winter 2010, most notably that PM1 concentrations were nearly 3 times higher in 2013 than in 2010. These variations were attributed to differences in the meteorological conditions, which influenced primary emissions and secondary aerosol formation. In particular, COA and BBOA concentrations were greater in 2013 than 2010, where colder temperatures in 2013 likely resulted in increased biomass burning activities. The influence from a nighttime formed residual layer that mixed down in the morning was found to be much more intense in 2013 than 2010, leading to sharp increases in ground-level concentrations of secondary aerosol species including nitrate, sulfate, and OOA, in the morning between 08:00 and 12:00 PST. This is an indication that nighttime chemical reactions may have played a more important role in 2013. As solar radiation was stronger in 2013 the higher nitrate and OOA concentrations in 2013 could also be partly due to greater photochemical production of secondary aerosol species. The greater solar radiation and larger range in temperature in 2013 also likely led to both SV-OOA and LV-OOA being observed in 2013 whereas only a single OOA factor was identified in 2010.

  19. Influences of emission sources and meteorology on aerosol chemistry in a polluted urban environment: results from DISCOVER-AQ California

    Science.gov (United States)

    Young, Dominique E.; Kim, Hwajin; Parworth, Caroline; Zhou, Shan; Zhang, Xiaolu; Cappa, Christopher D.; Seco, Roger; Kim, Saewung; Zhang, Qi

    2016-05-01

    -OOA; 16 % of total OA, O / C = 0.63) and low-volatility oxygenated OA (LV-OOA; 24 % of total OA, O / C = 0.90) formed via chemical reactions in the atmosphere. Large differences in aerosol chemistry at Fresno were observed between the current campaign (winter 2013) and a previous campaign in winter 2010, most notably that PM1 concentrations were nearly 3 times higher in 2013 than in 2010. These variations were attributed to differences in the meteorological conditions, which influenced primary emissions and secondary aerosol formation. In particular, COA and BBOA concentrations were greater in 2013 than 2010, where colder temperatures in 2013 likely resulted in increased biomass burning activities. The influence from a nighttime formed residual layer that mixed down in the morning was found to be much more intense in 2013 than 2010, leading to sharp increases in ground-level concentrations of secondary aerosol species including nitrate, sulfate, and OOA, in the morning between 08:00 and 12:00 PST. This is an indication that nighttime chemical reactions may have played a more important role in 2013. As solar radiation was stronger in 2013 the higher nitrate and OOA concentrations in 2013 could also be partly due to greater photochemical production of secondary aerosol species. The greater solar radiation and larger range in temperature in 2013 also likely led to both SV-OOA and LV-OOA being observed in 2013 whereas only a single OOA factor was identified in 2010.

  20. Observed and modelled ozone variability in the tropical UT/LS, contributions of transport, chemistry and measurements errors

    Science.gov (United States)

    Borchi, F.; Pommereau, J. P.; Hauchecorne, A.; Lefevre, F.

    2003-04-01

    UTLS O3 and NO2 profiles have been measured by solar occultation UV-visible spectrometry from a long duration Infra-Red Montgolfier balloon circumnavigating around the world at the tropics in February--March 2001. The fifty-three morning and evening profiles show a remarkably small ozone variability above 18 km, but increasing in the upper troposphere and in contrast a large variability of NO2 at all levels. Correlation with PV changes derived by contour advection from ECMWF analyses suggests that most of the observed variability could be explained by quasi-horizontal exchange with equatorial and mid-latitudes and longitudinal vertical displacement of the tropopause. Except for NO2 in the upper stratosphere where NOx emission by lightning could likely explain most the variability, convection and chemistry seem to have little impact on ozone and NO2. Compared to MIR observations, the larger variability around a latitudinal circle observed in the SAGE II, HALOE data sets as well as in the REPROBUS 3D photochemical model, suggests significant measurement or modelling errors in the UTLS.

  1. Aerosol-radiation interaction modelling using online coupling between the WRF 3.7.1 meteorological model and the CHIMERE 2016 chemistry-transport model, through the OASIS3-MCT coupler

    Science.gov (United States)

    Briant, Régis; Tuccella, Paolo; Deroubaix, Adrien; Khvorostyanov, Dmitry; Menut, Laurent; Mailler, Sylvain; Turquety, Solène

    2017-02-01

    The presence of airborne aerosols affects the meteorology as it induces a perturbation in the radiation budget, the number of cloud condensation nuclei and the cloud micro-physics. Those effects are difficult to model at regional scale as regional chemistry-transport models are usually driven by a distinct meteorological model or data. In this paper, the coupling of the CHIMERE chemistry-transport model with the WRF meteorological model using the OASIS3-MCT coupler is presented. WRF meteorological fields along with CHIMERE aerosol optical properties are exchanged through the coupler at a high frequency in order to model the aerosol-radiation interactions. The WRF-CHIMERE online model has a higher computational burden than both models run separately in offline mode (up to 42 % higher). This is mainly due to some additional computations made within the models such as more frequent calls to meteorology treatment routines or calls to optical properties computation routines. On the other hand, the overall time required to perform the OASIS3-MCT exchanges is not significant compared to the total duration of the simulations. The impact of the coupling is evaluated on a case study over Europe, northern Africa, the Middle East and western Asia during the summer of 2012, through comparisons of the offline and two online simulations (with and without the aerosol optical properties feedback) to observations of temperature, aerosol optical depth (AOD) and surface PM10 (particulate matter with diameters lower than 10 µm) concentrations. The result shows that using the optical properties feedback induces a radiative forcing (average forcing of -4.8 W m-2) which creates a perturbation in the average surface temperatures over desert areas (up to 2.6° locally) along with an increase in both AOD and PM10 concentrations.

  2. Thermodynamic, transport, and flow properties of gaseous products resulting from combustion of methane-air-oxygen

    Science.gov (United States)

    Klich, G. F.

    1976-01-01

    Results of calculations to determine thermodynamic, transport, and flow properties of combustion product gases are presented. The product gases are those resulting from combustion of methane-air-oxygen and methane-oxygen mixtures. The oxygen content of products resulting from the combustion of methane-air-oxygen mixtures was similiar to that of air; however, the oxygen contained in products of methane-oxygen combustion ranged from 20 percent by volume to zero for stoichiometric combustion. Calculations were made for products of reactant mixtures with fuel percentages, by mass, of 7.5 to 20. Results are presented for specific mixtures for a range of pressures varying from 0.0001 to 1,000 atm and for temperatures ranging from 200 to 3,800 K.

  3. Benchmark results for the critical slab and sphere problem in one-speed neutron transport theory

    International Nuclear Information System (INIS)

    Rawat, Ajay; Mohankumar, N.

    2011-01-01

    Research highlights: → The critical slab and sphere problem in neutron transport under Case eigenfunction formalism is considered. → These equations reduce to integral expressions involving X functions. → Gauss quadrature is not ideal but DE quadrature is well-suited. → Several fold decrease in computational effort with improved accuracy is realisable. - Abstract: In this paper benchmark numerical results for the one-speed criticality problem with isotropic scattering for the slab and sphere are reported. The Fredholm integral equations of the second kind based on the Case eigenfunction formalism are numerically solved by Neumann iterations with the Double Exponential quadrature.

  4. Atmospheric chemistry and physics from air pollution to climate change

    CERN Document Server

    Seinfeld, John H

    2016-01-01

    Expanded and updated with new findings and new features Since the second edition of Seinfeld and Pandis’ classic textbook, significant progress has taken place in the field of atmospheric chemistry and physics, particularly in the areas of tropospheric chemistry, aerosols, and the science of climate change. A new edition of this comprehensive work has been developed by the renowned author team. Atmospheric Chemistry and Physics, 3rd Edition, as the previous two editions have done, provides a rigorous and comprehensive treatment of the chemistry and physics of the atmosphere – including the chemistry of the stratosphere and troposphere, aerosol physics and chemistry, atmospheric new particle formation, physical meteorology, cloud physics, global climate, statistical analysis of data, and mathematical chemical/transport models of the atmosphere. Each of these topics is covered in detail and in each area the central results are developed from first principles. In this way the reader gains a significant un...

  5. Transportation

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    Here is the decree of the thirtieth of July 1998 relative to road transportation, to trade and brokerage of wastes. It requires to firms which carry out a road transportation as well as to traders and to brokers of wastes to declare their operations to the prefect. The declaration has to be renewed every five years. (O.M.)

  6. An Evaluation of the CHIMERE Chemistry Transport Model to Simulate Dust Outbreaks across the Northern Hemisphere in March 2014

    Directory of Open Access Journals (Sweden)

    Bertrand Bessagnet

    2017-12-01

    Full Text Available Mineral dust is one of the most important aerosols over the world, affecting health and climate. These mineral particles are mainly emitted over arid areas but may be long-range transported, impacting the local budget of air quality in urban areas. While models were extensively used to study a single specific event, or make a global analysis at coarse resolution, the goal of our study is to simultaneously focus on several affected areas—Europe, North America, Central Asia, east China and the Caribbean area—for a one-month period, March 2014, avoiding any parameter fitting to better simulate a single dust outbreak. The simulation is performed for the first time with the hemispheric version of the CHIMERE model, with a high horizontal resolution (about 10 km. In this study, an overview of several simultaneous dust outbreaks over the Northern Hemisphere is proposed to assess the capability of such modeling tools to predict dust pollution events. A quantitative and qualitative evaluation of the most striking episodes is presented with comparisons to satellite data, ground based particulate matter and calcium measurements. Despite some overestimation of dust concentrations far from emission source areas, the model can simulate the timing of the arrival of dust outbreaks on observational sites. For instance, several spectacular dust storms in the US and China are rather well captured by the models. The high resolution provides a better description and understanding of the orographic effects and the long-range transport of dust plumes.

  7. Scanning Imaging Absorption Spectrometer for Atmospheric Chartography carbon monoxide total columns: Statistical evaluation and comparison with chemistry transport model results

    NARCIS (Netherlands)

    Laat, de A.T.J.; Gloudemans, A.M.S.; Aben, I.; Krol, M.C.; Meirink, J.F.; Werf, van der G.R.; Schrijver, H.

    2007-01-01

    This paper presents a detailed statistical analysis of one year (September 2003 to August 2004) of global Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) carbon monoxide (CO) total column retrievals from the Iterative Maximum Likelihood Method (IMLM) algorithm,

  8. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    International Nuclear Information System (INIS)

    MacKinnon, R.J.; Sullivan, T.M.; Kinsey, R.R.

    1997-05-01

    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC

  9. BLT-EC (Breach, Leach and Transport-Equilibrium Chemistry) data input guide. A computer model for simulating release and coupled geochemical transport of contaminants from a subsurface disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    MacKinnon, R.J. [Brookhaven National Lab., Upton, NY (United States)]|[Ecodynamic Research Associates, Inc., Albuquerque, NM (United States); Sullivan, T.M.; Kinsey, R.R. [Brookhaven National Lab., Upton, NY (United States)

    1997-05-01

    The BLT-EC computer code has been developed, implemented, and tested. BLT-EC is a two-dimensional finite element computer code capable of simulating the time-dependent release and reactive transport of aqueous phase species in a subsurface soil system. BLT-EC contains models to simulate the processes (container degradation, waste-form performance, transport, chemical reactions, and radioactive production and decay) most relevant to estimating the release and transport of contaminants from a subsurface disposal system. Water flow is provided through tabular input or auxiliary files. Container degradation considers localized failure due to pitting corrosion and general failure due to uniform surface degradation processes. Waste-form performance considers release to be limited by one of four mechanisms: rinse with partitioning, diffusion, uniform surface degradation, and solubility. Transport considers the processes of advection, dispersion, diffusion, chemical reaction, radioactive production and decay, and sources (waste form releases). Chemical reactions accounted for include complexation, sorption, dissolution-precipitation, oxidation-reduction, and ion exchange. Radioactive production and decay in the waste form is simulated. To improve the usefulness of BLT-EC, a pre-processor, ECIN, which assists in the creation of chemistry input files, and a post-processor, BLTPLOT, which provides a visual display of the data have been developed. BLT-EC also includes an extensive database of thermodynamic data that is also accessible to ECIN. This document reviews the models implemented in BLT-EC and serves as a guide to creating input files and applying BLT-EC.

  10. Review of current results in computational studies of hydrocarbon phase and transport properties in nanoporous structures

    Science.gov (United States)

    Stroev, N.; Myasnikov, A.

    2017-12-01

    This article provides a general overview of the main simulation results on the behavior of gas/liquids under confinement conditions, namely hydrocarbons in shale formations, and current understanding of such phenomena. In addition to the key effects, which different research groups obtained and which have to be taken into account during the creation of reservoir simulation software, a list of methods is briefly covered. Comprehensive understanding of both fluid phase equilibrium and transport properties in nanoscale structures is of great importance for many scientific and technical disciplines, especially for petroleum engineering considering the hydrocarbon behavior in complex shale formations, the development of which increases with time. Recent estimations show that a significant amount of resources are trapped inside organic matter and clays, which has extremely low permeability and yet great economic potential. The issue is not only of practical importance, as the existing conventional approaches by definition are unable to capture complicated physics phenomena for effective results, but it is also of fundamental value. The research of the processes connected with such deposits is necessary for both evaluations of petroleum reservoir deposits and hydrodynamic simulators. That is why the review is divided into two major parts—equilibrium states of hydrocarbons and their transport properties in highly confined conditions.

  11. Complex chemistry

    International Nuclear Information System (INIS)

    Kim, Bong Gon; Kim, Jae Sang; Kim, Jin Eun; Lee, Boo Yeon

    2006-06-01

    This book introduces complex chemistry with ten chapters, which include development of complex chemistry on history coordination theory and Warner's coordination theory and new development of complex chemistry, nomenclature on complex with conception and define, chemical formula on coordination compound, symbol of stereochemistry, stereo structure and isomerism, electron structure and bond theory on complex, structure of complex like NMR and XAFS, balance and reaction on solution, an organo-metallic chemistry, biology inorganic chemistry, material chemistry of complex, design of complex and calculation chemistry.

  12. Fine chemistry

    International Nuclear Information System (INIS)

    Laszlo, P.

    1988-01-01

    The 1988 progress report of the Fine Chemistry laboratory (Polytechnic School, France) is presented. The research programs are centered on the renewal of the organic chemistry most important reactions and on the invention of new, highly efficient and highly selective reactions, by applying low cost reagents and solvents. An important research domain concerns the study and fabrication of new catalysts. They are obtained by means of the reactive sputtering of the metals and metal oxydes thin films. The Monte Carlo simulations of the long-range electrostatic interaction in a clay and the obtention of acrylamides from anhydrous or acrylic ester are summarized. Moreover, the results obtained in the field of catalysis are also given. The published papers and the congress communications are included [fr

  13. Encouraging Sustainable Transport Choices in American Households: Results from an Empirically Grounded Agent-Based Model

    Directory of Open Access Journals (Sweden)

    Davide Natalini

    2013-12-01

    Full Text Available The transport sector needs to go through an extended process of decarbonisation to counter the threat of climate change. Unfortunately, the International Energy Agency forecasts an enormous growth in the number of cars and greenhouse gas emissions by 2050. Two issues can thus be identified: (1 the need for a new methodology that could evaluate the policy performances ex-ante and (2 the need for more effective policies. To help address these issues, we developed an Agent-Based Model called Mobility USA aimed at: (1 testing whether this could be an effective approach in analysing ex-ante policy implementation in the transport sector; and (2 evaluating the effects of alternative policy scenarios on commuting behaviours in the USA. Particularly, we tested the effects of two sets of policies, namely market-based and preference-change ones. The model results suggest that this type of agent-based approach will provide a useful tool for testing policy interventions and their effectiveness.

  14. Results of the MITRA project: monitoring and intervention for the transportation of dangerous goods.

    Science.gov (United States)

    Planas, E; Pastor, E; Presutto, F; Tixier, J

    2008-04-01

    The objective of the MITRA (monitoring and intervention for the transportation of dangerous goods) project was to prototype a new operational system for monitoring the transportation of dangerous goods in Europe based on regional responsibilities. This concept, based on systems used in air traffic control, aims to provide civil security centres with real-time knowledge of the position and contents of dangerous vehicles circulating in their area of responsibility, and, in the event of a dangerous situation, to issue warnings, alerts and crisis management information, thereby allowing intervention teams to react immediately with maximum safety. The project was funded by the European Commission under the 6th Framework Programme (STREP--specific targeted research project--under the Information Society Technologies priority). It started on 1 September 2004 and ended on 31 October 2006. This paper presents the results of this project and the conclusions derived from the field tests carried out in Germany and in the French/Spanish border region in order to test the proposed operational system.

  15. Mathematical Chemistry

    OpenAIRE

    Trinajstić, Nenad; Gutman, Ivan

    2002-01-01

    A brief description is given of the historical development of mathematics and chemistry. A path leading to the meeting of these two sciences is described. An attempt is made to define mathematical chemistry, and journals containing the term mathematical chemistry in their titles are noted. In conclusion, the statement is made that although chemistry is an experimental science aimed at preparing new compounds and materials, mathematics is very useful in chemistry, among other things, to produc...

  16. Transportation

    National Research Council Canada - National Science Library

    Allshouse, Michael; Armstrong, Frederick Henry; Burns, Stephen; Courts, Michael; Denn, Douglas; Fortunato, Paul; Gettings, Daniel; Hansen, David; Hoffman, Douglas; Jones, Robert

    2007-01-01

    .... The ability of the global transportation industry to rapidly move passengers and products from one corner of the globe to another continues to amaze even those wise to the dynamics of such operations...

  17. Hydrogeology, Water Chemistry, and Factors Affecting the Transport of Contaminants in the Zone of Contribution of a Public-Supply Well in Modesto, Eastern San Joaquin Valley, California

    Science.gov (United States)

    Jurgens, Bryant C.; Burow, Karen R.; Dalgish, Barbara A.; Shelton, Jennifer L.

    2008-01-01

    Ground-water chemistry in the zone of contribution of a public-supply well in Modesto, California, was studied by the U.S. Geological Survey National Water Quality Assessment (NAWQA) Program's topical team for Transport of Anthropogenic and Natural Contaminants (TANC) to supply wells. Twenty-three monitoring wells were installed in Modesto to record baseline hydraulic information and to collect water-quality samples. The monitoring wells were divided into four categories that represent the chemistry of different depths and volumes of the aquifer: (1) water-table wells were screened between 8.5 and 11.7 m (meter) (28 and 38.5 ft [foot]) below land surface (bls) and were within 5 m (16 ft) of the water table; (2) shallow wells were screened between 29 and 35 m (95 and 115 ft) bls; (3) intermediate wells were screened between 50.6 and 65.5 m (166 and 215 ft) bls; and (4) deep wells are screened between 100 to 106 m (328 and 348 ft) bls. Inorganic, organic, isotope, and age-dating tracers were used to characterize the geochemical conditions in the aquifer and understand the mechanisms of mobilization and movement of selected constituents from source areas to a public-supply well. The ground-water system within the study area has been significantly altered by human activities. Water levels in monitoring wells indicated that horizontal movement of ground water was generally from the agricultural areas in the northeast towards a regional water-level depression within the city in the southwest. However, intensive pumping and irrigation recharge in the study area has caused large quantities of ground water to move vertically downward within the regional and local flow systems. Analysis of age tracers indicated that ground-water age varied from recent recharge at the water table to more than 1,000 years in the deep part of the aquifer. The mean age of shallow ground water was determined to be between 30 and 40 years. Intermediate ground water was determined to be a mixture

  18. Evaluation of the new EMAC-SWIFT chemistry climate model

    Science.gov (United States)

    Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Rex, Markus

    2016-04-01

    It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Including atmospheric ozone chemistry into climate simulations is usually done by prescribing a climatological ozone field, by including a fast linear ozone scheme into the model or by using a climate model with complex interactive chemistry. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. Although interactive chemistry provides a realistic representation of atmospheric chemistry such model simulations are computationally very expensive and hence not suitable for ensemble simulations or simulations with multiple climate change scenarios. A new approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has recently been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. Here, we show first results of EMAC-SWIFT simulations and validate these against EMAC simulations using the complex interactive chemistry scheme MECCA, and against observations.

  19. On-site production of a dialysis bath from dry salts. Results of solute concentration control by routine clinical chemistry

    OpenAIRE

    Beige, Joachim; Lutter, Steffen; Martus, Peter

    2012-01-01

    Background. Dialysis bath production, at least in Europe, is currently based on pre-produced aqueous solutions of dialysis salts (concentrate), which are re-handled by dialysis machines to deliver the final dialysate concentrations. Because of the logistics of aqueous solution creation, a large amount of transportation capacity is needed. Therefore, we changed this process to use pre-produced dry salt containers and to undertake in-clinic dissolution of salts and concentration production. Bec...

  20. Assessing the impact of atmospheric chemistry on the fate, transport, and transformation of adulticides in an urban atmosphere

    Science.gov (United States)

    Guberman, S.; Yoon, S.; Guagenti, M. C.; Sheesley, R. J.; Usenko, S.

    2017-12-01

    Urban areas are literal hot spots of mosquito-borne disease transmission and air pollution during the summer months. Public health authorities release aerosolized adulticides to target adult mosquitoes directly in to the atmosphere to control mosquito populations and reduce the threat of diseases (e.g. Zika). Permethrin and malathion are the primary adulticides for controlling adult mosquito populations in Houston, TX and are typically sprayed at night. After being released into the atmosphere adulticides are subject to atmospheric oxidation initiated by atmospheric oxidants (e.g. O3 and NO3) which are driven by anthropogenic air pollutants (e.g. NOx; NO and NO2). Particulate matter (PM) samples were measured at both application and downwind locations. Sampling sites were determined using the combination of atmospheric plume transport models and adulticide application data provided by Harris County Public Health Mosquito Division. Atmospheric PM samples were taken using a Mobile Laboratory, equipped with total suspended PM and PM2.5 (PM with diameter health consequences.

  1. Reduced levels of folate transporters (PCFT and RFC) in membrane lipid rafts result in colonic folate malabsorption in chronic alcoholism.

    Science.gov (United States)

    Wani, Nissar Ahmad; Kaur, Jyotdeep

    2011-03-01

    We studied the effect of chronic ethanol ingestion on folate transport across the colonic apical membranes (CAM) in rats. Male Wistar rats were fed 1 g/kg body weight/day ethanol (20%) solution orally for 3 months and folate transport was studied in the isolated colon apical membrane vesicles. The folate transport was found to be carrier mediated, saturable, with pH optima at 5.0. Chronic ethanol ingestion reduced the folate transport across the CAM by decreasing the affinity of transporters (high Km) for the substrate and by decreasing the number of transporter molecules (low Vmax) on the colon luminal surface. The decreased transport activity at the CAM was associated with down-regulation of the proton-coupled folate transporter (PCFT) and the reduced folate carrier (RFC) which resulted in decreased PCFT and RFC protein levels in the colon of rats fed alcohol chronically. Moreover, the PCFT and the RFC were found to be distributed in detergent insoluble fraction of the CAM in rats. Floatation experiments on Optiprep density gradients demonstrated the association of the PCFT and the RFC protein with lipid rafts (LR). Chronic alcoholism decreased the PCFT and the RFC protein levels in the CAM LR in accordance with the decreased synthesis. Hence, we propose that downregulation in the expression of the PCFT and the RFC in colon results in reduced levels of these transporters in colon apical membrane LR as a mechanism of folate malabsorption during chronic alcoholism. Copyright © 2010 Wiley-Liss, Inc.

  2. Hydrogeology, water chemistry, and transport processes in the zone of contribution of a public-supply well in Albuquerque, New Mexico, 2007-9

    Science.gov (United States)

    Bexfield, Laura M.; Jurgens, Bryant C.; Crilley, Dianna M.; Christenson, Scott C.

    2012-01-01

    The National Water-Quality Assessment Program (NAWQA) of the U.S. Geological Survey began a series of groundwater studies in 2001 in representative aquifers across the Nation in order to increase understanding of the factors that affect transport of anthropogenic and natural contaminants (TANC) to public-supply wells. One of 10 regional-scale TANC studies was conducted in the Middle Rio Grande Basin (MRGB) in New Mexico, where a more detailed local-scale study subsequently investigated the hydrogeology, water chemistry, and factors affecting the transport of contaminants in the zone of contribution of one 363-meter (m) deep public-supply well in Albuquerque. During 2007 through 2009, samples were collected for the local-scale study from 22 monitoring wells and 3 public-supply (supply) wells for analysis of major and trace elements, arsenic speciation, nutrients, dissolved organic carbon, volatile organic compounds (VOCs), dissolved gases, stable isotopes, and tracers of young and old water. To study groundwater chemistry and ages at various depths within the aquifer, the monitoring wells were divided into three categories: (1) each shallow well was screened across the water table or had a screen midpoint within 18.3 m of the water level in the well; (2) each intermediate well had a screen midpoint between about 27.1 and 79.6 m below the water level in the well; and (3) each deep well had a screen midpoint about 185 m or more below the water level in the well. The 24-square-kilometer study area surrounding the "studied supply well" (SSW), one of the three supply wells, consists of primarily urban land within the MRGB, a deep alluvial basin with an aquifer composed of unconsolidated to moderately consolidated deposits of sand, gravel, silt, and clay. Conditions generally are unconfined, but are semiconfined at depth. Groundwater withdrawals for public supply have substantially changed the primary direction of flow from northeast to southwest under predevelopment

  3. Effects of altered groundwater chemistry upon the pH-dependency and magnitude of bacterial attachment during transport within an organically contaminated sandy aquifer

    Science.gov (United States)

    Harvey, Ronald W.; Metge, David W.; Barber, Larry B.; Aiken, George R.

    2010-01-01

    The effects of a dilute (ionic strength = 5 ?? 10-3 M) plume of treated sewage, with elevated levels (3.9 mg/L) of dissolved organic carbon (DOC), upon the pH-dependency and magnitude of bacterial transport through an iron-laden, quartz sand aquifer (Cape Cod, MA) were evaluated using sets of replicate, static minicolumns. Compared with uncontaminated groundwater, the plume chemistry diminished bacterial attachment under mildly acidic (pH 5.0-6.5) in-situ conditions, in spite of the 5-fold increase in ionic strength and substantively enhanced attachment under more alkaline conditions. The effects of the hydrophobic neutral and total fractions of the plume DOC; modest concentrations of fulvic and humic acids (1.5 mg/L); linear alkyl benzene sulfonate (LAS) (25 mg/L); Imbentin (200 ??g/L), a model nonionic surfactant; sulfate (28 mg/L); and calcium (20 mg/L) varied sharply in response to relatively small changes in pH, although the plume constituents collectively decreased the pH-dependency of bacterial attachment. LAS and other hydrophobic neutrals (collectively representing only ???3% of the plume DOC) had a disproportionately large effect upon bacterial attachment, as did the elevated concentrations of sulfate within the plume. The findings further suggest that the roles of organic plume constituents in transport or bacteria through acidic aquifer sediments can be very different than would be predicted from column studies performed at circumneutral pH and that the inorganic constituents within the plume cannot be ignored.

  4. Comparison of Land-Use Regression Modeling with Dispersion and Chemistry Transport Modeling to Assign Air Pollution Concentrations within the Ruhr Area

    Directory of Open Access Journals (Sweden)

    Frauke Hennig

    2016-03-01

    Full Text Available Two commonly used models to assess air pollution concentration for investigating health effects of air pollution in epidemiological studies are Land Use Regression (LUR models and Dispersion and Chemistry Transport Models (DCTM. Both modeling approaches have been applied in the Ruhr area, Germany, a location where multiple cohort studies are being conducted. Application of these different modelling approaches leads to differences in exposure estimation and interpretation due to the specific characteristics of each model. We aimed to compare both model approaches by means of their respective aims, modeling characteristics, validation, temporal and spatial resolution, and agreement of residential exposure estimation, referring to the air pollutants PM2.5, PM10, and NO2. Residential exposure referred to air pollution exposure at residences of participants of the Heinz Nixdorf Recall Study, located in the Ruhr area. The point-specific ESCAPE (European Study of Cohorts on Air Pollution Effects-LUR aims to temporally estimate stable long-term exposure to local, mostly traffic-related air pollution with respect to very small-scale spatial variations (≤100 m. In contrast, the EURAD (European Air Pollution Dispersion-CTM aims to estimate a time-varying average air pollutant concentration in a small area (i.e., 1 km2, taking into account a range of major sources, e.g., traffic, industry, meteorological conditions, and transport. Overall agreement between EURAD-CTM and ESCAPE-LUR was weak to moderate on a residential basis. Restricting EURAD-CTM to sources of local traffic only, respective agreement was good. The possibility of combining the strengths of both applications will be the next step to enhance exposure assessment.

  5. Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP)

    Science.gov (United States)

    Visioni, Daniele; Pitari, Giovanni; Aquila, Valentina; Tilmes, Simone; Cionni, Irene; Di Genova, Glauco; Mancini, Eva

    2017-09-01

    Sulfate geoengineering (SG), made by sustained injection of SO2 in the tropical lower stratosphere, may impact the CH4 abundance through several photochemical mechanisms affecting tropospheric OH and hence the methane lifetime. (a) The reflection of incoming solar radiation increases the planetary albedo and cools the surface, with a tropospheric H2O decrease. (b) The tropospheric UV budget is upset by the additional aerosol scattering and stratospheric ozone changes: the net effect is meridionally not uniform, with a net decrease in the tropics, thus producing less tropospheric O(1D). (c) The extratropical downwelling motion from the lower stratosphere tends to increase the sulfate aerosol surface area density available for heterogeneous chemical reactions in the mid-to-upper troposphere, thus reducing the amount of NOx and O3 production. (d) The tropical lower stratosphere is warmed by solar and planetary radiation absorption by the aerosols. The heating rate perturbation is highly latitude dependent, producing a stronger meridional component of the Brewer-Dobson circulation. The net effect on tropospheric OH due to the enhanced stratosphere-troposphere exchange may be positive or negative depending on the net result of different superimposed species perturbations (CH4, NOy, O3, SO4) in the extratropical upper troposphere and lower stratosphere (UTLS). In addition, the atmospheric stabilization resulting from the tropospheric cooling and lower stratospheric warming favors an additional decrease of the UTLS extratropical CH4 by lowering the horizontal eddy mixing. Two climate-chemistry coupled models are used to explore the above radiative, chemical and dynamical mechanisms affecting CH4 transport and lifetime (ULAQ-CCM and GEOSCCM). The CH4 lifetime may become significantly longer (by approximately 16 %) with a sustained injection of 8 Tg-SO2 yr-1 starting in the year 2020, which implies an increase of tropospheric CH4 (200 ppbv) and a positive indirect radiative

  6. Sulfate geoengineering impact on methane transport and lifetime: results from the Geoengineering Model Intercomparison Project (GeoMIP

    Directory of Open Access Journals (Sweden)

    D. Visioni

    2017-09-01

    Full Text Available Sulfate geoengineering (SG, made by sustained injection of SO2 in the tropical lower stratosphere, may impact the CH4 abundance through several photochemical mechanisms affecting tropospheric OH and hence the methane lifetime. (a The reflection of incoming solar radiation increases the planetary albedo and cools the surface, with a tropospheric H2O decrease. (b The tropospheric UV budget is upset by the additional aerosol scattering and stratospheric ozone changes: the net effect is meridionally not uniform, with a net decrease in the tropics, thus producing less tropospheric O(1D. (c The extratropical downwelling motion from the lower stratosphere tends to increase the sulfate aerosol surface area density available for heterogeneous chemical reactions in the mid-to-upper troposphere, thus reducing the amount of NOx and O3 production. (d The tropical lower stratosphere is warmed by solar and planetary radiation absorption by the aerosols. The heating rate perturbation is highly latitude dependent, producing a stronger meridional component of the Brewer–Dobson circulation. The net effect on tropospheric OH due to the enhanced stratosphere–troposphere exchange may be positive or negative depending on the net result of different superimposed species perturbations (CH4, NOy, O3, SO4 in the extratropical upper troposphere and lower stratosphere (UTLS. In addition, the atmospheric stabilization resulting from the tropospheric cooling and lower stratospheric warming favors an additional decrease of the UTLS extratropical CH4 by lowering the horizontal eddy mixing. Two climate–chemistry coupled models are used to explore the above radiative, chemical and dynamical mechanisms affecting CH4 transport and lifetime (ULAQ-CCM and GEOSCCM. The CH4 lifetime may become significantly longer (by approximately 16 % with a sustained injection of 8 Tg-SO2 yr−1 starting in the year 2020, which implies an increase of tropospheric CH4 (200 ppbv and

  7. Norwegian lakes show widespread recovery from acidification; results from national surveys of lakewater chemistry 1986-1997

    Directory of Open Access Journals (Sweden)

    B. L. Skjelkvåle

    1998-01-01

    Full Text Available Surveys of 485 lakes in Norway conducted in 1986 and again in 1995 reveal widespread chemical recovery from acidification. Sulphate concentrations in lakes have decreased by 40% in acidified areas in southern Norway. This decrease has been compensated about 25% by decreases in concentrations of base cations and of 75% by increased Acid Neutralising Capacity (ANC. The increased ANC in turn reflects lower concentrations of acidic cations Aluminum (ALn+ and Hydrogen (H+. A sub-set of 78 of the 485 lakes sampled yearly between 1986 and 1997 shows that, at first most of the decrease in non-marine sulphate (SO4* was compensated by a decrease in base cations, such that ANC remained unchanged. Then as SO4* continued to decrease, the concentrations of non- marine calcium and magnesium ((Ca+Mg* levelled out. Consequently, ANC increased, and H+ and Aln+ started to decrease. In eastern Norway, this shift occurred in 1989–90, and came slightly later in southern and western Norway. Similar shifts in trends in about 1991–92 can also be seen in the non-acidified areas in central and northern Norway. This shift in trends is not as pronounced in western Norway, perhaps because of the confounding influence of sea-salt episodes on water chemistry. This is the first documented national-scale recovery from acidification due to reduced acid deposition. Future climate warming and potentially increased N-leaching can counteract the positive trends in recovery from acidification.

  8. Analysis of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results

    Energy Technology Data Exchange (ETDEWEB)

    Cotrell, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Stehly, T. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Johnson, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Roberts, J. O. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Parker, Z. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, G. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heimiller, D. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    There is relatively little literature that characterizes transportation and logistics challenges and the associated effects on U.S. wind markets. The objectives of this study were to identify the transportation and logistics challenges, assess the associated impacts, and provide recommendations for strategies and specific actions to address the challenges. The authors primarily relied on interviews with wind industry project developers, original equipment manufacturers, and transportation and logistics companies to obtain the information and industry perspectives needed for this study. They also reviewed published literature on trends and developments in increasing wind turbine size, logistics, and transportation issues.

  9. Emissions and transport of NOx over East Asia diagnosed by satellite and in-situ observations and chemical transport model results

    Science.gov (United States)

    Lee, H.; Kim, S.; Brioude, J.; Cooper, O. R.; Frost, G. J.; Trainer, M.; Kim, C.

    2012-12-01

    Nitrogen dioxide (NO2) columns observed from space have been useful in detecting the increase of NOx emissions over East Asia in accordance with rapid growth in its economy. In addition to emissions, transport can be an important factor to determine the observed satellite NO2 columns in this region. Satellite tropospheric NO2 columns showed maximum in winter and minimum in summer over the high emission areas in China, as lifetime of NO2 decreases with increase of sunlight. However, secondary peaks in the satellite NO2 columns were found in spring in both Korea and Japan, which may be influenced by transport of NOx within East Asia. Surface in-situ observations confirm the findings from the satellite measurements. The large-scale distribution of satellite NO2 columns over East Asia and the Pacific Ocean showed that the locations of NO2 column maxima coincided with wind convergence zones that change with seasons. In spring, the convergence zone is located over 30-40°N, leading to the most efficient transport of the emissions from southern China to downwind areas including Korea, Japan, and western coastal regions of the United States. We employed a Lagrangian particle dispersion model to identify the sources of the observed springtime maximum NO2. In order to understand chemical processing during the transport and quantify the roles of emissions and transport in local NOx budgets, we will also present the results from a regional chemical transport model.

  10. Electrification of local public transport: evaluation and results for the case of L’Aquila

    International Nuclear Information System (INIS)

    Fabrizi, Valentina; Orchi, Silvia; Ortenzi, Fernando; Valenti, Gaetano; Valentini, Maria Pia

    2015-01-01

    The study demonstrates the technical and economic feasibility of electrification of some lines of the local public transport service in L’Aquila, an ambitious project with environmental and socio-economic implications. The study traces an effective evaluation path of aid to public transport companies interested the introduction of electric bus fleets. [it

  11. Chemistry Notes

    Science.gov (United States)

    School Science Review, 1976

    1976-01-01

    Described are eight chemistry experiments and demonstrations applicable to introductory chemistry courses. Activities include: measure of lattice enthalpy, Le Chatelier's principle, decarboxylation of soap, use of pocket calculators in pH measurement, and making nylon. (SL)

  12. Chemistry Dashboard

    Science.gov (United States)

    The Chemistry Dashboard is part of a suite of dashboards developed by EPA to help evaluate the safety of chemicals. The Chemistry Dashboard provides access to a variety of information on over 700,000 chemicals currently in use.

  13. Positronium chemistry

    CERN Document Server

    Green, James

    1964-01-01

    Positronium Chemistry focuses on the methodologies, reactions, processes, and transformations involved in positronium chemistry. The publication first offers information on positrons and positronium and experimental methods, including mesonic atoms, angular correlation measurements, annihilation spectra, and statistical errors in delayed coincidence measurements. The text then ponders on positrons in gases and solids. The manuscript takes a look at the theoretical chemistry of positronium and positronium chemistry in gases. Topics include quenching, annihilation spectrum, delayed coincidence

  14. Aquatic Chemistry

    International Nuclear Information System (INIS)

    Kim, Dong Yeun; Kim, Oh Sik; Kim, Chang Guk; Park, Cheong Gil; Lee, Gwi Hyeon; Lee, Cheol Hui

    1987-07-01

    This book deals aquatic chemistry, which treats water and environment, chemical kinetics, chemical balance like dynamical characteristic, and thermodynamics, acid-base chemistry such as summary, definition, kinetics, and PH design for mixture of acid-base chemistry, complex chemistry with definition, and kinetics, precipitation and dissolution on summary, kinetics of precipitation and dissolution, and balance design oxidation and resolution with summary, balance of oxidation and resolution.

  15. Global O3-CO correlations in a chemistry and transport model during July-August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions

    Science.gov (United States)

    Choi, Hyun-Deok; Liu, Hongyu; Crawford, James H.; Considine, David B.; Allen, Dale J.; Duncan, Bryan N.; Horowitz, Larry W.; Rodriguez, Jose M.; Strahan, Susan E.; Zhang, Lin; Liu, Xiong; Damon, Megan R.; Steenrod, Stephen D.

    2017-07-01

    We examine the capability of the Global Modeling Initiative (GMI) chemistry and transport model to reproduce global mid-tropospheric (618 hPa) ozone-carbon monoxide (O3-CO) correlations determined by the measurements from the Tropospheric Emission Spectrometer (TES) aboard NASA's Aura satellite during boreal summer (July-August). The model is driven by three meteorological data sets (finite-volume General Circulation Model (fvGCM) with sea surface temperature for 1995, Goddard Earth Observing System Data Assimilation System Version 4 (GEOS-4 DAS) for 2005, and Modern-Era Retrospective Analysis for Research and Applications (MERRA) for 2005), allowing us to examine the sensitivity of model O3-CO correlations to input meteorological data. Model simulations of radionuclide tracers (222Rn, 210Pb, and 7Be) are used to illustrate the differences in transport-related processes among the meteorological data sets. Simulated O3 values are evaluated with climatological profiles from ozonesonde measurements and satellite tropospheric O3 columns. Despite the fact that the three simulations show significantly different global and regional distributions of O3 and CO concentrations, they show similar patterns of O3-CO correlations on a global scale. All model simulations sampled along the TES orbit track capture the observed positive O3-CO correlations in the Northern Hemisphere midlatitude continental outflow and the Southern Hemisphere subtropics. While all simulations show strong negative correlations over the Tibetan Plateau, northern Africa, the subtropical eastern North Pacific, and the Caribbean, TES O3 and CO concentrations at 618 hPa only show weak negative correlations over much narrower areas (i.e., the Tibetan Plateau and northern Africa). Discrepancies in regional O3-CO correlation patterns in the three simulations may be attributed to differences in convective transport, stratospheric influence, and subsidence, among other processes. To understand how various

  16. Deletion of the transmembrane transporter ABCG1 results in progressive pulmonary lipidosis.

    Science.gov (United States)

    Baldán, Angel; Tarr, Paul; Vales, Charisse S; Frank, Joy; Shimotake, Thomas K; Hawgood, Sam; Edwards, Peter A

    2006-09-29

    We show that mice lacking the ATP-binding cassette transmembrane transporter ABCG1 show progressive and age-dependent severe pulmonary lipidosis that recapitulates the phenotypes of different respiratory syndromes in both humans and mice. The lungs of chow-fed Abcg1(-/-) mice, >6-months old, exhibit extensive subpleural cellular accumulation, macrophage, and pneumocyte type 2 hypertrophy, massive lipid deposition in both macrophages and pneumocytes and increased levels of surfactant. No such abnormalities are observed at 3 months of age. However, gene expression profiling reveals significant changes in the levels of mRNAs encoding key genes involved in lipid metabolism in both 3- and 8-month-old Abcg1(-/-) mice. These data suggest that the lungs of young Abcg1(-/-) mice maintain normal lipid levels by repressing lipid biosynthetic pathways and that such compensation is inadequate as the mice mature. Studies with A-549 cells, a model for pneumocytes type 2, demonstrate that overexpression of ABCG1 specifically stimulates the efflux of cellular cholesterol by a process that is dependent upon phospholipid secretion. In addition, we demonstrate that Abcg1(-/-), but not wild-type macrophages, accumulate cholesterol ester droplets when incubated with surfactant. Together, these data provide a mechanism to explain the lipid accumulation in the lungs of Abcg1(-/-)mice. In summary, our results demonstrate that ABCG1 plays essential roles in pulmonary lipid homeostasis.

  17. Contaminant fate and transport in the Venice Lagoon: results from a multi-segment multimedia model.

    Science.gov (United States)

    Sommerfreund, J K; Gandhi, N; Diamond, M L; Mugnai, C; Frignani, M; Capodaglio, G; Gerino, M; Bellucci, L G; Giuliani, S

    2010-03-01

    Contaminant loadings to the Venice Lagoon peaked from 1950s-1980s and although they have since declined, contaminant concentrations remain elevated in sediment and seafood. In order to identify the relative importance of contaminant sources, inter-media exchange and removal pathways, a modified 10-segment fugacity/aquivalence-based model was developed for octachlorodibenzodioxin/furan (OCDD/F), PCB-180, Pb and Cu in the Venice Lagoon. Results showed that in-place pollution nearby the industrial area, current industrial discharges, and tributary loadings were the main sources of contaminants to the lagoon, with negligible contributions from the atmosphere. The fate of these contaminants was governed by sediment-water exchange with simultaneous advective transport by water circulation. Contaminants circulated amongst the northern and central basins with a small fraction reaching the far southern basin and the Chioggia inlet. As a consequence, we estimated limited contaminant transfer to the Adriatic Sea, trapping the majority of contaminants in the sediment in this "average" circulation scenario which does not account for periodic flooding events. (c) 2009 Elsevier Inc. All rights reserved.

  18. Good practices in transportation evacuation preparedness and response : results of the FHWA Workshop Series

    Science.gov (United States)

    2009-08-01

    This document provides an overview of the good practices identified during a series of multi-state workshops on Transportation Evacuation Preparedness and Response in four regions across the United States. Good practices are not presented in priority...

  19. CROSSTEX - Wave breaking, Boundary Layer Processes, the Resulting Sediment Transport and Beach Profile Evolution

    National Research Council Canada - National Science Library

    Hsu, Tian-Jian; Trowbridge, John

    2006-01-01

    Two numerical models focused on different scales are revised and extended to model surf zone hydrodynamics and sand transport driven by random waves in order to test with data measured during CPOSSTEX...

  20. Analysis of Transportation and Logistics Challenges Affecting the Deployment of Larger Wind Turbines: Summary of Results

    Energy Technology Data Exchange (ETDEWEB)

    J. Cotrell, T. Stehly, J. Johnson, J. O. Roberts, Z. Parker, G. Scott, and D. Heimiller

    2014-01-28

    The objectives of this study were to identify the transportation and logistics challenges, assess the associated impacts, and provide recommendations for strategies and specific actions to address the challenges.

  1. Microfluidics in inorganic chemistry.

    Science.gov (United States)

    Abou-Hassan, Ali; Sandre, Olivier; Cabuil, Valérie

    2010-08-23

    The application of microfluidics in chemistry has gained significant importance in the recent years. Miniaturized chemistry platforms provide controlled fluid transport, rapid chemical reactions, and cost-saving advantages over conventional reactors. The advantages of microfluidics have been clearly established in the field of analytical and bioanalytical sciences and in the field of organic synthesis. It is less true in the field of inorganic chemistry and materials science; however in inorganic chemistry it has mostly been used for the separation and selective extraction of metal ions. Microfluidics has been used in materials science mainly for the improvement of nanoparticle synthesis, namely metal, metal oxide, and semiconductor nanoparticles. Microfluidic devices can also be used for the formulation of more advanced and sophisticated inorganic materials or hybrids.

  2. Migration chemistry

    International Nuclear Information System (INIS)

    Carlsen, L.

    1992-05-01

    Migration chemistry, the influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour of pollutants in the environment, is an interplay between the actual natur of the pollutant and the characteristics of the environment, such as pH, redox conditions and organic matter content. The wide selection of possible pollutants in combination with varying geological media, as well as the operation of different chemical -, biochemical - and physico-chemical reactions compleactes the prediction of the influence of these processes on the mobility of pollutants. The report summarizes a wide range of potential pollutants in the terrestrial environment as well as a variety of chemical -, biochemical - and physico-chemical reactions, which can be expected to influence the migration behaviour, comprising diffusion, dispersion, convection, sorption/desorption, precipitation/dissolution, transformations/degradations, biochemical reactions and complex formation. The latter comprises the complexation of metal ions as well as non-polar organics to naturally occurring organic macromolecules. The influence of the single types of processes on the migration process is elucidated based on theoretical studies. The influence of chemical -, biochemical - and physico-chemical reactions on the migration behaviour is unambiguous, as the processes apparently control the transport of pollutants in the terrestrial environment. As the simple, conventional K D concept breaks down, it is suggested that the migration process should be described in terms of the alternative concepts chemical dispersion, average-elution-time and effective retention. (AB) (134 refs.)

  3. Laboratory transport experiments with antibiotic sulfadiazine: Experimental results and parameter uncertainty analysis

    Science.gov (United States)

    Sittig, S.; Vrugt, J. A.; Kasteel, R.; Groeneweg, J.; Vereecken, H.

    2011-12-01

    Persistent antibiotics in the soil potentially contaminate the groundwater and affect the quality of drinking water. To improve our understanding of antibiotic transport in soils, we performed laboratory transport experiments in soil columns under constant irrigation conditions with repeated applications of chloride and radio-labeled SDZ. The tracers were incorporated in the first centimeter, either with pig manure or with solution. Breakthrough curves and concentration profiles of the parent compound and the main transformation products were measured. The goal is to describe the observed nonlinear and kinetic transport behavior of SDZ. Our analysis starts with synthetic transport data for the given laboratory flow conditions for tracers which exhibit increasingly complex interactions with the solid phase. This first step is necessary to benchmark our inverse modeling approach for ideal situations. Then we analyze the transport behavior using the column experiments in the laboratory. Our analysis uses a Markov chain Monte Carlo sampler (Differential Evolution Adaptive Metropolis algorithm, DREAM) to efficiently search the parameter space of an advective-dispersion model. Sorption of the antibiotics to the soil was described using a model regarding reversible as well as irreversible sorption. This presentation will discuss our initial findings. We will present the data of our laboratory experiments along with an analysis of parameter uncertainty.

  4. Feasibility to implement the radioisotopic method of nasal mucociliary transport measurement getting reliable results

    International Nuclear Information System (INIS)

    Troncoso, M.; Opazo, C.; Quilodran, C.; Lizama, V.

    2002-01-01

    Aim: Our goal was to implement the radioisotopic method to measure the nasal mucociliary velocity of transport (NMVT) in a feasible way in order to make it easily available as well as to validate the accuracy of the results. Such a method is needed when primary ciliary dyskinesia (PCD) is suspected, a disorder characterized for low NMVT, non-specific chronic respiratory symptoms that needs to be confirmed by electronic microscopic cilia biopsy. Methods: We performed one hundred studies from February 2000 until February 2002. Patients aged 2 months to 39 years, mean 9 years. All of them were referred from the Respiratory Disease Department. Ninety had upper or lower respiratory symptoms, ten were healthy controls. The procedure, done be the Nuclear Medicine Technologist, consists to put a 20 μl drop of 99mTc-MAA (0,1 mCi, 4 MBq) behind the head of the inferior turbinate in one nostril using a frontal light, a nasal speculum and a teflon catheter attached to a tuberculin syringe. The drop movement was acquired in a gamma camera-computer system and the velocity was expressed in mm/min. As there is need for the patient not to move during the procedure, sedation has to be used in non-cooperative children. Abnormal NMVT values cases were referred for nasal biopsy. Patients were classified in three groups. Normal controls (NC), PCD confirmed by biopsy (PCDB) and cases with respiratory symptoms without biopsy (RSNB). In all patients with NMVT less than 2.4 mm/min PCD was confirmed by biopsy. There was a clear-cut separation between normal and abnormal values and interestingly even the highest NMVT in PCDB cases was lower than the lowest NMVT in NC. The procedure is not as easy as is generally described in the literature because the operator has to get some skill as well as for the need of sedation in some cases. Conclusion: The procedure gives reliable, reproducible and objective results. It is safe, not expensive and quick in cooperative patients. Although, sometimes

  5. Model estimates of enhanced photochemical production of ozone resulting from convective transport of precursors

    Science.gov (United States)

    Pickering, Kenneth E.; Thompson, Anne M.; Dickerson, Russell R.

    1989-01-01

    Vertical profiles of net photochemical ozone production rates and total tropospheric column production rates were estimated using two models, a simple photochemical box model and a time-dependent one-dimensional transport/kinetics model. Photochemical production of ozone is found to dominate over destruction throughout the vertical extent of the troposphere over the central United States during typical summertime convective conditions. The column net production can be enhanced by the transport of the ozone precursors NO and NMHC from the boundary layer to the free troposphere by convective activity.

  6. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research

  7. Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1981-05-01

    This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  8. Study of Chinese pollution with the 3D regional chemistry transport CHIMERE model and remote sensing observations, with a focus on mineral dust impacts

    Science.gov (United States)

    Lachatre, Mathieu; Foret, Gilles; Beekmann, Matthias; Cheiney, Audrey; Dufour, Gaëlle; Laurent, Benoit; Cuesta, Juan

    2017-04-01

    Since the end of the 20th century, China has observed important growth in numerous sectors. China's Gross Domestic Product (GDP) has been multiply by 4 during the 2000-2010 decade (National Bureau of Statistics of China), mostly because of the industry's growth. These evolutions have been accompanied by important increases of atmospheric pollutants emissions (Yinmin et al, Atmo Env, 2016). As a consequence and for about 10 years now, Chinese authorities have been working to reduce pollutant levels, because atmospheric pollution is a major health issue for Chinese population especially within cities, for which World Health Organisation's standards for major pollutants (Ozone, PM2.5, PM10) are often exceeded. Particles have multiple issues, as they impact on health and global warming. Their impacts will depend on their sources (primary or secondary pollutants) and natures (Particle size distribution, chemical composition…). Controlling particles loading is a complex task as their sources are various and dispersed on the Chinese territories: mineral dust can be emitted from Chinese deserts in large amount (Laurent et al., GPC, 2006), ammonia can be emitted from agriculture and livestock (Kang et al., ACP, 2016) and lots of urban primary pollutants can be emitted from urbanized areas. It is then necessary to work from a continental to local scales to understand more precisely pollution of urbanized areas. It is then mandatory to discriminate and quantify pollution sources and to estimate the impact of natural pollution and the major contributing sources. We propose here an approach based on a model and satellite observation synergy to estimate what controls Chinese pollution. We use the regional chemistry transport model CHIMERE (Menut et al., GMD, 2013) to simulate atmospheric pollutants concentrations. A large domain (72°E-145°E; 17.5°N-55°N), with a ¼°x¼° resolution is used to make multi-annual simulations. CHIMERE model include most of the pollutants

  9. HMI scientific report - chemistry 1987

    International Nuclear Information System (INIS)

    1989-01-01

    Results of the R and D activities of the Radiation Chemistry Department, Hahn-Meitner-Institut, are reported, primarily dealing with the following subjects: Interface processes and energy conversion, high-energy photochemistry and radiation chemistry as well as trace elements chemistry. A list of publications and lectures is added and gives a view on results obtained in research and development. (EF) [de

  10. Influence of centrifugation conditions on the results of 77 routine clinical chemistry analytes using standard vacuum blood collection tubes and the new BD-Barricor tubes.

    Science.gov (United States)

    Cadamuro, Janne; Mrazek, Cornelia; Leichtle, Alexander B; Kipman, Ulrike; Felder, Thomas K; Wiedemann, Helmut; Oberkofler, Hannes; Fiedler, Georg M; Haschke-Becher, Elisabeth

    2018-02-15

    Although centrifugation is performed in almost every blood sample, recommendations on duration and g-force are heterogeneous and mostly based on expert opinions. In order to unify this step in a fully automated laboratory, we aimed to evaluate different centrifugation settings and their influence on the results of routine clinical chemistry analytes. We collected blood from 41 healthy volunteers into BD Vacutainer PST II-heparin-gel- (LiHepGel), BD Vacutainer SST II-serum-, and BD Vacutainer Barricor heparin-tubes with a mechanical separator (LiHepBar). Tubes were centrifuged at 2000xg for 10 minutes and 3000xg for 7 and 5 minutes, respectively. Subsequently 60 and 21 clinical chemistry analytes were measured in plasma and serum samples, respectively, using a Roche COBAS instrument. High sensitive Troponin T, pregnancy-associated plasma protein A, ß human chorionic gonadotropin and rheumatoid factor had to be excluded from statistical evaluation as many of the respective results were below the measuring range. Except of free haemoglobin (fHb) measurements, no analyte result was altered by the use of shorter centrifugation times at higher g-forces. Comparing LiHepBar to LiHepGel tubes at different centrifugation setting, we found higher lactate-dehydrogenase (LD) (P = 0.003 to centrifuged at higher speed (3000xg) for a shorter amount of time (5 minutes) without alteration of the analytes tested in this study. When using LiHepBar tubes for blood collection, a separate LD reference value might be needed.

  11. Organic chemistry

    International Nuclear Information System (INIS)

    2003-08-01

    This book with sixteen chapter explains organic chemistry on linkage isomerism such as alkane, cycloalkane, alkene, aromatic compounds, stereo selective isomerization, aromatic compounds, stereo selective isomerization, organic compounds, stereo selective isomerization, organic halogen compound, alcohol, ether, aldehyde and ketone, carboxylic acid, dicarboxylic acid, fat and detergent, amino, carbohydrate, amino acid and protein, nucleotide and nucleic acid and spectroscopy, a polymer and medical chemistry. Each chapter has introduction structure and characteristic and using of organic chemistry.

  12. Chemistry Technology

    Data.gov (United States)

    Federal Laboratory Consortium — Chemistry technology experts at NCATS engage in a variety of innovative translational research activities, including:Design of bioactive small molecules.Development...

  13. Technetium chemistry

    International Nuclear Information System (INIS)

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-01-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL)

  14. A comparison of results obtained with two subsurface non-isothermal multiphase reactive transport simulators, FADES-CORE and TOUGHREACT

    Energy Technology Data Exchange (ETDEWEB)

    Juncosa Rivera, Ricardo; Xu, Tianfu; Pruess, Karsten

    2001-01-01

    FADES-CORE and TOUGHREACT are codes used to model the non-isothermal multiphase flow with multicomponent reactive transport in porous media. Different flow and reactive transport problems were used to compare the FADES-CORE and TOUGHREACT codes. These problems take into account the different cases of multiphase flow with and without heat transport, conservative transport, and reactive transport. Consistent results were obtained from both codes, which use different numerical methods to solve the differential equations resulting from the various physicochemical processes. Here we present the results obtained from both codes for various cases. Some results are slightly different with minor discrepancies, which have been remedied, so that both codes would be able to reproduce the same processes using the same parameters. One of the discrepancies found is related to the different calculation for thermal conductivity in heat transport, which affects the calculation of the temperatures, as well as the pH of the reaction of calcite dissolution problem modeled. Therefore it is possible to affirm that the pH is highly sensitive to temperature. Generally speaking, the comparison was concluded to be highly satisfactory, leading to the complete verification of the FADES-CORE code. However, we must keep in mind that, as there are no analytical solutions available with which to verify the codes, the TOUGHREACT code has been thoroughly corroborated, given that the only possible way to prove that the code simulation is correct, is by comparing the results obtained with both codes for the identical problems, or to validate the simulation results with actual measured data.

  15. Changes in the Chemistry of Groundwater Reacted with CO2: Comparison of Laboratory Results with the ZERT Field Pilot

    Science.gov (United States)

    Kharaka, Yousif K.; Thordsen, James J.; Abedini, Atosa A.; Beers, Sarah; Thomas, Burt

    2017-01-01

    As part of the ZERT program, sediments from two wells at the ZERT site, located in Bozeman, Montana, USA were reacted with a solution having the composition of local groundwater. A total of 50 water samples were collected from 7 containers placed for 15 days in a glove box with one atmosphere of CO2 to investigate detailed changes in the concentrations of major, minor and trace inorganic compounds, and to compare these with changes observed in groundwater at the ZERT site following CO2 injection. Laboratory results included rapid changes in pH (8.6 to 5.7), alkalinity (243 to 1295 mg/L as HCO3), electrical conductance (539 to 1822 μS/cm), Ca (28 to 297 mg/L), Mg (18 to 63 mg/L), Fe (5 to 43 μg/L) and Mn (2 to 837 μg/L) following CO2 injection. These chemical changes, which are in general agreement with those obtained from sampling the ZERT monitoring wells, could provide early detection of CO2 leakage into shallow groundwater. Dissolution of calcite, some dolomite and minor Mn-oxides, and desorption/ion exchange are likely the main geochemical processes responsible for the observed changes.

  16. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood.

  17. Review of energy confinement and local transport scaling results in neutral-beam-heated tokamaks

    International Nuclear Information System (INIS)

    Kaye, S.M.

    1985-05-01

    Over the past several years, tokamak neutral beam injection experiments have evolved from the brute force study of the effects of global discharge characteristics (I/sub p/, anti n/sub e/, P/sub heat/, etc.) on energy confinement to the appreciation that there are effects more subtle, yet controllable, that may influence confinement dramatically. While this evolution from first to second generation experiments is derived from an empirical understanding of low and high energy confinement modes and how to achieve them operationally, the underlying physics is still unknown. Several theories with different physical bases appear to describe the global scaling of the low confinement mode discharges quite well. On the other hand, little agreement has been found between theoretical and experimentally deduced values of local transport coefficients. While it is known operationally how to achieve any one of several types of high confinement mode discharges, here too, the underlying physics of the transport associated with these modes is poorly understood

  18. Estimation of Energy Efficiency of Means of Transport According to the Results of Technical Diagnostics

    Science.gov (United States)

    Shalkov, Anton; Mamaeva, Mariya

    2017-11-01

    The article considers the questions of application of nondestructive methods control of reducers of conveyor belts as a means of transport. Particular attention is paid to such types of diagnostics of technical condition as thermal control and analysis of the state of lubricants. The urgency of carrying out types of nondestructive testing presented in the article is determined by the increase of energy efficiency of transport systems of coal and mining enterprises, in particular, reducers of belt conveyors. Periodic in-depth spectral-emission diagnostics and monitoring of a temperature mode of operation oil in the operation of the control equipment and its technical condition and prevent the MTBF allows the monitoring of the actual technical condition of the gearbox of a belt conveyor. In turn, the thermal imaging diagnostics reveals defects at the earliest stage of their formation and development, which allows planning the volumes and terms of equipment repair. Presents diagnostics of the technical condition will allow monitoring in time the technical condition of the equipment and avoiding its premature failure. Thereby it will increase the energy efficiency of both the transport system and the enterprise as a whole, and also avoid unreasonable increases in operating and maintenance costs.

  19. Estimation of Energy Efficiency of Means of Transport According to the Results of Technical Diagnostics

    Directory of Open Access Journals (Sweden)

    Shalkov Anton

    2017-01-01

    Full Text Available The article considers the questions of application of nondestructive methods control of reducers of conveyor belts as a means of transport. Particular attention is paid to such types of diagnostics of technical condition as thermal control and analysis of the state of lubricants. The urgency of carrying out types of nondestructive testing presented in the article is determined by the increase of energy efficiency of transport systems of coal and mining enterprises, in particular, reducers of belt conveyors. Periodic in-depth spectral-emission diagnostics and monitoring of a temperature mode of operation oil in the operation of the control equipment and its technical condition and prevent the MTBF allows the monitoring of the actual technical condition of the gearbox of a belt conveyor. In turn, the thermal imaging diagnostics reveals defects at the earliest stage of their formation and development, which allows planning the volumes and terms of equipment repair. Presents diagnostics of the technical condition will allow monitoring in time the technical condition of the equipment and avoiding its premature failure. Thereby it will increase the energy efficiency of both the transport system and the enterprise as a whole, and also avoid unreasonable increases in operating and maintenance costs.

  20. Monitoring of fluvial transport in small upland catchments - methods and preliminary results

    Science.gov (United States)

    Janicki, Grzegorz; Rodzik, Jan; Chabudziński, Łukasz; Franczak, Łukasz; Siłuch, Marcin; Stępniewski, Krzysztof; Dyer, Jamie L.; Kołodziej, Grzegorz; Maciejewska, Ewa

    2014-06-01

    In April 2011 a study was initiated, financed from resources of the Polish National Science Centre, entitled: ‘Rainstorm prediction and mathematic modelling of their environmental and social-economical effects’ (No. NN/306571640). The study, implemented by a Polish-American team, covers meteorological research, including: (1) monitoring of single cell storms developing in various synoptic situations, (2) detection of their movement courses, and (3) estimation of parameters of their rain field. Empirical studies, including hydrological and geomorphological measurements, are conducted in objects researched thoroughly in physiographic terms (experimental catchments) in the Lublin region (SE Poland), distinguished by high frequency of occurrence of the events described. For comparative purposes, studies are also carried out on selected model areas in the lower course of the Mississippi River valley (USA), in a region with high frequency of summer rainstorms. For detailed studies on sediment transport processes during rainstorm events, catchments of low hydrological rank and their sub-catchments in a cascade system were selected. For the basic, relatively uniform geomorpho logical units distinguished this way, erosion and deposition balance of material transported was determined. The aim of work was to determine influence of weather condition on fluvial transport rate in small catchment with low hydrological order

  1. Role of Desorption Kinetics and Porous Medium Heterogeneity in Colloid-Facilitated Transport of Cesium and Strontium: Preliminary Results

    Science.gov (United States)

    Dittrich, T. M.; Ryan, J. N.

    2008-12-01

    The presence of mobile colloids (particles between 1 nm and 1 μm in size) in natural soil and groundwater systems has been well established. Colloids generally have a high sorptive capacity resulting from their high surface area to mass ratio, which makes them effective sorbents of low solubility, strongly sorbing contaminants. Mobile colloids that sorb contaminants can increase the apparent solubility and rate of transport of the contaminants when desorption from the colloids is slow relative to the rate of flow. This process is known as colloid-facilitated transport (CFT). The additional transport of contaminants associated with mobile colloids should be accounted for to accurately predict transport rates of strongly-sorbing contaminants in the environment. Some examples of contaminants that have the potential for CFT are hydrophobic pesticides, polycyclic aromatic hydrocarbons (PAHs), actinide cations (e.g., Th, U, Pu, Am), and many metals (e.g, Pb, Cu, Hg). Many low solubility contaminants that have the potential for CFT are also harmful or toxic to humans, underscoring the importance of accurate modeling techniques to protect water sources from contamination. Contaminated Department of Energy (DOE) sites have been particularly valuable research opportunities for studying the transport of radionuclides in the natural environment. The DOE has conducted energy and weapons research and development in thirty-one states and Puerto Rico and has introduced many toxic and radioactive chemicals into surface waters, soils, and groundwater. Field experiments on DOE sites including the Nevada Test Site, the Hanford 200 Area tank farm, Rocky Flats CO, and Oak Ridge TN, have confirmed that metals and radionuclides have moved further than expected due to colloid-facilitated transport. The major goal of this research project is to identify and quantify the effects of sorption kinetics on colloid- facilitated transport in unsaturated porous media. This information will be used

  2. Americium, Cesium, and Plutonium Colloid-Facilitated Transport in a Groundwater/Bentonite/Fracture Fill Material System: Column Experiments and Model Results

    Science.gov (United States)

    Dittrich, T. M.; Boukhalfa, H.; Reimus, P. W.

    2014-12-01

    The objective of this study was to investigate and quantify the effects of desorption kinetics and colloid transport on radionuclides with different sorption affinities. We focused on quantifying transport mechanisms important for upscaling in time and distance. This will help determine the long-term fate and transport of radionuclides to aid in risk assessments. We selected a fractured/weathered granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model crystalline rock repository system because the system has been thoroughly studied and field experiments involving radionuclides have already been conducted. Working on this system provides a unique opportunity to compare lab experiments with field-scale observations. Weathered fracture fill material (FFM) and bentonite used as backfill at the GTS were characterized (e.g., BET, SEM/EDS, QXRD), and batch and breakthrough column experiments were conducted. Solutions were prepared in synthetic groundwaters that matched the natural water chemistry. FFM samples were crushed, rinsed, sieved (150-355 μm), and equilibrated with synthetic groundwater. Bentonite was crushed, sodium-saturated, equilibrated with synthetic groundwater, and settled to yield a stable suspension. Suspensions were equilibrated with Am, Cs, or Pu. All experiments were conducted with Teflon®materials to limit sorption to system components. After radionuclide/colloid injections reached stability, radionuclide-free solutions were injected to observe the desorption and release behavior. Aliquots of effluent were measured for pH, colloid concentration, and total and dissolved radionuclides. Unanalyzed effluent from the first column was then injected through a second column of fresh material. The process was repeated for a third column and the results of all three breakthrough curves were modeled with a multi-site/multi-rate MATLAB code to elucidate the sorption rate coefficients and binding site densities of the bentonite colloids and

  3. Current organic chemistry

    National Research Council Canada - National Science Library

    1997-01-01

    Provides in depth reviews on current progress in the fields of asymmetric synthesis, organometallic chemistry, bioorganic chemistry, heterocyclic chemistry, natural product chemistry, and analytical...

  4. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors. (Auth.)

  5. Nuclear chemistry

    International Nuclear Information System (INIS)

    Vertes, A.; Kiss, I.

    1987-01-01

    This book is an introduction to the application of nuclear science in modern chemistry. The first group of chapters discuss the basic phenomena and concepts of nuclear physics with emphasis on their relation to chemical problems, including the main properties and the composition of atomic nuclei, nuclear reactions, radioactive decay and interactions of radiation with matter. These chapters provide the basis for understanding the following chapters which encompass the wide scope of nuclear chemistry. The methods of the investigation of chemical structure based on the interaction of nuclear radiation with matter including positronium chemistry and other exotic atoms is elaborated in particular detail. Separate chapters are devoted to the use of radioactive tracers, the chemical consequences of nuclear processes (i.e. hot atom chemistry), radiation chemistry, isotope effects and their applications, and the operation of nuclear reactors

  6. Tracers and traceability: implementing the cirrus parameterisation from LACM in the TOMCAT/SLIMCAT chemistry transport model as an example of the application of quality assurance to legacy models

    Directory of Open Access Journals (Sweden)

    A. M. Horseman

    2010-03-01

    Full Text Available A new modelling tool for the investigation of large-scale behaviour of cirrus clouds has been developed. This combines two existing models, the TOMCAT/SLIMCAT chemistry transport model (nupdate library version 0.80, script mpc346_l and cirrus parameterisation of Ren and MacKenzie (LACM implementation not versioned. The development process employed a subset of best-practice software engineering and quality assurance processes, selected to be viable for small-scale projects whilst maintaining the same traceability objectives. The application of the software engineering and quality control processes during the development has been shown to be not a great overhead, and their use has been of benefit to the developers as well as the end users of the results. We provide a step-by-step guide to the implementation of traceability tailored to the production of geo-scientific research software, as distinct from commercial and operational software. Our recommendations include: maintaining a living "requirements list"; explicit consideration of unit, integration and acceptance testing; and automated revision/configuration control, including control of analysis tool scripts and programs.

    Initial testing of the resulting model against satellite and in-situ measurements has been promising. The model produces representative results for both spatial distribution of the frequency of occurrence of cirrus ice, and the drying of air as it moves across the tropical tropopause. The model is now ready for more rigorous quantitative testing, but will require the addition of a vertical wind velocity downscaling scheme to better represent extra-tropical continental cirrus.

  7. Assessment of radiation dose received by transport workers resulting from radioactive shipments - development of a model for airport workers

    International Nuclear Information System (INIS)

    Vohra, K.G.; Subrahmanian, G.; Nandakumar, A.N.; Kher, R.K.; Ramakrishna Iyer, S.

    1984-01-01

    Transport workers handling radioactive cargoes are generally exposed to the highest dose rates of any population group. An empirical model based on a detailed work study of individuals handling radioactive cargoes and the exposure rates at various distances from specific individual packages is described. The personnel doses thus calculated compared reasonably well with the doses recorded on personnel monitoring badges. The personnel doses were evaluated with reference to the total transport index handled by the workers, yielding results consistent with those reported elsewhere by earlier researchers. (author)

  8. Earliest Results in the Use of Activated Composite Membranes for the Transport of Silver Ions from Aqueous Solutions

    Directory of Open Access Journals (Sweden)

    Yucundo Mendoza-Tolentino

    2014-01-01

    Full Text Available This paper presents the results concerning the first use of activated composite membranes (ACMs for the facilitated transport of silver ions containing di-(2-ethylhexyl-dithiophosphoric acid (DTPA as the carrier. DTPA was immobilized by interfacial polymerization in a dense layer that was deposited in a porous layer, which was prepared on a nonwoven fabric support by phase inversion. The influence of fundamental parameters affecting the transport of silver ion as the carrier concentration in the membrane phase and stripping agent variation of the stripping solution have been studied. In the optimal conditions, the amount of silver transported across the ACMs was greater than 50%, whereas if the content of the carrier is modified, more than the 90% of the initial silver is removed from the feed phase.

  9. Modeling the atmospheric chemistry of TICs

    Science.gov (United States)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  10. Progress in Modeling Global Atmospheric CO2 Fluxes and Transport: Results from Simulations with Diurnal Fluxes

    Science.gov (United States)

    Collatz, G. James; Kawa, R.

    2007-01-01

    Progress in better determining CO2 sources and sinks will almost certainly rely on utilization of more extensive and intensive CO2 and related observations including those from satellite remote sensing. Use of advanced data requires improved modeling and analysis capability. Under NASA Carbon Cycle Science support we seek to develop and integrate improved formulations for 1) atmospheric transport, 2) terrestrial uptake and release, 3) biomass and 4) fossil fuel burning, and 5) observational data analysis including inverse calculations. The transport modeling is based on meteorological data assimilation analysis from the Goddard Modeling and Assimilation Office. Use of assimilated met data enables model comparison to CO2 and other observations across a wide range of scales of variability. In this presentation we focus on the short end of the temporal variability spectrum: hourly to synoptic to seasonal. Using CO2 fluxes at varying temporal resolution from the SIB 2 and CASA biosphere models, we examine the model's ability to simulate CO2 variability in comparison to observations at different times, locations, and altitudes. We find that the model can resolve much of the variability in the observations, although there are limits imposed by vertical resolution of boundary layer processes. The influence of key process representations is inferred. The high degree of fidelity in these simulations leads us to anticipate incorporation of realtime, highly resolved observations into a multiscale carbon cycle analysis system that will begin to bridge the gap between top-down and bottom-up flux estimation, which is a primary focus of NACP.

  11. Sediment transport processes and their resulting stratigraphy: informing science and society

    Science.gov (United States)

    Nittrouer, J. A.

    2013-12-01

    Sediment transport physically shapes planetary surfaces by producing patterns of erosion and deposition, with the relative magnitudes of geomorphic actions varying according to environmental conditions. Where sediment fills accommodation space and generates accumulation, a stratigraphic archive develops that potentially harbors a trove of information documenting dynamic conditions during the periods of sediment production, transport and deposition. By investigating the stratigraphic record, it is possible to describe changes in surface environments, as well as hypothesize about the development of regional tectonic and climate regimes. Ultimately, information contained within the stratigraphic record is critical for evaluating the geological history of terrestrial planets. The enigma of stratigraphy, however, is that sediment deposition is finicky, there is no uninterrupted record, and while deposits may reflect only a brief temporal window, they may still be used to infer about conditions that encompass much longer periods of time. Consider a case where meter-scale dune foresets, deposited in a matter of minutes to hours, are in contact with sediments above and below that reflect entirely different depositional circumstances and are separated in time by a hiatus of thousands or perhaps millions of years. To effectively unlock the scientific trove bound in stratigraphy, it is first necessary to identify where such unconformities exist and the conditions that lead to their development. This challenge is made much simpler through scientific advances in understanding sediment transport processes -- the examination of how fluid and solids interact under modern conditions -- because this is precisely where sediment patterns first emerge to produce accumulation that builds a stratigraphic record. By advancing an understanding of process-based sedimentology, it is possible to enhance diagnostic evaluations of the stratigraphic record. Fortunately, over the past several

  12. Glyphosate distribution in loess soils as a result of dynamic sediment transport processes during a simulated rainstorm

    Science.gov (United States)

    Commelin, Meindert; Martins Bento, Celia; Baartman, Jantiene; Geissen, Violette

    2016-04-01

    Glyphosate is one of the most widely used herbicides in the world. The wide and extensive use of glyphosate makes it important to be certain about the safety of glyphosate to off-target environments and organisms. This research aims to create more detailed insight into the distribution processes of glyphosate, and the effect that dynamic sediment transport processes have on this distribution, during water erosion in agricultural fields. Glyphosate distribution characteristics are investigated for two different soil surfaces: a smooth surface, and a surface with seeding lines on the contour. The capacity to transport glyphosate for different sediment groups was investigated. These groups were water-eroded sediment and sedimentation areas found on the plot surface. The contribution of particle bonded and dissolved transport to total overland transportation of glyphosate was analysed with a mass balance study. The experiment was conducted in the Wageningen UR rainfall simulator. Plots of 0.5m2 were used, with a 5% slope, and a total of six experimental simulations were done. A rainfall event with an intensity of 30mm/h was simulated, applied in four showers of 15 minutes each with 30 minutes pause in between. Glyphosate (16mg/kg) was applied on the top 20cm of each plot, and in the downstream part, soil samples were taken. Glyphosate analysis was done using HPLC-MS/MS (High Performance Liquid Chromatography tandem Mass Spectrometry). Besides that, photo analysis with eCognition was used to derive the soil surface per sediment group. The results show that particle bonded transport of glyphosate contributes significantly (for at least 25%) to glyphosate transport during a rainstorm event. Particle size and organic matter have a large influence on the mobility of glyphosate and on the transported quantity to off-target areas. Moreover, seeding lines on the soil surface decreased total overland transport, both of sediment and glyphosate. Taking this into account, plots

  13. The U. S. transportation sector in the year 2030: results of a two-part Delphi survey.

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, G.; Stephens, T.S. (Energy Systems); (Univ. of California at Davis); (ES)

    2011-10-11

    A two-part Delphi Survey was given to transportation experts attending the Asilomar Conference on Transportation and Energy in August, 2011. The survey asked respondents about trends in the US transportation sector in 2030. Topics included: alternative vehicles, high speed rail construction, rail freight transportation, average vehicle miles traveled, truck versus passenger car shares, vehicle fuel economy, and biofuels in different modes. The survey consisted of two rounds -- both asked the same set of seven questions. In the first round, respondents were given a short introductory paragraph about the topic and asked to use their own judgment in their responses. In the second round, the respondents were asked the same questions, but were also given results from the first round as guidance. The survey was sponsored by Argonne National Lab (ANL), the National Renewable Energy Lab (NREL), and implemented by University of California at Davis, Institute of Transportation Studies. The survey was part of the larger Transportation Energy Futures (TEF) project run by the Department of Energy, Office of Energy Efficiency and Renewable Energy. Of the 206 invitation letters sent, 94 answered all questions in the first round (105 answered at least one question), and 23 of those answered all questions in the second round. 10 of the 23 second round responses were at a discussion section at Asilomar, while the remaining were online. Means and standard deviations of responses from Round One and Two are given in Table 1 below. One main purpose of Delphi surveys is to reduce the variance in opinions through successive rounds of questioning. As shown in Table 1, the standard deviations of 25 of the 30 individual sub-questions decreased between Round One and Round Two, but the decrease was slight in most cases.

  14. Defect chemistry and oxygen transport of (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2), Sr: Part II: Oxygen transport

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Søgaard, Martin; Hendriksen, Peter Vang

    2009-01-01

    , the findings on the defect chemistry were reported, while the oxygen transport properties are reported here in part II. In the investigated material series, the amount of divalent dopant has been kept constant, while Sr ions have been substituted with Ca ions (smaller ionic radius) or Ba ions (larger ionic...... radius). The size difference induces different strains into the crystal structure in each composition. The possibility of simple relationships between various crystal strain parameters and the transport properties were analyzed. Oxygen pump controlled permeation experiments and a surface sensitive...

  15. New electronics stuff chemistry

    International Nuclear Information System (INIS)

    Byeon, Su Il

    2003-04-01

    The first part of this book is about equilibrium electrochemistry on electric thermo dynamic equilibrium state of electrochemistry, crystal defect of solid, thermodynamics on defect electron and election in semiconductor, Gawani potential, volta potential and equilibrium potential and thermodynamics application in Gawani battery. The second part deals with dynamic electrochemistry electrode reaction kinetics and corrosion potential in normal state, diffusion and transport of ion and electron and current impedance spectroscopy. It also mentions industrial electrochemistry and laboratory works in electronics chemistry course.

  16. Supramolecular Chemistry

    Indian Academy of Sciences (India)

    antigen interactions. working in different areas such as chemical science, biological science, physical science, material science and so on. On the whole, supramolecular chemistry focuses on two over- lapping areas, 'supramolecules' and ...

  17. Materials Chemistry

    CERN Document Server

    Fahlman, Bradley D

    2011-01-01

    The 2nd edition of Materials Chemistry builds on the strengths that were recognized by a 2008 Textbook Excellence Award from the Text and Academic Authors Association (TAA). Materials Chemistry addresses inorganic-, organic-, and nano-based materials from a structure vs. property treatment, providing a suitable breadth and depth coverage of the rapidly evolving materials field. The 2nd edition continues to offer innovative coverage and practical perspective throughout. After briefly defining materials chemistry and its history, seven chapters discuss solid-state chemistry, metals, semiconducting materials, organic "soft" materials, nanomaterials, and materials characterization. All chapters have been thoroughly updated and expanded with, for example, new sections on ‘soft lithographic’ patterning, ‘click chemistry’ polymerization, nanotoxicity, graphene, as well as many biomaterials applications. The polymer and ‘soft’ materials chapter represents the largest expansion for the 2nd edition. Each ch...

  18. Sixty years of interest in flow and transport theories: Sources of inspiration and a few results

    Science.gov (United States)

    Raats, Peter A. C.

    2016-04-01

    By choosing to major in soil physics at Wageningen now exactly 60 years ago, I could combine my interest in exact sciences with my experience of growing up on a farm. I never regretted that choice. In the first twenty years, I profited much from close contacts with members of the immediate post-WW II generation of soil physicists (especially Jerry Bolt, Arnold Klute, Ed Miller, Champ Tanner, Wilford Gardner, John Philip, and Jan van Schilfgaarde), chemical engineers (especially at UW Madison the trio Bob Bird, Warren Stewart and Ed Lightfoot) and experts in continuum mechanics (especially at Johns Hopkins Clifford Truesdell and Jerald Ericksen). As graduate student at Illinois with Klute, to describe flow and transport theories in soil science I initially explored as possible framework thermodynamics of irreversible processes (TIP), but soon switched to the continuum theory of mixtures (CTM), initiated by Truesdell in 1957. In CTM, the balance of forces gave a rational basis for flux equations. CTM allowed me to deal with swelling/shrinkage, role of inertia, boundary conditions, and structured soils. Later, I did use TIP to deal with certain aspects of transfer of water and heat in soils and selective uptake of water and nutrients by plant roots. Recently, a variety of theories for upscaling from the pore scale to the Darcy scale have clarified the potential, limits and common ground of CTM and TIP. A great advantage of CTM is that it provides geometric tools suited for kinematic aspects of flow, transport, and growth/decay processes. In particular, the concept of material coordinates of the solid phase that I used in my PhD thesis to cope with large deformation due to swelling/shrinkage of soils, later also turned to be useful to deal with simultaneous shrinkage and decay in peat soils and compost heaps, and the growth of plant tissues. Also, by focusing on the material coordinates for the water, it became possible to describe transport of solutes in unsaturated

  19. Research on condensed matter and atomic physics, using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 1. 1. Atomic and molecular physics. 2. Physics and chemistry of surfaces and interfaces

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  20. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 3. 4. Chemistry. 5. Biology. 6. Development of methods and instruments

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  1. Green Chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Collison, Melanie

    2011-05-15

    Green chemistry is the science of chemistry used in a way that will not use or create hazardous substances. Dr. Rui Resendes is working in this field at GreenCentre Canada, an offshoot of PARTEQ Innovations in Kingston, Ontario. GreenCentre's preliminary findings suggest their licensed product {sup S}witchable Solutions{sup ,} featuring 3 classes of solvents and a surfactant, may be useful in bitumen oil sands extraction.

  2. Analytical chemistry

    Czech Academy of Sciences Publication Activity Database

    Křivánková, Ludmila

    -, č. 22 (2011), s. 718-719 ISSN 1472-3395 Institutional research plan: CEZ:AV0Z40310501 Keywords : analytical chemistry * analytical methods * nanotechnologies Subject RIV: CB - Analytical Chemistry, Separation http://edition.pagesuite-professional.co.uk/launch.aspx?referral=other&pnum=&refresh=M0j83N1cQa91&EID=82bccec1-b05f-46f9-b085-701afc238b42&skip=

  3. Understanding the Effect of Surface Chemistry on Charge Generation and Transport in Poly (3-hexylthiophene)/CdSe Hybrid Solar Cells

    DEFF Research Database (Denmark)

    Lek, Jun Yan; Xi, Lifei; Kardynal, Beata

    2011-01-01

    For hybrid solar cells, interfacial chemistry is one of the most critical factors for good device performance. We have demonstrated that the size of the surface ligands and the dispersion of nanoparticles in the solvent and in the polymer are important criteria in obtaining optimized device...

  4. Relationship between structural features and water chemistry in boreal headwater streams--evaluation based on results from two water management survey tools suggested for Swedish forestry.

    Science.gov (United States)

    Lestander, Ragna; Löfgren, Stefan; Henrikson, Lennart; Ågren, Anneli M

    2015-04-01

    Forestry may cause adverse impacts on water quality, and the forestry planning process is a key factor for the outcome of forest operation effects on stream water. To optimise environmental considerations and to identify actions needed to improve or maintain the stream biodiversity, two silvicultural water management tools, BIS+ (biodiversity, impact, sensitivity and added values) and Blue targeting, have been developed. In this study, we evaluate the links between survey variables, based on BIS+ and Blue targeting data, and water chemistry in 173 randomly selected headwater streams in the hemiboreal zone. While BIS+ and Blue targeting cannot replace more sophisticated monitoring methods necessary for classifying water quality in streams according to the EU Water Framework Directive (WFD, 2000/60/EC), our results lend support to the idea that the BIS+ protocol can be used to prioritise the protection of riparian forests. The relationship between BIS+ and water quality indicators (concentrations of nutrients and organic matter) together with data from fish studies suggests that this field protocol can be used to give reaches with higher biodiversity and conservation values a better protection. The tools indicate an ability to mitigate forestry impacts on water quality if the operations are adjusted to this knowledge in located areas.

  5. Results of water chemistry control in the in-pile ''Callisto'' loop (an experimental PWR rig installed in the BR2 reactor)

    International Nuclear Information System (INIS)

    Weber, M.; Benoit, P.; Dekeyser, J.; Verwimp, A.

    1994-01-01

    Since June 1992, a new experimental facility, called CALLISTO, is being irradiated in the BR2 materials testing reactor at Mol, Belgium. The main objective of the present test campaign is to study the behaviour of advanced fuel to high burn-up rates in a realistic PWR environment. Three in-pile sections, containing each 9 fuel rods, are loaded inside the reactor vessel and are connected to a common out-of-pile pressurized water circulation loop (ref.1). The later is branched-off into a purification circuit (feed-bleed concept) and further equipped with safety and auxiliary systems. To cope with the test programme, the equipments are designed so that the guidelines of a PWR primary water chemistry can be followed (ref.2). Real steady-state conditions cannot be observed because the typical BR2 cycle (3 weeks running/3 weeks shut-down) is much shorter and because the rig is cooled down during each reactor shut-down. The purpose of this poster is to provide results of chemical parameters recorded during the cycling behaviour of the CALLISTO primary water. (authors). 4 figs., 1 tab., 2 refs

  6. The Effect of a Simulated Macropore on the Colloid-Facilitated Transport of Cesium and Strontium: Experiment and Model Results

    Science.gov (United States)

    Dittrich, T. M.; Ryan, J. N.; Saiers, J. E.

    2011-12-01

    The sorption of contaminants to mobile colloids has been shown to increase the transport of the contaminants in a process known as colloid-facilitated transport. Many laboratory experiments and computer model simulations have shown that enhanced transport can occur when a contaminant strongly associates with mobile colloids and release kinetics are slow relative to the rate of flow. Knowing when colloid-facilitated transport will affect field-scale situations and risk assessment decisions has been difficult. The three parts of our research were (1) conduct a set of isotherms and breakthrough curves for a well-characterized system (illite colloids, homogeneous quartz sand, saturated and unsaturated conditions), (2) conduct breakthrough experiments with the addition of a central macropore and, (3) model the results to identify and quantify the effects of desorption kinetics and unsaturated conditions on colloid-facilitated transport with a macropore. Breakthrough experiments used a 12.7 cm diameter and 33.5 cm long column packed with cleaned and sieved quartz sand. The homogeneous experiments used sand with a median grain size of 0.325 mm. For macropore experiments, a 2 cm diameter tube of 1.6 mm sand (about 5× the size of the matrix sand) was packed in the center of the column. A rainfall simulator was suspended over the column and a relative saturation of 1.0, 0.80, or 0.33 was established. Three moisture sensors and three tensiometers monitored the flow conditions. Effluent was collected with a peristaltic pump and a fraction collector and measured for total and dissolved ions, pH, and colloid concentration. Cesium and strontium were used as model contaminants because they are common contaminants found on Department of Energy sites in the United States and because they have contrasting sorption kinetics with illite. A previously developed model for saturated colloid-facilitated transport of cesium and strontium was extended to accommodate unsaturated conditions

  7. Chemistry control approach of pre commissioning and power operation of primary and auxiliary system of KGS-3 and 4 and trouble shooting made

    International Nuclear Information System (INIS)

    Bennet Raj, N.; Sahu, B.S.; Kumar, Vineet; Valluri, J.

    2008-01-01

    KGS (Kaiga Generating Station) 3 and 4 is a 220 MWe pressurized heavy water reactor (PHWR) using heavy water (D 2 O) as moderator and primary heat coolant and the secondary system is light water which is used to make the steam for generating the power. The chemistry control approach made for the successful commissioning and subsequent power operation of the unit is discussed here. The chemistry control is of two parts first part covers the pre commissioning chemistry control and the second part covers the commissioning chemistry control. During commissioning all systems were preserved by proper chemistry control and regular recirculation of system to avoid stagnancy. The major pre commissioning and commissioning chemistry control are depicted below: Pre commissioning chemistry control of primary heat transport (PHT) system and auxiliaries; Pre commissioning chemistry control of moderator system; Primary heat transport system hot conditioning with light water; Commissioning chemistry control of End Shield System (ESC) and Calandria Vault Cooling (CVC) system; Heavy water addition and its chemistry control in moderator system; and Heavy water addition and its chemistry control in PHT system. During power operation dew point in annular gas monitoring system (AGMS) of KGS unit 3 was maintaining in higher side under recirculation. The increase of dew point could be due to ingress of heavy water or light water. A new device was developed to collect condensate and the chemistry of the condensate was checked. The result indicated the ingress of light water. (author)

  8. Quantitative gene expression of somatostatin receptors and noradrenaline transporter underlying scintigraphic results in patients with neuroendocrine tumors

    DEFF Research Database (Denmark)

    Binderup, Tina; Knigge, Ulrich; Mellon Mogensen, Anne

    2008-01-01

    AIM: To measure, by a quantitative approach, the gene expression underlying the results of somatostatin receptor (sst) scintigraphy ((111)In-DTPA-octreotide) and noradrenaline transporter (NAT) scintigraphy ((123)I-MIBG) in patients with neuroendocrine (NE) tumors. METHODS: The gene expression of...... to achieve a better understanding of the link between them, which in turn could aid in planning and development of noninvasive molecular imaging of key molecular processes....

  9. SAF line analytical chemistry system

    International Nuclear Information System (INIS)

    Gerber, E.W.; Sherrell, D.L.

    1983-10-01

    An analytical chemistry system dedicated to supporting the Secure Automated Fabrication (SAF) line is discussed. Several analyses are required prior to the fuel pellets being loaded into cladding tubes to assure certification requirements will be met. These analyses, which will take less than 15 minutes, are described. The automated sample transport system which will be used to move pellets from the fabriction line to the chemistry area is also described

  10. Preliminary results from the Los Alamos TA54 complex terrain Atmospheric Transport Study (ATS)

    International Nuclear Information System (INIS)

    Vold, E.; Chan, M.; Sanders, L.

    1995-01-01

    The Los Alamos National Laboratory (LANL) Low-Level Radioactive Waste (LLRW) disposal site at TA54, Area G la located on a mesa top amidst a complex terrain of finger like mesas typically 30 motors or more In height above canyons of widths varying from 100 to 300 motors. Atmospheric dispersion from this site is of concern for routine operations and for potential Incidents during waste retrieval operations. Indian lands are located In the dominant downwind direction within 500 m from the site and provide further incentive to understand the potential and actual impacts of waste disposal operations. The permanent network of meteorological towers at LANL have been located primarily at mesa-top locations to coincide with most laboratory facilities and as such do not resolve the effects of channeling in the canyons and the influence this has on potential surface releases. An Atmospheric Transport Study (ATS) was initiated to better understand the wind flow fields and dispersion from the LANL Waste Storage and Disposal facilities at TA-54, Area G. As part of this effort, a series of six portable meteorological towers were sited in the vicinity of Area G, two at mesa top locations, one just east of the site where the mesas have dissipated to mild ridges, and three in the canyons adjacent to the disposal site mesa as indicated on the topographic representation of the local terrain. Since 1994, the towers have collected horizontal wind velocities, pressure, temperature, relative humidity and a radiation gamma reading every fifteen minutes. The data bass is being analyzed for trends and to provide a basis for comparison to computational modeling efforts to predict the flow fields

  11. Scientific Information Analysis of Chemistry Dissertations Using Thesaurus of Chemistry

    Directory of Open Access Journals (Sweden)

    Taghi Rajabi

    2017-09-01

    Full Text Available : Concept maps of chemistry can be obtained from thesaurus of chemistry. Analysis of information in the field of chemistry is done at graduate level, based on comparing and analyzing chemistry dissertations by using these maps. Therefore, the use of thesaurus for analyzing scientific information is recommended. Major advantage of using this method, is that it is possible to obtain a detailed map of all academic researches across all branches of science. The researches analysis results in chemical science can play a key role in developing strategic research policies, educational programming, linking universities to industries and postgraduate educational programming. This paper will first introduce the concept maps of chemistry. Then, emerging patterns from the concept maps of chemistry will be used to analyze the trend in the academic dissertations in chemistry, using the data collected and stored in our database at Iranian Research Institute for Information Science and Technology (IranDoc over the past 10 years (1998-2009.

  12. Chemistry, transport and dry deposition of trace gases in the boundary layer over the tropical Atlantic Ocean and the Guyanas during the GABRIEL field campaign

    Directory of Open Access Journals (Sweden)

    A. Stickler

    2007-07-01

    Full Text Available We present a comparison of different Lagrangian and chemical box model calculations with measurement data obtained during the GABRIEL campaign over the tropical Atlantic Ocean and the Amazon rainforest in the Guyanas, October 2005. Lagrangian modelling of boundary layer (BL air constrained by measurements is used to derive a horizontal gradient (≈5.6 pmol/mol km−1 of CO from the ocean to the rainforest (east to west. This is significantly smaller than that derived from the measurements (16–48 pmol/mol km−1, indicating that photochemical production from organic precursors alone cannot explain the observed strong gradient. It appears that HCHO is overestimated by the Lagrangian and chemical box models, which include dry deposition but not exchange with the free troposphere (FT. The relatively short lifetime of HCHO implies substantial BL-FT exchange. The mixing-in of FT air affected by African and South American biomass burning at an estimated rate of 0.12 h−1 increases the CO and decreases the HCHO mixing ratios, improving agreement with measurements. A mean deposition velocity of 1.35 cm/s for H2O2 over the ocean as well as over the rainforest is deduced assuming BL-FT exchange adequate to the results for CO. The measured increase of the organic peroxides from the ocean to the rainforest (≈0.66 nmol/mol d−1 is significantly overestimated by the Lagrangian model, even when using high values for the deposition velocity and the entrainment rate. Our results point at either heterogeneous loss of organic peroxides and/or their radical precursors, underestimated photodissociation or missing reaction paths of peroxy radicals not forming peroxides in isoprene chemistry. We calculate a mean integrated daytime net ozone production (NOP in the BL of (0.2±5.9 nmol/mol (ocean and (2.4±2.1 nmol/mol (rainforest. The NOP strongly correlates with NO and has a positive tendency in

  13. Smart Cities Will Need Chemistry

    Directory of Open Access Journals (Sweden)

    Alexandru WOINAROSCHY

    2016-06-01

    Full Text Available A smart city is a sustainable and efficient urban centre that provides a high quality of life to its inhabitants through optimal management of its resources. Chemical industry has a key role to play in the sustainable evolution of the smart cities. Additionally, chemistry is at the heart of all modern industries, including electronics, information technology, biotechnology and nano-technology. Chemistry can make the smart cities project more sustainable, more energy efficient and more cost effective. There are six broad critical elements of any smart city: water management systems; infrastructure; transportation; energy; waste management and raw materials consumption. In all these elements chemistry and chemical engineering are deeply involved.

  14. In-Package Chemistry Abstraction

    Energy Technology Data Exchange (ETDEWEB)

    E. Thomas

    2004-11-09

    This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste

  15. Who is Teaching the History of Chemistry?

    Science.gov (United States)

    Everett, Kenneth G.; DeLoach, Will S.

    1987-01-01

    Reports on a study into how the history of chemistry is being taught in colleges and universities. Results indicate that courses on the history of chemistry are hardly ever required of chemistry majors, and they are offered in only 10 percent of American Chemical Society approved chemistry departments. (TW)

  16. Spatial variability of streamwater chemistry and specific discharge during low flow periods - First results from snapshot sampling campaigns in thirteen Swiss catchments

    Science.gov (United States)

    Floriancic, Marius; Fischer, Benjamin; van Meerveld, Ilja

    2017-04-01

    Catchments consist of different landscape elements that store and release water differently. Few studies looked at which landscape elements contribute to streamflow during extended dry periods and whether these elements are similar in different catchments. We present a unique dataset from snapshot field campaigns in thirteen watersheds in Switzerland during low flow conditions in winter and summer 2016. The 10 to 110 km2 catchments varied from predominantly agricultural to alpine environments. In each campaign streamflow was measured and stream water was collected at a high spatial resolution using a nested sampling approach. Streamflow during the campaigns was less than the 65th percentile. We analyzed the water samples for the main ions and isotopic composition (Ca, Mg, SO4, F, NO3, Na, K, δ18O and δ2H) and compared the results with long-term datasets from the Swiss National Groundwater and River Monitoring Program (NAQUA and NADUF). For every sampling location, we calculated local and upslope catchment characteristics, including area, slope, flow length, topographic wetness index and elevation. Additionally, we determined land use, soil type and depth, geological and geomorphological characteristics from existing geodata for every sampling location. First analyses show that the spatial variation in water chemistry, isotopic composition and specific discharge is very high: Neighboring sampling locations could differ significantly in their specific discharge and isotopic and ion composition (up to a factor of 10), indicating different contributing sources. Water at the outlet was a mixture of water from different parts of the catchment. These first results suggest that the combination of snapshot water sampling and discharge measurements provides a valuable tool for identifying the spatial variability of contributing sources to streamflow. This information can then later be used to better constrain hydrological models and predict available water resources during

  17. Future flooding impacts on transportation infrastructure and traffic patterns resulting from climate change.

    Science.gov (United States)

    2011-11-01

    "This study investigated potential impacts of climate change on travel disruption resulting from road closures in two urban watersheds in the : Portland metropolitan area. We used ensemble climate change scenarios, a hydrologic model, stream channel ...

  18. Blood Sample Transportation by Pneumatic Transportation Systems

    DEFF Research Database (Denmark)

    Nybo, Mads; Lund, Merete E; Titlestad, Kjell

    2018-01-01

    BACKGROUND: Pneumatic transportation systems (PTSs) are increasingly used for transportation of blood samples to the core laboratory. Many studies have investigated the impact of these systems on different types of analyses, but to elucidate whether PTSs in general are safe for transportation...... of blood samples, existing literature on the subject was systematically assessed. METHODS: A systematic literature review was conducted following the preferred reporting items for systematic reviews and metaanalyses (PRISMA) Statement guidelines to gather studies investigating the impact of PTS on analyses...... in blood samples. Studies were extracted from PubMed and Embase. The search period ended November 2016. RESULTS: A total of 39 studies were retrieved. Of these, only 12 studies were conducted on inpatients, mainly intensive care unit patients. Blood gases, hematology, and clinical chemistry were well...

  19. Polymer Chemistry

    Science.gov (United States)

    Williams, Martha; Roberson, Luke; Caraccio, Anne

    2010-01-01

    This viewgraph presentation describes new technologies in polymer and material chemistry that benefits NASA programs and missions. The topics include: 1) What are Polymers?; 2) History of Polymer Chemistry; 3) Composites/Materials Development at KSC; 4) Why Wiring; 5) Next Generation Wiring Materials; 6) Wire System Materials and Integration; 7) Self-Healing Wire Repair; 8) Smart Wiring Summary; 9) Fire and Polymers; 10) Aerogel Technology; 11) Aerogel Composites; 12) Aerogels for Oil Remediation; 13) KSC's Solution; 14) Chemochromic Hydrogen Sensors; 15) STS-130 and 131 Operations; 16) HyperPigment; 17) Antimicrobial Materials; 18) Conductive Inks Formulations for Multiple Applications; and 19) Testing and Processing Equipment.

  20. Indoor Chemistry

    DEFF Research Database (Denmark)

    Weschler, Charles J.; Carslaw, Nicola

    2018-01-01

    This review aims to encapsulate the importance, ubiquity, and complexity of indoor chemistry. We discuss the many sources of indoor air pollutants and summarize their chemical reactions in the air and on surfaces. We also summarize some of the known impacts of human occupants, who act as sources...... and sinks of indoor chemicals, and whose activities (e.g., cooking, cleaning, smoking) can lead to extremely high pollutant concentrations. As we begin to use increasingly sensitive and selective instrumentation indoors, we are learning more about chemistry in this relatively understudied environment....

  1. General chemistry

    International Nuclear Information System (INIS)

    Kwon, Yeong Sik; Lee, Dong Seop; Ryu, Haung Ryong; Jang, Cheol Hyeon; Choi, Bong Jong; Choi, Sang Won

    1993-07-01

    The book concentrates on the latest general chemistry, which is divided int twenty-three chapters. It deals with basic conception and stoichiometry, nature of gas, structure of atoms, quantum mechanics, symbol and structure of an electron of ion and molecule, chemical thermodynamics, nature of solid, change of state and liquid, properties of solution, chemical equilibrium, solution and acid-base, equilibrium of aqueous solution, electrochemistry, chemical reaction speed, molecule spectroscopy, hydrogen, oxygen and water, metallic atom; 1A, IIA, IIIA, carbon and atom IVA, nonmetal atom and an inert gas, transition metals, lanthanons, and actinoids, nuclear properties and radioactivity, biochemistry and environment chemistry.

  2. Stability and control flight test results of the space transportation system's orbiter

    Science.gov (United States)

    Culp, M. A.; Cooke, D. R.

    1982-01-01

    Flight testing of the Space Shuttle Orbiter is in progress and current results of the post-flight aerodynamic analyses are discussed. The purpose of these analyses is to reduce the pre-flight aerodynamic uncertainties, thereby leading to operational certification of the Orbiter flight envelope relative to the integrated airframe and flight control system. Primary data reduction is accomplished with a well documented maximum likelihood system identification techniques.

  3. Improving the natural gas transporting based on the steady state simulation results

    International Nuclear Information System (INIS)

    Szoplik, Jolanta

    2016-01-01

    The work presents an example of practical application of gas flow modeling results in the network, that was obtained for the existing gas network and for real data about network load depending on the time of day and air temperature. The gas network load in network connections was estimated based on real data concerning gas consumption by customers and weather data in 2010, based on two-parametric model based on the number of degree-days of heating. The aim of this study was to elaborate a relationship between pressure and gas stream introduced into the gas network. It was demonstrated that practical application of elaborated relationship in gas reduction station allows for the automatic adjustment of gas pressure in the network to the volume of network load and maintenance of gas pressure in the whole network at possibly the lowest level. It was concluded based on the results obtained that such an approach allows to reduce the amount of gas supplied to the network by 0.4% of the annual network load. - Highlights: • Determination of the hourly nodal demand for gas by the consumers. • Analysis of the results of gas flow simulation in pipeline network. • Elaboration of the relationship between gas pressure and gas stream feeding the network. • Automatic gas pressure steering in the network depending on the network load. • Comparison of input gas pressure in the system without and with pressure steering.

  4. Yielding Unexpected Results: Precipitation of Ba[subscript3](PO[subscript4])[subscript2] and Implications for Teaching Solubility Principles in the General Chemistry Curriculum

    Science.gov (United States)

    Hazen, Jeffery L.; Cleary, David A.

    2014-01-01

    Precipitation of barium phosphate from aqueous solutions of a barium salt and a phosphate salt forms the basis for a number of conclusions drawn in general chemistry. For example, the formation of a solid white precipitate is offered as evidence that barium phosphate is insoluble. Furthermore, analysis of the supernatant is used to illustrate the…

  5. Multiple-Choice Exams and Guessing: Results from a One-Year Study of General Chemistry Tests Designed to Discourage Guessing

    Science.gov (United States)

    Campbell, Mark L.

    2015-01-01

    Multiple-choice exams, while widely used, are necessarily imprecise due to the contribution of the final student score due to guessing. This past year at the United States Naval Academy the construction and grading scheme for the department-wide general chemistry multiple-choice exams were revised with the goal of decreasing the contribution of…

  6. Corrosion behaviour of reinforcements in a carbonaceous concrete: influence of the chemistry of the interstitial solution and of a transport barrier

    International Nuclear Information System (INIS)

    The phenomenon of steel reinforcements corrosion in a carbonaceous concrete is a many-sided process, little understood and of a great economical importance. The aim of this work is to identify, in condition of concrete carbonation, the corrosion mechanisms of reinforcements in order to anticipate the long term damage of the buildings. An analytical and experimental study has been carried out and has revealed two hypotheses. These ones consist to characterize the control of the corrosion velocity, either by the anodic reaction or by addition of an oxidant. The corrosion experiments in solution which represents the interstitial solution of a carbonaceous cement paste show that the evolution of the metal/medium interface is very sensitive to the species introduced in the medium during the carbonation process. The change of the ionic strength and of the sulfate and alkali metals concentrations are the main factors influencing the localization of the reactional areas, the nature of the phases formed at the interface as well as the corrosion velocities and their change with time. The evolution of the water saturation degree of the coating is the preponderant factor on the corrosion velocity. The analytical calculations and the experimental results show that for fixed hydrous conditions, the corrosion velocity in stationary conditions is negligible. The taking into account of transient conditions of transport as well as humidification and drying cycles is required for the long term anticipation of the damage of reinforced concrete buildings. (O.M.)

  7. Alcohol combustion chemistry

    KAUST Repository

    Sarathy, Mani

    2014-10-01

    Alternative transportation fuels, preferably from renewable sources, include alcohols with up to five or even more carbon atoms. They are considered promising because they can be derived from biological matter via established and new processes. In addition, many of their physical-chemical properties are compatible with the requirements of modern engines, which make them attractive either as replacements for fossil fuels or as fuel additives. Indeed, alcohol fuels have been used since the early years of automobile production, particularly in Brazil, where ethanol has a long history of use as an automobile fuel. Recently, increasing attention has been paid to the use of non-petroleum-based fuels made from biological sources, including alcohols (predominantly ethanol), as important liquid biofuels. Today, the ethanol fuel that is offered in the market is mainly made from sugar cane or corn. Its production as a first-generation biofuel, especially in North America, has been associated with publicly discussed drawbacks, such as reduction in the food supply, need for fertilization, extensive water usage, and other ecological concerns. More environmentally friendly processes are being considered to produce alcohols from inedible plants or plant parts on wasteland. While biofuel production and its use (especially ethanol and biodiesel) in internal combustion engines have been the focus of several recent reviews, a dedicated overview and summary of research on alcohol combustion chemistry is still lacking. Besides ethanol, many linear and branched members of the alcohol family, from methanol to hexanols, have been studied, with a particular emphasis on butanols. These fuels and their combustion properties, including their ignition, flame propagation, and extinction characteristics, their pyrolysis and oxidation reactions, and their potential to produce pollutant emissions have been intensively investigated in dedicated experiments on the laboratory and the engine scale

  8. Radiological source terms resulting from sabotage to transportation casks: Final report

    International Nuclear Information System (INIS)

    Miller, N.E.; Fentiman, A.W.; Kuhlman, M.R.; Ebersole, H.N.; Trott, B.D.; Orban, J.E.

    1986-11-01

    The Nuclear Regulatory Commission (NRC) promulgated a rule, 10 CFR 73.37, which established requirements for safeguarding shipments of spent fuel to reduce the risk from acts of sabotage of highly radioactive materials. After the rule became effective, experimental programs conducted by Battelle for the NRC and by Sandia for the DOE showed the consequences of an attack using explosives on a shipment of PWR spent fuel were significantly less than had been indicated by earlier analytical studies. As a result, NRC is considering modifying the safeguards requirements. In support of NRC's efforts to modify the rule, Battelle has conducted additional experimental studies to evaluate the consequences of attacks on shipments of high-temperature gas-cooled reactor (HTGR) spent fuel, nonpower reactor (NPR) spent fuel, and vitrified high-level waste (HLW). Model casks containing surrogates of the spent fuels or high-level waste were penetrated by the jet from a precision shaped charge. Air samples collected after each test were used to estimate the quantities of respirable material released after the cask was penetrated. Results of the tests were scaled by specially developed scaling factors to estimate the releases that may occur from attacks on full-sized shipments of the materials. It was concluded that the sabotage of shipments of HTGR spent fuel, NPR spent fuel, or vitrified HLW should have no greater consequences than those predicted for shipments of PWR spent fuel

  9. Fuel-rich, catalytic reaction experimental results. [fuel development for high-speed civil transport aircraft

    Science.gov (United States)

    Rollbuhler, Jim

    1991-01-01

    Future aeropropulsion gas turbine combustion requirements call for operating at very high inlet temperatures, pressures, and large temperature rises. At the same time, the combustion process is to have minimum pollution effects on the environment. Aircraft gas turbine engines utilize liquid hydrocarbon fuels which are difficult to uniformly atomize and mix with combustion air. An approach for minimizing fuel related problems is to transform the liquid fuel into gaseous form prior to the completion of the combustion process. Experimentally obtained results are presented for vaporizing and partially oxidizing a liquid hydrocarbon fuel into burnable gaseous components. The presented experimental data show that 1200 to 1300 K reaction product gas, rich in hydrogen, carbon monoxide, and light-end hydrocarbons, is formed when flowing 0.3 to 0.6 fuel to air mixes through a catalyst reactor. The reaction temperatures are kept low enough that nitrogen oxides and carbon particles (soot) do not form. Results are reported for tests using different catalyst types and configurations, mass flowrates, input temperatures, and fuel to air ratios.

  10. First results of the University of Maryland electron beam transport experiment

    International Nuclear Information System (INIS)

    Namkung, W.; Loschialpo, P.; Reiser, M.; Suter, J.; Lawson, J.D.

    1981-01-01

    A study is made of emittance growth in periodically focused intense beams. For initial studies, the electron gun consists of a 1-cm diam., dispenser-type cathode and an anode covered with a wire mesh. To avoid neutralization, 5 /mu/s, 60 Hz pulses are used and the current is 230 mA at 5 kV. By varying the voltage from 10 kV to 500 volts the space charge depression, /omega/sub //omega/sub //o, of the particle oscillation frequencies in the focusing channel can be changed from approximately 0.04 to approximately 0.2. Further increase of /omega/sub //omega/sub //o should be possible with modified guns and the use of emittance control grids. Four prototype solenoids have been built, and the results of experiments with the first two are presented. 8 refs

  11. Confectionary Chemistry.

    Science.gov (United States)

    Levine, Elise Hilf

    1996-01-01

    Presents activities and demonstrations that enable teachers to use various types of confections as tactile experiences to spark chemistry students' interest and generate enthusiasm for learning. Presents uses of candy in teaching about atomic structure, spontaneous nuclear decay, chemical formulas, fractoluminescence, the effect of a molecular…

  12. Supramolecular Chemistry

    Indian Academy of Sciences (India)

    by-product from the 'unattractive goo' of an experiment which had gone wrong. Pederson examined the product and the struc- ture of dibenzo-18-crown-6 was determined (Figure 2A). Inter- estingly, in presence. 1. N Jayaraman, 2016 Nobel. Prize in Chemistry: Confer- ring Molecular Machines as. Engines of Creativity ...

  13. Food carbohydrate chemistry

    National Research Council Canada - National Science Library

    Wrolstad, R. E

    2012-01-01

    .... Now in Food Carbohydrate Chemistry, author Wrolstad emphasizes the application of carbohydrate chemistry to understanding the chemistry, physical and functional properties of food carbohydrates...

  14. Handbook of heterocyclic chemistry

    National Research Council Canada - National Science Library

    Katritzky, Alan R

    2010-01-01

    ... Heterocyclic Chemistry I (1984) Comprehensive Heterocyclic Chemistry II (1996) Comprehensive Heterocyclic Chemistry III (2008) Comprehensive Organic Functional Group Transformations I (1995) Compreh...

  15. Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport

    Science.gov (United States)

    Oliver, W. R.

    1980-01-01

    The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

  16. Analysis of events resulting from an accident involving a transport aircraft carrying plutonium oxide

    International Nuclear Information System (INIS)

    Lombard, J.; Hubert, P.; Pages, P.

    1988-03-01

    This study assesses the impact on health of an aircraft accident resulting in the release into the atmosphere of the reprocessing product PuO 2 . The consequences associated with the inhalation of the initial cloud, the passage into suspension of the powder deposited on the ground and the contamination of the food chain were therefore evaluated as a function of the quantity released. It was deduced that the risk of inhalation is by far the greatest. The countermeasures likely to be implemented during emergency action were subjected to analysis. In particular, it appeared that the impact of the first cloud could not really be mitigated but that it was possible to take effective action against the other consequences. Research was undertaken to establish tolerable release quantities which could if necessary be used as acceptance criteria for packaging tests. This indicated that a release in the range 10-100 g would give rise to controllable consequences, at least in a rural environment. The calculations relating to the estimation of the acute toxicity associated with the inhalation of Plutonium and details of the emergency action plan are given in appendix

  17. Valve stem packing seal test results for primary heat transport system conditions in Canadian nuclear generating stations

    International Nuclear Information System (INIS)

    Dixon, D.F.; Farrell, J.M.; Coutinho, R.F.

    1978-06-01

    Valve stem packing tests were done to obtain performance data on packing already in CANDU-PHW reactor service and on alternative packings. Most of the tests were replicated. Results are presented for ten packings tested under two stem cycle modes; leakage, packing consolidation and packing friction were the main responses. Packing tests were performed with water at close to CANDU-PHW reactor primary heat transport (PHT) system conditions (288 deg C and 10 MPa), but without ionizing radiation. The test rigs had rising, rotating stems. Stuffing box dimensions were typical of a standard Velan valve; packings were spring loaded to control applied packing stress

  18. Atmosphere physics and chemistry

    International Nuclear Information System (INIS)

    Delmas, R.; Megie, G.; Peuch, V.H.

    2005-10-01

    Since the 1970's, the awareness about the atmospheric pollution threat has led to a spectacular development of the researches on the complex interactions between the chemical composition of the atmosphere and the climate. This book makes a synthesis of the state-of-the-art in this very active domain of research. Content: introduction, atmosphere dynamics and transport, matter-radiation interaction and radiant transfer, physico-chemical processes, atmospheric aerosol and heterogenous chemistry, anthropic and natural emissions and deposition, stratospheric chemical system, tropospheric chemical system, polluted boundary layer, paleo-environments and ice archives, role of atmospheric chemistry in global changes, measurement principles and instruments, numerical modeling, experimental strategy, regulation and management of the atmospheric environment, index. (J.S.)

  19. Effects of regional-scale and convective transports on tropospheric ozone chemistry revealed by aircraft observations during the wet season of the AMMA campaign

    Directory of Open Access Journals (Sweden)

    G. Ancellet

    2009-01-01

    Full Text Available The African Monsoon Multidisciplinary Analyses (AMMA fourth airborne campaign was conducted in July–August 2006 to study the chemical composition of the middle and upper troposphere in West Africa with the major objective to better understand the processing of chemical emissions by the West African Monsoon (WAM and its associated regional-scale and vertical transports. In particular, the french airborne experiment was organized around two goals. The first was to characterize the impact of Mesoscale Convective Systems (MCSs on the ozone budget in the upper troposphere and the evolution of the chemical composition of these convective plumes as they move westward toward the Atlantic Ocean. The second objective was to discriminate the impact of remote sources of pollution over West Africa, including transport from the middle east, Europe, Asia and from southern hemispheric fires. Observations of O3, CO, NOx, H2O and hydroperoxide above West Africa along repeated meridional transects were coupled with transport analysis based on the FLEXPART lagrangian model. The cross analysis of trace gas concentrations and transport pathways revealed 5 types of air masses: convective uplift of industrial and urban emissions, convective uplift of biogenic emissions, slow advection from Cotonou polluted plumes near the coast, meridional transport of upper tropospheric air from the subtropical barrier region, and meridional transport of Southern Hemisphere (SH biomass burning emissions. O3/CO correlation plots and the correlation plots of H2O2 with a OH proxy revealed not only a control of the trace gas variability by transport processes but also significant photochemical reactivity in the mid- and upper troposphere. The study of four MCSs outflow showed contrasted chemical composition and air mass origins depending on the MCSs lifetime and latitudinal position. Favorables conditions for ozone

  20. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I Brine Pilot

    Science.gov (United States)

    Xu, T.; Kharaka, Y.K.; Doughty, C.; Freifeld, B.M.; Daley, T.M.

    2010-01-01

    To demonstrate the potential for geologic storage of CO2 in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO2 were injected into a high-permeability sandstone and the resulting subsurface plume of CO2 was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO2 injection for baseline geochemical characterization, during the CO2 injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO2 breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO3- and aqueous Fe, and significant shifts in the isotopic compositions of H2O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO2 plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO2 concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO2 could ultimately be sequestered as carbonate minerals. ?? 2010 Elsevier B.V.

  1. Reactive transport modeling to study changes in water chemistry induced by CO2 injection at the Frio-I brine pilot

    Energy Technology Data Exchange (ETDEWEB)

    Kharaka, Y.K; Doughty, C.; Freifeld, B.M.; Daley, T.M.; Xu, T.

    2009-11-01

    To demonstrate the potential for geologic storage of CO{sub 2} in saline aquifers, the Frio-I Brine Pilot was conducted, during which 1600 tons of CO{sub 2} were injected into a high-permeability sandstone and the resulting subsurface plume of CO{sub 2} was monitored using a variety of hydrogeological, geophysical, and geochemical techniques. Fluid samples were obtained before CO{sub 2} injection for baseline geochemical characterization, during the CO{sub 2} injection to track its breakthrough at a nearby observation well, and after injection to investigate changes in fluid composition and potential leakage into an overlying zone. Following CO{sub 2} breakthrough at the observation well, brine samples showed sharp drops in pH, pronounced increases in HCO{sub 3}{sup -} and aqueous Fe, and significant shifts in the isotopic compositions of H{sub 2}O and dissolved inorganic carbon. Based on a calibrated 1-D radial flow model, reactive transport modeling was performed for the Frio-I Brine Pilot. A simple kinetic model of Fe release from the solid to aqueous phase was developed, which can reproduce the observed increases in aqueous Fe concentration. Brine samples collected after half a year had lower Fe concentrations due to carbonate precipitation, and this trend can be also captured by our modeling. The paper provides a method for estimating potential mobile Fe inventory, and its bounding concentration in the storage formation from limited observation data. Long-term simulations show that the CO{sub 2} plume gradually spreads outward due to capillary forces, and the gas saturation gradually decreases due to its dissolution and precipitation of carbonates. The gas phase is predicted to disappear after 500 years. Elevated aqueous CO{sub 2} concentrations remain for a longer time, but eventually decrease due to carbonate precipitation. For the Frio-I Brine Pilot, all injected CO{sub 2} could ultimately be sequestered as carbonate minerals.

  2. Research on condensed matter and atomic physics using major experimental facilities and devices: Physics, chemistry, biology. Reports on results. Vol. 2. 3. Solid state physics and materials science

    International Nuclear Information System (INIS)

    1993-01-01

    This report in three volumes substantiates the contents of the programme survey published in September 1989. The progress reports cover the following research areas: Vol. I, (1). Atomic and molecular physics - free atoms, molecules, macromolecules, clusters, matrix-isolated atoms and molecules. (2) Physics and chemistry of surfaces and interfaces - epitaxy, surface structure, adsorption, electrical, magnetic, and optical properties, thin films, synthetic layer structure. Vol. II, (3). Solid-state physics, and materials science -structural research, lattice dynamics, magnetic structure and dynamics, electronic states; load; spin and pulse density fluctuations; diffusion and internal motion, defects, unordered systems and liquids. Vol. III, (4). Chemistry - bonding and structure, kinetics and reaction mechanisms, polymer research, analysis and synthesis. (5). Biology, - structure and dynamics of biological macromolecules, membrane and cell biology. (6) Development of methods and instruments - neutron sources, synchrotron sources, special accelerators, research with interlinked systems and devices. (orig.) [de

  3. Lack of the nucleoside transporter ENT1 results in the Augustine-null blood type and ectopic mineralization.

    Science.gov (United States)

    Daniels, Geoff; Ballif, Bryan A; Helias, Virginie; Saison, Carole; Grimsley, Shane; Mannessier, Lucienne; Hustinx, Hein; Lee, Edmond; Cartron, Jean-Pierre; Peyrard, Thierry; Arnaud, Lionel

    2015-06-04

    The Augustine-negative alias At(a-) blood type, which seems to be restricted to people of African ancestry, was identified half a century ago but remains one of the last blood types with no known genetic basis. Here we report that a nonsynonymous single nucleotide polymorphism in SLC29A1 (rs45458701) is responsible for the At(a-) blood type. The resulting p.Glu391Lys variation in the last extracellular loop of the equilibrative nucleoside transporter 1 (ENT1; also called SLC29a1) is known not to alter its ability to transport nucleosides and nucleoside analog drugs. Furthermore, we identified 3 individuals of European ancestry who are homozygous for a null mutation in SLC29A1 (c.589+1G>C) and thus have the Augustine-null blood type. These individuals lacking ENT1 exhibit periarticular and ectopic mineralization, which confirms an important role for ENT1/SLC29A1 in human bone homeostasis as recently suggested by the skeletal phenotype of aging Slc29a1(-/-) mice. Our results establish Augustine as a new blood group system and place SLC29A1 as a new candidate gene for idiopathic disorders characterized with ectopic calcification/mineralization. © 2015 by The American Society of Hematology.

  4. HMI scientific report - chemistry 1988

    International Nuclear Information System (INIS)

    1989-01-01

    Results of the R and D activities are reported, dealing with the following subjects: Interface processes and energy conversion, high-energy photochemistry and radiation chemistry as well as trace elements chemistry. A list of publications and lectures is added and gives a view on results obtained in research and development. (EF) [de

  5. SPECIAL ISSUE DEDICATED TO THE 10TH ANNIVERSARY OF THE CHEMISTRY JOURNAL OF MOLDOVA. GENERAL, INDUSTRIAL AND ECOLOGICAL CHEMISTRY

    OpenAIRE

    Gheorghe DUCA

    2016-01-01

    Ten years ago, in 2006, CHEMISTRY JOURNAL OF MOLDOVA. General, Industrial and Ecological Chemistry was founded by the Institute of Chemistry of Academy of Sciences of Moldova and Moldova State University. Chemistry Journal of Moldova is an open access, international indexed and peer-reviewed journal that publishes papers of high quality containing original results in the areas of Chemical Sciences, such as analytical chemistry, ecological chemistry, food chemistry, industrial chem...

  6. Chemistry and physics

    International Nuclear Information System (INIS)

    Broerse, J.J.; Barendsen, G.W.; Kal, H.B.; Kogel, A.J. van der

    1983-01-01

    This book contains the extended abstracts of the contributions of the poster workshop sessions on chemistry and physics of the 7th international congress of radiation research. They cover the following main topics: primary processes in radiation physics and chemistry, general chemistry in radiation chemistry, DNA and model systems in radiation chemistry, molecules of biological interest in radiation chemistry, techniques in radiation chemistry, hot atom chemistry. refs.; figs.; tabs

  7. Radioanalytical chemistry

    International Nuclear Information System (INIS)

    1982-01-01

    The bibliography of Hungarian literature in the field of radioanalytical chemistry covers the four-year period 1976-1979. The list of papers contains 290 references in the alphabetical order of the first authors. The majority of the titles belongs to neutron activation analysis, labelling, separation and determination of radioactive isotopes. Other important fields like radioimmunoassay, environmental protection etc. are covered as well. (Sz.J.)

  8. Analytical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1985-01-01

    The division for Analytical Chemistry continued to try and develope an accurate method for the separation of trace amounts from mixtures which, contain various other elements. Ion exchange chromatography is of special importance in this regard. New separation techniques were tried on certain trace amounts in South African standard rock materials and special ceramics. Methods were also tested for the separation of carrier-free radioisotopes from irradiated cyclotron discs

  9. Technetium Chemistry in HLW

    International Nuclear Information System (INIS)

    Hess, Nancy J.; Felmy, Andrew R.; Rosso, Kevin M.; Xia Yuanxian

    2005-01-01

    Tc contamination is found within the DOE complex at those sites whose mission involved extraction of plutonium from irradiated uranium fuel or isotopic enrichment of uranium. At the Hanford Site, chemical separations and extraction processes generated large amounts of high level and transuranic wastes that are currently stored in underground tanks. The waste from these extraction processes is currently stored in underground High Level Waste (HLW) tanks. However, the chemistry of the HLW in any given tank is greatly complicated by repeated efforts to reduce volume and recover isotopes. These processes ultimately resulted in mixing of waste streams from different processes. As a result, the chemistry and the fate of Tc in HLW tanks are not well understood. This lack of understanding has been made evident in the failed efforts to leach Tc from sludge and to remove Tc from supernatants prior to immobilization. Although recent interest in Tc chemistry has shifted from pretreatment chemistry to waste residuals, both needs are served by a fundamental understanding of Tc chemistry

  10. Green chemistry

    International Nuclear Information System (INIS)

    Warner, John C.; Cannon, Amy S.; Dye, Kevin M.

    2004-01-01

    A grand challenge facing government, industry, and academia in the relationship of our technological society to the environment is reinventing the use of materials. To address this challenge, collaboration from an interdisciplinary group of stakeholders will be necessary. Traditionally, the approach to risk management of materials and chemicals has been through inerventions intended to reduce exposure to materials that are hazardous to health and the environment. In 1990, the Pollution Prevention Act encouraged a new tact-elimination of hazards at the source. An emerging approach to this grand challenge seeks to embed the diverse set of environmental perspectives and interests in the everyday practice of the people most responsible for using and creating new materials--chemists. The approach, which has come to be known as Green Chemistry, intends to eliminate intrinsic hazard itself, rather than focusing on reducing risk by minimizing exposure. This chapter addresses the representation of downstream environmental stakeholder interests in the upstream everyday practice that is reinventing chemistry and its material inputs, products, and waste as described in the '12 Principles of Green Chemistry'

  11. Green chemistry

    International Nuclear Information System (INIS)

    Colonna, P.

    2006-01-01

    The depletion of world fossil fuel reserves and the involvement of greenhouse gases in the global warming has led to change the industrial and energy policies of most developed countries. The goal is now to reserve petroleum to the uses where it cannot be substituted, to implement renewable raw materials obtained from plants cultivation, and to consider the biodegradability of molecules and of manufactured objects by integrating the lifetime concept in their expected cycle of use. The green chemistry includes the design, development and elaboration of chemical products and processes with the aim of reducing or eliminating the use and generation of harmful compounds for the health and the environment, by adapting the present day operation modes of the chemical industry to the larger framework of the sustainable development. In addition to biofuels, this book reviews the applications of green chemistry in the different industrial processes in concern. Part 1 presents the diversity of the molecules coming from renewable carbon, in particular lignocellulose and the biotechnological processes. Part 2 is devoted to materials and treats of the overall available technological solutions. Part 3 focusses on functional molecules and chemical intermediates, in particular in sugar- and fats-chemistry. Part 4 treats of biofuels under the aspects of their production and use in today's technologies. The last part deals with the global approaches at the environmental and agricultural levels. (J.S.)

  12. Physical chemistry II essentials

    CERN Document Server

    REA, The Editors of

    1992-01-01

    REA's Essentials provide quick and easy access to critical information in a variety of different fields, ranging from the most basic to the most advanced. As its name implies, these concise, comprehensive study guides summarize the essentials of the field covered. Essentials are helpful when preparing for exams, doing homework and will remain a lasting reference source for students, teachers, and professionals. Physical Chemistry II includes reaction mechanisms, theoretical approaches to chemical kinetics, gravitational work, electrical and magnetic work, surface work, kinetic theory, collisional and transport properties of gases, statistical mechanics, matter and waves, quantum mechanics, and rotations and vibrations of atoms and molecules.

  13. Probing stratospheric transport and chemistry with new balloon and aircraft observations of the meridional and vertical N2O isotope distribution

    Directory of Open Access Journals (Sweden)

    J. Kaiser

    2006-01-01

    Full Text Available A comprehensive set of stratospheric balloon and aircraft samples was analyzed for the position-dependent isotopic composition of nitrous oxide (N2O. Results for a total of 220 samples from between 1987 and 2003 are presented, nearly tripling the number of mass-spectrometric N2O isotope measurements in the stratosphere published to date. Cryogenic balloon samples were obtained at polar (Kiruna/Sweden, 68° N, mid-latitude (southern France, 44° N and tropical sites (Hyderabad/India, 18° N. Aircraft samples were collected with a newly-developed whole air sampler on board of the high-altitude aircraft M55 Geophysica during the EUPLEX 2003 campaign. For mixing ratios above 200 nmol mol−1, relative isotope enrichments (δ values and mixing ratios display a compact relationship, which is nearly independent of latitude and season and which can be explained equally well by Rayleigh fractionation or mixing. However, for mixing ratios below 200 nmol mol−1 this compact relationship gives way to meridional, seasonal and interannual variations. A comparison to a previously published mid-latitude balloon profile even shows large zonal variations, justifying the use of three-dimensional (3-D models for further data interpretation. In general, the magnitude of the apparent fractionation constants (i.e., apparent isotope effects increases continuously with altitude and decreases from the equator to the North Pole. Only the latter observation can be understood qualitatively by the interplay between the time-scales of N2O photochemistry and transport in a Rayleigh fractionation framework. Deviations from Rayleigh fractionation behavior also occur where polar vortex air mixes with nearly N2O-free upper stratospheric/mesospheric air (e.g., during the boreal winters of 2003 and possibly 1992. Aircraft observations in the polar vortex at mixing ratios below 200 nmol mol−1 deviate from isotope variations expected for both Rayleigh fractionation and two

  14. Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H2O, and O3

    Science.gov (United States)

    Froidevaux, L.; Anderson, J.; Wang, H.-J.; Fuller, R. A.; Schwartz, M. J.; Santee, M. L.; Livesey, N. J.; Pumphrey, H. C.; Bernath, P. F.; Russell, J. M., III; McCormick, M. P.

    2015-09-01

    We describe the publicly available data from the Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS) project and provide some results, with a focus on hydrogen chloride (HCl), water vapor (H2O), and ozone (O3). This data set is a global long-term stratospheric Earth system data record, consisting of monthly zonal mean time series starting as early as 1979. The data records are based on high-quality measurements from several NASA satellite instruments and the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) on SCISAT. We examine consistency aspects between the various data sets. To merge ozone records, the time series are debiased relative to SAGE II (Stratospheric Aerosol and Gas Experiments) values by calculating average offsets versus SAGE II during measurement overlap periods, whereas for other species the merging derives from an averaging procedure during overlap periods. The GOZCARDS files contain mixing ratios on a common pressure-latitude grid, as well as standard errors and other diagnostics; we also present estimates of systematic uncertainties in the merged products. Monthly mean temperatures for GOZCARDS were also produced, based directly on data from the Modern-Era Retrospective analysis for Research and Applications. The GOZCARDS HCl merged product comes from the Halogen Occultation Experiment (HALOE), ACE-FTS and lower-stratospheric Aura Microwave Limb Sounder (MLS) data. After a rapid rise in upper-stratospheric HCl in the early 1990s, the rate of decrease in this region for 1997-2010 was between 0.4 and 0.7 % yr-1. On 6-8-year timescales, the rate of decrease peaked in 2004-2005 at about 1 % yr-1, and it has since levelled off, at ~ 0.5 % yr-1. With a delay of 6-7 years, these changes roughly follow total surface chlorine, whose behavior versus time arises from inhomogeneous changes in the source gases. Since the late 1990s, HCl decreases in the lower stratosphere have occurred with

  15. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    International Nuclear Information System (INIS)

    Ryan, R.R.

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research

  16. Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R.R. (comp.)

    1982-05-01

    This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

  17. Chemistry for Whom? Gender Awareness in Teaching and Learning Chemistry

    Science.gov (United States)

    Andersson, Kristina

    2017-01-01

    Marie Ståhl and Anita Hussénius have defined what discourses dominate national tests in chemistry for Grade 9 in Sweden by using feminist, critical didactic perspectives. This response seeks to expand the results in Ståhl and Hussénius's article "Chemistry inside an epistemological community box!--Discursive exclusions and inclusions in the…

  18. Beyond emission targets: how to decarbonize the passenger transport sector? Results from the Deep Decarbonization Pathways Project for Transport (DDPP-T)

    International Nuclear Information System (INIS)

    2017-11-01

    Reaching the ambitious climate objective of the Paris Agreement requires decreasing significantly sectoral emissions from the transport sector. However, the ambition pledged for the transport sector under the Nationally Determined Contributions (NDCs) remains very limited. The DDPP-T analyzes Paris-compatible sectoral strategies for the passenger transport that can serve to inform the 2018 Facilitative Dialogue and the preparation of future, more ambitious, NDCs by 2020. In a context of an expected steep increase in global mobility demand, deep decarbonization will require a mix of different 'well-known' options: the rapid diffusion of low-carbon vehicles and low-carbon fuels and the modal shift towards low-carbon modes like public transport and non-motorized transport (cycling and walking). However, while crucial, these options are not 'silver bullets' that on their own meet the decarbonization challenge, given their intrinsic individual limitations. The project adopts an integrated approach of sectoral deep decarbonization strategies articulating the diffusion of low-carbon technologies with the future of mobility and all its drivers, such as the demographic and economic situation, the localization of population centers, the transport and urban planning, the lifestyles and the features of mobility services. The strategies are context-specific in order to capture different country circumstances, and consider a long-term horizon to inform the short-term conditions enabling structural changes of the transport system. Building on four country analyses (France, Japan, Mexico and the United Kingdom), this Issue Brief derives five cross-cutting messages for a deep decarbonization of the passenger transport sector. Key messages: - Deep decarbonization of the passenger transport sector requires strong actions on four pillars of transformation. Only a consistent articulation of these synergistic pillars allows an effective deep decarbonization. - Deep

  19. Crossing Levels and Representations: The Connected Chemistry (CC1) Curriculum

    Science.gov (United States)

    Levy, Sharona T.; Wilensky, Uri

    2009-01-01

    Connected Chemistry (named CC1 to denote Connected Chemistry Chapter 1) is a computer-based environment for learning the topics of gas laws and kinetic molecular theory in chemistry. It views chemistry from an "emergent" perspective, how macroscopic phenomena result from the interaction of many submicroscopic particles. Connected Chemistry employs…

  20. Chemistry beyond positivism.

    Science.gov (United States)

    Brandt, Werner W

    2003-05-01

    Chemistry is often thought to be quite factual, and therefore might be considered close to the "positivist" ideal of a value-free science. A closer look, however, reveals that the field is coupled to the invisible realm of values, meanings, and purpose in various ways, and chemists interact with that realm loosely and unevenly. Tacit knowledge is one important locus of such interactions. We are concerned in this essay with two questions. What is the nature of the knowledge when we are in the early stages of discovery? and In what ways does the hidden reality we are seeking affect our search for an understanding of it? The first question is partly answered by Polanyi's theory of tacit knowledge, while the second one leads us to realize the limitations of our language when discussing "reality"-or certain chemical experimental results. A strictly positivist approach is of little use, but so is the opposite, the complete disregard of facts. The contrast between positivism and non-formulable aspects of scientific reasoning amounts to a paradox that needs to be analyzed and can lead to a "connected" chemistry. This in turn resembles networks described by Schweber and is more concerned than the chemistry "as it is" with aspects such as the image of chemistry, the challenges chemists face as citizens, and chemistry in liberal education.

  1. results

    Directory of Open Access Journals (Sweden)

    Salabura Piotr

    2017-01-01

    Full Text Available HADES experiment at GSI is the only high precision experiment probing nuclear matter in the beam energy range of a few AGeV. Pion, proton and ion beams are used to study rare dielectron and strangeness probes to diagnose properties of strongly interacting matter in this energy regime. Selected results from p + A and A + A collisions are presented and discussed.

  2. Dynamic Combinatorial Chemistry

    DEFF Research Database (Denmark)

    Lisbjerg, Micke

    This thesis is divided into seven chapters, which can all be read individually. The first chapter, however, contains a general introduction to the chemistry used in the remaining six chapters, and it is therefore recommended to read chapter one before reading the other chapters. Chapter 1...... is a general introductory chapter for the whole thesis. The history and concepts of dynamic combinatorial chemistry are described, as are some of the new and intriguing results recently obtained. Finally, the properties of a broad range of hexameric macrocycles are described in detail. Chapter 2 gives...

  3. Interstellar chemistry

    Science.gov (United States)

    Klemperer, William

    2006-01-01

    In the past half century, radioastronomy has changed our perception and understanding of the universe. In this issue of PNAS, the molecular chemistry directly observed within the galaxy is discussed. For the most part, the description of the molecular transformations requires specific kinetic schemes rather than chemical thermodynamics. Ionization of the very abundant molecular hydrogen and atomic helium followed by their secondary reactions is discussed. The rich variety of organic species observed is a challenge for complete understanding. The role and nature of reactions involving grain surfaces as well as new spectroscopic observations of interstellar and circumstellar regions are topics presented in this special feature. PMID:16894148

  4. Present address of cutting-edge chemistry in Korea

    International Nuclear Information System (INIS)

    2007-01-01

    This introduces the research center, company and chemistry department with excellent results. This book lists the name of those, which are organic molecule design laboratory by Sunmun university, intelligence Nano technology research center by Biotechnology, Ewha university, Nano chemistry laboratory by Department of chemistry, Yonsei university, science education research center by Haying university, solid chemistry laboratory by Department of Nano science, Ewha university, the center of innovation of chemistry industry with R and D by LG chemistry, Korea Research Institute of Chemical Technology, Department of Chemistry, Sogang university, Department of Chemistry, Busan university and Department of Chemistry, Dankook university.

  5. Theoretical chemistry periodicities in chemistry and biology

    CERN Document Server

    Eyring, Henry

    1978-01-01

    Theoretical Chemistry: Periodicities in Chemistry and Biology, Volume 4 covers the aspects of theoretical chemistry. The book discusses the stably rotating patterns of reaction and diffusion; the chemistry of inorganic systems exhibiting nonmonotonic behavior; and population cycles. The text also describes the mathematical modeling of excitable media in neurobiology and chemistry; oscillating enzyme reactions; and oscillatory properties and excitability of the heart cell membrane. Selected topics from the theory of physico-chemical instabilities are also encompassed. Chemists, mechanical engin

  6. Interfacial chemistry of zinc anodes for reinforced concrete structures

    Energy Technology Data Exchange (ETDEWEB)

    Covino, B.S. Jr.; Bullard, S.J.; Cramer, S.D.; Holcomb, G.R. [Dept. of Energy, Albany, OR (United States). Albany Research Center; McGill, G.E.; Cryer, C.B. [Oregon Dept. of Transportation, Salem, OR (United States); Stoneman, A. [International Lead Zinc Research Organization, Research Triangle Park, NC (United States); Carter, R.R. [California Dept. of Transportation, Sacramento, CA (United States)

    1997-12-01

    Thermally-sprayed zinc anodes are used in both galvanic and impressed current cathodic protection systems for reinforced concrete structures. The Albany Research Center, in collaboration with the Oregon Department of Transportation, has been studying the effect of electrochemical aging on the bond strength of zinc anodes for bridge cathodic protection systems. Changes in anode bond strength and other anode properties can be explained by the chemistry of the zinc-concrete interface. The chemistry of the zinc-concrete interface in laboratory electrochemical aging studies is compared with that of several bridges with thermal-sprayed zinc anodes and which have been in service for 5 to 10 years using both galvanic and impressed current cathodic protection systems. The bridges are the Cape Creek Bridge on the Oregon coast and the East Camino Undercrossing near Placerville, CA. Also reported are interfacial chemistry results for galvanized steel rebar from the 48 year old Longbird Bridge in Bermuda.

  7. Colour chemistry in water

    OpenAIRE

    Cardona, Maria

    2015-01-01

    Atmospheric carbon dioxide (CO2) levels have increased dramatically in the last few decades. Famous for causing global warming, CO2 is also resulting in the acidification of seas and oceans. http://www.um.edu.mt/think/colour-chemistry-in-water/

  8. Ground water chemistry in SFR. Results from a sampling and analysis campaign year 2000[SFR (Final repository for radioactive operational waste)]; Grundvattenkemi i SFR. Resultat av provtagnings- och analyskampanj under aar 2000

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, Ann-Chatrin [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Chemistry

    2002-02-01

    The ground water chemistry is regularly controlled at four observation points/boreholes within the control program for the operational stage in SFR. Initially, samples were taken twice a year, but after a revision of the control program in 1996, it was limited to yearly sampling with a more comprehensive sampling from several boreholes every fifth year. Such a comprehensive program was performed in year 2000. In three boreholes tests were made using a mobile field laboratory for 'on-line' analysis of pH-value, redox potential, conductivity, free oxygen and temperature. Gas analysis and determination of microbes were also made. In the other boreholes with sufficient flow, manual samples were taken. In this report the new results are presented together with a complete compilation of chemistry data since the start of the control program in 1989.

  9. A comparison of solute-transport solution techniques and their effect on sensitivity analysis and inverse modeling results

    Science.gov (United States)

    Mehl, S.; Hill, M.C.

    2001-01-01

    Five common numerical techniques for solving the advection-dispersion equation (finite difference, predictor corrector, total variation diminishing, method of characteristics, and modified method of characteristics) were tested using simulations of a controlled conservative tracer-test experiment through a heterogeneous, two-dimensional sand tank. The experimental facility was constructed using discrete, randomly distributed, homogeneous blocks of five sand types. This experimental model provides an opportunity to compare the solution techniques: the heterogeneous hydraulic-conductivity distribution of known structure can be accurately represented by a numerical model, and detailed measurements can be compared with simulated concentrations and total flow through the tank. The present work uses this opportunity to investigate how three common types of results - simulated breakthrough curves, sensitivity analysis, and calibrated parameter values - change in this heterogeneous situation given the different methods of simulating solute transport. The breakthrough curves show that simulated peak concentrations, even at very fine grid spacings, varied between the techniques because of different amounts of numerical dispersion. Sensitivity-analysis results revealed: (1) a high correlation between hydraulic conductivity and porosity given the concentration and flow observations used, so that both could not be estimated; and (2) that the breakthrough curve data did not provide enough information to estimate individual values of dispersivity for the five sands. This study demonstrates that the choice of assigned dispersivity and the amount of numerical dispersion present in the solution technique influence estimated hydraulic conductivity values to a surprising degree.

  10. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, K.

    1982-01-01

    The textbook is a Czech-to-German translation of the second revised edition and covers the subject under the headings: general nuclear chemistry, methods of nuclear chemistry, preparative nuclear chemistry, analytical nuclear chemistry, and applied chemistry. The book is especially directed to students

  11. Cyclodextrin chemistry

    International Nuclear Information System (INIS)

    Khan, M.Z.; Chuaqui, C.A.

    1990-05-01

    The chemistry of cyclodextrins was studied. This study included synthesising some cyclodextrin derivatives, preparing selected inclusion complexes with cyclodextrin and investigating the effects of gamma irradiation on cyclodextrins and certain linear oligosaccharides. This report presents a brief review of the structure and properties of cyclodextrins, the synthesis of cyclodextrin derivatives, their complexation and applications. This is followed by a description of the synthesis of some cyclodextrin derivatives and the preparation of inclusion complexes of cyclodextrin with some organic compounds. Finally, the effects of gamma irradiation on cyclodextrins, some of their derivatives and certain structurally related carbohydrates are discussed. The gamma irradiation studies were carried out for two reasons: to study the effects of gamma irradiation on cyclodextrins and their derivatives; and to investigate selectivity during the gamma irradiation of cyclodextrin derivatives

  12. Theoretical chemistry

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Work in theoretical chemistry was organized under the following topics: scattering theory and dynamics (elastic scattering of the rare gas hydrides, inelastic scattering in Li + H 2 , statistical theory for bimolecular collisions, model study of dissociative scattering, comparative study of elastic scattering computational methods), studies of atmospheric diatomic and triatomic species, structure and spectra of diatomic molecules, the evaluation of van der Waals forces, potential energy surfaces and structure and dynamics, calculation of molecular polarizabilities, and development of theoretical techniques and computing systems. Spectroscopic parameters are tabulated for NO 2 , N 2 O, H 2 O + , VH, and NH. Self-consistent-field wave functions were computed for He 2 in two-center and three-center bases. Rare gas hydride intermolecular potentials are shown. (9 figures, 14 tables) (U.S.)

  13. Combustion chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, N.J. [Lawrence Berkeley Laboratory, CA (United States)

    1993-12-01

    This research is concerned with the development and use of sensitivity analysis tools to probe the response of dependent variables to model input variables. Sensitivity analysis is important at all levels of combustion modeling. This group`s research continues to be focused on elucidating the interrelationship between features in the underlying potential energy surface (obtained from ab initio quantum chemistry calculations) and their responses in the quantum dynamics, e.g., reactive transition probabilities, cross sections, and thermal rate coefficients. The goals of this research are: (i) to provide feedback information to quantum chemists in their potential surface refinement efforts, and (ii) to gain a better understanding of how various regions in the potential influence the dynamics. These investigations are carried out with the methodology of quantum functional sensitivity analysis (QFSA).

  14. The effects of land use on fluvial sediment chemistry for the conterminous U.S. - results from the first cycle of the NAWQA Program: trace and major elements, phosphorus, carbon, and sulfur.

    Science.gov (United States)

    Horowitz, Arthur J; Stephens, Verlin C

    2008-08-01

    In 1991, the U.S. Geological Survey (USGS) began the first cycle of its National Water Quality Assessment (NAWQA) Program. The Program encompassed 51 river basins that collectively accounted for more than 70% of the total water use (excluding power generation), and 50% of the drinking water supply in the U.S. The basins represented a variety of hydrologic settings, rock types (geology), land-use categories, and population densities. One aspect of the first cycle included bed sediment sampling; sites were chosen to represent baseline and important land-use categories (e.g., agriculture, urban) in each basin. In total, over 1200 bed sediment samples were collected. All samples were size-limited (or=95% of the concentrations present), rather than total-recoverable chemical data. Land-use percentages, upstream underlying geology, and population density were determined for each site and evaluated to asses their relative influence on sediment chemistry. Baseline concentrations for the entire U.S. also were generated from a subset of all the samples, and are based on material collected from low population (sediment chemistry. The only land-use category that appears to substantially affect sediment chemistry is percent urban, and this result is mirrored by population density; in fact, the latter appears more consistent than the former.

  15. Modern Analytical Chemistry in the Contemporary World

    Science.gov (United States)

    Šíma, Jan

    2016-01-01

    Students not familiar with chemistry tend to misinterpret analytical chemistry as some kind of the sorcery where analytical chemists working as modern wizards handle magical black boxes able to provide fascinating results. However, this approach is evidently improper and misleading. Therefore, the position of modern analytical chemistry among…

  16. Forensic Chemistry Training

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Increasing the types of terrorism and crime nowadays, the importance of the forensic sciences can be bett er understood. Forensic science is the application of the wide spectrum of science to answer the question of legal system. It contains the application of the principles, techniques and methods of basic sciences and its main aim is the determination of the physical facts which are important in legal situations. Forensic chemistry is the branch of chemistry which performs the chemical analysis of evidences that used in the courts. Forensic chemist is the professional chemist who analyzes the evidences from crime scene and reaches a result by application of tests. Th us, they have to have a special education. In forensic laboratories candidates who have chemistry/biochemistry undergraduate degree and took biology and forensic chemistry lectures are preferred. It is necessary to design graduate and undergraduate education to train a forensic chemist. Science education should be at the core of the undergraduate education. In addition to this strong laboratory education on both science and forensic science should be given. Th e graduate program of forensic science example should contain forensic science subjects, strong academic lectures on special subjects and research and laboratory components.

  17. The study of the container types used for transport and final disposal of the radioactive wastes resulting from decommissioning of nuclear facilities

    International Nuclear Information System (INIS)

    Postelnicu, C.

    1998-01-01

    The purpose of the present paper is to select from a variety of package forms and capacities some containers which will be used for transport and disposal of the radioactive wastes resulting from decommissioning of nuclear facilities into the National Repository for Radioactive Waste - Baita, Bihor county. Taken into account the possibilities of railway and / or road transport and waste disposal in our country, detailed container classification was given in order to use them for radioactive waste transport and final disposal from decommissioning of IFIN-HH Research Reactor. (author)

  18. Atmospheric Chemistry and Air Pollution

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Gaffney

    2003-01-01

    Full Text Available Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  19. Chamber transport

    International Nuclear Information System (INIS)

    Olson, Craig L.

    2001-01-01

    Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system

  20. Environmental chemistry. Seventh edition

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States)

    1999-11-01

    This book presents a basic understanding of environmental chemistry and its applications. In addition to providing updated materials in this field, the book emphasizes the major concepts essential to the practice of environmental chemistry. Topics of discussion include the following: toxicological chemistry; toxicological chemistry of chemical substances; chemical analysis of water and wastewater; chemical analysis of wastes and solids; air and gas analysis; chemical analysis of biological materials and xenobiotics; fundamentals of chemistry; and fundamentals of organic chemistry.

  1. Complex and surprising VOC chemistry in oil and gas producing regions: H3O+ CIMS results from the SONGNEX 2015 aircraft mission

    Science.gov (United States)

    Koss, A.; Yuan, B.; Warneke, C.; Gilman, J.; Lerner, B. M.; Veres, P. R.; Eilerman, S. J.; Peischl, J.; Wild, R. J.; Brown, S. S.; Thompson, C. R.; Ryerson, T. B.; Hanisco, T. F.; Wolfe, G. M.; St Clair, J. M.; Thayer, M. P.; Keutsch, F. N.; Murphy, S. M.; De Gouw, J. A.

    2017-12-01

    VOCs emitted from oil and natural gas extraction operations can significantly affect local and regional air quality. During the SONGNEX 2015 mission aboard NOAA's P3 Orion aircraft, which surveyed a number of major oil and gas producing regions in the United States, VOCs and several inorganic compounds were characterized using high-resolution time-of-flight H3O+ CIMS (similar to PTR-ToF). Here we present an overview and comparison of air toxics in nine basins, and a more detailed view of VOCs in the Permian Basin (TX/NM). In many basins, mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. High concentrations of methanol were also consistently observed. Hydrogen sulfide (H2S) was observed in a limited number of locations, and we suggest some likely sources. The Permian basin had the highest overall concentrations of measured VOCs. Several unexpected and underreported species were also detected, including aromatic and cycloalkane oxidation products, nitrogen heterocycles, and potentially a diamondoid compound (adamantane). This work highlights the challenges of interpreting PTR-MS data in oil and gas-producing regions, and suggests that there may be VOCs in these regions important to atmospheric chemistry that are not currently measurement targets.

  2. Science Update: Inorganic Chemistry.

    Science.gov (United States)

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  3. Frontiers in Atmospheric Chemistry Modelling

    Science.gov (United States)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this

  4. Review of SR-Can: Evaluation of SKB's handling of spent fuel performance, radionuclide chemistry and geosphere transport parameters. External review contribution in support of SKI's and SSI's review of SR-Can

    International Nuclear Information System (INIS)

    Stenhouse, Mike; Jegou, Christophe; Brown, Paul; Meinrath, Guenther; Nitsche, Heino; Ekberg, Christian

    2008-03-01

    SR-Can covers the containment phase of the KBS-3 barriers as well as the consequences of releases of radionuclides to the rock and eventually the biosphere (after complete containment within fuel canisters has partially failed). The aim of this report is to provide a range of review comments with respect to those parameters related to spent fuel performance as well as radionuclide chemistry and transport. These parameter values are used in the quantification of consequences due to release of radionuclides from potentially leaking canisters. The report does not cover modelling approaches used for quantification of consequences. However, modelling used to derive parameter values is to some extent addressed (such as calculation of maximum radionuclide concentration due to formation of solubility limiting phases). The following are the key highlights and comments generated in the course of the review: Inconsistencies exist between recommendations provided in technical reports and those quoted in the Data Report. One of the reasons for such inconsistencies has been the timing of different pieces of research. It is hoped that the timing of contributions to SR-Site will be such that these inconsistencies can be avoided. Sensitivity analyses need to be carried out and reported in a number of areas to support some of the assumptions or decisions made in the assessment calculations. The likelihood is that SKB has performed many of the sensitivity analyses identified in different parts of this report, but these need to be reported, preferably to complement the recommendations provided

  5. Superheavy element chemistry at GARIS

    Directory of Open Access Journals (Sweden)

    Haba Hiromitsu

    2016-01-01

    Full Text Available A gas-jet transport system has been installed to the RIKEN GAs-filled Recoil Ion Separator, GARIS to start up SuperHeavy Element (SHE chemistry. This system is a promising approach for exploring new frontiers in SHE chemistry: background radioactivities from unwanted by-products are suppressed, a high gas-jet transport yield is achieved, and new chemical reactions can be investigated. Useful radioisotopes of 261Rfa,b, 262Db, and 265Sga,b for chemical studies were produced in the reactions of 248Cm(18O,5n261Rfa,b, 248Cm(19F,5n262Db, and 248Cm(22Ne,5n265Sga,b, respectively. They were successfully extracted to a chemistry laboratory by the gas-jet method. Production and decay properties of 261Rfa,b, 262Db, and 265Sga,b were investigated in detail with the rotating wheel apparatus for α- and spontaneous fission spectrometry. Present status and perspectives of the SHE chemistry at GARIS are also briefly presented.

  6. Uncertainty estimation and global forecasting with a chemistry-transport model - application to the numerical simulation of air quality; Estimation de l'incertitude et prevision d'ensemble avec un modele de chimie transport - Application a la simulation numerique de la qualite de l'air

    Energy Technology Data Exchange (ETDEWEB)

    Mallet, V.

    2005-12-15

    The aim of this work is the evaluation of the quality of a chemistry-transport model, not by a classical comparison with observations, but by the estimation of its uncertainties due to the input data, to the model formulation and to the numerical approximations. The study of these 3 sources of uncertainty is carried out with Monte Carlo simulations, with multi-model simulations and with comparisons between numerical schemes, respectively. A high uncertainty is shown for ozone concentrations. To overcome the uncertainty-related limitations, a strategy consists in using the overall forecasting. By combining several models (up to 48) on the basis of past observations, forecasts can be significantly improved. This work has been also the occasion of developing an innovative modeling system, named Polyphemus. (J.S.)

  7. Aqueous chemistry of transactinides

    International Nuclear Information System (INIS)

    Schaedel, M.

    2001-01-01

    The aqueous chemistry of the first three transactinide elements is briefly reviewed with special emphasis given to recent experimental results. Short introductory remarks are discussing the atom-at-a-time situation of transactinide chemistry as a result of low production cross-sections and short half-lives. In general, on-line experimental techniques and, more specifically, the automated rapid chemistry apparatus, ARCA, are presented. Present and future developments of experimental techniques and resulting perspectives are outlined at the end. The central part is mainly focussing on hydrolysis and complex formation aspects of the superheavy group 4, 5, and 6 transition metals with F - and Cl - anions. Experimental results are compared with the behaviour of lighter homologous elements and with relativistic calculations. It will be shown that the chemical behaviour of the first superheavy elements is already strongly influenced by relativistic effects. While it is justified to place rutherfordium, dubnium and seaborgium in the Periodic Table of the Elements into group 4, 5 and 6, respectively, it is no more possible to deduce from this position in detail the chemical properties of these transactinide or superheavy elements. (orig.)

  8. 41 CFR 301-70.101 - What factors must we consider in determining which method of transportation results in the...

    Science.gov (United States)

    2010-07-01

    ... with the nature and purpose of the duties of the employee requiring such travel.” (b) Travel by common carrier (air, rail, bus) is considered the most advantageous method to perform official travel. Other methods of transportation may be authorized as advantageous only when the use of common carrier...

  9. Scenarios, policies and impacts for the linked transport and energy systems. Results of the European TRIAS project

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Wolfgang; Helfrich, Nicki [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany); Krail, Michael [Karlsruhe Univ. (T.H.) (Germany). Inst. fuer Wirtschaftspolitik und Wirtschaftsforschung; Fiorello, Davide; Fermi, Francesca [TRT Trasporti e Territori, Milan (Italy); Schade, Burkhard [European Commission Seville (ES). Institute for Prospective Technological Studies (IPTS)

    2008-07-01

    High oil prices and the growing awareness that this will not be a temporary but a permanent situation fosters the search for alternative fuels and new technologies to propel the transport system, which, so far, in Europe depends to more than 96% on fossil fuels. Two of these alternatives would be hydrogen and biofuels that both can be generated from a number of different sources including a number of non-fossil and renewable sources. The TRIAS project combined four models (ASTRA, POLES, VACLAV, Regio-SUSTAIN) to analyse the impacts of different policies that would foster the diffusion of alternative fuels into the transport system. The impact analysis covers the fields of transport, energy, environment, technology and economy. The basic conclusions that can be drawn are that such policies, if they are formulated in an appropriate manner, could stimulate investments and economic development on the one hand and on the other hand would have the potential to generate positive impacts in terms of reductions of CO{sub 2} emissions and increase of security of energy supply due to reduced imports of fossil fuels and the use of a greater diversity of fuels for transport. (orig.)

  10. Lifelong disturbance of serotonin transporter functioning results in fear learning deficits : Reversal by blockade of CRF1 receptors

    NARCIS (Netherlands)

    Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne

    2015-01-01

    The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the

  11. Water chemistry and materials degradation in LWR'S

    International Nuclear Information System (INIS)

    Haenninen, H.; Toerroenen, K.; Aaltonen, P.

    1994-01-01

    Water chemistry plays a major role in corrosion, in erosion corrosion and in activity transport in NPPs; it impacts upon the operational safety of LWRs in two main ways: integrity of pressure boundary materials and activity transport and out-of-core radiation fields. A good control of water chemistry can significantly reduce these problems and improve plant safety, but economic pressures are leading to more rigorous operating conditions: fuel burnups are to be increased, higher efficiencies are to be achieved by running at higher temperatures and plant lifetimes are to be extended. Typical water chemistry specifications used in PWR and BWR plants are presented and the chemistry optimization is discussed. The complex interplay of metallurgical, mechanical and environmental factors in environmental sensitive cracking is shown, with details on studies for carbon steels, stainless steels and nickel base alloys. 20 refs., 8 figs., 4 tabs

  12. Chemistry in Our Life

    Indian Academy of Sciences (India)

    IAS Admin

    toothpaste, soaps and cosmetics, (7) plastics and polymers, (8) chemistry in health and disease, (9) chemistry of building, (10) fire chemistry and (11) chemistry of electricity. To write on these topics at a popular level for lay persons, without bringing in chemical for- mulas, structures or equations, is extremely difficult.

  13. Chemistry of high energies

    International Nuclear Information System (INIS)

    Bugaenko, L.T.; Kuz'min, M.G.; Polak, L.S.

    1988-01-01

    An attempt was made to integrate plasma chemistry, radiation chemistry and photochemistry under the name of ''Chemistry of high energies''. Theoretical background of these disciplines, as well as principles of their technology (methods of energy supply, methods of absorbed energy determination, apparatus and processes) are considered. Application of processes of high energy chemistry in engineering is discussed. 464 refs.; 85 figs.; 59 tabs

  14. Posthole Sensor Performance in the USArray Transportable Array - Results from Testing and Initial Deployments in Alaska and Canada

    Science.gov (United States)

    Frassetto, A.; Busby, R. W.; Hafner, K.; Sauter, A.; Woodward, R.

    2014-12-01

    To prepare for the deployment of EarthScope's USArray Transportable Array (TA) in Alaska and adjacent Canada over the next several years, IRIS has evaluated different strategies for emplacing posthole seismometers. The goal of this work has been to maintain or enhance a TA station's noise performance while reducing the weight and logistical considerations required for its installation. Motivating this research are developments in posthole broadband seismometer design and the unique conditions for operating in this region, where many potential sites are located on frost-fractured outcrops or underlain by permafrost, in either case only accessible by helicopter. Current emplacement methods use a portable rig to auger or hammer-drill a hole 2.5-5 meters deep, in unconsolidated materials and permafrost, or by diamond bit coring 1-3 meters into rock. These emplacements are used at new TA installations and upgrades to existing AK network stations, and we compare their performance to the lower-48 TA vault installations. Through July 2014 there are eight TA and six upgraded AK stations operating under USArray; including five since at least October 2012, providing a detailed record of seasonal and/or site-specific behavior. We also discuss testing of different downhole configurations for 13 stations deployed at Piñon Flat Observatory in California since April 2014. Station performance is presented and compared using probability density functions summed from hourly power spectral density calculations. These are computed for the continuous time series of seismic data recorded on each seismic channel. Our results show that the noise performance of seismometers in Alaska with cased- or core- hole installations sometimes exceeds that of the quietest TA stations in the lower-48, particularly for the horizontal channels at long periods. We analyze and discuss the performance of example stations, comparing to other nearby seismometers. We also examine the performance of AK

  15. Left ventricular mass in dialysis patients, determinants and relation with outcome. Results from the COnvective TRansport STudy (CONTRAST.

    Directory of Open Access Journals (Sweden)

    Ira M Mostovaya

    Full Text Available BACKGROUND AND OBJECTIVES: Left ventricular mass (LVM is known to be related to overall and cardiovascular mortality in end stage kidney disease (ESKD patients. The aims of the present study are 1 to determine whether LVM is associated with mortality and various cardiovascular events and 2 to identify determinants of LVM including biomarkers of inflammation and fibrosis. DESIGN SETTING PARTICIPANTS & MEASUREMENTS: Analysis was performed with data of 327 ESKD patients, a subset from the CONvective TRAnsport STudy (CONTRAST. Echocardiography was performed at baseline. Cox regression analysis was used to assess the relation of LVM tertiles with clinical events. Multivariable linear regression models were used to identify factors associated with LVM. RESULTS: Median age was 65 (IQR: 54-73 years, 203 (61% were male and median LVM was 227 (IQR: 183-279 grams. The risk of all-cause mortality (hazard ratio (HR = 1.73, 95% CI: 1.11-2.99, cardiovascular death (HR = 3.66, 95% CI: 1.35-10.05 and sudden death (HR = 13.06; 95% CI: 6.60-107 was increased in the highest tertile (>260 grams of LVM. In the multivariable analysis positive relations with LVM were found for male gender (B = 38.8±10.3, residual renal function (B = 17.9±8.0, phosphate binder therapy (B = 16.9±8.5, and an inverse relation for a previous kidney transplantation (B = -41.1±7.6 and albumin (B = -2.9±1.1. Interleukin-6 (Il-6, high-sensitivity C-reactive protein (hsCRP, hepcidin-25 and connective tissue growth factor (CTGF were not related to LVM. CONCLUSION: We confirm the relation between a high LVM and outcome and expand the evidence for increased risk of sudden death. No relationship was found between LVM and markers of inflammation and fibrosis. TRIAL REGISTRATION: Controlled-Trials.com ISRCTN38365125.

  16. Chemistry and Art.

    Science.gov (United States)

    Lipscher, Juraj

    2018-02-01

    This review summarizes possibilities of including scientific methods for investigation of art objects into the secondary school chemistry curriculum. We discuss methods such as X-ray radiography, infrared reflectography, neutron activation autoradiography, X-ray fluorescence, and Raman spectroscopy and provide recent examples of their use. The results obtained, especially when combined with modern digital image processing algorithms, are indeed impressive. The second part of the paper is devoted to suggestions for actual use in teaching. The activities in the classroom can be centered around scientific investigation of a single painting, properties and use of a single pigment, or utilizing parallels in the history of Chemistry and history of Art. Finally, scientific methods for detecting art fraud including actual historical examples are especially motivating for the students and various teaching activities can be designed around this aspect.

  17. Global O3–CO correlations in a chemistry and transport model during July–August: evaluation with TES satellite observations and sensitivity to input meteorological data and emissions

    Directory of Open Access Journals (Sweden)

    H.-D. Choi

    2017-07-01

    Full Text Available We examine the capability of the Global Modeling Initiative (GMI chemistry and transport model to reproduce global mid-tropospheric (618 hPa ozone–carbon monoxide (O3–CO correlations determined by the measurements from the Tropospheric Emission Spectrometer (TES aboard NASA's Aura satellite during boreal summer (July–August. The model is driven by three meteorological data sets (finite-volume General Circulation Model (fvGCM with sea surface temperature for 1995, Goddard Earth Observing System Data Assimilation System Version 4 (GEOS-4 DAS for 2005, and Modern-Era Retrospective Analysis for Research and Applications (MERRA for 2005, allowing us to examine the sensitivity of model O3–CO correlations to input meteorological data. Model simulations of radionuclide tracers (222Rn, 210Pb, and 7Be are used to illustrate the differences in transport-related processes among the meteorological data sets. Simulated O3 values are evaluated with climatological profiles from ozonesonde measurements and satellite tropospheric O3 columns. Despite the fact that the three simulations show significantly different global and regional distributions of O3 and CO concentrations, they show similar patterns of O3–CO correlations on a global scale. All model simulations sampled along the TES orbit track capture the observed positive O3–CO correlations in the Northern Hemisphere midlatitude continental outflow and the Southern Hemisphere subtropics. While all simulations show strong negative correlations over the Tibetan Plateau, northern Africa, the subtropical eastern North Pacific, and the Caribbean, TES O3 and CO concentrations at 618 hPa only show weak negative correlations over much narrower areas (i.e., the Tibetan Plateau and northern Africa. Discrepancies in regional O3–CO correlation patterns in the three simulations may be attributed to differences in convective transport, stratospheric influence, and subsidence, among other processes. To

  18. Methodological study of the diffusion of interacting cations through clays. Application: experimental tests and simulation of coupled chemistry-diffusion transport of alkaline ions through a synthetical bentonite; Etude methodologique de la diffusion de cations interagissants dans les argiles. Application: mise en oeuvre experimentale et modelisation du couplage chimie-diffusion d'alcalins dans une bentonite synthetique

    Energy Technology Data Exchange (ETDEWEB)

    Melkior, Th

    2000-07-01

    The subject of this work deals with the project of underground disposal of radioactive wastes in deep geological formations. It concerns the study of the migration of radionuclides through clays. In these materials, the main transport mechanism is assumed to be diffusion under natural conditions. Therefore, some diffusion experiments are conducted. With interacting solutes which present a strong affinity for the material, the duration of these tests will be too long, for the range of concentrations of interest. An alternative is to determine on one hand the geochemical retention properties using batch tests and crushed rock samples and, on the other hand, to deduce the transport parameters from diffusion tests realised with a non-interacting tracer, tritiated water. These data are then used to simulate the migration of the reactive elements with a numerical code which can deal with coupled chemistry-diffusion equations. The validity of this approach is tested by comparing the numerical simulations with the results of diffusion experiments of cations through a clay. The subject is investigated in the case of the diffusion of cesium, lithium and sodium through a compacted sodium bentonite. The diffusion tests are realised with the through-diffusion method. The comparison between the experimental results and the simulations shows that the latter tends to under estimate the propagation of the considered species. The differences could be attributed to surface diffusion and to a decrease of the accessibility to the sites of fixation of the bentonite, from the conditions of clay suspensions in batch tests to the situation of compacted samples. The influence of the experimental apparatus used during the diffusion tests on the results of the measurement has also been tested. It showed that these apparatus have to be taken into consideration when the experimental data are interpreted. A specific model has been therefore developed with the numerical code CASTEM 2000. (author)

  19. Problems of increased transport load as a result of implementation of projects of high-rise constructions

    Science.gov (United States)

    Provotorov, Ivan; Gasilov, Valentin; Anisimova, Nadezhda

    2018-03-01

    The structure of problems of high-rise construction us suggested, which includes the impact on environment, design solutions, transportation problems, financial costs for construction and operation, and others. Positive and negative aspects of high-rise construction are considered. One of the basic problems of high-rise construction is the problem of increased transport load. Construction of the subway on the basis of the concession mechanism, with the use of unmanned control of rolling stock is proposed as the most expedient solution. An evaluation of the effectiveness of this project is presented, it shows quite high performance indicators for a private investor. Main problems that the project implementation may face in conditions of lack of scientific and methodological support are outlined.

  20. Synergistic effect of business reputation in the result of application of innovations on the enterprises of the transport industry

    Science.gov (United States)

    Doroshin, Ivan; Diakonova, Sophia; Sharapova, Elena

    2017-10-01

    In the conditions of dynamic innovative development of the enterprises of transport branch along with maintaining economic instability it has become necessary to consider not only traditional factors at assessment of efficiency of activity and cost of business, but also consider business reputation factor, which depends on the level of innovative development of the enterprise and generates effect of synergy. Paper considers the concept of synergistic effect. Classification of types of synergistic effects is cited. Estimation procedure for influence of the technical level and innovative development of transport enterprises on the value of business reputation is considered. Functional dependence of the cost of business reputation on the innovative development and synergistic effect is defined.

  1. Chemistry Division : Annual progress report of 1974

    International Nuclear Information System (INIS)

    1974-01-01

    Research and development activities (during 1974) of the Chemistry Division of the Bhabha Atomic Research Centre, Bombay, are described. Some of the activities of particular interest to nuclear science and technology are: (1) chemistry-based problems of the operating power reactors such as development of a decontaminating solution for power reactors, correlation of iodine-131 levels in the primary heat transport system of a reactor with its operation (2) release of fission gases like xenon from ceramic fuels and (3) radiation chemistry of nitrate solutions (M.G.B.)

  2. Isotope and Nuclear Chemistry Division annual report, FY 1983

    Energy Technology Data Exchange (ETDEWEB)

    Heiken, J.H.; Lindberg, H.A. (eds.)

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

  3. Isotope and Nuclear Chemistry Division annual report, FY 1984

    International Nuclear Information System (INIS)

    Heiken, J.H.

    1985-04-01

    This report describes progress in the major research and development programs carried out in FY 1984 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques: development and applications; atmospheric chemistry and transport; and earth and planetary processes. 287 refs

  4. Isotope and Nuclear Chemistry Division annual report, FY 1983

    International Nuclear Information System (INIS)

    Heiken, J.H.; Lindberg, H.A.

    1984-05-01

    This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes

  5. Joint analysis of deposition fluxes and atmospheric concentrations of inorganic nitrogen and sulphur compounds predicted by six chemistry transport models in the frame of the EURODELTAIII project

    Science.gov (United States)

    Vivanco, M. G.; Bessagnet, B.; Cuvelier, C.; Theobald, M. R.; Tsyro, S.; Pirovano, G.; Aulinger, A.; Bieser, J.; Calori, G.; Ciarelli, G.; Manders, A.; Mircea, M.; Aksoyoglu, S.; Briganti, G.; Cappelletti, A.; Colette, A.; Couvidat, F.; D'Isidoro, M.; Kranenburg, R.; Meleux, F.; Menut, L.; Pay, M. T.; Rouïl, L.; Silibello, C.; Thunis, P.; Ung, A.

    2017-02-01

    In the framework of the UNECE Task Force on Measurement and Modelling (TFMM) under the Convention on Long-range Transboundary Air Pollution (LRTAP), the EURODELTAIII project is evaluating how well air quality models are able to reproduce observed pollutant air concentrations and deposition fluxes in Europe. In this paper the sulphur and nitrogen deposition estimates of six state-of-the-art regional models (CAMx, CHIMERE, EMEP MSC-W, LOTOS-EUROS, MINNI and CMAQ) are evaluated and compared for four intensive EMEP measurement periods (25 Feb-26 Mar 2009; 17 Sep-15 Oct 2008; 8 Jan-4 Feb 2007 and 1-30 Jun 2006). For sulphur, this study shows the importance of including sea salt sulphate emissions for obtaining better model results; CMAQ, the only model considering these emissions in its formulation, was the only model able to reproduce the high measured values of wet deposition of sulphur at coastal sites. MINNI and LOTOS-EUROS underestimate sulphate wet deposition for all periods and have low wet deposition efficiency for sulphur. For reduced nitrogen, all the models underestimate both wet deposition and total air concentrations (ammonia plus ammonium) in the summer campaign, highlighting a potential lack of emissions (or incoming fluxes) in this period. In the rest of campaigns there is a general underestimation of wet deposition by all models (MINNI and CMAQ with the highest negative bias), with the exception of EMEP, which underestimates the least and even overestimates deposition in two campaigns. This model has higher scavenging deposition efficiency for the aerosol component, which seems to partly explain the different behaviour of the models. For oxidized nitrogen, CMAQ, CAMx and MINNI predict the lowest wet deposition and the highest total air concentrations (nitric acid plus nitrates). Comparison with observations indicates a general underestimation of wet oxidized nitrogen deposition by these models, as well as an overestimation of total air concentration for

  6. Spatiotemporal evaluation of EMEP4UK-WRF v4.3 atmospheric chemistry transport simulations of health-related metrics for NO2, O3, PM10, and PM2. 5 for 2001-2010

    Science.gov (United States)

    Lin, Chun; Heal, Mathew R.; Vieno, Massimo; MacKenzie, Ian A.; Armstrong, Ben G.; Butland, Barbara K.; Milojevic, Ai; Chalabi, Zaid; Atkinson, Richard W.; Stevenson, David S.; Doherty, Ruth M.; Wilkinson, Paul

    2017-04-01

    This study was motivated by the use in air pollution epidemiology and health burden assessment of data simulated at 5 km × 5 km horizontal resolution by the EMEP4UK-WRF v4.3 atmospheric chemistry transport model. Thus the focus of the model-measurement comparison statistics presented here was on the health-relevant metrics of annual and daily means of NO2, O3, PM2. 5, and PM10 (daily maximum 8 h running mean for O3). The comparison was temporally and spatially comprehensive, covering a 10-year period (2 years for PM2. 5) and all non-roadside measurement data from the UK national reference monitor network, which applies consistent operational and QA/QC procedures for each pollutant (44, 47, 24, and 30 sites for NO2, O3, PM2. 5, and PM10, respectively). Two important statistics highlighted in the literature for evaluation of air quality model output against policy (and hence health)-relevant standards - correlation and bias - together with root mean square error, were evaluated by site type, year, month, and day-of-week. Model-measurement statistics were generally better than, or comparable to, values that allow for realistic magnitudes of measurement uncertainties. Temporal correlations of daily concentrations were good for O3, NO2, and PM2. 5 at both rural and urban background sites (median values of r across sites in the range 0.70-0.76 for O3 and NO2, and 0.65-0.69 for PM2. 5), but poorer for PM10 (0.47-0.50). Bias differed between environments, with generally less bias at rural background sites (median normalized mean bias (NMB) values for daily O3 and NO2 of 8 and 11 %, respectively). At urban background sites there was a negative model bias for NO2 (median NMB = -29 %) and PM2. 5 (-26 %) and a positive model bias for O3 (26 %). The directions of these biases are consistent with expectations of the effects of averaging primary emissions across the 5 km × 5 km model grid in urban areas, compared with monitor locations that are more influenced by these

  7. Green chemistry: A tool in Pharmaceutical Chemistry

    OpenAIRE

    Smita Talaviya; Falguni Majumdar

    2012-01-01

    Green chemistry expresses an area of research developing from scientific discoveries about pollution awareness and it utilizes a set of principles that reduces or eliminates the use or generation of hazardous substances in all steps of particular synthesis or process. Chemists and medicinal scientists can greatly reduce the risk to human health and the environment by following all the valuable principles of green chemistry. The most simple and direct way to apply green chemistry in pharmaceut...

  8. Chemistry of superheavy elements

    International Nuclear Information System (INIS)

    Schaedel, M.

    2012-01-01

    The chemistry of superheavy elements - or transactinides from their position in the Periodic Table - is summarized. After giving an overview over historical developments, nuclear aspects about synthesis of neutron-rich isotopes of these elements, produced in hot-fusion reactions, and their nuclear decay properties are briefly mentioned. Specific requirements to cope with the one-atom-at-a-time situation in automated chemical separations and recent developments in aqueous-phase and gas-phase chemistry are presented. Exciting, current developments, first applications, and future prospects of chemical separations behind physical recoil separators ('pre-separator') are discussed in detail. The status of our current knowledge about the chemistry of rutherfordium (Rf, element 104), dubnium (Db, element 105), seaborgium (Sg, element 106), bohrium (Bh, element 107), hassium (Hs, element 108), copernicium (Cn, element 112), and element 114 is discussed from an experimental point of view. Recent results are emphasized and compared with empirical extrapolations and with fully-relativistic theoretical calculations, especially also under the aspect of the architecture of the Periodic Table. (orig.)

  9. Bibliographies on radiation chemistry

    International Nuclear Information System (INIS)

    Hoffman, M.Z.; Ross, A.B.

    1986-01-01

    The one-electron oxidation and reduction of metal ions and complexes can yield species in unusual oxidation states, and ligand-radicals coordinated to the central metal. These often unstable species can be mechanistically important intermediates in thermal, photochemical, and electrochemical reactions involving metal-containing substances. Their generation via radiolysis provides an alternate means of characterizing them using kinetic and spectroscopic techniques. We hope these bibliographies on the radiation chemistry of metal ions and complexes, presented according to periodic groups, will prove useful to researchers in metallo-redox chemistry. These bibliographies contain only primary literature sources; reviews are not included. However, a list of general review articles on the radiation chemistry of metal ions and complexes is presented here in the first section which covers cobalt, rhodium and iridium, Group 9 in the new IUPAC notation. Additional parts of the bibliography are planned, covering other periodic groups. Part A of the bibliography was prepared by a search of the Radiation Chemistry Data Center Bibliographic Data Base (RCDCbib) through January 1986 for papers on rhodium, iridium and cobalt compounds, and radiolysis (both continuous and pulsed). Papers in which the use of metal compounds was incidental to the primary objective of the study were excluded. Excluded also were publications in unrefereed and obscure sources such as meeting proceedings, internal reports, dissertations, and patents. The majority of the studies in the resultant compilation deal with experiments performed on solutions, mainly aqueous, although a substantial fraction is devoted to solid-state esr measurements. The references are listed in separate sections for each of the metals, and are presented in approximate chronological order. (author)

  10. Precipitation chemistry in central Amazonia

    Science.gov (United States)

    Andreae, M. O.; Talbot, R. W.; Berresheim, H.; Beecher, K. M.

    1990-01-01

    Rain samples from three sites in central Amazonia were collected over a period of 6 weeks during the 1987 wet season and analyzed for ionic species and dissolved organic carbon. A continuous record of precipitation chemistry and amount was obtained at two of these sites, which were free from local or regional pollution, for a time period of over 1 month. The volume-weighted mean concentrations of most species were found to be about a factor of 5 lower during the wet season compared with previous results from the dry season. Only sodium, potassium, and chloride showed similar concentrations in both seasons. When the seasonal difference in rainfall amount is taken into consideration, the deposition fluxes are only slightly lower for most species during the wet season than during the dry season, again with the exception of chloride, potassium, and sodium. Sodium and chloride are present in the same ratio as in sea salt; rapid advection of air masses of marine origin to the central Amazon Basin during the wet season may be responsible for the observed higher deposition flux of these species. Statistical analysis suggests that sulfate is, to a large extent, of marine (sea salt and biogenic) origin, but that long-range transport of combustion-derived aerosols also makes a significant contribution to sulfate and nitrate levels in Amazonian rain. Organic acid concentrations in rain were responsible for a large fraction of the observed precipitation acidity; their concentration was strongly influenced by gas/liquid interactions.

  11. On Study of New Progress and Application of Coordination Chemistry in Chemistry and Chemical Industry in Recent Years

    Science.gov (United States)

    Zhang, Yunshen

    2017-12-01

    Coordination chemistry refers to a branch of chemistry, and its research results are widely used in industry and people's daily life. Many edge disciplines emerge during the development, which propels the process of disciplines and technology. This paper briefly discusses new progress of coordination chemistry and its application in chemistry and chemical industry in recent years.

  12. From hot atom chemistry to epithermal chemistry

    International Nuclear Information System (INIS)

    Roessler, K.

    2004-01-01

    The rise and fall of hot atom chemistry (HAC) over the years from 1934 to 2004 is reviewed. Several applications are discussed, in particular to astrophysics and the interaction of energetic ions and atoms in space. Epithermal chemistry (ETC) is proposed to substitute the old name, since it better fits the energy range as well as the non-thermal and non-equilibrium character of the reactions. ETC also avoids the strong connexion of HAC to nuclear chemistry and stands for the opening of the field to physical chemistry and astrophysics. (orig.)

  13. Aquifer Chemistry and Transport Processes in the Zone of Contribution to a Public-Supply Well in Woodbury, Connecticut, 2002-06

    Science.gov (United States)

    Brown, Craig J.; Starn, J. Jeffrey; Stollenwerk, Kenneth G.; Mondazzi, Remo A.; Trombley, Thomas J.

    2009-01-01

    chloride/bromide (Cl:Br) mass concentration ratios; (4) septic-system leachate, characterized by high concentrations of NO3-, DOC, Na, Cl-, Ca, and boron (B), delta nitrogen-15 (d15N) and d18O values, and indicative Cl:Br ratios; (5) organic solvent spills, characterized by detections of perchloroethene (PCE), trichloroethene (TCE), and 1,1-dichloroethene (1,1-DCE); (6) gasoline station spills, characterized by detections of fuel oxygenates and occasionally benzene; and (7) surface-water leakage, characterized by enriched d18O and dD values and sometimes high DOC and Mn-reducing conditions. Evaluation of Cl- concentrations and Cl:Br ratios indicates that most samples were composed of mixtures of groundwater and some component of road salt or septic-system leachate. Leachate from septic-tank drainfields can cause locally anoxic conditions with NO3- concentrations of as much as 19 milligrams per liter (mg/L as N) and may provide up to 15 percent of the nitrogen in water from well PSW-1, based on mixing calculations with d15N of NO3-. Most of the water that contributes to PSW-1 is young (less than 7 years) and derived from the glacial stratified deposits. Typically, groundwater is oxic, but localized reducing zones that result from abundances of organic matter can affect the mobilization of trace elements and the degradation of VOCs. Groundwater from fractured bedrock beneath the valley bottom, which is old (more than 50 years), and reflects a Mn-reducing to methanic redox environment, constitutes as much as 6 percent of water samples collected from monitoring wells screened at the bottom of the glacial aquifer. Dissolved As and U concentrations generally are near the minimum reporting level (MRL) (0.2 micrograms per liter or ?g/L and 0.04 ?g/L, respectively), but water from a few wells screened in glacial deposits, likely derived from underlying organic-rich Mesozoic rocks, contain As concentrations up to 7 ?g/L. At one location, concentrations of As and U were high

  14. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report, Fleet Compliance Results for MY 2014/ FY 2015

    Energy Technology Data Exchange (ETDEWEB)

    2016-04-01

    This annual report of the Alternative Fuel Transportation Program, which ensures compliance with DOE regulations covering state government and alternative fuel provider fleets pursuant to the Energy Policy Act of 1992 (EPAct), as amended, provides fleet compliance results for manufacturing year 2014 / fiscal year 2015.

  15. Modeling of the Ionic Multi-Species Transport Phenomena in Electrokinetic Processes and Comparison with Experimental Results

    DEFF Research Database (Denmark)

    Paz-Garcia, Juan Manuel; Johannesson, Björn; Ottosen, Lisbeth M.

    2010-01-01

    . Electrical neutrality was continuously assured in the model by the inclusion of the Poisson-Boltzmann equation to the system of governing equations. Voltage differences were applied across the sample as boundary conditions in order to evaluate the competition between diffusion and electromigration terms......A model to predict the transport of ionic species within the pore solution of porous materials, under the effect of an external electric field has been developed. A Finite Elements method was implemented and used for the integration of the Nernst-Plank equations for each ionic species considered...

  16. Perturbative studies of toroidal momentum transport using neutral beam injection modulation in the Joint European Torus: Experimental results, analysis methodology, and first principles modeling

    DEFF Research Database (Denmark)

    Mantica, P.; Tala, T.; Ferreira, J.S.

    2010-01-01

    Perturbative experiments have been carried out in the Joint European Torus [Fusion Sci. Technol. 53(4) (2008)] in order to identify the diffusive and convective components of toroidal momentum transport. The torque source was modulated either by modulating tangential neutral beam power...... or by modulating in antiphase tangential and normal beams to produce a torque perturbation in the absence of a power perturbation. The resulting periodic perturbation in the toroidal rotation velocity was modeled using time-dependent transport simulations in order to extract empirical profiles of momentum...

  17. The latest general chemistry

    International Nuclear Information System (INIS)

    Ryu, Geun Bae; Choi, Se Yeong; Kim, Chin Yeong; Yoon, Gil Jung; Lee, Eun Seok; Seo, Moon Gyu

    1995-02-01

    This book deals with the latest general chemistry, which is comprised of twenty-three chapters, the contents of this book are introduction, theory of atoms and molecule, chemical formula and a chemical reaction formula, structure of atoms, nature of atoms and the periodic table, structure of molecule and spectrum, gas, solution, solid, chemical combination, chemical reaction speed, chemical equilibrium, thermal chemistry, oxidation-reduction, electrochemistry, acid-base, complex, aquatic chemistry, air chemistry, nuclear chemistry, metal and nonmetal, organic chemistry and biochemistry. It has exercise in the end of each chapter.

  18. UT/LS chemistry and transport

    Science.gov (United States)

    2008-01-24

    The global commercial aircraft fleet currently numbers about 10,000 and flies several billion kilometres per year while burning more than 100 MT of fuel per year at high temperatures producing mostly water and CO2. However, NOx (=NO+NO2), other minor...

  19. Numerical verification of equilibrium chemistry software within nuclear fuel performance codes

    International Nuclear Information System (INIS)

    Piro, M.H.; Lewis, B.J.; Thompson, W.T.; Simunovic, S.; Besmann, T.M.

    2010-01-01

    A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing transport source terms, material properties, and boundary conditions in heat and mass transport modules. Consequently, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method called the Gibbs Criteria is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes. (author)

  20. Coordination Chemistry of Life Processes: Bioinorganic Chemistry

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 4; Issue 9. Coordination Chemistry of Life Processes: Bioinorganic Chemistry. R N Mukherjee. General Article Volume 4 Issue 9 September 1999 pp 53-62. Fulltext. Click here to view fulltext PDF. Permanent link:

  1. Infiltration and solute transport experiments in unsaturated sand and gravel, Cape Cod, Massachusetts: Experimental design and overview of results

    Science.gov (United States)

    Rudolph, David L.; Kachanoski , R. Gary; Celia, Michael A.; LeBlanc, Denis R.; Stevens, Jonathon H.

    1996-01-01

    A series of infiltration and tracer experiments was conducted in unsaturated sand and gravel deposits on Cape Cod, Massachusetts. A network of 112 porous cup lysimeters and 168 time domain reflectometry (TDR) probes was deployed at depths from 0.25 to 2.0 m below ground surface along the centerline of a 2-m by 10-m test plot. The test plot was irrigated at rates ranging from 7.9 to 37.0 cm h−1 through a sprinkler system. Transient and steady state water content distributions were monitored with the TDR probes and spatial properties of water content distributions were determined from the TDR data. The spatial variance of the water content tended to increase as the average water content increased. In addition, estimated horizontal correlation length scales for water content were significantly smaller than those estimated by previous investigators for saturated hydraulic conductivity. Under steady state flow conditions at each irrigation rate, a sodium chloride solution was released as a tracer at ground surface and tracked with both the lysimeter and TDR networks. Transect-averaged breakthrough curves at each monitoring depth were constructed both from solute concentrations measured in the water samples and flux concentrations inferred from the TDR measurements. Transport properties, including apparent solute velocities, dispersion coefficients, and total mass balances, were determined independently from both sets of breakthrough curves. The dispersion coefficients tended to increase with depth, reaching a constant value with the lysimeter data and appearing to increase continually with the TDR data. The variations with depth of the solute transport parameters, along with observations of water and solute mass balance and spatial distributions of water content, provide evidence of significant three-dimensional flow during the irrigation experiments. The TDR methods are shown to efficiently provide dense spatial and temporal data sets for both flow and solute

  2. Advanced Chemistry Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Description/History: Chemistry laboratoryThe Advanced Chemistry Laboratory (ACL) is a unique facility designed for working with the most super toxic compounds known...

  3. Environmental chemistry: Volume A

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T.F.

    1999-08-01

    This is an extensive introduction to environmental chemistry for engineering and chemical professionals. The contents of Volume A include a brief review of basic chemistry prior to coverage of litho, atmo, hydro, pedo, and biospheres.

  4. Organometallic Chemistry of Molybdenum.

    Science.gov (United States)

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  5. Inorganic chemistry

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Two compounds (O 2 SbF 6 and IF 6 SbF 6 ) were tested as chemical reagents for trapping the heavier noble gases (isotopes of radon and xenon) released to the atmosphere by nuclear power plants and fuel reprocessing plants. Results on the Raman scattering of anhydrous liquid HF are reported. (U.S.)

  6. A modeling study of contaminant transport resulting from flooding of Pit 9 at the Radioactive Waste Management Complex, Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Magnuson, S.O.; Sondrup, A.J.

    1992-09-01

    A simulation study was conducted to determine if dissolved-phase transport due to flooding is a viable mechanism for explaining the presence of radionuclides in sedimentary interbeds below the Radioactive Waste Management Complex. In particular, the study focused on 241 Am migration due to flooding of Pit 9 in 1969. A kinetically-controlled source term model was used to estimate the mass of 241 Am that leached as a function of a variable surface infiltration rate. This mass release rate was then used in a numerical simulation of unsaturated flow and transport to estimate the advance due to flooding of the 241 Am front down towards the 110 ft interbed. The simulation included the effect of fractures by superimposing them onto elements that represented the basalt matrix. For the base case, hydraulic and transport parameters were assigned using the best available data. The advance of the 241 Am front due to flooding for this case was minimal, on the order of a few meters. This was due to the strong tendency for 241 Am to sorb onto both basalts and sediments. In addition to the base case simulation, a parametric sensitivity study was conducted which tested the effect of sorption in the fractures, in the kinetic source term, and in the basalt matrix. Of these, the only case which resulted in significant transport was when there was no sorption in the basalt matrix. The indication being that other processes such as transport by radiocolloids or organic complexation may have contributed. However, caution is advised in interpreting these results due to approximations in the numerical method that was used incorporate fractures into the simulation. The approximations are a result of fracture apertures being significantly smaller than the elements over which they are superimposed. The sensitivity of the 241 Am advance to the assumed hydraulic conductivity for the fractures was also tested

  7. Preparative radiation chemistry

    International Nuclear Information System (INIS)

    Drawe, H.

    1978-01-01

    Preparative synthesis of compounds with the aid of radiation chemistry is increasingly used in laboratories as well as on a technical scale. A large number of new compounds has been produced with the methods of radiation chemistry. With the increasing number of available radiation sources, also the number of synthesis metods in radiation chemistry has increased. This paper can only briefly mention the many possible ways of synthesis in radiation chemistry. (orig./HK) [de

  8. Organic chemistry experiment

    International Nuclear Information System (INIS)

    Mun, Seok Sik

    2005-02-01

    This book deals with organic chemistry experiments, it is divided five chapters, which have introduction, the way to write the experiment report and safety in the laboratory, basic experiment technic like recrystallization and extraction, a lot of organic chemistry experiments such as fischer esterification, ester hydrolysis, electrophilic aromatic substitution, aldol reaction, benzoin condensation, wittig reaction grignard reaction, epoxidation reaction and selective reduction. The last chapter introduces chemistry site on the internet and way to find out reference on chemistry.

  9. Introduction to Coordination Chemistry

    CERN Document Server

    Lawrance, Geoffrey Alan

    2010-01-01

    Introduction to Coordination Chemistry examines and explains how metals and molecules that bind as ligands interact, and the consequences of this assembly process. This book describes the chemical and physical properties and behavior of the complex assemblies that form, and applications that may arise as a result of these properties. Coordination complexes are an important but often hidden part of our world?even part of us?and what they do is probed in this book. This book distills the essence of this topic for undergraduate students and for research scientists.

  10. Radiochemistry and actinide chemistry

    International Nuclear Information System (INIS)

    Guillaumont, R.; Peneloux, A.

    1989-01-01

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 10 12 , are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  11. Biophysical chemistry

    International Nuclear Information System (INIS)

    Klein, M.P.

    1987-01-01

    Phosphorus-31 NMR spectroscopy is evolving into an important means for determining the in vivo concentrations of phosphorylated metabolites and is now entering the clinical arena. Our previous contributions to this field demonstrated the feasibility of employing implanted radio frequency coils around organs of laboratory animals to permit eliciting the NMR spectra over long periods to establish normative spectra. Using these devices and techniques we have determined phosphorus exchange reactions in rat hearts and kidney, in situ, and have demonstrated that there are pools of metabolic intermediates that are not directly visible in the conventional high resolution NMR spectra. Comparison of the results from NMR spectroscopy with those obtained from radiolabeling studies on chick embryo fibroblasts also showed that there are significant pools of phosphorus not visible in the P-31 NMR spectrum. Both sets of studies suggest that compartmentation occurs. The invisibility of these pools is assumed to result from the immobilization of the molecules by cellular macromolecules or organelles

  12. Insights on severe accident chemistry from TMI-2

    International Nuclear Information System (INIS)

    Hobbins, R.R.; Cronenberg, A.W.; Langer, S.; Owen, D.E.; Akers, D.W.

    1986-01-01

    Chemical analyses are being carried out on materials removed from the damaged reactor at TMI-2. Characteristics of TMI-2 fuel, control, fission product and structural materials based on these analyses are presented. Emphasis is placed on chemistry within the pressure vessel although descriptions of, and postulated mechanisms for, materials transported from the vessel to the reactor building are also discussed. Indications of the oxygen potential in the reactor pressure vessel during the high temperature phase of the accident are of particular significance for the analysis of damage progression and fission product behavior during severe accidents. The results of thermodynamic and kinetic calculations for chemical species present during the high temperature portion of the accident (during core uncovery) are presented. Insights on chemistry of significance for severe accident analysis which follow from the evaluation of the TMI-2 accident are discussed. 38 refs., 9 figs., 2 tabs

  13. Food Chemistry

    OpenAIRE

    Santos, P. Veiga; Oliveira, L. M.; Cereda, M. P.; Scamparini, Adilma Regina Pippa

    2006-01-01

    RESTRITO The effect of sucrose and inverted sugar as plasticisers on mechanical properties, hydrophilicity and water activity of cassava starch films has been studied. Other additives (gelatin, soybean oil, sodium phosphate and propylene glycol) and pH effect have also been investigated, using the same parameters. Sucrose addition resulted in the highest effect observed on cassava starch films elongation at break, however inverted sugar also had a great effect on this property. Th...

  14. Separations chemistry

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Results of studies on the photochemistry of aqueous Pu solutions and the stability of iodine in liquid and gaseous CO 2 are reported. Progress is reported in studies on: the preparation of macroporous bodies filled with oxides and sulfides to be used as adsorbents; the beneficiation of photographic wastes; the anion exchange adsorption of transition elements from thiosulfate solutions; advanced filtration applications of energy significance; high-resolution separations; and, the examination of the separation agents, octylphenylphosphoric acid (OPPA) and trihexyl phosphate (THP)

  15. First Results of using the Process-based Model PROMAB-GIS for Runoff a Bedload Transport Estimation in the Lainbach Torrent Catchment Area (Benediktbeuern, Germany)

    Science.gov (United States)

    Rinderer, M.; Jenewein, S.; Ploner, A.; Sönser, T.

    2003-04-01

    As growing damage potential makes society more and more vulnerable to natural hazards, the pressure on the official authorities responsible for the guarantee of public safety is increasing rapidly. Modern computer technology, e.g. Geographical Information Systems (GIS), can provide remarkable help in assessing the risks resulting from natural hazards. The modelling in PROMAB-GIS, which is an user friendly software based on ESRI ArcView for assessing runoff and bedload transport in torrent catchments, is strongly based on interdisciplinary process-orientated field investigations. This paper presents results of the application of PROMAB-GIS to estimate the runoff and bedload transport potential of the Lainbach catchment area which has repeatedly been affected by heavy rain storms triggering remarkable events. The operational steps needed to gain process orientated, reproducible results for assessing design events in watersheds are highlighted. A key issue in this context is the need for detailed field-investigation of the geo-, bio-, hydro-inventory of a catchment area. The second part of the paper presents the model results for design events. The data of the event which caused severe damage in June 1990 provides a perfect basis for the evaluation of the model. The results show the potential of PROMAB-GIS for assessing runoff and bedload transport in alpine torrent systems.

  16. Chemistry is Evergreen

    Indian Academy of Sciences (India)

    Srimath

    Chemistry is Evergreen. 2008 Nobel Prize in Chemistry. Swagata Dasgupta. Swagata Dasgupta is an. Associate Professor in the. Department of Chemistry at IIT Kharagpur. Her research interests revolve around proteins and their interactions. 1 GFP was declared the mol- ecule of the month by the Pro- tein Data Bank (PDB) ...

  17. Chemistry of interstellar space

    International Nuclear Information System (INIS)

    Gammon, R.H.

    1978-01-01

    Descriptions of the sun and other stars, energy sources in the interstellar clouds, spectroscopy and excitation, the chemistry and chemical abundance of interstellar elements, recent developments in interstellar molecular spectroscopy for a deeper insight into star evolution and other dynamics of the galaxy, and the next ten years of interstellar chemistry are described in an overall picture of the chemistry of interstellar space

  18. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    Separate abstracts were prepared for 48 papers in these conference proceedings. The topics covered include: analytical chemistry and the environment; environmental radiochemistry; automated instrumentation; advances in analytical mass spectrometry; Fourier transform spectroscopy; analytical chemistry of plutonium; nuclear analytical chemistry; chemometrics; and nuclear fuel technology

  19. Fundamentals of nuclear chemistry

    International Nuclear Information System (INIS)

    Majer, V.

    1982-01-01

    The author of the book has had 25 years of experience at the Nuclear Chemistry of Prague Technical University. In consequence, the book is intended as a basic textbook for students of this field. Its main objectives are an easily understandable presentation of the complex subject and in spite of the uncertainty which still characterizes the definition and subjects of nuclear chemistry - a systematic classification and logical structure. Contents: 1. Introduction (history and definition); 2. General nuclear chemistry (physical fundamentals, hot atom chemistry, interaction of nuclear radiation with matter, radioactive elements, isotope effects, isotope exchange, chemistry of radioactive trace elements); 3. Methods of nuclear chemistry of nuclear chemistry (radiochemical methods, activation, separation and enrichment chemistry); 4. Preparative nuclear chemistry (isotope production, labelled compounds); 5. Analytival nuclear chemistry; 6. Applied nuclear chemistry (isotope applications in general physical and analytical chemistry). The book is supplemented by an annex with tables, a name catalogue and a subject index which will facilitate access to important information. (RB) [de

  20. Analytical chemistry instrumentation

    International Nuclear Information System (INIS)

    Laing, W.R.

    1986-01-01

    In nine sections, 48 chapters cover 1) analytical chemistry and the environment 2) environmental radiochemistry 3) automated instrumentation 4) advances in analytical mass spectrometry 5) fourier transform spectroscopy 6) analytical chemistry of plutonium 7) nuclear analytical chemistry 8) chemometrics and 9) nuclear fuel technology

  1. Statistical Automatic Summarization in Organic Chemistry

    OpenAIRE

    Boudin, Florian; Velazquez-Morales, Patricia; Torres-Moreno, Juan-Manuel

    2009-01-01

    We present an oriented numerical summarizer algorithm, applied to producing automatic summaries of scientific documents in Organic Chemistry. We present its implementation named Yachs (Yet Another Chemistry Summarizer) that combines a specific document pre-processing with a sentence scoring method relying on the statistical properties of documents. We show that Yachs achieves the best results among several other summarizers on a corpus of Organic Chemistry articles.

  2. Medicinal electrochemistry: integration of electrochemistry, medicinal chemistry and computational chemistry.

    Science.gov (United States)

    Almeida, M O; Maltarollo, V G; de Toledo, R A; Shim, H; Santos, M C; Honorio, K M

    2014-01-01

    Over the last centuries, there were many important discoveries in medicine that were crucial for gaining a better understanding of several physiological processes. Molecular modelling techniques are powerful tools that have been successfully used to analyse and interface medicinal chemistry studies with electrochemical experimental results. This special combination can help to comprehend medicinal chemistry problems, such as predicting biological activity and understanding drug action mechanisms. Electrochemistry has provided better comprehension of biological reactions and, as a result of many technological improvements, the combination of electrochemical techniques and biosensors has become an appealing choice for pharmaceutical and biomedical analyses. Therefore, this review will briefly outline the present scope and future advances related to the integration of electrochemical and medicinal chemistry approaches based on various applications from recent studies.

  3. Bioactive glass 45S5 powders: effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma.

    Science.gov (United States)

    Bahniuk, Markian S; Pirayesh, Hamidreza; Singh, Harsh D; Nychka, John A; Unsworth, Larry D

    2012-12-01

    Despite its medical applications, the mechanisms responsible for the osseointegration of bioactive glass (45S5) have yet to be fully understood. Evidence suggests that the strongest predictor for osseointegration of bioactive glasses, and ceramics, with bone tissue as the formation of an apatitic calcium phosphate layer atop the implanted material, with osteoblasts being the main mediator for new bone formation. Most have tried to understand the formation of this apatitic calcium phosphate layer, and other bioresponses between the host and bioactive glass 45S5 using Simulated Body Fluid; a solution containing ion concentrations similar to that found in human plasma without the presence of proteins. However, it is likely that cell attachment is probably largely mediated via the adsorbed protein layer. Plasma protein adsorption at the tissue bioactive glass interface has been largely overlooked. Herein, we compare crystalline and amorphous bioactive glass 45S5, in both melt-derived as well as sol-gel forms. Thus, allowing for a detailed understanding of both the role of crystallinity and powder morphology on surface ions, and plasma protein adsorption. It was found that sol-gel 45S5 powders, regardless of crystallinity, adsorbed 3-5 times as much protein as the crystalline melt-derived counterpart, as well as a greater variety of plasma proteins. The devitrification of melt-cast 45S5 resulted in only small differences in the amount and variety of the adsorbed proteome. Surface properties, and not material crystallinity, play a role in directing protein adsorption phenomena for bioactive glasses given the differences found between crystalline melt-cast 45S5 and sol-gel derived 45S5.

  4. Atmospheric Chemistry Over Southern Africa

    Science.gov (United States)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    campaigns such as Transport and Atmospheric Chemistry Near the Equator-Atlantic (TRACE-A), Southern African Fire-Atmosphere Research Initiative (SAFARI-92), and Southern African Regional Science Initiative (SAFARI 2000). Since those large international efforts, satellites have matured enough to enable quantifiable measurements of regional land surface, atmosphere, and ocean. In addition, global and chemical transport models have also been advanced to incorporate various data. Thus, the timing of the workshop was right for a full-fledged re-assessment of the chemistry, physics, and socio-economical impacts caused by pollution in the region, including a characterization of sources, deposition, and feedbacks with climate change.

  5. Preliminary results on effect of H2S on P265GH commercial material for natural gases and petroleum transportation

    Science.gov (United States)

    Zaharia, Marius Gabriel; Stanciu, Sergiu; Cimpoesu, Ramona; Ionita, Iulian; Cimpoesu, Nicanor

    2018-04-01

    A commercial Fe-C material (P265GH) used for natural gas delivery and transportation systems was analyzed in H2S atmosphere in order to establish the corrosion resistance. In most of the industrial processes for gas purification the corrosion rate is speed up by the presence of sulphur (S) especially as ions (HS-, SO32-) or different species like H2S. The H2S (hydrogen sulphide) is, beside a very toxic compound, a very active element in the acceleration of metallic materials deterioration. For experiments we used a three electrodes cell with Na2SO4 + Na2S solution at pH 3 for two different temperatures, room temperature ∼ 25 °C (sample 1) and at 60 (sample 2) ±1 °C in order to realize EIS (electrochemical impedance spectroscopy) and potentiodynamic polarization. After electro-chemical tests and corrosion resistance characterisation the material surface was analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS).

  6. CAREM-25: considerations about primary coolant chemistry

    International Nuclear Information System (INIS)

    Chocron, Mauricio; Iglesias, Alberto M.; Raffo Calderon, Maria C.; Villegas, Marina

    2000-01-01

    World operating experience, in conjunction with basic studies has been modifying chemistry specifications for the primary coolant of water cooled nuclear reactors along with the reactor type and structural materials involved in the design. For the reactor CAREM-25, the following sources of information have been used: 1) Experience gained by the Chemistry Department of the National Atomic Energy Commission (CNEA, Argentina); 2) Participation of the Chemistry Department (CNEA) in international cooperation projects; 3) Guidelines given by EPRI, Siemens-KWU, AECL, etc. Given the main objectives: materials integrity, low radiation levels and personnel safety, which are in turn a balance between the lowest corrosion and activity transport achievable and considering that the CAREM-25 is a pressurized vessel integrated reactor, a group of guidelines for the chemistry and additives for the primary coolant have been given in the present work. (author)

  7. The New Color of Chemistry: Green Chemistry

    Directory of Open Access Journals (Sweden)

    Zuhal GERÇEK

    2012-01-01

    Full Text Available Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provide a solution for this requirement, green chemistry rules and under standings should be primarily taken in the university curriculum and at all educational levels.

  8. Surface chemistry essentials

    CERN Document Server

    Birdi, K S

    2013-01-01

    Surface chemistry plays an important role in everyday life, as the basis for many phenomena as well as technological applications. Common examples range from soap bubbles, foam, and raindrops to cosmetics, paint, adhesives, and pharmaceuticals. Additional areas that rely on surface chemistry include modern nanotechnology, medical diagnostics, and drug delivery. There is extensive literature on this subject, but most chemistry books only devote one or two chapters to it. Surface Chemistry Essentials fills a need for a reference that brings together the fundamental aspects of surface chemistry w

  9. Fundamentals of reactor chemistry

    International Nuclear Information System (INIS)

    Akatsu, Eiko

    1981-12-01

    In the Nuclear Engineering School of JAERI, many courses are presented for the people working in and around the nuclear reactors. The curricula of the courses contain also the subject material of chemistry. With reference to the foreign curricula, a plan of educational subject material of chemistry in the Nuclear Engineering School of JAERI was considered, and the fundamental part of reactor chemistry was reviewed in this report. Since the students of the Nuclear Engineering School are not chemists, the knowledge necessary in and around the nuclear reactors was emphasized in order to familiarize the students with the reactor chemistry. The teaching experience of the fundamentals of reactor chemistry is also given. (author)

  10. Observations of Inland Snowpack-driven Bromine Chemistry near the Brooks Range, Alaska

    Science.gov (United States)

    Peterson, P.; Pöhler, D.; Sihler, H.; Zielcke, J.; S., General; Friess, U.; Platt, U.; Simpson, W. R.; Nghiem, S. V.; Shepson, P. B.; Stirm, B. H.; Pratt, K.

    2017-12-01

    The snowpack produces high amounts of reactive bromine in the polar regions during spring. The resulting atmospheric bromine chemistry depletes boundary layer ozone to near-zero levels and alters oxidation of atmospheric pollutants, particularly elemental mercury. To improve our understanding of the spatial extent of this bromine chemistry in Arctic coastal regions, the Purdue Airborne Laboratory for Atmospheric Research (ALAR), equipped with the Heidelberg Imaging differential optical absorption spectroscopy (DOAS) instrument, measured the spatial distribution of BrO, an indicator of active bromine chemistry, over northern Alaska during the March 2012 BRomine Ozone Mercury Experiment (BROMEX). Here we show that this bromine chemistry, commonly associated with snow-covered sea ice regions in the Arctic Ocean, is active 200 km inland in the foothills of the Brooks Range. Profiles retrieved from limb-viewing measurements show this event was located near the snowpack surface, with measured BrO mole ratios of 20 pmol mol-1 in a 500 m thick layer. This observed bromine chemistry is likely enabled by deposition of transported sea salt aerosol or gas phase bromine species from prior activation events to the snowpack. These observations of halogen activation hundreds of km from the coast suggest the impacts of this springtime bromine chemistry are not restricted to sea ice regions and directly adjacent coastal regions.

  11. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    International Nuclear Information System (INIS)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO 2 , DMS and H 2 SO 4 species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed

  12. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO{sub 2}, DMS and H{sub 2}SO{sub 4} species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed.

  13. High resolution seismic stratigraphy and Mass Transport Deposits of the proximal continental margin, offshore Quarteira, South Portugal: Preliminary Results.

    Science.gov (United States)

    Duarte, Débora; Santos, Joana; Terrinha, Pedro; Brito, Pedro; Noiva, João; Ribeiro, Carlos; Roque, Cristina

    2017-04-01

    More than 300 nautical miles of multichannel seismic reflection data were acquired in the scope of the ASTARTE project (Assessment Strategy and Risk Reduction for Tsunamis in Europe), off Quarteira, Algarve, South Portugal. The main goal of this very high resolution multichannel seismic survey was to obtain high-resolution images of the sedimentary record to try to discern the existence of high energy events, possibly tsunami backwash deposits associated with large magnitude earthquakes generated at the Africa-Eurasia plate boundary This seismic dataset was processed at the Instituto Português do Mar e da Atmosfera (IPMA), with the SeisSpace PROMAX Seismic Processing software. A tailor-made processing flow was applied, focusing in the removal of the seafloor multiple and in the enhancement of the superficial layers. A sparker source, using with 300 J of energy and a fire rate of 0,5 s was used onboard Xunauta, an 18 m long vessel. The preliminary seismostratigraphic interpretation of the Algarve ASTARTE seismic dataset allowed the identification of a complex sequence seismic units of progradational and agradational bodies as well as Mass Transported Deposits (MTD). The MTD package of sediments has a very complex internal structure, 20m of thickness, is apparently spatially controlled by an escarpment probably associated to past sea level low stands. The MTD covers across an area, approximately parallel to an ancient coastline, with >30 km (length) x 5 km (across). Acknowledgements: This work was developed as part of the project ASTARTE (603839 FP7) supported by the grant agreement No 603839 of the European Union's Seventh. The Instituto Portugues do Mar e da Atmosfera acknowledges support by Landmark Graphics (SeisWorks) via the Landmark University Grant Program.

  14. Effects of interactive transport and scavenging of smoke on the calculated temperature change resulting from large amounts of smoke

    International Nuclear Information System (INIS)

    MacCracken, M.C.; Walton, J.J.

    1984-12-01

    Several theoretical studies with numerical models have shown that substantial land-surface cooling can occur if very large amounts (approx. 100 x 10 12 = 100 Tg) of highly absorbing sooty-particles are injected high into the troposphere and spread instantaneously around the hemisphere (Turco et al., 1983; Covey et al. 1984; MacCracken, 1983). A preliminary step beyond these initial calculations has been made by interactively coupling the two-layer, three-dimensional Oregon State University general circulation model (GCM) to the three-dimensional GRANTOUR trace species model developed at the Lawrence Livermore National Laboratory. The GCM simulation includes treatment of tropospheric dynamics and thermodynamics and the effect of soot on solar radiation. The GRANTOUR simulation includes treatment of particle transport and scavenging by precipitation, although no satisfactory verification of the scavenging algorithm has yet been possible. We have considered the climatic effects of 150 Tg (i.e., the 100 Mt urban war scenario from Turco et al., 1983) and of 15 Tg of smoke from urban fires over North America and Eurasia. Starting with a perpetual July atmospheric situation, calculation of the climatic effects as 150 Tg of smoke are spread slowly by the winds, rather than instantaneously dispersed as in previous calculations, leads to some regions of greater cooling under the denser parts of the smoke plumes and some regions of less severe cooling where smoke arrival is delayed. As for the previous calculations, mid-latitude decreases of land surface air temperature for the 150 Tg injection are greater than 15 0 C after a few weeks. For a 15 Tg injection, however, cooling of more than several degrees centigrade only occurs in limited regions under the dense smoke plumes present in the first few weeks after the injection. 10 references, 9 figures

  15. Stratospheric General Circulation with Chemistry Model (SGCCM)

    Science.gov (United States)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  16. Making Decisions by Analytical Chemistry

    DEFF Research Database (Denmark)

    Andersen, Jens Enevold Thaulov

    It has been long recognized that results of analytical chemistry are not flawless, owing to the fact that professional laboratories and research laboratories analysing the same type of samples by the same type of instruments are likely to obtain significantly different results. The European......, forensics and other fields of science where analytical chemistry is the key instrument of decision making. In order to elucidate the potential origin of the statistical variations found among laboratories, a major program was undertaken including several analytical technologies where the purpose...... of accuracy published in research literature. The possible deviations are suspected to originate from long-term variations of detection systems of instrumental analysis, and the impact on these findings on future measurements of analytical chemistry is discussed....

  17. Used Nuclear Fuel Loading and Structural Performance Under Normal Conditions of Transport- Demonstration of Approach and Results on Used Fuel Performance Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Adkins, Harold [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Ken [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Koeppel, Brian [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bignell, John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flores, Gregg [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Jy-An [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sanborn, Scott [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Spears, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klymyshyn, Nick [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-09-30

    This document addresses Oak Ridge National Laboratory milestone M2FT-13OR0822015 Demonstration of Approach and Results on Used Nuclear Fuel Performance Characterization. This report provides results of the initial demonstration of the modeling capability developed to perform preliminary deterministic evaluations of moderate-to-high burnup used nuclear fuel (UNF) mechanical performance under normal conditions of storage (NCS) and normal conditions of transport (NCT) conditions. This report also provides results from the sensitivity studies that have been performed. Finally, discussion on the long-term goals and objectives of this initiative are provided.

  18. Annual report 1984 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1985-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1984 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry , environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  19. Annual report 1985 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1986-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All particles and reports published and lectures given in 1985 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, geochemistry and waste disposal, radical chemistry, positron annihilation, mineral processing, and general. (author)

  20. Green analytical chemistry--theory and practice.

    Science.gov (United States)

    Tobiszewski, Marek; Mechlińska, Agata; Namieśnik, Jacek

    2010-08-01

    This tutorial review summarises the current state of green analytical chemistry with special emphasis on environmentally friendly sample preparation techniques. Green analytical chemistry is a part of the sustainable development concept; its history and origins are described. Miniaturisation of analytical devices and shortening the time elapsing between performing analysis and obtaining reliable analytical results are important aspects of green analytical chemistry. Solventless extraction techniques, the application of alternative solvents and assisted extractions are considered to be the main approaches complying with green analytical chemistry principles.

  1. Application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry

    International Nuclear Information System (INIS)

    Shen Xinghai; Chen Qingde; Gao Hongcheng

    2008-01-01

    Supramolecular chemistry, one of the front fields in chemistry, is defined as 'chemistry beyond the molecule', bearing on the organized entities of higher complexity that result from the association of two or more chemical species held together by intermolecular forces. This article focuses on the application of the principle of supramolecular chemistry in the fields of radiochemistry and radiation chemistry. The following aspects are concerned: (1) the recent progress of supramolecular chemistry; (2) the application of the principle of supramolecular chemistry and the functions of supramolecular system, i.e., recognition, assembly and translocation, in the extraction of nuclides; (3) the application of microemulsion, ionic imprinted polymers, ionic liquids and cloud point extraction in the enrichment of nuclides; (4) the radiation effect of supramolecular systems. (authors)

  2. Consequences of unburned hydrocarbons on microstreamer dynamics and chemistry during plasma remediation of NO sub x using dielectric barrier discharges

    CERN Document Server

    Dorai, R

    2003-01-01

    Atmospheric pressure plasmas, and dielectric barrier discharges (DBDs) in particular, are being investigated for their use in the remediation of nitrogen oxides (NO sub x) from automotive exhausts. In their normal mode of operation, DBDs consist of a large density of short-lived filamentary microdischarges. Localized energy deposition results in spatially nonuniform gas temperatures and species densities which initiate advective and diffusive transport. Diesel exhausts, one of the major sources of NO sub x , typically contain unburned hydrocarbons (UHCs) which significantly influence the NO sub x chemistry during plasma remediation. In this paper, we discuss results from a computational investigation of the consequences of UHC chemistry on radial transport dynamics and remediation of NO sub x. In the presence of UHCs, radicals such as O and OH are dominantly consumed in the microstreamer region and their transport to larger radii is reduced. As a result, the conversion of NO to NO sub 2 is mainly restricted t...

  3. The New Color of Chemistry: Green Chemistry

    OpenAIRE

    Zuhal GERÇEK

    2012-01-01

    Green chemistry which is the new application of chemistry rules provides solutions to problems that mankind is faced with climate changes, sustainable agriculture, energy, toxics, depletion of natural sources e.g. designing new chemicals and processes that production and utilization of hazardous matters. So, it is the indispensible tool for sustainable development. Current and future chemists should consider the human health and ecological issues in their professional life. In order to provid...

  4. Nuclear chemistry in the traditional chemistry program

    International Nuclear Information System (INIS)

    Kleppinger, E.W.

    1993-01-01

    The traditional undergraduate program for chemistry majors, especially at institutions devoted solely to undergraduate education, has limited space for 'special topics' courses in areas such as nuclear and radiochemistry. A scheme is proposed whereby the basic topics covered in an introductury radiochemistry course are touched upon, and in some cases covered in detail, at some time during the four-year sequence of courses taken by a chemistry major. (author) 6 refs.; 7 tabs

  5. Integrated modeling and characterization of local crack chemistry

    International Nuclear Information System (INIS)

    Savchik, J.A.; Burke, M.S.

    1995-01-01

    The MULTEQ computer program has become an industry wide tool which can be used to calculate the chemical composition in a flow occluded region as the solution within concentrates due to a local boiling process. These results can be used to assess corrosion concerns in plant equipment such as steam generators. Corrosion modeling attempts to quantify corrosion assessments by accounting for the mass transport processes involved in the corrosion mechanism. MULTEQ has played an ever increasing role in defining the local chemistry for such corrosion models. This paper will outline how the integration of corrosion modeling with the analysis of corrosion films and deposits can lead to the development of a useful modeling tool, wherein MULTEQ is interactively linked to a diffusion and migration transport process. This would provide a capability to make detailed inferences of the local crack chemistry based on the analyses of the local corrosion films and deposits inside a crack and thus provide guidance for chemical fixes to avoid cracking. This methodology is demonstrated for a simple example of a cracked tube. This application points out the utility of coupling MULTEQ with a mass transport process and the feasibility of an option in a future version of MULTEQ that would permit relating film and deposit analyses to the local chemical environment. This would increase the amount of information obtained from removed tube analyses and laboratory testing that can contribute to an overall program for mitigating tubing and crevice corrosion

  6. Progress report, Chemistry and Materials Division, October 1 to December 31, 1975

    International Nuclear Information System (INIS)

    1976-01-01

    Interim research results are reported in solid state science (ion penetration, electron microscopy, radiation damage and metal physics, nuclear methods of analysis), general chemistry (analytical chemistry, hydrogen-water exchange, radioactivity measurements, electrochemistry), physical chemistry (radiation and isotope chemistry), materials science (surface chemistry and metal physics), and university research (deuterium exchange and zirconium alloy properties). (E.C.B.)

  7. The Relationships between University Students' Chemistry Laboratory Anxiety, Attitudes, and Self-Efficacy Beliefs

    Science.gov (United States)

    Kurbanoglu, N. Izzet; Akin, Ahmet

    2010-01-01

    The aim of this study is to examine the relationships between chemistry laboratory anxiety, chemistry attitudes, and self-efficacy. Participants were 395 university students. Participants completed the Chemistry Laboratory Anxiety Scale, the Chemistry Attitudes Scale, and the Self-efficacy Scale. Results showed that chemistry laboratory anxiety…

  8. Assessment of EPRI water chemistry guidelines for new nuclear power plants

    International Nuclear Information System (INIS)

    Reid Richard; Kim Karen; McCree, Anisa; Eaker, Richard; Sawochka, Steve; Giannelli, Joe

    2012-09-01

    Water chemistry control technologies for nuclear power plants have been significantly enhanced over the past few decades to improve material and equipment reliability and fuel performance, and to minimize radionuclide production and transport. Chemistry Guidelines have been developed by the Electric Power Research Institute (EPRI) for currently operating plants and have been intermittently revised over the past twenty-five years for the protection of systems and components and for radiation management. As new plants are being designed for improved safety and increased power production, it is important to ensure that the designs consider implementation of state-of-the-art, industry developed water chemistry controls. In parallel, the industry will need to consider and update water chemistry guidelines as well as plant startup and operational strategies based on the advanced plant designs. EPRI has performed assessments of water chemistry control guidance or assumptions provided in design and licensing documents for several advanced plant designs. These designs include: Westinghouse AP1000 Pressurized Water Reactor AREVA US-EPR Pressurized Water Reactor Mitsubishi Nuclear Energy Systems/Mitsubishi Heavy Industries Advanced Pressurized Water Reactor Korea Hydro and Nuclear Power APR1400 Pressurized Water Reactor Toshiba Advanced Boiling Water Reactor (ABWR) General Electric-Hitachi Economic Simplified Boiling Water Reactor (ESBWR) The intent of these assessments was to identify key design differences in each of the new plant designs relative to the current operating fleet and to identify differences in water chemistry specifications or design assumptions provided in design and licensing documents for the plants in comparison to current EPRI Water Chemistry Guidelines. This paper provides a summary of the key results of these assessments. The fundamental design and operation of the advanced plants is similar to the currently operating fleet. As such, the new plants are

  9. Antiparallel Dynamic Covalent Chemistries.

    Science.gov (United States)

    Matysiak, Bartosz M; Nowak, Piotr; Cvrtila, Ivica; Pappas, Charalampos G; Liu, Bin; Komáromy, Dávid; Otto, Sijbren

    2017-05-17

    The ability to design reaction networks with high, but addressable complexity is a necessary prerequisite to make advanced functional chemical systems. Dynamic combinatorial chemistry has proven to be a useful tool in achieving complexity, however with some limitations in controlling it. Herein we introduce the concept of antiparallel chemistries, in which the same functional group can be channeled into one of two reversible chemistries depending on a controllable parameter. Such systems allow both for achieving complexity, by combinatorial chemistry, and addressing it, by switching from one chemistry to another by controlling an external parameter. In our design the two antiparallel chemistries are thiol-disulfide exchange and thio-Michael addition, sharing the thiol as the common building block. By means of oxidation and reduction the system can be reversibly switched from predominantly thio-Michael chemistry to predominantly disulfide chemistry, as well as to any intermediate state. Both chemistries operate in water, at room temperature, and at mildly basic pH, which makes them a suitable platform for further development of systems chemistry.

  10. Dynamic models for radionuclide transport in agricultural ecosystems: summary of results from a UK code comparison exercise

    International Nuclear Information System (INIS)

    Meekings, G.F.; Walters, B.

    1986-01-01

    In recent years, models have been developed by three organisations in the UK to represent the time-dependent behaviour of radionuclides in agricultural ecosystems. These models were developed largely independently of each other and, in view of their potential applications in relation to radioactive waste management and discharge, the Food Science Division of the Ministry of Agriculture, Fisheries and Food initiated a calculational intercomparison exercise with the agreement and cooperation of all three organisations involved. A subset of the results obtained is reported here. In general a high degree of consistency between the results of the various models was obtained particularly regarding the responses with time. The exercise supported the case for using dynamic models in radiological assessment studies. It also demonstrated areas where differences in results from the models are a consequence of a lack of appropriate data on the environmental behaviour of the radionuclides considered. (author)

  11. Geometry of the Farallon Slab Revealed by Joint Interpretation of Wavefield Imaging and Tomography Results from the Earthscope Transportable Array

    Science.gov (United States)

    Pavlis, G. L.; Wang, Y.

    2015-12-01

    A significant number of P and S wave tomography models have been produced in the past decade using various subsets of data from the Earthscope USArray and different inversion algorithms. We focus here on published tomography results that span large portions of the final footprint of the USArray. We use 3D visualization techniques to search for common features in different tomography models. We also compare tomography results to features seen in our current generation wavefield images. Recent innovations of our plane wave migration method have yielded what is arguably the highest resolution image ever produced of the mantle in the vicinity of the transition zone. The new results reveal a rich collection of coherent, dipping structures seen throughout the upper mantle and transition zone. These dipping interfaces are judged significant according to a coherence metric. We treat these surfaces as strain markers to assess proposed models for geometry of the 3D geometry of the Farallon Slab under North America. We find the following geologic interpretations are well supported by independent results: 1. The old Farallon under eastern North America and below the base of transition zone is universally seen as a high velocity anomaly. 2. All results support a simple, 3D kinematic model of the updip limit of the Farallon slab window that follows a track from Cape Mendocino, across Nevada, and northern Arizona and New Mexico. 3. All models show a strong low-velocity mantle under the southwestern U.S. 4. A low-velocity features is universally seen related to the Yellowstone-Snake River system. Shorter wavelength features observed in different tomography models are inconsistent showing that the theme of this session is very important to understand what features are in current results are real. Isopach maps of the thickness of the transition show a systematic difference in transition zone thickness in the western and eastern US. The transition zone thickens in the eastern US in

  12. Polymer chemistry (revised edition)

    International Nuclear Information System (INIS)

    Kim, Jae Mum

    1987-02-01

    This book deals with polymer chemistry, which is divided into fourteen chapters. The contents of this book are development of polymer chemistry, conception of polymer, measurement of polymer chemistry, conception of polymer, measurement of polymer, molecule structure of polymer, thermal prosperities of solid polymer, basic theory of polymerization, radical polymerization, ion polymerization, radical polymerization, copolymerization, polymerization by step-reaction, polymer reaction, crown polymer and inorganic polymer on classification and process of creation such as polymeric sulfur and carbon fiber.

  13. Orbital interactions in chemistry

    CERN Document Server

    Albright, Thomas A; Whangbo, Myung-Hwan

    2013-01-01

    Explains the underlying structure that unites all disciplines in chemistry Now in its second edition, this book explores organic, organometallic, inorganic, solid state, and materials chemistry, demonstrating how common molecular orbital situations arise throughout the whole chemical spectrum. The authors explore the relationships that enable readers to grasp the theory that underlies and connects traditional fields of study within chemistry, thereby providing a conceptual framework with which to think about chemical structure and reactivity problems. Orbital Interactions

  14. Advances in quantum chemistry

    CERN Document Server

    Sabin, John R

    2013-01-01

    Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features detailed reviews written by leading international researchers. This volume focuses on the theory of heavy ion physics in medicine.Advances in Quantum Chemistry presents surveys of current topics in this rapidly developing field that has emerged at the cross section of the historically established areas of mathematics, physics, chemistry, and biology. It features

  15. USSR Report, Chemistry

    National Research Council Canada - National Science Library

    1986-01-01

    This USSR Report on Chemistry contains articles on Aerosols, Adsorption, Biochemistry, Catalysis, Chemical Industry, Coal Gasification, Electrochemistry, Explosives and Explosions, Fertilizers, Food...

  16. Science Update: Analytical Chemistry.

    Science.gov (United States)

    Worthy, Ward

    1980-01-01

    Briefly discusses new instrumentation in the field of analytical chemistry. Advances in liquid chromatography, photoacoustic spectroscopy, the use of lasers, and mass spectrometry are also discussed. (CS)

  17. DOE fundamentals handbook: Chemistry

    International Nuclear Information System (INIS)

    1993-01-01

    This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids)

  18. Elements of environmental chemistry

    National Research Council Canada - National Science Library

    Hites, R. A; Raff, Jonathan D

    2012-01-01

    ... more. Extensively revised, updated, and expanded, this second edition includes new chapters on atmospheric chemistry, climate change, and polychlorinated biphenyls and dioxins, and brominated flame retardants...

  19. Green Chemistry Pedagogy

    Science.gov (United States)

    Kolopajlo, Larry

    2017-02-01

    This chapter attempts to show how the practice of chemistry teaching and learning is enriched by the incorporation of green chemistry (GC) into lectures and labs. To support this viewpoint, evidence from a wide range of published papers serve as a cogent argument that GC attracts and engages both science and nonscience students, enhances chemistry content knowledge, and improves the image of the field, while preparing the world for a sustainable future. Published pedagogy associated with green and sustainable chemistry is critically reviewed and discussed.

  20. Canopy Chemistry (OTTER)

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Canopy characteristics: leaf chemistry, specific leaf area, LAI, PAR, IPAR, NPP, standing biomass--see also: Meteorology (OTTER) for associated...

  1. Modelling electric discharge chemistry

    International Nuclear Information System (INIS)

    McFarlane, J.; Wren, J.C.

    1991-07-01

    The chemistry occurring in a electric discharge was modelled to predict how it would be influenced by discharge conditions. The discharge was characterized by a calculated Boltzmann electron-energy distribution, from which rate constants for electron-molecule processes in air were determined. These rate constants were used in a chemical kinetics calculation that also included reactions between neutral molecules, ions, free radicals and electronically excited species. The model describes how the discharge chemistry was influenced by humidity, electric field, electron number density, and concentrations of key reagents identified in the study. The use of an electric discharge to destroy airborne contaminant molecules was appraised, the targeted contaminants being CF 2 Cl 2 , HCN, and SO 2 . The modelling results indicate that an electric discharge should be able to remove HCN and CF 2 Cl 2 effectively, especially if the discharge conditions have been optimized. Effective destruction is achieved with a moderate electric field (over 1 x 10 -15 V.cm 2 ), a substantial electron number density (over 1 x 10 12 cm -3 ), and the presence of H 2 0 in the process air. The residence time in the discharge was also shown to be important in contaminant destruction. An attempt was made to explain the results of the electric discharge abatement of SO 2 , a component of a simulated flue-gas mixture. Results from the model indicate that the discharge parameters that increase the concentration of hydroxyl radical also increase the rate of decomposition of SO 2 . An objective of the study was to explain the apparent enhancement of SO 2 destruction by the presence of a small amount of NO 2 . It was thought that a likely explanation would be the stabilization of HOSO 2 , an important intermediate in the oxidation of SO 2 by NO 2 . (49 figs., 14 tabs., 75 refs.)

  2. Transport and mixing of eolian sand from local sources resulting in variations in grain size in a gypsum dune field, White Sands, New Mexico, USA

    Science.gov (United States)

    Langford, Richard P.; Gill, Thomas E.; Jones, Slade B.

    2016-03-01

    The White Sands Dune Field, New Mexico (USA), provides a unique opportunity to study sources and eolian transport of sand. End member mixing analysis provides unbiased correlation of the grain size distributions of populations that mix sands from four different local source surface types. Textural differences between sources allow local transport paths to be deduced. In total, 1214 surface samples from 10 dunes and 2 downwind-oriented transects were collected. Neither elevation on the dune, lee or stoss location nor distance downwind correlated with mean grain size, coarsest 10% (D90), or sorting. Instead, grain size distributions are controlled by mixing of locally sourced sand populations. Adjacent dunes can have different mean grain sizes, resulting from different local source populations. Local within-dune and between-dune variability resulting from different sand sources dominates any larger-scale trends across and within dunes. Four sand populations are identified, based on microscopically observable differences in grain size, shape and angularity. Each correlates with high loading of a different statistical factor, derived from End Member Mixing Analysis. End Member 1 (EM1) correlates with well-sorted populations of finer-grained, equant, rounded sands. EM2 correlates with samples that contain moderately sorted populations containing angular blades and crystal aggregates associated with erosional interdunes. EM3 is associated with samples of moderately to poorly sorted fine-grained sand containing fine sand-sized gypsum needles collected from areas of vegetated interdunes, and EM4 is associated with moderately well sorted coarse- and very coarse-grained sands collected from granule ripples. These results suggest that downwind mixing of different populations and segregation by different depositional processes influence grain size distributions in the dune field, rather than by dune-scale or erg-scale transport and sorting.

  3. Groundwater-derived nutrient and trace element transport to a nearshore Kona coral ecosystem: Experimental mixing model results

    Directory of Open Access Journals (Sweden)

    Nancy G. Prouty

    2017-06-01

    New Hydrological Insights for the Region: Treated wastewater effluent was the main source for nutrient enrichment downstream at the Honokōhau Harbor site. Conservative mixing for some constituents, such as nitrate + nitrite, illustrate the effectiveness of physical mixing to maintain oceanic concentrations in the colloid (0.02–0.45 μm and truly dissolved (<0.02 μm forms. In contrast, the nonconservative behavior of phosphate highlights the importance of surface complexation reactions that can lead to higher concentrations based on conservative mixing alone. Results from this physiochemical mixing experiment demonstrate how relative availability of P can shift with adsorption behavior, affecting the mobility of phosphate in the environment. With a proposed 8-hectare wastewater treatment facility (WWTF to be constructed upslope of the Kaloko-Honokōhau National Historical Park (NHP, treated effluent is projected to add additional nutrients. Combined with high permeability, rapid discharge, and increased nutrient loading SGD will likely continue to serve as a persistent source of nutrients and potential contaminant to coral ecosystems.

  4. Chemistry and propulsion; Chimie et propulsions

    Energy Technology Data Exchange (ETDEWEB)

    Potier, P. [Maison de la Chimie, 75 - Paris (France); Davenas, A. [societe Nationale des Poudres et des Explosifs - SNPE (France); Berman, M. [Air Force Office of Scientific Research, Arlington, VA (United States)] [and others

    2002-07-01

    During the colloquium on chemistry and propulsion, held in march 2002, ten papers have been presented. The proceedings are brought in this document: ramjet, scram-jet and Pulse Detonation Engine; researches and applications on energetic materials and propulsion; advances in poly-nitrogen chemistry; evolution of space propulsion; environmental and technological stakes of aeronautic propulsion; ramjet engines and pulse detonation engines, automobiles thermal engines for 2015, high temperature fuel cells for the propulsion domain, the hydrogen and the fuel cells in the future transports. (A.L.B.)

  5. Science Academies' Refresher Course in Chemistry

    Indian Academy of Sciences (India)

    2017-10-25

    Oct 25, 2017 ... thetic Organic Chemistry, Asymmetric Synthesis, Stereochemistry, Pericyclic Reactions, Advance. Spectroscopy, Organomettalic Chemistry, Material Chemistry and Nanotechnology, X-Ray Crys- tallography, Molecular Spectroscopy and Quantum Chemistry, Medicinal Chemistry, Bio-inorganic. Chemistry.

  6. Rapid automated nuclear chemistry

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1979-01-01

    Rapid Automated Nuclear Chemistry (RANC) can be thought of as the Z-separation of Neutron-rich Isotopes by Automated Methods. The range of RANC studies of fission and its products is large. In a sense, the studies can be categorized into various energy ranges from the highest where the fission process and particle emission are considered, to low energies where nuclear dynamics are being explored. This paper presents a table which gives examples of current research using RANC on fission and fission products. The remainder of this text is divided into three parts. The first contains a discussion of the chemical methods available for the fission product elements, the second describes the major techniques, and in the last section, examples of recent results are discussed as illustrations of the use of RANC

  7. Organic chemistry on Titan

    Science.gov (United States)

    Chang, S.; Scattergood, T.; Aronowitz, S.; Flores, J.

    1979-01-01

    Features taken from various models of Titan's atmosphere are combined in a working composite model that provides environmental constraints within which different pathways for organic chemical synthesis are determined. Experimental results and theoretical modeling suggest that the organic chemistry of the satellite is dominated by two processes: photochemistry and energetic particle bombardment. Photochemical reactions of CH4 in the upper atmosphere can account for the presence of C2 hydrocarbons. Reactions initiated at various levels of the atmosphere by cosmic rays, Saturn 'wind', and solar wind particle bombardment of a CH4-N2 atmospheric mixture can account for the UV-visible absorbing stratospheric haze, the reddish appearance of the satellite, and some of the C2 hydrocarbons. In the lower atmosphere photochemical processes will be important if surface temperatures are sufficiently high for gaseous NH3 to exist. It is concluded that the surface of Titan may contain ancient or recent organic matter (or both) produced in the atmosphere.

  8. The importance of qualitative analytical chemistry in chemistry courses in Brazilian universities.

    OpenAIRE

    Alvim, TR; de Andrade, JC

    2006-01-01

    The results of a survey of institutions offering undergraduate studies, with the objective of evaluating the importance of Qualitative Analytical Chemistry for Chemistry courses in Brazil, are presented and discussed. Judging by the data, the content of the course of Qualitative Analytical Chemistry is considered by the Brazilian institutions offering undergraduate studies to be a body of knowledge essential for the formation of the chemist. This aspect is deemed valid for both baccalaureate ...

  9. Current developments in radiation chemistry

    International Nuclear Information System (INIS)

    Cooper, R.

    2000-01-01

    Full text: The theme of the 2000 Gordon Conference on Radiation Chemistry was 'diversity'. The range of topics covered was heralded by the opening presentations which went from the galactic to molecular biology, radiation chemistry and non thermal surface processes in the outer solar system to achievements and open challenges in DNA research. The rest of the conference reflected the extended usage of radiation chemistry -its processes and techniques - applied to a panorama of topics. The ability to generate either oxidising or reducing free radicals in known quantities has been the foundation stone on which all applications are based. In particular it is noticeable that biological systems have been attempted by an increasing number of workers, such as studies of biological ageing and also reactions of nitric oxide in biological environments. Electron transfer processes in proteins are straightforward applications of solvated electron chemistry even if the results are not straightforward in their interpretation. Other topics presented include, radiation chemical processes induced in: supercritical CO 2 , treatment of contaminated materials, 3-dimensional Fullerenes, zeolites and radiation catalysis. In material science, aspects of ions and excited states in polymers, conducting polymers, donor acceptor processes in photo curing, enhancement of photo-electron yields in doped silver halides- improvement of the photographic process, radiation chemistry in cages and bubbles are discussed. The fundamental aspects of radiation chemistry are not yet all worked out. Subpicosecond pulsed electron beam sources, some of them 'tabletop', are still being planned to probe the early events in radiation chemistry both in water and in organic solvents. There is still an interest in the chemistry produced by pre-solvated electrons and the processes induced by heavy ion radiolysis. The description of the relaxation of an irradiated system which contains uneven distributions of ions

  10. Annual report 1988 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1989-05-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1988 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  11. Annual report 1989 Chemistry Department

    International Nuclear Information System (INIS)

    Funck, J.; Neve Larsen, Aa.; Larsen, E.; Nielsen, O.J.

    1990-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. The names and abstracts of all articles and reports published and lectures given in 1989 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, chemical reactivity, mineral processing, and general. (author)

  12. Annual report 1986 chemistry department

    International Nuclear Information System (INIS)

    Funck, J.; Larsen, E.; Nielsen, O.J.

    1987-03-01

    This report contains a brief survey of the main activities in the Chemistry Department. All articles and reports published and lectures given in 1986 are presented. The facilities and equipment are mentioned briefly. The activities are divided into the following groups: radioisotope chemistry, analytical- and organic chemistry, environmental chemistry, polymer chemistry, radical chemistral, mineral processing, and general. (author)

  13. Dynamic imine chemistry.

    Science.gov (United States)

    Belowich, Matthew E; Stoddart, J Fraser

    2012-03-21

    Formation of an imine--from an amine and an aldehyde--is a reversible reaction which operates under thermodynamic control such that the formation of kinetically competitive intermediates are, in the fullness of time, replaced by the thermodynamically most stable product(s). For this fundamental reason, the imine bond has emerged as an extraordinarily diverse and useful one in the hands of synthetic chemists. Imine bond formation is one of a handful of reactions which define a discipline known as dynamic covalent chemistry (DCC), which is now employed widely in the construction of exotic molecules and extended structures on account of the inherent 'proof-reading' and 'error-checking' associated with these reversible reactions. While both supramolecular chemistry and DCC operate under the regime of reversibility, DCC has the added advantage of constructing robust molecules on account of the formation of covalent bonds rather than fragile supermolecules resulting from noncovalent bonding interactions. On the other hand, these products tend to require more time to form--sometimes days or even months--but their formation can often be catalysed. In this manner, highly symmetrical molecules and extended structures can be prepared from relatively simple precursors. When DCC is utilised in conjunction with template-directed protocols--which rely on the use of noncovalent bonding interactions between molecular building blocks in order to preorganise them into certain relative geometries as a prelude to the formation of covalent bonds under equilibrium control--an additional level of control of structure and topology arises which offers a disarmingly simple way of constructing mechanically-interlocked molecules, such as rotaxanes, catenanes, Borromean rings, and Solomon knots. This tutorial review focuses on the use of dynamic imine bonds in the construction of compounds and products formed with and without the aid of additional templates. While synthesis under thermodynamic

  14. Developing an online chemistry laboratory for non-chemistry majors

    Science.gov (United States)

    Poole, Jacqueline H.

    Distance education, also known as online learning, is student-centered/self-directed educational opportunities. This style of learning is expanding in scope and is increasingly being accepted throughout the academic curriculum as a result of its flexibility for the student as well as the cost-effectiveness for the institution. Nevertheless, the introduction of online science courses including chemistry and physics have lagged behind due to the challenge of re-creation of the hands-on laboratory learning experience. This dissertation looks at the effectiveness of the design of a series of chemistry laboratory experiments for possible online delivery that provide students with simulated hands-on experiences. One class of college Chemistry 101 students conducted chemistry experiments inside and outside of the physical laboratory using instructions on Blackboard and Late Nite Labs(TM). Learning outcomes measured by (a) pretests, (b) written laboratory reports, (c) posttest assessments, (d) student reactions as determined by a questionnaire, and (e) a focus group interview were utilized to compare both types of laboratory experiences. The research findings indicated learning outcomes achieved by students outside of the traditional physical laboratory were statistically greater than the equivalent face-to-face instruction in the traditional laboratory. Evidence from student reactions comparing both types of laboratory formats (online and traditional face-to-face) indicated student preference for the online laboratory format. The results are an initial contribution to the design of a complete sequence of experiments that can be performed independently by online students outside of the traditional face-to-face laboratory that will satisfy the laboratory requirement for the two-semester college Chemistry 101 laboratory course.

  15. Concept of Green Chemistry

    Indian Academy of Sciences (India)

    Srimath

    decades much work has been going on in this direction. The term. Green Chemistry was coined in 1991 by Anastas. ... She is currently working on electrochemical and insecticidal/antifungal activities for ..... less substances. Inherently Safer Chemistry for Accident Prevention: Design chemicals and their forms (solid, liquid, ...

  16. Chemistry is Evergreen

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 3. Chemistry is Everygreen - 2008 Nobel Prize in Chemistry. Swagata Dasgupta. General Article Volume 14 Issue 3 March 2009 pp 248-258. Fulltext. Click here to view fulltext PDF. Permanent link:

  17. Titanocene sulfide chemistry

    Czech Academy of Sciences Publication Activity Database

    Horáček, Michal

    2016-01-01

    Roč. 314, MAY 2016 (2016), s. 83-102 ISSN 0010-8545 R&D Projects: GA ČR(CZ) GAP207/12/2368 Institutional support: RVO:61388955 Keywords : titanocene sulfide chemistry * photolysis * titanocene hydrosulfides Ti-(SH)n Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 13.324, year: 2016

  18. Chemistry of Materials

    Indian Academy of Sciences (India)

    I am really glad to have this opportunity to write to you, specially about a subject in which I have worked for half a century. When I was your age, if somebody had told me that I would be working in chemistry of materials most of my life, I would not have believed it. At that time, chemistry of materials meant studying something.

  19. Chemistry: The Middle Kingdom

    Indian Academy of Sciences (India)

    2005-02-10

    Feb 10, 2005 ... ogy and economics on the other. It is said that chemistry is reducible into physics and .... nialism as economic doctrines and the importance given to the individual in relation to the group. Aristotle's holistic ... Pauling's essential contribution, the concept of the covalent bond, meant that chemistry did not need ...

  20. Chemistry of americium

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, W.W.

    1976-01-01

    Essential features of the descriptive chemistry of americium are reviewed. Chapter titles are: discovery, atomic and nuclear properties, collateral reading, production and uses, chemistry in aqueous solution, metal, alloys, and compounds, and, recovery, separation, purification. Author and subject indexes are included. (JCB)