WorldWideScience

Sample records for transport aircraft technology

  1. Advanced technology for future regional transport aircraft

    Science.gov (United States)

    Williams, L. J.

    1982-01-01

    In connection with a request for a report coming from a U.S. Senate committee, NASA formed a Small Transport Aircraft Technology (STAT) team in 1978. STAT was to obtain information concerning the technical improvements in commuter aircraft that would likely increase their public acceptance. Another area of study was related to questions regarding the help which could be provided by NASA's aeronautical research and development program to commuter aircraft manufacturers with respect to the solution of technical problems. Attention is given to commuter airline growth, current commuter/region aircraft and new aircraft in development, prospects for advanced technology commuter/regional transports, and potential benefits of advanced technology. A list is provided of a number of particular advances appropriate to small transport aircraft, taking into account small gas turbine engine component technology, propeller technology, three-dimensional wing-design technology, airframe aerodynamics/propulsion integration, and composite structure materials.

  2. Small transport aircraft technology

    Science.gov (United States)

    Williams, L. J.

    1983-01-01

    Information on commuter airline trends and aircraft developments is provided to upgrade the preliminary findings of a NASA-formed small transport aircraft technology (STAT) team, established to determine whether the agency's research and development programs could help commuter aircraft manufacturers solve technical problems related to passenger acceptance and use of 19- to 50-passenger aircraft. The results and conclusions of the full set of completed STAT studies are presented. These studies were performed by five airplane manufacturers, five engine manufacturers, and two propeller manufacturers. Those portions of NASA's overall aeronautics research and development programs which are applicable to commuter aircraft design are summarized. Areas of technology that might beneficially be expanded or initiated to aid the US commuter aircraft manufacturers in the evolution of improved aircraft for the market are suggested.

  3. Small Transport Aircraft Technology /STAT/ Propulsion Study

    Science.gov (United States)

    Heldenbrand, R. W.; Baerst, C. F.; Rowse, J. H.

    1980-01-01

    The NASA Small Transport Aircraft Technology (STAT) Propulsion Study was established to identify technology requirements and define the research and development required for new commuter aircraft. Interim results of the studies defined mission and design characteristics for 30- and 50-passenger aircraft. Sensitivities were defined that relate changes in engine specific fuel consumption (SFC), weight, and cost (including maintenance) to changes in the aircraft direct operating cost (DOC), takeoff gross weight, and empty weight. A comparison of performance and economic characteristics is presented between aircraft powered by 1980 production engines and those powered by a 1990 advanced technology baseline engine.

  4. Propulsion Study for Small Transport Aircraft Technology (STAT)

    Science.gov (United States)

    Gill, J. C.; Earle, R. V.; Staton, D. V.; Stolp, P. C.; Huelster, D. S.; Zolezzi, B. A.

    1980-01-01

    Propulsion requirements were determined for 0.5 and 0.7 Mach aircraft. Sensitivity studies were conducted on both these aircraft to determine parametrically the influence of propulsion characteristics on aircraft size and direct operating cost (DOC). Candidate technology elements and design features were identified and parametric studies conducted to select the STAT advanced engine cycle. Trade off studies were conducted to determine those advanced technologies and design features that would offer a reduction in DOC for operation of the STAT engines. These features were incorporated in the two STAT engines. A benefit assessment was conducted comparing the STAT engines to current technology engines of the same power and to 1985 derivatives of the current technology engines. Research and development programs were recommended as part of an overall technology development plan to ensure that full commercial development of the STAT engines could be initiated in 1988.

  5. COMPARATIVE ANALYSIS OF TRANSPORT AIRCRAFT, BACKROUND FOR SHORT/ MEDIUM COURIER TRANSPORT AIRCRAFT PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Matei POPA

    2010-03-01

    Full Text Available In accordance with Air Force requirements, the comparative analysis of short/medium transport aircraft comes to sustain procurement decision of short/medium transport aircraft. This paper presents, in short, the principles and the results of the comparative analysis for short/medium military transport aircraft.

  6. Aircraft Emission Scenarios Projected in Year 2015 for the NASA Technology Concept Aircraft (TCA) High Speed Civil Transport

    Science.gov (United States)

    Baughcum, Steven L.; Henderson, Stephen C.

    1998-01-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCTs) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The HSCT scenarios are calculated using the NASA technology concept airplane (TCA) and update an earlier report. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer pressure altitude grid and delivered to NASA as electronic files.

  7. Applications of advanced transport aircraft in developing countries

    Science.gov (United States)

    Gobetz, F. W.; Assarabowski, R. J.; Leshane, A. A.

    1978-01-01

    Four representative market scenarios were studied to evaluate the relative performance of air-and surface-based transportation systems in meeting the needs of two developing contries, Brazil and Indonesia, which were selected for detailed case studies. The market scenarios were: remote mining, low-density transport, tropical forestry, and large cargo aircraft serving processing centers in resource-rich, remote areas. The long-term potential of various aircraft types, together with fleet requirements and necessary technology advances, is determined for each application.

  8. Advanced transport aircraft technology

    Energy Technology Data Exchange (ETDEWEB)

    Winblade, R L

    1980-06-01

    Various elements of the NASA aircraft energy efficiency program are described. Regarding composite structures, the development of three secondary and three medium-primary components to validate structural and fabrication technology is discussed. In laminar flow control, the design of advanced airfoils having large regions of supercritical flow with features which simplify laminarization are considered. Emphasis is placed on engine performance improvement, directed at developing advanced components to reduce fuel consumption in current production engines, and engine diagnostics aimed at identifying the sources and causes of performance deterioration in high-bypass turbofan engines. In addition, the results of propeller aerodynamic and acoustic tests have substantiated the feasibility of achieving the propeller efficiency goal of 80% and confirmed that the effect of blade sweep on reducing propeller source noise was 5-6 dB.

  9. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    Science.gov (United States)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  10. Development of pressure containment and damage tolerance technology for composite fuselage structures in large transport aircraft

    Science.gov (United States)

    Smith, P. J.; Thomson, L. W.; Wilson, R. D.

    1986-01-01

    NASA sponsored composites research and development programs were set in place to develop the critical engineering technologies in large transport aircraft structures. This NASA-Boeing program focused on the critical issues of damage tolerance and pressure containment generic to the fuselage structure of large pressurized aircraft. Skin-stringer and honeycomb sandwich composite fuselage shell designs were evaluated to resolve these issues. Analyses were developed to model the structural response of the fuselage shell designs, and a development test program evaluated the selected design configurations to appropriate load conditions.

  11. Next Generation Civil Transport Aircraft Design Considerations for Improving Vehicle and System-Level Efficiency

    Science.gov (United States)

    Acosta, Diana M.; Guynn, Mark D.; Wahls, Richard A.; DelRosario, Ruben,

    2013-01-01

    The future of aviation will benefit from research in aircraft design and air transportation management aimed at improving efficiency and reducing environmental impacts. This paper presents civil transport aircraft design trends and opportunities for improving vehicle and system-level efficiency. Aircraft design concepts and the emerging technologies critical to reducing thrust specific fuel consumption, reducing weight, and increasing lift to drag ratio currently being developed by NASA are discussed. Advancements in the air transportation system aimed towards system-level efficiency are discussed as well. Finally, the paper describes the relationship between the air transportation system, aircraft, and efficiency. This relationship is characterized by operational constraints imposed by the air transportation system that influence aircraft design, and operational capabilities inherent to an aircraft design that impact the air transportation system.

  12. Parameterized Flight Mission for Secondary Power Requirement Estimations of Commercial Transport Aircraft

    OpenAIRE

    Lampl, Thomas; Muschkorgel, Sandra; Hornung, Mirko;

    2018-01-01

    The trend towards More-Electric Aircraft (MEA) and the introduction of new system technologies lead to considerable changes at the system level of commercial transport aircraft. Because the number of systems and power requirements are increasing, the consideration and integration of aircraft systems in early aircraft design phases is important. The objective of this contribution is to develop a characteristic flight mission with modelled aircraft systems to estimate the secondary power requir...

  13. Analysis of Small Aircraft as a Transportation System

    Science.gov (United States)

    Dollyhigh, Samuel M.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    An analysis was conducted to examine the market viability of small aircraft as a transportation mode in competition with automobile and scheduled commercial air travel by estimating the pool of users that would potentially switch to on-demand air travel due to cost/time savings. The basis for the analysis model was the Integrated Air Transportation System Evaluation Tool (IATSET) which was developed under contract to NASA by the Logistics Management Institute. IATSET is a macroeconomic model that predicts at a National level the mode choice between automobile, scheduled air, and on-demand air travel based on the value of a travelers time and monetary cost of the trip. A number of modifications are detailed to the original IATSET to better model the changing small aircraft environment. The potential trip market was modeled for the Eclipse 500 operated as a corporate jet and as an air taxi for the business travel market. The Cirrus 20R and a $80K single engine piston aircraft (based on automobile manufacturing technology) are evaluated in the pleasure and personal business travel market.

  14. Green Propulsion Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben

    2015-01-01

    Air transportation is critical to U.S. and Global economic vitality. However, energy and climate issues challenge aviations ability to be sustainable in the long term. Aviation must dramatically reduce fuel use and related emissions. Energy costs to U.S. airlines nearly tripled between 1995 and 2011, and continue to be the highest percentage of operating costs. The NASA Advanced Air Transports Technology Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. The presentation will highlight the NASA vision of revolutionary systems and propulsion technologies needed to achieve these challenging goals. Specifically, the primary focus is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe, which are envisioned as being powered by Hybrid Electric Propulsion Systems.

  15. Economic effects of propulsion system technology on existing and future transport aircraft

    Science.gov (United States)

    Sallee, G. P.

    1974-01-01

    The results of an airline study of the economic effects of propulsion system technology on current and future transport aircraft are presented. This report represents the results of a detailed study of propulsion system operating economics. The study has four major parts: (1) a detailed analysis of current propulsion system maintenance with respect to the material and labor costs encountered versus years in service and the design characteristics of the major elements of the propulsion system of the B707, b727, and B747. (2) an analysis of the economic impact of a future representative 1979 propulsion system is presented with emphasis on depreciation of investment, fuel costs and maintenance costs developed on the basis of the analysis of the historical trends observed. (3) recommendations concerning improved methods of forecasting the maintenance cost of future propulsion systems are presented. A detailed method based on the summation of the projected labor and material repair costs for each major engine module and its installation along with a shorter form suitable for quick, less detailed analysis are presented, and (4) recommendations concerning areas where additional technology is needed to improve the economics of future commercial propulsion systems are presented along with the suggested economic benefits available from such advanced technology efforts.

  16. Hybrid-Electric and Distributed Propulsion Technologies for Large Commercial Transports: A NASA Perspective

    Science.gov (United States)

    Madavan, Nateri K.; Del Rosario, Ruben; Jankovsky, Amy L.

    2015-01-01

    Develop and demonstrate technologies that will revolutionize commercial transport aircraft propulsion and accelerate development of all-electric aircraft architectures. Enable radically different propulsion systems that can meet national environmental and fuel burn reduction goals for subsonic commercial aircraft. Focus on future large regional jets and single-aisle twin (Boeing 737- class) aircraft for greatest impact on fuel burn, noise and emissions. Research horizon is long-term but with periodic spinoff of technologies for introduction in aircraft with more- and all-electric architectures. Research aligned with new NASA Aeronautics strategic R&T thrusts in areas of transition to low-carbon propulsion and ultra-efficient commercial transports.

  17. Overview of NASA Electrified Aircraft Propulsion Research for Large Subsonic Transports

    Science.gov (United States)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy; Dyson, Rodger; Felder, James L.

    2017-01-01

    NASA is investing in Electrified Aircraft Propulsion (EAP) research as part of the portfolio to improve the fuel efficiency, emissions, and noise levels in commercial transport aircraft. Turboelectric, partially turboelectric, and hybrid electric propulsion systems are the primary EAP configurations being evaluated for regional jet and larger aircraft. The goal is to show that one or more viable EAP concepts exist for narrow body aircraft and mature tall-pole technologies related to those concepts. A summary of the aircraft system studies, technology development, and facility development is provided. The leading concept for mid-term (2035) introduction of EAP for a single aisle aircraft is a tube and wing, partially turbo electric configuration (STARC-ABL), however other viable configurations exist. Investments are being made to raise the TRL level of light weight, high efficiency motors, generators, and electrical power distribution systems as well as to define the optimal turbine and boundary layer ingestion systems for a mid-term tube and wing configuration. An electric aircraft power system test facility (NEAT) is under construction at NASA Glenn and an electric aircraft control system test facility (HEIST) is under construction at NASA Armstrong. The correct building blocks are in place to have a viable, large plane EAP configuration tested by 2025 leading to entry into service in 2035 if the community chooses to pursue that goal.

  18. Integral Transportation Systems in Military Transport Aircraft Supply

    Directory of Open Access Journals (Sweden)

    Dražen Kovačević

    2012-10-01

    Full Text Available Supply of goods, equipment and soldiers by militwy transportaircraft can serve as a support to airborne landing operation,support to encircled forces, and support to forces leadinga gue1rilla war. Transport aircraft are designed in such a wayas to be able to cany containers, pallets, most of land vehiclesand helicopters. Militwy transport aircraft can be grouped intothose that were originally designed for military transp01t andthose that are modified civilian aircraft and helicopters. Supplypallets can be wooden, metal, can be airdropped in "taxiing","low-flight", and can also be fitted with a parachute or"retrorocket" for reducing the ground impact. Pallets canamong other things carry liquids, heavy combat and ca1rier vehicles,artillery and rocket weapons and valious containers.Pallets are usually pe1manently deformed at ground impact.Nowadays, high precision of airdrop has been achieved. Containersare used to carry various equipment, food, fue~ weapons,ammunition etc. It is to be expected that the containers,wmoured combat and other vehicles will be redesigned so asto provide more efficient transport and fast a!Tangement ofhigh-mobility units, whereas the form of the future militarytransport aircraft will not undergo substantial changes. By adjustingand standardising the transporlation vehicles, integraltransportation means and cwgo, the overall combat efficiencywill be increased, the a~rangement time especially shortenedand the air supply safety increased.

  19. Conceptual design of hybrid-electric transport aircraft

    Science.gov (United States)

    Pornet, C.; Isikveren, A. T.

    2015-11-01

    The European Flightpath 2050 and corresponding Strategic Research and Innovation Agenda (SRIA) as well as the NASA Environmentally Responsible Aviation N+ series have elaborated aggressive emissions and external noise reduction targets according to chronological waypoints. In order to deliver ultra-low or even zero in-flight emissions levels, there exists an increasing amount of international research and development emphasis on electrification of the propulsion and power systems of aircraft. Since the late 1990s, a series of experimental and a host of burgeouning commercial activities for fixed-wing aviation have focused on glider, ultra-light and light-sport airplane, and this is proving to serve as a cornerstone for more ambitious transport aircraft design and integration technical approaches. The introduction of hybrid-electric technology has dramatically expanded the design space and the full-potential of these technologies will be drawn through synergetic, tightly-coupled morphological and systems integration emphasizing propulsion - as exemplified by the potential afforded by distributed propulsion solutions. With the aim of expanding upon the current repository of knowledge associated with hybrid-electric propulsion systems a quad-fan arranged narrow-body transport aircraft equipped with two advanced Geared-Turbofans (GTF) and two Electrical Fans (EF) in an under-wing podded installation is presented in this technical article. The assessment and implications of an increasing Degree-of-Hybridization for Useful Power (HP,USE) on the overall sizing, performance as well as flight technique optimization of fuel-battery hybrid-electric aircraft is addressed herein. The integrated performance of the concept was analyzed in terms of potential block fuel burn reduction and change in vehicular efficiency in comparison to a suitably projected conventional aircraft employing GTF-only propulsion targeting year 2035. Results showed that by increasing HP,USE, significant

  20. Fixed Wing Project: Technologies for Advanced Air Transports

    Science.gov (United States)

    Del Rosario, Ruben; Koudelka, John M.; Wahls, Richard A.; Madavan, Nateri

    2014-01-01

    The NASA Fundamental Aeronautics Fixed Wing (FW) Project addresses the comprehensive challenge of enabling revolutionary energy efficiency improvements in subsonic transport aircraft combined with dramatic reductions in harmful emissions and perceived noise to facilitate sustained growth of the air transportation system. Advanced technologies and the development of unconventional aircraft systems offer the potential to achieve these improvements. Multidisciplinary advances are required in aerodynamic efficiency to reduce drag, structural efficiency to reduce aircraft empty weight, and propulsive and thermal efficiency to reduce thrust-specific energy consumption (TSEC) for overall system benefit. Additionally, advances are required to reduce perceived noise without adversely affecting drag, weight, or TSEC, and to reduce harmful emissions without adversely affecting energy efficiency or noise.The presentation will highlight the Fixed Wing project vision of revolutionary systems and technologies needed to achieve these challenging goals. Specifically, the primary focus of the FW Project is on the N+3 generation; that is, vehicles that are three generations beyond the current state of the art, requiring mature technology solutions in the 2025-30 timeframe.

  1. Hybrid Electric Propulsion Technologies for Commercial Transports

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Jankovsky, Amy

    2016-01-01

    NASA Aeronautics Research Mission Directorate has set strategic research thrusts to address the major drivers of aviation such as growth in demand for high-speed mobility, addressing global climate and capitalizing in the convergence of technological advances. Transitioning aviation to low carbon propulsion is one of the key strategic research thrust and drives the search for alternative and greener propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The Hybrid Gas-Electric Subproject in the Advanced Air Transportation Project is energizing the transport class landscape by accepting the technical challenge of identifying and validating a transport class aircraft with net benefit from hybrid propulsion. This highly integrated aircraft of the future will only happen if airframe expertise from NASA Langley, modeling and simulation expertise from NASA Ames, propulsion expertise from NASA Glenn, and the flight research capabilities from NASA Armstrong are brought together to leverage the rich capabilities of U.S. Industry and Academia.

  2. Investigation of air transportation technology at Princeton University, 1986

    Science.gov (United States)

    Stengel, Robert F.

    1988-01-01

    The Air Transportation Technology Program at Princeton proceeded along four avenues: Guidance and control strategies for penetration of microbursts and wind shear; Application of artificial intelligence in flight control systems; Computer aided control system design; and Effects of control saturation on closed loop stability and response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of prime concern.

  3. Study of fuel systems for LH2-fueled subsonic transport aircraft, volume 1

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.; Davis, G. W.; Versaw, E. F.; Cunnington, G. R., Jr.; Riple, J. C.; Baerst, C. F.; Garmong, G.

    1978-01-01

    Several engine concepts examined to determine a preferred design which most effectively exploits the characteristics of hydrogen fuel in aircraft tanks received major emphasis. Many candidate designs of tank structure and cryogenic insulation systems were evaluated. Designs of all major elements of the aircraft fuel system including pumps, lines, valves, regulators, and heat exchangers received attention. Selected designs of boost pumps to be mounted in the LH2 tanks, and of a high pressure pump to be mounted on the engine were defined. A final design of LH2-fueled transport aircraft was established which incorporates a preferred design of fuel system. That aircraft was then compared with a conventionally fueled counterpart designed to equivalent technology standards.

  4. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 2: Technology aircraft

    Science.gov (United States)

    1975-01-01

    Technology flight vehicles were defined for three different approaches which demonstrate the concept and characteristics of the multipurpose aircraft established for Navy missions. The propulsion system used for the various technology flight vehicles was representative of that established for the multipurpose aircraft. Existing J97-GE100 gas generators were selected based on cost, availability and exhaust characteristics. The LF459 fans were also selected and are compatible with both technology and operational vehicles. To comply with the design guideline safety criteria, it was determined that three gas generators were required to provide engine out safety in the hover flight mode. The final propulsion system established for the technology aircraft was three existing J97 gas generators powering three LF459 fans. Different aircraft candidates were evaluated for application to the three designated design approaches. Each configuration was evaluated on the basis of (1) propulsion system integration, (2) modification required, (3) pilot's visibility, (4) payload volume, and (5) adaptability to compatible location of center-of-gravity/aerodynamic center and thrust center.

  5. Advanced technology composite aircraft structures

    Science.gov (United States)

    Ilcewicz, Larry B.; Walker, Thomas H.

    1991-01-01

    Work performed during the 25th month on NAS1-18889, Advanced Technology Composite Aircraft Structures, is summarized. The main objective of this program is to develop an integrated technology and demonstrate a confidence level that permits the cost- and weight-effective use of advanced composite materials in primary structures of future aircraft with the emphasis on pressurized fuselages. The period from 1-31 May 1991 is covered.

  6. Investigation of air transportation technology at Princeton University, 1984

    Science.gov (United States)

    Stengel, Robert F.

    1987-01-01

    The Air Transportation Technology Program at Princeton University, a program emphasizing graduate and undergraduate student research, proceeded along four avenues during 1984: (1) guidance and control strategies for penetration of microbursts and wind shear; (2) application of artificial intelligence in flight control systems; (3) effects of control saturation on closed loop stability; and (4) response of open loop unstable aircraft. Areas of investigation relate to guidance and control of commercial transports as well as to general aviation aircraft. Interaction between the flight crew and automatic systems is a subject of principle concern. These areas of investigation are briefly discussed.

  7. A reappraisal of transport aircraft needs 1985 - 2000: Perceptions of airline management in a changing economic, regulatory, and technological environment

    Science.gov (United States)

    Spencer, F. A.

    1982-01-01

    Views of the executives of 24 major, national, regional, and commuter airlines concerning the effect of recent regulatory, economic, and technological changes on the roles they see for their airlines, and consequent changes in their plans for acquiring aircraft for the 1985 to 2000 period were surveyed. Differing perceptions on the economic justification for new-technology jets in the context of the carriers' present and projected financial conditions are outlined. After examining the cases for new or intermediate size jets, the study discusses turboprop powered transports, including the carriers' potential interest in an advanced technology, high-speed turboprop or prop-fan. Finally, the implications of foreign competition are examined in terms of each carrier's evaluation of the quality and financial offerings, as well as possible 'Buy American' policy predisposition.

  8. In-service inspection methods for graphite-epoxy structures on commercial transport aircraft

    Science.gov (United States)

    Phelps, M. L.

    1981-01-01

    In-service inspection methods for graphite-epoxy composite structures on commercial transport aircraft are determined. Graphite/epoxy structures, service incurred defects, current inspection practices and concerns of the airline and manufacturers, and other related information were determind by survey. Based on this information, applicable inspection nondestructive inspection methods are evaluated and inspection techniques determined. Technology is developed primarily in eddy current inspection.

  9. Technology for reducing aircraft engine pollution

    Science.gov (United States)

    Rudey, R. A.; Kempke, E. E., Jr.

    1975-01-01

    Programs have been initiated by NASA to develop and demonstrate advanced technology for reducing aircraft gas turbine and piston engine pollutant emissions. These programs encompass engines currently in use for a wide variety of aircraft from widebody-jets to general aviation. Emission goals for these programs are consistent with the established EPA standards. Full-scale engine demonstrations of the most promising pollutant reduction techniques are planned within the next three years. Preliminary tests of advanced technology gas turbine engine combustors indicate that significant reductions in all major pollutant emissions should be attainable in present generation aircraft engines without adverse effects on fuel consumption. Fundamental-type programs are yielding results which indicate that future generation gas turbine aircraft engines may be able to utilize extremely low pollutant emission combustion systems.

  10. Analysis of Turbofan Design Options for an Advanced Single-Aisle Transport Aircraft

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2009-01-01

    The desire for higher engine efficiency has resulted in the evolution of aircraft gas turbine engines from turbojets, to low bypass ratio, first generation turbofans, to today's high bypass ratio turbofans. It is possible that future designs will continue this trend, leading to very-high or ultra-high bypass ratio (UHB) engines. Although increased bypass ratio has clear benefits in terms of propulsion system metrics such as specific fuel consumption, these benefits may not translate into aircraft system level benefits due to integration penalties. In this study, the design trade space for advanced turbofan engines applied to a single-aisle transport (737/A320 class aircraft) is explored. The benefits of increased bypass ratio and associated enabling technologies such as geared fan drive are found to depend on the primary metrics of interest. For example, bypass ratios at which fuel consumption is minimized may not require geared fan technology. However, geared fan drive does enable higher bypass ratio designs which result in lower noise. Regardless of the engine architecture chosen, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  11. System Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    Science.gov (United States)

    Mavris, Dimitri N.; Tai, Jimmy C.; Kirby, Michelle M.; Roth, Bryce A.

    1999-01-01

    The primary aspiration of this study was to objectively assess the feasibility of the application of a low speed pneumatic technology, in particular Circulation Control (CC) to an HSCT concept. Circulation Control has been chosen as an enabling technology to be applied on a generic High Speed Civil Transport (HSCT). This technology has been proven for various subsonic vehicles including flight tests on a Navy A-6 and computational application on a Boeing 737. Yet, CC has not been widely accepted for general commercial fixed-wing use but its potential has been extensively investigated for decades in wind tunnels across the globe for application to rotorcraft. More recently, an experimental investigation was performed at Georgia Tech Research Institute (GTRI) with application to an HSCT-type configuration. The data from those experiments was to be applied to a full-scale vehicle to assess the impact from a system level point of view. Hence, this study attempted to quantitatively assess the impact of this technology to an HSCT. The study objective was achieved in three primary steps: 1) Defining the need for CC technology; 2) Wind tunnel data reduction; 3) Detailed takeoff/landing performance assessment. Defining the need for the CC technology application to an HSCT encompassed a preliminary system level analysis. This was accomplished through the utilization of recent developments in modern aircraft design theory at Aerospace Systems Design Laboratory (ASDL). These developments include the creation of techniques and methods needed for the identification of technical feasibility show stoppers. These techniques and methods allow the designer to rapidly assess a design space and disciplinary metric enhancements to enlarge or improve the design space. The takeoff and landing field lengths were identified as the concept "show-stoppers". Once the need for CC was established, the actual application of data and trends was assessed. This assessment entailed a reduction of the

  12. Light transport and general aviation aircraft icing research requirements

    Science.gov (United States)

    Breeze, R. K.; Clark, G. M.

    1981-01-01

    A short term and a long term icing research and technology program plan was drafted for NASA LeRC based on 33 separate research items. The specific items listed resulted from a comprehensive literature search, organized and assisted by a computer management file and an industry/Government agency survey. Assessment of the current facilities and icing technology was accomplished by presenting summaries of ice sensitive components and protection methods; and assessments of penalty evaluation, the experimental data base, ice accretion prediction methods, research facilities, new protection methods, ice protection requirements, and icing instrumentation. The intent of the research plan was to determine what icing research NASA LeRC must do or sponsor to ultimately provide for increased utilization and safety of light transport and general aviation aircraft.

  13. Small Aircraft Transportation System Higher Volume Operations Concept

    Science.gov (United States)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Jones, Kenneth M.; Adams, Catherine A.

    2006-01-01

    This document defines the Small Aircraft Transportation System (SATS) Higher Volume Operations concept. The general philosophy underlying this concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. This document also provides details for a number of off-nominal and emergency procedures which address situations that could be expected to occur in a future SCA. The details for this operational concept along with a description of candidate aircraft systems to support this concept are provided.

  14. Transportation Beyond 2000: Technologies Needed for Engineering Design

    Science.gov (United States)

    Huebner, Lawrence D. (Compiler); Asbury, Scott C. (Compiler); Lamar, John E. (Compiler); McKinley, Robert E., Jr. (Compiler); Scott, Robert C. (Compiler); Small, William J. (Compiler); Torres, Abel O. (Compiler)

    1996-01-01

    The purpose of the workshop was to acquaint the staff of the NASA Langley Research Center with the broad spectrum of transportation challenges and concepts foreseen within the next 20 years. The hope is that material presented at the workshop and contained in this document will stimulate innovative high-payoff research directed towards the efficiency of future transportation systems. The workshop included five sessions designed to stress the factors that will lead to a revolution in the way we will travel in the 21st century. The first session provides the historical background and a general perspective for future transportation, including emerging transportation alternatives such as working at a distance. Personal travel is the subject of Session Two. The third session looks at mass transportation, including advanced rail vehicles, advanced commuter aircraft, and advanced transport aircraft. The fourth session addresses some of the technologies required for the above revolutionary transportation systems to evolve. The workshop concluded with a wrap-up panel discussion, Session Five. The topics presented herein all have viable technical components and are at a stage in their development that, with sufficient engineering research, one or more of these could make a significant impact on transportation and our social structure.

  15. Transport aircraft loading and balancing system: Using a CLIPS expert system for military aircraft load planning

    Science.gov (United States)

    Richardson, J.; Labbe, M.; Belala, Y.; Leduc, Vincent

    1994-01-01

    The requirement for improving aircraft utilization and responsiveness in airlift operations has been recognized for quite some time by the Canadian Forces. To date, the utilization of scarce airlift resources has been planned mainly through the employment of manpower-intensive manual methods in combination with the expertise of highly qualified personnel. In this paper, we address the problem of facilitating the load planning process for military aircraft cargo planes through the development of a computer-based system. We introduce TALBAS (Transport Aircraft Loading and BAlancing System), a knowledge-based system designed to assist personnel involved in preparing valid load plans for the C130 Hercules aircraft. The main features of this system which are accessible through a convivial graphical user interface, consists of the automatic generation of valid cargo arrangements given a list of items to be transported, the user-definition of load plans and the automatic validation of such load plans.

  16. Transition to Glass: Pilot Training for High-Technology Transport Aircraft

    Science.gov (United States)

    Wiener, Earl L.; Chute, Rebecca D.; Moses, John H.

    1999-01-01

    This report examines the activities of a major commercial air carrier between 1993 and late 1996 as it acquired an advanced fleet of high-technology aircraft (Boeing 757). Previously, the airline's fleet consisted of traditional (non-glass) aircraft, and this report examines the transition from a traditional fleet to a glass one. A total of 150 pilots who were entering the B-757 transition training volunteered for the study, which consisted of three query phases: (1) first day of transition training, (2) 3 to 4 months after transition training, and (3) 12 to 14 months after initial operating experience. Of these initial 150 pilots, 99 completed all three phases of the study, with each phase consisting of probes on attitudes and experiences associated with their training and eventual transition to flying the line. In addition to the three questionnaires, 20 in-depth interviews were conducted. Although the primary focus of this study was on the flight training program, additional factors such as technical support, documentation, and training aids were investigated as well. The findings generally indicate that the pilot volunteers were highly motivated and very enthusiastic about their training program. In addition, the group had low levels of apprehension toward automation and expressed a high degree of satisfaction toward their training. However, there were some concerns expressed regarding the deficiencies in some of the training aids and lack of a free-play flight management system training device.

  17. Study of LH2 fueled subsonic passenger transport aircraft

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1976-01-01

    The potential of using liquid hydrogen as fuel in subsonic transport aircraft was investigated to explore an expanded matrix of passenger aircraft sizes. Aircraft capable of carrying 130 passengers 2,780 km (1500 n.mi.); 200 passengers 5,560 km (3000 n.mi.); and 400 passengers on a 9,265 km (5000 n.mi.) radius mission, were designed parametrically. Both liquid hydrogen and conventionally fueled versions were generated for each payload/range in order that comparisons could be made. Aircraft in each mission category were compared on the basis of weight, size, cost, energy utilization, and noise.

  18. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft

    Science.gov (United States)

    Gohardani, Amir S.; Doulgeris, Georgios; Singh, Riti

    2011-07-01

    This paper highlights the role of distributed propulsion technology for future commercial aircraft. After an initial historical perspective on the conceptual aspects of distributed propulsion technology and a glimpse at numerous aircraft that have taken distributed propulsion technology to flight, the focal point of the review is shifted towards a potential role this technology may entail for future commercial aircraft. Technological limitations and challenges of this specific technology are also considered in combination with an all electric aircraft concept, as means of predicting the challenges associated with the design process of a next generation commercial aircraft.

  19. Energy and Economic Trade Offs for Advanced Technology Subsonic Aircraft

    Science.gov (United States)

    Maddalon, D. V.; Wagner, R. D.

    1976-01-01

    Changes in future aircraft technology which conserve energy are studied, along with the effect of these changes on economic performance. Among the new technologies considered are laminar-flow control, composite materials with and without laminar-flow control, and advanced airfoils. Aircraft design features studied include high-aspect-ratio wings, thickness ratio, and range. Engine technology is held constant at the JT9D level. It is concluded that wing aspect ratios of future aircraft are likely to significantly increase as a result of new technology and the push of higher fuel prices. Composite materials may raise aspect radio to about 11 to 12 and practical laminar flow-control systems may further increase aspect ratio to 14 or more. Advanced technology provides significant reductions in aircraft take-off gross weight, energy consumption, and direct operating cost.

  20. Development of the Transport Class Model (TCM) Aircraft Simulation From a Sub-Scale Generic Transport Model (GTM) Simulation

    Science.gov (United States)

    Hueschen, Richard M.

    2011-01-01

    A six degree-of-freedom, flat-earth dynamics, non-linear, and non-proprietary aircraft simulation was developed that is representative of a generic mid-sized twin-jet transport aircraft. The simulation was developed from a non-proprietary, publicly available, subscale twin-jet transport aircraft simulation using scaling relationships and a modified aerodynamic database. The simulation has an extended aerodynamics database with aero data outside the normal transport-operating envelope (large angle-of-attack and sideslip values). The simulation has representative transport aircraft surface actuator models with variable rate-limits and generally fixed position limits. The simulation contains a generic 40,000 lb sea level thrust engine model. The engine model is a first order dynamic model with a variable time constant that changes according to simulation conditions. The simulation provides a means for interfacing a flight control system to use the simulation sensor variables and to command the surface actuators and throttle position of the engine model.

  1. Structural Health Monitoring of Transport Aircraft with Fuzzy Logic Modeling

    Directory of Open Access Journals (Sweden)

    Ray C. Chang

    2013-01-01

    Full Text Available A structural health monitoring method based on the concept of static aeroelasticity is presented in this paper. This paper focuses on the estimation of these aeroelastic effects on older transport aircraft, in particular the structural components that are most affected, in severe atmospheric turbulence. Because the structural flexibility properties are mostly unknown to aircraft operators, only the trend, not the magnitude, of these effects is estimated. For this purpose, one useful concept in static aeroelastic effects for conventional aircraft structures is that under aeroelastic deformation the aerodynamic center should move aft. This concept is applied in the present paper by using the fuzzy-logic aerodynamic models. A twin-jet transport aircraft in severe atmospheric turbulence involving plunging motion is examined. It is found that the pitching moment derivatives in cruise with moderate to severe turbulence in transonic flight indicate some degree of abnormality in the stabilizer (i.e., the horizontal tail. Therefore, the horizontal tail is the most severely affected structural component of the aircraft probably caused by vibration under the dynamic loads induced by turbulence.

  2. Technology transfer and catch-up; Lessons from the commercial aircraft industry

    NARCIS (Netherlands)

    Steenhuis, H.J.; de Bruijn, E.J.; Heerkens, Johannes M.G.

    2007-01-01

    This paper analyses the technology development and technology transfer strategies in the aircraft manufacturing industry for four industrially developing countries. It is concluded from four case studies that technology catch-up is extremely difficult due to aircraft technology characteristics.

  3. Advanced composite structural concepts and material technologies for primary aircraft structures

    Science.gov (United States)

    Jackson, Anthony

    1991-01-01

    Structural weight savings using advanced composites have been demonstrated for many years. Most military aircraft today use these materials extensively and Europe has taken the lead in their use in commercial aircraft primary structures. A major inhibiter to the use of advanced composites in the United States is cost. Material costs are high and will remain high relative to aluminum. The key therefore lies in the significant reduction in fabrication and assembly costs. The largest cost in most structures today is assembly. As part of the NASA Advanced Composite Technology Program, Lockheed Aeronautical Systems Company has a contract to explore and develop advanced structural and manufacturing concepts using advanced composites for transport aircraft. Wing and fuselage concepts and related trade studies are discussed. These concepts are intended to lower cost and weight through the use of innovative material forms, processes, structural configurations and minimization of parts. The approach to the trade studies and the downselect to the primary wing and fuselage concepts is detailed. The expectations for the development of these concepts is reviewed.

  4. Study of quiet turbofan STOL aircraft for short haul transportation

    Science.gov (United States)

    Higgins, T. P.; Stout, E. G.; Sweet, H. S.

    1973-01-01

    Conceptual designs of Quiet Turbofan STOL Short-Haul Transport Aircraft for the mid-1980 time period are developed and analyzed to determine their technical, operational, and economic feasibility. A matrix of aircraft using various high-lift systems and design parameters are considered. Variations in aircraft characteristics, airport geometry and location, and operational techniques are analyzed systematically to determine their effects on the market, operating economics, and community acceptance. In these studies, the total systems approach is considered to be critically important in analyzing the potential of STOL aircraft to reduce noise pollution and alleviate the increasing air corridor and airport congestion.

  5. Small Engine Technology (SET) Task 24 Business and Regional Aircraft System Studies

    Science.gov (United States)

    Lieber, Lysbeth

    2003-01-01

    This final report has been prepared by Honeywell Engines & Systems, Phoenix, Arizona, a unit of Honeywell International Inc., documenting work performed during the period June 1999 through December 1999 for the National Aeronautics and Space Administration (NASA) Glenn Research Center, Cleveland, Ohio, under the Small Engine Technology (SET) Program, Contract No. NAS3-27483, Task Order 24, Business and Regional Aircraft System Studies. The work performed under SET Task 24 consisted of evaluating the noise reduction benefits compared to the baseline noise levels of representative 1992 technology aircraft, obtained by applying different combinations of noise reduction technologies to five business and regional aircraft configurations. This report focuses on the selection of the aircraft configurations and noise reduction technologies, the prediction of noise levels for those aircraft, and the comparison of the noise levels with those of the baseline aircraft.

  6. USE OF REMOTELY PILOTED AIRCRAFT SYSTEMS TO EVALUATE THE EFFECTS OF TRANSPORT COLLISION

    Directory of Open Access Journals (Sweden)

    Honorata ROMAŃSKA

    2017-03-01

    Full Text Available The evaluation of the effects of transport collision often takes the form of ground reconnaissance. Undoubtedly, remotely piloted aircraft systems (RPAS can support and help the police, firefighters, security agents and paramedics in the event of a transport collision. Although there is a scarce amount of literature concerning the use of RPAS in crisis management, it is important to pay more attention to the benefits of this technology. The article describes the danger of collisions, as well as discusses the possibility of using RPAS, their functionality and potential utility. Sensors installed on RPAS can rapidly identify the place of the accident, the number of casualties, the type of damaged vehicles or the type of contamination.

  7. Unmanned Aerial Aircraft Systems for transportation engineering: Current practice and future challenges

    Directory of Open Access Journals (Sweden)

    Emmanouil N. Barmpounakis

    2016-10-01

    Full Text Available Acquiring and processing video streams from static cameras has been proposed as one of the most efficient tools for visualizing and gathering traffic information. With the latest advances in technology and visual media, combined with the increased needs in dealing with congestion more effectively and directly, the use of Unmanned Aerial Aircraft Systems (UAS has emerged in the field of traffic engineering. In this paper, we review studies and applications that incorporate UAS in transportation research and practice with the aim to set the grounds from the proper understanding and implementation of UAS related surveillance systems in transportation and traffic engineering. The studies reviewed are categorized in different transportation engineering areas. Additional significant applications from other research fields are also referenced to identify other promising applications. Finally, issues and emerging challenges in both a conceptual and methodological level are revealed and discussed.

  8. Application of computational aerodynamics methods to the design and analysis of transport aircraft

    Science.gov (United States)

    Da Costa, A. L.

    1978-01-01

    The application and validation of several computational aerodynamic methods in the design and analysis of transport aircraft is established. An assessment is made concerning more recently developed methods that solve three-dimensional transonic flow and boundary layers on wings. Capabilities of subsonic aerodynamic methods are demonstrated by several design and analysis efforts. Among the examples cited are the B747 Space Shuttle Carrier Aircraft analysis, nacelle integration for transport aircraft, and winglet optimization. The accuracy and applicability of a new three-dimensional viscous transonic method is demonstrated by comparison of computed results to experimental data

  9. Small Aircraft Transportation System, Higher Volume Operations Concept: Normal Operations

    Science.gov (United States)

    Abbott, Terence S.; Jones, Kenneth M.; Consiglio, Maria C.; Williams, Daniel M.; Adams, Catherine A.

    2004-01-01

    This document defines the Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) concept for normal conditions. In this concept, a block of airspace would be established around designated non-towered, non-radar airports during periods of poor weather. Within this new airspace, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Using onboard equipment and procedures, they would then approach and land at the airport. Departures would be handled in a similar fashion. The details for this operational concept are provided in this document.

  10. Acoustical design economic trade off for transport aircraft

    Science.gov (United States)

    Benito, A.

    The effects of ICAO fixed certification limits and local ordinances on acoustic emissions from jets on commercial transport aircraft and costs of operations are explored. The regulations effectively ban some aircraft from operation over populated areas, impose curfews on airports and, in conjunction with local civil aviation rules, levy extra taxes and quotas on noisier equipment. Jet engine manufacturers have attempted to increase the flow laminarity, decrease the exhaust speed and develop acoustic liners for selected duct areas. Retrofits are, however, not usually cost effective due to increased operational costs, e.g., fuel consumption can increase after engine modification because of increased weight. Finally, an attempt is made to assess, monetarily, the costs of noise pollution, wherein fines are levied for noisy aircraft and the money is spent insulating homes from noise.

  11. COMMERCIAL SUPERSONIC TRANSPORT PROGRAM. PHASE II-C REPORT. HIGH STRENGTH STEEL EVALUATION FOR SUPERSONIC AIRCRAFT.

    Science.gov (United States)

    JET TRANSPORT AIRCRAFT, *AIRFRAMES, SUPERSONIC AIRCRAFT, STEEL , STRUCTURAL PROPERTIES, FRACTURE(MECHANICS), FATIGUE(MECHANICS), STRESS CORROSION...MICROPHOTOGRAPHY, HIGH TEMPERATURE, NICKEL ALLOYS, COBALT ALLOYS, CARBON, BAINITE , COMMERCIAL AIRCRAFT.

  12. 75 FR 8427 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2010-02-24

    ... entitled, ``State of the Art of Supersonics Aircraft Technology--What has progressed in science since 1973... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Civil Supersonic Aircraft Panel Discussion AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of meeting participation...

  13. Aircraft Engine Technology for Green Aviation to Reduce Fuel Burn

    Science.gov (United States)

    Hughes, Christopher E.; VanZante, Dale E.; Heidmann, James D.

    2013-01-01

    The NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project and Integrated Systems Research Program Environmentally Responsible Aviation Project in the Aeronautics Research Mission Directorate are conducting research on advanced aircraft technology to address the environmental goals of reducing fuel burn, noise and NOx emissions for aircraft in 2020 and beyond. Both Projects, in collaborative partnerships with U.S. Industry, Academia, and other Government Agencies, have made significant progress toward reaching the N+2 (2020) and N+3 (beyond 2025) installed fuel burn goals by fundamental aircraft engine technology development, subscale component experimental investigations, full scale integrated systems validation testing, and development validation of state of the art computation design and analysis codes. Specific areas of propulsion technology research are discussed and progress to date.

  14. Personal Aircraft Point to the Future of Transportation

    Science.gov (United States)

    2010-01-01

    NASA's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs, as well as a number of Agency innovations, have helped Duluth, Minnesota-based Cirrus Design Corporation become one of the world's leading manufacturers of general aviation aircraft. SBIRs with Langley Research Center provided the company with cost-effective composite airframe manufacturing methods, while crashworthiness testing at the Center increased the safety of its airplanes. Other NASA-derived technologies on Cirrus SR20 and SR22 aircraft include synthetic vision systems that help pilots navigate and full-plane parachutes that have saved the lives of more than 30 Cirrus pilots and passengers to date. Today, the SR22 is the world's top-selling Federal Aviation Administration (FAA)-certified single-engine airplane.

  15. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  16. Comprehensive analysis of transport aircraft flight performance

    Science.gov (United States)

    Filippone, Antonio

    2008-04-01

    This paper reviews the state-of-the art in comprehensive performance codes for fixed-wing aircraft. The importance of system analysis in flight performance is discussed. The paper highlights the role of aerodynamics, propulsion, flight mechanics, aeroacoustics, flight operation, numerical optimisation, stochastic methods and numerical analysis. The latter discipline is used to investigate the sensitivities of the sub-systems to uncertainties in critical state parameters or functional parameters. The paper discusses critically the data used for performance analysis, and the areas where progress is required. Comprehensive analysis codes can be used for mission fuel planning, envelope exploration, competition analysis, a wide variety of environmental studies, marketing analysis, aircraft certification and conceptual aircraft design. A comprehensive program that uses the multi-disciplinary approach for transport aircraft is presented. The model includes a geometry deck, a separate engine input deck with the main parameters, a database of engine performance from an independent simulation, and an operational deck. The comprehensive code has modules for deriving the geometry from bitmap files, an aerodynamics model for all flight conditions, a flight mechanics model for flight envelopes and mission analysis, an aircraft noise model and engine emissions. The model is validated at different levels. Validation of the aerodynamic model is done against the scale models DLR-F4 and F6. A general model analysis and flight envelope exploration are shown for the Boeing B-777-300 with GE-90 turbofan engines with intermediate passenger capacity (394 passengers in 2 classes). Validation of the flight model is done by sensitivity analysis on the wetted area (or profile drag), on the specific air range, the brake-release gross weight and the aircraft noise. A variety of results is shown, including specific air range charts, take-off weight-altitude charts, payload-range performance

  17. Enabling technologies for demand management: Transport

    International Nuclear Information System (INIS)

    Smith, Roderick A.

    2008-01-01

    Rising transport demand is likely to be the biggest hurdle to reducing our greenhouse gas emissions. Globally and nationally, transport is consuming an ever increasing share of our total energy use. Furthermore, the bulk of energy used in transport comes from the burning of petroleum products. This brief paper summarises options arising from the two routes to reduce energy demand in transport: improved and more efficient use of existing and possible new transport modes, and the reduction of transport demand. In both areas, the prospects in the immediate and longer-term future are hedged with difficulties. Automobiles and aircraft have improved considerably in recent decades, but future improvements are likely to be incremental. The introduction of hydrogen as a fuel is appealing, but there are technical problems to be solved. Active reduction of demand for transport will require a decoupling of the link between demand and growth in gross domestic product. Globally, this will be very difficult to achieve. Various modes of public transport exist that are efficient in terms of their energy use per passenger kilometre. But they need large investments to make them more attractive than the automobile. However, population concentration in mega-cities, allied with congestion, will make such innovation essential. Policy measures can be assisted in their implementation by new technology, but will remain politically problematic

  18. Reducing Weight for Transportation Applications: Technology Challenges and Opportunities

    Science.gov (United States)

    Taub, Alan I.

    Today's land, sea and air transportation industries — as a business necessity — are focused on technology solutions that will make vehicles more sustainable in terms of energy, the environment, safety and affordability. Reducing vehicle weight is a key enabler for meeting these challenges as well as increasing payload and improving performance. The potential weight reductions from substituting lightweight metals (advanced high-strength steels, aluminum, magnesium and titanium alloys) are well established. For magnesium castings, weight savings of 60% have been reported [1]. The value of weight reduction depends on the transportation sector and ranges from about 5/kg saved for automobiles to over 500/kg saved for aircraft [2]. The challenge is to optimize the material properties and develop robust, high volume, manufacturing technologies and the associated supply chain to fabricate components and subsystems at the appropriate cost for each application.

  19. From microsystems technology to the Saenger II space transportation system

    Science.gov (United States)

    Vogels, Hanns Arnt

    The role of space projects as drivers and catalysts of technology advances is discussed and illustrated from the perspective of the West German aerospace industry, summarizing a talk presented at the 1986 meeting of the German aerospace society DGLR. The history of space-transportation-system (STS) technology since the 1950s is traced, emphasizing the needs for greater payload weights and lower costs, and the design concept of Saenger II, a proposed two-stage ESA STS employing a hypersonic jet transport aircraft as its first stage, is outlined. It is argued that experience gained in developing the rocket-launched Hermes STS will be applicable to the second stage of Saenger II. Recent developments in microsystems (combining microelectronics, micromechanics, and microoptics), advanced materials (fiber-reinforced plastics, metals, and ceramics), and energy technology (hydrogen-based systems and solar cells) are surveyed, and their applicability to STSs is considered.

  20. Design definition study of a lift/cruise fan technology V/STOL aircraft. Volume 1: Navy operational aircraft

    Science.gov (United States)

    1975-01-01

    Aircraft were designed and sized to meet Navy mission requirements. Five missions were established for evaluation: anti-submarine warfare (ASW), surface attack (SA), combat search and rescue (CSAR), surveillance (SURV), and vertical on-board delivery (VOD). All missions were performed with a short takeoff and a vertical landing. The aircraft were defined using existing J97-GE gas generators or reasonable growth derivatives in conjunction with turbotip fans reflecting LF460 type technology. The multipurpose aircraft configuration established for U.S. Navy missions utilizes the turbotip driven lift/cruise fan concept for V/STOL aircraft.

  1. The Small Aircraft Transportation System for America: A Case in Public Infrastructure Change

    Science.gov (United States)

    Bowen, Brent D.

    2000-01-01

    The National Aeronautics and Space Administration (NASA), U.S. Department of Transportation, Federal Aviation Administration, industry stakeholders, and academia, have joined forces to pursue the NASA National General Aviation Roadmap leading to a Small Aircraft Transportation System (SATS). This strategic undertaking has a 25-year goal to bring next-generation technologies and improve travel between remote communities and transportation centers in urban areas by utilizing the nation's 5,400 public-use general aviation airports. To facilitate this initiative, a comprehensive upgrade of public infrastructure must be planned, coordinated, and implemented within the framework of the national air transportation system. The Nebraska NASA EPSCoR Program has proposed to deliver research support in key public infrastructure areas in coordination with the General Aviation Program Office at the NASA Langley Research Center. Ultimately, SATS may permit tripling aviation system throughput capacity by tapping the underutilized general aviation facilities to achieve the national goal of doorstep-to-destination travel at four times the speed of highways for the nation's suburban, rural, and remote communities.

  2. Evaluation of a Hydrogen Fuel Cell Powered Blended-Wing-Body Aircraft Concept for Reduced Noise and Emissions

    Science.gov (United States)

    Guynn, Mark D.; Freh, Joshua E.; Olson, Erik D.

    2004-01-01

    This report describes the analytical modeling and evaluation of an unconventional commercial transport aircraft concept designed to address aircraft noise and emission issues. A blended-wing-body configuration with advanced technology hydrogen fuel cell electric propulsion is considered. Predicted noise and emission characteristics are compared to a current technology conventional configuration designed for the same mission. The significant technology issues which have to be addressed to make this concept a viable alternative to current aircraft designs are discussed. This concept is one of the "Quiet Green Transport" aircraft concepts studied as part of NASA's Revolutionary Aerospace Systems Concepts (RASC) Program. The RASC Program was initiated to develop revolutionary concepts that address strategic objectives of the NASA Enterprises, such as reducing aircraft noise and emissions, and to identify advanced technology requirements for the concepts.

  3. Analysis of technology requirements and potential demand for general aviation avionics systems in the 1980's. [technology assessment and technological forecasting of the aircraft industry

    Science.gov (United States)

    Cohn, D. M.; Kayser, J. H.; Senko, G. M.; Glenn, D. R.

    1974-01-01

    The trend for the increasing need for aircraft-in-general as a major source of transportation in the United States is presented (military and commercial aircraft are excluded). Social, political, and economic factors that affect the aircraft industry are considered, and cost estimates are given. Aircraft equipment and navigation systems are discussed.

  4. Aircraft Loss of Control: Problem Analysis for the Development and Validation of Technology Solutions

    Science.gov (United States)

    Belcastro, Christine M.; Newman, Richard L.; Crider, Dennis A.; Klyde, David H.; Foster, John V.; Groff, Loren

    2016-01-01

    Aircraft loss of control (LOC) is a leading cause of fatal accidents across all transport airplane and operational classes. LOC can result from a wide spectrum of precursors (or hazards), often occurring in combination. Technologies developed for LOC prevention and recovery must therefore be effective under a wide variety of conditions and uncertainties, including multiple hazards, and the validation process must provide a means of assessing system effectiveness and coverage of these hazards. This paper provides a detailed description of a methodology for analyzing LOC as a dynamics and control problem for the purpose of developing effective technology solutions. The paper includes a definition of LOC based on several recent publications, a detailed description of a refined LOC accident analysis process that is illustrated via selected example cases, and a description of planned follow-on activities for identifying future potential LOC risks and the development of LOC test scenarios. Some preliminary considerations for LOC of Unmanned Aircraft Systems (UAS) and for their safe integration into the National Airspace System (NAS) are also discussed.

  5. A study of the cost-effective markets for new technology agricultural aircraft

    Science.gov (United States)

    Hazelrigg, G. A., Jr.; Clyne, F.

    1979-01-01

    A previously developed data base was used to estimate the regional and total U.S. cost-effective markets for a new technology agricultural aircraft as incorporating features which could result from NASA-sponsored aerial applications research. The results show that the long-term market penetration of a new technology aircraft would be near 3,000 aircraft. This market penetration would be attained in approximately 20 years. Annual sales would be about 200 aircraft after 5 to 6 years of introduction. The net present value of cost savings benefit which this aircraft would yield (measured on an infinite horizon basis) would be about $35 million counted at a 10 percent discount rate and $120 million at a 5 percent discount rate. At both discount rates the present value of cost savings exceeds the present value of research and development (R&D) costs estimated for the development of the technology base needed for the proposed aircraft. These results are quite conservative as they have been derived neglecting future growth in the agricultural aviation industry, which has been averaging about 12 percent per year over the past several years.

  6. Evaluation of all-electric secondary power for transport aircraft

    Science.gov (United States)

    Murray, W. E.; Feiner, L. J.; Flores, R. R.

    1992-01-01

    This report covers a study by Douglas Aircraft Company (DAC) of electrical power systems for advanced transport aircraft based upon an all-electric design concept. The concept would eliminate distributed hydraulic and pneumatic secondary power systems, and feature an expanded secondary electrical power system redesigned to supply power to the loads customarily supplied by hydraulic or pneumatic power. The initial study was based on an advanced 20-kHz electrical power transmission and distribution system, using a system architecture supplied by NASA-Lewis Research Center for twin-engine aircraft with many advanced power conversion concepts. NASA-LeRC later requested DAC to refocus the study on 400-Hz secondary power distribution. Subsequent work was based on a three-engine MD-11 aircraft, selected by DAC as a baseline system design that would provide data for the comparative cost/benefit analysis. The study concluded that the 20-kHz concept produced many expected benefits, and that the all-electric trijet weight savings on hardware redesign would be 2,304 pounds plus a 2.1-percent fuel reduction and resized for a total weight reduction of 11,000 pounds. Cost reductions for a fleet of 800 aircraft in a 15-year production program were estimated at $76.71 million for RDT&E; $2.74 million per aircrat for production; $9.84 million for nonrecurring expenses; $120,000 per aircraft for product support; and $300,000 per aircraft per year for operating and maintenance costs, giving a present value of $1.914 billion saved or a future value of $10.496 billion saved.

  7. Aircraft Design Software

    Science.gov (United States)

    1997-01-01

    Successful commercialization of the AirCraft SYNThesis (ACSYNT) tool has resulted in the creation of Phoenix Integration, Inc. ACSYNT has been exclusively licensed to the company, an outcome of a seven year, $3 million effort to provide unique software technology to a focused design engineering market. Ames Research Center formulated ACSYNT and in working with the Virginia Polytechnic Institute CAD Laboratory, began to design and code a computer-aided design for ACSYNT. Using a Joint Sponsored Research Agreement, Ames formed an industry-government-university alliance to improve and foster research and development for the software. As a result of the ACSYNT Institute, the software is becoming a predominant tool for aircraft conceptual design. ACSYNT has been successfully applied to high- speed civil transport configuration, subsonic transports, and supersonic fighters.

  8. Small Aircraft Transportation System, Higher Volume Operations Concept: Off-Nominal Operations

    Science.gov (United States)

    Abbott, Terence S.; Consiglio, Maria C.; Baxley, Brian T.; Williams, Daniel M.; Conway, Sheila R.

    2005-01-01

    This document expands the Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept to include off-nominal conditions. The general philosophy underlying the HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA). During periods of poor weather, a block of airspace would be established around designated non-towered, non-radar airports. Aircraft flying enroute to a SATS airport would be on a standard instrument flight rules flight clearance with Air Traffic Control providing separation services. Within the SCA, pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft. Previous work developed the procedures for normal HVO operations. This document provides details for off-nominal and emergency procedures for situations that could be expected to occur in a future SCA.

  9. Studies for determining the optimum propulsion system characteristics for use in a long range transport aircraft

    Science.gov (United States)

    Brines, G. L.

    1972-01-01

    A comprehensive evaluation of propulsion systems for the next generation of near-sonic long range transport aircraft indicates that socially responsive noise and emission goals can be achieved within the probable limits of acceptable airplane performance and economics. Technology advances needed in the 1975-1985 time period to support the development of these propulsion systems are identified and discussed. The single most significant result is the low noise, high performance potential of a low tip speed, spaced, two-stage fan.

  10. Aircraft Noise Reduction Subproject Overview

    Science.gov (United States)

    Fernandez, Hamilton; Nark, Douglas M.; Van Zante, Dale E.

    2016-01-01

    The material presents highlights of propulsion and airframe noise research being completed for the Advanced Air Transport Technology Project. The basis of noise reduction plans along with representative work for the airframe, propulsion, and propulsion-airframe integration is discussed for the Aircraft Noise reduction Subproject.

  11. Commercial aircraft composite technology

    CERN Document Server

    Breuer, Ulf Paul

    2016-01-01

    This book is based on lectures held at the faculty of mechanical engineering at the Technical University of Kaiserslautern. The focus is on the central theme of societies overall aircraft requirements to specific material requirements and highlights the most important advantages and challenges of carbon fiber reinforced plastics (CFRP) compared to conventional materials. As it is fundamental to decide on the right material at the right place early on the main activities and milestones of the development and certification process and the systematic of defining clear requirements are discussed. The process of material qualification - verifying material requirements is explained in detail. All state-of-the-art composite manufacturing technologies are described, including changes and complemented by examples, and their improvement potential for future applications is discussed. Tangible case studies of high lift and wing structures emphasize the specific advantages and challenges of composite technology. Finally,...

  12. An Overview of NASA's Subsonic Research Aircraft Testbed (SCRAT)

    Science.gov (United States)

    Baumann, Ethan; Hernandez, Joe; Ruhf, John C.

    2013-01-01

    National Aeronautics and Space Administration Dryden Flight Research Center acquired a Gulfstream III (GIII) aircraft to serve as a testbed for aeronautics flight research experiments. The aircraft is referred to as SCRAT, which stands for SubsoniC Research Aircraft Testbed. The aircraft's mission is to perform aeronautics research; more specifically raising the Technology Readiness Level (TRL) of advanced technologies through flight demonstrations and gathering high-quality research data suitable for verifying the technologies, and validating design and analysis tools. The SCRAT has the ability to conduct a range of flight research experiments throughout a transport class aircraft's flight envelope. Experiments ranging from flight-testing of a new aircraft system or sensor to those requiring structural and aerodynamic modifications to the aircraft can be accomplished. The aircraft has been modified to include an instrumentation system and sensors necessary to conduct flight research experiments along with a telemetry capability. An instrumentation power distribution system was installed to accommodate the instrumentation system and future experiments. An engineering simulation of the SCRAT has been developed to aid in integrating research experiments. A series of baseline aircraft characterization flights has been flown that gathered flight data to aid in developing and integrating future research experiments. This paper describes the SCRAT's research systems and capabilities.

  13. SBIR Advanced Technologies in Aviation and Air Transportation System 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Kaszeta, Richard W.; Gold, Calman; Corke, Thomas C.; McGowan, Ryan; Matlis, Eric; Eichenlaub, Jesse; Davis, Joshua T.; Shah, Parthiv N.

    2017-01-01

    This report is intended to provide a broad knowledge of various topics associated with NASA's Aeronautics Research Mission Directorate (ARMD), with particular interest on the NASA SBIR contracts awarded from 2011-2012 executed by small companies. The content of this report focuses on the high-quality, cutting-edge research that will lead to revolutionary concepts, technologies, and capabilities that enable radical change to both the airspace system and the aircraft that fly within it, facilitating a safer, more environmentally friendly, and more efficient air transportation system.

  14. 76 FR 82163 - Hazardous Materials: Harmonization With the United Nations Recommendations on the Transport of...

    Science.gov (United States)

    2011-12-30

    ... cartridges to be transported as ORM-D-AIR by aircraft so that fuel cell technologies are not placed at a disadvantage compared to other technologies authorized to be transported by aircraft. PHMSA response. We deny... Association (FCHEA) Healthcare Distribution Management Association (HDMA) International Air Transport...

  15. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 1: Technology flight vehicle definition

    Science.gov (United States)

    Obrien, W. J.

    1976-01-01

    Concept design is presented for two types of lift/cruise fan technology V/STOL aircraft, turbotip fans and the other using mechanically driven fans. The turbotip research technology aircraft reflects maximum usage of existing airframe components. The propulsion system consists of three turbotip fans pneumatically interconnected to three gas generators. Thrust modulation is accomplished by use of energy transfer and control system and thrust reduction modulation. This system can also be operated in the two engine/three fan mode. The mechanical RTA is virtually identical to the turbotip RTA with the exceptions that a different propulsion system and aft fuselage/tail are used. Both aircraft meet or exceed all of the mission performance guidelines and reflect a low cost, low risk approach.

  16. Aircraft Maintenance Engineering: Factors Impacting Airlines E-Maintenance Technologies, Authoring and Illustrations

    Science.gov (United States)

    Karayianes, Frank

    The purpose of this research was to evaluate factors influencing acceptance and use of technologies in the field of aircraft maintenance authoring, graphics, and documentation. Maintenance engineering authors convert complex engineering used in aircraft production and transform that data using technology (tools) into usable technical publications data. While the current literature includes a large volume of research in technology acceptance in various domains of industry and business, the problem is that no such studies exist with respect to the aircraft maintenance engineering authoring, allowing any number of tools to be used and acceptance to be unsure. The study was based on theoretical approaches of the Technology Acceptance Model and the associated hypothesis related to eight research questions. A survey questionnaire was developed for data collection from a selected population of aircraft maintenance engineering authors. Data collected from 148 responses were exposed to a range of statistical methods and analyses. Analysis of data were performed within the structural equation model using exploratory factor analysis, confirmatory factor analysis, and a range of regression methods. The analyses generally provided results consistent with prior literature. Two survey questions yielded unexpected results contrary to similar studies. The relationship between prior experience and job level did not show a significant relationship with perceived usefulness or perceived ease of use. Other results included the significant relationship between Perceived Usefulness and Perceived Ease of Use with Technology acceptance. Recommendations include understanding how Technology Acceptance can be improved for the industry and the need for further research not covered to refine recommendations for technology acceptance related to the aviation industry.

  17. A Versatile Simulation Environment of FTC Architectures for Large Transport Aircraft

    OpenAIRE

    Ossmann, Daniel; Varga, Andreas; Simon, Hecker

    2010-01-01

    We present a simulation environment with 3-D stereo visualization facilities destined for an easy setup and versatile assessment of fault detection and diagnosis based fault tolerant control systems. This environment has been primarily developed as a technology demonstrator of advanced reconfigurable flight control systems and is based on a realistic six degree of freedom flexible aircraft model. The aircraft control system architecture includes a flexible fault detection and diagnosis syste...

  18. Study of V/STOL aircraft implementation. Volume 1: Summary

    Science.gov (United States)

    Portenier, W. J.; Webb, H. M.

    1973-01-01

    A high density short haul air market which by 1980 is large enough to support the introduction of an independent short haul air transportation system is discussed. This system will complement the existing air transportation system and will provide relief of noise and congestion problems at conventional airports. The study has found that new aircraft, exploiting V/STOL and quiet engine technology, can be available for implementing these new services, and they can operate from existing reliever and general aviation airports. The study has also found that the major funding requirements for implementing new short haul services could be borne by private capital, and that the government funding requirement would be minimal and/or recovered through the airline ticket tax. In addition, a suitable new short haul aircraft would have a market potential for $3.5 billion in foreign sales. The long lead times needed for aircraft and engine technology development will require timely actions by federal agencies.

  19. A Distributed Simulation Facility to Support Human Factors Research in Advanced Air Transportation Technology

    Science.gov (United States)

    Amonlirdviman, Keith; Farley, Todd C.; Hansman, R. John, Jr.; Ladik, John F.; Sherer, Dana Z.

    1998-01-01

    A distributed real-time simulation of the civil air traffic environment developed to support human factors research in advanced air transportation technology is presented. The distributed environment is based on a custom simulation architecture designed for simplicity and flexibility in human experiments. Standard Internet protocols are used to create the distributed environment, linking all advanced cockpit simulator, all Air Traffic Control simulator, and a pseudo-aircraft control and simulation management station. The pseudo-aircraft control station also functions as a scenario design tool for coordinating human factors experiments. This station incorporates a pseudo-pilot interface designed to reduce workload for human operators piloting multiple aircraft simultaneously in real time. The application of this distributed simulation facility to support a study of the effect of shared information (via air-ground datalink) on pilot/controller shared situation awareness and re-route negotiation is also presented.

  20. A MATHEMATICAL MODEL OF THE MILITARY TRANSPORT AIRCRAFT MOVEMENT AT CARGO ITEM DROP

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The controllability of military transport aircraft deteriorates at heavy single piece landing. To solve this problem and a specific methodology for pilotage of the pre-emption, and automation tools are being developed. Preliminary study ofpilotage technique and authomatic control algorythm demand a reliable mathematical model of aircraft dynamics at cargo item drop. Such model should take into account significant change in the position of the aircraft center of mass and aircraft inertia tensor. Simplified models were based on modeling the movement of the center of mass and rotation around the cen- ter of mass of the aircraft. Such models do not take into account the inertial forces and moments of moving a cargo item. This circumstance does not allow to obtain reliable results in the simulation. The article presents the description of the complete mathematical model of the movement of military transport aircraft in landing of a cargo item. Examines the com- plex material system of solids and a detailed description of the properties of its components. The equations of motion of the aircraft as a system carrier (aircraft without a cargo item and wear (of moving a cargo item bodies to reflect the changes in the inertia tensor. The functioning of the power plant, steering actuators, flight control system, an exhaust chute, the sen- sors of the primary information are taken into account. The equations of motion for systems of bodies projected on the air- craft reference plane are being recorded. This approach takes into account changes of the inertia tensor and the position of the main central axes of inertia in the process of landing of a cargo item. It allows us to simulate the condition of the air- craft at all speeds of the pitch, normal overload, and masses of single piece and placement, as evidenced by the high con- vergence of modeling results with data from flight tests.

  1. Design for air-to-air refuelling operations; new passenger and tanker aircraft design for AAR scenarios

    NARCIS (Netherlands)

    Li, M.O.

    2014-01-01

    Air-to-air refuelling is a way to improve fuel efficiency of the overall transport system without waiting for the improvement of basic aviation technology. To take full advantage of such an operation, both passenger aircraft and tanker aircraft (which deliver required fuel to the passenger aircraft

  2. Mission Analysis and Aircraft Sizing of a Hybrid-Electric Regional Aircraft

    Science.gov (United States)

    Antcliff, Kevin R.; Guynn, Mark D.; Marien, Ty V.; Wells, Douglas P.; Schneider, Steven J.; Tong, Michael T.

    2016-01-01

    The purpose of this study was to explore advanced airframe and propulsion technologies for a small regional transport aircraft concept (approximately 50 passengers), with the goal of creating a conceptual design that delivers significant cost and performance advantages over current aircraft in that class. In turn, this could encourage airlines to open up new markets, reestablish service at smaller airports, and increase mobility and connectivity for all passengers. To meet these study goals, hybrid-electric propulsion was analyzed as the primary enabling technology. The advanced regional aircraft is analyzed with four levels of electrification, 0 percent electric with 100 percent conventional, 25 percent electric with 75 percent conventional, 50 percent electric with 50 percent conventional, and 75 percent electric with 25 percent conventional for comparison purposes. Engine models were developed to represent projected future turboprop engine performance with advanced technology and estimates of the engine weights and flowpath dimensions were developed. A low-order multi-disciplinary optimization (MDO) environment was created that could capture the unique features of parallel hybrid-electric aircraft. It is determined that at the size and range of the advanced turboprop: The battery specific energy must be 750 watt-hours per kilogram or greater for the total energy to be less than for a conventional aircraft. A hybrid vehicle would likely not be economically feasible with a battery specific energy of 500 or 750 watt-hours per kilogram based on the higher gross weight, operating empty weight, and energy costs compared to a conventional turboprop. The battery specific energy would need to reach 1000 watt-hours per kilogram by 2030 to make the electrification of its propulsion an economically feasible option. A shorter range and/or an altered propulsion-airframe integration could provide more favorable results.

  3. The Trojan. [supersonic transport

    Science.gov (United States)

    1992-01-01

    The Trojan is the culmination of thousands of engineering person-hours by the Cones of Silence Design Team. The goal was to design an economically and technologically viable supersonic transport. The Trojan is the embodiment of the latest engineering tools and technology necessary for such an advanced aircraft. The efficient design of the Trojan allows for supersonic cruise of Mach 2.0 for 5,200 nautical miles, carrying 250 passengers. The per aircraft price is placed at $200 million, making the Trojan a very realistic solution for tomorrows transportation needs. The following is a detailed study of the driving factors that determined the Trojan's super design.

  4. PRINCIPLE "EARLY MATCHING" AERODYNAMIC DESIGN AIRCRAFT WITH LANDING GEAR HOVERCRAFT

    Directory of Open Access Journals (Sweden)

    V. P. Morozov

    2015-01-01

    Full Text Available The principle of "early matching" aircraft aerohydrodynamic layouts with air cushion landing gear is suggested. Application of this principle is considered as an example of adaptation to the ball screw base circuit of light transport aircraft. The principle, other than weight, aerodynamic, technological and operational requirements includes additional project activities related to the installation of ball screws.

  5. Aircraft Weather Mitigation for the Next Generation Air Transportation System

    Science.gov (United States)

    Stough, H. Paul, III

    2007-01-01

    Atmospheric effects on aviation are described by Mahapatra (1999) as including (1) atmospheric phenomena involving air motion - wind shear and turbulence; (2) hydrometeorological phenomena - rain, snow and hail; (3) aircraft icing; (4) low visibility; and (5) atmospheric electrical phenomena. Aircraft Weather Mitigation includes aircraft systems (e.g. airframe, propulsion, avionics, controls) that can be enacted (by a pilot, automation or hybrid systems) to suppress and/or prepare for the effects of encountered or unavoidable weather or to facilitate a crew operational decision-making process relative to weather. Aircraft weather mitigation can be thought of as a continuum (Figure 1) with the need to avoid all adverse weather at one extreme and the ability to safely operate in all weather conditions at the other extreme. Realistic aircraft capabilities fall somewhere between these two extremes. The capabilities of small general aviation aircraft would be expected to fall closer to the "Avoid All Adverse Weather" point, and the capabilities of large commercial jet transports would fall closer to the "Operate in All Weather Conditions" point. The ability to safely operate in adverse weather conditions is dependent upon the pilot s capabilities (training, total experience and recent experience), the airspace in which the operation is taking place (terrain, navigational aids, traffic separation), the capabilities of the airport (approach guidance, runway and taxiway lighting, availability of air traffic control), as well as the capabilities of the airplane. The level of mitigation may vary depending upon the type of adverse weather. For example, a small general aviation airplane may be equipped to operate "in the clouds" without outside visual references, but not be equipped to prevent airframe ice that could be accreted in those clouds.

  6. The benefits of improved technologies in agricultural aviation. [economic impact and aircraft configurations

    Science.gov (United States)

    1978-01-01

    The economic benefits attributable to a variety of potential technological improvements in agricultural aviation are discussed. Topics covered include: the ag-air industry, the data base used to estimate the potential benefits and a summary of the potential benefits from technological improvements; ag-air activities in the United States; foreign ag-air activities; major ag-air aircraft is use and manufacturers' sales and distribution networks; and estimates of the benefits to the United States of proposed technological improvements to the aircraft and dispersal equipment. A bibliography of references is appended.

  7. Aircraft Electric/Hybrid-Electric Power and Propulsion Workshop Perspective of the V/STOL Aircraft Systems Tech Committee

    Science.gov (United States)

    Hange, Craig E.

    2016-01-01

    This presentation will be given at the AIAA Electric Hybrid-Electric Power Propulsion Workshop on July 29, 2016. The workshop is being held so the AIAA can determine how it can support the introduction of electric aircraft into the aerospace industry. This presentation will address the needs of the community within the industry that advocates the use of powered-lift as important new technologies for future aircraft and air transportation systems. As the current chairman of the VSTOL Aircraft Systems Technical Committee, I will be presenting generalized descriptions of the past research in developing powered-lift and generalized observations on how electric and hybrid-electric propulsion may provide advances in the powered-lift field.

  8. Impact of aircraft systems within aircraft operation: A MEA trajectory optimisation study

    OpenAIRE

    Seresinhe, R.

    2014-01-01

    Air transport has been a key component of the socio-economic globalisation. The ever increasing demand for air travel and air transport is a testament to the success of the aircraft. But this growing demand presents many challenges. One of which is the environmental impact due to aviation. The scope of the environmental impact of aircraft can be discussed from many viewpoints. This research focuses on the environmental impact due to aircraft operation. Aircraft operation causes...

  9. On the use of controls for subsonic transport performance improvement: Overview and future directions

    Science.gov (United States)

    Gilyard, Glenn; Espana, Martin

    1994-01-01

    Increasing competition among airline manufacturers and operators has highlighted the issue of aircraft efficiency. Fewer aircraft orders have led to an all-out efficiency improvement effort among the manufacturers to maintain if not increase their share of the shrinking number of aircraft sales. Aircraft efficiency is important in airline profitability and is key if fuel prices increase from their current low. In a continuing effort to improve aircraft efficiency and develop an optimal performance technology base, NASA Dryden Flight Research Center developed and flight tested an adaptive performance seeking control system to optimize the quasi-steady-state performance of the F-15 aircraft. The demonstrated technology is equally applicable to transport aircraft although with less improvement. NASA Dryden, in transitioning this technology to transport aircraft, is specifically exploring the feasibility of applying adaptive optimal control techniques to performance optimization of redundant control effectors. A simulation evaluation of a preliminary control law optimizes wing-aileron camber for minimum net aircraft drag. Two submodes are evaluated: one to minimize fuel and the other to maximize velocity. This paper covers the status of performance optimization of the current fleet of subsonic transports. Available integrated controls technologies are reviewed to define approaches using active controls. A candidate control law for adaptive performance optimization is presented along with examples of algorithm operation.

  10. In-flight dose estimates for aircraft crew and pregnant female crew members in military transport missions

    International Nuclear Information System (INIS)

    Alves, J. G.; Mairos, J. C.

    2007-01-01

    Aircraft fighter pilots may experience risks other than the exposure to cosmic radiation due to the characteristics of a typical fighter flight. The combined risks for fighter pilots due to the G-forces, hypobaric hypoxia, cosmic radiation exposure, etc. have determined that pregnant female pilots should remain on ground. However, several military transport missions can be considered an ordinary civil aircraft flight and the question arises whether a pregnant female crew member could still be part of the aircraft crew. The cosmic radiation dose received was estimated for transport missions carried out on the Hercules C-130 type of aircraft by a single air squad in 1 month. The flights departed from Lisboa to areas such as: the Azores, several countries in central and southern Africa, the eastern coast of the USA and the Balkans, and an estimate of the cosmic radiation dose received on each flight was carried out. A monthly average cosmic radiation dose to the aircraft crew was determined and the dose values obtained were discussed in relation to the limits established by the European Union Council Directive 96/29/Euratom. The cosmic radiation dose estimates were performed using the EPCARD v3.2 and the CARI-6 computing codes. EPCARD v3.2 was kindly made available by GSF-National Research Centre for Environment and Health, Inst. of Radiation Protection (Neuherberg (Germany)). CARI-6 (version July 7, 2004) was downloaded from the web site of the Civil Aerospace Medical Inst., Federal Aviation Administration (USA). In this study an estimate of the cosmic radiation dose received by military aircraft crew on typical transport missions is made. (authors)

  11. Computational Fluid Dynamics of Whole-Body Aircraft

    Science.gov (United States)

    Agarwal, Ramesh

    1999-01-01

    The current state of the art in computational aerodynamics for whole-body aircraft flowfield simulations is described. Recent advances in geometry modeling, surface and volume grid generation, and flow simulation algorithms have led to accurate flowfield predictions for increasingly complex and realistic configurations. As a result, computational aerodynamics has emerged as a crucial enabling technology for the design and development of flight vehicles. Examples illustrating the current capability for the prediction of transport and fighter aircraft flowfields are presented. Unfortunately, accurate modeling of turbulence remains a major difficulty in the analysis of viscosity-dominated flows. In the future, inverse design methods, multidisciplinary design optimization methods, artificial intelligence technology, and massively parallel computer technology will be incorporated into computational aerodynamics, opening up greater opportunities for improved product design at substantially reduced costs.

  12. Combining control input with flight path data to evaluate pilot performance in transport aircraft.

    Science.gov (United States)

    Ebbatson, Matt; Harris, Don; Huddlestone, John; Sears, Rodney

    2008-11-01

    When deriving an objective assessment of piloting performance from flight data records, it is common to employ metrics which purely evaluate errors in flight path parameters. The adequacy of pilot performance is evaluated from the flight path of the aircraft. However, in large jet transport aircraft these measures may be insensitive and require supplementing with frequency-based measures of control input parameters. Flight path and control input data were collected from pilots undertaking a jet transport aircraft conversion course during a series of symmetric and asymmetric approaches in a flight simulator. The flight path data were analyzed for deviations around the optimum flight path while flying an instrument landing approach. Manipulation of the flight controls was subject to analysis using a series of power spectral density measures. The flight path metrics showed no significant differences in performance between the symmetric and asymmetric approaches. However, control input frequency domain measures revealed that the pilots employed highly different control strategies in the pitch and yaw axes. The results demonstrate that to evaluate pilot performance fully in large aircraft, it is necessary to employ performance metrics targeted at both the outer control loop (flight path) and the inner control loop (flight control) parameters in parallel, evaluating both the product and process of a pilot's performance.

  13. Aircraft technology portfolio optimization using ant colony optimization

    Science.gov (United States)

    Villeneuve, Frederic J.; Mavris, Dimitri N.

    2012-11-01

    Technology portfolio selection is a combinatorial optimization problem often faced with a large number of combinations and technology incompatibilities. The main research question addressed in this article is to determine if Ant Colony Optimization (ACO) is better suited than Genetic Algorithms (GAs) and Simulated Annealing (SA) for technology portfolio optimization when incompatibility constraints between technologies are present. Convergence rate, capability to find optima, and efficiency in handling of incompatibilities are the three criteria of comparison. The application problem consists of finding the best technology portfolio from 29 aircraft technologies. The results show that ACO and GAs converge faster and find optima more easily than SA, and that ACO can optimize portfolios with technology incompatibilities without using penalty functions. This latter finding paves the way for more use of ACO when the number of constraints increases, such as in the technology and concept selection for complex engineering systems.

  14. Conceptual study of advanced VTOL transport aircraft engine; Kosoku VTOL kiyo engine no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y; Endo, M; Matsuda, Y; Sugiyama, N; Watanabe, M; Sugahara, N; Yamamoto, K [National Aerospace Laboratory, Tokyo (Japan)

    1996-04-01

    This report proposes the concept of an ultra-low noise engine for advanced high subsonic VTOL transport aircraft, and discusses its technological feasibility. As one of the applications of the previously reported `separated core turbofan engine,` the conceptual engine is composed of 3 core engines, 2 cruise fan engines for high subsonic cruising and 6 lift fan engines producing thrust of 98kN (10000kgf)/engine. The core turbojet engine bleeds a large amount of air at the outlet of a compressor to supply driving high-pressure air for fans to other engines. The lift fan engine is composed of a lift fan, driving combustor, turbine and speed reduction gear, and is featured by not only high operation stability and thin fan engine like a separated core engine but also ultra-low noise operation. The cruise fan engine adopts the same configuration as the lift fan engine. Since this engine configuration has no technological problems difficult to be overcome, its high technological feasibility is expected. 6 refs., 7 figs., 5 tabs.

  15. Study of aircraft electrical power systems

    Science.gov (United States)

    1972-01-01

    The formulation of a philosophy for devising a reliable, efficient, lightweight, and cost effective electrical power system for advanced, large transport aircraft in the 1980 to 1985 time period is discussed. The determination and recommendation for improvements in subsystems and components are also considered. All aspects of the aircraft electrical power system including generation, conversion, distribution, and utilization equipment were considered. Significant research and technology problem areas associated with the development of future power systems are identified. The design categories involved are: (1) safety-reliability, (2) power type, voltage, frequency, quality, and efficiency, (3) power control, and (4) selection of utilization equipment.

  16. N+3 Aircraft Concept Designs and Trade Studies. Volume 1

    Science.gov (United States)

    Greitzer, E. M.; Bonnefoy, P. A.; DelaRosaBlanco, E.; Dorbian, C. S.; Drela, M.; Hall, D. K.; Hansman, R. J.; Hileman, J. I.; Liebeck, R. H.; Levegren, J.; hide

    2010-01-01

    MIT, Aerodyne Research, Aurora Flight Sciences, and Pratt & Whitney have collaborated to address NASA s desire to pursue revolutionary conceptual designs for a subsonic commercial transport that could enter service in the 2035 timeframe. The MIT team brings together multidisciplinary expertise and cutting-edge technologies to determine, in a rigorous and objective manner, the potential for improvements in noise, emissions, and performance for subsonic fixed wing transport aircraft. The collaboration incorporates assessment of the trade space in aerodynamics, propulsion, operations, and structures to ensure that the full spectrum of improvements is identified. Although the analysis focuses on these key areas, the team has taken a system-level approach to find the integrated solutions that offer the best balance in performance enhancements. Based on the trade space analyses and system-level assessment, two aircraft have been identified and carried through conceptual design to show both the in-depth engineering that underpins the benefits envisioned and also the technology paths that need to be followed to enable, within the next 25 years, the development of aircraft three generations ahead in capabilities from those flying today.

  17. Advanced fuel system technology for utilizing broadened property aircraft fuels

    Science.gov (United States)

    Reck, G. M.

    1980-01-01

    Possible changes in fuel properties are identified based on current trends and projections. The effect of those changes with respect to the aircraft fuel system are examined and some technological approaches to utilizing those fuels are described.

  18. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2012-09-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to the report, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. This year, the database was revised by adding aircraft accidents in 2010 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2011 database for latest 20 years from 1991 to 2010. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for latest 20 years from 1991 to 2010 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2011 revised database for latest 20 years from 1991 to 2010 shows the followings. The trend of the 2011 database changes little as compared to the last year's one. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. 4 large fixed-wing aircraft accidents, 58 small fixed-wing aircraft accidents, 5 large bladed aircraft accidents and 114 small bladed aircraft accidents occurred. The relevant accidents for evaluating

  19. Additional Development and Systems Analyses of Pneumatic Technology for High Speed Civil Transport Aircraft

    Science.gov (United States)

    Englar, Robert J.; Willie, F. Scott; Lee, Warren J.

    1999-01-01

    In the Task I portion of this NASA research grant, configuration development and experimental investigations have been conducted on a series of pneumatic high-lift and control surface devices applied to a generic High Speed Civil Transport (HSCT) model configuration to determine their potential for improved aerodynamic performance, plus stability and control of higher performance aircraft. These investigations were intended to optimize pneumatic lift and drag performance; provide adequate control and longitudinal stability; reduce separation flowfields at high angle of attack; increase takeoff/climbout lift-to-drag ratios; and reduce system complexity and weight. Experimental aerodynamic evaluations were performed on a semi-span HSCT generic model with improved fuselage fineness ratio and with interchangeable plain flaps, blown flaps, pneumatic Circulation Control Wing (CCW) high-lift configurations, plain and blown canards, a novel Circulation Control (CC) cylinder blown canard, and a clean cruise wing for reference. Conventional tail power was also investigated for longitudinal trim capability. Also evaluated was unsteady pulsed blowing of the wing high-lift system to determine if reduced pulsed mass flow rates and blowing requirements could be made to yield the same lift as that resulting from steady-state blowing. Depending on the pulsing frequency applied, reduced mass flow rates were indeed found able to provide lift augmentation at lesser blowing values than for the steady conditions. Significant improvements in the aerodynamic characteristics leading to improved performance and stability/control were identified, and the various components were compared to evaluate the pneumatic potential of each. Aerodynamic results were provided to the Georgia Tech Aerospace System Design Lab. to conduct the companion system analyses and feasibility study (Task 2) of theses concepts applied to an operational advanced HSCT aircraft. Results and conclusions from these

  20. Analysis of a Stretched Derivative Aircraft with Open Rotor Propulsion

    Science.gov (United States)

    Berton, Jeffrey J.; Hendricks, Eric S.; Haller, William J.; Guynn, Mark D.

    2015-01-01

    Research into advanced, high-speed civil turboprops received significant attention during the 1970s and 1980s when fuel efficiency was the driving focus of U.S. aeronautical research. But when fuel prices declined sharply there was no longer sufficient motivation to continue maturing the technology. Recent volatility in fuel prices and increasing concern for aviation's environmental impact, however, have renewed interest in unducted, open rotor propulsion and revived research by NASA and a number of engine manufacturers. Recently, NASA and General Electric have teamed to conduct several investigations into the performance and noise of an advanced, single-aisle transport with open rotor propulsion. The results of these initial studies indicate open rotor engines have the potential to provide significant reduction in fuel consumption compared to aircraft using turbofan engines with equivalent core technology. In addition, noise analysis of the concept indicates that an open rotor aircraft in the single-aisle transport class would be able to meet current noise regulations with margin. The behavior of derivative open rotor transports is of interest. Heavier, "stretched" derivative aircraft tend to be noisier than their lighter relatives. Of particular importance to the business case for the concept is how the noise margin changes relative to regulatory limits within a family of similar open rotor aircraft. The subject of this report is a performance and noise assessment of a notional, heavier, stretched derivative airplane equipped with throttle-push variants of NASA's initial open rotor engine design.

  1. Critical joints in large composite primary aircraft structures. Volume 1: Technical summary

    Science.gov (United States)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. In fulfilling this objective, analytical procedures for joint design and analysis were developed during Phase 1 of the program. Tests were conducted at the element level to supply the empirical data required for methods development. Large composite multirow joints were tested to verify the selected design concepts and for correlation with analysis predictions. The Phase 2 program included additional tests to provide joint design and analysis data, and culminated with several technology demonstration tests of a major joint area representative of a commercial transport wing. The technology demonstration program of Phase 2 is discussed. The analysis methodology development, structural test program, and correlation between test results and analytical strength predictions are reviewed.

  2. Technology assessment on a hydrogen fueled aircraft system; 1980 nendo suiso nenryo kokuki system ni kansuru technology assissment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1981-03-01

    This paper describes technology assessment on a hydrogen fueled aircraft system. Indispensable as technological assignments are structuring different safety systems including prevention of leakage and ignition, not to speak of developing an airframe structure that considers cryogenic and brittle nature of liquefied hydrogen. Operation related industries would be subjected to increased burdens, such as purchase and servicing of new implements and materials, but the liquefied hydrogen industry will have a chance of growing largely with wide repercussions. In the environmental aspect, the aircraft will have less CO and SOx emission in exhaust gas and lower noise than the conventional jet aircraft. Technological problems to be solved in the development include the safety of fuel tanks, safety assurance measures, and liquefied hydrogen of the required amount to be supplied easily and at low cost. To meet these requirements, noticeable progress is demanded in hydrogen manufacturing technologies. What is also required is explosion-proof safety that does not have to require crews to take special considerations in take-off and landing, not to speak of during flight. This also applies to fuel feeding and servicing on the ground. Considerations must be given that rise in operation cost should not be excessive. (NEDO)

  3. Low-Cost Composite Materials and Structures for Aircraft Applications

    Science.gov (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  4. Database on aircraft accidents

    International Nuclear Information System (INIS)

    Nishio, Masahide; Koriyama, Tamio

    2013-11-01

    The Reactor Safety Subcommittee in the Nuclear Safety and Preservation Committee published 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' as the standard method for evaluating probability of aircraft crash into nuclear reactor facilities in July 2002. In response to this issue, Japan Nuclear Energy Safety Organization has been collecting open information on aircraft accidents of commercial airplanes, self-defense force (SDF) airplanes and US force airplanes every year since 2003, sorting out them and developing the database of aircraft accidents for the latest 20 years to evaluate probability of aircraft crash into nuclear reactor facilities. In this report the database was revised by adding aircraft accidents in 2011 to the existing database and deleting aircraft accidents in 1991 from it, resulting in development of the revised 2012 database for the latest 20 years from 1992 to 2011. Furthermore, the flight information on commercial aircrafts was also collected to develop the flight database for the latest 20 years from 1992 to 2011 to evaluate probability of aircraft crash into reactor facilities. The method for developing the database of aircraft accidents to evaluate probability of aircraft crash into reactor facilities is based on the report 'The criteria on assessment of probability of aircraft crash into light water reactor facilities' described above. The 2012 revised database for the latest 20 years from 1992 to 2011 shows the followings. The trend of the 2012 database changes little as compared to the last year's report. (1) The data of commercial aircraft accidents is based on 'Aircraft accident investigation reports of Japan transport safety board' of Ministry of Land, Infrastructure, Transport and Tourism. The number of commercial aircraft accidents is 4 for large fixed-wing aircraft, 58 for small fixed-wing aircraft, 5 for large bladed aircraft and 99 for small bladed aircraft. The relevant accidents

  5. Critical joints in large composite primary aircraft structures. Volume 2: Technology demonstration test report

    Science.gov (United States)

    Bunin, Bruce L.

    1985-01-01

    A program was conducted to develop the technology for critical structural joints in composite wing structure that meets all the design requirements of a 1990 commercial transport aircraft. The results of four large composite multirow bolted joint tests are presented. The tests were conducted to demonstrate the technology for critical joints in highly loaded composite structure and to verify the analytical methods that were developed throughout the program. The test consisted of a wing skin-stringer transition specimen representing a stringer runout and skin splice on the wing lower surface at the side of the fuselage attachment. All tests were static tension tests. The composite material was Toray T-300 fiber with Ciba-Geigy 914 resin in 10 mil tape form. The splice members were metallic, using combinations of aluminum and titanium. Discussions are given of the test article, instrumentation, test setup, test procedures, and test results for each of the four specimens. Some of the analytical predictions are also included.

  6. Manual Throttles-Only Control Effectivity for Emergency Flight Control of Transport Aircraft

    Science.gov (United States)

    Stevens, Richard; Burcham, Frank W., Jr.

    2009-01-01

    If normal aircraft flight controls are lost, emergency flight control may be attempted using only the thrust of engines. Collective thrust is used to control flightpath, and differential thrust is used to control bank angle. One issue is whether a total loss of hydraulics (TLOH) leaves an airplane in a recoverable condition. Recoverability is a function of airspeed, altitude, flight phase, and configuration. If the airplane can be recovered, flight test and simulation results on several transport-class airplanes have shown that throttles-only control (TOC) is usually adequate to maintain up-and-away flight, but executing a safe landing is very difficult. There are favorable aircraft configurations, and also techniques that will improve recoverability and control and increase the chances of a survivable landing. The DHS and NASA have recently conducted a flight and simulator study to determine the effectivity of manual throttles-only control as a way to recover and safely land a range of transport airplanes. This paper discusses TLOH recoverability as a function of conditions, and TOC landability results for a range of transport airplanes, and some key techniques for flying with throttles and making a survivable landing. Airplanes evaluated include the B-747, B-767, B-777, B-757, A320, and B-737 airplanes.

  7. Commercial transport aircraft composite structures

    Science.gov (United States)

    Mccarty, J. E.

    1983-01-01

    The role that analysis plays in the development, production, and substantiation of aircraft structures is discussed. The types, elements, and applications of failure that are used and needed; the current application of analysis methods to commercial aircraft advanced composite structures, along with a projection of future needs; and some personal thoughts on analysis development goals and the elements of an approach to analysis development are discussed.

  8. Modeling the impact of improved aircraft operations technologies on the environment and airline behavior

    Science.gov (United States)

    Foley, Ryan Patrick

    The overall goal of this thesis is to determine if improved operations technologies are economically viable for US airlines, and to determine the level of environmental benefits available from such technologies. Though these operational changes are being implemented primarily with the reduction of delay and improvement of throughput in mind, economic factors will drive the rate of airline adoption. In addition, the increased awareness of environmental impacts makes these effects an important aspect of decision-making. Understanding this relationship may help policymakers make decisions regarding implementation of these advanced technologies at airports, and help airlines determine appropriate levels of support to provide for these new technologies. In order to do so, the author models the behavior of a large, profit-seeking airline in response to the introduction of advanced equipage allowing improved operations procedures. The airline response included changes in deployed fleet, assignment of aircraft to routes, and acquisition of new aircraft. From these responses, changes in total fleet-level CO2 emissions and airline profit were tallied. As awareness of the environmental impact of aircraft emissions has grown, several agencies (ICAO, NASA) have moved to place goals for emissions reduction. NASA, in particular, has set goals for emissions reduction through several areas of aircraft technology. Among these are "Operational Improvements," technologies available in the short-term through avionics and airport system upgrades. The studies in this thesis make use of the Fleet-Level Environmental Evaluation Tool (FLEET), a simulation tool developed by Purdue University in support of a NASA-sponsored research effort. This tool models the behavior of a large, profit-seeking airline through an allocation problem. The problem is contained within a systems dynamics type approach that allows feedback between passenger demand, ticket price, and the airline fleet composition

  9. Preliminary design of four aircraft to service the California Corridor in the year 2010: The California Condor, California Sky-Hopper, high capacity short range transport tilt rotor aircraft needed to simplify intercity transportation

    Science.gov (United States)

    1989-01-01

    The major objective of this project was to design an aircraft for use in the California Corridor in the year 2010. The design process, completed by students in a senior design class at California Polytechnic State University, San Luis Obispo, used a Class 1 airplane design analysis from Jan Roskam's Airplane Design. The California Condor (CC-38), a 38 passenger, 400 mph aircraft, was designed to meet the needs of tomorrow's passengers while conforming to the California Corridor's restrictions. Assumptions were made using today's technology with forecasts into 21st Century technology. Doubling today's commuter aircraft passenger capacity, travelling at Mach .57 with improved cruise efficiencies of over 10 percent, with the ability to land within field lengths of 4000 feet, are the CC-38's strongest points. The California Condor has a very promising future in helping to relieve the air traffic and airport congestion in the 21st Century.

  10. The simulation of the transport of aircraft emissions by a three-dimensional global model

    Directory of Open Access Journals (Sweden)

    G. J. M. Velders

    1994-04-01

    Full Text Available A three-dimensional off-line tracer transport model coupled to the ECMWF analyses has been used to study the transport of trace gases in the atmosphere. The model gives a reasonable description of their general transport in the atmosphere. The simulation of the transport of aircraft emissions (as NOx has been studied as well as the transport of passive tracers injected at different altitudes in the North Atlantic flight corridor. A large zonal variation in the NOx concentrations as well as large seasonal and yearly variations was found. The altitude of the flight corridor influences the amount of tracers transported into the troposphere and stratosphere to a great extent.

  11. Aircraft Depainting Technology

    National Research Council Canada - National Science Library

    Kozol, Joseph

    1999-01-01

    ... of aircraft and component stripping at various levels of maintenance. Under this program, the Navy pursued development of non-HAP chemical paint strippers as alternatives for methylene chloride based strippers...

  12. A study to define the research and technology requirements for advanced turbo/propfan transport aircraft

    Science.gov (United States)

    Goldsmith, I. M.

    1981-01-01

    The feasibility of the propfan relative to the turbofan is summarized, using the Douglas DC-9 Super 80 (DS-8000) as the actual operational base aircraft. The 155 passenger economy class aircraft (31,775 lb 14,413 kg payload), cruise Mach at 0.80 at 31,000 ft (8,450 m) initial altitude, and an operational capability in 1985 was considered. Three propfan arrangements, wing mounted, conventional horizontal tail aft mounted, and aft fuselage pylon mounted are selected for comparison with the DC-9 Super 80 P&WA JT8D-209 turbofan powered aircraft. The configuration feasibility, aerodynamics, propulsion, structural loads, structural dynamics, sonic fatigue, acoustics, weight maintainability, performance, rough order of magnitude economics, and airline coordination are examined. The effects of alternate cruise Mach number, mission stage lengths, and propfan design characteristics are considered. Recommendations for further study, ground testing, and flight testing are included.

  13. A second-generation supersonic transport

    Science.gov (United States)

    Humphrey, W.; Grayson, G.; Gump, J.; Hutko, G.; Kubicko, R.; Obrien, J.; Orndorff, R.; Oscher, R.; Polster, M.; Ulrich, C.

    1989-01-01

    Ever since the advent of commercial flight vehicles, one goal of designers has been to develop aircraft that can fly faster and carry more passengers than before. After the development of practical supersonic military aircraft, this desire was naturally manifested in a search for a practical supersonic commercial aircraft. The first and, to date, only supersonic civil transport is the Concorde, manufactured by a consortium of British and French aerospace companies. Unfortunately, due to a number of factors, including low passenger capacity and limited range, the Concorde has not been an economic success. It is for this reason that there is considerable interest in developing a design for a supersonic civil transport that addresses some of the inadequacies of the Concorde. For the design of such an aircraft to be feasible in the near term, certain guidelines must be established at the outset. Based upon the experience with the Concorde, whose 100-passenger capacity is not large enough for profitable operation, a minimum capacity of 250 passengers is desired. Second, to date, because of the limited range of the Concorde, supersonic commercial flight has been restricted to trans-Atlantic routes. In order to broaden the potential market, any new design must have the capability of trans-Pacific flight. A summary of the potential markets involved is presented. Also, because of both the cost and complexity involved with actively cooling an entire aircraft, an additional design constraint is that the aircraft as a whole be passively cooled. One additional design constraint is somewhat less quantitative in nature but of great importance nonetheless. Any time a new design is attempted, the tendency is to assume great strides in technology that serve as the basis for actual realization of the design. While it is not always possible to avoid this dependence on 'enabling technology,' since this design is desired for the near term, it is prudent, wherever possible, to rely on

  14. Fiber-Optic Communication Links Suitable for On-Board Use in Modern Aircraft

    Science.gov (United States)

    Nguyen, Hung; Ngo, Duc; Alam, Mohammad F.; Atiquzzaman, Mohammed; Sluse, James; Slaveski, Filip

    2004-01-01

    The role of the Advanced Air Transportation Technologies program undertaken at the NASA Glenn Research Centers has been focused mainly on the improvement of air transportation safety, with particular emphasis on air transportation communication systems in on-board aircraft. The conventional solutions for digital optical communications systems specifically designed for local/metro area networks are, unfortunately, not capable of transporting the microwave and millimeter RF signals used in avionics systems. Optical networks capable of transporting RF signals are substantially different from the standard digital optical communications systems. The objective of this paper is to identify a number of different communication link architectures for RF/fiber optic transmission using a single backbone fiber for carrying VHF and UHF RF signals in the aircraft. To support these architectures, two approaches derived from both hybrid RF-optical and all-optical processing methodologies are discussed with single and multiple antennas for explicitly transporting VHF and UHF signals, while the relative merits and demerits of each architecture are also addressed. Furthermore, the experimental results of wavelength division multiplexing (WDM) link architecture from our test-bed platform, configured for aircraft environment to support simultaneous transmission of multiple RF signals over a single optical fiber, exhibit no appreciable signal degradation at wavelengths of both 1330 and 1550 nm, respectively. Our measurements of signal to noise ratio carried out for the transmission of FM and AM analog modulated signals at these wavelengths indicate that WDM is a fiber optic technology which is potentially suitable for avionics applications.

  15. Propulsion Noise Reduction Research in the NASA Advanced Air Transport Technology Project

    Science.gov (United States)

    Van Zante, Dale; Nark, Douglas; Fernandez, Hamilton

    2017-01-01

    The Aircraft Noise Reduction (ANR) sub-project is focused on the generation, development, and testing of component noise reduction technologies progressing toward the NASA far term noise goals while providing associated near and mid-term benefits. The ANR sub-project has efforts in airframe noise reduction, propulsion (including fan and core) noise reduction, acoustic liner technology, and propulsion airframe aeroacoustics for candidate conventional and unconventional aircraft configurations. The current suite of propulsion specific noise research areas is reviewed along with emerging facility and measurement capabilities. In the longer term, the changes in engine and aircraft configuration will influence the suite of technologies necessary to reduce noise in next generation systems.

  16. Projected Demand and Potential Impacts to the National Airspace System of Autonomous, Electric, On-Demand Small Aircraft

    Science.gov (United States)

    Smith, Jeremy C.; Viken, Jeffrey K.; Guerreiro, Nelson M.; Dollyhigh, Samuel M.; Fenbert, James W.; Hartman, Christopher L.; Kwa, Teck-Seng; Moore, Mark D.

    2012-01-01

    Electric propulsion and autonomy are technology frontiers that offer tremendous potential to achieve low operating costs for small-aircraft. Such technologies enable simple and safe to operate vehicles that could dramatically improve regional transportation accessibility and speed through point-to-point operations. This analysis develops an understanding of the potential traffic volume and National Airspace System (NAS) capacity for small on-demand aircraft operations. Future demand projections use the Transportation Systems Analysis Model (TSAM), a tool suite developed by NASA and the Transportation Laboratory of Virginia Polytechnic Institute. Demand projections from TSAM contain the mode of travel, number of trips and geographic distribution of trips. For this study, the mode of travel can be commercial aircraft, automobile and on-demand aircraft. NASA's Airspace Concept Evaluation System (ACES) is used to assess NAS impact. This simulation takes a schedule that includes all flights: commercial passenger and cargo; conventional General Aviation and on-demand small aircraft, and operates them in the simulated NAS. The results of this analysis projects very large trip numbers for an on-demand air transportation system competitive with automobiles in cost per passenger mile. The significance is this type of air transportation can enhance mobility for communities that currently lack access to commercial air transportation. Another significant finding is that the large numbers of operations can have an impact on the current NAS infrastructure used by commercial airlines and cargo operators, even if on-demand traffic does not use the 28 airports in the Continental U.S. designated as large hubs by the FAA. Some smaller airports will experience greater demand than their current capacity allows and will require upgrading. In addition, in future years as demand grows and vehicle performance improves other non-conventional facilities such as short runways incorporated into

  17. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Off-Nominal Operations

    Science.gov (United States)

    Baxley, B.; Williams, D.; Consiglio, M.; Conway, S.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather, at virtually any airport, offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of charter operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase traffic flow at any of the 3400 nonradar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during Instrument Meteorological Conditions (IMC). The concept's key feature is pilots maintain their own separation from other aircraft using procedures, aircraft flight data sent via air-to-air datalink, cockpit displays, and on-board software. This is done within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility or low ceilings around an airport without Air Traffic Control (ATC) services. The research described in this paper expands the HVO concept to include most off-nominal situations that could be expected to occur in a future SATS environment. The situations were categorized into routine off-nominal operations, procedural deviations, equipment malfunctions, and aircraft emergencies. The combination of normal and off-nominal HVO procedures provides evidence for an operational concept that is safe, requires little ground infrastructure, and enables concurrent flight operations in poor weather.

  18. Innovative Technologies in Transportation

    Science.gov (United States)

    2004-12-01

    An historical overview of the transportation infrastructure of the United States and Texas is provided. Data for trends in transportation is analyzed and projections for the future are postulated. A survey of current technologies in transportation is...

  19. Status of Advanced Stitched Unitized Composite Aircraft Structures

    Science.gov (United States)

    Jegley, Dawn C.; Velicki, Alex

    2013-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift-to-drag ratios, reduced drag, and lower community noise levels. The primary structural concept being developed under the ERA project in the Airframe Technology element is the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) concept. This paper describes how researchers at NASA and The Boeing Company are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size aircraft with high aspect ratio wings or unconventional shapes such as a hybrid wing body airplane design.

  20. Preliminary Validation of the Small Aircraft Transportation System Higher Volume Operations (SATS HVO) Concept

    Science.gov (United States)

    Williams, Daniel; Consiglio, Maria; Murdoch, Jennifer; Adams, Catherine

    2004-01-01

    This document provides a preliminary validation of the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept for normal conditions. Initial results reveal that the concept provides reduced air traffic delays when compared to current operations without increasing pilot workload. Characteristic to the SATS HVO concept is the establishment of a newly defined area of flight operations called a Self-Controlled Area (SCA) which would be activated by air traffic control (ATC) around designated non-towered, non-radar airports. During periods of poor visibility, SATS pilots would take responsibility for separation assurance between their aircraft and other similarly equipped aircraft in the SCA. Using onboard equipment and simple instrument flight procedures, they would then be better able to approach and land at the airport or depart from it. This concept would also require a new, ground-based automation system, typically located at the airport that would provide appropriate sequencing information to the arriving aircraft. Further validation of the SATS HVO concept is required and is the subject of ongoing research and subsequent publications.

  1. 14 CFR 61.63 - Additional aircraft ratings (other than for ratings at the airline transport pilot certification...

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Additional aircraft ratings (other than for ratings at the airline transport pilot certification level). 61.63 Section 61.63 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTOR...

  2. Atmospheric/climatic effects of aircraft emissions

    International Nuclear Information System (INIS)

    Pueschel, R.F.

    1996-01-01

    Exhaust emissions from aircraft include oxides of nitrogen (NO x ), water vapor (H 2 O), sulfur dioxide (SO 2 ), carbon dioxide (CO 2 ), carbon monoxide (CO), hydrocarbons (HC) and particles (soot and sulfates). These emissions are small compared to industrial/urban surface emissions. However, because (1) atmospheric residence times of exhaust constituents are longer at altitude, particularly in the stratosphere, than they are in the boundary layer, (2) their background concentrations at altitude are lower than those near the surface, (3) the radiation balance is the more sensitive to atmospheric trace constituents the colder the temperature aloft and (4) inter-hemispheric mixing of aircraft effluents is inhibited, aircraft emissions near and above the tropopause and polewards of 40 degrees latitude can be environmentally critical. That's why atmospheric/climatic effects of aircraft emissions have again received scientific, economic and political scrutiny in the last few years, motivated by growth of subsonic traffic at about 5% per year over the past two decades and the advent of a technologically feasible operation of a supersonic high speed commercial transport (HSCT) fleet

  3. Using Fly-By-Wire Technology in Future Models of the UH-60 and Other Rotary Wing Aircraft

    Science.gov (United States)

    Solem, Courtney K.

    2011-01-01

    Several fixed-winged airplanes have successfully used fly-by-wire (FBW) technology for the last 40 years. This technology is now beginning to be incorporated into rotary wing aircraft. By using FBW technology, manufacturers are expecting to improve upon the weight, maintenance time and costs, handling and reliability of the aircraft. Before mass production of this new system begins in new models such as the UH-60MU, testing must be conducted to insure the safety of this technology as well as to reassure others it will be worth the time and money to make such a dramatic change to a perfectly functional machine. The RASCAL JUH-60A has been modified for these purposes. This Black Hawk helicopter has already been equipped with the FBW technology and can be configured as a near perfect representation of the UH-60MU. Because both machines have very similar qualities, the data collected from the RASCAL can be used to make future decisions about the UH-60MU. The U.S. Army AFDD Flight Project Office oversees all the design modifications for every hardware system used in the RASCAL aircraft. This project deals with specific designs and analyses of unique RASCAL aircraft subsystems and their modifications to conduct flight mechanics research.

  4. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    Science.gov (United States)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  5. A head-up display format for transport aircraft approach and landing

    Science.gov (United States)

    Bray, R. S.; Scott, B. C.

    1981-01-01

    An electronic flight-guidance display format was designed for use in evaluations of the collimated head-up display concept applied to transport aircraft landing. In the design process of iterative evaluation and modification, some general principles, or guidelines, applicable to electronic flight displays were suggested. The usefulness of an indication of instantaneous inertial flightpath was clearly demonstrated. Evaluator pilot acceptance of the unfamiliar display concepts was very positive when careful attention was given to indoctrination and training.

  6. Solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  7. A Preliminary Evaluation of Supersonic Transport Category Vehicle Operations in the National Airspace System

    Science.gov (United States)

    Underwood, Matthew C.; Guminsky, Michael D.

    2015-01-01

    Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.

  8. 14 CFR Appendix J to Part 141 - Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Aircraft Type Rating Course, For Other Than an Airline Transport Pilot Certificate J Appendix J to Part 141 Aeronautics and Space FEDERAL... PILOT SCHOOLS Pt. 141, App. J Appendix J to Part 141—Aircraft Type Rating Course, For Other Than an...

  9. Impact of pulsed jet actuators on aircraft mass and fuel consumption

    NARCIS (Netherlands)

    Bertels, F.G.A.; van Dijk, R.E.C.; Elmendorp, R.J.M.; Vos, R.

    2016-01-01

    Pulsed jet actuators (PJAs) are one of the candidate technologies to be integrated in Fowler flaps to increase the maximum lift coefficient of transport aircraft in the landing configuration. The total system consists of the actuators plus sensors, a piping system to supply pressurized air and a

  10. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  11. Quantification of crew workload imposed by communications-related tasks in commercial transport aircraft

    Science.gov (United States)

    Acton, W. H.; Crabtree, M. S.; Simons, J. C.; Gomer, F. E.; Eckel, J. S.

    1983-01-01

    Information theoretic analysis and subjective paired-comparison and task ranking techniques were employed in order to scale the workload of 20 communications-related tasks frequently performed by the captain and first officer of transport category aircraft. Tasks were drawn from taped conversations between aircraft and air traffic controllers (ATC). Twenty crewmembers performed subjective message comparisons and task rankings on the basis of workload. Information theoretic results indicated a broad range of task difficulty levels, and substantial differences between captain and first officer workload levels. Preliminary subjective data tended to corroborate these results. A hybrid scale reflecting the results of both the analytical and the subjective techniques is currently being developed. The findings will be used to select representative sets of communications for use in high fidelity simulation.

  12. 76 FR 71081 - Public Aircraft Oversight Safety Forum

    Science.gov (United States)

    2011-11-16

    ... NATIONAL TRANSPORTATION SAFETY BOARD Public Aircraft Oversight Safety Forum The National Transportation Safety Board (NTSB) will convene a Public Aircraft Oversight Safety Forum which will begin at 9 a... ``Public Aircraft Oversight Forum: Ensuring Safety for Critical Missions'', are to (1) raise awareness of...

  13. Technology evaluation for time sensitive data transport

    DEFF Research Database (Denmark)

    Wessing, Henrik; Breach, Tony; Colmenero, Alberto

    . The NREN communities must provide underlying network infrastructures and transport technologies to facilitate ser-vices with such requirements to the network. In this paper we investigate and evaluate circuit and packet based transport technologies from classic best effort IP over MPLS flavours, Provider...... Backbone Bridging (PBB), “Transparent Interconnect of Lots of Links” (TRILL) to Optical Transport Network (OTN) and SDH. The transport technologies are evaluated theoreti-cally, using simulations and/or experimentally. Each transport technology is evaluated based on its performances and capabilities...... overhead and restoration time. Thirdly, complexity and automation possibilities for establishment of paths for high demanding applica-tions, and finally how the technologies are backed by research communities and major vendors like Ciena, Alcatel-Lucent, Nokia-Siemens and Huawei. The technologies...

  14. 150 Passenger Commercial Aircraft

    Science.gov (United States)

    Bucovsky, Adrian; Romli, Fairuz I.; Rupp, Jessica

    2002-01-01

    It has been projected that the need for a short-range mid-sized, aircraft is increasing. The future strategy to decrease long-haul flights will increase the demand for short-haul flights. Since passengers prefer to meet their destinations quickly, airlines will increase the frequency of flights, which will reduce the passenger load on the aircraft. If a point-to-point flight is not possible, passengers will prefer only a one-stop short connecting flight to their final destination. A 150-passenger aircraft is an ideal vehicle for these situations. It is mid-sized aircraft and has a range of 3000 nautical miles. This type of aircraft would market U.S. domestic flights or inter-European flight routes. The objective of the design of the 150-passenger aircraft is to minimize fuel consumption. The configuration of the aircraft must be optimized. This aircraft must meet CO2 and NOx emissions standards with minimal acquisition price and operating costs. This report contains all the work that has been performed for the completion of the design of a 150 passenger commercial aircraft. The methodology used is the Technology Identification, Evaluation, and Selection (TIES) developed at Georgia Tech Aerospace Systems Design laboratory (ASDL). This is an eight-step conceptual design process to evaluate the probability of meeting the design constraints. This methodology also allows for the evaluation of new technologies to be implemented into the design. The TIES process begins with defining the problem with a need established and a market targeted. With the customer requirements set and the target values established, a baseline concept is created. Next, the design space is explored to determine the feasibility and viability of the baseline aircraft configuration. If the design is neither feasible nor viable, new technologies can be implemented to open up the feasible design space and allow for a plausible solution. After the new technologies are identified, they must be evaluated

  15. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins

    DEFF Research Database (Denmark)

    Sun, Yuexia; Fang, Lei; Wyon, David P.

    2005-01-01

    The experiment presented in this report was performed in a simulated aircraft cabin to evalu-ate the air cleaning effects of two air purification devices using Photocatalytic Oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjec-tive human assessments ...

  16. Experimental research on photocatalytic oxidation air purification technology applied to aircraft cabins

    DEFF Research Database (Denmark)

    Sun, Yuexia; Fang, Lei; Wyon, David Peter

    2008-01-01

    The experiment presented in this report was performed in a simulated aircraft cabin to evaluate the air cleaning effects of two air purification devices that used photocatalytic oxidation (PCO) technology. Objective physical, chemical and physiological measurements and subjective human assessment...

  17. Small transport aircraft technology propeller study

    Science.gov (United States)

    Black, B. M.; Magliozzi, B.; Rohrbach, C.

    1983-01-01

    A study to define potential benefits of advanced technology propeller for 1985-1990 STAT commuter airplanes was completed. Two baselines, a Convair, 30 passenger, 0.47 Mach number airplane and a Lockheed, 50 passenger, 0.70 Mach number airplane, were selected from NASA-Ames sponsored airframe contracts. Parametric performance, noise level, weight and cost trends for propellers with varying number of blades, activity factor, camber and diameter incorporating blade sweep, tip proplets, advanced composite materials, advanced airfoils, advanced prevision synchrophasing and counter-rotation are presented. The resulting DOC, fuel burned, empty weight and acquisition cost benefits are presented for resizings of the two baseline airplanes. Six-bladed propeller having advanced composite blades, advanced airfoils, tip proplets and advanced prevision synchrophasers provided the maximum DOC improvements for both airplanes. DOC and fuel burned were reduced by 8.3% and 17.0% respectively for the Convair airplane and by 24.9% and 41.2% respectively for the Lockheed airplane. The larger reductions arose from a baseline definition with very heavy fuselage acoustic treatment. An alternate baseline, with a cabin noise 13dB in excess of the objective, was also studied.

  18. Synthetic Vision System Commercial Aircraft Flight Deck Display Technologies for Unusual Attitude Recovery

    Science.gov (United States)

    Prinzel, Lawrence J., III; Ellis, Kyle E.; Arthur, Jarvis J.; Nicholas, Stephanie N.; Kiggins, Daniel

    2017-01-01

    A Commercial Aviation Safety Team (CAST) study of 18 worldwide loss-of-control accidents and incidents determined that the lack of external visual references was associated with a flight crew's loss of attitude awareness or energy state awareness in 17 of these events. Therefore, CAST recommended development and implementation of virtual day-Visual Meteorological Condition (VMC) display systems, such as synthetic vision systems, which can promote flight crew attitude awareness similar to a day-VMC environment. This paper describes the results of a high-fidelity, large transport aircraft simulation experiment that evaluated virtual day-VMC displays and a "background attitude indicator" concept as an aid to pilots in recovery from unusual attitudes. Twelve commercial airline pilots performed multiple unusual attitude recoveries and both quantitative and qualitative dependent measures were collected. Experimental results and future research directions under this CAST initiative and the NASA "Technologies for Airplane State Awareness" research project are described.

  19. Durability of commercial aircraft and helicopter composite structures

    International Nuclear Information System (INIS)

    Dexter, H.B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified

  20. Durability of commercial aircraft and helicopter composite structures

    Science.gov (United States)

    Dexter, H. B.

    1982-01-01

    The development of advanced composite technology during the past decade is discussed. Both secondary and primary components fabricated with boron, graphite, and Kevlar composites are evaluated. Included are spoilers, rudders, and fairings on commercial transports, boron/epoxy reinforced wing structure on C-130 military transports, and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on commercial helicopters. The development of composite structures resulted in advances in design and manufacturing technology for secondary and primary composite structures for commercial transports. Design concepts and inspection and maintenance results for the components in service are reported. The flight, outdoor ground, and controlled laboratory environmental effects on composites were also determined. Effects of moisture absorption, ultraviolet radiation, aircraft fuels and fluids, and sustained tensile stress are included. Critical parameters affecting the long term durability of composite materials are identified.

  1. THE KINETICS OF CONTAMINANTS ACCUMULATION IN THE JET FUEL DURING THE TECHNOLOGICAL PROCESS OF ITS PREPARATION FOR AIRCRAFT REFUELING

    Directory of Open Access Journals (Sweden)

    A. A. Brailko

    2017-01-01

    Full Text Available Much attention is payed to the tasks for ensuring domestic and international aircraft safety and regularity, which are multifaceted and complex. One of them is the system of ensuring the quality of aviation fuel for refueling aircraft at airports. A significant influence of the quality, chemical composition and fuel range on the reliability and lifetime of components and parts of the aircraft fuel system was studied in the process of development and experience accumulation of aircraft operating, processes of aviation fuel production, as well as during storage, quality control, transportation, refueling preparation and aircraft refueling. Currently, work is being done to study the influence of fuel quality on the units of the technological scheme of fuel-filling complexes, which provide the required cleanliness of the fuel according to the regulations. The article describes the trend level of aviation fuel cleanliness at the stages from receipt to issuance to the refueling station. The evaluation of compliance with existing regulations on the level of jet fuel cleanliness and the efficiency of fuel cleaning facilities is carried out. It is stated that one of the problems of insufficient level of aviation fuel cleaning quality is a violation of the acceptable contamination level of the fuel before the filter. It was found that the disadvantage of the used filter paper is the fiber wash out process. According to this research it was found that while cleaning fuel from mechanical admixtures it is necessary to take into account the technical condition of the filtering element, and proposal was developed for fuel-filling systems to ensure aviation fuel cleanliness in compliance with regulations.

  2. Military jet pilots have higher p-wave dispersions compared to the transport aircraft aircrew

    Directory of Open Access Journals (Sweden)

    Mustafa Çakar

    2016-08-01

    Full Text Available Objectives: For the purpose of flight safety military aircrew must be healthy. P-wave dispersion (PWD is the p-wave length difference in an electrocardiographic (ECG examination and represents the risk of developing atrial fibrillation. In the study we aimed at investigating PWD in healthy military aircrew who reported for periodical examinations. Material and Methods: Seventy-five asymptomatic military aircrew were enrolled in the study. All the subjects underwent physical, radiologic and biochemical examinations, and a 12-lead electrocardiography. P-wave dispersions were calculated. Results: The mean age of the study participants was 36.15±8.97 years and the mean p-wave duration was 100.8±12 ms in the whole group. Forty-seven subjects were non-pilot aircrew, and 28 were pilots. Thirteen study subjects were serving in jets, 49 in helicopters, and 13 were transport aircraft pilots. Thirty-six of the helicopter and 11 of the transport aircraft aircrew were non-pilot aircrew. P-wave dispersion was the lowest in the transport aircraft aircrew, and the highest in jet pilots. P-wave dispersions were similar in the pilots and non-pilot aircrew. Twenty-three study subjects were overweight, 19 had thyroiditis, 26 had hepatosteatosis, 4 had hyperbilirubinemia, 2 had hypertension, and 5 had hyperlipidemia. The PWD was significantly associated with thyroid-stimulating hormone (TSH levels. Serum uric acid levels were associated with p-wave durations. Serum TSH levels were the most important predictor of PWD. Conclusions: When TSH levels were associated with PWD, uric acid levels were associated with p-wave duration in the military aircrew. The jet pilots had higher PWDs. These findings reveal that military jet pilots may have a higher risk of developing atrial fibrillation, and PWD should be recorded during periodical examinations.

  3. A synergistic glance at the prospects of distributed propulsion technology and the electric aircraft concept for future unmanned air vehicles and commercial/military aviation

    Science.gov (United States)

    Gohardani, Amir S.

    2013-02-01

    Distributed propulsion is one of the revolutionary candidates for future aircraft propulsion. In this journal article, the potential role of distributed propulsion technology in future aviation is investigated. Following a historical journey that revisits distributed propulsion technology in unmanned air vehicles and military aircraft, features of this specific technology are highlighted in synergy with an electric aircraft concept and a first-of-a-kind comparison to commercial aircraft employing distributed propulsion arrangements. In light of propulsion-airframe integration and complementary technologies such as boundary layer ingestion, thrust vectoring and circulation control, transpired opportunities and challenges are addressed in addition to a number of identified research directions proposed for future aircraft. The motivation behind enhanced means of communication between engineers, researchers and scientists has stimulated a novel proposed definition for the distributed propulsion technology in aviation and is presented herein.

  4. Space Transportation Technology Workshop: Propulsion Research and Technology

    Science.gov (United States)

    2000-01-01

    This viewgraph presentation gives an overview of the Space Transportation Technology Workshop topics, including Propulsion Research and Technology (PR&T) project level organization, FY 2001 - 2006 project roadmap, points of contact, foundation technologies, auxiliary propulsion technology, PR&T Low Cost Turbo Rocket, and PR&T advanced reusable technologies RBCC test bed.

  5. Aviation Frontiers: On-Demand Aircraft

    Science.gov (United States)

    Moore, Mark D.

    2010-01-01

    Throughout the 20th Century, NASA has defined the forefront of aeronautical technology, and the aviation industry owes much of its prosperity to this knowledge and technology. In recent decades, centralized aeronautics has become a mature discipline, which raises questions concerning the future aviation innovation frontiers. Three transformational aviation capabilities, bounded together by the development of a Free Flight airspace management system, have the potential to transform 21st Century society as profoundly as civil aviation transformed the 20th Century. These mobility breakthroughs will re-establish environmental sustainable centralized aviation, while opening up latent markets for civil distributed sensing and on-demand rural and regional transportation. Of these three transformations, on-demand aviation has the potential to have the largest market and productivity improvement to society. The information system revolution over the past 20 years shows that vehicles lead, and the interconnecting infrastructure to make them more effective follows; that is, unless on-demand aircraft are pioneered, a distributed Air Traffic Control system will likely never be established. There is no single technology long-pole that will enable on-demand vehicle solutions. However, fully digital aircraft that include electric propulsion has the potential to be a multi-disciplinary initiator of solid state technologies that can provide order of magnitude improvements in the ease of use, safety/reliability, community and environmental friendliness, and affordability.

  6. Investigation of air transportation technology at Princeton University, 1985

    Science.gov (United States)

    Stengel, Robert F.

    1987-01-01

    The program proceeded along five avenues during 1985. Guidance and control strategies for penetration of microbursts and wind shear, application of artificial intelligence in flight control and air traffic control systems, the use of voice recognition in the cockpit, the effects of control saturation on closed-loop stability and response of open-loop unstable aircraft, and computer aided control system design are among the topics briefly considered. Areas of investigation relate to guidance and control of commercial transports as well as general aviation aircraft. Interaction between the flight crew and automatic systems is the subject of principal concern.

  7. Lift/cruise fan V/STOL technology aircraft design definition study. Volume 2: Propulsion transmission system design

    Science.gov (United States)

    Obrien, W. J.

    1976-01-01

    Two types of lift/cruise fan technology aircraft were conceptually designed. One aircraft used turbotip fans pneumatically interconnected to three gas generators, and the other aircraft used variable pitch fans mechanically interconnected to three turboshaft engines. The components of each propulsion transmission system were analyzed and designed to the depth necessary to determine areas of risk, development methods, performance, weights and costs. The types of materials and manufacturing processes were identified to show that the designs followed a low cost approach. The lift/cruise fan thrust vectoring hoods, which are applicable to either aircraft configuration, were also evaluated to assure a low cost/low risk approach.

  8. Redundant actuator development study. [flight control systems for supersonic transport aircraft

    Science.gov (United States)

    Ryder, D. R.

    1973-01-01

    Current and past supersonic transport configurations are reviewed to assess redundancy requirements for future airplane control systems. Secondary actuators used in stability augmentation systems will probably be the most critical actuator application and require the highest level of redundancy. Two methods of actuator redundancy mechanization have been recommended for further study. Math models of the recommended systems have been developed for use in future computer simulations. A long range plan has been formulated for actuator hardware development and testing in conjunction with the NASA Flight Simulator for Advanced Aircraft.

  9. Assistive technology and passengers with special assistance needs in air transport: contributions to cabin design

    Directory of Open Access Journals (Sweden)

    Carina Campese

    2016-06-01

    Full Text Available Abstract There has been significant growth in air transport worldwide, as well as in Brazil. However, studies have emphasized that disabled, obese, and elderly passengers face difficulties when using this means of transport. Among these difficulties, issues related to passengers’ own assistive devices, including damage, loss, or the impossibility of using during the entire flight, stand out. Therefore, the present study aims to understand the trends in assistive technology focusing on cabin design. This research is based upon literature review, interviews with manufacturers and research centers, visits to specialized trade fairs, and patent search. The results revealed a great diversity of assistive products, its trends, and an increase in their use, which affect aircraft cabin design, especially in terms of space, access, and stowage of these devices.

  10. A Survey of Intelligent Control and Health Management Technologies for Aircraft Propulsion Systems

    Science.gov (United States)

    Litt, Jonathan S.; Simon, Donald L.; Garg, Sanjay; Guo, Ten-Heui; Mercer, Carolyn; Behbahani, Alireza; Bajwa, Anupa; Jensen, Daniel T.

    2005-01-01

    Intelligent Control and Health Management technology for aircraft propulsion systems is much more developed in the laboratory than in practice. With a renewed emphasis on reducing engine life cycle costs, improving fuel efficiency, increasing durability and life, etc., driven by various government programs, there is a strong push to move these technologies out of the laboratory and onto the engine. This paper describes the existing state of engine control and on-board health management, and surveys some specific technologies under development that will enable an aircraft propulsion system to operate in an intelligent way--defined as self-diagnostic, self-prognostic, self-optimizing, and mission adaptable. These technologies offer the potential for creating extremely safe, highly reliable systems. The technologies will help to enable a level of performance that far exceeds that of today s propulsion systems in terms of reduction of harmful emissions, maximization of fuel efficiency, and minimization of noise, while improving system affordability and safety. Technologies that are discussed include various aspects of propulsion control, diagnostics, prognostics, and their integration. The paper focuses on the improvements that can be achieved through innovative software and algorithms. It concentrates on those areas that do not require significant advances in sensors and actuators to make them achievable, while acknowledging the additional benefit that can be realized when those technologies become available. The paper also discusses issues associated with the introduction of some of the technologies.

  11. The Aircraft Morphing Program

    Science.gov (United States)

    Wlezien, R. W.; Horner, G. C.; McGowan, A. R.; Padula, S. L.; Scott, M. A.; Silcox, R. J.; Simpson, J. O.

    1998-01-01

    In the last decade smart technologies have become enablers that cut across traditional boundaries in materials science and engineering. Here we define smart to mean embedded actuation, sensing, and control logic in a tightly coupled feedback loop. While multiple successes have been achieved in the laboratory, we have yet to see the general applicability of smart devices to real aircraft systems. The NASA Aircraft Morphing program is an attempt to couple research across a wide range of disciplines to integrate smart technologies into high payoff aircraft applications. The program bridges research in seven individual disciplines and combines the effort into activities in three primary program thrusts. System studies are used to assess the highest- payoff program objectives, and specific research activities are defined to address the technologies required for development of smart aircraft systems. In this paper we address the overall program goals and programmatic structure, and discuss the challenges associated with bringing the technologies to fruition.

  12. Technology strategy for subsea processing and transport; Technology Target Areas; TTA6 - Subsea processing and transportation

    Energy Technology Data Exchange (ETDEWEB)

    2008-07-01

    OG21 (www.OG21.org) Norway's official technology strategy for the petroleum sector issued a revised strategy document in November 2005 (new strategy planned in 2009). In this document 'Subsea processing and transport' was identified as one of the eight new technology target areas (TTAs). The overall OG21 strategy document is on an aggregated level, and therefore the Board of OG21 decided that a sub-strategy for each TTA was needed. This document proposes the sub-strategy for the technology target area 'Subsea processing and transport' which covers the technology and competence necessary to effectively transport well stream to a platform or to onshore facilities. This includes multiphase flow modelling, flow assurance challenges to avoid problems with hydrates, asphaltenes and wax, subsea or downhole fluid conditioning including bulk water removal, and optionally complete water removal, and sand handling. It also covers technologies to increase recovery by pressure boosting from subsea pumping and/or subsea compression. Finally it covers technologies to facilitate subsea processing such as control systems and power supply. The vision of the Subsea processing and transport TTA is: Norway is to be the leading international knowledge- and technology cluster in subsea processing and transport: Sustain increased recovery and accelerated production on the NCS by applying subsea processing and efficient transport solutions; Enable >500 km gas/condensate multiphase well stream transport; Enable >200 km oil-dominated multiphase well stream transport; Enable well stream transport of complex fluids; Enable subsea separation, boosting compression, and water injection; Enable deepwater developments; Enable environmentally friendly and energy efficient field development. Increase the export of subsea processing and transport technology: Optimize technology from the NCS for application worldwide; Develop new technology that can meet the challenges found in

  13. Projection-Based Adaptive Backstepping Control of a Transport Aircraft for Heavyweight Airdrop

    Directory of Open Access Journals (Sweden)

    Ri Liu

    2015-01-01

    Full Text Available An autopilot inner loop that combines backstepping control with adaptive function approximation is developed for airdrop operations. The complex nonlinear uncertainty of the aircraft-cargo model is factorized into a known matrix and an uncertainty function, and a projection-based adaptive approach is proposed to estimate this function. Using projection in the adaptation law bounds the estimated function and guarantees the robustness of the controller against time-varying external disturbances and uncertainties. The convergence properties and robustness of the control method are proved via Lyapunov theory. Simulations are conducted under the condition that one transport aircraft performs a maximum load airdrop task at a height of 82 ft, using single row single platform mode. The results show good performance and robust operation of the controller, and the airdrop mission performance indexes are satisfied, even in the presence of ±15% uncertainty in the aerodynamic coefficients, ±0.01 rad/s pitch rate disturbance, and 20% actuators faults.

  14. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for aircraft engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Koku engine ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-01

    With an objective to utilize hydrogen fuel in aircraft engines, a conceptual design survey was carried out on medium size transport aircraft. Large size long-distance aircraft and SST loaded with a great amount of fuel have the jet fuel (JP) increase take-off weight, affecting largely the selection of wing area and engine thrust. If the hydrogen fuel can be liquefied, large reduction can be achieved and the economic effect can be increased. However, for short-distance transport aircraft, the fuel weight ratio is small, where no large advantage is anticipated even if hydrogen is liquefied. Nevertheless, considering oil depletion in the future, a conceptual design was performed on the YX2688 short-medium distance aircraft being discussed of development. Even the short-medium distance aircraft that can be developed and commercialized as civilian use aircraft has a number of common points with large aircraft development, such as hydrogen fuel using technologies and safety. Although the advantage of using liquefied hydrogen as fuel may of course be smaller in the short-medium distance aircraft than in larger aircraft, the trend of using hydrogen fuel is historical necessity, whose development plans should be moved forward. (NEDO)

  15. Utilization of sonar technology and microcontroller towards reducing aviation hazards during ground handling of aircraft

    Science.gov (United States)

    Khanam, Mosammat Samia; Biswas, Debasish; Rashid, Mohsina; Salam, Md Abdus

    2017-12-01

    Safety is one of the most important factors in the field of aviation. Though, modern aircraft are equipped with many instruments/devices to enhance the flight safety but it is seen that accidents/incidents are never reduced to zero. Analysis of the statistical summary of Commercial Jet Airplane accidents highlights that fatal accidents that occurred worldwide from 2006 through 2015 is 11% during taxing, loading/unloading, parking and towing. Human, handling the aircrafts is one of the most important links in aircraft maintenance and hence play a significant role in aviation safety. Effort has been made in this paper to obviate human error in aviation and outline an affordable system that monitors the uneven surface &obstacles for safe "towing in" and "towing out" of an aircraft by the ground crew. The system revolves around implementation of sonar technology by microcontroller. Ultrasonic sensors can be installed on aircraft wings and tail section to identify the uneven surface &obstacles ahead and provide early warning to the maintenance ground crews.

  16. A methodology to enable rapid evaluation of aviation environmental impacts and aircraft technologies

    Science.gov (United States)

    Becker, Keith Frederick

    Commercial aviation has become an integral part of modern society and enables unprecedented global connectivity by increasing rapid business, cultural, and personal connectivity. In the decades following World War II, passenger travel through commercial aviation quickly grew at a rate of roughly 8% per year globally. The FAA's most recent Terminal Area Forecast predicts growth to continue at a rate of 2.5% domestically, and the market outlooks produced by Airbus and Boeing generally predict growth to continue at a rate of 5% per year globally over the next several decades, which translates into a need for up to 30,000 new aircraft produced by 2025. With such large numbers of new aircraft potentially entering service, any negative consequences of commercial aviation must undergo examination and mitigation by governing bodies so that growth may still be achieved. Options to simultaneously grow while reducing environmental impact include evolution of the commercial fleet through changes in operations, aircraft mix, and technology adoption. Methods to rapidly evaluate fleet environmental metrics are needed to enable decision makers to quickly compare the impact of different scenarios and weigh the impact of multiple policy options. As the fleet evolves, interdependencies may emerge in the form of tradeoffs between improvements in different environmental metrics as new technologies are brought into service. In order to include the impacts of these interdependencies on fleet evolution, physics-based modeling is required at the appropriate level of fidelity. Evaluation of environmental metrics in a physics-based manner can be done at the individual aircraft level, but will then not capture aggregate fleet metrics. Contrastingly, evaluation of environmental metrics at the fleet level is already being done for aircraft in the commercial fleet, but current tools and approaches require enhancement because they currently capture technology implementation through post

  17. THE FUTURE OF PASSENGER AIR TRANSPORT – VERY LARGE AIRCRAFT AND OUT KEY HUMAN FACTORS AFFECTING THE OPERATION AND SAFETY OF PASSENGER AIR TRANSPORT

    Directory of Open Access Journals (Sweden)

    Petra Skolilova

    2017-12-01

    Full Text Available The article outlines some human factors affecting the operation and safety of passenger air transport given the massive increase in the use of the VLA. Decrease of the impact of the CO2 world emissions is one of the key goals for the new aircraft design. The main wave is going to reduce the burned fuel. Therefore, the eco-efficiency engines combined with reasonable economic operation of the aircraft are very important from an aviation perspective. The prediction for the year 2030 says that about 90% of people, which will use long-haul flights to fly between big cities. So, the A380 was designed exactly for this time period, with a focus on the right capacity, right operating cost and right fuel burn per seat. There is no aircraft today with better fuel burn combined with eco-efficiency per seat, than the A380. The very large aircrafts (VLAs are the future of the commercial passenger aviation. Operating cost versus safety or CO2 emissions versus increasing automation inside the new generation aircraft. Almost 80% of the world aircraft accidents are caused by human error based on wrong action, reaction or final decision of pilots, the catastrophic failures of aircraft systems, or air traffic control errors are not so frequent. So, we are at the beginning of a new age in passenger aviation and the role of the human factor is more important than ever.

  18. Unmanned aircraft systems in wildlife research: Current and future applications of a transformative technology

    Science.gov (United States)

    Christie, Katherine S.; Gilbert, Sophie L.; Brown, Casey L.; Hatfield, Michael; Hanson, Leanne

    2016-01-01

    Unmanned aircraft systems (UAS) – also called unmanned aerial vehicles (UAVs) or drones – are an emerging tool that may provide a safer, more cost-effective, and quieter alternative to traditional research methods. We review examples where UAS have been used to document wildlife abundance, behavior, and habitat, and illustrate the strengths and weaknesses of this technology with two case studies. We summarize research on behavioral responses of wildlife to UAS, and discuss the need to understand how recreational and commercial applications of this technology could disturb certain species. Currently, the widespread implementation of UAS by scientists is limited by flight range, regulatory frameworks, and a lack of validation. UAS are most effective when used to examine smaller areas close to their launch sites, whereas manned aircraft are recommended for surveying greater distances. The growing demand for UAS in research and industry is driving rapid regulatory and technological progress, which in turn will make them more accessible and effective as analytical tools.

  19. Maglev vehicles and superconductor technology: Integration of high-speed ground transportation into the air travel system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L.R.; Rote, D.M.; Hull, J.R.; Coffey, H.T.; Daley, J.G.; Giese, R.F.

    1989-04-01

    This study was undertaken to (1) evaluate the potential contribution of high-temperature superconductors (HTSCs) to the technical and economic feasibility of magnetically levitated (maglev) vehicles, (2) determine the status of maglev transportation research in the United States and abroad, (3) identify the likelihood of a significant transportation market for high-speed maglev vehicles, and (4) provide a preliminary assessment of the potential energy and economic benefits of maglev systems. HTSCs should be considered as an enhancing, rather than an enabling, development for maglev transportation because they should improve reliability and reduce energy and maintenance costs. Superconducting maglev transportation technologies were developed in the United States in the late 1960s and early 1970s. Federal support was withdrawn in 1975, but major maglev transportation programs were continued in Japan and West Germany, where full-scale prototypes now carry passengers at speeds of 250 mi/h in demonstration runs. Maglev systems are generally viewed as very-high-speed train systems, but this study shows that the potential market for maglev technology as a train system, e.g., from one downtown to another, is limited. Rather, aircraft and maglev vehicles should be seen as complementing rather than competing transportation systems. If maglev systems were integrated into major hub airport operations, they could become economical in many relatively high-density US corridors. Air traffic congestion and associated noise and pollutant emissions around airports would also be reduced. 68 refs., 26 figs., 16 tabs.

  20. REPAIR TECHNOLOGY OF THE COMPOSITE WING OF A LIGHT PLANE DAMAGED DURING AN AIRCRAFT CRASH

    Directory of Open Access Journals (Sweden)

    Andrzej ŚWIĄTONIOWSKI

    2016-09-01

    Full Text Available The increasing use of composite structures in aircraft constructions has made it necessary to develop repair methods that will restore the component’s original design strength without compromising its structural integrity. In this paper, the complex repair technology of the composite wing of a light plane, which was damaged during an aircraft crash, is described. The applied repair scheme should meet all the original design requirements for the plane structure.

  1. Fiscal 1999 research report on long-term energy technology strategy. Basic research on industrial technology strategy (Individual technology strategy). Aerospace technology field (Aircraft technology field); 1999 nendo choki energy gijutsu senryaku nado ni kansuru chosa hokokusho. Sangyo gijutsu senryaku sakutei kiban chosa (bun'yabetsu gijutsu senryaku (kokuki gijutsu bun'ya))

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This report summarizes the fiscal 1999 basic research result on industrial technology strategy of an aircraft technology field. In an aircraft field, since the major theme is application of new technologies to new airframe development, with joining in international cooperative development of aircraft, Japanese initiative development of airframes based on the domestic market demands and profitability should be started as early as possible. Because there is no airframe development by only one country including U.S.A., Japan is profitable to unite with some overseas companies, and invest selectively in specific leading fields. Positive technical support to safety, reliability, comfort and environment harmony are also important. More important theme than establishment of elementary technologies is preparation of an integrated flight demonstration system to expand application chances of development results, and preparation of various test facilities for tests required during development activities. Application of information technologies to the whole aircraft industry, and organic cooperation between the private and public sectors are also important. (NEDO)

  2. Evaluation on the structural soundness of the transport package for low-level radioactive waste for subsurface disposal against aircraft impact by finite element method

    International Nuclear Information System (INIS)

    Itoh, Chihiro

    2009-01-01

    The structural analysis of aircraft crush on the transport package for low-level radioactive waste was performed using the impact force which was already used for the evaluation of the high-level waste transport package by LSDYNA code. The transport package was deformed, and stresses due to the crush exceeded elastic range. However, plastic strains yieled in the package were far than the elongation of the materials and the body of the package did not contact the disposal packages due to the deformation of the package. Therefore, it was confirmed that the package keeps its integrity against aircraft crush. (author)

  3. 14 CFR 49.11 - FAA Aircraft Registry.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false FAA Aircraft Registry. 49.11 Section 49.11... AIRCRAFT TITLES AND SECURITY DOCUMENTS General § 49.11 FAA Aircraft Registry. To be eligible for recording, a conveyance must be mailed to the FAA Aircraft Registry, Department of Transportation, Post Office...

  4. Quantitative evaluation of a thrust vector controlled transport at the conceptual design phase

    Science.gov (United States)

    Ricketts, Vincent Patrick

    The impetus to innovate, to push the bounds and break the molds of evolutionary design trends, often comes from competition but sometimes requires catalytic political legislature. For this research endeavor, the 'catalyzing legislation' comes in response to the rise in cost of fossil fuels and the request put forth by NASA on aircraft manufacturers to show reduced aircraft fuel consumption of +60% within 30 years. This necessitates that novel technologies be considered to achieve these values of improved performance. One such technology is thrust vector control (TVC). The beneficial characteristic of thrust vector control technology applied to the traditional tail-aft configuration (TAC) commercial transport is its ability to retain the operational advantage of this highly evolved aircraft type like cabin evacuation, ground operation, safety, and certification. This study explores if the TVC transport concept offers improved flight performance due to synergistically reducing the traditional empennage size, overall resulting in reduced weight and drag, and therefore reduced aircraft fuel consumption. In particular, this study explores if the TVC technology in combination with the reduced empennage methodology enables the TAC aircraft to synergistically evolve while complying with current safety and certification regulation. This research utilizes the multi-disciplinary parametric sizing software, AVD Sizing, developed by the Aerospace Vehicle Design (AVD) Laboratory. The sizing software is responsible for visualizing the total system solution space via parametric trades and is capable of determining if the TVC technology can enable the TAC aircraft to synergistically evolve, showing marked improvements in performance and cost. This study indicates that the TVC plus reduced empennage methodology shows marked improvements in performance and cost.

  5. The Small Aircraft Transportation System (SATS), Higher Volume Operations (HVO) Concept and Research

    Science.gov (United States)

    Baxley, B.; Williams, D.; Consiglio, M.; Adams, C.; Abbott, T.

    2005-01-01

    The ability to conduct concurrent, multiple aircraft operations in poor weather at virtually any airport offers an important opportunity for a significant increase in the rate of flight operations, a major improvement in passenger convenience, and the potential to foster growth of operations at small airports. The Small Aircraft Transportation System, (SATS) Higher Volume Operations (HVO) concept is designed to increase capacity at the 3400 non-radar, non-towered airports in the United States where operations are currently restricted to one-in/one-out procedural separation during low visibility or ceilings. The concept s key feature is that pilots maintain their own separation from other aircraft using air-to-air datalink and on-board software within the Self-Controlled Area (SCA), an area of flight operations established during poor visibility and low ceilings around an airport without Air Traffic Control (ATC) services. While pilots self-separate within the SCA, an Airport Management Module (AMM) located at the airport assigns arriving pilots their sequence based on aircraft performance, position, winds, missed approach requirements, and ATC intent. The HVO design uses distributed decision-making, safe procedures, attempts to minimize pilot and controller workload, and integrates with today's ATC environment. The HVO procedures have pilots make their own flight path decisions when flying in Instrument Metrological Conditions (IMC) while meeting these requirements. This paper summarizes the HVO concept and procedures, presents a summary of the research conducted and results, and outlines areas where future HVO research is required. More information about SATS HVO can be found at http://ntrs.nasa.gov.

  6. Impact of environmental constraints and aircraft technology on airline fleet composition

    Science.gov (United States)

    Moolchandani, Kushal A.

    This thesis models an airline's decisions about fleet evolution in order to maintain economic and regulatory viability. The aim is to analyze the fleet evolution under different scenarios of environmental policy and technology availability in order to suggest an optimal fleet under each case. An understanding of the effect of aircraft technologies, fleet size and age distribution, and operational procedures on airline performance may improve the quality of policies to achieve environmental goals. Additionally, the effect of decisions about fleet evolution on air travel is assessed as the change in market demand and profits of an abstracted, benevolent monopolist airline. Attention to the environmental impact of aviation has grown, and this has prompted several organizations such as ICAO (and, in response, NASA) to establish emissions reduction targets to reduce aviation's global climate impact. The introduction of new technology, change in operational procedures, etc. are some of the proposed means to achieve these targets. Of these, this thesis studies the efficacy of implementation of environmental policies in form of emissions constraints as a means to achieve these goals and assesses their impact on an airline's fleet evolution and technology use (along with resulting effects on air travel demand). All studies in this thesis are conducted using the Fleet-level Environmental Evaluation Tool (FLEET), a NASA sponsored simulation tool developed at Purdue University. This tool models airline operational decisions via a resource allocation problem and uses a system dynamics type approach to mimic airline economics, their decisions regarding retirement and acquisition of aircraft and evolution of market demand in response to the economic conditions. The development of an aircraft acquisition model for FLEET is a significant contribution of the author. Further, the author conducted a study of various environmental policies using FLEET. Studies introduce constraints on

  7. RF Coupling into the Fuel Tank of a Large Transport Aircraft from Intentionally Transmitting Peds in the Passenger Cabin

    Science.gov (United States)

    Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Ely, Jay J.; Richardson, Robert E.; Hatfield, Michael O.

    2000-01-01

    An investigation was performed to study the potential for radio frequency (RF) power radiated from Portable Electronic Devices (PEDs) to create an arcing/sparking event within the fuel tank of a large transport aircraft. This paper describes the experimental methods used for measuring RF coupling to the fuel tank and Fuel Quantity Indication System (FQIS) wiring from PED sources located in the passenger cabin. To allow comparison of voltage/current data obtained in a laboratory chamber FQIS installation to an actual aircraft FQIS installation, aircraft fuel tank RF reverberation characteristics were also measured. Results from the measurements, along with a survey of threats from typical intentional transmitting PEDs are presented. The resulting worst-case power coupled onto fuel tank FQIS wiring is derived. The same approach can be applied to measure RF coupling into various other aircraft systems.

  8. Pollution reduction technology program for small jet aircraft engines: Class T1

    Science.gov (United States)

    Bruce, T. W.; Davis, F. G.; Mongia, H. C.

    1977-01-01

    Small jet aircraft engines (EPA class T1, turbojet and turbofan engines of less than 35.6 kN thrust) were evaluated with the objective of attaining emissions reduction consistent with performance constraints. Configurations employing the technological advances were screened and developed through full scale rig testing. The most promising approaches in full-scale engine testing were evaluated.

  9. Integration of an Advanced Cryogenic Electric Propulsion System (ACEPS) to Aerodynamically Efficient Subsonic Transport Aircraft, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal defines innovative aerodynamic concepts and technology goals aimed at vehicle efficiency for future subsonic aircraft in the 2020 -- 2030 timeframe....

  10. Investigation of air transportation technology at Princeton University, 1983

    Science.gov (United States)

    Stengel, Robert F.

    1987-01-01

    Progress is discussed for each of the following areas: voice recognition technology for flight control; guidance and control strategies for penetration of microbursts and wind shear; application of artificial intelligence in flight control systems; and computer-aided aircraft design.

  11. Stratified charge rotary aircraft engine technology enablement program

    Science.gov (United States)

    Badgley, P. R.; Irion, C. E.; Myers, D. M.

    1985-01-01

    The multifuel stratified charge rotary engine is discussed. A single rotor, 0.7L/40 cu in displacement, research rig engine was tested. The research rig engine was designed for operation at high speeds and pressures, combustion chamber peak pressure providing margin for speed and load excursions above the design requirement for a high is advanced aircraft engine. It is indicated that the single rotor research rig engine is capable of meeting the established design requirements of 120 kW, 8,000 RPM, 1,379 KPA BMEP. The research rig engine, when fully developed, will be a valuable tool for investigating, advanced and highly advanced technology components, and provide an understanding of the stratified charge rotary engine combustion process.

  12. JB-300: An advanced medium size transport for 2005

    Science.gov (United States)

    Debrouwer, Giles; Graham, Katherine; Ison, Jim; Juarez, Vince; Moskalik, Steve; Pankonin, Jon; Weinstein, Arnold

    1993-01-01

    In the fall of 1992, the TAC Team was presented with a Request for Proposal (PFP) for a mid-size (250-350 passenger) commercial transport. The aircraft was to be extremely competitive in the areas of passenger comfort, performance, and economic aspects. Through the use of supercritical airfoils, a technologically advanced Very High By-pass Ratio (VHBR) turbofan engine, a low overall drag configuration, a comparable interior layout, and mild use of composites, the JB-300 offers an economically viable choice to the airlines. The cents per passenger mile of the JB-300 is 1.76, which is considerably lower than current aircraft in the same range. Overall, the JB-300 is a technologically advanced aircraft, which will meet the demands of the 21st century.

  13. Development of Stitched Composite Structure for Advanced Aircraft

    Science.gov (United States)

    Jegley, Dawn; Przekop, Adam; Rouse, Marshall; Lovejoy, Andrew; Velicki, Alex; Linton, Kim; Wu, Hsi-Yung; Baraja, Jaime; Thrash, Patrick; Hoffman, Krishna

    2015-01-01

    NASA has created the Environmentally Responsible Aviation Project to develop technologies which will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations. NASA and The Boeing Company are working together to develop a structural concept that is lightweight and an advancement beyond state-of-the-art composites. The Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) is an integrally stiffened panel design where elements are stitched together and designed to maintain residual load-carrying capabilities under a variety of damage scenarios. With the PRSEUS concept, through-the-thickness stitches are applied through dry fabric prior to resin infusion, and replace fasteners throughout each integral panel. Through-the-thickness reinforcement at discontinuities, such as along flange edges, has been shown to suppress delamination and turn cracks, which expands the design space and leads to lighter designs. The pultruded rod provides stiffening away from the more vulnerable skin surface and improves bending stiffness. A series of building blocks were evaluated to explore the fundamental assumptions related to the capability and advantages of PRSEUS panels. These building blocks addressed tension, compression, and pressure loading conditions. The emphasis of the development work has been to assess the loading capability, damage arrestment features, repairability, post-buckling behavior, and response of PRSEUS flat panels to out-of plane pressure loading. The results of this building-block program from coupons through an 80%-scale pressure box have demonstrated the viability of a PRSEUS center body for the Hybrid Wing Body (HWB) transport aircraft. This development program shows that the PRSEUS benefits are also applicable to traditional tube-andwing aircraft, those of advanced configurations, and other

  14. Air transport system

    CERN Document Server

    Schmitt, Dieter

    2016-01-01

    The book addresses all major aspects to be considered for the design and operation of aircrafts within the entire transportation chain. It provides the basic information about the legal environment, which defines the basic requirements for aircraft design and aircraft operation. The interactions between  airport, air traffic management and the airlines are described. The market forecast methods and the aircraft development process are explained to understand the very complex and risky business of an aircraft manufacturer. The principles of flight physics as basis for aircraft design are presented and linked to the operational and legal aspects of air transport including all environmental impacts. The book is written for graduate students as well as for engineers and experts, who are working in aerospace industry, at airports or in the domain of transport and logistics.

  15. Durability of aircraft composite materials

    Science.gov (United States)

    Dextern, H. B.

    1982-01-01

    Confidence in the long term durability of advanced composites is developed through a series of flight service programs. Service experience is obtained by installing secondary and primary composite components on commercial and military transport aircraft and helicopters. Included are spoilers, rudders, elevators, ailerons, fairings and wing boxes on transport aircraft and doors, fairings, tail rotors, vertical fins, and horizontal stabilizers on helicopters. Materials included in the evaluation are boron/epoxy, Kevlar/epoxy, graphite/epoxy and boron/aluminum. Inspection, maintenance, and repair results for the components in service are reported. The effects of long term exposure to laboratory, flight, and outdoor environmental conditions are reported for various composite materials. Included are effects of moisture absorption, ultraviolet radiation, and aircraft fuels and fluids.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 59: Japanese Technological Innovation. Implications for Large Commercial Aircraft and Knowledge Diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kotler, Mindy L.

    1997-01-01

    This paper explores three factors-public policy, the Japanese (national) innovation system, and knowledge-that influence technological innovation in Japan. To establish a context for the paper, we examine Japanese culture and the U.S. and Japanese patent systems in the background section. A brief history of the Japanese aircraft industry as a source of knowledge and technology for other industries is presented. Japanese and U.S. alliances and linkages in three sectors-biotechnology, semiconductors, and large commercial aircraft (LCA)-and the importation, absorption, and diffusion of knowledge and technology are examined next. The paper closes with implications for diffusing knowledge and technology, U.S. public policy, and LCA.

  17. High-speed civil transport issues and technology program

    Science.gov (United States)

    Hewett, Marle D.

    1992-01-01

    A strawman program plan is presented, consisting of technology developments and demonstrations required to support the construction of a high-speed civil transport. The plan includes a compilation of technology issues related to the development of a transport. The issues represent technical areas in which research and development are required to allow airframe manufacturers to pursue an HSCT development. The vast majority of technical issues presented require flight demonstrated and validated solutions before a transport development will be undertaken by the industry. The author believes that NASA is the agency best suited to address flight demonstration issues in a concentrated effort. The new Integrated Test Facility at NASA Dryden Flight Research Facility is considered ideally suited to the task of supporting ground validations of proof-of-concept and prototype system demonstrations before night demonstrations. An elaborate ground hardware-in-the-loop (iron bird) simulation supported in this facility provides a viable alternative to developing an expensive fill-scale prototype transport technology demonstrator. Drygen's SR-71 assets, modified appropriately, are a suitable test-bed for supporting flight demonstrations and validations of certain transport technology solutions. A subscale, manned or unmanned flight demonstrator is suitable for flight validation of transport technology solutions, if appropriate structural similarity relationships can be established. The author contends that developing a full-scale prototype transport technology demonstrator is the best alternative to ensuring that a positive decision to develop a transport is reached by the United States aerospace industry.

  18. Electromagnetic Compatibility (EMC) for Integration and Use of Near Field Communication (NFC) in Aircraft

    Science.gov (United States)

    Nalbantoglu, Cemal; Kiehl, Thorsten; God, Ralf; Stadtler, Thiemo; Kebel, Robert; Bienert, Renke

    2016-05-01

    For portable electronic devices (PEDs), e.g. smartphones or tablets, near field communication (NFC) enables easy and convenient man-machine interaction by simply tapping a PED to a tangible NFC user interface. Usage of NFC technology in the air transport system is supposed to facilitate travel processes and self-services for passengers and to support digital interaction with other participating stakeholders. One of the potential obstacles to benefit from NFC technology in the aircraft cabin is the lack of an explicit qualification guideline for electromagnetic compatibility (EMC) testing. In this paper, we propose a methodology for EMC testing and for characterizing NFC devices and their emissions according to aircraft industry standards (RTCA DO-160, DO-294, DO-307 and EUROCAE ED- 130). A potential back-door coupling scenario of radiated NFC emissions and possible effects to nearby aircraft wiring are discussed. A potential front-door- coupling effect on NAV/COM equipment is not investigated in this paper.

  19. NASA Johnson Space Center Aircraft Operations Division

    Science.gov (United States)

    Bakalyar, John A.

    2018-01-01

    This presentation provides a high-level overview of JSC aircraft and missions. The capabilities, including previous missions and support team, for the Super Guppy Transport (SGT) aircraft are highlighted.

  20. STRUCTURAL AND TECHNOLOGICAL ANALYSIS OF THE AIRCRAFT LIQUID-GAS SYSTEMS

    Directory of Open Access Journals (Sweden)

    Mr. Dmitrii G. Kolykhalov

    2016-09-01

    Full Text Available Тhis article is devoted to the gas-liquid systems of the aircraft and their structural and technological analysis. The paper shows the characteristics of pipelines, considers the types of working fluids and gases and covers the range of perceived internal pressures. The paper presents the classification of pipelines of flying vehicles from the point of view of their working conditions, taking into account the perceived internal pressure. The article also shows the classification scheme of major groups and types of pipe connections and fittings. The article focuses on the scheme of permanent joints made with soldering and welding, as well as the split of mobile and fixed joints of different types. The authors study the combined connections. The authors have also developed classification schemes of aircraft piping systems that depend on the system pressure. A classification scheme of piping connections, depending on the method of connection, mobility, presence of seals is singled out. The research is ilustrated with examples of compounds of different types.

  1. Episodes of cross-polar transport in the Arctic troposphere during July 2008 as seen from models, satellite, and aircraft observations

    Directory of Open Access Journals (Sweden)

    H. Sodemann

    2011-04-01

    Full Text Available During the POLARCAT summer campaign in 2008, two episodes (2–5 July and 7–10 July 2008 occurred where low-pressure systems traveled from Siberia across the Arctic Ocean towards the North Pole. The two cyclones had extensive smoke plumes from Siberian forest fires and anthropogenic sources in East Asia embedded in their associated air masses, creating an excellent opportunity to use satellite and aircraft observations to validate the performance of atmospheric transport models in the Arctic, which is a challenging model domain due to numerical and other complications.

    Here we compare transport simulations of carbon monoxide (CO from the Lagrangian transport model FLEXPART and the Eulerian chemical transport model TOMCAT with retrievals of total column CO from the IASI passive infrared sensor onboard the MetOp-A satellite. The main aspect of the comparison is how realistic horizontal and vertical structures are represented in the model simulations. Analysis of CALIPSO lidar curtains and in situ aircraft measurements provide further independent reference points to assess how reliable the model simulations are and what the main limitations are.

    The horizontal structure of mid-latitude pollution plumes agrees well between the IASI total column CO and the model simulations. However, finer-scale structures are too quickly diffused in the Eulerian model. Applying the IASI averaging kernels to the model data is essential for a meaningful comparison. Using aircraft data as a reference suggests that the satellite data are biased high, while TOMCAT is biased low. FLEXPART fits the aircraft data rather well, but due to added background concentrations the simulation is not independent from observations. The multi-data, multi-model approach allows separating the influences of meteorological fields, model realisation, and grid type on the plume structure. In addition to the very good agreement between simulated and observed total column CO

  2. International Relations, New Technology, and Adaptation of the Military Innovation: Focusing on the Case of the Aircraft Carrier Innovation of the Imperial Japanese Navy During the Interwar Period

    Science.gov (United States)

    2017-12-01

    RELATIONS, NEW TECHNOLOGY , AND ADAPTATION OF THE MILITARY INNOVATION: FOCUSING ON THE CASE OF THE AIRCRAFT CARRIER INNOVATION OF THE IMPERIAL JAPANESE...Master’s thesis 4. TITLE AND SUBTITLE INTERNATIONAL RELATIONS, NEW TECHNOLOGY , AND ADAPTATION OF THE MILITARY INNOVATION: FOCUSING ON THE CASE OF THE...impacted the Japanese aircraft carrier and aircraft innovation during the interwar period. The study found that technology , international relations

  3. APPLICATION OF NFC TECHNOLOGY IN PASSENGER RAIL TRANSPORT

    Directory of Open Access Journals (Sweden)

    Henryk KOMSTA

    2016-09-01

    Full Text Available The article discusses the possibility of the application of the NFC technology as a system of selling tickets in passenger rail transport. The NFC (Near Field Communication technology is a wireless and contactless technology of transmission of radio data over short distances (max. 5 cm. This technology is very similar to the RFID (Radio Frequency Identification technology. It is assumed that this technology will spread rapidly and that already in 2015 around 85% of the payments in the EU will be made via mobile phones. This paper presents a research of passenger interest in this method of payment for tickets in the passenger rail transport in Slovakia. Further, an analysis of the applications of the NFC technology as a system of selling tickets in passenger rail transport, including the protection of data in mobile phones, the processes in case of losing a mobile phone and ensuring the communication between both parties was presented in the article. The last part of this analysis shows the possibility of purchasing tickets regardless of the carrier and the transport type.

  4. 77 FR 70114 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-11-23

    ... Aircraft Company Service Bulletin SB04-28-03, dated August 30, 2004, and Engine Fuel Return System... Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel... Modification Do not incorporate Cessna Aircraft Company Engine Fuel Return System Modification Kit MK 172-28-01...

  5. 2002 Industry Studies: Aircraft

    Science.gov (United States)

    2002-01-01

    aircraft to a defense electronics, systems integration and information technology company.39 Northrop Grumman no longer seeks a position as a prime...between the military and civil market . Though also upgrading the H-1 helicopter series for the USMC, Bell has mortgaged its future on tiltrotor technology ...business in export dollars, the industry has been forced to look for new markets as worldwide aircraft sales have dropped. Because the U.S. national

  6. Simulator Evaluation of Simplified Propulsion-Only Emergency Flight Control Systems on Transport Aircraft

    Science.gov (United States)

    Burcham, Frank W., Jr.; Kaneshige, John; Bull, John; Maine, Trindel A.

    1999-01-01

    With the advent of digital engine control systems, considering the use of engine thrust for emergency flight control has become feasible. Many incidents have occurred in which engine thrust supplemented or replaced normal aircraft flight controls. In most of these cases, a crash has resulted, and more than 1100 lives have been lost. The NASA Dryden Flight Research Center has developed a propulsion-controlled aircraft (PCA) system in which computer-controlled engine thrust provides emergency flight control capability. Using this PCA system, an F-15 and an MD-11 airplane have been landed without using any flight controls. In simulations, C-17, B-757, and B-747 PCA systems have also been evaluated successfully. These tests used full-authority digital electronic control systems on the engines. Developing simpler PCA systems that can operate without full-authority engine control, thus allowing PCA technology to be installed on less capable airplanes or at lower cost, is also a desire. Studies have examined simplified ?PCA Ultralite? concepts in which thrust control is provided using an autothrottle system supplemented by manual differential throttle control. Some of these concepts have worked well. The PCA Ultralite study results are presented for simulation tests of MD-11, B-757, C-17, and B-747 aircraft.

  7. Technology trend and production statistics of gas turbines and superchargers in Japan in 1992. ; Aircraft gas turbine

    Energy Technology Data Exchange (ETDEWEB)

    Takeo, K [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1992-01-01

    Research and developments programs of aircraft gas turbines in Japan have been firmly proceeding. The Japanese Aero Engine Corporation(JAEC) has completed V2500 aircraft engines and this engine is going to be installed on MD90 aircraft. Intensive development activities have been proceeded in large engines which will cover the thrust of up to 90,000 LBF. Engines for 75-100 seat aircraft has been under study which is basically a high bypass turbofan in the thrust class of 12,000-20,000 LBF with low noise, low emission level. The research works for Super/Hypersonic Transport Propulsion System have been conducted by the Japanese engine manufacturers and four foreign companies (GE, UTC, RR and SNECMA). Japan defence agency with joint participation with MHI, IHI and KHI has been conducting a research demonstrator program of the small turbofan engine with reheat called XF3-400. National Aerospace Laboratory(NAL) and Space and Aeronautical Science(ISAS) have been conducting research program on air-turbo-ramjet and turbo-ramjet engine. 2 figs.

  8. Strategic Technologies for Deep Space Transport

    Science.gov (United States)

    Litchford, Ronald J.

    2016-01-01

    Deep space transportation capability for science and exploration is fundamentally limited by available propulsion technologies. Traditional chemical systems are performance plateaued and require enormous Initial Mass in Low Earth Orbit (IMLEO) whereas solar electric propulsion systems are power limited and unable to execute rapid transits. Nuclear based propulsion and alternative energetic methods, on the other hand, represent potential avenues, perhaps the only viable avenues, to high specific power space transport evincing reduced trip time, reduced IMLEO, and expanded deep space reach. Here, key deep space transport mission capability objectives are reviewed in relation to STMD technology portfolio needs, and the advanced propulsion technology solution landscape is examined including open questions, technical challenges, and developmental prospects. Options for potential future investment across the full compliment of STMD programs are presented based on an informed awareness of complimentary activities in industry, academia, OGAs, and NASA mission directorates.

  9. Sensor Technologies for Intelligent Transportation Systems.

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali; Contreras-Castillo, Juan

    2018-04-16

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  10. Sensor Technologies for Intelligent Transportation Systems

    Science.gov (United States)

    Guerrero-Ibáñez, Juan; Zeadally, Sherali

    2018-01-01

    Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS) and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment. PMID:29659524

  11. Sensor Technologies for Intelligent Transportation Systems

    Directory of Open Access Journals (Sweden)

    Juan Guerrero-Ibáñez

    2018-04-01

    Full Text Available Modern society faces serious problems with transportation systems, including but not limited to traffic congestion, safety, and pollution. Information communication technologies have gained increasing attention and importance in modern transportation systems. Automotive manufacturers are developing in-vehicle sensors and their applications in different areas including safety, traffic management, and infotainment. Government institutions are implementing roadside infrastructures such as cameras and sensors to collect data about environmental and traffic conditions. By seamlessly integrating vehicles and sensing devices, their sensing and communication capabilities can be leveraged to achieve smart and intelligent transportation systems. We discuss how sensor technology can be integrated with the transportation infrastructure to achieve a sustainable Intelligent Transportation System (ITS and how safety, traffic control and infotainment applications can benefit from multiple sensors deployed in different elements of an ITS. Finally, we discuss some of the challenges that need to be addressed to enable a fully operational and cooperative ITS environment.

  12. Technology Roadmaps: Biofuels for Transport

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Biofuels could provide up to 27% of total transport fuel worldwide by 2050. The use of transport fuels from biomass, when produced sustainably, can help cut petroleum use and reduce CO2 emissions in the transport sector, especially in heavy transport. Sustainable biofuel technologies, in particular advanced biofuels, will play an important role in achieving this roadmap vision. The roadmap describes the steps necessary to realise this ambitious biofuels target; identifies key actions by different stakeholders, and the role for government policy to adopt measures needed to ensure the sustainable expansion of both conventional and advanced biofuel production.

  13. Method of Choosing the Information Technology System Supporting Management of the Military Aircraft Operation

    Directory of Open Access Journals (Sweden)

    Barszcz Piotr

    2014-12-01

    Full Text Available The paper presents a method of choosing the information technology system, the task of which is to support the management process of the military aircraft operation. The proposed method is based on surveys conducted among direct users of IT systems used in aviation of the Polish Armed Forces. The analysis of results of the surveys was conducted using statistical methods. The paper was completed with practical conclusions related to further usefulness of the individual information technology systems. In the future, they can be extremely useful in the process of selecting the best solutions and integration of the information technology systems

  14. Future V/STOL Aircraft For The Pacific Basin

    Science.gov (United States)

    Albers, James A.; Zuk, John

    1992-01-01

    Report describes geography and transportation needs of Asian Pacific region, and describes aircraft configurations suitable for region and compares performances. Examines applications of high-speed rotorcraft, vertical/short-takeoff-and-landing (V/STOL) aircraft, and short-takeoff-and landing (STOL) aircraft. Configurations benefit commerce, tourism, and development of resources.

  15. Technology assessments in transportation: survey of recent literature

    Energy Technology Data Exchange (ETDEWEB)

    LaBelle, S.J.

    1980-03-01

    A survey and an evaluation of recent studies of transportation systems done in a technology-assessment framework were undertaken as the basis for a detailed statement of work for a US Department of Energy technology assessment of transportation energy-conservation strategies. Several bibliographies were searched and numerous professionals in the field of technology assessment were contacted regarding current work. Detailed abstracts were prepared for studies judged to be sufficiently broad in coverage of impacts assessed, yet detailed in coverage of all or part of the nation's transportation systems. Some studies were rich in data but not comprehensive in their analytical approach; brief abstracts were prepared for these. An explanation of the criteria used to screen the studies, as well as abstracts of 37 reports, are provided in this compendium of transportation-technology-assessment literature.

  16. Safety of Cargo Aircraft Handling Procedure

    Directory of Open Access Journals (Sweden)

    Daniel Hlavatý

    2017-07-01

    Full Text Available The aim of this paper is to get acquainted with the ways how to improve the safety management system during cargo aircraft handling. The first chapter is dedicated to general information about air cargo transportation. This includes the history or types of cargo aircraft handling, but also the means of handling. The second part is focused on detailed description of cargo aircraft handling, including a description of activities that are performed before and after handling. The following part of this paper covers a theoretical interpretation of safety, safety indicators and legislative provisions related to the safety of cargo aircraft handling. The fourth part of this paper analyzes the fault trees of events which might occur during handling. The factors found by this analysis are compared with safety reports of FedEx. Based on the comparison, there is a proposal on how to improve the safety management in this transportation company.

  17. Point-to-Point! Validation of the Small Aircraft Transportation System Higher Volume Operations Concept

    Science.gov (United States)

    Williams, Daniel M.

    2006-01-01

    Described is the research process that NASA researchers used to validate the Small Aircraft Transportation System (SATS) Higher Volume Operations (HVO) concept. The four phase building-block validation and verification process included multiple elements ranging from formal analysis of HVO procedures to flight test, to full-system architecture prototype that was successfully shown to the public at the June 2005 SATS Technical Demonstration in Danville, VA. Presented are significant results of each of the four research phases that extend early results presented at ICAS 2004. HVO study results have been incorporated into the development of the Next Generation Air Transportation System (NGATS) vision and offer a validated concept to provide a significant portion of the 3X capacity improvement sought after in the United States National Airspace System (NAS).

  18. Accelerating technological change. Towards a more sustainable transport system

    NARCIS (Netherlands)

    van der Vooren, A.

    2014-01-01

    This thesis provides insights into the mechanisms of technological change by capturing the complexity that characterises the current technological transition of the transport system into existing evolutionary models of technological change. The transition towards a more sustainable transport system

  19. Simulation Modeling Requirements for Loss-of-Control Accident Prevention of Turboprop Transport Aircraft

    Science.gov (United States)

    Crider, Dennis; Foster, John V.

    2012-01-01

    In-flight loss of control remains the leading contributor to aviation accident fatalities, with stall upsets being the leading causal factor. The February 12, 2009. Colgan Air, Inc., Continental Express flight 3407 accident outside Buffalo, New York, brought this issue to the forefront of public consciousness and resulted in recommendations from the National Transportation Safety Board to conduct training that incorporates stalls that are fully developed and develop simulator standards to support such training. In 2010, Congress responded to this accident with Public Law 11-216 (Section 208), which mandates full stall training for Part 121 flight operations. Efforts are currently in progress to develop recommendations on implementation of stall training for airline pilots. The International Committee on Aviation Training in Extended Envelopes (ICATEE) is currently defining simulator fidelity standards that will be necessary for effective stall training. These recommendations will apply to all civil transport aircraft including straight-wing turboprop aircraft. Government-funded research over the previous decade provides a strong foundation for stall/post-stall simulation for swept-wing, conventional tail jets to respond to this mandate, but turboprops present additional and unique modeling challenges. First among these challenges is the effect of power, which can provide enhanced flow attachment behind the propellers. Furthermore, turboprops tend to operate for longer periods in an environment more susceptible to ice. As a result, there have been a significant number of turboprop accidents as a result of the early (lower angle of attack) stalls in icing. The vulnerability of turboprop configurations to icing has led to studies on ice accumulation and the resulting effects on flight behavior. Piloted simulations of these effects have highlighted the important training needs for recognition and mitigation of icing effects, including the reduction of stall margins

  20. Development of Textile Reinforced Composites for Aircraft Structures

    Science.gov (United States)

    Dexter, H. Benson

    1998-01-01

    NASA has been a leader in development of composite materials for aircraft applications during the past 25 years. In the early 1980's NASA and others conducted research to improve damage tolerance of composite structures through the use of toughened resins but these resins were not cost-effective. The aircraft industry wanted affordable, robust structures that could withstand the rigors of flight service with minimal damage. The cost and damage tolerance barriers of conventional laminated composites led NASA to focus on new concepts in composites which would incorporate the automated manufacturing methods of the textiles industry and which would incorporate through-the-thickness reinforcements. The NASA Advanced Composites Technology (ACT) Program provided the resources to extensively investigate the application of textile processes to next generation aircraft wing and fuselage structures. This paper discusses advanced textile material forms that have been developed, innovative machine concepts and key technology advancements required for future application of textile reinforced composites in commercial transport aircraft. Multiaxial warp knitting, triaxial braiding and through-the-thickness stitching are the three textile processes that have surfaced as the most promising for further development. Textile reinforced composite structural elements that have been developed in the NASA ACT Program are discussed. Included are braided fuselage frames and window-belt reinforcements, woven/stitched lower fuselage side panels, stitched multiaxial warp knit wing skins, and braided wing stiffeners. In addition, low-cost processing concepts such as resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM) are discussed. Process modeling concepts to predict resin flow and cure in textile preforms are also discussed.

  1. Aircraft measurement over the Gulf of Tonkin capturing aloft transport of biomass burning

    Science.gov (United States)

    Yang, Xiaoyang; Xu, Jun; Bi, Fang; Zhang, Zhongzhi; Chen, Yunbo; He, Youjiang; Han, Feng; Zhi, Guorui; Liu, Shijie; Meng, Fan

    2018-06-01

    A suite of aircraft measurements was conducted over the Gulf of Tonkin, located downwind to the east of Mainland Southeast Asia (MSE), between March 23rd and April 6th, 2015. To the best of our knowledge, this campaign of 11 flights (totaling 34.4 h) was the first in-flight measurement over the region. Measurements of sulfur dioxide, nitrogen oxides, ozone, carbon monoxide, black carbon and the particulate scattering coefficient were recorded at approximately 1 500 m (low level) and 3 000 m (high level). Significantly higher measurements of black carbon, carbon monoxide and ozone in the high level on March 23rd and April 5th and 6th were directly related to biomass burning in the MSE and were comparable to severe pollution events at the surface. Similarly, relatively low pollutant concentrations were observed at both altitudes between March 23rd and April 5th. A combined analysis of the measurements with meteorology and satellite data verified that the plumes captured at 3 000 m were attributed to transport in the high altitude originating from biomass burning in northern MSE. Furthermore, each plume captured by the measurements in the high level corresponded to heavy regional air pollution caused by biomass burning in northern MSE. In addition, relatively low levels of the measured pollutants corresponded to relatively light pollution levels in MSE and its adjacent areas. Taken together, these results indicated that aircraft measurements were accurate in characterizing the variation in transport and pollutant levels. During the most active season of biomass burning in MSE, pollutant emissions and their regional impact could vary on an episodic basis. Nonetheless, such concentrated emissions from biomass burning is likely to lead to particularly high atmospheric-loading of pollutants at a regional level and, depending on weather conditions, has the potential of being transported over considerably longer distances. Further investigation of the short-term impacts of

  2. Technology Trends in Small Unmanned Aircraft Systems (sUAS) and Counter-UAS: A Five Year Outlook

    Science.gov (United States)

    2017-11-01

    I N S T I T U T E F O R D E F E N S E ANALYSES Technology Trends in Small Unmanned Aircraft Systems (sUAS) and Counter-UAS: A Five-Year Outlook...the copyright license under the clause at DFARS 252.227-7013 (a)(16) [June 2013]. INSTITUTE FOR DEFENSE ANALYSES IDA Paper P-8823 Technology Trends...threats to infrastructure posed across all domains—air, land, sea, and cyber. Although threats and technologies are rapidly evolving across all

  3. Analysis of aircraft and satellite measurements from the Intercontinental Chemical Transport Experiment (INTEX-B to quantify long-range transport of East Asian sulfur to Canada

    Directory of Open Access Journals (Sweden)

    A. van Donkelaar

    2008-06-01

    Full Text Available We interpret a suite of satellite, aircraft, and ground-based measurements over the North Pacific Ocean and western North America during April–May 2006 as part of the Intercontinental Chemical Transport Experiment Phase B (INTEX-B campaign to understand the implications of long-range transport of East Asian emissions to North America. The Canadian component of INTEX-B included 33 vertical profiles from a Cessna 207 aircraft equipped with an aerosol mass spectrometer. Long-range transport of organic aerosols was insignificant, contrary to expectations. Measured sulfate plumes in the free troposphere over British Columbia exceeded 2 μg/m3. We update the global anthropogenic emission inventory in a chemical transport model (GEOS-Chem and use it to interpret the observations. Aerosol Optical Depth (AOD retrieved from two satellite instruments (MISR and MODIS for 2000–2006 are analyzed with GEOS-Chem to estimate an annual growth in Chinese sulfur emissions of 6.2% and 9.6%, respectively. Analysis of aircraft sulfate measurements from the NASA DC-8 over the central Pacific, the NSF C-130 over the east Pacific and the Cessna over British Columbia indicates most Asian sulfate over the ocean is in the lower free troposphere (800–600 hPa, with a decrease in pressure toward land due to orographic effects. We calculate that 56% of the measured sulfate between 500–900 hPa over British Columbia is due to East Asian sources. We find evidence of a 72–85% increase in the relative contribution of East Asian sulfate to the total burden in spring off the northwest coast of the United States since 1985. Campaign-average simulations indicate anthropogenic East Asian sulfur emissions increase mean springtime sulfate in Western Canada at the surface by 0.31 μg/m3 (~30% and account for 50% of the overall regional sulfate burden between 1 and 5 km. Mean measured daily surface sulfate concentrations taken in the Vancouver area increase by

  4. 78 FR 9796 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2013-02-12

    ... (2) Model 172S, S/N l72S11074 through 172S11193. (d) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe... Airworthiness Directives; Cessna Aircraft Company Airplanes AGENCY: Federal Aviation Administration (FAA), DOT...

  5. 77 FR 72250 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-12-05

    ... Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe Condition This AD was prompted by reports of chafing of a new... flight, reinstall the fuel return line assembly (Cessna P/N 0516031-1) following Cessna Aircraft Company...

  6. 77 FR 50054 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2012-08-20

    ... Aircraft Company Service Bulletin SB04-28-03, dated August 30, 2004, and Engine Fuel Return System... Transport Association (ATA) of America Code 2820, Aircraft Fuel Distribution System. (e) Unsafe Condition... Fuel Return System Modification Do not install Cessna Aircraft Company Service Bulletin SB 04- 28-03...

  7. 78 FR 26556 - Airworthiness Directives; Piper Aircraft, Inc. Airplanes

    Science.gov (United States)

    2013-05-07

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Part 39 [Docket No. FAA-2012-0756; Directorate Identifier 2012-CE-012-AD] RIN 2120-AA64 Airworthiness Directives; Piper Aircraft... Piper Aircraft, Inc. (type certificate previously held by The New Piper Aircraft Inc.) Models PA-18 and...

  8. Concept definition and aerodynamic technology studies for single-engine V/STOL fighter/attack aircraft

    Science.gov (United States)

    Nelms, W. P.; Durston, D. A.

    1981-01-01

    The results obtained in the early stages of a research program to develop aerodynamic technology for single-engine V/STOL fighter/attack aircraft projected for the post-1990 period are summarized. This program includes industry studies jointly sponsored by NASA and the Navy. Four contractors have identified promising concepts featuring a variety of approaches for providing propulsive lift. Vertical takeoff gross weights range from about 10,000 to 13,600 kg (22,000 to 30,000 lb). The aircraft have supersonic capability, are highly maneuverable, and have significant short takeoff overload capability. The contractors have estimated the aerodynamics and identified aerodynamic uncertainties associated with their concepts. Wind-tunnel research programs will be formulated to investigate these uncertainties. A description of the concepts is emphasized.

  9. GREY STATISTICS METHOD OF TECHNOLOGY SELECTION FOR ADVANCED PUBLIC TRANSPORTATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Chien Hung WEI

    2003-01-01

    Full Text Available Taiwan is involved in intelligent transportation systems planning, and is now selecting its prior focus areas for investment and development. The high social and economic impact associated with which intelligent transportation systems technology are chosen explains the efforts of various electronics and transportation corporations for developing intelligent transportation systems technology to expand their business opportunities. However, there has been no detailed research conducted with regard to selecting technology for advanced public transportation systems in Taiwan. Thus, the present paper demonstrates a grey statistics method integrated with a scenario method for solving the problem of selecting advanced public transportation systems technology for Taiwan. A comprehensive questionnaire survey was conducted to demonstrate the effectiveness of the grey statistics method. The proposed approach indicated that contactless smart card technology is the appropriate technology for Taiwan to develop in the near future. The significance of our research results implies that the grey statistics method is an effective method for selecting advanced public transportation systems technologies. We feel our information will be beneficial to the private sector for developing an appropriate intelligent transportation systems technology strategy.

  10. Combat aircraft noise

    Science.gov (United States)

    Sgarbozza, M.; Depitre, A.

    1992-04-01

    A discussion of the characteristics and the noise levels of combat aircraft and of a transport aircraft in taking off and landing are presented. Some methods of noise reduction are discussed, including the following: operational anti-noise procedures; and concepts of future engines (silent post-combustion and variable cycle). Some measurement results concerning the noise generated in flight at great speeds and low altitude will also be examined. Finally, the protection of the environment of French air bases against noise will be described and the possibilities of regulation examined.

  11. Aircraft Carriers

    DEFF Research Database (Denmark)

    Nødskov, Kim; Kværnø, Ole

    as their purchases of aircraft carrier systems, makes it more than likely that the country is preparing such an acquisition. China has territorial disputes in the South China Sea over the Spratly Islands and is also worried about the security of its sea lines of communications, by which China transports the majority......, submarines, aircraft and helicopters, is not likely to be fully operational and war-capable until 2020, given the fact that China is starting from a clean sheet of paper. The United States of America (USA), the United Kingdom (UK), Russia and India are currently building or have made decisions to build new...

  12. Research on AO/FO batch management technology in aircraft production

    Directory of Open Access Journals (Sweden)

    Yin Haijun

    2018-01-01

    Full Text Available Based on the analysis of the characteristics and significance of AO/FO in the process of aircraft production, this paper analyzes the format rules of AO/FO batch management from the perspective of technology realization, and details the AO/FO The change of the query and the change status tracking, introduces the AO/FO single-stand status display in the batch management, increases the structure definition of the attribute table in the batch management, and designs the relevant algorithm to store and calculate the batch information. Finally, based on the above theory support AO/FO batch management system successfully used in the production of a machine.

  13. Follow on Research for Multi-Utility Technology Test Bed Aircraft at NASA Dryden Flight Research Center (FY13 Progress Report)

    Science.gov (United States)

    Pak, Chan-Gi

    2013-01-01

    Modern aircraft employ a significant fraction of their weight in composite materials to reduce weight and improve performance. Aircraft aeroservoelastic models are typically characterized by significant levels of model parameter uncertainty due to the composite manufacturing process. Small modeling errors in the finite element model will eventually induce errors in the structural flexibility and mass, thus propagating into unpredictable errors in the unsteady aerodynamics and the control law design. One of the primary objectives of Multi Utility Technology Test-bed (MUTT) aircraft is the flight demonstration of active flutter suppression, and therefore in this study, the identification of the primary and secondary modes for the structural model tuning based on the flutter analysis of MUTT aircraft. The ground vibration test-validated structural dynamic finite element model of the MUTT aircraft is created in this study. The structural dynamic finite element model of MUTT aircraft is improved using the in-house Multi-disciplinary Design, Analysis, and Optimization tool. In this study, two different weight configurations of MUTT aircraft have been improved simultaneously in a single model tuning procedure.

  14. 76 FR 70379 - Airworthiness Directives; Cessna Aircraft Company Airplanes

    Science.gov (United States)

    2011-11-14

    ...) Subject Joint Aircraft System Component (JASC)/Air Transport Association (ATA) of America Code Fuel, 28...-1245; Directorate Identifier 2011-CE-033-AD; RIN 2120-AA64] Airworthiness Directives; Cessna Aircraft... certain Cessna Aircraft Company (Cessna) Models 172R and 172S airplanes. The existing AD requires you to...

  15. Conceptual study of an advanced VTOL transport aircraft; Kosoku VTOL ki no gainen kento

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Y; Endo, M; Matsuda, Y; Sugiyama, N; Watanabe, M; Sugahara, N; Yamamoto, K [National Aerospace Laboratory, Tokyo (Japan)

    1996-05-01

    The concept of the advanced 100-passenger class VTOL aircraft equipped with new lift fan engines was clarified as domestic passenger aircraft for the 21st century. Under the assumption of a total weight of 40 tons, a seat fuselage diameter of 3.3m as small as possible and a short seat pitch, the airframe shape satisfying a target performance was obtained without any problems about aerodynamic stability, operability and control capability, and noise lower than that of small helicopters was also estimated. In the case of 10 tons in airframe payload and 8 tons in fuel, even if light-weight composite materials were used for most of parts including fuselage structure, a total weight summed to 42.3 tons exceeding a target by 2.3 tons. As this VTOL aircraft was limited to domestic flight use only, the total weight could be reduced without any change in airframe shape and number of passengers by reducing the payload (baggage weight can be probably reduced by 2 tons/100 passengers in the future domestic flight) and fuel (cruising range around 2500km can be secured even if fuel is reduced by 0.3 tons). In conclusion, this concept was thus technologically reasonable. 6 refs., 15 figs., 6 tabs.

  16. X-38 vehicle #131R arrives at NASA Dryden via NASA'S Super Guppy transport aircraft

    Science.gov (United States)

    2000-01-01

    NASA's Super Guppy transport aircraft landed at Edwards Air Force Base, Calif. on July 11, 2000, to deliver the latest version of the X-38 drop vehicle to Dryden. The X-38s are intended as prototypes for a possible 'crew lifeboat' for the International Space Station. The X-38 vehicle 131R will demonstrate a huge 7,500 square-foot parafoil that will that will enable the potential crew return vehicle to land on the length of a football field after returning from space. The crew return vehicle is intended to serve as a possible emergency transport to carry a crew to safety in the event of problems with the International Space Station. The Super Guppy evolved from the 1960s-vintage Pregnant Guppy, used for transporting outsized sections of the Apollo moon rocket. The Super Guppy was modified from 1950s-vintage Boeing C-97. NASA acquired its Super Guppy from the European Space Agency in 1997.

  17. Transportation Network Topologies

    Science.gov (United States)

    Holmes, Bruce J.; Scott, John

    2004-01-01

    A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21st thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which

  18. Design definition study of a life/cruise fan technology V/STOL aircraft. Volume 2, addendum 2: Program risk assessment

    Science.gov (United States)

    1975-01-01

    The results are presented of a risk assessment study conducted on two technology aircraft. The aircraft system components were reviewed and assessed for risk based on: (1) complexity relative to state-of-the-art, (2) manufacturing and qualification testing, (3) availability and delays, and (4) cost/schedule impact. These assessments were based on five risk nomenclatures: low, minor, moderate, high, and extreme. Each aircraft system was assigned an overall risk rating depending upon its contribution to the capability of the aircraft to achieve the performance goals. The slightly lower Sabreliner performance margin is due to the restricted flight envelope, the fixed landing gear, and internal fuel capacity. The Sabreliner with retractable gear and allowed to fly at its best speed and altitude would reflect performance margins similar to the New Airframe. These significant margins, inherent with the MCAIR three gas generator/three fan propulsion system, are major modifiers to risk assessment of both aircraft. The estimated risk and the associated key system and performance areas are tabulated.

  19. Study of Wireless Transmission Protocol Technology for Use in Flight Line Environment to Assist the Data Loading and Downloading on Aircraft

    National Research Council Canada - National Science Library

    Meng, Ow

    2004-01-01

    ... into the use of wireless tmnsmission technology to complement or replace the manual method of loading the critical data file from the command station onto every F-16 aircraft, The present wireless technology...

  20. 2015 International Conference on Information Technology and Intelligent Transportation Systems

    CERN Document Server

    Jain, Lakhmi; Zhao, Xiangmo

    2017-01-01

    This volume includes the proceedings of the 2015 International Conference on Information Technology and Intelligent Transportation Systems (ITITS 2015) which was held in Xi’an on December 12-13, 2015. The conference provided a platform for all professionals and researchers from industry and academia to present and discuss recent advances in the field of Information Technology and Intelligent Transportation Systems. The presented information technologies are connected to intelligent transportation systems including wireless communication, computational technologies, floating car data/floating cellular data, sensing technologies, and video vehicle detection. The articles focusing on intelligent transport systems vary in the technologies applied, from basic management systems to more application systems including topics such as emergency vehicle notification systems, automatic road enforcement, collision avoidance systems and some cooperative systems. The conference hosted 12 invited speakers and over 200 part...

  1. Rankine-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  2. Rankline-Brayton engine powered solar thermal aircraft

    Science.gov (United States)

    Bennett, Charles L [Livermore, CA

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  3. Transport of expiratory droplets in an aircraft cabin.

    Science.gov (United States)

    Gupta, Jitendra K; Lin, Chao-Hsin; Chen, Qingyan

    2011-02-01

    The droplets exhaled by an index patient with infectious disease such as influenza or tuberculosis may be the carriers of contagious agents. Indoor environments such as the airliner cabins may be susceptible to infection from such airborne contagious agents. The present investigation computed the transport of the droplets exhaled by the index patient seated in the middle of a seven-row, twin-aisle, fully occupied cabin using the CFD simulations. The droplets exhaled were from a single cough, a single breath, and a 15-s talk of the index patient. The expiratory droplets were tracked by using Lagrangian method, and their evaporation was modeled. It was found that the bulk airflow pattern in the cabin played the most important role on the droplet transport. The droplets were contained in the row before, at, and after the index patient within 30 s and dispersed uniformly to all the seven rows in 4 minutes. The total airborne droplet fraction reduced to 48, 32, 20, and 12% after they entered the cabin for 1, 2, 3, and 4 min, respectively, because of the ventilation from the environmental control system. It is critical to predict the risk of airborne infection to take appropriate measures to control and mitigate the risk. Most of the studies in past either assume a homogenous distribution of contaminants or use steady-state conditions. The present study instead provides information on the transient movement of the droplets exhaled by an index passenger in an aircraft cabin. These droplets may contain active contagious agents and can be potent enough to cause infection. The findings can be used by medical professionals to estimate the spatial and temporal distribution of risk of infection to various passengers in the cabin. © 2010 John Wiley & Sons A/S.

  4. Meeting Air Transportation Demand in 2025 by Using Larger Aircraft and Alternative Routing to Complement NextGen Operational Improvements

    Science.gov (United States)

    Smith, Jeremy C.; Guerreiro, Nelson M.; Viken, Jeffrey K.; Dollyhigh, Samuel M.; Fenbert, James W.

    2010-01-01

    A study was performed that investigates the use of larger aircraft and alternative routing to complement the capacity benefits expected from the Next Generation Air Transportation System (NextGen) in 2025. National Airspace System (NAS) delays for the 2025 demand projected by the Transportation Systems Analysis Models (TSAM) were assessed using NASA s Airspace Concept Evaluation System (ACES). The shift in demand from commercial airline to automobile and from one airline route to another was investigated by adding the route delays determined from the ACES simulation to the travel times used in the TSAM and re-generating new flight scenarios. The ACES simulation results from this study determined that NextGen Operational Improvements alone do not provide sufficient airport capacity to meet the projected demand for passenger air travel in 2025 without significant system delays. Using larger aircraft with more seats on high-demand routes and introducing new direct routes, where demand warrants, significantly reduces delays, complementing NextGen improvements. Another significant finding of this study is that the adaptive behavior of passengers to avoid congested airline-routes is an important factor when projecting demand for transportation systems. Passengers will choose an alternative mode of transportation or alternative airline routes to avoid congested routes, thereby reducing delays to acceptable levels for the 2025 scenario; the penalty being that alternative routes and the option to drive increases overall trip time by 0.4% and may be less convenient than the first-choice route.

  5. New possibilities of using A-319CJ aircraft at the Czech Air Force

    Directory of Open Access Journals (Sweden)

    Miroslav JANOŠEK

    2011-01-01

    Full Text Available The article analyses remarkable changes in activities of the transport airbase in terms of substitution of obsolete aircraft by modern transport airplanes. Further, differences between transport airbase’s aircraft and Czech Airlines’ airplanes are introduced, as well as fundamental tactical and operating specifications, time and space factors regarding personnel transport, supplies transport and possibilities of Airbus A319CJ’s freight hold adjustment in dependence on the nature of transport.

  6. Pseudosatellite technologies based on the use of functionally stable complexes of remote-piloted aircrafts

    Science.gov (United States)

    Mashkov, O. A.; Samborskiy, I. I.

    2009-10-01

    A bundle of papers dealing with functionally stable systems requires the necessity of analyzing of obtained results and their understanding in a general context of cybernetic's development and applications. Description of this field of science, main results and perspectives of the new theory of functionally stability of dynamical systems concerning the problem of remote-piloted aircrafts engineering using pseudosatellite technologies are proposed in the paper.

  7. Development of Filter-Blower Unit for use in the Advanced Nuclear Biological Chemical Protection System (ANBCPS) Helicopter/Transport-aircraft version

    NARCIS (Netherlands)

    Sabel, R.; Reffeltrath, P.A.; Jonkman, A.; Post, T.

    2006-01-01

    As a participant in the three-nation partnership for development of the ANBCP-S for use in Helicopters, Transport Aircraft and Fast Jet, the Royal Netherlands Airforce (RNLAF) picked up the challenge to design a Filter- Blower-Unit (FBU). Major Command (MajCom) of the RNLAF set priority to develop a

  8. Advanced energy systems (APU) for large commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Westenberger, A.; Bleil, J.; Arendt, M. [Airbus Deutschland GmbH, Hamburg (Germany)

    2013-06-01

    The intention of using a highly integrated component using on fuel cell technology installed on board of large commercial passenger aircraft for the generation of onboard power for the systems demand during an entire aircraft mission was subject of several studies. The results of these studies have been based on the simulation of the whole system in the context of an aircraft system environment. In front of the work stood the analyses of different fuel cell technologies and the analyses of the aircraft system environment. Today onboard power is provided on ground by an APU and in flight by the main engines. In order to compare fuel cell technology with the today's usual gas turbine operational characteristics have been analysed. A second analysis was devoted to the system demand for typical aircraft categories. The MEA system concept was supposed in all cases. The favourable concept represented an aircraft propelled by conventional engines with starter generator units, providing AC electrical power, covering in total proximately half of the power demand and a component based on fuel cell technology. This component provided electrical DC power, clean potable water, thermal energy at 180 degrees Celsius and nitrogen enriched air for fire suppression and fire extinguishing agent. In opposite of a usual gas turbine based APU, this new unit was operated as the primary power system. (orig.)

  9. 78 FR 35085 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2013-06-11

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Consensus Standards, Light-Sport... to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the new and...

  10. 77 FR 24251 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2012-04-23

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Consensus Standards, Light-Sport... relating to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport Aircraft developed the new and...

  11. Pressure distribution data from tests of 2.29 M (7.5 feet) span EET high-lift transport aircraft model in the Ames 12-foot pressure tunnel

    Science.gov (United States)

    Kjelgaard, S. O.; Morgan, H. L., Jr.

    1983-01-01

    A high-lift transport aircraft model equipped with full-span leading-edge slat and part-span double-slotted trailing-edge flap was tested in the Ames 12-ft pressure tunnel to determine the low-speed performance characteristics of a representative high-aspect-ratio supercritical wing. These tests were performed in support of the Energy Efficient Transport (EET) program which is one element of the Aircraft Energy Efficiency (ACEE) project. Static longitudinal forces and moments and chordwise pressure distributions at three spanwise stations were measured for cruise, climb, two take-off flap, and two landing flap wing configurations. The tabulated and plotted pressure distribution data is presented without analysis or discussion.

  12. Crew/Automation Interaction in Space Transportation Systems: Lessons Learned from the Glass Cockpit

    Science.gov (United States)

    Rudisill, Marianne

    2000-01-01

    The progressive integration of automation technologies in commercial transport aircraft flight decks - the 'glass cockpit' - has had a major, and generally positive, impact on flight crew operations. Flight deck automation has provided significant benefits, such as economic efficiency, increased precision and safety, and enhanced functionality within the crew interface. These enhancements, however, may have been accrued at a price, such as complexity added to crew/automation interaction that has been implicated in a number of aircraft incidents and accidents. This report briefly describes 'glass cockpit' evolution. Some relevant aircraft accidents and incidents are described, followed by a more detailed description of human/automation issues and problems (e.g., crew error, monitoring, modes, command authority, crew coordination, workload, and training). This paper concludes with example principles and guidelines for considering 'glass cockpit' human/automation integration within space transportation systems.

  13. Critical joints in large composite aircraft structure

    Science.gov (United States)

    Nelson, W. D.; Bunin, B. L.; Hart-Smith, L. J.

    1983-01-01

    A program was conducted at Douglas Aircraft Company to develop the technology for critical structural joints of composite wing structure that meets design requirements for a 1990 commercial transport aircraft. The prime objective of the program was to demonstrate the ability to reliably predict the strength of large bolted composite joints. Ancillary testing of 180 specimens generated data on strength and load-deflection characteristics which provided input to the joint analysis. Load-sharing between fasteners in multirow bolted joints was computed by the nonlinear analysis program A4EJ. This program was used to predict strengths of 20 additional large subcomponents representing strips from a wing root chordwise splice. In most cases, the predictions were accurate to within a few percent of the test results. In some cases, the observed mode of failure was different than anticipated. The highlight of the subcomponent testing was the consistent ability to achieve gross-section failure strains close to 0.005. That represents a considerable improvement over the state of the art.

  14. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  15. Assessment of the environmental impact of the FAA proposed rule making affecting the conditions of transport of radioactive materials on aircraft

    International Nuclear Information System (INIS)

    Hall, R.J.; Hendrickson, P.L.; King, J.C.; McSweeney, T.I.; Shipler, D.B.; Brown, C.L.; Davis, D.K.; Watson, E.C.

    1975-01-01

    Amendments to Federal Aviation Administration (FAA) regulations relating to the transporting of radioactive materials on commercial aircraft are presented. Potential effects of the proposed changes are examined in the environmental impact statement, which is presented in the 10 sections and 5 appendices of this document. (JGB)

  16. Longitudinal Static Stability and wake visualization of high altitude long endurance aircraft developed in Bandung institute of technology

    Science.gov (United States)

    Irsyad Lukman, E.; Agoes Moelyadi, M.

    2018-04-01

    A High Altitude Long Endurance (HALE) Unamanned Aerial Vehicle (UAV) is currently being researched in Bandung Institute of Technology. The HALE is designed to be a pseudo-sattelite for information and communication purpose in Indonesia. This paper would present the longitudinal static stability of the aircraft that was analysed using DATCOM as well as simulation of the wing using ANSYS CFX. Result shows that the aircraft has acceptable stability and the wake from the wing at climbing condition cannot be ignored, however it does not affect the horizontal tail.

  17. METHOD IMPROVEMENT FOR DETERMINING THE TECHNICAL LEVEL OF CIVIL AIRCRAFT

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Aircraft are high-tech engineering products which are characterized by a wide range of properties including the two most important groups that respectively characterize the efficiency and technical level.Improving the aircraft efficiency is an essential factor for air transport development, but the efficiency can not be fully describe the technical system, especially in forecasting and new technology requirements development. Aircraft de- signer must evaluate the prospects of a technical solution, but it’s not always possible to calculate the efficiency accuratelyat the design stage. The operator should be able to choose the most technically-advanced aircraft available in the market inorder not to let it grow obsolete quickly. This determines the need for non-economic evaluation of technical systems that can be done by assessment of their technical level.The technical level is a general index that includes a set of technical perfection indicators. Technical perfection is reflected in terms of material and energy intensity, in terms of ergonomics, safety, etc. and is achieved as a result of origi- nal design solutions, the use of new high-strength low-density materials, the introduction of advanced technological pro-cesses, calculation methods, verification, testing, etc.There is a tight connection between the product properties and its weight, because weight is the material reflection of these properties. Therefore, improvement of the product properties usually leads to an intense increase of its weight. To deal with this phenomenon is only possible with widely using scientific and technical progress results. In accordance with this, the technical perfection can be interpreted as a major component of quality that is created without the weight increase. This approach requires investment in research and testing new technical solutions.The method was developed to determine the technical level of civil long-haul aircraft which has been modified to

  18. Hydrogen Storage for Aircraft Applications Overview

    Science.gov (United States)

    Colozza, Anthony J.; Kohout, Lisa (Technical Monitor)

    2002-01-01

    Advances in fuel cell technology have brought about their consideration as sources of power for aircraft. This power can be utilized to run aircraft systems or even provide propulsion power. One of the key obstacles to utilizing fuel cells on aircraft is the storage of hydrogen. An overview of the potential methods of hydrogen storage was compiled. This overview identifies various methods of hydrogen storage and points out their advantages and disadvantages relative to aircraft applications. Minimizing weight and volume are the key aspects to storing hydrogen within an aircraft. An analysis was performed to show how changes in certain parameters of a given storage system affect its mass and volume.

  19. The Integrated Air Transportation System Evaluation Tool

    Science.gov (United States)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  20. Riveted Lap Joints in Aircraft Fuselage Design, Analysis and Properties

    CERN Document Server

    Skorupa, Andrzej

    2012-01-01

    Fatigue of the pressurized fuselages of transport aircraft is a significant problem all builders and users of aircraft have to cope with for reasons associated with assuring a sufficient lifetime and safety, and formulating adequate inspection procedures. These aspects are all addressed in various formal protocols for creating and maintaining airworthiness, including damage tolerance considerations. In most transport aircraft, fatigue occurs in lap joints, sometimes leading to circumstances that threaten safety in critical ways. The problem of fatigue of lap joints has been considerably enlarged by the goal of extending aircraft lifetimes. Fatigue of riveted lap joints between aluminium alloy sheets, typical of the pressurized aircraft fuselage, is the major topic of the present book. The richly illustrated and well-structured chapters treat subjects such as: structural design solutions and loading conditions for fuselage skin joints; relevance of laboratory test results for simple lap joint specimens to rive...

  1. Fuel cell APU for commercial aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Daggett, D.L. [Boeing Commercial Airplane, Seattle, WA (United States); Lowery, N. [Princeton Univ., Princeton, NJ (United States); Wittmann, J. [Technische Univ. Muenchen (Germany)

    2005-07-01

    The Boeing Company has always sought to improve fuel efficiency in commercial aircraft. An opportunity now exists to explore technology that will allow fuel efficiency improvements to be achieved while simultaneously reducing emissions. Replacing the current aircraft gas turbine-powered Auxiliary Power Unit with a hybrid Solid Oxide Fuel Cell is anticipated to greatly improve fuel efficiency, reduce emissions and noise as well as improve airplane performance. However, there are several technology hurdles that need to be overcome. If SOFC technology is to be matured for the betterment of the earth community, the fuel cell industry, aerospace manufacturers and other end users all need to work together to overcome these challenges. Aviation has many of the same needs in fuel cell technology as other sectors, such as reducing cost and improving reliability and fuel efficiency in order to commercialize the technology. However, there are other distinct aerospace needs that will not necessarily be addressed by the industrial sector. These include development of lightweight materials and small-volume fuel cell systems that can reform hydrocarbon fuels. Aviation also has higher levels of safety requirements. Other transportation modes share the same requirement for vibration and shock tolerant fuel cell stacks. Lastly, as fuel cells are anticipated to be operated in flight, they must be capable of operating over a wide range of atmospheric conditions. By itself, the aviation sector does not appear to offer enough of a potential market to justify the investment required by any one manufacturer to develop fuel cells for APU replacements. Therefore, means must be found to modularize components and make SOFC stacks sufficiently similar to industrial units so that manufacturing economy of scales can be brought to bear. Government R and D and industry support are required to advance the technology. Because aerospace fuel cells will be higher performing units, the benefits of

  2. 49 CFR 173.172 - Aircraft hydraulic power unit fuel tank.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Aircraft hydraulic power unit fuel tank. 173.172... Class 1 and Class 7 § 173.172 Aircraft hydraulic power unit fuel tank. Aircraft hydraulic power unit fuel tanks containing a mixture of anhydrous hydrazine and monomethyl hydrazine (M86 fuel) and designed...

  3. Vehicle Design Evaluation Program (VDEP). A computer program for weight sizing, economic, performance and mission analysis of fuel-conservative aircraft, multibodied aircraft and large cargo aircraft using both JP and alternative fuels

    Science.gov (United States)

    Oman, B. H.

    1977-01-01

    The NASA Langley Research Center vehicle design evaluation program (VDEP-2) was expanded by (1) incorporating into the program a capability to conduct preliminary design studies on subsonic commercial transport type aircraft using both JP and such alternate fuels as hydrogen and methane;(2) incorporating an aircraft detailed mission and performance analysis capability; and (3) developing and incorporating an external loads analysis capability. The resulting computer program (VDEP-3) provides a preliminary design tool that enables the user to perform integrated sizing, structural analysis, and cost studies on subsonic commercial transport aircraft. Both versions of the VDEP-3 Program which are designated preliminary Analysis VDEP-3 and detailed Analysis VDEP utilize the same vehicle sizing subprogram which includes a detailed mission analysis capability, as well as a geometry and weight analysis for multibodied configurations.

  4. Modelling the Transport Process in Marine Container Technology

    Directory of Open Access Journals (Sweden)

    Serđo Kos

    2003-01-01

    Full Text Available The paper introduces a mathematical problem that occursin marine container technology when programming the transportof a beforehand established number of ISO containers effectedby a full container ship from several ports of departure toseveral ports of destination at the minimum distance (time innavigation or at minimum transport costs. The application ofthe proposed model may have an effect on cost reduction incontainer transport thereby improving the operation process inmarine transport technology. The model has been tested by usinga numerical example with real data. In particular, it describesthe application of the dual variables in the analysis ofoptimum solution.

  5. Test facilities for radioactive materials transport packages (Transportation Technology Center Inc., Pueblo, Colorado, USA)

    International Nuclear Information System (INIS)

    Conlon, P.C.L.

    2001-01-01

    Transportation Technology Center, Inc. is capable of conducting tests on rail vehicle systems designed for transporting radioactive materials including low level waste debris, transuranic waste, and spent nuclear fuel and high level waste. Services include rail vehicle dynamics modelling, on-track performance testing, full scale structural fatigue testing, rail vehicle impact tests, engineering design and technology consulting, and emergency response training. (author)

  6. Implementation of advanced technologies and other means in dangerous freight transportation

    Directory of Open Access Journals (Sweden)

    N. Batarlienė

    2007-12-01

    Full Text Available This article examines types of modern technologies application possibilities in dangerous freight transportation. It is noted that the solution to transport technology problems is based on the improvement of technological supply, the rational usage of informational modeling methodology of the whole transportation process. The aspects of mobile solution of public information and transport are named in this paper. The article presents concrete vehicles and freight tracking on their trips analysis, the principles and methods of their operation. Tracking and localization systems are playing a great role in the transportation of dangerous freight. The newly developed remote identification system for transport facilities and freight are presented.

  7. Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission: Design, execution, and first results

    Science.gov (United States)

    Jacob, Daniel J.; Crawford, James H.; Kleb, Mary M.; Connors, Vickie S.; Bendura, Richard J.; Raper, James L.; Sachse, Glen W.; Gille, John C.; Emmons, Louisa; Heald, Colette L.

    2003-10-01

    The NASA Transport and Chemical Evolution over the Pacific (TRACE-P) aircraft mission was conducted in February-April 2001 over the NW Pacific (1) to characterize the Asian chemical outflow and relate it quantitatively to its sources and (2) to determine its chemical evolution. It used two aircraft, a DC-8 and a P-3B, operating out of Hong Kong and Yokota Air Force Base (near Tokyo), with secondary sites in Hawaii, Wake Island, Guam, Okinawa, and Midway. The aircraft carried instrumentation for measurements of long-lived greenhouse gases, ozone and its precursors, aerosols and their precursors, related species, and chemical tracers. Five chemical transport models (CTMs) were used for chemical forecasting. Customized bottom-up emission inventories for East Asia were generated prior to the mission to support chemical forecasting and to serve as a priori for evaluation with the aircraft data. Validation flights were conducted for the Measurements Of Pollution In The Troposphere (MOPITT) satellite instrument and revealed little bias (6 ± 2%) in the MOPITT measurements of CO columns. A major event of transpacific Asian pollution was characterized through combined analysis of TRACE-P and MOPITT data. The TRACE-P observations showed that cold fronts sweeping across East Asia and the associated warm conveyor belts (WCBs) are the dominant pathway for Asian outflow to the Pacific in spring. The WCBs lift both anthropogenic and biomass burning (SE Asia) effluents to the free troposphere, resulting in complex chemical signatures. The TRACE-P data are in general consistent with a priori emission inventories, lending confidence in our ability to quantify Asian emissions from socioeconomic data and emission factors. However, the residential combustion source in rural China was found to be much larger than the a priori, and there were also unexplained chemical enhancements (HCN, CH3Cl, OCS, alkylnitrates) in Chinese urban plumes. The Asian source of CCl4 was found to be much

  8. Seat Capacity Selection for an Advanced Short-Haul Aircraft Design

    Science.gov (United States)

    Marien, Ty V.

    2016-01-01

    A study was performed to determine the target seat capacity for a proposed advanced short-haul aircraft concept projected to enter the fleet by 2030. This analysis projected the potential demand in the U.S. for a short-haul aircraft using a transportation theory approach, rather than selecting a target seat capacity based on recent industry trends or current market demand. A transportation systems model was used to create a point-to-point network of short-haul trips and then predict the number of annual origin-destination trips on this network. Aircraft of varying seat capacities were used to meet the demand on this network, assuming a single aircraft type for the entire short-haul fleet. For each aircraft size, the ticket revenue and operational costs were used to calculate a total market profitability metric for all feasible flights. The different aircraft sizes were compared, based on this market profitability metric and also the total number of annual round trips and markets served. Sensitivity studies were also performed to determine the effect of changing the aircraft cruise speed and maximum trip length. Using this analysis, the advanced short-haul aircraft design team was able to select a target seat capacity for their design.

  9. Fettered aircraft for using wind energy

    Energy Technology Data Exchange (ETDEWEB)

    Hoeppner, H.; Horvath, E.; Ulrich, S.

    1980-08-28

    The invention concerns an aircraft tethered by cables, whose balloon-shaped central body produces static and aerodynamic upthrust and which carries turbines, which are used to convert wind energy and to drive the aircraft. The purpose of the invention is to provide an aircraft, which will keep wind energy plant at the optimum height. A new type of aircraft is used to solve the problem, which, according to the invention, combines static upthrust, the production of aerodynamic upthrust, wind energy conversion, energy transport and forward drive in a technically integrated aircraft. If the use of windpower is interrupted, then if necessary the drive together with a remote control system provides controlled free flight of the aircraft. One variant of the object of the invention consists of a central, balloon-shaped body for upthrust, in which there are wind turbines driving electrical generators. According to the invention the motors required to start the wind turbines are of such dimensions that they will drive the turbines in free flight of the aircraft and thus provide forward drive of the aircraft. A power generating unit, consisting of an internal combustion engine and the starter motors switched over to generator operation is used to provide house service supplies for control and regulation of the aircraft.

  10. Development of selected advanced aerodynamics and active control concepts for commercial transport aircraft

    Science.gov (United States)

    Taylor, A. B.

    1984-01-01

    Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.

  11. Simulator Investigations of the Problems of Flying a Swept-Wing Transport Aircraft in Heavy Turbulence

    Science.gov (United States)

    Bray, Richard S.; Larsen, William E.

    1965-01-01

    An investigation of several factors which may contribute to the problem of piloting jet transport aircraft in heavy turbulence was conducted by using a piloted simulator that included the most significant airplane response and cockpit vibrations induced by rough air. Results indicated that the primary fuselage structural frequency contributed significantly to a distracting cockpit environment, and there was obtained evidence of severely reduced instrument flight proficiency during simulated maneuvering flight in heavy turbulence. It is concluded that the addition of similar rough-air response capabilities to training simulators would be of value in pilot indoctrination in turbulent-flight procedures.

  12. Subsonic Ultra Green Aircraft Research

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2011-01-01

    This Final Report summarizes the work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team in Phase 1, which includes the time period of October 2008 through March 2010. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. The team completed the development of a comprehensive future scenario for world-wide commercial aviation, selected baseline and advanced configurations for detailed study, generated technology suites for each configuration, conducted detailed performance analysis, calculated noise and emissions, assessed technology risks, and developed technology roadmaps. Five concepts were evaluated in detail: 2008 baseline, N+3 reference, N+3 high span strut braced wing, N+3 gas turbine battery electric concept, and N+3 hybrid wing body. A wide portfolio of technologies was identified to address the NASA N+3 goals. Significant improvements in air traffic management, aerodynamics, materials and structures, aircraft systems, propulsion, and acoustics are needed. Recommendations for Phase 2 concept and technology projects have been identified.

  13. Traffic and transport technology-road, railway, and water-borne transportation

    Science.gov (United States)

    1990-01-01

    This is "Part 2: Case Studies - Chapter 9" of the book, "The Japanese Experience in Technology", and includes the following subsections: Modernization and the railway; The transportation network; Issues in railway policy; Original design and producti...

  14. Finite-difference modeling of commercial aircraft using TSAR

    Energy Technology Data Exchange (ETDEWEB)

    Pennock, S.T.; Poggio, A.J.

    1994-11-15

    Future aircraft may have systems controlled by fiber optic cables, to reduce susceptibility to electromagnetic interference. However, the digital systems associated with the fiber optic network could still experience upset due to powerful radio stations, radars, and other electromagnetic sources, with potentially serious consequences. We are modeling the electromagnetic behavior of commercial transport aircraft in support of the NASA Fly-by-Light/Power-by-Wire program, using the TSAR finite-difference time-domain code initially developed for the military. By comparing results obtained from TSAR with data taken on a Boeing 757 at the Air Force Phillips Lab., we hope to show that FDTD codes can serve as an important tool in the design and certification of U.S. commercial aircraft, helping American companies to produce safe, reliable air transportation.

  15. A Cybernetic Approach to Assess the Longitudinal Handling Qualities of Aeroelastic Aircraft

    NARCIS (Netherlands)

    Damveld, H.J.

    2009-01-01

    The future demand for larger and lighter civil transport aircraft leads to more flexible aircraft, which bring their own controlling and handling problems. A review of established handling qualities methods showed that they were either unsuitable for aeroelastic aircraft, or had significant

  16. Robotics and Automation for Flight Deck Aircraft Servicing

    Energy Technology Data Exchange (ETDEWEB)

    Chesser, J.B.; Draper, J.V.; Pin, F.G.

    1999-03-01

    One of the missions of the Future Aircraft Carriers Program is to investigate methods that would improve aircraft turnaround servicing activities on carrier decks. The major objectives and criteria for evaluating alternative aircraft servicing methods are to reduce workload requirements, turnaround times (TAT), and life-cycle costs (LCC). Technologies in the field of Robotics and Automation (R and A) have the potential to significantly contribute to these objectives. The objective of this study was to investigate aircraft servicing functions on carrier decks which would offer the potentially most significant payoff if improved by various R and A technologies. Improvement in this case means reducing workload, time and LCC. This objective was accomplished using a ''bottom-up'' formalized approach as described in the following.

  17. 75 FR 24773 - Research and Innovative Technology Administration Advisory Council on Transportation Statistics...

    Science.gov (United States)

    2010-05-05

    ... DEPARTMENT OF TRANSPORTATION Bureau of Transportation Statistics Research and Innovative Technology Administration Advisory Council on Transportation Statistics; Notice of Meeting AGENCY: Research... Transportation, Research and Innovative Technology Administration, Bureau of Transportation Statistics, Attention...

  18. Predicting the impacts of new technology aircraft on international air transportation demand

    Science.gov (United States)

    Ausrotas, R. A.

    1981-01-01

    International air transportation to and from the United States was analyzed. Long term and short term effects and causes of travel are described. The applicability of econometric methods to forecast passenger travel is discussed. A nomograph is developed which shows the interaction of economic growth, airline yields, and quality of service in producing international traffic.

  19. Airspace Systems Program: Next Generation Air Transportation System Concepts and Technology Development FY2010 Project Plan Version 3.0

    Science.gov (United States)

    Kopardekar, Parimal H.

    2010-01-01

    This document describes the FY2010 plan for the management and execution of the Next Generation Air Transportation System (NextGen) Concepts and Technology Development (CTD) Project. The document was developed in response to guidance from the Airspace Systems Program (ASP), as approved by the Associate Administrator of the Aeronautics Research Mission Directorate (ARMD), and from guidelines in the Airspace Systems Program Plan. Congress established the multi-agency Joint Planning and Development Office (JPDO) in 2003 to develop a vision for the 2025 Next Generation Air Transportation System (NextGen) and to define the research required to enable it. NASA is one of seven agency partners contributing to the effort. Accordingly, NASA's ARMD realigned the Airspace Systems Program in 2007 to "directly address the fundamental research needs of the Next Generation Air Transportation System...in partnership with the member agencies of the JPDO." The Program subsequently established two new projects to meet this objective: the NextGen-Airspace Project and the NextGen-Airportal Project. Together, the projects will also focus NASA s technical expertise and world-class facilities to address the question of where, when, how and the extent to which automation can be applied to moving aircraft safely and efficiently through the NAS and technologies that address optimal allocation of ground and air technologies necessary for NextGen. Additionally, the roles and responsibilities of humans and automation influence in the NAS will be addressed by both projects. Foundational concept and technology research and development begun under the NextGen-Airspace and NextGen-Airportal projects will continue. There will be no change in NASA Research Announcement (NRA) strategy, nor will there be any change to NASA interfaces with the JPDO, Federal Aviation Administration (FAA), Research Transition Teams (RTTs), or other stakeholders

  20. Maintenance program developmentandImport /Export of Aircraft in USA

    OpenAIRE

    Takele, Teklu

    2009-01-01

    AbstractThis thesis discuss how United Parcel Service (UPS) develop its aircraft maintenanceprogram after import of McDonnell Douglas MD-11aircraft and the process of exporting newMD-11 aircraft from manufacturer in USA to European operator as passenger aircraft. It alsodiscusses the process of importing the same types of aircraft as freight carrier. The aircraftundergo, through different modifications at Singapore Technologies Aerospace (STA)conversion from passenger to freight carrier, a pr...

  1. Enabling alternate fuels for commercial aircraft

    OpenAIRE

    Daggett, D.

    2010-01-01

    The following reports on the past four years of work to examine the feasibility, sustainability and economic viability of developing a renewable, greenhouse-gas-neutral, liquid biofuel for commercial aircraft. The sharp increase in environmental concerns, such as global warming, as well as the volatile price fluctuations of fossil fuels, has ignited a search for alternative transportation fuels. However, commercial aircraft can not use present alternative fuels that are designed for ground...

  2. Study of Advanced Propulsion Systems for Small Transport Aircraft Technology (STAT) Program

    Science.gov (United States)

    Baerst, C. F.; Heldenbrand, R. W.; Rowse, J. H.

    1981-01-01

    Definitions of takeoff gross weight, performance, and direct operating cost for both a 30 and 50 passenger airplane were established. The results indicate that a potential direct operating cost benefit, resulting from advanced technologies, of approximately 20 percent would be achieved for the 1990 engines. Of the numerous design features that were evaluated, only maintenance-related items contributed to a significant decrease in direct operating cost. Recommendations are made to continue research and technology programs for advanced component and engine development.

  3. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg. Previously announced in STAR as N83-24764

  4. Advanced electrical power system technology for the all electric aircraft

    Science.gov (United States)

    Finke, R. C.; Sundberg, G. R.

    1983-01-01

    The application of advanced electric power system technology to an all electric airplane results in an estimated reduction of the total takeoff gross weight of over 23,000 pounds for a large airplane. This will result in a 5 to 10 percent reduction in direct operating costs (DOC). Critical to this savings is the basic electrical power system component technology. These advanced electrical power components will provide a solid foundation for the materials, devices, circuits, and subsystems needed to satisfy the unique requirements of advanced all electric aircraft power systems. The program for the development of advanced electrical power component technology is described. The program is divided into five generic areas: semiconductor devices (transistors, thyristors, and diodes); conductors (materials and transmission lines); dielectrics; magnetic devices; and load management devices. Examples of progress in each of the five areas are discussed. Bipolar power transistors up to 1000 V at 100 A with a gain of 10 and a 0.5 microsec rise and fall time are presented. A class of semiconductor devices with a possibility of switching up to 100 kV is described. Solid state power controllers for load management at 120 to 1000 V and power levels to 25 kW were developed along with a 25 kW, 20 kHz transformer weighing only 3.2 kg.

  5. Hydrogen aircraft and airport safety

    International Nuclear Information System (INIS)

    Schmidtchen, U.; Behrend, E.; Pohl, H.-W.; Rostek, N.

    1997-01-01

    First flight tests with a hydrogen demonstrator aircraft, currently under investigation in the scope of the German-Russia Cryoplane project, are scheduled for 1999. Regular service with regional aircraft may begin around 2005, followed by larger Airbus-type airliners around 2010-2015. The fuel storage aboard such airliners will be of the order of 15 t or roughly 200 m 3 LH 2 . This paper investigates a number of safety problems associated with the handling and air transport of so much hydrogen. The same is done for the infrastructure on the airport. Major risks are identified, and appropriate measures in design and operation are recommended. It is found that hydrogen aircraft are no more dangerous than conventional ones - safer in some respects. (author)

  6. Subscale Flight Testing for Aircraft Loss of Control: Accomplishments and Future Directions

    Science.gov (United States)

    Cox, David E.; Cunningham, Kevin; Jordan, Thomas L.

    2012-01-01

    Subscale flight-testing provides a means to validate both dynamic models and mitigation technologies in the high-risk flight conditions associated with aircraft loss of control. The Airborne Subscale Transport Aircraft Research (AirSTAR) facility was designed to be a flexible and efficient research facility to address this type of flight-testing. Over the last several years (2009-2011) it has been used to perform 58 research flights with an unmanned, remotely-piloted, dynamically-scaled airplane. This paper will present an overview of the facility and its architecture and summarize the experimental data collected. All flights to date have been conducted within visual range of a safety observer. Current plans for the facility include expanding the test volume to altitudes and distances well beyond visual range. The architecture and instrumentation changes associated with this upgrade will also be presented.

  7. Artificial intelligence and its impact on combat aircraft

    Science.gov (United States)

    Ott, Lawrence M.; Abbot, Kathy; Kleider, Alfred; Moon, D.; Retelle, John

    1987-01-01

    As the threat becomes more sophisticated and weapon systems more complex to meet the threat, the need for machines to assist the pilot in the assessment of information becomes paramount. This is particularly true in real-time, high stress situations. The advent of artificial intelligence (AI) technology offers the opportunity to make quantum advances in the application of machine technology. However, if AI systems are to find their way into combat aircraft, they must meet certain criteria. The systems must be responsive, reliable, easy to use, flexible, and understandable. These criteria are compared with the current status used in a combat airborne application. Current AI systems deal with nonreal time applications and require significant user interaction. On the other hand, aircraft applications require real time, minimum human interaction systems. In order to fill the gap between where technology is now and where it must be for aircraft applications, considerable government research is ongoing in NASA, DARPA, and three services. The ongoing research is briefly summarized. Finally, recognizing that AI technology is in its embryonic stage, and the aircraft needs are very demanding, a number of issues arise. These issues are delineated and findings are provided where appropriate.

  8. Proceedings of the 2008 transportation technologies and fuels forum

    International Nuclear Information System (INIS)

    2008-01-01

    As a large emitter of pollutants, the transportation industry is now seeking to develop a sustainable transportation plan for the future by developing methods of reducing emissions and improving the fuel efficiency of vehicles. This forum discussed recent innovations in vehicle transportation technologies. Industry leaders, government representatives, and researchers discussed methods of reducing greenhouse gases (GHGs) and air pollution in the transportation sector. Advanced combustion technologies were outlined, and recent developments in hybrid electric-powered vehicles were discussed. Research related to fuel cells, hydrogen fuels and biofuels was presented. The impacts of polluting vehicles on public health were also discussed. The forum was divided into the following 5 sessions: (1) setting the scene, (2) future fuels, (3) emissions, (4) EVs now, and (5) the road to the future. The sessions were followed by a panel on technology roadmaps. The forum featured 14 presentations, of which 4 have been catalogued separately for inclusion in this database. tabs., figs.

  9. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J; Ebel, A; Lippert, E; Petry, H [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1998-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  10. Process analysis of the modelled 3-D mesoscale impact of aircraft emissions on the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Hendricks, J.; Ebel, A.; Lippert, E.; Petry, H. [Koeln Univ. (Germany). Inst. fuer Geophysik und Meterorologie

    1997-12-31

    A mesoscale chemistry transport model is applied to study the impact of aircraft emissions on the atmospheric trace gas composition. A special analysis of the simulations is conducted to separate the effects of chemistry, transport, diffusion and cloud processes on the transformation of the exhausts of a subsonic fleet cruising over the North Atlantic. The aircraft induced ozone production strongly depends on the tropopause height and the cruise altitude. Aircraft emissions may undergo an effective downward transport under the influence of stratosphere-troposphere exchange activity. (author) 12 refs.

  11. TCV software test and validation tools and technique. [Terminal Configured Vehicle program for commercial transport aircraft operation

    Science.gov (United States)

    Straeter, T. A.; Williams, J. R.

    1976-01-01

    The paper describes techniques for testing and validating software for the TCV (Terminal Configured Vehicle) program which is intended to solve problems associated with operating a commercial transport aircraft in the terminal area. The TCV research test bed is a Boeing 737 specially configured with digital computer systems to carry out automatic navigation, guidance, flight controls, and electronic displays research. The techniques developed for time and cost reduction include automatic documentation aids, an automatic software configuration, and an all software generation and validation system.

  12. The role of transportation technologies in reducing greenhouse gas emissions

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    The potential role of passenger transportation technologies in reducing greenhouse gas emissions was discussed. The technologies considered in the report were those that affect ground transportation of passengers and were in at least the early stages of development in 1995. They were: (1) technologies to improve the fuel efficiency of cars and light trucks, (2) alternative fuels for internal combustion engines, (3) electric hybrid vehicles, (4) advanced technology transit buses, (5) intelligent transportation systems, (6) high speed rail, and (7) bicycles. For each option, the advantages and disadvantages were described. The feasibility of establishing a high-speed rail system serving Canada's most densely populated region, the Windsor to Quebec City corridor, was discussed. Economic and environmental studies of such a proposal are underway. tabs

  13. Alternate aircraft fuels prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The paper discusses NASA studies of the potentials of coal-derived aviation fuels, specifically synthetic aviation kerosene, liquid methane, and liquid hydrogen. Topics include areas of fuel production, air terminal requirements for aircraft fueling (for liquid hydrogen only), and the performance characteristics of aircraft designed to utilize alternate fuels. Energy requirements associated with the production of each of the three selected fuels are determined, and fuel prices are estimated. Subsonic commercial air transports using liquid hydrogen fuel have been analyzed, and their performance and the performance of aircraft which use commercial aviation kerosene are compared. Environmental and safety issues are considered.

  14. Large-Scale V/STOL Experimental Investigations of an Ejector-Lift Fighter and a Twin Tilt-Nacelle Transport

    Science.gov (United States)

    Dudley, Michael R.

    2016-01-01

    In the 1980s NASA Aeronautics was actively involved in full-scale wind tunnel testing of promising VSTOL aircraft concepts. This presentation looks at two, a multi-role fighter and a subsonic tactical transport. Their strengths and weaknesses are discussed with some of the rationale that ultimately led to the selection of competing concepts for production, namely the V-22 Osprey and the F-35 Lightning. The E7-A STOVL multi-role fighter was the product of an aircraft development program in the late 1980s by NASA, the Defense Advanced Research Projects Agency (DARPA), the Canadian Department of Industry Science and Technology (DIST), and industry partners General Dynamics and Boeing Dehavilland. The program was conducted an in response to increasing US-UK interest in supersonic STOVL fighters. The objective was to design an aircraft that could replace most existing close air support-air combat fighters with a single aircraft that had some of the qualities of an air superiority fighter and the deployment flexibility of a VSTOL aircraft. The resulting E7-A concept was a delta-wing supersonic fighter that used a fuselage-mounted thrust augmenting ejector and a ventral deflecting jet nozzle for vertical lift. The Grumman Aircraft Company, the Navy, and NASA developed the Design-698 (D-698) subsonic tactical transport in response to the Navy's Type A VSTOL utility aircraft requirement. The objective was to develop a subsonic utility transport with the operational flexibility of a helicopter, but with greater speed and range. The D-698 employs two high-bypass turbofan engines mounted on a dumbbell that rotates through ninety degrees for vertical takeoff and cruise flight. Movable vanes positioned in the exhaust flow provide control in hover with the need for reaction control jets. The presentations concluding comments suggest that technology advances in the last thirty-years may justify the value of revisiting some of these concepts.

  15. Advanced technologies for intelligent transportation systems

    CERN Document Server

    Picone, Marco; Amoretti, Michele; Zanichelli, Francesco; Ferrari, Gianluigi

    2015-01-01

    This book focuses on emerging technologies in the field of Intelligent Transportation Systems (ITSs) namely efficient information dissemination between vehicles, infrastructures, pedestrians and public transportation systems. It covers the state-of-the-art of Vehicular Ad-hoc Networks (VANETs), with centralized and decentralized (Peer-to-Peer) communication architectures, considering several application scenarios. With a detailed treatment of emerging communication paradigms, including cross networking  and distributed algorithms. Unlike most of the existing books, this book presents a multi-layer overview of information dissemination systems, from lower layers (MAC) to high layers (applications). All those aspects are investigated considering the use of mobile devices, such as smartphones/tablets and embedded systems, i.e. technologies that during last years completely changed the current market, the user expectations, and communication networks. The presented networking paradigms are supported and validate...

  16. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    Science.gov (United States)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  17. HTS machines as enabling technology for all-electric airborne vehicles

    International Nuclear Information System (INIS)

    Masson, P J; Brown, G V; Soban, D S; Luongo, C A

    2007-01-01

    Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development

  18. HTS machines as enabling technology for all-electric airborne vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Masson, P J [FAMU-FSU College of Engineering and the Center for Advanced Power Systems, Tallahassee, FL 32310 (United States); Brown, G V [NASA Glenn Research Center, Cleveland, OH (United States); Soban, D S [Aerospace System Design Laboratory/Georgia Tech, Atlanta, GA 32332 (United States); Luongo, C A [FAMU-FSU College of Engineering and the Center for Advanced Power Systems, Tallahassee, FL 32310 (United States)

    2007-08-15

    Environmental protection has now become paramount as evidence mounts to support the thesis of human activity-driven global warming. A global reduction of the emissions of pollutants into the atmosphere is therefore needed and new technologies have to be considered. A large part of the emissions come from transportation vehicles, including cars, trucks and airplanes, due to the nature of their combustion-based propulsion systems. Our team has been working for several years on the development of high power density superconducting motors for aircraft propulsion and fuel cell based power systems for aircraft. This paper investigates the feasibility of all-electric aircraft based on currently available technology. Electric propulsion would require the development of high power density electric propulsion motors, generators, power management and distribution systems. The requirements in terms of weight and volume of these components cannot be achieved with conventional technologies; however, the use of superconductors associated with hydrogen-based power plants makes possible the design of a reasonably light power system and would therefore enable the development of all-electric aero-vehicles. A system sizing has been performed both for actuators and for primary propulsion. Many advantages would come from electrical propulsion such as better controllability of the propulsion, higher efficiency, higher availability and less maintenance needs. Superconducting machines may very well be the enabling technology for all-electric aircraft development.

  19. Space Station technology testbed: 2010 deep space transport

    Science.gov (United States)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  20. Rural public transportation technologies : user needs and applications : final report

    Science.gov (United States)

    1998-07-01

    The Rural Public Transportation Technologies: User Needs and Applications study was conducted as part of the U.S. Department of Transportations (DOT) overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportuniti...

  1. Rural Public Transportation Technologies: User Needs and Applications. Executive Summary

    Science.gov (United States)

    1998-07-01

    The Rural Public Transportation Technologies: User Needs and Applications study was conducted as part of the U.S. Department of Transportation's (DOT) overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportunities...

  2. A paleo-aerodynamic exploration of the evolution of nature's flyers, man's aircraft, and the needs and options for future technology innovations

    Science.gov (United States)

    Kulfan, Brenda M.

    2009-03-01

    Insights and observations of fascinating aspects of birds, bugs and flying seeds, of inspired aerodynamic concepts, and visions of past, present and future aircraft developments are presented. The evolution of nature's flyers, will be compared with the corresponding evolution of commercial aircraft. We will explore similarities between nature's creations and man's inventions. Many critical areas requiring future significant technology based solutions remain. With the advent of UAVs and MAVs, the gap between "possible" and "actual" is again very large. Allometric scaling procedures will be used to explore size implications on limitations and performance capabilities of nature's creations. Biologically related technology development concepts including: bionics, biomimicry, neo-bionic, pseudo-mimicry, cybernetic and non-bionic approaches will be discussed and illustrated with numerous examples. Technology development strategies will be discussed along with the pros and cons for each. Future technology developments should include a synergistic coupling of "discovery driven", "product led" and "technology acceleration" strategies. The objective of this presentation is to inspire the creative nature existing within all of us. This is a summary all text version of the complete report with the same title that report includes approximately 80 figures, photos and charts and much more information.

  3. Technologies for climate change mitigation - transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Salter, R.; Newman, P. (Curtin Univ. Sustainability Policy (CUSP) Institute, Perth, WA (Australia)); Dhar, S. (UNEP Risoe Centre, Roskilde (Denmark))

    2011-03-15

    The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries and localities - transport that better serves people's needs and enhances their lives while at the same time producing fewer greenhouse gas emissions. This is a new challenge, as previously improving transport generally led to increased greenhouse gases. The challenge now is to provide transport that: 1) is cheaper, more extensive and better quality 2) reduces pollution, congestion, traffic accidents and other threats to health and wellbeing 3) is accessible to all 4) supports economic development 5) reduces greenhouse emissions overall. This can be achieved if: 1) mass transit, walking and cycling are supported and encouraged, and integrated in a way that allows seamless multimodal travel, including networks of taxis, auto-rickshaws and small buses. 2) the mass transit services - including trains, buses and light-rail - are frequent, extensive, attractive, comfortable, affordable and faster than alternatives, with features like integrated ticketing and real time information accessible through mobile phones and other sources 3) private vehicle use and air travel are discouraged through pricing and other demand management measures, and through the availability of better alternative modes 4) there is support for the adoption of cleaner, lower carbon fuels and technologies and better maintenance practices for all transport modes, including private vehicles, water transport, auto-rickshaws and freight vehicles 5) the overall need for travel is reduced through the development of denser localities with more mixed land use and better access to mass transit (which reduces overall travel in ways that will be explained) 6) travel space is better managed to give higher priority to more sustainable transport modes, to promote safety, and to prevent traffic from adversely affecting residents and businesses. As you address these

  4. Technologies for climate change mitigation - transport sector

    Energy Technology Data Exchange (ETDEWEB)

    Salter, R; Newman, P [Curtin Univ. Sustainability Policy (CUSP) Institute, Perth, WA (Australia); Dhar, S [UNEP Risoe Centre, Roskilde (Denmark)

    2011-03-15

    The options outlined in this guidebook are designed to assist you in the process of developing transport services and facilities in your countries and localities - transport that better serves people's needs and enhances their lives while at the same time producing fewer greenhouse gas emissions. This is a new challenge, as previously improving transport generally led to increased greenhouse gases. The challenge now is to provide transport that: 1) is cheaper, more extensive and better quality 2) reduces pollution, congestion, traffic accidents and other threats to health and wellbeing 3) is accessible to all 4) supports economic development 5) reduces greenhouse emissions overall. This can be achieved if: 1) mass transit, walking and cycling are supported and encouraged, and integrated in a way that allows seamless multimodal travel, including networks of taxis, auto-rickshaws and small buses. 2) the mass transit services - including trains, buses and light-rail - are frequent, extensive, attractive, comfortable, affordable and faster than alternatives, with features like integrated ticketing and real time information accessible through mobile phones and other sources 3) private vehicle use and air travel are discouraged through pricing and other demand management measures, and through the availability of better alternative modes 4) there is support for the adoption of cleaner, lower carbon fuels and technologies and better maintenance practices for all transport modes, including private vehicles, water transport, auto-rickshaws and freight vehicles 5) the overall need for travel is reduced through the development of denser localities with more mixed land use and better access to mass transit (which reduces overall travel in ways that will be explained) 6) travel space is better managed to give higher priority to more sustainable transport modes, to promote safety, and to prevent traffic from adversely affecting residents and businesses. As you address these

  5. Achievement report on research and development in the Sunshine Project in fiscal 1976. Comprehensive discussion on hydrogen utilizing subsystems and research on peripheral technologies (Research for aircraft engines); 1976 nendo suiso riyo subsystem no sogoteki kento to shuhen gijutsu ni kansuru kenkyu seika hokokusho. Koku engine ni kansuru kenkyu (furoku)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1977-05-01

    This paper introduces two out of six theses related to hydrogen fueled aircraft engines presented at the First World Hydrogen Energy Conference held in Miami in March 1976. One thesis mentions several initial prospects related to terrestrial requirements on hydrogen fueled transport aircraft. Liquefied hydrogen is attractive for large long-distance transport aircraft. Its high energy content can reduce the take-off full load weight by more than 30%, enhancing the economic effect of the aircraft. Saving fossil fuels will require national policy decisions in the near future, where introduction of liquefied hydrogen is more advantageous for long-distance aircraft. However, its introduction into wide-body transport aircraft being the major consumer requires transportation companies and airport authorities to carry out joint development with transport aircraft makers and liquefied hydrogen suppliers. The second thesis describes special natures of fuel subsystems for liquefied hydrogen fueled aircraft. Requirements to major fuel system elements and operation characteristics require evaluation as a comprehensive system, rather than as individual component criteria. In addition, hardware, experience and fuel systems as they are now in space development may not necessarily serve for the purpose. (NEDO)

  6. Smart aircraft fastener evaluation (SAFE) system: a condition-based corrosion detection system for aging aircraft

    Science.gov (United States)

    Schoess, Jeffrey N.; Seifert, Greg; Paul, Clare A.

    1996-05-01

    The smart aircraft fastener evaluation (SAFE) system is an advanced structural health monitoring effort to detect and characterize corrosion in hidden and inaccessible locations of aircraft structures. Hidden corrosion is the number one logistics problem for the U.S. Air Force, with an estimated maintenance cost of $700M per year in 1990 dollars. The SAFE system incorporates a solid-state electrochemical microsensor and smart sensor electronics in the body of a Hi-Lok aircraft fastener to process and autonomously report corrosion status to aircraft maintenance personnel. The long-term payoff for using SAFE technology will be in predictive maintenance for aging aircraft and rotorcraft systems, fugitive emissions applications such as control valves, chemical pipeline vessels, and industrial boilers. Predictive maintenance capability, service, and repair will replace the current practice of scheduled maintenance to substantially reduce operational costs. A summary of the SAFE concept, laboratory test results, and future field test plans is presented.

  7. Active Structural Control for Aircraft Efficiency with the X-56A Aircraft

    Science.gov (United States)

    Ouellette, Jeffrey

    2015-01-01

    The X-56A Multi-Utility Technology Testbed is an experimental aircraft designed to study active control of flexible structures. The vehicle is easily reconfigured to allow for testing of different configurations. The vehicle is being used to study new sensor, actuator, modeling and controls technologies. These new technologies will allow for lighter vehicles and new configurations that exceed the efficiency currently achievable. A description of the vehicle and the current research efforts that it enables are presented.

  8. Alternative general-aircraft engines

    Science.gov (United States)

    Tomazic, W. A.

    1976-01-01

    The most promising alternative engine (or engines) for application to general aircraft in the post-1985 time period was defined, and the level of technology was cited to the point where confident development of a new engine can begin early in the 1980's. Low emissions, multifuel capability, and fuel economy were emphasized. Six alternative propulsion concepts were considered to be viable candidates for future general-aircraft application: the advanced spark-ignition piston, rotary combustion, two- and four-stroke diesel, Stirling, and gas turbine engines.

  9. Emergency transport by aeromedical blimp.

    OpenAIRE

    Cottrell, J. J.; Garrard, C.

    1989-01-01

    Recently there has been an explosive growth in the use of helicopters and fixed wing aircraft for the transportation of patients who are ill and injured. Although using such methods of transport may result in faster access to health care centres, their ultimate role for the civilian population is unclear. Unfortunately, there are many problems associated with aeromedical transport, particularly with rotary wing aircraft, which have shown an alarming tendency to crash. The use of lighter than ...

  10. ANALYSIS OF METHODS PROVIDING ACCURACY FOR TOOLS AND TECHNIQUES VIBRATION MEASUREMENT IN THE PROCESS OF MAINTAINING AIRWORTHINESS OF AIRCRAFT

    Directory of Open Access Journals (Sweden)

    Anatoliy Alexandrovich Bogoyavlenskiy

    2017-01-01

    Full Text Available On the basis of system approach the structure of the aviation activity areas on air transport related to monitoring and measurements of vibration parameters is presented.The technology analysis of laboratory tests of the onboard equipment control of vibration parameters is carried out. The issues related to ensuring the unity of measurements of vibration parameters are researched and summarized.While dealing with the works on metrological certification described in the article, the risks arising from aviation activity on air transport are taken into account. The certification methods of measuring channels of vibration parametersused on stands for testing GTE at the repairing of aircraft engines are developed. The methods are implemented when con- ducting initial and periodic certifications of test benches for twelve types of aircraft GTE in repair organizations. The reliability of the results of the conducted research due to the fact that they were carried out with the use of certified measure- ment equipment, included in the State register of measuring instruments. The research is conducted for a sufficiently high statistical confidence level with the boundaries 0.95. The studies have shown that running on air transport measurements of vibration parameters are metrologically se- cured, the unity of measurements and their traceability from the national primary reference to special measuring instru- ments, test equipment, and onboard controls of the aircraft is maintained.

  11. Advanced transport systems analysis, modeling, and evaluation of performances

    CERN Document Server

    Janić, Milan

    2014-01-01

    This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social, and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air trans...

  12. Advanced Air Transportation Technologies Project, Final Document Collection

    Science.gov (United States)

    Mogford, Richard H.; Wold, Sheryl (Editor)

    2008-01-01

    This CD ROM contains a compilation of the final documents of the Advanced Air Transportation Technologies (AAIT) project, which was an eight-year (1996 to 2004), $400M project managed by the Airspace Systems Program office, which was part of the Aeronautics Research Mission Directorate at NASA Headquarters. AAIT focused on developing advanced automation tools and air traffic management concepts that would help improve the efficiency of the National Airspace System, while maintaining or enhancing safety. The documents contained in the CD are final reports on AAIT tasks that serve to document the project's accomplishments over its eight-year term. Documents include information on: Advanced Air Transportation Technologies, Autonomous Operations Planner, Collaborative Arrival Planner, Distributed Air/Ground Traffic Management Concept Elements 5, 6, & 11, Direct-To, Direct-To Technology Transfer, Expedite Departure Path, En Route Data Exchange, Final Approach Spacing Tool - (Active and Passive), Multi-Center Traffic Management Advisor, Multi Center Traffic Management Advisor Technology Transfer, Surface Movement Advisor, Surface Management System, Surface Management System Technology Transfer and Traffic Flow Management Research & Development.

  13. Aircraft operability methods applied to space launch vehicles

    Science.gov (United States)

    Young, Douglas

    1997-01-01

    The commercial space launch market requirement for low vehicle operations costs necessitates the application of methods and technologies developed and proven for complex aircraft systems. The ``building in'' of reliability and maintainability, which is applied extensively in the aircraft industry, has yet to be applied to the maximum extent possible on launch vehicles. Use of vehicle system and structural health monitoring, automated ground systems and diagnostic design methods derived from aircraft applications support the goal of achieving low cost launch vehicle operations. Transforming these operability techniques to space applications where diagnostic effectiveness has significantly different metrics is critical to the success of future launch systems. These concepts will be discussed with reference to broad launch vehicle applicability. Lessons learned and techniques used in the adaptation of these methods will be outlined drawing from recent aircraft programs and implementation on phase 1 of the X-33/RLV technology development program.

  14. Transformations in Air Transportation Systems For the 21st Century

    Science.gov (United States)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  15. U.S. aerospace industry opinion of the effect of computer-aided prediction-design technology on future wind-tunnel test requirements for aircraft development programs

    Science.gov (United States)

    Treon, S. L.

    1979-01-01

    A survey of the U.S. aerospace industry in late 1977 suggests that there will be an increasing use of computer-aided prediction-design technology (CPD Tech) in the aircraft development process but that, overall, only a modest reduction in wind-tunnel test requirements from the current level is expected in the period through 1995. Opinions were received from key spokesmen in 23 of the 26 solicited major companies or corporate divisions involved in the design and manufacture of nonrotary wing aircraft. Development programs for nine types of aircraft related to test phases and wind-tunnel size and speed range were considered.

  16. NASA's aviation safety research and technology program

    Science.gov (United States)

    Fichtl, G. H.

    1977-01-01

    Aviation safety is challenged by the practical necessity of compromising inherent factors of design, environment, and operation. If accidents are to be avoided these factors must be controlled to a degree not often required by other transport modes. The operational problems which challenge safety seem to occur most often in the interfaces within and between the design, the environment, and operations where mismatches occur due to ignorance or lack of sufficient understanding of these interactions. Under this report the following topics are summarized: (1) The nature of operating problems, (2) NASA aviation safety research, (3) clear air turbulence characterization and prediction, (4) CAT detection, (5) Measurement of Atmospheric Turbulence (MAT) Program, (6) Lightning, (7) Thunderstorm gust fronts, (8) Aircraft ground operating problems, (9) Aircraft fire technology, (10) Crashworthiness research, (11) Aircraft wake vortex hazard research, and (12) Aviation safety reporting system.

  17. Visions of the Future: Hybrid Electric Aircraft Propulsion

    Science.gov (United States)

    Bowman, Cheryl L.

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is investing continually in improving civil aviation. Hybridization of aircraft propulsion is one aspect of a technology suite which will transform future aircraft. In this context, hybrid propulsion is considered a combination of traditional gas turbine propulsion and electric drive enabled propulsion. This technology suite includes elements of propulsion and airframe integration, parallel hybrid shaft power, turbo-electric generation, electric drive systems, component development, materials development and system integration at multiple levels.

  18. Aircraft Electric Propulsion Systems Applied Research at NASA

    Science.gov (United States)

    Clarke, Sean

    2015-01-01

    Researchers at NASA are investigating the potential for electric propulsion systems to revolutionize the design of aircraft from the small-scale general aviation sector to commuter and transport-class vehicles. Electric propulsion provides new degrees of design freedom that may enable opportunities for tightly coupled design and optimization of the propulsion system with the aircraft structure and control systems. This could lead to extraordinary reductions in ownership and operating costs, greenhouse gas emissions, and noise annoyance levels. We are building testbeds, high-fidelity aircraft simulations, and the first highly distributed electric inhabited flight test vehicle to begin to explore these opportunities.

  19. DOE/PNC joint program on transportation technology

    International Nuclear Information System (INIS)

    Kubo, M.; Kajitani, M.; Seya, M.; Yoshimura, H.R.; Moya, J.L.; May, R.A.; Huerta, M.; Stenberg, D.R.

    1986-01-01

    This paper summarizes the work performed in a cooperative program on transportation technology between the Department of Energy (DOE) and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. This work was performed at Sandia National Laboratories (SNL) in Albuquerque, New Mexico. The joint program emphasized the safety analysis for truck transportation of special nuclear materials (SNM) in Japan. Tasks included structural analyses and testing, thermal testing, leak rate studies and tests, and transportation risk assessments. The purpose of this paper is to present the results of full-scale structural and thermal tests conducted on a PNC development SNM transport system. Correlation of full-scale impact test results with structural analysis and scale model testing will also be reviewed

  20. Development of high temperature molten salt transport technology for pyrometallurgical reprocessing

    International Nuclear Information System (INIS)

    Hijikata, Takatoshi; Koyama, Tadafumi

    2009-01-01

    Pyrometallurgical reprocessing technology is currently being focused in many countries for closing actinide fuel cycle because of its favorable economic potential and an intrinsic proliferation-resistant feature due to the inherent difficulty of extracting weapons-usable plutonium. The feasibility of pyrometallurgical reprocessing has been demonstrated through many laboratory scale experiments. Hence the development of the engineering technology necessary for pyrometallurgical reprocessing is a key issue for industrial realization. The development of high-temperature transport technologies for molten salt and liquid cadmium is crucial for pyrometallurgical processing; however, there have been very few transport studies on high-temperature fluids. In this study, a salt transport test rig was installed in an argon glove box with the aim of developing technologies for transporting molten salt at approximately 773 K. The gravitation transport of the molten salt at approximately 773 K could be well controlled at a velocity from 0.1 to 1.2 m/s by adjusting the valve. Consequently, the flow in the molten salt can be controlled from laminar flow to turbulent flow. It was demonstrated that; using a centrifugal pump, molten salt at approximately 773 K could be transported at a controlled rate from 2.5 to 8 dm 3 /min against a 1 m head. (author)

  1. Reducing global NOx emissions: developing advanced energy and transportation technologies.

    Science.gov (United States)

    Bradley, Michael J; Jones, Brian M

    2002-03-01

    Globally, energy demand is projected to continue to increase well into the future. As a result, global NOx emissions are projected to continue on an upward trend for the foreseeable future as developing countries increase their standards of living. While the US has experienced improvements in reducing NOx emissions from stationary and mobile sources to reduce ozone, further progress is needed to reduce the health and ecosystem impacts associated with NOx emissions. In other parts of the world, (in developing countries in particular) NOx emissions have been increasing steadily with the growth in demand for electricity and transportation. Advancements in energy and transportation technologies may help avoid this increase in emissions if appropriate policies are implemented. This paper evaluates commercially available power generation and transportation technologies that produce fewer NOx emissions than conventional technologies, and advanced technologies that are on the 10-year commercialization horizon. Various policy approaches will be evaluated which can be implemented on the regional, national and international levels to promote these advanced technologies and ultimately reduce NOx emissions. The concept of the technology leap is offered as a possibility for the developing world to avoid the projected increases in NOx emissions.

  2. Emerging nondestructive inspection methods for aging aircraft

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, A; Dahlke, L; Gieske, J [and others

    1994-01-01

    This report identifies and describes emerging nondestructive inspection (NDI) methods that can potentially be used to inspect commercial transport and commuter aircraft for structural damage. The nine categories of emerging NDI techniques are: acoustic emission, x-ray computed tomography, backscatter radiation, reverse geometry x-ray, advanced electromagnetics, including magnetooptic imaging and advanced eddy current techniques, coherent optics, advanced ultrasonics, advanced visual, and infrared thermography. The physical principles, generalized performance characteristics, and typical applications associated with each method are described. In addition, aircraft inspection applications are discussed along with the associated technical considerations. Finally, the status of each technique is presented, with a discussion on when it may be available for use in actual aircraft maintenance programs. It should be noted that this is a companion document to DOT/FAA/CT-91/5, Current Nondestructive Inspection Methods for Aging Aircraft.

  3. Kansas Department of Transportation research & technology news, vol. 6 #2, December 2013.

    Science.gov (United States)

    2013-12-01

    Research & Technology News is a newsletter published by the Kansas Department of : Transportation, Bureau of Researchs Technology Transfer Section, in cooperation with : the Federal Highway Administration and the U.S. Department of Transportation.

  4. Transport Technologies and Policy Scenarios to 2050 (Executive Summary)

    International Nuclear Information System (INIS)

    World Energy Council

    2007-01-01

    Transport is one of the major global consumers of energy, currently representing between 20 and 25 percent of aggregate energy consumption and CO 2 emissions. Strong growth in energy consumption to 2050 in all sectors, with the transport proportion projected to remain stable up to 2050. Transport therefore has an important role to lay in contributing to the primary objective of the World Energy Council: sustainable energy for all. Passenger vehicle technology is expected to remain dependent on petroleum fuels and internal combustion engines (ICE) for the foreseeable future, since these elements remain the most convenient and affordable for mass personal mobility. Enhancement of ICEs through clean diesels, hybrids and new combustion techniques will ensure increased efficiency, continuing the consistent historical annual improvement in vehicle efficiency. Policy makers must first agree on the overall objective, whether it be a reduction in energy consumption or greenhouse gas emissions. Technological development must be complemented by rational policy that will encourage and enable the technologies to emerge

  5. Emergency transport by aeromedical blimp.

    Science.gov (United States)

    Cottrell, J J; Garrard, C

    1989-04-01

    Recently there has been an explosive growth in the use of helicopters and fixed wing aircraft for the transportation of patients who are ill and injured. Although using such methods of transport may result in faster access to health care centres, their ultimate role for the civilian population is unclear. Unfortunately, there are many problems associated with aeromedical transport, particularly with rotary wing aircraft, which have shown an alarming tendency to crash. The use of lighter than air vehicles (blimps, hot air balloons) might offer most of the advantages of conventional aieromedical transport, with an appreciable improvement in safety.

  6. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    Science.gov (United States)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  7. Modern trends of aircraft fly-by-wire systems

    Directory of Open Access Journals (Sweden)

    С. С. Юцкевич

    2013-07-01

    Full Text Available Specifics of civil aviation modern transport aircraft fly-by-wire control systems are described. A comparison of the systems-level hardware and software, expressed through modes of guidance, provision of aircraft Airbus A-320, Boeing B-777, Tupolev Tu-214, Sukhoi Superjet SSJ-100 are carried out. The possibility of transition from mechanical control wiring to control through fly-by-wire system in the backup channel is shown.

  8. Commercial Aircraft Airframe Fuel Systems Survey and Analysis.

    Science.gov (United States)

    1982-07-01

    Type of Report end Period Covered Ag Sponsorin ncy Na.e and Address FINAL REPORT U.S. DEPARTMENT OF TRANSPORTATION October, 1980 - June, 1982 FEDERAL...Philadelphia, Pennsylvania Weybridge, Surry England KT130SF Mr. Roy Riseley Mr. William Miles de Havilland Aircraft Cessna Aircraft Company Garratt Blvd. Wallace...Guido F. Pesotti Mr. Frank C. Davis Technical Director Engineering Specialist Empresa Brasileira Aeronautica, S.A. Garrett Turbine Engine Company

  9. A fuselage/tank structure study for actively cooled hypersonic cruise vehicles, summary. [aircraft design of aircraft fuel systems

    Science.gov (United States)

    Pirrello, C. J.; Baker, A. H.; Stone, J. E.

    1976-01-01

    A detailed analytical study was made to investigate the effects of fuselage cross section (circular and elliptical) and the structural arrangement (integral and nonintegral tanks) on aircraft performance. The vehicle was a 200 passenger, liquid hydrogen fueled Mach 6 transport designed to meet a range goal of 9.26 Mn (5000 NM). A variety of trade studies were conducted in the area of configuration arrangement, structural design, and active cooling design in order to maximize the performance of each of three point design aircraft: (1) circular wing-body with nonintegral tanks, (2) circular wing-body with integral tanks and (3) elliptical blended wing-body with integral tanks. Aircraft range and weight were used as the basis for comparison. The resulting design and performance characteristics show that the blended body integral tank aircraft weights the least and has the greatest range capability, however, producibility and maintainability factors favor nonintegral tank concepts.

  10. High-performance-vehicle technology. [fighter aircraft propulsion

    Science.gov (United States)

    Povinelli, L. A.

    1979-01-01

    Propulsion needs of high performance military aircraft are discussed. Inlet performance, nozzle performance and cooling, and afterburner performance are covered. It is concluded that nonaxisymmetric nozzles provide cleaner external lines and enhanced maneuverability, but the internal flows are more complex. Swirl afterburners show promise for enhanced performance in the high altitude, low Mach number region.

  11. Analysis and design of insulation systems for LH2-fueled aircraft

    Science.gov (United States)

    Cunnington, G. R., Jr.

    1979-01-01

    An analytical program was conducted to evaluate the performance of 15 potential insulations for the fuel tanks of a subsonic LH2-fueled transport aircraft intended for airline service in the 1990-1995 time period. As a result, two candidate insulation systems are proposed for subsonic transport aircraft applications. Both candidates are judged to be the optimum available and should meet the design requirements. However, because of the long-life cyclic nature of the application and the cost sensitivity of airline operations, an experimental tank/insulation development or proof-of-concept program is recommended. This program should be carried out with a nearly full-scale system which would be subjected to the cyclic thermal and mechanical inputs anticipated in aircraft service.

  12. Commercial Aircraft Integrated Vehicle Health Management Study

    Science.gov (United States)

    Reveley, Mary S.; Briggs, Jeffrey L.; Evans, Joni K.; Jones, Sharon Monica; Kurtoglu, Tolga; Leone, Karen M.; Sandifer, Carl E.; Thomas, Megan A.

    2010-01-01

    Statistical data and literature from academia, industry, and other government agencies were reviewed and analyzed to establish requirements for fixture work in detection, diagnosis, prognosis, and mitigation for IVHM related hardware and software. Around 15 to 20 percent of commercial aircraft accidents between 1988 and 2003 involved inalftfnctions or failures of some aircraft system or component. Engine and landing gear failures/malfunctions dominate both accidents and incidents. The IVI vl Project research technologies were found to map to the Joint Planning and Development Office's National Research and Development Plan (RDP) as well as the Safety Working Group's National Aviation Safety Strategic. Plan (NASSP). Future directions in Aviation Technology as related to IVHlvl were identified by reviewing papers from three conferences across a five year time span. A total of twenty-one trend groups in propulsion, aeronautics and aircraft categories were compiled. Current and ftiture directions of IVHM related technologies were gathered and classified according to eight categories: measurement and inspection, sensors, sensor management, detection, component and subsystem monitoring, diagnosis, prognosis, and mitigation.

  13. Space transportation propulsion USSR launcher technology, 1990

    Science.gov (United States)

    1991-01-01

    Space transportation propulsion U.S.S.R. launcher technology is discussed. The following subject areas are covered: Energia background (launch vehicle summary, Soviet launcher family) and Energia propulsion characteristics (booster propulsion, core propulsion, and growth capability).

  14. Effect of power system technology and mission requirements on high altitude long endurance aircraft

    Science.gov (United States)

    Colozza, Anthony J.

    1994-01-01

    An analysis was performed to determine how various power system components and mission requirements affect the sizing of a solar powered long endurance aircraft. The aircraft power system consists of photovoltaic cells and a regenerative fuel cell. Various characteristics of these components, such as PV cell type, PV cell mass, PV cell efficiency, fuel cell efficiency, and fuel cell specific mass, were varied to determine what effect they had on the aircraft sizing for a given mission. Mission parameters, such as time of year, flight altitude, flight latitude, and payload mass and power, were also altered to determine how mission constraints affect the aircraft sizing. An aircraft analysis method which determines the aircraft configuration, aspect ratio, wing area, and total mass, for maximum endurance or minimum required power based on the stated power system and mission parameters is presented. The results indicate that, for the power system, the greatest benefit can be gained by increasing the fuel cell specific energy. Mission requirements also substantially affect the aircraft size. By limiting the time of year the aircraft is required to fly at high northern or southern latitudes, a significant reduction in aircraft size or increase in payload capacity can be achieved.

  15. Number and mass analysis of particles emitted by aircraft engine

    Directory of Open Access Journals (Sweden)

    Jasiński Remigiusz

    2017-01-01

    Full Text Available Exhaust emissions from aircraft is a complex issue because of the limited possibility of measurements in flight conditions. Most of the studies on this subject were performed on the basis of stationary test. Engine certification data is used to calculate total emissions generated by air transport. However, it doesnt provide any information about the local effects of air traffic. The main threat to local communities is particulate matter emissions, which adversely affects human health. Emissions from air transport affect air quality, particularly in the vicinity of the airports; it also contributes to the greenhouse effect. The article presents the measurement results of the concentration and size distribution of particles emitted during aircraft landing operation. Measurements were carried out during the landings of aircraft at a civilian airport. It was found that a single landing operation causes particle number concentration value increase of several ten-fold in a short period of time. Using aircraft engine certification data, the methodology for determination of the total number of particles emitted during a single landing operation was introduced.

  16. Transportation and information trends in technology and policy

    CERN Document Server

    Piyushimita

    2013-01-01

    Transformations in wireless connectivity and location-aware technologies hold the promise of bringing a sea-change in the way transportation information is generated and used in the future. Sensors in the transportation system, when integrated with those in other sectors (for example, energy, utility and health) have the potential to foster novel new ways of improving livability and sustainability.The end-result of these developments has been somewhat contradictory. Although automation in the transportation environment has become increasingly widespread, the level of involvement and active par

  17. THE AIRCRAFT ACCIDENT RATE IN CIVIL AVIATION DURING AIR TRANSPORT OPERATIONS AT THE AIRPORT

    Directory of Open Access Journals (Sweden)

    О. Запорожець

    2012-04-01

    Full Text Available The aircraft accident dates in civil aviation Ukraine and in republics of participants Agreement werecollected. The aircraft accident rate per 1 million flights was defined for civil aviation Ukraine and republicsof participants Agreement. Dynamics of aircraft accident rate was represented for civil aviation Ukraine.This dynamics was done for civil aviation of republics of participants Agreement and worldwide.

  18. NASA Electric Aircraft Test Bed (NEAT) Development Plan - Design, Fabrication, Installation

    Science.gov (United States)

    Dyson, Rodger W.

    2016-01-01

    As large airline companies compete to reduce emissions, fuel, noise, and maintenance costs, it is expected that more of their aircraft systems will shift from using turbofan propulsion, pneumatic bleed power, and hydraulic actuation, to instead using electrical motor propulsion, generator power, and electrical actuation. This requires new flight-weight and flight-efficient powertrain components, fault tolerant power management, and electromagnetic interference mitigation technologies. Moreover, initial studies indicate some combination of ambient and cryogenic thermal management and relatively high bus voltages when compared to state of practice will be required to achieve a net system benefit. Developing all these powertrain technologies within a realistic aircraft architectural geometry and under realistic operational conditions requires a unique electric aircraft testbed. This report will summarize existing testbed capabilities located in the U.S. and details the development of a unique complementary testbed that industry and government can utilize to further mature electric aircraft technologies.

  19. Advanced Techniques in Crash Impact Protection and Emergency Egress from Air Transport Aircraft

    Science.gov (United States)

    1976-06-01

    Lift Technology program for generating commercial transport innovation . However, the YC-15 military version with a high wing and Mach 0.75 cruise...survival technology is constantly changing as new materials, techniques, innovations , and requirements are developed. Nevertheless, the most valid data for...la Propriete Industrielle , No. 331 926, May 11, 1903. 784. Robbins, D.H., V.L Roberts, A.W. Henke, B.F. Raney, R.O. Bennett, and J.H. McElhaney

  20. Flow Control Enabled Aircraft Design

    National Research Council Canada - National Science Library

    Nangia, Rajendar

    2004-01-01

    ...: Many future advanced aircraft concepts being considered by the Air Force fall outside the current aerodynamic design practice and will rely heavily on the use of flow control technology to optimize flight performance...

  1. NASA-Langley Research Center's Aircraft Condition Analysis and Management System Implementation

    Science.gov (United States)

    Frye, Mark W.; Bailey, Roger M.; Jessup, Artie D.

    2004-01-01

    This document describes the hardware implementation design and architecture of Aeronautical Radio Incorporated (ARINC)'s Aircraft Condition Analysis and Management System (ACAMS), which was developed at NASA-Langley Research Center (LaRC) for use in its Airborne Research Integrated Experiments System (ARIES) Laboratory. This activity is part of NASA's Aviation Safety Program (AvSP), the Single Aircraft Accident Prevention (SAAP) project to develop safety-enabling technologies for aircraft and airborne systems. The fundamental intent of these technologies is to allow timely intervention or remediation to improve unsafe conditions before they become life threatening.

  2. Stability Result For Dynamic Inversion Devised to Control Large Flexible Aircraft

    Science.gov (United States)

    Gregory, Irene M.

    2001-01-01

    High performance aircraft of the future will be designed lighter, more maneuverable, and operate over an ever expanding flight envelope. One of the largest differences from the flight control perspective between current and future advanced aircraft is elasticity. Over the last decade, dynamic inversion methodology has gained considerable popularity in application to highly maneuverable fighter aircraft, which were treated as rigid vehicles. This paper is an initial attempt to establish global stability results for dynamic inversion methodology as applied to a large, flexible aircraft. This work builds on a previous result for rigid fighter aircraft and adds a new level of complexity that is the flexible aircraft dynamics, which cannot be ignored even in the most basic flight control. The results arise from observations of the control laws designed for a new generation of the High-Speed Civil Transport aircraft.

  3. Journal of Air Transportation, Volume 8, No. 2. Volume 8, No. 2

    Science.gov (United States)

    Bowen, Brent (Editor); Kabashkin, Igor (Editor); Nickerson, Jocelyn (Editor)

    2003-01-01

    The mission of the Journal of Air Transportation (JAT) is to provide the global community immediate key resource information in all areas of air transportation. This journal contains articles on the following:Fuel Consumption Modeling of a Transport Category Aircraft: A FlightOperationsQualityAssurance (F0QA) Analysis;Demand for Air Travel in the United States: Bottom-Up Econometric Estimation and Implications for Forecasts by Origin and Destination Pairs;Blind Flying on the Beam: Aeronautical Communication, Navigation and Surveillance: Its Origins and the Politics of Technology: Part I1 Political Oversight and Promotion;Blind Flying on the Beam: Aeronautical Communication, Navigation and Surveillance: Its Origins and the Politics of Technology: Part 111: Emerging Technologies;Ethics Education in University Aviation Management Programs in the US: Part Two B-Statistical Analysis of Current Practice;Integrating Human Factors into the Human-computer Interface: and How Best to Display Meteorological Information for Critical Aviation Decision-making and Performance.

  4. Experimental Model of Contaminant Transport by a Moving Wake Inside an Aircraft Cabin

    Science.gov (United States)

    Poussou, Stephane; Sojka, Paul; Plesniak, Michael

    2008-11-01

    The air cabin environment in jetliners is designed to provide comfortable and healthy conditions for passengers. The air ventilation system produces a recirculating pattern designed to minimize secondary flow between seat rows. However, disturbances are frequently introduced by individuals walking along the aisle and may significantly modify air distribution and quality. Spreading of infectious aerosols or biochemical agents presents potential health hazards. A fundamental study has been undertaken to understand the unsteady transport phenomena, to validate numerical simulations and to improve air monitoring systems. A finite moving body is modeled experimentally in a 10:1 scale simplified aircraft cabin equipped with ventilation, at a Reynolds number (based on body height) of the order of 10,000. Measurements of the ventilation and wake velocity fields are obtained using PIV and PLIF. Results indicate that the evolution of the typical downwash behind the body is profoundly perturbed by the ventilation flow. Furthermore, the interaction between wake and ventilation flow significantly alters scalar contaminant migration.

  5. Alternate aircraft fuels: Prospects and operational implications

    Science.gov (United States)

    Witcofski, R. D.

    1977-01-01

    The potential use of coal-derived aviation fuels was assessed. The studies addressed the prices and thermal efficiencies associated with the production of coal-derived aviation kerosene, liquid methane and liquid hydrogen and the air terminal requirements and subsonic transport performance when utilizing liquid hydrogen. The fuel production studies indicated that liquid methane can be produced at a lower price and with a higher thermal efficiency than aviation kerosene or liquid hydrogen. Ground facilities of liquefaction, storage, distribution and refueling of liquid hydrogen fueled aircraft at airports appear technically feasibile. The aircraft studies indicate modest onboard energy savings for hydrogen compared to conventional fuels. Liquid hydrogen was found to be superior to both aviation kerosene and liquid methane from the standpoint of aircraft engine emissions.

  6. Rural Public Transportation Technologies: User Needs and Applications. Final Report

    Science.gov (United States)

    1998-08-01

    The Rural Public Transportation Technologies: User Needs and Applications Study was conducted as part of the U.S. DOT's overall Rural Intelligent Transportation System (ITS) Program. The study examined the opportunities and challenges of planning and...

  7. Effect of broadened-specification fuels on aircraft engines and fuel systems

    Science.gov (United States)

    Rudey, R. A.

    1979-01-01

    A wide variety of studies on the potential effects of broadened-specification fuels on future aircraft engines and fuel systems are summarized. The compositions and characteristics of aircraft fuels that may be derived from current and future crude-oil sources are described, and the most critical properties that may affect aircraft engines and fuel systems are identified and discussed. The problems that are most likely to be encountered because of changes in selected fuel properties are described; and the related effects on engine performance, component durability and maintenance, and aircraft fuel-system performance are discussed. The ability of current technology to accept possible future fuel-specification changes is discussed, and selected technological advances that can reduce the severity of the potential problems are illustrated.

  8. Innovative technology summary report: Transportable vitrification system

    International Nuclear Information System (INIS)

    1998-09-01

    At the end of the cold war, many of the Department of Energy's (DOE's) major nuclear weapons facilities refocused their efforts on finding technically sound, economic, regulatory compliant, and stakeholder acceptable treatment solutions for the legacy of mixed wastes they had produced. In particular, an advanced stabilization process that could effectively treat the large volumes of settling pond and treatment sludges was needed. Based on this need, DOE and its contractors initiated in 1993 the EM-50 sponsored development effort required to produce a deployable mixed waste vitrification system. As a consequence, the Transportable Vitrification System (TVS) effort was undertaken with the primary requirement to develop and demonstrate the technology and associated facility to effectively vitrify, for compliant disposal, the applicable mixed waste sludges and solids across the various DOE complex sites. After 4 years of development testing with both crucible and pilot-scale melters, the TVS facility was constructed by Envitco, evaluated and demonstrated with surrogates, and then successfully transported to the ORNL ETTP site and demonstrated with actual mixed wastes in the fall of 1997. This paper describes the technology, its performance, the technology applicability and alternatives, cost, regulatory and policy issues, and lessons learned

  9. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    Science.gov (United States)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  10. Multi-spectrum-based enhanced synthetic vision system for aircraft DVE operations

    Science.gov (United States)

    Kashyap, Sudesh K.; Naidu, V. P. S.; Shanthakumar, N.

    2016-04-01

    This paper focus on R&D being carried out at CSIR-NAL on Enhanced Synthetic Vision System (ESVS) for Indian regional transport aircraft to enhance all weather operational capabilities with safety and pilot Situation Awareness (SA) improvements. Flight simulator has been developed to study ESVS related technologies and to develop ESVS operational concepts for all weather approach and landing and to provide quantitative and qualitative information that could be used to develop criteria for all-weather approach and landing at regional airports in India. Enhanced Vision System (EVS) hardware prototype with long wave Infrared sensor and low light CMOS camera is used to carry out few field trials on ground vehicle at airport runway at different visibility conditions. Data acquisition and playback system has been developed to capture EVS sensor data (image) in time synch with test vehicle inertial navigation data during EVS field experiments and to playback the experimental data on ESVS flight simulator for ESVS research and concept studies. Efforts are on to conduct EVS flight experiments on CSIR-NAL research aircraft HANSA in Degraded Visual Environment (DVE).

  11. Overview: Small Aircraft Transportation System Airborne Remote Sensing Fuel Droplet Evaporation

    Science.gov (United States)

    Bowen, Brent (Editor); Holmes, Bruce; Gogos, George; Narayanan, Ram; Smith, Russell; Woods, Sara

    2004-01-01

    , Codes, and Strategic Enterprises. During the first year of funding, Nebraska established open and frequent lines of communication with university affairs officers and other key personnel at all NASA Centers and Enterprises, and facilitated the development of collaborations between and among junior faculty in the state and NASA researchers. As a result, Nebraska initiated a major research cluster, the Small Aircraft Transportation System Nebraska Implementation Template.

  12. Aircraft gas turbines

    Energy Technology Data Exchange (ETDEWEB)

    Sekido, T [Ishikawajima-Harima Heavy Industries, Co. Ltd., Tokyo (Japan)

    1994-03-01

    Current developmental activities of aircraft gas turbines in Japan are reviewed. V2500-A5 engine with thrust of 30,000 LBF is scheduled to be used for real aircraft in 1994, and intensive developmental activities are also proceeding in larger engines over 90,000 LBF. Recently, developmental programs of engines for 75-100 seat aircraft have been actively discussed, and Japanese engine makers are having discussions towards international collaboration. Such engines will be high bypass turbofans of 12,000-22,000 LBF. Development of SST/HST engines in a speed range from subsonic to Mach 5 is under the initiative of the Agency of Industrial Science and Technology. The Technical Research and Development Institute of Japan, Defence Agency achieved the target thrust of 3.4 tons in the small turbofan engine program, and the small turboshaft engine for small helicopters is also under development. Both National Aerospace Laboratory (NAL) and Institute of Space and Aeronautical Science (ISAS) are now conducting the research programs on turbo-ramjet engines under a component test phase. 1 fig.

  13. AIRTV: Broadband Direct to Aircraft

    Science.gov (United States)

    Sorbello, R.; Stone, R.; Bennett, S. B.; Bertenyi, E.

    2002-01-01

    Airlines have been continuously upgrading their wide-body, long-haul aircraft with IFE (in-flight entertainment) systems that can support from 12 to 24 channels of video entertainment as well as provide the infrastructure to enable in-seat delivery of email and internet services. This is a direct consequence of increased passenger demands for improved in-flight services along with the expectations that broadband delivery systems capable of providing live entertainment (news, sports, financial information, etc.) and high speed data delivery will soon be available. The recent events of Sept. 11 have slowed the airline's upgrade of their IFE systems, but have also highlighted the compelling need for broadband aeronautical delivery systems to include operational and safety information. Despite the impact of these events, it is estimated that by 2005 more than 3000 long haul aircraft (servicing approximately 1 billion passengers annually) will be fully equipped with modern IFE systems. Current aircraft data delivery systems, which use either Inmarsat or NATS, are lacking in bandwidth and consequently are unsuitable to satisfy passenger demands for broadband email/internet services or the airlines' burgeoning data requirements. Present live video delivery services are limited to regional coverage and are not readily expandable to global or multiregional service. Faced with a compelling market demand for high data transport to aircraft, AirTV has been developing a broadband delivery system that will meet both passengers' and airlines' needs. AirTV is a global content delivery system designed to provide a range of video programming and data services to commercial airlines. When AirTV is operational in 2004, it will provide a broadband connection directly to the aircraft, delivering live video entertainment, internet/email service and essential operational and safety data. The system has been designed to provide seamless global service to all airline routes except for those

  14. Generic regional aircraft flying qualities for the approach and landing task

    OpenAIRE

    Gautrey, Jim

    1997-01-01

    Many changes have occurred in the past 20 years in aircraft manufacture and development. New technologies have appeared, spanning the entire aircraft design environment, such as new production methods, new materials and new avionics systems. These new methods have been developed for two reasons. For military aircraft, they have arisen through the need to improve performance. However, for civil aircraft they have arisen through the need to reduce the overall cost. This report co...

  15. Daedalus Project's Light Eagle - Human powered aircraft

    Science.gov (United States)

    1987-01-01

    The Michelob Light Eagle is seen here in flight over Rogers Dry Lake at the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  16. SCIENTIFIC AND PRACTICAL ASPECTS OF THE BULLETINS DEVELOPMENT FOR CIVIL AIRCRAFT

    Directory of Open Access Journals (Sweden)

    Andrey N. Petrov

    2017-01-01

    Full Text Available The paper outlines science and methodological aspects of issuing bulletins for the civil aircraft and practical prob- lems accumulated in the national aviation industry within the mentioned area. Bulletins are used to inform operators about the purpose, data content and technologies outlining the design changes accomplishment if the aircraft considered at the moment of the design changes is already at the operational stage. Hence maintaining aircraft airworthiness is impossible without making certain modifications and repairs in the design, the bulletins issuing and implementation procedures have notable impact on safety and effectiveness of air transportation.Deficiencies considered are the results of practices used since 1980 and supported by the later interstate standard GOST 31270-2004 in the field of the bulletins development and implementation, which are not in line with contemporary conditions of international civil aviation activities. Negative consequences of transferring the Soviet way of working with aircraft bulletins intothe changed conditions of the state regulation of civil aviation activities in Russia are shown as well as those for substantial com-plication of the rules and procedures in comparison to the standards of Unified System of Design Documentation.Main theses of the ICAO standards and international practice are briefly analyzed, however they are not complete- ly presented in the national aviation regulations. The recommendations proposed are aimed to eliminate mentioned defi- ciencies through the standards amendment process and improvement of Russia's civil aviation regulatory base. Developed recommendations are mainly focused on the formulation of the new concept and certain content of the revised standard requirements to replace GOST 31270-2004.

  17. The organization closed water battery plant Aircraft Factory

    Directory of Open Access Journals (Sweden)

    В.М. Ісаєнко

    2008-01-01

    Full Text Available  The information on unrational water usage and losts is given in the article. The necessity of closed water cycle introduction is shown for the aircraft repairing plant. The principle scheme of closed cycle water usage is developed for the accumulator department of the aircraft repairing plant. Modern technological equipment is offered for implementation.

  18. Comparison of methodologies estimating emissions of aircraft pollutants, environmental impact assessment around airports

    International Nuclear Information System (INIS)

    Kurniawan, Jermanto S.; Khardi, S.

    2011-01-01

    Air transportation growth has increased continuously over the years. The rise in air transport activity has been accompanied by an increase in the amount of energy used to provide air transportation services. It is also assumed to increase environmental impacts, in particular pollutant emissions. Traditionally, the environmental impacts of atmospheric emissions from aircraft have been addressed in two separate ways; aircraft pollutant emissions occurring during the landing and take-off (LTO) phase (local pollutant emissions) which is the focus of this study, and the non-LTO phase (global/regional pollutant emissions). Aircraft pollutant emissions are an important source of pollution and directly or indirectly harmfully affect human health, ecosystems and cultural heritage. There are many methods to asses pollutant emissions used by various countries. However, using different and separate methodology will cause a variation in results, some lack of information and the use of certain methods will require justification and reliability that must be demonstrated and proven. In relation to this issue, this paper presents identification, comparison and reviews of some of the methodologies of aircraft pollutant assessment from the past, present and future expectations of some studies and projects focusing on emissions factors, fuel consumption, and uncertainty. This paper also provides reliable information on the impacts of aircraft pollutant emissions in short term and long term predictions.

  19. International Pacific Air and Space Technology Conference and Aircraft Symposium, 29th, Gifu, Japan, Oct. 7-11, 1991, Proceedings

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    Various papers on air and space technology are presented. Individual topics addressed include: media selection analysis: implications for training design, high-speed challenge for rotary wing aircraft, high-speed VSTOL answer to congestion, next generation in computational aerodynamics, acrobatic airship 'Acrostat', ducted fan VTOL for working platform, Arianespace launch of Lightsats, small particle acceleration by minirailgun, free-wake analyses of a hovering rotor using panel method, update of the X-29 high-angle-of-attack program, economic approach to accurate wing design, flow field around thick delta wing with rounded leading edge, aerostructural integrated design of forward-swept wing, static characteristics of a two-phase fluid drop system, simplfied-model approach to group combustion of fuel spray, avionics flight systems for the 21st century. Also discussed are: Aircraft Command in Emergency Situations, spectrogram diagnosis of aircraft disasters, shock interaction induced by two hemisphere-cylinders, impact response of composite UHB propeller blades, high-altitude lighter-than-air powered platform, integrated wiring system, auxiliary power units for current and future aircraft, Space Shuttle Orbiter Auxiliary Power Unit status, numerical analysis of RCS jet in hypersonic flights, energy requirements for the space frontier, electrical system options for space exploration, aerospace plane hydrogen scramjet boosting, manual control of vehicles with time-varying dynamics, design of strongly stabilizing controller, development of the Liquid Apogee Propulsion System for ETS-VI

  20. International Pacific Air and Space Technology Conference and Aircraft Symposium, 29th, Gifu, Japan, Oct. 7-11, 1991, Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    Various papers on air and space technology are presented. Individual topics addressed include: media selection analysis: implications for training design, high-speed challenge for rotary wing aircraft, high-speed VSTOL answer to congestion, next generation in computational aerodynamics, acrobatic airship 'Acrostat', ducted fan VTOL for working platform, Arianespace launch of Lightsats, small particle acceleration by minirailgun, free-wake analyses of a hovering rotor using panel method, update of the X-29 high-angle-of-attack program, economic approach to accurate wing design, flow field around thick delta wing with rounded leading edge, aerostructural integrated design of forward-swept wing, static characteristics of a two-phase fluid drop system, simplfied-model approach to group combustion of fuel spray, avionics flight systems for the 21st century. Also discussed are: Aircraft Command in Emergency Situations, spectrogram diagnosis of aircraft disasters, shock interaction induced by two hemisphere-cylinders, impact response of composite UHB propeller blades, high-altitude lighter-than-air powered platform, integrated wiring system, auxiliary power units for current and future aircraft, Space Shuttle Orbiter Auxiliary Power Unit status, numerical analysis of RCS jet in hypersonic flights, energy requirements for the space frontier, electrical system options for space exploration, aerospace plane hydrogen scramjet boosting, manual control of vehicles with time-varying dynamics, design of strongly stabilizing controller, development of the Liquid Apogee Propulsion System for ETS-VI.

  1. Application of powered lift and mechanical flap concepts for civil short-haul transport aircraft design

    Science.gov (United States)

    Conlon, J. A.; Bowles, J. V.

    1977-01-01

    The objective of this paper is to determine various design and performance parameters, including wing loading and thrust loading requirements, for powered-lift and mechanical flap conceptual aircraft constrained by field length and community noise impact. Mission block fuel and direct operating costs (DOC) were found for optimum designs. As a baseline, the design and performance parameters were determined for the aircraft using engines without noise suppression. The constraint of the 90 EPNL noise contour being less than 2.6 sq km (1.0 sq mi) in area was then imposed. The results indicate that for both aircraft concepts the design gross weight, DOC, and required mission block fuel decreased with field length. At field lengths less than 1100 m (3600 ft) the powered lift aircraft had lower DOC and block fuel than the mechanical flap aircraft but produced higher unsuppressed noise levels. The noise goal could easily be achieved with nacelle wall treatment only and thus resulted in little or no performance or weight penalty for all studied aircraft.

  2. The Second Joint NASA/FAA/DOD Conference on Aging Aircraft. Pt. 1

    Science.gov (United States)

    Harris, Charles E. (Editor)

    1999-01-01

    The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community.

  3. Transport Network Technologies – Study and Testing

    DEFF Research Database (Denmark)

    Bozorgebrahimi, K.; Channegowda, M.; Colmenero, A.

    Following on from the theoretical research into Carrier Class Transport Network Technologies (CCTNTs) documented in DJ1.1.1, this report describes the extensive testing performed by JRA1 Task 1. The tests covered EoMPLS, Ethernet OAM, Synchronous Ethernet, PBB-TE, MPLS-TP, OTN and GMPLS...

  4. Thermal design of linear induction and synchronous motor for electromagnetic launch of civil aircraft

    OpenAIRE

    Bertola, Luca; Cox, Tom; Wheeler, Patrick; Garvey, Seamus D.; Morvan, Herve

    2017-01-01

    The engine size of modern passenger transport aircraft is principally determined by take-off conditions, since initial acceleration requires maximum engine power. An elec¬tromagnetic launch (EML) system could provide some or all of the energy required at takeoff so that the aircraft engine power requirement and fuel consumption may be significantly reduced. So far, EML for aircraft has been adopted only for military applications to replace steam catapults on the deck of aircraft carriers. Thi...

  5. 26 CFR 1.883-1T - Exclusion of income from the international operation of ships or aircraft (temporary).

    Science.gov (United States)

    2010-04-01

    ... domestic law tax exemption for income derived from the international operation of ships or aircraft, either... from tax for profits from the operation of ships or aircraft in international transport or international traffic under the shipping and air transport or gains article of an income tax convention with the...

  6. Changing technology in transportation : automated vehicles in freight.

    Science.gov (United States)

    2017-06-27

    The world of transportation is on the verge of undergoing an impactful transformation. Over the past decade, automotive computing technology has progressed far more rapidly than anticipated. Most major auto manufacturers integrated automated features...

  7. Special Issue: Adaptive/Smart Structures and Multifunctional Materials with Application to Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Rafic Ajaj

    2014-12-01

    Full Text Available Recent advances in smart structures and multifunctional materials have facilitated many novel aerospace technologies such as morphing aircraft. A morphing aircraft, bio-inspired by natural fliers, has gained a lot of interest as a potential technology to meet the ambitious goals of the Advisory Council for Aeronautics Research in Europe (ACARE Vision 2020 and the FlightPath 2050 documents. A morphing aircraft continuously adjusts its wing geometry to enhance flight performance, control authority, and multi-mission capability.[...

  8. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2011-05-24

    ... awareness of the continuing technological advancements in supersonic aircraft technology aimed at reducing... Wednesday, April 21, 2010, as part of the joint meeting of the 159th Acoustical Society of America and NOISE... advances in supersonic technology, and for the FAA, the National Aeronautics and Space Administration (NASA...

  9. Innovations, technology and efficiency shaping the aerospace environment

    Directory of Open Access Journals (Sweden)

    Maria MRAZOVA

    2013-06-01

    Full Text Available A major goal for the aviation community is reducing fuel consumption. Nowadays we can see so much effort to design a modern aircrafts that offer weight and low fuel burn savings. This study could help to understand the long way during the production of the next generation aircraft such as Airbus A350 which shows us many advantages in fuel economy. In the first part of this study the author describes the history of fuel efficiency from its beginning. The wing design and aircraft’s engines are introduced in the second part of the thesis. The importance of ways to reduce aircraft’s weights and fuel economy is the main goal for Airbus and this issue is the irreplaceable part of the last chapter of this study. It shows a great visions and practical experience in improving aircraft performance and reducing maintenance expenses. The composites materials and new technologies help to achieve significant weight and fuel reduction and experiments are taking place today to show that this is the right step ahead. It is too early to say which of many researching ways will lead to viable solutions, but the air transport industry is committed to support advanced technological innovations. Anyway, technologies are constantly being deployed and researched by the aviation industry to continuously increase performance.

  10. MD-11 PCA - View of aircraft on ramp

    Science.gov (United States)

    1995-01-01

    This McDonnell Douglas MD-11 is taxiing to a position on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple. For pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.

  11. Determination of tricresyl phosphate air contamination in aircraft.

    Science.gov (United States)

    Denola, G; Hanhela, P J; Mazurek, W

    2011-08-01

    Monitoring of tricresyl phosphate (TCP) contamination of cockpit air was undertaken in three types of military aircraft [fighter trainer (FT), fighter bomber (FB), and cargo transport (CT) aircraft]. The aircraft had a previous history of pilot complaints about cockpit air contamination suspected to originate from the engine bleed air supply through the entry of aircraft turbine engine oil (ATO) into the engine compressor. Air samples were collected in flight and on the ground during engine runs using sorbent tubes packed with Porapak Q and cellulose filters. A total of 78 air samples were analysed, from 46 different aircraft, and 48 samples were found to be below the limit of detection. Nine incidents of smoke/odour were identified during the study. The concentrations of toxic o-cresyl phosphate isomers were below the level of detection in all samples. The highest total TCP concentration was 51.3 μg m(-3), while most were generally found to be contamination of cabin/cockpit air has been the subject of much concern in aviation, quantitative data are sparse.

  12. Fast Aircraft Turnaround Enabled by Reliable Passenger Boarding

    Directory of Open Access Journals (Sweden)

    Michael Schultz

    2018-01-01

    Full Text Available Future 4D aircraft trajectories demand comprehensive consideration of environmental, economic, and operational constraints, as well as reliable prediction of all aircraft-related processes. Mutual interdependencies between airports result in system-wide, far-reaching effects in the air traffic network (reactionary delays. To comply with airline/airport challenges over the day of operations, a change to an air-to-air perspective is necessary, with a specific focus on the aircraft ground operations as major driver for airline punctuality. Aircraft ground trajectories primarily consists of handling processes at the stand (deboarding, catering, fueling, cleaning, boarding, unloading, loading, which are defined as the aircraft turnaround. Turnaround processes are mainly controlled by ground handling, airport, or airline staff, except the aircraft boarding, which is driven by passengers’ experience and willingness/ability to follow the proposed boarding procedures. This paper provides an overview of the research done in the field of aircraft boarding and introduces a reliable, calibrated, and stochastic aircraft boarding model. The stochastic boarding model is implemented in a simulation environment to evaluate specific boarding scenarios using different boarding strategies and innovative technologies. Furthermore, the potential of a connected aircraft cabin as sensor network is emphasized, which could provide information on the current and future status of the boarding process.

  13. Multidisciplinary Techniques and Novel Aircraft Control Systems

    Science.gov (United States)

    Padula, Sharon L.; Rogers, James L.; Raney, David L.

    2000-01-01

    The Aircraft Morphing Program at NASA Langley Research Center explores opportunities to improve airframe designs with smart technologies. Two elements of this basic research program are multidisciplinary design optimization (MDO) and advanced flow control. This paper describes examples where MDO techniques such as sensitivity analysis, automatic differentiation, and genetic algorithms contribute to the design of novel control systems. In the test case, the design and use of distributed shape-change devices to provide low-rate maneuvering capability for a tailless aircraft is considered. The ability of MDO to add value to control system development is illustrated using results from several years of research funded by the Aircraft Morphing Program.

  14. Hybrid Wing Body Aircraft Acoustic Test Preparations and Facility Upgrades

    Science.gov (United States)

    Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Haskin, Henry H.; Spalt, Taylor B.; Bahr, Christopher J.; Burley, Casey L.; Bartram, Scott M.; Humphreys, William M.; hide

    2013-01-01

    NASA is investigating the potential of acoustic shielding as a means to reduce the noise footprint at airport communities. A subsonic transport aircraft and Langley's 14- by 22-foot Subsonic Wind Tunnel were chosen to test the proposed "low noise" technology. The present experiment studies the basic components of propulsion-airframe shielding in a representative flow regime. To this end, a 5.8-percent scale hybrid wing body model was built with dual state-of-the-art engine noise simulators. The results will provide benchmark shielding data and key hybrid wing body aircraft noise data. The test matrix for the experiment contains both aerodynamic and acoustic test configurations, broadband turbomachinery and hot jet engine noise simulators, and various airframe configurations which include landing gear, cruise and drooped wing leading edges, trailing edge elevons and vertical tail options. To aid in this study, two major facility upgrades have occurred. First, a propane delivery system has been installed to provide the acoustic characteristics with realistic temperature conditions for a hot gas engine; and second, a traversing microphone array and side towers have been added to gain full spectral and directivity noise characteristics.

  15. Economic and environmental impacts of alternative transportation technologies.

    Science.gov (United States)

    2013-04-01

    This project has focused on comparing alternative transportation technologies in terms of their : environmental and economic impacts. The research is data-driven and quantitative, and examines the : dynamics of impact. We have developed new theory an...

  16. Operating systems in the air transportation environment.

    Science.gov (United States)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  17. FY 1998 Report on technical results. Part 1 of 2. Research and development of supersonic transportation aircraft propulsion systems (Development of methane-fueled aircraft engines); 1998 nendo choonsoku yusokiyo suishin system no kenkyu kaihatsu seika hokokusho. 1/2. Methane nenryo kokukiyo engine no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-01

    The research and development project is conducted for (1) ramjet systems, (2) high-performance turbojet systems, (3) instrumentation/control systems and (4) total systems, in order to develop methane-fueled supersonic transportation aircraft engines. For the item (1), the ram combustor for the target engine is designed to evaluate its performance, and the shock-position within the dummy intake is successfully controlled by the variable exhaust nozzle. For the item (2), the R and D efforts are directed to the fans and low-pressure turbines, the former covering the studies on the single-stage elements for the fans of high flow rate, and the elements for the 2-stage, high-efficiency, high-load fans. For the item (3), the R and D efforts are directed to the electronic control systems and electro-optical measurement systems, the latter including development of the improved optical positioning and rotational sensors operating at high temperature of 350 degrees C. For the item (4), the R and D efforts are directed to intake nozzles as the total system component, noise reduction technology, and cooling and new material application technologies. (NEDO)

  18. Research and technology strategy to help overcome the environmental problems in relation to transport

    International Nuclear Information System (INIS)

    Gwilliam, K.M.; Geerlings, H.

    1992-04-01

    This report has been prepared for the Strategic Analysis in Science and Technology Unit (SAST) of the Directorate-General for Science, Research and Development of the Commission of the European Communities. The background of the project to which this report contributes is a recognition of the growing impact of transportation on the environment, both as a function of growth in trade and as a leisure activity. The project is directed towards the elucidation of the many interactions between technology, transport and environment, in order to provide the Commission with (a) recommendations on the priorities for Community research and development in transport technology and other related areas of technology, and (b) an understanding of the implications of technological change on policy options, within the Community with regard to transport and environment and other related areas, such as energy and regional planning

  19. 2013 International Conference on Electrical and Information Technologies for Rail Transportation

    CERN Document Server

    Liu, Zhigang; Qin, Yong; Zhao, Minghua; Diao, Lijun

    2014-01-01

    Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation (EITRT2013) collects the latest research in this field, including a wealth of state-of-the-art research theories and applications in intelligent computing, information processing, communication technology, automatic control, etc. The objective of the proceedings is to provide a major interdisciplinary forum for researchers, engineers, academics and industrial professionals to present the most innovative research on and developments in the field of rail transportation electrical and information technologies. Contributing authors from academia, industry and the government also offer inside views of new, interdisciplinary solutions.

  20. Using virtual reality technology for aircraft visual inspection training: presence and comparison studies.

    Science.gov (United States)

    Vora, Jeenal; Nair, Santosh; Gramopadhye, Anand K; Duchowski, Andrew T; Melloy, Brian J; Kanki, Barbara

    2002-11-01

    The aircraft maintenance industry is a complex system consisting of several interrelated human and machine components. Recognizing this, the Federal Aviation Administration (FAA) has pursued human factors related research. In the maintenance arena the research has focused on the aircraft inspection process and the aircraft inspector. Training has been identified as the primary intervention strategy to improve the quality and reliability of aircraft inspection. If training is to be successful, it is critical that we provide aircraft inspectors with appropriate training tools and environment. In response to this need, the paper outlines the development of a virtual reality (VR) system for aircraft inspection training. VR has generated much excitement but little formal proof that it is useful. However, since VR interfaces are difficult and expensive to build, the computer graphics community needs to be able to predict which applications will benefit from VR. To address this important issue, this research measured the degree of immersion and presence felt by subjects in a virtual environment simulator. Specifically, it conducted two controlled studies using the VR system developed for visual inspection task of an aft-cargo bay at the VR Lab of Clemson University. Beyond assembling the visual inspection virtual environment, a significant goal of this project was to explore subjective presence as it affects task performance. The results of this study indicated that the system scored high on the issues related to the degree of presence felt by the subjects. As a next logical step, this study, then, compared VR to an existing PC-based aircraft inspection simulator. The results showed that the VR system was better and preferred over the PC-based training tool.

  1. 76 FR 45647 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2011-07-29

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Consensus Standards, Light-Sport... previously accepted consensus standards relating to the provisions of the Sport Pilot and Light-Sport... Light Sport Aircraft developed the revised standards with Federal Aviation Administration (FAA...

  2. Investigations into a potential laser-NASP transport technology

    Science.gov (United States)

    1990-01-01

    Laser propelled flight/transport technology is surveyed. A detailed conceptual design is presented for an on-place Mercury-Lightcraft: other designs are briefly explored for larger, 15-place Executive Lightcraft, and 150 to 350 passenger Jumbo Lightcraft.

  3. Toward the bi-modal camber morphing of large aircraft wing flaps: the CleanSky experience

    Science.gov (United States)

    Pecora, R.; Amoroso, F.; Magnifico, M.

    2016-04-01

    The Green Regional Aircraft (GRA), one of the six CleanSky platforms, represents the largest European effort toward the greening of next generation air transportation through the implementation of advanced aircraft technologies. In this framework researches were carried out to develop an innovative wing flap enabling airfoil morphing according to two different modes depending on aircraft flight condition and flap setting: - Camber morphing mode. Morphing of the flap camber to enhance high-lift performances during take-off and landing (flap deployed); - Tab-like morphing mode. Upwards and downwards deflection of the flap tip during cruise (flap stowed) for load control at high speed and consequent optimization of aerodynamic efficiency. A true-scale flap segment of a reference aircraft (EASA CS25 category) was selected as investigation domain for the new architecture in order to duly face the challenges posed by real wing installation issues especially with reference to the tapered geometrical layout and 3D aerodynamic loads distributions. The investigation domain covered the flap region spanning 3.6 m from the wing kink and resulted characterized by a taper ratio equal to 0.75 with a root chord of 1.2 m. High TRL solutions for the adaptive structure, actuation and control system were duly analyzed and integrated while assuring overall device compliance with industrial standards and applicable airworthiness requirements.

  4. Program strategy document for the Nuclear Materials Transportation Technology Center

    International Nuclear Information System (INIS)

    Jefferson, R.M.

    1979-07-01

    A multiyear program plan is presented which describes the program of the Nuclear Materials Transportation Technology Center (TIC) at Sandia Laboratories. The work element plans, along with their corresponding work breakdown structures, are presented for TTC activities in the areas of Technology and Information Center, Systems Development, Technology, and Institutional Issues for the years from 1979 to 1985

  5. Development and validation of bonded composite doubler repairs for commercial aircraft.

    Energy Technology Data Exchange (ETDEWEB)

    Roach, Dennis Patrick; Rackow, Kirk A.

    2007-07-01

    A typical aircraft can experience over 2,000 fatigue cycles (cabin pressurizations) and even greater flight hours in a single year. An unavoidable by-product of aircraft use is that crack, impact, and corrosion flaws develop throughout the aircraft's skin and substructure elements. Economic barriers to the purchase of new aircraft have placed even greater demands on efficient and safe repair methods. The use of bonded composite doublers offers the airframe manufacturers and aircraft maintenance facilities a cost effective method to safely extend the lives of their aircraft. Instead of riveting multiple steel or aluminum plates to facilitate an aircraft repair, it is now possible to bond a single Boron-Epoxy composite doubler to the damaged structure. The FAA's Airworthiness Assurance Center at Sandia National Labs (AANC), Boeing, and Federal Express completed a pilot program to validate and introduce composite doubler repair technology to the U.S. commercial aircraft industry. This project focused on repair of DC-10 fuselage structure and its primary goal was to demonstrate routine use of this repair technology using niche applications that streamline the design-to-installation process. As composite doubler repairs gradually appear in the commercial aircraft arena, successful flight operation data is being accumulated. These commercial aircraft repairs are not only demonstrating the engineering and economic advantages of composite doubler technology but they are also establishing the ability of commercial maintenance depots to safely adopt this repair technique. This report presents the array of engineering activities that were completed in order to make this technology available for widespread commercial aircraft use. Focused laboratory testing was conducted to compliment the field data and to address specific issues regarding damage tolerance and flaw growth in composite doubler repairs. Fatigue and strength tests were performed on a simulated wing

  6. Technology assessment of future intercity passenger transportation systems. Volume 7: Study recommendations

    Science.gov (United States)

    1976-01-01

    Research and analysis tasks to alleviate negative impacts, to augment positive impacts, or to better understand the impacts produced by the potential introduction of the alternate transportation technologies are identified. The project team's recommendations on research and analysis efforts which have resulted from the technology assessment are provided. Many of the recommendations apply to the future supply of intercity passenger transportation services, categorized by mode. Other recommendations pertain to broad issues in intercity transportation--e.g., finance, regulation, traveler values--that will affect all modes.

  7. A novel control technique for active shunt power filters for aircraft applications

    OpenAIRE

    Lavopa, Elisabetta

    2011-01-01

    The More Electric Aircraft is a technological trend in modern aerospace industry to increasingly use electrical power on board the aircraft in place of mechanical, hydraulic and pneumatic power to drive aircraft subsystems. This brings major changes to the aircraft electrical system, increasing the complexity of the network topology together with stability and power quality issues. Shunt active power filters are a viable solution for power quality enhancement, in order to comply with the stan...

  8. Accessible transportation technologies research initiative (ATTRI) : online dialogue.

    Science.gov (United States)

    2014-08-01

    In coordination with Easter Seals Project ACTION (ESPA) and with support from Noblis, ATTRI held an online dialogue from May 15-June 6, 2014 to garner input on : mobility and transportation technology for travelers with disabilities. Participants wer...

  9. A Mission-Adaptive Variable Camber Flap Control System to Optimize High Lift and Cruise Lift-to-Drag Ratios of Future N+3 Transport Aircraft

    Science.gov (United States)

    Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric

    2013-01-01

    Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.

  10. Recent NASA progress in composites. [application to spacecraft and aircraft structures

    Science.gov (United States)

    Heldenfels, R. R.

    1975-01-01

    The application of composites in aerospace vehicle structures is reviewed. Research and technology program results and specific applications to space vehicles, aircraft engines, and aircraft and helicopter structures are discussed in detail. Particular emphasis is given to flight service evaluation programs that are or will be accumulating substantial experience with secondary and primary structural components on military and commercial aircraft to increase confidence in their use.

  11. Toward a human-centered aircraft automation philosophy

    Science.gov (United States)

    Billings, Charles E.

    1989-01-01

    The evolution of automation in civil aircraft is examined in order to discern trends in the respective roles and functions of automation technology and the humans who operate these aircraft. The effects of advances in automation technology on crew reaction is considered and it appears that, though automation may well have decreased the frequency of certain types of human errors in flight, it may also have enabled new categories of human errors, some perhaps less obvious and therefore more serious than those it has alleviated. It is suggested that automation could be designed to keep the pilot closer to the control of the vehicle, while providing an array of information management and aiding functions designed to provide the pilot with data regarding flight replanning, degraded system operation, and the operational status and limits of the aircraft, its systems, and the physical and operational environment. The automation would serve as the pilot's assistant, providing and calculating data, watching for the unexpected, and keeping track of resources and their rate of expenditure.

  12. Direct carbon dioxide emissions from civil aircraft

    OpenAIRE

    Grote, Matt; Williams, Ian; Preston, John

    2014-01-01

    Global airlines consume over 5 million barrels of oil per day, and the resulting carbon dioxide (CO2) emitted by aircraft engines is of concern. This article provides a contemporary review of the literature associated with the measures available to the civil aviation industry for mitigating CO2 emissions from aircraft. The measures are addressed under two categories – policy and legal-related measures, and technological and operational measures. Results of the review are used to develop sever...

  13. Liens on aircraft with special reference on statutory liens

    Directory of Open Access Journals (Sweden)

    Janković Svetislav

    2014-01-01

    Full Text Available The paper examines three types of liens on aircraft: mortgage (as contractual lien, statutory and judicial lien on aircraft. Special attention is paid to statutory liens and its relationship with mortgage and judicial lien on same aircraft. The author highlights the problem of priority of different type of secured creditors due to the fact of existing competition between their interests. This problem is especially enlarged because of simultaneously applying three different source of law: Cape Town Convention 2001, Serbian Law of Air Transport 2011 and Geneva Convention on the Recognition of Rights in Aircraft 1948. Conclusion is that the creditor with statutory lien on aircraft has the biggest priority in realization of his right over other creditors and even creditors secured with mortgage and judicial lien which have priority between themselves in comply with principle 'first in time, first in right'. In order to achieve the ideas of this conclusion in practice it is necessary for courts to use teleological interpretation in applying laws. This is especially because of certain inconsistencies between different legal sources in regard of notion, order of priority and effect of different type of liens on aircraft.

  14. Comparison of Requirements for Composite Structures for Aircraft and Space Applications

    Science.gov (United States)

    Raju, Ivatury S.; Elliot, Kenny B.; Hampton, Roy W.; Knight, Norman F., Jr.; Aggarwal, Pravin; Engelstad, Stephen P.; Chang, James B.

    2010-01-01

    In this report, the aircraft and space vehicle requirements for composite structures are compared. It is a valuable exercise to study composite structural design approaches used in the airframe industry and to adopt methodology that is applicable for space vehicles. The missions, environments, analysis methods, analysis validation approaches, testing programs, build quantities, inspection, and maintenance procedures used by the airframe industry, in general, are not transferable to spaceflight hardware. Therefore, while the application of composite design approaches from aircraft and other industries is appealing, many aspects cannot be directly utilized. Nevertheless, experiences and research for composite aircraft structures may be of use in unexpected arenas as space exploration technology develops, and so continued technology exchanges are encouraged.

  15. Noise Scaling and Community Noise Metrics for the Hybrid Wing Body Aircraft

    Science.gov (United States)

    Burley, Casey L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Lopes, Leonard V.; Nickol, Craig L.; Vicroy, Dan D.; Pope, D. Stuart

    2014-01-01

    An aircraft system noise assessment was performed for the hybrid wing body aircraft concept, known as the N2A-EXTE. This assessment is a result of an effort by NASA to explore a realistic HWB design that has the potential to substantially reduce noise and fuel burn. Under contract to NASA, Boeing designed the aircraft using practical aircraft design princip0les with incorporation of noise technologies projected to be available in the 2020 timeframe. NASA tested 5.8% scale-mode of the design in the NASA Langley 14- by 22-Foot Subsonic Tunnel to provide source noise directivity and installation effects for aircraft engine and airframe configurations. Analysis permitted direct scaling of the model-scale jet, airframe, and engine shielding effect measurements to full-scale. Use of these in combination with ANOPP predictions enabled computations of the cumulative (CUM) noise margins relative to FAA Stage 4 limits. The CUM margins were computed for a baseline N2A-EXTE configuration and for configurations with added noise reduction strategies. The strategies include reduced approach speed, over-the-rotor line and soft-vane fan technologies, vertical tail placement and orientation, and modified landing gear designs with fairings. Combining the inherent HWB engine shielding by the airframe with added noise technologies, the cumulative noise was assessed at 38.7 dB below FAA Stage 4 certification level, just 3.3 dB short of the NASA N+2 goal of 42 dB. This new result shows that the NASA N+2 goal is approachable and that significant reduction in overall aircraft noise is possible through configurations with noise reduction technologies and operational changes.

  16. Advanced composites structural concepts and materials technologies for primary aircraft structures: Design/manufacturing concept assessment

    Science.gov (United States)

    Chu, Robert L.; Bayha, Tom D.; Davis, HU; Ingram, J. ED; Shukla, Jay G.

    1992-01-01

    Composite Wing and Fuselage Structural Design/Manufacturing Concepts have been developed and evaluated. Trade studies were performed to determine how well the concepts satisfy the program goals of 25 percent cost savings, 40 percent weight savings with aircraft resizing, and 50 percent part count reduction as compared to the aluminum Lockheed L-1011 baseline. The concepts developed using emerging technologies such as large scale resin transfer molding (RTM), automatic tow placed (ATP), braiding, out-of-autoclave and automated manufacturing processes for both thermoset and thermoplastic materials were evaluated for possible application in the design concepts. Trade studies were used to determine which concepts carry into the detailed design development subtask.

  17. Aircraft accident analysis for emergency planning and safety analysis

    International Nuclear Information System (INIS)

    Nicolosi, S.L.; Jordan, H.; Foti, D.; Mancuso, J.

    1996-01-01

    Potential aircraft accidents involving facilities at the Rocky Flats Environmental Technology Site (Site) are evaluated to assess their safety significance. This study addresses the probability and facility penetrability of aircraft accidents at the Site. The types of aircraft (large, small, etc.) that may credibly impact the Site determine the types of facilities that may be breached. The methodology used in this analysis follows elements of the draft Department of Energy Standard ''Accident Analysis for Aircraft Crash into Hazardous Facilities'' (July 1995). Key elements used are: the four-factor frequency equation for aircraft accidents; the distance criteria for consideration of airports, airways, and jet routes; the consideration of different types of aircraft; and the Modified National Defense Research Committee (NDRC) formula for projectile penetration, perforation, and minimum resistant thickness. The potential aircraft accident frequency for each type of aircraft applicable to the Site is estimated using a four-factor formula described in the draft Standard. The accident frequency is the product of the annual number of operations, probability of an accident, probability density function, and area. The annual number of operations is developed from site-specific and state-wide data

  18. Implications Of Technology Learning in Energy-Economy Models of the Transport Sector

    International Nuclear Information System (INIS)

    Krzyzanowski, D.A.; Kypreos, S.; Gutzwiller, L.; Barreto, L.

    2005-07-01

    Diffusion of hydrogen fuelled fuel cell vehicles is foreseen by many as the future for the transportation sector. However, high technological advancement over conventional power trains and improved performance of fuel cells as technology, do not guarantee that fuel cell vehicles will actually play a significant role in the transportation sector in the coming decades. In this study, an attempt is made to evaluate selected factors, which may have a stimulating or hindering effect on the market diffusion of fuel cell vehicles. The analysis evaluates the influence of technological learning of fuel cell stack components, prices of fuel cells, hydrogen and crude oil based fuels as well as governmental initiatives to penalise for CO 2 emissions coming from the transportation sector, on market diffusion of fuel cell vehicles in the coming years. (author)

  19. Implications Of Technology Learning in Energy-Economy Models of the Transport Sector

    Energy Technology Data Exchange (ETDEWEB)

    Krzyzanowski, D.A.; Kypreos, S.; Gutzwiller, L.; Barreto, L

    2005-07-01

    Diffusion of hydrogen fuelled fuel cell vehicles is foreseen by many as the future for the transportation sector. However, high technological advancement over conventional power trains and improved performance of fuel cells as technology, do not guarantee that fuel cell vehicles will actually play a significant role in the transportation sector in the coming decades. In this study, an attempt is made to evaluate selected factors, which may have a stimulating or hindering effect on the market diffusion of fuel cell vehicles. The analysis evaluates the influence of technological learning of fuel cell stack components, prices of fuel cells, hydrogen and crude oil based fuels as well as governmental initiatives to penalise for CO{sub 2} emissions coming from the transportation sector, on market diffusion of fuel cell vehicles in the coming years. (author)

  20. MD-11 PCA - Closeup view of aircraft on ramp

    Science.gov (United States)

    1995-01-01

    This McDonnell Douglas MD-11 has taxied to a position on the flightline at NASA's Dryden Flight Research Center, Edwards, California, following its completion of the first and second landings ever performed by a transport aircraft under engine power only (on Aug. 29, 1995). The milestone flight, with NASA research pilot and former astronaut Gordon Fullerton at the controls, was part of a NASA project to develop a computer-assisted engine control system that enables a pilot to land a plane safely when its normal control surfaces are disabled. The Propulsion-Controlled Aircraft (PCA) system uses standard autopilot controls already present in the cockpit, together with the new programming in the aircraft's flight control computers. The PCA concept is simple. For pitch control, the program increases thrust to climb and reduces thrust to descend. To turn right, the autopilot increases the left engine thrust while decreasing the right engine thrust. The initial Propulsion-Controlled Aircraft studies by NASA were carried out at Dryden with a modified twin-engine F-15 research aircraft.

  1. Key Performance Parameter Driven Technology Goals for Electric Machines and Power Systems

    Science.gov (United States)

    Bowman, Cheryl; Jansen, Ralph; Brown, Gerald; Duffy, Kirsten; Trudell, Jeffrey

    2015-01-01

    Transitioning aviation to low carbon propulsion is one of the crucial strategic research thrust and is a driver in the search for alternative propulsion system for advanced aircraft configurations. This work requires multidisciplinary skills coming from multiple entities. The feasibility of scaling up various electric drive system technologies to meet the requirements of a large commercial transport is discussed in terms of key parameters. Functional requirements are identified that impact the power system design. A breakeven analysis is presented to find the minimum allowable electric drive specific power and efficiency that can preserve the range, initial weight, operating empty weight, and payload weight of the base aircraft.

  2. The challenge of technology diversification and markets

    International Nuclear Information System (INIS)

    Bollini, G.

    2002-01-01

    Tecnatom is developing since several years ago the diversification of technologies and markets given its enterprise vocation of technological leadership in the services and products supplied in both the national and international nuclear market. In this paper, a description of the historical development of these technologies is made, and how the diversification is initiated in the global market, as well as the identification of the segments of the industrial market where services and products of high technology can be provided. A description of the diversification strategy is included and several results of this policy are presented for the aircraft and space market, the transport market, the industrial processes market, etc. Finally, examples of developments of new technologies of virtual reality and augmented reality are explained and how these new capabilities feedback in the nuclear market. (Author)

  3. Durability and damage tolerance of Large Composite Primary Aircraft Structure (LCPAS)

    Science.gov (United States)

    Mccarty, John E.; Roeseler, William G.

    1984-01-01

    Analysis and testing addressing the key technology areas of durability and damage tolerance were completed for wing surface panels. The wing of a fuel-efficient, 200-passenger commercial transport airplane for 1990 delivery was sized using graphite-epoxy materials. Coupons of various layups used in the wing sizing were tested in tension, compression, and spectrum fatigue with typical fastener penetrations. The compression strength after barely visible impact damage was determined from coupon and structural element tests. One current material system and one toughened system were evaluated by coupon testing. The results of the coupon and element tests were used to design three distinctly different compression panels meeting the strength, stiffness, and damage-tolerance requirements of the upper wing panels. These three concepts were tested with various amounts of damage ranging from barely visible impact to through-penetration. The results of this program provide the key technology data required to assess the durability and damage-tolerance capability or advanced composites for use in commercial aircraft wing panel structure.

  4. The Aircraft Electric Taxi System: A Qualitative Multi Case Study

    Science.gov (United States)

    Johnson, Thomas Frank

    The problem this research addresses is the airline industry, and the seemingly unwillingness attitude towards adopting ways to taxi aircraft without utilizing thrust from the main engines. The purpose of the study was to get a better understanding of the decision-making process of airline executives, in respect to investing in cost saving technology. A qualitative research method is used from personal interviews with 24 airline executives from two major U.S. airlines, related industry journal articles, and aircraft performance data. The following three research questions are addressed. RQ1. Does the cost of jet fuel influence airline executives' decision of adopting the aircraft electric taxi system technology? RQ2 Does the measurable payback period for a return on investment influence airline executives' decision of adopting ETS technology? RQ3. Does the amount of government assistance influence airline executives' decision of adopting ETS technology? A multi case research study design is used with a triangulation technique. The participant perceptions indicate the need to reduce operating costs, they have concerns about investment risk, and they are in favor of future government sponsored performance improvement projects. Based on the framework, findings and implications of this study, a future research paper could focus on the positive environmental effects of the ETS application. A study could be conducted on current airport area air quality and the effects that aircraft main engine thrust taxiing has on the surrounding air quality.

  5. 75 FR 70074 - Consensus Standards, Light-Sport Aircraft

    Science.gov (United States)

    2010-11-16

    ... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Consensus Standards, Light-Sport... accepted consensus standards relating to the provisions of the Sport Pilot and Light-Sport Aircraft rule issued July 16, 2004, and effective September 1, 2004. ASTM International Committee F37 on Light Sport...

  6. Technology assessment of future intercity passenger transporation systems. Volume 2: Identification of issues affecting intercity transportation

    Science.gov (United States)

    1976-01-01

    Papers on major issues and trends that affect the future of intercity transportation are presented. Specific areas covered include: political, social, technological, institutional, and economic mechanisms, the workings of which determine how future intercity transporation technologies will evolve and be put into service; the major issues of intercity transportation from the point of view of reform, including candidate transporation technologies; and technical analysis of trends affecting the evolution of intercity transportation technologies.

  7. Space Transportation Materials and Structures Technology Workshop. Volume 2: Proceedings

    International Nuclear Information System (INIS)

    Cazier, F.W. Jr.; Gardner, J.E.

    1993-02-01

    The Space Transportation Materials and Structures Technology Workshop was held on September 23-26, 1991, in Newport News, Virginia. The workshop, sponsored by the NASA Office of Space Flight and the NASA Office of Aeronautics and Space Technology, was held to provide a forum for communication within the space materials and structures technology developer and user communities. Workshop participants were organized into a Vehicle Technology Requirements session and three working panels: Materials and Structures Technologies for Vehicle Systems, Propulsion Systems, and Entry Systems. Separate abstracts have been prepared for papers in this report

  8. Technology and equipment to improve reliability of pipeline transport

    Science.gov (United States)

    Suleimanov, D. F.; Shulayev, N. S.; Bondar, K. E.; Laponov, S. V.; Uzinger, A. A.

    2017-10-01

    The article is dedicated to development of technology and hardware design of method pipeline transport reliability improving by improving the isolated coating properties modified by microwave radiation. The article describes the technology of the modification process of the coating and instrumentation production, which allows improving operational properties not only in stationary conditions in the manufacture of the insulation coating, but also during its replacement in the field.

  9. Subsonic Ultra Green Aircraft Research Phase II: N+4 Advanced Concept Development

    Science.gov (United States)

    Bradley, Marty K.; Droney, Christopher K.

    2012-01-01

    This final report documents the work of the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team on Task 1 of the Phase II effort. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, General Electric, and Georgia Tech. Using a quantitative workshop process, the following technologies, appropriate to aircraft operational in the N+4 2040 timeframe, were identified: Liquefied Natural Gas (LNG), Hydrogen, fuel cell hybrids, battery electric hybrids, Low Energy Nuclear (LENR), boundary layer ingestion propulsion (BLI), unducted fans and advanced propellers, and combinations. Technology development plans were developed.

  10. Deicing System Protects General Aviation Aircraft

    Science.gov (United States)

    2007-01-01

    Kelly Aerospace Thermal Systems LLC worked with researchers at Glenn Research Center on deicing technology with assistance from the Small Business Innovation Research (SBIR) program. Kelly Aerospace acquired Northcoast Technologies Ltd., a firm that had conducted work on a graphite foil heating element under a NASA SBIR contract and developed a lightweight, easy-to-install, reliable wing and tail deicing system. Kelly Aerospace engineers combined their experiences with those of the Northcoast engineers, leading to the certification and integration of a thermoelectric deicing system called Thermawing, a DC-powered air conditioner for single-engine aircraft called Thermacool, and high-output alternators to run them both. Thermawing, a reliable anti-icing and deicing system, allows pilots to safely fly through ice encounters and provides pilots of single-engine aircraft the heated wing technology usually reserved for larger, jet-powered craft. Thermacool, an innovative electric air conditioning system, uses a new compressor whose rotary pump design runs off an energy-efficient, brushless DC motor and allows pilots to use the air conditioner before the engine even starts

  11. Ground impact probability distribution for small unmanned aircraft in ballistic descent

    DEFF Research Database (Denmark)

    La Cour-Harbo, Anders

    2018-01-01

    Safety is a key factor in all aviation, and while years of development has made manned aviation relatively safe, the same has yet to happen for unmanned aircraft. However, the rapid development of unmanned aircraft technology means that the range of commercial and scientific applications is growing...

  12. Technology and human purpose: the problem of solids transport on the Earth's surface

    Science.gov (United States)

    Haff, P. K.

    2012-11-01

    Displacement of mass of limited deformability ("solids") on the Earth's surface is opposed by friction and (the analog of) form resistance - impediments relaxed by rotational motion, self-powering of mass units, and transport infrastructure. These features of solids transport first evolved in the biosphere prior to the emergence of technology, allowing slope-independent, diffusion-like motion of discrete objects as massive as several tons, as illustrated by animal foraging and movement along game trails. However, high-energy-consumption technology powered by fossil fuels required a mechanism that could support fast advective transport of solids, i.e., long-distance, high-volume, high-speed, unidirectional, slope-independent transport across the land surface of materials like coal, containerized fluids, minerals, and economic goods. Pre-technology nature was able to sustain regional- and global-scale advection only in the limited form of piggybacking on geophysical flows of water (river sediment) and air (dust). The appearance of a mechanism for sustained advection of solids independent of fluid flows and gravity appeared only upon the emergence of human purpose. Purpose enables solids advection by, in effect, simulating a continuous potential gradient, otherwise lacking, between discrete and widely separated fossil-fuel energy sources and sinks. Invoking purpose as a mechanism in solids advection is an example of the need to import anthropic principles and concepts into the language and methodology of modern Earth system dynamics. As part of the emergence of a generalized solids advection mechanism, several additional transport requirements necessary to the function of modern large-scale technological systems were also satisfied. These include spatially accurate delivery of advected payload, targetability to essentially arbitrarily located destinations (such as cities), and independence of structure of advected payload from transport mechanism. The latter property

  13. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  14. Commercial Aircraft Protection

    Energy Technology Data Exchange (ETDEWEB)

    Ehst, David A. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2016-10-26

    This report summarizes the results of theoretical research performed during 3 years of P371 Project implementation. In results of such research a new scientific conceptual technology of quasi-passive individual infrared protection of heat-generating objects – Spatial Displacement of Thermal Image (SDTI technology) was developed. Theoretical substantiation and description of working processes of civil aircraft individual IR-protection system were conducted. The mathematical models and methodology were presented, there were obtained the analytical dependencies which allow performing theoretical research of the affect of intentionally arranged dynamic field of the artificial thermal interferences with variable contrast onto main parameters of optic-electronic tracking and homing systems.

  15. Recent technologies for reduction of aircraft propulsion noise. Kokuki engine soon teigenka no saikin no gijutsu shinpo ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, H [National Aerospace Lab., Chofu, Tokyo (Japan)

    1994-03-10

    Inside the jet engine, the propulsion engine for an aircraft, a high speed air current is flowing, and the rotors such as the fan, compress or, turbine and so forth are rotating with a high speed in its flowing current. The flow itself in which a high speed exhaust jet is discharged in the air from engine exhaust port, and the aerodynamic noise generated by an interaction of the flow with the material bodies are the main noise sources of the aircraft engine. Because the supersonic planes are necessary to fly with mach number 2 - 3 during cruising, the turbojet engine with a large jet exhaust speed or the low bypass ratio turbofan engine is selected. Since a noise reduction by reducing the jet exhaust speed, which was an effective measure for the high subsonic speed passenger plane, can not be applied, a reduction of the supersonic jet noise, which is hard to be reduced, becomes a necessity. In addition, in recent years, a research and development of the advanced turbo prop (ATP) aircraft with a further higher thrust efficiency are advanced as well. The aerodynamical noise reduction technologies of these engines for supersonic airplanes are summarized. 14 refs., 11 figs., 1 tab.

  16. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  17. 49 CFR 27.72 - Boarding assistance for aircraft.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 1 2010-10-01 2010-10-01 false Boarding assistance for aircraft. 27.72 Section 27... Specific Operating Administration Programs: Airports, Railroads, and Highways § 27.72 Boarding assistance... enplanements. (b) Airports shall, in cooperation with carriers serving the airports, provide boarding...

  18. The Combined Effects of Aircraft and Road Traffic Noise and Aircraft and Railway Noise on Noise Annoyance—An Analysis in the Context of the Joint Research Initiative NORAH

    Directory of Open Access Journals (Sweden)

    Jördis Wothge

    2017-08-01

    Full Text Available The Noise Related Annoyance Cognition and Health (NORAH research initiative is one of the most extensive studies on the physiological and psychological long-term effects of transportation noise in Europe. It includes research on the quality of life and annoyance as well as cardiovascular effects, sleep disturbance, breast cancer, blood pressure, depression and the cognitive development of children. Within the realm of the annoyance module of the study approximately 10,000 residents of the Rhine-Main district were surveyed on the combined effects of transportation noise. This included combined noise from aircraft and road traffic noise (N = 4905, or aircraft and railway noise (N = 4777. Results show that judgment of the total noise annoyance of participants was strongly determined by the sound source which was judged as more annoying (in this case aircraft noise. To a lesser extent, the average sound pressure level of the two present sources was also of relevance.

  19. 41 CFR 301-70.803 - How must we authorize travel on a Government aircraft?

    Science.gov (United States)

    2010-07-01

    ... qualified non-crewmembers on a flight in which they are also traveling (i.e., being transported from point-to-point) are considered travelers and must be authorized to travel on Government aircraft according... travel on a Government aircraft? 301-70.803 Section 301-70.803 Public Contracts and Property Management...

  20. Aircraft Anomaly Detection Using Performance Models Trained on Fleet Data

    Science.gov (United States)

    Gorinevsky, Dimitry; Matthews, Bryan L.; Martin, Rodney

    2012-01-01

    This paper describes an application of data mining technology called Distributed Fleet Monitoring (DFM) to Flight Operational Quality Assurance (FOQA) data collected from a fleet of commercial aircraft. DFM transforms the data into aircraft performance models, flight-to-flight trends, and individual flight anomalies by fitting a multi-level regression model to the data. The model represents aircraft flight performance and takes into account fixed effects: flight-to-flight and vehicle-to-vehicle variability. The regression parameters include aerodynamic coefficients and other aircraft performance parameters that are usually identified by aircraft manufacturers in flight tests. Using DFM, the multi-terabyte FOQA data set with half-million flights was processed in a few hours. The anomalies found include wrong values of competed variables, (e.g., aircraft weight), sensor failures and baises, failures, biases, and trends in flight actuators. These anomalies were missed by the existing airline monitoring of FOQA data exceedances.

  1. Advanced Propfan Engine Technology (APET) definition study, single and counter-rotation gearbox/pitch change mechanism design

    Science.gov (United States)

    Anderson, R. D.

    1985-01-01

    Single-rotation propfan-powered regional transport aircraft were studied to identify key technology development issues and programs. The need for improved thrust specific fuel consumption to reduce fuel burned and aircraft direct operating cost is the dominant factor. Typical cycle trends for minimizing fuel consumption are reviewed, and two 10,000 shp class engine configurations for propfan propulsion systems for the 1990's are presented. Recommended engine configurations are both three-spool design with dual spool compressors and free power turbines. The benefits of these new propulsion system concepts were evaluated using an advanced airframe, and results are compared for single-rotation propfan and turbofan advanced technology propulsion systems. The single-rotation gearbox is compared to a similar design with current technology to establish the benefits of the advanced gearbox technology. The conceptual design of the advanced pitch change mechanism identified a high pressure hydraulic system that is superior to the other contenders and completely external to the gearboxes.

  2. 2015 OST-R Transportation Technology Scan : A Look Ahead.

    Science.gov (United States)

    2015-12-01

    This report identifies emerging technologies and innovative applications that may begin to have significant impact on our transportation systems within three to five years. They represent several industries and disciplines and could affect all major ...

  3. Intelligent products for enhancing the utilization of tracking technology in transportation

    NARCIS (Netherlands)

    Meyer, Gerben G.; Buijs, Paul; Szirbik, Nick B.; Wortmann, J.C.

    2014-01-01

    Purpose – Many transportation companies struggle to effectively utilize the information provided by tracking technology for performing operational control. The research as presented in this paper aims to identify the problems underlying the inability to utilize tracking technology within this

  4. Lightning protection technology for small general aviation composite material aircraft

    Science.gov (United States)

    Plumer, J. A.; Setzer, T. E.; Siddiqi, S.

    1993-01-01

    An on going NASA (Small Business Innovative Research) SBIR Phase II design and development program will produce the first lightning protected, fiberglass, General Aviation aircraft that is available as a kit. The results obtained so far in development testing of typical components of the aircraft kit, such as the wing and fuselage panels indicate that the lightning protection design methodology and materials chosen are capable of protecting such small composite airframes from lightning puncture and structural damage associated with severe threat lightning strikes. The primary objective of the program has been to develop a lightening protection design for full scale test airframe and verify its adequacy with full scale laboratory testing, thus enabling production and sale of owner-built, lightning-protected, Stoddard-Hamilton Aircraft, Inc. Glasair II airplanes. A second objective has been to provide lightning protection design guidelines for the General Aviation industry, and to enable these airplanes to meet lightening protection requirements for certification of small airplanes. This paper describes the protection design approaches and development testing results obtained thus far in the program, together with design methodology which can achieve the design goals listed above. The presentation of this paper will also include results of some of the full scale verification tests, which will have been completed by the time of this conference.

  5. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E.W.; Kelder, H.; Velthoven, P.F.J. van; Wauben, W.M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J.P.; Velders, G.J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J.; Scheeren, B.A. [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1997-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  6. AIRFORCE. Aircraft emissions and radiative forcing from emissions

    Energy Technology Data Exchange (ETDEWEB)

    Meijer, E W; Kelder, H; Velthoven, P F.J. van; Wauben, W M.F. [Royal Netherlands Meteorological Inst., De Bilt (Netherlands); Beck, J P; Velders, G J.M. [National Inst. of Public Health and the Environment, Bilthoven (Netherlands); Lelieveld, J; Scheeren, B A [Institute of Marine and Atmospheric Research Utrecht (Netherlands)

    1998-12-31

    The Dutch AIRFORCE project focuses on the effects of subsonic aircraft emissions on the chemical composition of the atmosphere and subsequent radiative forcing. It includes measurements in the tropopause region and the modelling of exhaust plumes and large-scale effects. An aircraft exhaust plume model has been developed to study plume processes. The results of the plume model are used in the global transport chemistry model CTMK to determine large-scale effects of plume processes. Due to the efficient conversion of NO{sub x} into HNO{sub 3} inside aircraft exhaust plumes, a decrease of about 25% of the O{sub 3} perturbation was found in the NAFC at 200 hPa in July. Measurements of hydrocarbons revealed a dominant role of the anthropogenic continental emissions of light hydrocarbons in the tropopause region. (author) 20 refs.

  7. A Grounded Theory Study of Aircraft Maintenance Technician Decision-Making

    Science.gov (United States)

    Norcross, Robert

    Aircraft maintenance technician decision-making and actions have resulted in aircraft system errors causing aircraft incidents and accidents. Aircraft accident investigators and researchers examined the factors that influence aircraft maintenance technician errors and categorized the types of errors in an attempt to prevent similar occurrences. New aircraft technology introduced to improve aviation safety and efficiency incur failures that have no information contained in the aircraft maintenance manuals. According to the Federal Aviation Administration, aircraft maintenance technicians must use only approved aircraft maintenance documents to repair, modify, and service aircraft. This qualitative research used a grounded theory approach to explore the decision-making processes and actions taken by aircraft maintenance technicians when confronted with an aircraft problem not contained in the aircraft maintenance manuals. The target population for the research was Federal Aviation Administration licensed aircraft and power plant mechanics from across the United States. Nonprobability purposeful sampling was used to obtain aircraft maintenance technicians with the experience sought in the study problem. The sample population recruitment yielded 19 participants for eight focus group sessions to obtain opinions, perceptions, and experiences related to the study problem. All data collected was entered into the Atlas ti qualitative analysis software. The emergence of Aircraft Maintenance Technician decision-making themes regarding Aircraft Maintenance Manual content, Aircraft Maintenance Technician experience, and legal implications of not following Aircraft Maintenance Manuals surfaced. Conclusions from this study suggest Aircraft Maintenance Technician decision-making were influenced by experience, gaps in the Aircraft Maintenance Manuals, reliance on others, realizing the impact of decisions concerning aircraft airworthiness, management pressures, and legal concerns

  8. The Second Joint NASA/FAA/DoD Conference on Aging Aircraft. Part 2

    Science.gov (United States)

    Harris, Charles E. (Editor)

    1999-01-01

    The purpose of the Conference was to bring together world leaders in aviation safety research, aircraft design and manufacturing, fleet operation and aviation maintenance to disseminate information on current practices and advanced technologies that will assure the continued airworthiness of the aging aircraft in the military and commercial fleets. The Conference included reviews of current industry practices, assessments of future technology requirements, and status of aviation safety research. The Conference provided an opportunity for interactions among the key personnel in the research and technology development community, the original equipment manufacturers, commercial airline operators, military fleet operators, aviation maintenance, and aircraft certification and regulatory authorities. Conference participation was unrestricted and open to the international aviation community. Appendix B contains the name and addresses of the 623 participants in the Conference.

  9. Aircraft noise, air pollution, and mortality from myocardial infarction.

    NARCIS (Netherlands)

    Huss, A.; Spoerri, A.; Egger, M.; Roosli, M.

    2010-01-01

    OBJECTIVE: Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. METHODS: We analyzed the Swiss National Cohort, which includes

  10. FAA/NASA Joint University Program for Air Transportation Research: 1993-1994

    Science.gov (United States)

    Hueschen, Richard M. (Compiler)

    1995-01-01

    This report summarizes the research conducted during the academic year 1993-1994 under the NASA/FAA sponsored Joint University Program for Air Transportation Research. The year end review was held at Ohio University, Athens, Ohio, July 14-15, 1994. The Joint University Program is a coordinated set of three grants sponsored by NASA Langley Research Center and the Federal Aviation Administration, one each with the Massachusetts Institute of Technology (NGL-22-009-640), Ohio University (NGR-36-009-017), and Princeton University (NGL-31-001-252). Completed works, status reports, and annotated bibliographies are presented for research topics which include navigation, guidance and control theory and practice, aircraft performance, human factors, and expert systems concepts applied to aircraft and airport operations. An overview of the year's activities for each university is also presented.

  11. Measurements techniques for transportation noise

    International Nuclear Information System (INIS)

    Brambilla, G.

    2001-01-01

    The noise from transport systems (roads, railways and aircraft) are increasing more and more both in space and in time and, therefore, they are still the major factor responsible for environmental noise pollution. The population exposed to transport noise is also increasing, and the corresponding health effects on people (i.e. annoyance and sleep disturbance) become more severe. Due to this current situation international and national legislation has been issued and implemented to reduce the harmful effects of such noise. This paper describes the techniques prescribed by recent Italian legislation to measure road, railway and aircraft noise. (author)

  12. A Study of the Utilization of Advanced Composites in Fuselage Structures of Commercial Aircraft

    Science.gov (United States)

    Watts, D. J.; Sumida, P. T.; Bunin, B. L.; Janicki, G. S.; Walker, J. V.; Fox, B. R.

    1985-01-01

    A study was conducted to define the technology and data needed to support the introduction of advanced composites in the future production of fuselage structure in large transport aircraft. Fuselage structures of six candidate airplanes were evaluated for the baseline component. The MD-100 was selected on the basis of its representation of 1990s fuselage structure, an available data base, its impact on the schedule and cost of the development program, and its availability and suitability for flight service evaluation. Acceptance criteria were defined, technology issues were identified, and a composite fuselage technology development plan, including full-scale tests, was identified. The plan was based on composite materials to be available in the mid to late 1980s. Program resources required to develop composite fuselage technology are estimated at a rough order of magnitude to be 877 man-years exclusive of the bird strike and impact dynamic test components. A conceptual composite fuselage was designed, retaining the basic MD-100 structural arrangement for doors, windows, wing, wheel wells, cockpit enclosure, major bulkheads, etc., resulting in a 32 percent weight savings.

  13. Airline's choice of aircraft size-explanations and implications

    NARCIS (Netherlands)

    Rietveld, P.; Givoni, M.

    2009-01-01

    When facing a growth in demand, airlines tend to respond more by means of increasing frequencies than by increasing aircraft size. At many of the world's largest airports there are fewer than 100 passengers per air transport movement, although congestion and delays are growing. Furthermore, demand

  14. THE FORMING OF MAGNESIUM ALLOY FORGINGS FOR AIRCRAFT AND AUTOMOTIVE APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Anna Dziubińska

    2016-09-01

    Full Text Available The paper presents the theoretical and technological aspects of forming magnesium alloy parts for aircraft and automotive applications. The main applications of magnesium alloys in the aircraft and automotive industries are discussed. In addition, the forging technology for magnesium alloys is generally described, with a particular emphasis on wrought alloys. A brief outline of the state of the art in the forging of magnesium alloys is given based on a survey of the specialist literature and the results of previous research by the authors.

  15. Energy management strategy for solar-powered high-altitude long-endurance aircraft

    International Nuclear Information System (INIS)

    Gao, Xian-Zhong; Hou, Zhong-Xi; Guo, Zheng; Liu, Jian-Xia; Chen, Xiao-Qian

    2013-01-01

    Highlights: ► A new Energy Management Strategy (EMS) for high-altitude solar-powered aircraft is purposed. ► The simulations show that the aircraft can always keep the altitude above 16 km with the proposed EMS. ► The proposed EMS is capable to alleviate the power consumed for aircraft during night. ► The main technologies to improve the flight performance of aircraft are analyzed. - Abstract: Development of solar-powered High-Altitude Long-Endurance (HALE) aircraft has a great impact on both military and civil aviation industries since its features in high-altitude and energy source can be considered inexhaustible. Owing to the development constraints of rechargeable batteries, the solar-powered HALE aircraft must take amount of rechargeable batteries to fulfill the energy requirement in night, which greatly limits the operation altitude of aircraft. In order to solve this problem, a new Energy Management Strategy (EMS) is proposed based on the idea that the solar energy can be partly stored in gravitational potential in daytime. The flight path of HALE aircraft is divided into three stages. During the stage 1, the solar energy is stored in both lithium–sulfur battery and gravitational potential. The gravitational potential is released in stage 2 by gravitational gliding and the required power in stage 3 is supplied by lithium–sulfur battery. Correspondingly, the EMS is designed for each stage. The simulation results show that the aircraft can always keep the altitude above 16 km with the proposed EMS, and the power consumed during night can be also alleviated. Comparing with the current EMS, about 23.5% energy is remained in batteries with the proposed EMS during one day–night cycle. The sensitivities of the improvement of crucial technologies to the performance of aircraft are also analyzed. The results show that the enhancement of control and structural system, lithium–sulfur battery, and solar cell are ranked in descending order for the

  16. Accessible Transportation Technologies Research Initiative (ATTRI) : User Needs Assessment: Stakeholder Engagement Report.

    Science.gov (United States)

    2016-05-01

    The Accessible Transportation Technologies Research Initiative (ATTRI) is a joint U.S. Department of Transportation (U.S. DOT) initiative that is co-led by the Federal Highway Administration (FHWA) and the Federal Transit Administration (FTA). ATTRI ...

  17. Wireless Phone Threat Assessment for Aircraft Communication and Navigation Radios

    Science.gov (United States)

    Nguyens, T. X.; Koppen, S. V.; Smith, L. J.; Williams, R. A.; Salud, M. T.

    2005-01-01

    Emissions in aircraft communication and navigation bands are measured for the latest generation of wireless phones. The two wireless technologies considered, GSM/GPRS and CDMA2000, are the latest available to general consumers in the U.S. A base-station simulator is used to control the phones. The measurements are conducted using reverberation chambers, and the results are compared against FCC and aircraft installed equipment emission limits. The results are also compared against baseline emissions from laptop computers and personal digital assistant devices that are currently allowed to operate on aircraft.

  18. Bacteria that Travel: The Quality of Aircraft Water

    Directory of Open Access Journals (Sweden)

    Harald Handschuh

    2015-10-01

    Full Text Available The travelling population is increasing globally year on year. International tourist arrival figures reached 1087 million in 2013 and 1133 million in 2014; of which 53% and 54% respectively accounted for air transport. The water on board aircraft is sourced from surface or ground water; piped to a central filling point and distributed to each aircraft by water service vehicles at the home base or at the destination airport. The purpose of this study was to ascertain the microbial, chemical (pH; Total and Free chlorine and physical (temperature quality of water from two aircraft, long- and short-haul, as well as from the original water source and the water service vehicle. A total of 154 water samples were collected and analysed. Long-haul flights were found to be significantly poorer in terms of microbial quality than short haul flights (p = 0.015. Furthermore, correlation and regression analysis showed that the water service vehicle was a significant source of increased microbial load in aircraft. Microbial diversity was also demonstrated, with 37 bacterial species identified belonging to eight classes: γ-Proteobacteria; β-Proteobacteria; α-Proteobacteria; Bacilli; Actinobacteria; Flavobacteria; Sphingobacteria and Cytophaga; using phenotypic and 16S rDNA sequence-based analysis. We present a novel quantified study of aircraft-related potable water supplies.

  19. Technologies to counter aviation security threats

    Science.gov (United States)

    Karoly, Steve

    2017-11-01

    The Aviation and Transportation Security Act (ATSA) makes TSA responsible for security in all modes of transportation, and requires that TSA assess threats to transportation, enforce security-related regulations and requirements, and ensure the adequacy of security measures at airports and other transportation facilities. Today, TSA faces a significant challenge and must address a wide range of commercial, military grade, and homemade explosives and these can be presented in an infinite number of configurations and from multiple vectors. TSA screens 2 million passengers and crew, and screens almost 5 million carry-on items and 1.2 million checked bags daily. As TSA explores new technologies for improving efficiency and security, those on the forefront of research and development can help identify unique and advanced methods to combat terrorism. Research and Development (R&D) drives the development of future technology investments that can address an evolving adversary and aviation threat. The goal is to rethink the aviation security regime in its entirety, and rather than focusing security at particular points in the enterprise, distribute security from the time a reservation is made to the time a passenger boards the aircraft. The ultimate objective is to reengineer aviation security from top to bottom with a continued focus on increasing security throughout the system.

  20. Proceedings of the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. Volume 2

    Science.gov (United States)

    Bigelow, Catherine A. (Compiler)

    1997-01-01

    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of Aircraft Structures at Georgia Institute of Technology, was held to disseminate information on recent developments in advanced technologies to extend the life of high-time aircraft and design longer-life aircraft. Affiliations of the participants included 33% from government agencies and laboratories, 19% from academia, and 48% from industry; in all 240 people were in attendance. Technical papers were selected for presentation at the symposium, after a review of extended abstracts received by the Organizing Committee from a general call for papers.

  1. Proceedings of the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. Volume 1

    Science.gov (United States)

    Bigelow, Catherine A. (Compiler)

    1997-01-01

    This publication contains the fifty-two technical papers presented at the FAA-NASA Symposium on the Continued Airworthiness of Aircraft Structures. The symposium, hosted by the FAA Center of Excellence for Computational Modeling of Aircraft Structures at Georgia Institute of Technology, was held to disseminate information on recent developments in advanced technologies to extend the life of high-time aircraft and design longer-life aircraft. Affiliations of the participants included 33% from government agencies and laboratories, 19% from academia, and 48% from industry; in all 240 people were in attendance. Technical papers were selected for presentation at the symposium, after a review of extended abstracts received by the Organizing Committee from a general call for papers.

  2. An assessment of advanced displays and controls technology applicable to future space transportation systems

    Science.gov (United States)

    Hatfield, Jack J.; Villarreal, Diana

    1990-01-01

    The topic of advanced display and control technology is addressed along with the major objectives of this technology, the current state of the art, major accomplishments, research programs and facilities, future trends, technology issues, space transportation systems applications and projected technology readiness for those applications. The holes that may exist between the technology needs of the transportation systems versus the research that is currently under way are addressed, and cultural changes that might facilitate the incorporation of these advanced technologies into future space transportation systems are recommended. Some of the objectives are to reduce life cycle costs, improve reliability and fault tolerance, use of standards for the incorporation of advancing technology, and reduction of weight, volume and power. Pilot workload can be reduced and the pilot's situational awareness can be improved, which would result in improved flight safety and operating efficiency. This could be accomplished through the use of integrated, electronic pictorial displays, consolidated controls, artificial intelligence, and human centered automation tools. The Orbiter Glass Cockpit Display is an example examined.

  3. Analysing Models as a Knowledge Technology in Transport Planning

    DEFF Research Database (Denmark)

    Gudmundsson, Henrik

    2011-01-01

    critical analytic literature on knowledge utilization and policy influence. A simple scheme based in this literature is drawn up to provide a framework for discussing the interface between urban transport planning and model use. A successful example of model use in Stockholm, Sweden is used as a heuristic......Models belong to a wider family of knowledge technologies, applied in the transport area. Models sometimes share with other such technologies the fate of not being used as intended, or not at all. The result may be ill-conceived plans as well as wasted resources. Frequently, the blame...... device to illuminate how such an analytic scheme may allow patterns of insight about the use, influence and role of models in planning to emerge. The main contribution of the paper is to demonstrate that concepts and terminologies from knowledge use literature can provide interpretations of significance...

  4. Refined Exploration of Turbofan Design Options for an Advanced Single-Aisle Transport

    Science.gov (United States)

    Guynn, Mark D.; Berton, Jeffrey J.; Fisher, Kenneth L.; Haller, William J.; Tong, Michael T.; Thurman, Douglas R.

    2011-01-01

    A comprehensive exploration of the turbofan engine design space for an advanced technology single-aisle transport (737/A320 class aircraft) was conducted previously by the authors and is documented in a prior report. Through the course of that study and in a subsequent evaluation of the approach and results, a number of enhancements to the engine design ground rules and assumptions were identified. A follow-on effort was initiated to investigate the impacts of these changes on the original study results. The fundamental conclusions of the prior study were found to still be valid with the revised engine designs. The most significant impact of the design changes was a reduction in the aircraft weight and block fuel penalties incurred with low fan pressure ratio, ultra-high bypass ratio designs. This enables lower noise levels to be pursued (through lower fan pressure ratio) with minor negative impacts on aircraft weight and fuel efficiency. Regardless of the engine design selected, the results of this study indicate the potential for the advanced aircraft to realize substantial improvements in fuel efficiency, emissions, and noise compared to the current vehicles in this size class.

  5. Status report on the land processes aircraft science management operations working group

    Science.gov (United States)

    Lawless, James G.; Mann, Lisa J.

    1991-01-01

    Since its inception three years ago, the Land Processes Aircraft Science Management Operations Working Group (MOWG) provided recommendations on the optimal use of the Agency's aircraft in support of the Land Processes Science Program. Recommendations covered topics such as aircraft and sensor usage, development of long-range plans, Multisensor Airborne Campaigns (MAC), program balance, aircraft sensor databases, new technology and sensor development, and increased University scientist participation in the program. Impacts of these recommendations improved the efficiency of various procedures including the flight request process, tracking of flight hours, and aircraft usage. The group also created a bibliography focused on publications produced by Land Processes scientists from the use of the aircraft program, surveyed NASA funded PI's on their participation in the aircraft program, and developed a planning template for multi-sensor airborne campaigns. Benefits from these activities are summarized.

  6. Risk assessment of aircraft accidents anywhere near an airport

    International Nuclear Information System (INIS)

    Barbaran, Gustavo; Jensen Mariani Santiago Nicolas

    2011-01-01

    This work analyzes the more suitable areas to build new facilities, taking into account the conditions imposed by an airport located nearby. Initially, it describes the major characteristics of the airport. Then, the restrictions imposed to ensure the normal operation of the aircraft are analyzed. Following, there is a summary of the evolution of studies of aircraft accidents at nuclear facilities. In the second part, three models of aircraft crash probabilities are presented, all of them developed in the U.S.A, each with an increasing level of complexity in modeling the likelihood of accidents. The first model is the 'STD-3014' Department of Energy (DOE), the second is the 'ACRAM'(Aircraft Crash Risk Assessment Methodology) prepared by the 'Lawrence Livermore National Laboratory'(LLNL) and finally the more advanced 'ACRP-3', produced by the 'Transportation Research Board'. The results obtained with the three models establish that the risks imposed on the airport vicinity, remain low due to the improvement and innovation in the aircraft's safety, reducing the risk margin for the location of new nuclear facilities near an airport. (author) [es

  7. Ramjet Nozzle Analysis for Transport Aircraft Configuration for Sustained Hypersonic Flight

    Directory of Open Access Journals (Sweden)

    Raman Baidya

    2018-04-01

    Full Text Available For the past several decades, research dealing with hypersonic flight regimes has been restricted mainly to military applications. Hypersonic transportation could be a possible and affordable solution to travel in the medium term and there is renewed interest from several private organisations for commercial exploitation in this direction. Various combined cycle propulsion configurations have been proposed and the present paper deals with implications for the nozzle component of a ramjet configuration as part of one such combined cycle propulsion configuration. An investigation was undertaken for a method of turbine-based propulsion which enables the hypersonic vehicle to take off under its own power and propel the aircraft under different mission profiles into ramjet operational Mach regimes. The present study details an optimal method of ramjet exhaust expansion to produce sufficient thrust to propel the vehicle into altitudes and Mach regimes where scramjet operation can be initiated. This aspect includes a Computational Fluid Dynamics (CFD-based geometric study to determine the optimal configuration to provide the best thrust values. The CFD parametric analysis investigated three candidate nozzles and indicated that the dual bell nozzle design produced the highest thrust values when compared to other nozzle geometries. The altitude adaptation study also validated the effectiveness of the nozzle thrust at various altitudes without compromising its thrust-producing capabilities. Computational data were validated against published experimental data, which indicated that the computed values correlated well with the experimental data.

  8. Transports of delight how technology materializes human imagination

    CERN Document Server

    Hancock, Peter

    2017-01-01

    This inspiring book shows how the spiritual side of life, with its thoughts, feelings, and aspirations, is intimately bound up with our material technologies. From the wonder of Gothic Cathedrals, to the quiet majesty of lighter than air flight, to the ultimate in luxury of the north Atlantic steamers, Peter Hancock explores how these sequential heights of technology have enabled our dreams of being transported to new and uncharted realms to become reality. Sometimes literally, sometimes figuratively, technology has always been there to make material the visions of our imagination. This book shows how this has essentially been true for all technologies from Stonehenge to space station. But technology is far from perfect. Indeed, the author argues here that some of the most public and tragic of its failures still remain instructive, emblematic, and even inspiring. He reports on examples such as a Cathedral of the Earth (Beauvais), a Cathedral of the Seas (Titanic), and a Cathedral of the Air (Hindenburg) and t...

  9. Frequency Analysis of Aircraft hazards for License Application

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards

  10. Frequency Analysis of Aircraft hazards for License Application

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-10-24

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  11. Future aircraft networks and schedules

    Science.gov (United States)

    Shu, Yan

    2011-07-01

    Because of the importance of air transportation scheduling, the emergence of small aircraft and the vision of future fuel-efficient aircraft, this thesis has focused on the study of aircraft scheduling and network design involving multiple types of aircraft and flight services. It develops models and solution algorithms for the schedule design problem and analyzes the computational results. First, based on the current development of small aircraft and on-demand flight services, this thesis expands a business model for integrating on-demand flight services with the traditional scheduled flight services. This thesis proposes a three-step approach to the design of aircraft schedules and networks from scratch under the model. In the first step, both a frequency assignment model for scheduled flights that incorporates a passenger path choice model and a frequency assignment model for on-demand flights that incorporates a passenger mode choice model are created. In the second step, a rough fleet assignment model that determines a set of flight legs, each of which is assigned an aircraft type and a rough departure time is constructed. In the third step, a timetable model that determines an exact departure time for each flight leg is developed. Based on the models proposed in the three steps, this thesis creates schedule design instances that involve almost all the major airports and markets in the United States. The instances of the frequency assignment model created in this thesis are large-scale non-convex mixed-integer programming problems, and this dissertation develops an overall network structure and proposes iterative algorithms for solving these instances. The instances of both the rough fleet assignment model and the timetable model created in this thesis are large-scale mixed-integer programming problems, and this dissertation develops subproblem schemes for solving these instances. Based on these solution algorithms, this dissertation also presents

  12. Aircraft Emission Inventories Projected in Year 2015 for a High Speed Civil Transport (HSCT) Universal Airline Network. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baughcum, S.L.; Henderson, S.C.

    1995-07-01

    This report describes the development of a three-dimensional database of aircraft fuel burn and emissions (fuel burned, NOx, CO, and hydrocarbons) from projected fleets of high speed civil transports (HSCT`s) on a universal airline network. Inventories for 500 and 1000 HSCT fleets, as well as the concurrent subsonic fleets, were calculated. The objective of this work was to evaluate the changes in geographical distribution of the HSCT emissions as the fleet size grew from 500 to 1000 HSCT`s. For this work, a new expanded HSCT network was used and flights projected using a market penetration analysis rather than assuming equal penetration as was done in the earlier studies. Emission inventories on this network were calculated for both Mach 2.0 and Mach 2.4 HSCT fleets with NOx cruise emission indices of approximately 5 and 15 grams NOx/kg fuel. These emissions inventories are available for use by atmospheric scientists conducting the Atmospheric Effects of Stratospheric Aircraft (AESA) modeling studies. Fuel burned and emissions of nitrogen oxides (NOx as NO2), carbon monoxide, and hydrocarbons have been calculated on a 1 degree latitude x 1 degree longitude x 1 kilometer attitude grid and delivered to NASA as electronic files.

  13. A comparison of lightning and aircraft sources of NO{sub x} in the upper troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Penner, J E; Walton, J J [Michigan Univ., Ann Arbor, MI (United States). Dept. of Atmospheric, Oceanic and Space Physics; Bergmann, D J; Kinnison, D; Rotman, D [Lawrence Livermore National Lab., CA (United States). Atmospheric Science Div.; Price, C [Tel Aviv Univ. (Israel). Dept. of Geophysics and Planetary Sciences; Prather, M J [California Univ., Irvine, CA (United States). Dept. of Earth System Science; Pickering, K E [Maryland Univ., College Park, MD (United States). Dept. of Meteorology; Baughcum, S L [Boeing Commerial Airplane Group, Seatlle, WA (United States)

    1998-12-31

    Uncertainties in the assessment of the contribution of aircraft to upper tropospheric NO{sub x} arise from uncertainties in model treatment of transport, uncertainties in source strengths, and uncertainties in chemical rates and reactions determining the partitioning between NO{sub x} and NO{sub y}. Two different chemical transport models are used to examine the range of uncertainty in the contribution of aircraft to upper tropospheric NO{sub x} from model representations of transport. Uncertainties caused by uncertainties in the rate of production of NO{sub x} from lightning and uncertainties from the range of background concentrations of HNO{sub 3} are also examined. Uncertainties in the treatment of vertical transport and uncertainties in the source strength from lightning contribute to a large range in model results for background NO{sub x}. (author) 18 refs.

  14. A comparison of lightning and aircraft sources of NO{sub x} in the upper troposphere

    Energy Technology Data Exchange (ETDEWEB)

    Penner, J.E.; Walton, J.J. [Michigan Univ., Ann Arbor, MI (United States). Dept. of Atmospheric, Oceanic and Space Physics; Bergmann, D.J.; Kinnison, D.; Rotman, D. [Lawrence Livermore National Lab., CA (United States). Atmospheric Science Div.; Price, C. [Tel Aviv Univ. (Israel). Dept. of Geophysics and Planetary Sciences; Prather, M.J. [California Univ., Irvine, CA (United States). Dept. of Earth System Science; Pickering, K.E. [Maryland Univ., College Park, MD (United States). Dept. of Meteorology; Baughcum, S.L. [Boeing Commerial Airplane Group, Seatlle, WA (United States)

    1997-12-31

    Uncertainties in the assessment of the contribution of aircraft to upper tropospheric NO{sub x} arise from uncertainties in model treatment of transport, uncertainties in source strengths, and uncertainties in chemical rates and reactions determining the partitioning between NO{sub x} and NO{sub y}. Two different chemical transport models are used to examine the range of uncertainty in the contribution of aircraft to upper tropospheric NO{sub x} from model representations of transport. Uncertainties caused by uncertainties in the rate of production of NO{sub x} from lightning and uncertainties from the range of background concentrations of HNO{sub 3} are also examined. Uncertainties in the treatment of vertical transport and uncertainties in the source strength from lightning contribute to a large range in model results for background NO{sub x}. (author) 18 refs.

  15. An exact model for airline flight network optimization based on transport momentum and aircraft load factor

    Directory of Open Access Journals (Sweden)

    Daniel Jorge Caetano

    2017-12-01

    Full Text Available The problem of airline flight network optimization can be split into subproblems such as Schedule Generation (SG and Fleet Assignment (FA, solved in consecutive steps or in an integrated way, usually based on monetary costs and revenue forecasts. A linear pro­gramming model to solve SG and FA in an integrated way is presented, but with an al­ternative approach based on transport momentum and aircraft load factor. This alterna­tive approach relies on demand forecast and allows obtaining solutions considering min­imum average load factors. Results of the proposed model applications to instances of a regional Brazilian airline are presented. The comparison of the schedules generated by the proposed approach against those obtained by applying a model based on mone­tary costs and revenue forecasts demonstrates the validity of this alternative approach for airlines network planning.

  16. New technologies in Islamic countries. Power engineering, transport, oil industry, machinery construction, building construction and information technologies problems

    International Nuclear Information System (INIS)

    Sharipova, N.S.

    1999-01-01

    The published proceedings contain brief presentations concerning new technologies in power engineering, transport, oil industry, machinery construction, building construction and information technologies presented to the International scientific and technical conference: New technologies in Islamic countries, which was organized within frame work of 6 General Assembly of Federation of engineering Institutes of Islamic countries (FEIIC). (author)

  17. Basic materials and structures aspects for hypersonic transport vehicles (HTV)

    Science.gov (United States)

    Steinheil, E.; Uhse, W.

    A Mach 5 transport design is used to illustrate structural concepts and criteria for materials selections and also key technologies that must be followed in the areas of computational methods, materials and construction methods. Aside from the primary criteria of low weight, low costs, and conceivable risks, a number of additional requirements must be met, including stiffness and strength, corrosion resistance, durability, and a construction adequate for inspection, maintenance and repair. Current aircraft construction requirements are significantly extended for hypersonic vehicles. Additional consideration is given to long-duration temperature resistance of the airframe structure, the integration of large-volume cryogenic fuel tanks, computational tools, structural design, polymer matrix composites, and advanced manufacturing technologies.

  18. The Impact of Rising Temperatures on Aircraft Takeoff Performance

    Science.gov (United States)

    Coffel, E.; Horton, R. M.; Thompson, T. R.

    2017-12-01

    Steadily rising mean and extreme temperatures as a result of climate change will likely impact the air transportation system over the coming decades. As air temperatures rise at constant pressure, air density declines, resulting in less lift generation by an aircraft wing at a given airspeed and potentially imposing a weight restriction on departing aircraft. This study presents a general model to project future weight restrictions across a fleet of aircraft with different takeoff weights operating at a variety of airports. We construct performance models for five common commercial aircraft and 19 major airports around the world and use projections of daily temperatures from the CMIP5 model suite under the RCP 4.5 and RCP 8.5 emissions scenarios to calculate required hourly weight restriction. We find that on average, 10-30% of annual flights departing at the time of daily maximum temperature may require some weight restriction below their maximum takeoff weights, with mean restrictions ranging from 0.5 to 4% of total aircraft payload and fuel capacity by mid- to late century. Both mid-sized and large aircraft are affected, and airports with short runways and high tempera- tures, or those at high elevations, will see the largest impacts. Our results suggest that weight restriction may impose a non-trivial cost on airlines and impact aviation operations around the world and that adaptation may be required in aircraft design, airline schedules, and/or runway lengths.

  19. A piloted simulation investigation of several command concepts for transport aircraft in the approach and landing

    OpenAIRE

    Field, Edmund

    1994-01-01

    With the introduction of modern fly-by-wire aircraft, the response of an aircraft to a pilot’s input can be augmented to something other than that for a conventional aircraft, with the resultant benefits and problems. The issue of what commanded response a pilot desires has received considerable attention, however no clear conclusions have yet emerged. The requirements for up and away flight and for the flare and landing seem to be different. Away from the ground rate command systems such...

  20. Aerodynamic Modeling of Transonic Aircraft Using Vortex Lattice Coupled with Transonic Small Disturbance for Conceptual Design

    Science.gov (United States)

    Chaparro, Daniel; Fujiwara, Gustavo E. C.; Ting, Eric; Nguyen, Nhan

    2016-01-01

    The need to rapidly scan large design spaces during conceptual design calls for computationally inexpensive tools such as the vortex lattice method (VLM). Although some VLM tools, such as Vorview have been extended to model fully-supersonic flow, VLM solutions are typically limited to inviscid, subcritical flow regimes. Many transport aircraft operate at transonic speeds, which limits the applicability of VLM for such applications. This paper presents a novel approach to correct three-dimensional VLM through coupling of two-dimensional transonic small disturbance (TSD) solutions along the span of an aircraft wing in order to accurately predict transonic aerodynamic loading and wave drag for transport aircraft. The approach is extended to predict flow separation and capture the attenuation of aerodynamic forces due to boundary layer viscosity by coupling the TSD solver with an integral boundary layer (IBL) model. The modeling framework is applied to the NASA General Transport Model (GTM) integrated with a novel control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF).

  1. Advanced Propulsion System Studies for General Aviation Aircraft

    Science.gov (United States)

    Eisenberg, Joseph D. (Technical Monitor); German, Jon

    2003-01-01

    This final report addresses the following topics: Market Impact Analysis (1) assessment of general aviation, including commuter/regional, aircraft market impact due to incorporation of advanced technology propulsion system on acquisition and operating costs, job creation and/or manpower demand, and future fleet size; (2) selecting an aircraft and engine for the study by focusing on the next generation 19-passenger commuter and the Williams International FJ44 turbofan engine growth. Propulsion System Analysis Conducted mission analysis studies and engine cycle analysis to define a new commuter mission and required engine performance, define acquisition and operating costs and, select engine configuration and initiated preliminary design for hardware modifications required. Propulsion System Benefits (1) assessed and defined engine emissions improvements, (2) assessed and defined noise reduction potential and, (3) conducted a cost analysis impact study. Review of Relevant NASA Programs Conducted literature searches using NERAC and NASA RECON services for related technology in the emissions and acoustics area. Preliminary Technology Development Plans Defined plan to incorporate technology improvements for an FJ44-2 growth engine in performance, emissions, and noise suppression.

  2. Deaths and injuries as a result of lightning strikes to aircraft.

    Science.gov (United States)

    Cherington, M; Mathys, K

    1995-07-01

    Aircraft are at risk of being struck by lightning or triggering lightning as they fly through clouds. Commercial and private airplanes have been struck, with resultant deaths and injuries to passengers and crew. We were interested in learning how large a problem existed to the American public from lightning strikes to airplanes. We analyzed data from the National Transportation Safety Board (NTSB) on lightning-related accidents in the United States from 1963-89. NTSB recorded 40 lightning-related aircraft accidents. There were 10 commercial airplane accidents reported, 4 of which were associated with 260 fatalities and 28 serious injuries. There were 30 private aircraft accidents that accounted for 30 fatalities and 46 serious injuries. While lightning remains a potential risk to aircraft passengers and crew, modern airplanes are better equipped to lessen the dangers of accidents due to lightning.

  3. An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies

    Science.gov (United States)

    Kostiuk, Peter F.; Adams, Milton B.; Allinger, Deborah F.; Rosch, Gene; Kuchar, James

    1998-01-01

    The continuing growth of air traffic will place demands on NASA's Air Traffic Management (ATM) system that cannot be accommodated without the creation of significant delays and economic impacts. To deal with this situation, work has begun to develop new approaches to providing a safe and economical air transportation infrastructure. Many of these emerging air transport technologies will represent radically new approaches to ATM, both for ground and air operations.

  4. Comparison of alternate fuels for aircraft

    Science.gov (United States)

    Witcofski, R. D.

    1979-01-01

    A comparison of candidate alternate fuels for aircraft is presented. The fuels discussed include liquid hydrogen, liquid methane, and synthetic aviation kerosene. Each fuel is evaluated from the standpoint of production, transmission, airport storage and distribution facilities, and use in aircraft. Technology deficient areas for cryogenic fuels, which should be advanced prior to the introduction of the fuels into the aviation industry, are identified, as are the cost and energy penalties associated with not achieving those advances. Environmental emissions and safety aspects of fuel selection are discussed. A detailed description of the various fuel production and liquefaction processes and their efficiencies and economics is given.

  5. Some considerations for air transportation analysis to non-urban areas.

    Science.gov (United States)

    Norman, S. D.

    1973-01-01

    Review of some of the problems associated with air transportation to and from nonurban areas. While a significant proportion of public transportation needs of nonurban areas are met by aircraft, there are indications that improvement in air transportation service are called for and would be rewarded by increased patronage. However, subsidized local service carriers are attracted by large aircraft operation, and there is a tendency to discontinue service to low density areas. Prospects and potential means for reversing this trend are discussed.

  6. New technologies in Islamic countries. Power engineering, transport, oil industry, machinery construction, building construction and information technologies problems

    International Nuclear Information System (INIS)

    Sharipova, N.S.

    1999-01-01

    This issue contains papers, which reflect the most important achievements of new technologies in power engineering, transport, oil industry, machinery construction, building construction and information technologies presented to the International Scientific and Technical Conference: New technologies in Islamic countries, which was organized within frame work of 6 General Assembly of Federation of Engineering Institutes of Islamic Countries (FEIIC). (author)

  7. New Technologies for Reducing Aviation Weather-Related Accidents

    Science.gov (United States)

    Stough, H. Paul, III; Watson, James F., III; Jarrell, Michael A.

    2006-01-01

    The National Aeronautics and Space Administration (NASA) has developed technologies to reduce aviation weather-related accidents. New technologies are presented for data-link and display of weather information to aircraft in flight, for detection of turbulence ahead of aircraft in flight, and for automated insitu reporting of atmospheric conditions from aircraft.

  8. Copycats in Pilot Aircraft-Assisted Suicides after the Germanwings Incident

    Directory of Open Access Journals (Sweden)

    Tanja Laukkala

    2018-03-01

    Full Text Available Aircraft-assisted pilot suicide is a rare but serious phenomenon. The aim of this study was to evaluate changes in pilot aircraft-assisted suicide risks, i.e., a copycat effect, in the U.S. and Germany after the Germanwings 2015 incident in the French Alps. Aircraft-assisted pilot suicides were searched in the U.S. National Transportation Safety Board (NTSB accident investigation database and in the German Bundestelle für Flugunfalluntersuchung (BFU Reports of Investigation database five years before and two years after the deliberate crash of the Germanwings flight into the French Alps in 2015. The relative risk (RR of the aircraft-assisted pilot suicides was calculated. Two years after the incident, three out of 454 (0.66% fatal incidents were aircraft-assisted suicides compared with six out of 1292 (0.46% in the prior five years in the NTSB database. There were no aircraft-assisted pilot suicides in the German database during the two years after or five years prior to the Germanwings crash. The relative aircraft-assisted pilot suicide risk for the U.S. was 1.4 (95% CI 0.3–4.2 which was not statistically significant. Six of the pilots who died by suicide had told someone of their suicidal intentions. We consider changes in the rate to be within a normal variation. Responsible media coverage of aircraft incidents is important due to the large amount of publicity that these events attract.

  9. Copycats in Pilot Aircraft-Assisted Suicides after the Germanwings Incident

    Science.gov (United States)

    Vuorio, Alpo; Bor, Robert; Budowle, Bruce; Navathe, Pooshan; Pukkala, Eero; Sajantila, Antti

    2018-01-01

    Aircraft-assisted pilot suicide is a rare but serious phenomenon. The aim of this study was to evaluate changes in pilot aircraft-assisted suicide risks, i.e., a copycat effect, in the U.S. and Germany after the Germanwings 2015 incident in the French Alps. Aircraft-assisted pilot suicides were searched in the U.S. National Transportation Safety Board (NTSB) accident investigation database and in the German Bundestelle für Flugunfalluntersuchung (BFU) Reports of Investigation database five years before and two years after the deliberate crash of the Germanwings flight into the French Alps in 2015. The relative risk (RR) of the aircraft-assisted pilot suicides was calculated. Two years after the incident, three out of 454 (0.66%) fatal incidents were aircraft-assisted suicides compared with six out of 1292 (0.46%) in the prior five years in the NTSB database. There were no aircraft-assisted pilot suicides in the German database during the two years after or five years prior to the Germanwings crash. The relative aircraft-assisted pilot suicide risk for the U.S. was 1.4 (95% CI 0.3–4.2) which was not statistically significant. Six of the pilots who died by suicide had told someone of their suicidal intentions. We consider changes in the rate to be within a normal variation. Responsible media coverage of aircraft incidents is important due to the large amount of publicity that these events attract. PMID:29534475

  10. 14 CFR 375.35 - Free transportation.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Free transportation. 375.35 Section 375.35 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) SPECIAL... transportation. (a) Foreign civil aircraft may be navigated in the United States by a foreign air carrier for the...

  11. Model Updating in Online Aircraft Prognosis Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Diagnostic and prognostic algorithms for many aircraft subsystems are steadily maturing. Unfortunately there is little experience integrating these technologies into...

  12. Feasibility Study of Cargo Airship Transportation Systems Powered by New Green Energy Technologies

    Science.gov (United States)

    Skuza, Jonathan R.; Park, Yeonjoon; Kim, Hyun Jung; Seaman, Shane T.; King, Glen C.; Choi, Sang H.; Song, Kyo D.; Yoon, Hargsoon; Lee, Kunik

    2014-01-01

    The development of transportation systems that use new and sustainable energy technologies is of utmost importance due to the possible future shortfalls that current transportation modes will encounter because of increased volume and costs. The introduction and further research and development of new transportation and energy systems by materials researchers at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) and the Department of Transportation are discussed in this Technical Memorandum. In this preliminary study, airship concepts were assessed for cargo transportation using various green energy technologies capable of 24-hour operation (i.e., night and day). Two prototype airships were successfully constructed and tested at LaRC to demonstrate their feasibility: one with commercially available solar cells for operation during the daytime and one with microwave rectennas (i.e., rectifying antennas) developed in-house for night-time operation. The test results indicate the feasibility of a cargo transportation airship powered by new green energy sources and wireless power technology. Future applications will exploit new green energy sources that use materials and devices recently developed or are in the process of being developed at LaRC. These include quantum well SiGe solar cells; low, mid-, and high temperature thermoelectric modules; and wireless microwave and optical rectenna devices. This study examines the need and development of new energy sources for transportation, including the current status of research, materials, and potential applications.

  13. Aircraft Turbine Engine Control Research at NASA Glenn Research Center

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  14. Rapid evaluation of buildings and infrastructure to accidental and deliberate aircraft impact

    International Nuclear Information System (INIS)

    Tennant, D.; Levine, H.; Mould, J.; Vaughan, D.

    2014-01-01

    Recent events involving the impact of large transport aircraft such as the Boeing 767 and 757 into the World Trade Center Towers and the Pentagon have revealed the vulnerability of such structures to terrorist attack. Incidents involving smaller general aviation aircraft have shown the damage that this class of plane can do beyond a protected perimeter. These incidents have elicited inquiries with regard to the effects of impacts of these aircraft types into other critical facilities including aboveground and below ground storage facilities, nuclear power plants, damns and other military and civilian installations. A significant capability to evaluate these threats has been developed during the past 10 years. Small medium and large aircraft have been impacted into buried and aboveground reinforced concrete and light steel frame storage facilities. Both explicit aircraft models and Riera functions (a simplified aircraft impact loading function) have been used to generate an extensive data base. The effects of engines impacting have been studied separately as penetrators. Illustrated in this paper is validation of computational tools for impacts into structures and the initial development of a generalized evaluation tool for rapid evaluation of threats and consequence of aircraft impact into protected facilities

  15. Rapid evaluation of buildings and infrastructure to accidental and deliberate aircraft impact

    Energy Technology Data Exchange (ETDEWEB)

    Tennant, D., E-mail: tennant@wai.com [Weidlinger Associates, Inc., 6301 Indian School Road NE, Suite 501, Albuquerque, NM 87122 (United States); Levine, H., E-mail: levine@ca.wai.com [Weidlinger Associates, Inc., 399 W. El Camino Real, Suite 200, Mountain View, CA 94040 (United States); Mould, J.; Vaughan, D. [Weidlinger Associates, Inc., 399 W. El Camino Real, Suite 200, Mountain View, CA 94040 (United States)

    2014-04-01

    Recent events involving the impact of large transport aircraft such as the Boeing 767 and 757 into the World Trade Center Towers and the Pentagon have revealed the vulnerability of such structures to terrorist attack. Incidents involving smaller general aviation aircraft have shown the damage that this class of plane can do beyond a protected perimeter. These incidents have elicited inquiries with regard to the effects of impacts of these aircraft types into other critical facilities including aboveground and below ground storage facilities, nuclear power plants, damns and other military and civilian installations. A significant capability to evaluate these threats has been developed during the past 10 years. Small medium and large aircraft have been impacted into buried and aboveground reinforced concrete and light steel frame storage facilities. Both explicit aircraft models and Riera functions (a simplified aircraft impact loading function) have been used to generate an extensive data base. The effects of engines impacting have been studied separately as penetrators. Illustrated in this paper is validation of computational tools for impacts into structures and the initial development of a generalized evaluation tool for rapid evaluation of threats and consequence of aircraft impact into protected facilities.

  16. A Process for Assessing NASA's Capability in Aircraft Noise Prediction Technology

    Science.gov (United States)

    Dahl, Milo D.

    2008-01-01

    An acoustic assessment is being conducted by NASA that has been designed to assess the current state of the art in NASA s capability to predict aircraft related noise and to establish baselines for gauging future progress in the field. The process for determining NASA s current capabilities includes quantifying the differences between noise predictions and measurements of noise from experimental tests. The computed noise predictions are being obtained from semi-empirical, analytical, statistical, and numerical codes. In addition, errors and uncertainties are being identified and quantified both in the predictions and in the measured data to further enhance the credibility of the assessment. The content of this paper contains preliminary results, since the assessment project has not been fully completed, based on the contributions of many researchers and shows a select sample of the types of results obtained regarding the prediction of aircraft noise at both the system and component levels. The system level results are for engines and aircraft. The component level results are for fan broadband noise, for jet noise from a variety of nozzles, and for airframe noise from flaps and landing gear parts. There are also sample results for sound attenuation in lined ducts with flow and the behavior of acoustic lining in ducts.

  17. Potential for Landing Gear Noise Reduction on Advanced Aircraft Configurations

    Science.gov (United States)

    Thomas, Russell H.; Nickol, Craig L.; Burley, Casey L.; Guo, Yueping

    2016-01-01

    The potential of significantly reducing aircraft landing gear noise is explored for aircraft configurations with engines installed above the wings or the fuselage. An innovative concept is studied that does not alter the main gear assembly itself but does shorten the main strut and integrates the gear in pods whose interior surfaces are treated with acoustic liner. The concept is meant to achieve maximum noise reduction so that main landing gears can be eliminated as a major source of airframe noise. By applying this concept to an aircraft configuration with 2025 entry-into-service technology levels, it is shown that compared to noise levels of current technology, the main gear noise can be reduced by 10 EPNL dB, bringing the main gear noise close to a floor established by other components such as the nose gear. The assessment of the noise reduction potential accounts for design features for the advanced aircraft configuration and includes the effects of local flow velocity in and around the pods, gear noise reflection from the airframe, and reflection and attenuation from acoustic liner treatment on pod surfaces and doors. A technical roadmap for maturing this concept is discussed, and the possible drag increase at cruise due to the addition of the pods is identified as a challenge, which needs to be quantified and minimized possibly with the combination of detailed design and application of drag reduction technologies.

  18. STUDY OF THE EXPERIENCE OF USE OF INTERMODAL TECHNOLOGY IN THE ORGANIZATION OF PASSENGER TRANSPORTATIONS

    Directory of Open Access Journals (Sweden)

    Liudmila Andreevna Paramonova

    2017-05-01

    Full Text Available This article examines the practice of applying intermodal technology and a single transportation document in the organization of passenger transportations, contains a review of the projects on the use of intermodal technology from theoretical point of view, an analysis of the implemented models.

  19. Investigation of Practical Flight Control Systems for Small Aircraft

    NARCIS (Netherlands)

    Falkena, W.

    2012-01-01

    Personal air transportation utilizing small aircraft is a market that is expected to grow significantly in the near future. However, seventy times more accidents occur in this segment as compared with the commercial aviation sector. The majority of these accidents is related to handling and control

  20. Developing aircraft photonic networks for airplane systems

    DEFF Research Database (Denmark)

    White, Henry J.; Brownjohn, Nick; Baptista, João

    2013-01-01

    Achieving affordable high speed fiber optic communication networks for airplane systems has proved to be challenging. In this paper we describe a summary of the EU Framework 7 project DAPHNE (Developing Aircraft Photonic Networks). DAPHNE aimed to exploit photonic technology from terrestrial...

  1. Applicability of CHSST Maglev technology for U.S. urban transportation

    Science.gov (United States)

    2003-06-01

    This report discusses the Chubu HSST technology applicability to U.S. urban transportation. This low speed system based on the principle of electromagnetic levitation by attractive suspension and propulsion by vehicle mounted linear induction motors ...

  2. Development and use of GREET 1.6 fuel-cycle model for transportation fuels and vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    2001-01-01

    Since 1995, with funds from the U.S. Department of Energy's (DOE's) Office of Transportation Technologies (OTT), Argonne National Laboratory has been developing the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model. The model is intended to serve as an analytical tool for use by researchers and practitioners in estimating fuel-cycle energy use and emissions associated with alternative transportation fuels and advanced vehicle technologies. Argonne released the first version of the GREET mode--GREET 1.0--in June 1996. Since then, it has released a series of GREET versions with revisions, updates, and upgrades. In February 2000, the latest public version of the model--GREET 1.5a--was posted on Argonne's Transportation Technology Research and Development Center (TTRDC) Web site (www.transportation.anl.gov/ttrdc/greet)

  3. Unmanned Vanguard: Leveraging The Operational Effectiveness Of The Israeli Unmanned Aircraft System Program

    Science.gov (United States)

    2012-04-01

    The ACGS is capable of controlling multiple aircraft simultaneously similar to the USAF multiple aircraft control ( MAC ) GCS used with the MQ-1...technology offers a big improvement on workload for the pilots and allows them to focus on their mission and payloads versus flying the aircraft. Its...July 2010). 19 “Attack of the Drones,” The Economist , 3 September 2009, http://www.economist.com/node/14299496 (accessed 8 Apr 2012). 20 Owen

  4. Upgrading of waste oils into transportation fuels using hydrotreating technologies

    OpenAIRE

    Sudipta De; Rafael Luque

    2014-01-01

    The generation of organic waste continues to increase, causing severe environmental pollution. Waste valorization is currently an emerging technology that can address this problem with an extra benefit of producing a range of valued products. In this contribution, we report the current developments in hydrotreating technologies for upgrading waste oil fractions into usable transportation fuels. Particular focus is given on the catalysts selection for a general hydroprocessing technique as wel...

  5. Turboelectric Distributed Propulsion in a Hybrid Wing Body Aircraft

    Science.gov (United States)

    Felder, James L.; Brown, Gerald V.; DaeKim, Hyun; Chu, Julio

    2011-01-01

    The performance of the N3-X, a 300 passenger hybrid wing body (HWB) aircraft with turboelectric distributed propulsion (TeDP), has been analyzed to see if it can meet the 70% fuel burn reduction goal of the NASA Subsonic Fixed Wing project for N+3 generation aircraft. The TeDP system utilizes superconducting electric generators, motors and transmission lines to allow the power producing and thrust producing portions of the system to be widely separated. It also allows a small number of large turboshaft engines to drive any number of propulsors. On the N3-X these new degrees of freedom were used to (1) place two large turboshaft engines driving generators in freestream conditions to maximize thermal efficiency and (2) to embed a broad continuous array of 15 motor driven propulsors on the upper surface of the aircraft near the trailing edge. That location maximizes the amount of the boundary layer ingested and thus maximizes propulsive efficiency. The Boeing B777-200LR flying 7500 nm (13890 km) with a cruise speed of Mach 0.84 and an 118100 lb payload was selected as the reference aircraft and mission for this study. In order to distinguish between improvements due to technology and aircraft configuration changes from those due to the propulsion configuration changes, an intermediate configuration was included in this study. In this configuration a pylon mounted, ultra high bypass (UHB) geared turbofan engine with identical propulsion technology was integrated into the same hybrid wing body airframe. That aircraft achieved a 52% reduction in mission fuel burn relative to the reference aircraft. The N3-X was able to achieve a reduction of 70% and 72% (depending on the cooling system) relative to the reference aircraft. The additional 18% - 20% reduction in the mission fuel burn can therefore be attributed to the additional degrees of freedom in the propulsion system configuration afforded by the TeDP system that eliminates nacelle and pylon drag, maximizes boundary

  6. An Overview of Virtual Acoustic Simulation of Aircraft Flyover Noise

    Science.gov (United States)

    Rizzi, Stephen A.

    2013-01-01

    Methods for testing human subject response to aircraft flyover noise have greatly advanced in recent years as a result of advances in simulation technology. Capabilities have been developed which now allow subjects to be immersed both visually and aurally in a three-dimensional, virtual environment. While suitable for displaying recorded aircraft noise, the true potential is found when synthesizing aircraft flyover noise because it allows the flexibility and freedom to study sounds from aircraft not yet flown. A virtual acoustic simulation method is described which is built upon prediction-based source noise synthesis, engineering-based propagation modeling, and empirically-based receiver modeling. This source-path-receiver paradigm allows complete control over all aspects of flyover auralization. With this capability, it is now possible to assess human response to flyover noise by systematically evaluating source noise reductions within the context of a system level simulation. Examples of auralized flyover noise and movie clips representative of an immersive aircraft flyover environment are made in the presentation.

  7. THE IMPACT OF INFORMATION AND COMMUNICATION TECHNOLOGY ON ROAD FREIGHT TRANSPORTATION

    Directory of Open Access Journals (Sweden)

    Ryuichi YOSHIMOTO

    2005-01-01

    Full Text Available Surveying the recent trend toward e-commerce and computerization in the trucking industry, this paper establishes a framework for analyzing the impact of information and communication technology on road freight transportation in terms of commerce, logistics and fleet management, and proposes hypothetical mechanisms of influence. The authors note that the rapid growth of e-commerce and freight fleet management systems make it difficult to arrive at firm, statistics-based conclusions about their impact on road freight transportation, but suggest that more sophisticated government management of transportation demand as well as freight fleet management systems could cancel out the negative impact of e-commerce on road transportation.

  8. Technology priorities for transport in Asia: assessment of economy-wide CO2 emissions reduction for Lebanon

    DEFF Research Database (Denmark)

    Dhar, Subash; Marpaung, Charles O. P.

    2015-01-01

    mitigations actions (NAMA) given their strong contribution for development and therefore a methodology based on in-put out-put decomposition analysis is proposed for analysing economy wide CO2 emissions reductions. The methodology has been applied for the transport sector of Lebanon where alternative fuels...... of technologies and availability of technology characteristics. Non-motorized transport, mass transit and technologies that improve vehicle energy efficiency emerged as the three most preferred technology choices for the countries. These technology choices can be appropriate candidates for nationally appropriate......,improvement to cars (private and taxis) and buses for public transport were prioritized by stakeholders. The economy-wide CO2 emission reduce by 2,269 thousand tons by 2020 if the prioritized technologies are implemented in Lebanon. Fuel mix effect and structural effect would reduce CO2 emission by 2,611 thousand...

  9. Advanced Technology Subsonic Transport Study: N+3 Technologies and Design Concepts

    Science.gov (United States)

    Raymer, Daniel P.; Wilson, Jack; Perkins, H. Douglas; Rizzi, Arthur; Zhang, Mengmeng; RamirezPuentes, Alfredo

    2011-01-01

    Conceptual Research Corporation, the Science of the Possible, has completed a two-year study of concepts and technologies for future airliners in the 180-passenger class. This NASA-funded contract was primarily focused on the ambitious goal of a 70 percent reduction in fuel consumption versus the market-dominating Boeing 737-800. The study is related to the N+3 contracts awarded in 2008 by NASA s Aeronautics Research Mission Directorate to teams led by Boeing, GE Aviation, MIT, and Northrop Grumman, but with more modest goals and funding. CRC s contract featured a predominant emphasis on propulsion and fuel consumption, but since fuel consumption depends upon air vehicle design as much as on propulsion technology, the study included notional vehicle design, analysis, and parametric studies. Other NASA goals including NOx and noise reduction are of long-standing interest but were not highlighted in this study, other than their inclusion in the propulsion system provided to CRC by NASA. The B-737-800 was used as a benchmark, parametric tool, and design point of departure. It was modeled in the RDS-Professional aircraft design software then subjected to extensive parametric variations of parasitic drag, drag-due-to-lift, specific fuel consumption, and unsized empty weight. These studies indicated that the goal of a 70 percent reduction in fuel consumption could be attained with roughly a 30 percent improvement in all four parameters. The results were then fit to a Response Surface and coded for ease of use in subsequent trade studies. Potential technologies to obtain such savings were identified and discussed. More than 16 advanced concept designs were then prepared, attempting to investigate almost every possible emerging concept for application to this class airliner. A preliminary assessment of these concepts was done based on their total wetted area after design normalization of trimmed maximum lift. This assessment points towards a Tailless Airliner concept which

  10. Cryogenic system options for a superconducting aircraft propulsion system

    International Nuclear Information System (INIS)

    Berg, F; Dodds, Graham; Palmer, J; Bertola, L; Miller, Paul

    2015-01-01

    There is a perceived need in the future for a move away from traditional aircraft designs in order to meet ambitious emissions and fuel burn targets. High temperature superconducting distributed propulsion may be an enabler for aircraft designs that have better propulsive efficiency and lower drag. There has been significant work considering the electrical systems required, but less on the cryogenics to enable it. This paper discusses some of the major choices to be faced in cryocooling for aircraft. The likely need for a disposable cryogen to reduce power demand is explained. A set of cryocooling methods are considered in a sensitivity study, which shows that the feasibility of the cryogenic system will depend strongly on the superconducting technology and the aircraft platform. It is argued that all three aspects must be researched and designed in close collaboration to reach a viable solution. (paper)

  11. 76 FR 57008 - Smoking of Electronic Cigarettes on Aircraft

    Science.gov (United States)

    2011-09-15

    ... not limited to: Electronic cigars, pipes, and devices designed to look like everyday products such as...] RIN 2105-AE06 Smoking of Electronic Cigarettes on Aircraft AGENCY: Office of the Secretary (OST... Transportation is proposing to amend its existing airline smoking rule to explicitly ban the use of electronic...

  12. Weed detection using unmanned aircraft vehicles

    Directory of Open Access Journals (Sweden)

    Pflanz, Michael

    2014-03-01

    Full Text Available In contrast to agricultural remote sensing technologies, which are based on images from satellites or manned aircrafts, photogrammetry at low altitude from unmanned aircraft vehicles lead to higher spatial resolution, real-time processing and lower costs. Moreover multicopter aircrafts are suitable vehicles to perform precise path or stationary flights. In terms of vegetation photogrammetry this minimises motion blur and provide better image overlapping for stitching and mapping procedures. Through improved image analyses and through the recent increase in the availability of powerful batteries, microcontrollers and multispectral cameras, it can be expected in future that spatial mapping of weeds from low altitudes will be promoted. A small unmanned aircraft vehicle with a modified RGB camera was tested taking images from agricultural fields. A microcopter with six rotors was applied. The hexacopter in particular is GPS controlled and operates within predefined areas at given altitudes (from 5 to 10 m. Different scenarios of photogrammetrically weed detection have been carried out regarding to variable altitude, image resolution, weed and crop growth stages. First experiences with microcopter showed a high potential for site-specific weed control. Images analyses with regards to recognition of weed patches can be used to adapt herbicide applications to varying weed occurrence across a field.

  13. Knowledge-Based Aircraft Automation: Managers Guide on the use of Artificial Intelligence for Aircraft Automation and Verification and Validation Approach for a Neural-Based Flight Controller

    Science.gov (United States)

    Broderick, Ron

    1997-01-01

    The ultimate goal of this report was to integrate the powerful tools of artificial intelligence into the traditional process of software development. To maintain the US aerospace competitive advantage, traditional aerospace and software engineers need to more easily incorporate the technology of artificial intelligence into the advanced aerospace systems being designed today. The future goal was to transition artificial intelligence from an emerging technology to a standard technology that is considered early in the life cycle process to develop state-of-the-art aircraft automation systems. This report addressed the future goal in two ways. First, it provided a matrix that identified typical aircraft automation applications conducive to various artificial intelligence methods. The purpose of this matrix was to provide top-level guidance to managers contemplating the possible use of artificial intelligence in the development of aircraft automation. Second, the report provided a methodology to formally evaluate neural networks as part of the traditional process of software development. The matrix was developed by organizing the discipline of artificial intelligence into the following six methods: logical, object representation-based, distributed, uncertainty management, temporal and neurocomputing. Next, a study of existing aircraft automation applications that have been conducive to artificial intelligence implementation resulted in the following five categories: pilot-vehicle interface, system status and diagnosis, situation assessment, automatic flight planning, and aircraft flight control. The resulting matrix provided management guidance to understand artificial intelligence as it applied to aircraft automation. The approach taken to develop a methodology to formally evaluate neural networks as part of the software engineering life cycle was to start with the existing software quality assurance standards and to change these standards to include neural network

  14. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    which selected as the most prevalent independent structure in the wing. The tank location and shape was interpreted from the high material volume...Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Optistruct 12.0 User’s Guide, 2013. 126 10. T. Megson and H. Gordon, Aircraft structures for...software enhances the design of transportation,” Forbes Online, 2013. 13. Altair Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Hypermesh

  15. The impact of transition training on adapting to Technically Advanced Aircraft at regional airlines: Perceptions of pilots and instructor pilots

    Science.gov (United States)

    di Renzo, John Carl, Jr.

    Scope and method of study. The purpose of this study was to test a hypothesis about pilot and instructor pilot perceptions of how effectively pilots learn and use new technology, found in Technically Advanced Aircraft (TAA), given initial type of instrumentation training. New aviation technologies such as Glass Cockpits in technically advanced aircraft are complex and can be difficult to learn and use. The research questions focused on the type of initial instrumentation training to determine the differences among pilots trained using various types of instrumentation ranging from aircraft equipped with traditional analog instrumentation to aircraft equipped with glass cockpits. A convenience sample of Pilots in Training (PT) and Instructor Pilots (IP) was selected from a regional airline. The research design used a mixed methodology. Pilots in training completed a thirty-two question quantitative questionnaire and instructor pilots completed a five question qualitative questionnaire. Findings and conclusions. This investigation failed to disprove the null hypothesis. The type of instrumentation training has no significant effect on newly trained regional airline pilot perceived ability to adapt to advanced technology cockpits. Therefore, no evidence exists from this investigation to support the early introduction and training of TAA. While the results of this investigation were surprising, they are nonetheless, instructive. Even though it would seem that there would be a relationship between exposure to and use of technically advanced instrumentation, apparently there was no perceived relationship for this group of airline transport pilots. However, a point of interest is that these pilots were almost evenly divided in their opinion of whether or not their previous training had prepared them for transition to TAA. The majority also believed that the type of initial instrumentation training received does make a difference when transitioning to TAA. Pilots believed

  16. Exploring Concepts of Operations for On-Demand Passenger Air Transportation

    Science.gov (United States)

    Nneji, Victoria Chibuogu; Stimpson, Alexander; Cummings, Mary; Goodrich, Kenneth H.

    2017-01-01

    In recent years, a surge of interest in "flying cars" for city commutes has led to rapid development of new technologies to help make them and similar on-demand mobility platforms a reality. To this end, this paper provides analyses of the stakeholders involved, their proposed operational concepts, and the hazards and regulations that must be addressed. Three system architectures emerged from the analyses, ranging from conventional air taxi to revolutionary fully autonomous aircraft operations, each with vehicle safety functions allocated differently between humans and machines. Advancements for enabling technologies such as distributed electric propulsion and artificial intelligence have had major investments and initial experimental success, but may be some years away from being deployed for on-demand passenger air transportation at scale.

  17. 14 CFR 21.6 - Manufacture of new aircraft, aircraft engines, and propellers.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Manufacture of new aircraft, aircraft... Manufacture of new aircraft, aircraft engines, and propellers. (a) Except as specified in paragraphs (b) and (c) of this section, no person may manufacture a new aircraft, aircraft engine, or propeller based on...

  18. Aircraft Icing Weather Data Reporting and Dissemination System

    Science.gov (United States)

    Bass, Ellen J.; Minsk, Brian; Lindholm, Tenny; Politovich, Marcia; Reehorst, Andrew (Technical Monitor)

    2002-01-01

    The long-term operational concept of this research is to develop an onboard aircraft system that assesses and reports atmospheric icing conditions automatically and in a timely manner in order to improve aviation safety and the efficiency of aircraft operations via improved real-time and forecast weather products. The idea is to use current measurement capabilities on aircraft equipped with icing sensors and in-flight data communication technologies as a reporting source. Without requiring expensive avionics upgrades, aircraft data must be processed and available for downlink. Ideally, the data from multiple aircraft can then be integrated (along with other real-time and modeled data) on the ground such that aviation-centered icing hazard metrics for volumes of airspace can be assessed. As the effect of icing on different aircraft types can vary, the information should be displayed in meaningful ways such that multiple types of users can understand the information. That is, information must be presented in a manner to allow users to understand the icing conditions with respect to individual concerns and aircraft capabilities. This research provides progress toward this operational concept by: identifying an aircraft platform capable of digitally capturing, processing, and downlinking icing data; identifying the required in situ icing data processing; investigating the requirements for routing the icing data for use by weather products; developing an icing case study in order to gain insight into major air carrier needs; developing and prototyping icing display concepts based on the National Center for Atmospheric Research's existing diagnostic and forecast experimental icing products; and conducting a usability study for the prototyped icing display concepts.

  19. Dynamic Model and Analysis of Asymmetric Telescopic Wing for Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Chen Lili

    2016-01-01

    Full Text Available Morphing aircraft has been the research hot topics of new concept aircrafts in aerospace engineering. Telescopic wing is an important morphing technology for morphing aircraft. This paper describes the dynamic equations and kinematic equations based on theorem of momentum and theorem of moment of momentum, which are available for all morphing aircrafts. Meanwhile,as simplified , dynamic equations for rectangular telescopic wing are presented. In order to avoid the complexity using aileron to generate rolling moment , an new idea that asymmetry of wings can generate roll moment is introduced. Finally, roll performance comparison of asymmetric wing and aileron deflection shows that asymmetric telescopic wing can provide the required roll control moment as aileron, and in some cases, telescopic wing has the superior roll performance.

  20. Government financial support for civil aircraft research, technology and development in four European countries and the United States

    Science.gov (United States)

    Chandler, B.; Golaszewski, R.; Patten, C.; Rudman, B.; Scott, R.

    1980-01-01

    Data on the levels of government financial support for civil aircraft airframe and engine (CAAE) research and technology (R&T) in the United States and Europe (United Kingdom, West Germany, France and The Netherlands) and means of comparing these levels are provided. Data are presented for the years 1974-1977. European R&T expenditure data were obtained through visits to each of the four European countries, to the Washington office of the European Communities, and by a search of applicable literature. CAAE R&T expenditure data for the United States were obtained from NASA and Federal Aviation Administration (FAA).

  1. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Science.gov (United States)

    Dorman, L. I.

    2005-11-01

    We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher) whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind) than the main part of smaller energy particles (more than 30-60 min later), causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  2. Monitoring and forecasting of great radiation hazards for spacecraft and aircrafts by online cosmic ray data

    Directory of Open Access Journals (Sweden)

    L. I. Dorman

    2005-11-01

    Full Text Available We show that an exact forecast of great radiation hazard in space, in the magnetosphere, in the atmosphere and on the ground can be made by using high-energy particles (few GeV/nucleon and higher whose transportation from the Sun is characterized by a much bigger diffusion coefficient than for small and middle energy particles. Therefore, high energy particles come from the Sun much earlier (8-20 min after acceleration and escaping into solar wind than the main part of smaller energy particles (more than 30-60 min later, causing radiation hazard for electronics and personal health, as well as spacecraft and aircrafts. We describe here principles of an automatic set of programs that begin with "FEP-Search", used to determine the beginning of a large FEP event. After a positive signal from "FEP-Search", the following programs start working: "FEP-Research/Spectrum", and then "FEP-Research/Time of Ejection", "FEP-Research /Source" and "FEP-Research/Diffusion", which online determine properties of FEP generation and propagation. On the basis of the obtained information, the next set of programs immediately start to work: "FEP-Forecasting/Spacecrafts", "FEP-Forecasting/Aircrafts", "FEP-Forecasting/Ground", which determine the expected differential and integral fluxes and total fluency for spacecraft on different orbits, aircrafts on different airlines, and on the ground, depending on altitude and cutoff rigidity. If the level of radiation hazard is expected to be dangerous for high level technology or/and personal health, the following programs will be used "FEP-Alert/Spacecrafts", "FEP-Alert/ Aircrafts", "FEP-Alert/Ground".

  3. Vacuum technologies developed for at-400A Type B transportation and storage package

    International Nuclear Information System (INIS)

    Franklin, K.W.; Cockrell, G.D.

    1995-01-01

    The AT-400A TYPE B transportation and storage container will be used at Pantex Plant for the transportation and interim storage of plutonium pits. The AT-400A was designed by a joint effort between Sandia National Labs, Los Alamos National Labs, Lawrence Livermore National Laboratory, and Mason and Hanger-Silas Mason Co., Inc. In order to meet the requirements for transportation and storage, five different vacuum technologies had to be developed. The goals of the various vacuum technologies were to verify the plutonium pit was sealed, perform the assembly verification leak check in accordance with ANSI N-14.5 and to provide a final inert gas backfill in the containment vessel. This paper will discuss the following five vacuum technologies: (1) Pit Leak Testing, (2) Containment Vessel Purge and Backfill with tracer gas, (3) Containment Vessel Leak Testing, (4) Containment Vessel Purge and Final Backfill, and (5) Leak Testing of the Containment Vessel Gas Transfer tube

  4. Non-rocket Earth-Moon transportation system

    Science.gov (United States)

    Bolonkin, A.

    Author suggests and researches one of his methods of flights to outer Space, described in book "Non Rocket Flights in Space", which is prepared and offered for publication. In given report the method and facilities named "Bolonkin Transport System" (BTS) for delivering of payload and people to Moon and back is presented. BTS can be used also for free trip to outer Space up at altitude 60,000 km and more. BTS can be applying as a trust system for atmospheric supersonic aircrafts, and as a free energy source. This method uses, in general, the rotary and kinetic energy of the Moon. The manuscript contains the theory and results of computation of special Project. This project uses three cables (main and two for driving of loads) from artificial material: fiber, whiskers, nanotubes, with the specific tensile strength (ratio the tensile stress to density) k=/=4*10^7 or more. The nanotubes with same and better parameters are received in scientific laboratories. Theoretical limit of nanotubes SWNT is about k=100*10^7. The upper end of the cable is connected to the Moon. The lower end of the cable is connected to an aircraft (or buoy), which flies (i.e. glides or slides) in Earth atmosphere along the planet's surface. The aircraft (and Moon) has devices, which allows the length of cables to be changed. The device would consists of a spool, motor, brake, transmission, and controller. The facility could have devices for delivering people and payloads t o the Moon and back using the suggested Transport System. The delivery devices include: containers, cables, motors, brakes, and controllers. If the aircraft is small and the cable is strong the motion of the Moon can be used to move the airplane. For example (see enclosed project), if the airplane weighs 15 tons and has an aerodynamic ratio (the lift force to the drag force) equal 5, a thrust of 3000 kg would be enough for the aircraft to fly for infinity without requiring any fuel. The aircraft could use a small turbine engine

  5. Analysis of Radar and ADS-B Influences on Aircraft Detect and Avoid (DAA Systems

    Directory of Open Access Journals (Sweden)

    William Semke

    2017-09-01

    Full Text Available Detect and Avoid (DAA systems are complex communication and locational technologies comprising multiple independent components. DAA technologies support communications between ground-based and space-based operations with aircraft. Both manned and unmanned aircraft systems (UAS rely on DAA communication and location technologies for safe flight operations. We examined the occurrence and duration of communication losses between radar and automatic dependent surveillance–broadcast (ADS-B systems with aircraft operating in proximate airspace using data collected during actual flight operations. Our objectives were to identify the number and duration of communication losses for both radar and ADS-B systems that occurred within a discrete time period. We also investigated whether other unique communication behavior and anomalies were occurring, such as reported elevation deviations. We found that loss of communication with both radar and ADS-B systems does occur, with variation in the length of communication losses. We also discovered that other unexpected behaviors were occurring with communications. Although our data were gathered from manned aircraft, there are also implications for UAS that are operating within active airspaces. We are unaware of any previously published work on occurrence and duration of communication losses between radar and ADS-B systems.

  6. Misconceptions of Electric Propulsion Aircraft and Their Emergent Aviation Markets

    Science.gov (United States)

    Moore, Mark D.; Fredericks, Bill

    2014-01-01

    Over the past several years there have been aircraft conceptual design and system studies that have reached conflicting conclusions relating to the feasibility of full and hybrid electric aircraft. Some studies and propulsion discipline experts have claimed that battery technologies will need to improve by 10 to 20 times before electric aircraft can effectively compete with reciprocating or turbine engines. However, such studies have approached comparative assessments without understanding the compelling differences that electric propulsion offers, how these technologies will fundamentally alter the way propulsion integration is approached, or how these new technologies can not only compete but far exceed existing propulsion solutions in many ways at battery specific energy densities of only 400 watt hours per kilogram. Electric propulsion characteristics offer the opportunity to achieve 4 to 8 time improvements in energy costs with dramatically lower total operating costs, while dramatically improving efficiency, community noise, propulsion system reliability and safety through redundancy, as well as life cycle Green House Gas emissions. Integration of electric propulsion will involve far greater degrees of distribution than existing propulsion solutions due to their compact and scale-free nature to achieve multi-disciplinary coupling and synergistic integration with the aerodynamics, highlift system, acoustics, vehicle control, balance, and aeroelasticity. Appropriate metrics of comparison and differences in analysis/design tools are discussed while comparing electric propulsion to other disruptive technologies. For several initial applications, battery energy density is already sufficient for competitive products, and for many additional markets energy densities will likely be adequate within the next 7 years for vibrant introduction. Market evolution and early adopter markets are discussed, along with the investment areas that will fill technology gaps and

  7. Corrosion Sensor Development for Condition-Based Maintenance of Aircraft

    Directory of Open Access Journals (Sweden)

    Gino Rinaldi

    2012-01-01

    Full Text Available Aircraft routinely operate in atmospheric environments that, over time, will impact their structural integrity. Material protection and selection schemes notwithstanding, recurrent exposure to chlorides, pollution, temperature gradients, and moisture provide the necessary electrochemical conditions for the development and profusion of corrosion in aircraft structures. For aircraft operators, this becomes an important safety matter as corrosion found in a given aircraft must be assumed to be present in all of that type of aircraft. This safety protocol and its associated unscheduled maintenance requirement drive up the operational costs of the fleet and limit the availability of the aircraft. Hence, there is an opportunity at present for developing novel sensing technologies and schemes to aid in shifting time-based maintenance schedules towards condition-based maintenance procedures. In this work, part of the ongoing development of a multiparameter integrated corrosion sensor is presented. It consists of carbon nanotube/polyaniline polymer sensors and commercial-off-the-shelf sensors. It is being developed primarily for monitoring environmental and material factors for the purpose of providing a means to more accurately assess the structural integrity of aerospace aluminium alloys through fusion of multiparameter sensor data. Preliminary experimental test results are presented for chloride ion concentration, hydrogen gas evolution, humidity variations, and material degradation.

  8. Emergency Flight Control of a Twin-Jet Commercial Aircraft using Manual Throttle Manipulation

    Science.gov (United States)

    Cole, Jennifer H.; Cogan, Bruce R.; Fullerton, C. Gordon; Burken, John J.; Venti, Michael W.; Burcham, Frank W.

    2007-01-01

    The Department of Homeland Security (DHS) created the PCAR (Propulsion-Controlled Aircraft Recovery) project in 2005 to mitigate the ManPADS (man-portable air defense systems) threat to the commercial aircraft fleet with near-term, low-cost proven technology. Such an attack could potentially cause a major FCS (flight control system) malfunction or other critical system failure onboard the aircraft, despite the extreme reliability of current systems. For the situations in which nominal flight controls are lost or degraded, engine thrust may be the only remaining means for emergency flight control [ref 1]. A computer-controlled thrust system, known as propulsion-controlled aircraft (PCA), was developed in the mid 1990s with NASA, McDonnell Douglas and Honeywell. PCA's major accomplishment was a demonstration of an automatic landing capability using only engine thrust [ref 11. Despite these promising results, no production aircraft have been equipped with a PCA system, due primarily to the modifications required for implementation. A minimally invasive option is TOC (throttles-only control), which uses the same control principles as PCA, but requires absolutely no hardware, software or other aircraft modifications. TOC is pure piloting technique, and has historically been utilized several times by flight crews, both military and civilian, in emergency situations stemming from a loss of conventional control. Since the 1990s, engineers at NASA Dryden Flight Research Center (DFRC) have studied TOC, in both simulation and flight, for emergency flight control with test pilots in numerous configurations. In general, it was shown that TOC was effective on certain aircraft for making a survivable landing. DHS sponsored both NASA Dryden Flight Research Center (Edwards, CA) and United Airlines (Denver, Colorado) to conduct a flight and simulation study of the TOC characteristics of a twin-jet commercial transport, and assess the ability of a crew to control an aircraft down to

  9. Sustainable transportation : technology, engineering, and science - summer camp instructor's guide.

    Science.gov (United States)

    2014-03-01

    This document reproduces the instructors guide for a ten day transportation engineering summer camp that was held at the University of Idaho in July 2013. The instructors guide is split into three units: Unit 1: Vehicle Technology, Unit 2: Traf...

  10. Transport Schemes for Fiber-Wireless Technology: Transmission Performance and Energy Efficiency

    Directory of Open Access Journals (Sweden)

    Christina Lim

    2014-04-01

    Full Text Available Fiber-wireless technology has been actively researched as a potential candidate for next generation broadband wireless signal distribution. Despite the popularity, this hybrid scheme has many technical challenges that impede the uptake and commercial deployment. One of the inherent issues is the transport of the wireless signals over a predominantly digital optical network in today’s telecommunication infrastructure. Many different approaches have been introduced and demonstrated with digitized RF transport of the wireless signals being the most compatible with the existing optical fiber networks. In this paper, we review our work in the area of digitized RF transport to address the inherent issues related to analog transport in the fiber-wireless links and compare the transmission performance and energy efficiency with the other transport strategies.

  11. Automatic braking system modification for the Advanced Transport Operating Systems (ATOPS) Transportation Systems Research Vehicle (TSRV)

    Science.gov (United States)

    Coogan, J. J.

    1986-01-01

    Modifications were designed for the B-737-100 Research Aircraft autobrake system hardware of the Advanced Transport Operating Systems (ATOPS) Program at Langley Research Center. These modifications will allow the on-board flight control computer to control the aircraft deceleration after landing to a continuously variable level for the purpose of executing automatic high speed turn-offs from the runway. A bread board version of the proposed modifications was built and tested in simulated stopping conditions. Test results, for various aircraft weights, turnoff speed, winds, and runway conditions show that the turnoff speeds are achieved generally with errors less than 1 ft/sec.

  12. Numerical and classical analysis of V/STOL aircraft using selected propulsion systems

    Science.gov (United States)

    Wilson, S. B., III; Kidwell, G. H., Jr.; Christiansen, R. S.

    1981-01-01

    The development needed for the evolution of selected V/STOL research vehicles into optimized antisubmarine warfare (ASW) aircraft configurations, using numerical procedures and traditional analytical methods, has been examined. Three propulsion systems, which represent state-of-the-art development aimed at solving the thrust-vectoring and attitude-control problems of V/STOL aircraft, are analyzed. The use of NASA computer programs for aircraft synthesis (ACSYNT), and for optimizing configurations (COMMIN), coupled with contractor-supplied propulsion system data provides for accurate performance prediction of the selected ASW configurations. Particular emphasis on the transition phase between the research vehicle and the optimized configuration demonstrates the strengths and weaknesses of using generic research aircraft instead of building prototypes to demonstrate new technology

  13. An Analysis of Air Transportation in Nigeria | Ladan | Journal of ...

    African Journals Online (AJOL)

    Air Transportation is the transportation of passengers and cargo by aircraft and helicopters. An efficient air transport contributes to economic growth and development. However in Nigeria,lt ... Full Text: EMAIL FULL TEXT EMAIL FULL TEXT

  14. Engineering assessment of in situ sulfate production onboard aircraft at high altitude

    Science.gov (United States)

    Smith, J.; Dykema, J. A.; Keith, D.

    2016-12-01

    Stratospheric injection of scattering aerosols has been proposed as a way to reduce global temperature increases by decreasing net atmospheric radiative forcing. Several methods have been suggested as a means of implementing solar geoengineering, and high altitude aircraft have been identified as an accessible means delivering sulfate aerosols to the lower and mid-stratosphere. This research initiative analyzes the design features of an onboard open cycle chemical plant capable of in situ sulfur to sulfate conversion, and compares the required mass to that of transporting pre-fabricated gaseous or liquid sulfate aerosol precursors. Scaling from aero-derivative gas turbine engines, commercial catalytic converters, and existing aerospace materials indicate that aircraft equipped with such a system could provide a substantial mass benefit compared to direct transport of compound sulfate products.

  15. Micro- and nano-NDE systems for aircraft: great things in small packages

    Science.gov (United States)

    Malas, James C.; Kropas-Hughes, Claudia V.; Blackshire, James L.; Moran, Thomas; Peeler, Deborah; Frazier, W. G.; Parker, Danny

    2003-07-01

    Recent advancements in small, microscopic NDE sensor technologies will revolutionize how aircraft maintenance is done, and will significantly improve the reliability and airworthiness of current and future aircraft systems. A variety of micro/nano systems and concepts are being developed that will enable whole new capabilities for detecting and tracking structural integrity damage. For aging aircraft systems, the impact of micro-NDE sensor technologies will be felt immediately, with dramatic reductions in labor for maintenance, and extended useable life of critical components being two of the primary benefits. For the fleet management of future aircraft systems, a comprehensive evaluation and tracking of vehicle health throughout its entire life cycle will be needed. Indeed, micro/nano NDE systems will be instrumental in realizing this futuristic vision. Several major challenges will need to be addressed, however, before micro- and nano-NDE systems can effectively be implemented, and this will require interdisciplinary research approaches, and a systematic engineering integration of the new technologies into real systems. Future research will need to emphasize systems engineering approaches for designing materials and structures with in-situ inspection and prognostic capabilities. Recent advances in 1) embedded / add-on micro-sensors, 2) computer modeling of nondestructive evaluation responses, and 3) wireless communications are important steps toward this goal, and will ultimately provide previously unimagined opportunities for realizing whole new integrated vehicle health monitoring capabilities. The future use of micro/nano NDE technologies as vehicle health monitoring tools will have profound implications, and will provide a revolutionary way of doing NDE in the near and distant future.

  16. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies

    International Nuclear Information System (INIS)

    Wang, M. Q.

    1998-01-01

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions

  17. Fuel-cycle greenhouse gas emissions impacts of alternative transportation fuels and advanced vehicle technologies.

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. Q.

    1998-12-16

    At an international conference on global warming, held in Kyoto, Japan, in December 1997, the United States committed to reduce its greenhouse gas (GHG) emissions by 7% over its 1990 level by the year 2012. To help achieve that goal, transportation GHG emissions need to be reduced. Using Argonne's fuel-cycle model, I estimated GHG emissions reduction potentials of various near- and long-term transportation technologies. The estimated per-mile GHG emissions results show that alternative transportation fuels and advanced vehicle technologies can help significantly reduce transportation GHG emissions. Of the near-term technologies evaluated in this study, electric vehicles; hybrid electric vehicles; compression-ignition, direct-injection vehicles; and E85 flexible fuel vehicles can reduce fuel-cycle GHG emissions by more than 25%, on the fuel-cycle basis. Electric vehicles powered by electricity generated primarily from nuclear and renewable sources can reduce GHG emissions by 80%. Other alternative fuels, such as compressed natural gas and liquefied petroleum gas, offer limited, but positive, GHG emission reduction benefits. Among the long-term technologies evaluated in this study, conventional spark ignition and compression ignition engines powered by alternative fuels and gasoline- and diesel-powered advanced vehicles can reduce GHG emissions by 10% to 30%. Ethanol dedicated vehicles, electric vehicles, hybrid electric vehicles, and fuel-cell vehicles can reduce GHG emissions by over 40%. Spark ignition engines and fuel-cell vehicles powered by cellulosic ethanol and solar hydrogen (for fuel-cell vehicles only) can reduce GHG emissions by over 80%. In conclusion, both near- and long-term alternative fuels and advanced transportation technologies can play a role in reducing the United States GHG emissions.

  18. Advanced organic composite materials for aircraft structures: Future program

    Science.gov (United States)

    1987-01-01

    Revolutionary advances in structural materials have been responsible for revolutionary changes in all fields of engineering. These advances have had and are still having a significant impact on aircraft design and performance. Composites are engineered materials. Their properties are tailored through the use of a mix or blend of different constituents to maximize selected properties of strength and/or stiffness at reduced weights. More than 20 years have passed since the potentials of filamentary composite materials were identified. During the 1970s much lower cost carbon filaments became a reality and gradually designers turned from boron to carbon composites. Despite progress in this field, filamentary composites still have significant unfulfilled potential for increasing aircraft productivity; the rendering of advanced organic composite materials into production aircraft structures was disappointingly slow. Why this is and research and technology development actions that will assist in accelerating the application of advanced organic composites to production aircraft is discussed.

  19. Transformative Reduction of Transportation Greenhouse Gas Emissions. Opportunities for Change in Technologies and Systems

    Energy Technology Data Exchange (ETDEWEB)

    Vimmerstedt, Laura [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Brown, Austin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Newes, Emily [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Markel, Tony [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Schroeder, Alex [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Zhang, Yimin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chipman, Peter [U.S. Department of Transportation, Washington, D.C. (United States); Johnson, Shawn [U.S. Department of Transportation, Washington, D.C. (United States)

    2015-04-30

    The transportation sector is changing, influenced by concurrent, ongoing, dynamic trends that could dramatically affect the future energy landscape, including effects on the potential for greenhouse gas emissions reductions. Battery cost reductions and improved performance coupled with a growing number of electric vehicle model offerings are enabling greater battery electric vehicle market penetration, and advances in fuel cell technology and decreases in hydrogen production costs are leading to initial fuel cell vehicle offerings. Radically more efficient vehicles based on both conventional and new drivetrain technologies reduce greenhouse gas emissions per vehicle-mile. Net impacts also depend on the energy sources used for propulsion, and these are changing with increased use of renewable energy and unconventional fossil fuel resources. Connected and automated vehicles are emerging for personal and freight transportation systems and could increase use of low- or non-emitting technologies and systems; however, the net effects of automation on greenhouse gas emissions are uncertain. The longstanding trend of an annual increase in transportation demand has reversed for personal vehicle miles traveled in recent years, demonstrating the possibility of lower-travel future scenarios. Finally, advanced biofuel pathways have continued to develop, highlighting low-carbon and in some cases carbon-negative fuel pathways. We discuss the potential for transformative reductions in petroleum use and greenhouse gas emissions through these emerging transportation-sector technologies and trends and present a Clean Transportation Sector Initiative scenario for such reductions, which are summarized in Table ES-1.

  20. Workshop on technology issues of superconducting Maglev transportation systems

    International Nuclear Information System (INIS)

    Wegrzyn, J.E.; Shaw, D.T.

    1991-01-01

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration