WorldWideScience

Sample records for transpiration leaf diffusive

  1. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    Science.gov (United States)

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  2. Wind speed effects on leaf energy balance, transpiration and water use efficiency

    Science.gov (United States)

    Schymanski, S. J.; Or, D.

    2014-12-01

    Transpiration and heat exchange rates by plant leaves involve coupled physiological processes of significant ecohydrological importance. Prediction of the effects of changing environmental conditions such as irradiance, temperature, humidity and wind speed requires a thorough understanding of these processes. The common assumption that leaf temperature equals air temperature may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). Theoretical considerations and observations suggest that leaf temperatures may deviate substantially from air temperature under typical environmental conditions, leading to greatly modified transpiration rates compared to isothermal conditions. In particular, effects of wind on gas exchange must consider feedbacks with leaf temperature. Systematic quantification of the effects of wind speed on leaf heat and gas exchange rates yield some surprising insights. We found a range of conditions where increased wind speed can suppress transpiration rates. The result reflects unintuitive feedbacks between sensible heat flux, leaf temperature, leaf-to-air vapour pressure deficit and latent heat flux. Modelling results suggest that with high wind speeds the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. This leads to positive relation between water use efficiency and wind speed across a wide range of conditions. The presentation will report results from a lab experiment allowing separation of the different leaf energy balance components under fully controlled conditions (wind speed, temperature, humidity, irradiance) and put them into perspective with a detailed leaf energy balance model and the commonly used Penman-Monteith equation.

  3. Leaf temperature and transpiration of rice plants in relation to short-wave radiation and wind speed

    International Nuclear Information System (INIS)

    Ito, D.; Haseba, T.

    1984-01-01

    Leaf temperature and transpiration amount of rice plants were measured in a steady environment in a laboratory and in field situations. The plants set in Wagner pots were used. Experiments were carried out at the tillering and booting stages, and on the date of maturity. Measured leaf temperatures and transpiration rates were analyzed in connection with incident short-wave radiation on a leaf and wind speed measured simultaneously.Instantaneous supplying and turning-off of steady artificial light caused cyclic changes in leaf temperature and transpiration. Leaf temperature dropped in feeble illumination compared with the steady temperature in the preceeding dark.On the date of maturity, a rice plant leaf was warmer than the air, even in feeble light. Then, the leaf-air temperature difference and transpiration rate showed approximately linear increases with short-wave radiation intensity. On the same date, an increase in wind speed produced a decrease in leaf-air temperature difference, i.e., leaf temperature dropped, and an increase in transpiration rate. The rates of both changes in leaf temperature and transpiration rate were fairly large in a range of wind speed below about 1m/s.For rice plants growing favorably from the tillering stage through the booting stage, the leaves were considerably cooler than the air, even in an intense light and/or solar radiation. The leaf temperature showed the lowest value at short-wave radiations between 0.15 and 0.20ly/min, at above which the leaf temperature rised with an increase in short-wave radiation until it approached the air temperature. Transpiration rate of rice plants increased rapidly with an increase in short-wave radiation ranging below 0.2 or 0.3ly/min, at above which the increase in transpiration rate slowed.The relationships between leaf temperature and/or transpiration rate and wind speed and/or incident short-wave radiation (solar radiation) which were obtained experimentally, supported the relationships

  4. Transpiration and leaf growth of potato clones in response to soil water deficit

    Directory of Open Access Journals (Sweden)

    André Trevisan de Souza

    2014-04-01

    Full Text Available Potato (Solanum tuberosum ssp. Tuberosum crop is particularly susceptible to water deficit because of its small and shallow root system. The fraction of transpirable soil water (FTSW approach has been widely used in the evaluation of plant responses to water deficit in different crops. The FTSW 34 threshold (when stomatal closure starts is a trait of particular interest because it is an indicator of tolerance to water deficit. The FTSW threshold for decline in transpiration and leaf growth was evaluated in a drying soil to identify potato clones tolerant to water deficit. Two greenhouse experiments were carried out in pots, with three advanced clones and the cultivar Asterix. The FTSW, transpiration and leaf growth were measured on a daily basis, during the period of soil drying. FTSW was an efficient method to separate potato clones with regard to their response to water deficit. The advancedclones SMINIA 02106-11 and SMINIA 00017-6 are more tolerant to soil water deficit than the cultivar Asterix, and the clone SMINIA 793101-3 is more tolerant only under high solar radiation.

  5. Impact of Leaf Traits on Temporal Dynamics of Transpired Oxygen Isotope Signatures and Its Impact on Atmospheric Vapor

    Science.gov (United States)

    Dubbert, Maren; Kübert, Angelika; Werner, Christiane

    2017-01-01

    Oxygen isotope signatures of transpiration (δE) are powerful tracers of water movement from plant to global scale. However, a mechanistic understanding of how leaf morphological/physiological traits effect δE is missing. A laser spectrometer was coupled to a leaf-level gas-exchange system to measure fluxes and isotopic signatures of plant transpiration under controlled conditions in seven distinct species (Fagus sylvatica, Pinus sylvestris, Acacia longifolia, Quercus suber, Coffea arabica, Plantago lanceolata, Oxalis triangularis). We analyzed the role of stomatal conductance (gs) and leaf water content (W) on the temporal dynamics of δE following changes in relative humidity (rH). Changes in rH were applied from 60 to 30% and from 30 to 60%, which is probably more than covering the maximum step changes occurring under natural conditions. Further, the impact of gs and W on isotopic non-steady state isofluxes was analyzed. Following changes in rH, temporal development of δE was well described by a one-pool modeling approach for most species. Isofluxes of δE were dominantly driven by stomatal control on E, particularly for the initial period of 30 min following a step change. Hence, the deviation of isofluxes from isotopic steady state can be large, even though plants transpire near to isotopic steady state. Notably, not only transpiration rate and stomatal conductance, but also the leaf traits stomatal density (as a measure of gmax) and leaf water content are significantly related to the time constant (τ) and non-steady-state isofluxes. This might provide an easy-to-access means of a priori assumptions for the impact of isotopic non-steady-state transpiration in various ecosystems. We discuss the implications of our results from leaf to ecosystem scale. PMID:28149303

  6. Transpiration: A Test of Optimality Hypothesis

    Science.gov (United States)

    Wang, J.; Bras, R. L.; Lerdau, M.; Salvucci, G. D.; Wofsy, S.

    2003-12-01

    The argument is that the fundamental mechanisms behind bare soil evaporation are also responsible for plant transpiration except that stomata affect the exchange of water vapor between the evaporating surface and the atmosphere. It is hypothesized that the system of liquid water in leaf tissues and the water vapor in the atmosphere tries to evolve towards a potential equilibrium as quickly as possible by maximizing transpiration. In the proposed theory, CO2 flux is used as a non-parametric equivalent of stomatal conductance as CO2 and water vapor diffuse in and out of leaves through the same path. It is further assumed that stomatal aperture is directly controlled by guard cell turgor (or leaf water potential). Transpiration is formulated as a function of leaf temperature, leaf water potential/stomatal conductance (or CO2 flux as the surrogate), and sensible heat flux (characterizing transport mechanism) at a given level of radiative energy input. Optimization of transpiration constrained by the energy balance equation leads to vanishing derivatives of transpiration with respect to leaf temperature and CO2 flux. Effect of vapor pressure deficit on transpiration is also investigated. Preliminary tests using field experimental measurements lead to encouraging evidence in support of the hypothesis. It is found that transpiration is fairly insensitive to atmospheric humidity as suggested by several earlier studies.

  7. Genotypic variation in carbon isotope discrimination and transpiration efficiency in wheat. Leaf gas exchange and whole plant studies

    International Nuclear Information System (INIS)

    Condon, A.G.; Farquhar, G.D.; Richards, R.A.

    1990-01-01

    The relationship between carbon isotope discrimination, Δ, measured in plant dry matter and the ratio of intercellular to atmospheric partial pressures of CO 2 ,p i /p a , in leaves was examined in two glasshouse experiments using 14 wheat genotypes selected on the basis of variation in Δ of dry matter. Genotypic variation in Δ was similar in both experiments, with an average range of 1.8 x 10 -3 . Δ measured in dry matter and p i /p a measured in flag leaves were positively correlated. Variation among genotypes in p i /p a was attributed, approximately equally, to variation in leaf conductance and in photosynthetic capacity. The relationship between plant transpiration efficiency, W * (the amount of above-ground dry matter produced per unit water transpired) and Δ was was also examined. The results indicate that genotypic variation in Δ, measured in dry matter, should provide a reasonable measure of genotypic variation in long-term mean leaf p i /p a in wheat. 42 refs., 2 tabs., 5 figs

  8. Effects of thinning on wood production, leaf area index, transpiration and canopy interception of a plantation subject to drought.

    Science.gov (United States)

    McJannet, D; Vertessy, R

    2001-08-01

    We conducted thinning trials in a 5-year-old Eucalyptus globulus ssp. globulus Labill plantation near Warrenbayne, northeastern Victoria, Australia, where soil salinization and waterlogging are common, and assessed treatment effects on tree growth, water use and survival. Half-hectare plots were thinned from the original density of 1100 stems ha(-1) to densities of 800, 600 and 400 stems ha(-1), and stem diameter increment, leaf area index, transpiration, canopy interception and depth of tree water source monitored for 21 months. Two drought periods occurred during the study, rainfall was 30% below the long-term average and there was severe mortality in all three plots. Analysis of deuterium abundance in soil and xylem water indicated that the trees accessed water only from the top meter of the soil profile. Transpiration rates were higher in the most heavily thinned plot than in the least thinned plot, which underwent a reduction in basal area during the study. The most heavily thinned plot increased in basal area by 10% during the study. Edge trees had significantly greater diameters than trees from the middle of the plots.

  9. Responses of Leaf-level Carbon Assimilation and Transpiration to Root-zone Water Potential Changes in a Subtropical Tree Species

    Science.gov (United States)

    Cicheng, Z.; Guan, H.; Han, G.; Zhang, X.

    2013-12-01

    Photosynthetic carbon assimilation in terrestrial ecosystems significantly contributes to global carbon balance in the atmosphere. While vegetation photosynthesizes to fix CO2, it simultaneously transpires H2O. These two interdependent processes are regulated by leaf stomata which are sensitive to environmental conditions (such as root zone soil moisture). Knowledge of the responses of leaf-level transpiration and carbon assimilation to a change of root-zone soil moisture condition is important to understand how these processes influence water balance and carbon sequestration in terrestrial ecosystems, and to understand the capacity of trees to cope with future climate changes.We will present the results of a one-year observational study on a subtropical evergreen broadleaf tree species (Osmanthus fragrans) in the central south China. The observations were carried out on two 8-year Osmanthus fragrans trees in a plantation site from 1 Sep, 2012 to 31 Aug, 2013. A portable infrared gas exchange analyzer (Li-6400, Li-COR, Inc., Lincoln, Nebraska, USA) was used to measure leaf photosynthesis and leaf transpiration on clear days. Root zone soil water potential was estimated from predawn stem water potential using stem psychrometers (ICT, Australia). Sap flow and micrometeorological data were also collected. The results show that the average leaf carbon assimilation rate at light saturation decreases quickly with the root zone water potential from 0 to -1 MPa, and slowly after the root zone water potential falls below -1 MPa. The average leaf transpiration at light saturation shows a similar pattern. Leaf-level water use efficiency increases slowly with a decrease of root-zone water potential from 0 to -1 MPa, and keeps constant when the root zone gets drier. This relationship provides a potential to estimate whole-tree carbon assimilation from sap flow measurements. Leaf assimilation rates at light saturation in early morning vs. root-zone water potential for Osmanthus

  10. Transpiration and Leaf Temperature. Physical Processes in Terrestrial and Aquatic Ecosystems, Transport Processes.

    Science.gov (United States)

    Gates, David M.

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. This report introduces two models of the thermal energy budget of a leaf. Typical values for…

  11. Relationship of leaf oxygen and carbon isotopic composition with transpiration efficiency in the C4 grasses Setaria viridis and Setaria italica.

    Science.gov (United States)

    Ellsworth, Patrick Z; Ellsworth, Patrícia V; Cousins, Asaph B

    2017-06-15

    Leaf carbon and oxygen isotope ratios can potentially provide a time-integrated proxy for stomatal conductance (gs) and transpiration rate (E), and can be used to estimate transpiration efficiency (TE). In this study, we found significant relationships of bulk leaf carbon isotopic signature (δ13CBL) and bulk leaf oxygen enrichment above source water (Δ18OBL) with gas exchange and TE in the model C4 grasses Setaria viridis and S. italica. Leaf δ13C had strong relationships with E, gs, water use, biomass, and TE. Additionally, the consistent difference in δ13CBL between well-watered and water-limited plants suggests that δ13CBL is effective in separating C4 plants with different availability of water. Alternatively, the use of Δ18OBL as a proxy for E and TE in S. viridis and S. italica was problematic. First, the oxygen isotopic composition of source water, used to calculate leaf water enrichment (Δ18OLW), was variable with time and differed across water treatments. Second, water limitations changed leaf size and masked the relationship of Δ18OLW and Δ18OBL with E. Therefore, the data collected here suggest that δ13CBL but not Δ18OBL may be an effective proxy for TE in C4 grasses. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  12. Measuring and Modeling Tree Stand Level Transpiration

    Science.gov (United States)

    J.M. Vose; G.J. Harvey; K.J. Elliott; B.D. Clinton

    2003-01-01

    Transpiration is a key process in the application of phytoremediation to soil or groundwater pollutants. To be successful, vegetation must transpire enough water from the soil or groundwater to control or take up the contaminant. Transpiration is driven by a combination of abiotic (climate, soil water availability, and groundwater depth) and biotic (leaf area, stomatal...

  13. Thermal Effects on the Body mass, Transpiration rate, Feeding and Food Conversion of the Pillbug Armadillo officinalis (Isopoda, Oniscidea Fed on the Dry Leaf of Punica Granatum

    Directory of Open Access Journals (Sweden)

    Abdelgader K. Youssef

    2004-06-01

    Full Text Available Observations were made on the body mass; transpiration rate; assimilation efficiency; gross and net production efficiencies; feeding, assimilation, conversion and metabolic rates of the pillbug Armadillo officinalis Dumeril acclimatized at 14º  and 21 °C for 15 days and fed on the dry leaf of Punica granatum (Pomegranate.  A brief description is given on the chemical composition of P. granatum leaf.  The difference in body mass increments of A. officinalis between the acclimatized temperatures was not significant (t = 1.09; p>0.05.  However, significant differences were discernible on the transpiration rate (t = 9.53; p<0.01, moisture (t = 9.01; p<0.01, assimilation efficiency (t = 5.16; p<0.01, feeding (t = 3.76; p<0.05 and conversion (t = 2.58; p<0.05  rates between the woodlice acclimatized at 14º and 21 °C.  Better feeding of    P. granatum leaf by these animals was observed at 21° C, but better assimilation efficiency at 14 °C.  Only 3.21% assimilated food at 14° C and 6.30% at 21 °C were converted into the production of new tissues.  The food consumption of A. officinalis at 14º and 21° C was 2.05% and 3.79% body mass/day respectively.  The effect of temperature on the activity of A. officinalis in the field is discussed.

  14. Radon transport from uranium mill tailings via plant transpiration. Final report

    International Nuclear Information System (INIS)

    Lewis, B.A.G.

    1985-01-01

    Radon exhalation by vegetation planted on bare or soil-covered uranium mill wastes was studied based on an assumption that radon transport from soil to atmosphere via plants takes place in the transpiration stream. Results show that radon exhalation by plants is inversely related to water transpired, primarily a dilution effect. Radon released appeared directly related to leaf area, suggesting that radon is carried into the plant by mass flow in water; however, once within the plant, radon very likely diffuses through the entire leaf cuticle, while water vapor diffuses primarily through open stomates. Application of a computerized model for water transpiration to radon exhalation is not immediately useful until the role of water in radon transport is defined throughout the continuum from rooting medium to the atmosphere. Until then, a simple calculation based on leaf area index and Ra-226 concentration in the rooting medium can provide an estimate of radon release from revegetated wastes containing radium

  15. Measuring Transpiration to Regulate Winter Irrigation Rates

    Energy Technology Data Exchange (ETDEWEB)

    Samuelson, Lisa [Auburn University

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  16. Maize transpiration in response to meteorological conditions

    Science.gov (United States)

    Klimešová, Jana; Stŕedová, Hana; Stŕeda, Tomáš

    2013-09-01

    Differences in transpiration of maize (Zea mays L.) plants in four soil moisture regimes were quantified in a pot experiment. The transpiration was measured by the "Stem Heat Balance" method. The dependence of transpiration on air temperature, air humidity, global solar radiation, soil moisture, wind speed and leaf surface temperature were quantified. Significant relationships among transpiration, global radiation and air temperature (in the first vegetation period in the drought non-stressed variant, r = 0.881**, r = 0.934**) were found. Conclusive dependence of transpiration on leaf temperature (r = 0.820**) and wind speed (r = 0.710**) was found. Transpiration was significantly influenced by soil moisture (r = 0.395**, r = 0.528**) under moderate and severe drought stress. The dependence of transpiration on meteorological factors decreased with increasing deficiency of water. Correlation between transpiration and plant dry matter weight (r = 0.997**), plant height (r = 0.973**) and weight of corn cob (r = 0.987**) was found. The results of instrumental measuring of field crops transpiration under diverse moisture conditions at a concurrent monitoring of the meteorological elements spectra are rather unique. These results will be utilized in the effort to make calculations of the evapotranspiration in computing models more accurate.

  17. Plant transpiration at high elevations: Theory, field measurements, and comparisons with desert plants.

    Science.gov (United States)

    Smith, W K; Geller, G N

    1979-07-01

    The influence of elevational changes on plant transpiration was evaluated using leaf energy balance equations and well-known elevational changes in the physical parameters that influence water vapor diffusion. Simulated transpirational fluxes for large leaves with low and high stomatal resistances to water vapor diffusion were compared to small leaves with identical stomatal resistances at elevations ranging from sea level to 4 km. The specific influence of various air temperature lapse rates was also tested. Validation of the simulated results was accomplished by comparing actual field measurements taken at a low elevation (300 m) desert site with similar measurements for a high elevation (2,560 m) mountain research site. Close agreement was observed between predicted and measured values of transpiration for the environmental and leaf parameters tested.Substantial increases in solar irradiation and the diffusion coefficient for water vapor in air (D wv ) occurred with increasing elevation, while air and leaf temperatures, the water vapor concentration difference between the leaf and air, longwave irradiation, and the thermal conductivity coefficient for heat in air decreased with increasing elevation. These changes resulted in temperatures for sunlit leaves that were further above air temperature at higher elevations, especially for large leaves. For large leaves with low stomatal resistances, transpirational fluxes for low-elevation desert plants were close to those predicted for high-elevation plants even though the sunlit leaf temperatures of these mountain plants were over 10°C cooler. Simulating conditions with a low air temperature lapse rate (0.003° C m -1 and 0.004° C m -1 ) resulted in predicted transpirational fluxes that were greater than those calculated for the desert site. Transpiration for smaller leaves decreased with elevation for all lapse rates tested (0.003° C m -1 to 0.010° C m -1 ). However, transpirational fluxes at higher elevations

  18. Transpiração e temperatura foliar da cana-de-açúcar sob diferentes valores de potencial matricial Transpiration and leaf temperature of sugarcane under different matric potential values

    Directory of Open Access Journals (Sweden)

    Roberto Trentin

    2011-12-01

    Full Text Available O objetivo deste trabalho foi avaliar a variação diurna da transpiração e da temperatura foliar da cana-de-açúcar, cv. RB867515, sob diferentes potenciais matriciais de água no substrato de cultivo e as condições meteorológicas em ambiente protegido. O efeito do estresse hídrico na transpiração e temperatura foliar foi determinado a partir da suspensão da irrigação, quando foram realizadas três campanhas de medições, iniciadas aos 122; 150 e 185 dias após o plantio (DAP até que o potencial matricial de água no substrato (Ψ alcançasse -1.500 kPa, aproximadamente. Sob ausência de estresse hídrico (Ψ>-50 kPa, a transpiração das plantas atingiu o valor máximo entre 10 e 13 h, próximo de 60; 70 e 100 g planta-1 h-1 para 122; 150 e 185 DAP, respectivamente. Sob condições de estresse hídrico severo (ΨThe objective of this study was to evaluate the diurnal behaviour of transpiration and leaf temperature of sugarcane (cv. RB867515 under different water matrix potential in the cultivation substrate and greenhouse meteorological conditions. The water stress effect on transpiration and leaf temperature was determined after irrigation suspension, when three measurement campaigns were initiated at 122; 150 and 185 days after planting (DAP until the matrix water potential in the substrate (Ψ reached -1,500 kPa, approximately. Under the absence of water stress (Ψ>-50 kPa, plant transpiration reached the maximum value between 10:00 AM and 13:00 PM, near to 60; 70 e 100 gplant-1h-1, for 122; 150 and 185 DAP, respectively. Under severe water stress (Ψ<-1,100 kPa, there was daily transpiration reduction of approximately 73%, compared to measurements performed without water stress and under similar meteorological conditions. Under the absence of water stress and overcast sky conditions, the average value of the difference between leaf temperature and air temperature was -2.9 ºC. In contrast, under severe water stress and high

  19. EFFECT OF SOIL WATER POTENTIAL ON TRANSPIRATION RATE IN CUCUMBER PLANTS

    OpenAIRE

    Cho, Tosio; Eguchi, Hiromi; Kuroda, Masaharu; Tanaka, Akira; Koutaki, Masahiro; Ng, Ah Lek; Matsui, Tsuyoshi

    1985-01-01

    In an attempt to examine the effect of soil water potential (pF) on transpiration rate, leaf temperature of cucumber plants was measured under various conditions of soil water potential, and transpiration rate was calculated from heat balance of the leaf. Transpiration rate decreased with reduction in soil water potential; transpiration rate dropped at soil water potentials lower than pF 3.0. This fact suggests that the reduction in soil water potential restricts water uptake in roots and cau...

  20. Growth, Photosynthetic Efficiency, Rate of Transpiration, Lodging ...

    African Journals Online (AJOL)

    Growth, Photosynthetic Efficiency, Rate of Transpiration, Lodging, and Grain Yield of Tef ( Eragrostis Tef (Zucc) Trotter ) as Influenced by Stage and Rate of Paclobutrazol ... Paclobutrazol treatment had reduced plant height and total leaf area there by reduced excessive vegetative growth and lodging percentage.

  1. Further studies of the heat transfer from a leaf.

    Science.gov (United States)

    Linacre, E T

    1967-05-01

    The resistance to the diffusion of heat and water vapor external to a leaf, can be derived from measurement of the rate of change of the leaf temperature, after a sudden alteration of the intensity of irradiation. The theory of the method has been developed to accommodate the case of a leaf that is freely transpiring, exchanging longwave radiation with the environment and with different internal resistances on the 2 sides of the leaf. It has been successfully applied to measurements on wet blotting paper in the laboratory.

  2. Transpiration and crop yields

    NARCIS (Netherlands)

    Wit, de C.T.

    1958-01-01

    Theoretical and practical aspects of the transpiration of crops in the field are discussed and he concludes that the relationship between transpiration and total dry matter production is much less affected by growing conditions than has been supposed. In semi-arid and arid regions, this relationship

  3. Sap flux-scaled transpiration by tamarisk (Tamarix spp.) before, during and after episodic defoliation by the saltcedar leaf beetle (Diorhabda carinulata)

    Science.gov (United States)

    Hultine, K.R.; Nagler, P.L.; Morino, K.; Bush, S.E.; Burtch, K.G.; Dennison, P.E.; Glenn, E.P.; Ehleringer, J.R.

    2010-01-01

    The release of the saltcedar beetle (Diorhabda carinulata) has resulted in the periodic defoliation of tamarisk (Tamarix spp.) along more than 1000 river km in the upper Colorado River Basin and is expected to spread along many other river reaches throughout the upper basin, and possibly into the lower Colorado River Basin. Identifying the impacts of these release programs on tamarisk water use and subsequent water cycling in arid riparian systems are largely unknown, due in part to the difficulty of measuring water fluxes in these systems. We used lab-calibrated, modified heat-dissipation sap flux sensors to monitor tamarisk water use (n=20 trees) before, during and after defoliation by the saltcedar leaf beetle during the 2008 and 2009 growing seasons (May-October) in southeastern Utah. We incorporated a simple model that related mean stem sap flux density (Js) with atmospheric vapor pressure deficit (vpd) before the onset of defoliation in 2008. The model was used to calculate differences between predicted Js and Js measured throughout the two growing seasons. Episodic defoliation resulted in a 16% reduction in mean annual rates of Js in both 2008 and 2009, with decreases occurring only during the periods in which the trees were defoliated (about 6-8 weeks per growing season). In other words, rates of Js rebounded to values predicted by the model when the trees produced new leaves after defoliation. Sap flux data were scaled to stand water use by constructing a tamarisk-specific allometric equation to relate conducting sapwood area to stem diameter, and by measuring the size distribution of stems within the stand. Total water use in both years was 0.224m, representing a reduction of about 0.04myr-1. Results showed that repeated defoliation/refoliation cycles did not result in a progressive decrease in either leaf production or water use over the duration of the study. This investigation improves ground-based estimates of tamarisk water use, and will support

  4. Reduction of molecular gas diffusion through gaskets in leaf gas exchange cuvettes by leaf‐mediated pores

    DEFF Research Database (Denmark)

    Boesgaard, Kristine Stove; Mikkelsen, Teis Nørgaard; Ro‐Poulsen, Helge

    2013-01-01

    There is an ongoing debate on how to correct leaf gas exchange measurements for the unavoidable diffusion leakage that occurs when measurements are done in non‐ambient CO2 concentrations. In this study, we present a theory on how the CO2 diffusion gradient over the gasket is affected by leaf......‐mediated pores (LMP) and how LMP reduce diffusive exchange across the gaskets. Recent discussions have so far neglected the processes in the quasi‐laminar boundary layer around the gasket. Counter intuitively, LMP reduce the leakage through gaskets, which can be explained by assuming that the boundary layer...... at the exterior of the cuvette is enriched with air from the inside of the cuvette. The effect can thus be reduced by reducing the boundary layer thickness. The theory clarifies conflicting results from earlier studies. We developed leaf adaptor frames that eliminate LMP during measurements on delicate plant...

  5. Clouds homogenize shoot temperatures, transpiration, and photosynthesis within crowns of Abies fraseri (Pursh.) Poiret.

    Science.gov (United States)

    Hernandez-Moreno, J Melissa; Bayeur, Nicole M; Coley, Harold D; Hughes, Nicole M

    2017-03-01

    Multiple studies have examined the effects of clouds on shoot and canopy-level microclimate and physiological processes; none have yet done so on the scale of individual plant crowns. We compared incident photosynthetically active radiation (PAR), leaf temperatures, chlorophyll fluorescence, and photosynthetic gas exchange of shoots in three different spatial locations of Abies fraseri crowns on sunny (clear to partly cloudy) versus overcast days. The field site was a Fraser fir farm (1038 m elevation) in the Appalachian mountains, USA. Ten saplings of the same age class were marked and revisited for all measurements. Sunny conditions corresponded with 5-10× greater sunlight incidence on south-facing outer shoots compared to south-facing inner and north-facing outer shoots, which were shaded and received only indirect (diffuse) sunlight. Differences in spatial distribution of irradiance were mirrored in differences in shoot temperatures, photosynthesis, and transpiration, which were all greater in south-facing outer shoots compared to more shaded crown locations. In contrast, overcast conditions corresponded with more homogeneous sunlight distribution between north and south-facing outer shoots, and similar shoot temperatures, chlorophyll fluorescence (ΦPSII), photosynthesis, and transpiration; these effects were observed in south-facing inner shoots as well, but to a lesser extent. There was no significant difference in conductance between different crown locations on sunny or overcast days, indicating spatial differences in transpiration under sunny conditions were likely driven by leaf temperature differences. We conclude that clouds can affect spatial distribution of sunlight and associated physiological parameters not only within forest communities, but within individual crowns as well.

  6. Oxygen isotope signatures of transpired water vapor: the role of isotopic non-steady-state transpiration under natural conditions.

    Science.gov (United States)

    Dubbert, Maren; Cuntz, Matthias; Piayda, Arndt; Werner, Christiane

    2014-09-01

    The oxygen isotope signature of water is a powerful tracer of water movement from plants to the global scale. However, little is known about the short-term variability of oxygen isotopes leaving the ecosystem via transpiration, as high-frequency measurements are lacking. A laser spectrometer was coupled to a gas-exchange chamber directly estimating branch-level fluxes in order to evaluate the short-term variability of the isotopic composition of transpiration (δE ) and to investigate the role of isotopic non-steady-state transpiration under natural conditions in cork-oak trees (Quercus suber) during distinct Mediterranean seasons. The measured δ(18) O of transpiration (δE ) deviated from isotopic steady state throughout most of the day even when leaf water at the evaporating sites was near isotopic steady state. High agreement was found between estimated and modeled δE values assuming non-steady-state enrichment of leaf water. Isoforcing, that is, the influence of the transpirational δ(18) O flux on atmospheric values, deviated from steady-state calculations but daily means were similar between steady state and non-steady state. However, strong daytime isoforcing on the atmosphere implies that short-term variations in δE are likely to have consequences for large-scale applications, for example, partitioning of ecosystem fluxes or satellite-based applications. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  7. Complex adjustments of photosynthetic potentials and internal diffusion conductance to current and previous light availabilities and leaf age in Mediterranean evergreen species Quercus ilex.

    Science.gov (United States)

    Niinemets, Ulo; Cescatti, Alessandro; Rodeghiero, Mirco; Tosens, Tiina

    2006-06-01

    Mature non-senescent leaves of evergreen species become gradually shaded as new foliage develops and canopy expands, but the interactive effects of integrated light during leaf formation (Q(int)G), current light (Q(int)C) and leaf age on foliage photosynthetic competence are poorly understood. In Quercus ilex L., we measured the responses of leaf structural and physiological variables to Q(int)C and Q(int)G for four leaf age classes. Leaf aging resulted in increases in leaf dry mass per unit area (M(A)), and leaf dry to fresh mass ratio (D(F)) and decreases in N content per dry mass (N(M)). N content per area (N(A)) was independent of age, indicating that decreases in N(M) reflected dilution of leaf N because of accumulation of dry mass (NA = N(M) M(A)). M(A), D(F) and N(A) scaled positively with irradiance, whereas these age-specific correlations were stronger with leaf growth light than with current leaf light. Area-based maximum ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylase activity (V(cmax)A), capacity for photosynthetic electron transport (J(max)A) and the rate of non-photorespiratory respiration in light (R(d)A) were also positively associated with irradiance. Differently from leaf structural characteristics, for all data pooled, these relationships were stronger with current light with little differences among leaves of different age. Acclimation to current leaf light environment was achieved by light-dependent partitioning of N in rate-limiting proteins. Mass-based physiological activities decreased with increasing leaf age, reflecting dilution of leaf N and a larger fraction of non-photosynthetic N in older leaves. This resulted in age-dependent modification of leaf photosynthetic potentials versus N relationships. Internal diffusion conductance (g(m)) per unit area (g(m)A) increased curvilinearly with increasing irradiance for two youngest leaf age classes and was independent of light for older leaves. In contrast, g(m) per dry

  8. Fruit load governs transpiration of olive trees.

    Science.gov (United States)

    Bustan, Amnon; Dag, Arnon; Yermiyahu, Uri; Erel, Ran; Presnov, Eugene; Agam, Nurit; Kool, Dilia; Iwema, Joost; Zipori, Isaac; Ben-Gal, Alon

    2016-03-01

    We tested the hypothesis that whole-tree water consumption of olives (Olea europaea L.) is fruit load-dependent and investigated the driving physiological mechanisms. Fruit load was manipulated in mature olives grown in weighing-drainage lysimeters. Fruit was thinned or entirely removed from trees at three separate stages of growth: early, mid and late in the season. Tree-scale transpiration, calculated from lysimeter water balance, was found to be a function of fruit load, canopy size and weather conditions. Fruit removal caused an immediate decline in water consumption, measured as whole-plant transpiration normalized to tree size, which persisted until the end of the season. The later the execution of fruit removal, the greater was the response. The amount of water transpired by a fruit-loaded tree was found to be roughly 30% greater than that of an equivalent low- or nonyielding tree. The tree-scale response to fruit was reflected in stem water potential but was not mirrored in leaf-scale physiological measurements of stomatal conductance or photosynthesis. Trees with low or no fruit load had higher vegetative growth rates. However, no significant difference was observed in the overall aboveground dry biomass among groups, when fruit was included. This case, where carbon sources and sinks were both not limiting, suggests that the role of fruit on water consumption involves signaling and alterations in hydraulic properties of vascular tissues and tree organs. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Effects of dew deposition on transpiration and carbon uptake in leaves

    Science.gov (United States)

    Gerlein-Safdi, C.; Koohafkan, M.; Chung, M.; Rockwell, F. E.; Thompson, S. E.; Caylor, K. K.

    2017-12-01

    Dew deposition occurs in ecosystems worldwide, even in the driest deserts and in times of drought. Although some species absorb dew water directly via foliar uptake, a ubiquitous effect of dew on plant water balance is the interference of dew droplets with the leaf energy balance, which increases leaf albedo and emissivity and decreases leaf temperature through dew evaporation. Dew deposition frequency and amount are expected to be affected by changing environmental conditions, with unknown consequences for plant water stress and ecosystem carbon, water and energy fluxes. Here we present a simple leaf energy balance that characterizes the effect of deposition and the evaporation of dew on leaf energy balance, transpiration, and carbon uptake. The model is driven by five common meteorological variables and shows very good agreement with leaf wetness sensor data from the Blue Oak Ranch Reserve in California. We explore the tradeoffs between energy, water, and carbon balances for leaves of different sizes across a range of relative humidity, wind speed, and air temperature conditions. Our results show significant water savings from transpiration suppression up to 30% for leaf characteristic lengths of 50 cm due to the decrease in leaf temperature. C. 25% of water savings from transpiration suppression in smaller leaves arise from the effect of dew droplets on leaf albedo. CO2 assimilation is decreased by up to 15% by the presence of dew, except for bigger leaves in windspeed conditions below 1 m/s when an increase in assimilation is expected.

  10. A Novel Diffuse Fraction-Based Two-Leaf Light Use Efficiency Model: An Application Quantifying Photosynthetic Seasonality across 20 AmeriFlux Flux Tower Sites

    Science.gov (United States)

    Yan, Hao; Wang, Shao-Qiang; Yu, Kai-Liang; Wang, Bin; Yu, Qin; Bohrer, Gil; Billesbach, Dave; Bracho, Rosvel; Rahman, Faiz; Shugart, Herman H.

    2017-10-01

    Diffuse radiation can increase canopy light use efficiency (LUE). This creates the need to differentiate the effects of direct and diffuse radiation when simulating terrestrial gross primary production (GPP). Here, we present a novel GPP model, the diffuse-fraction-based two-leaf model (DTEC), which includes the leaf response to direct and diffuse radiation, and treats maximum LUE for shaded leaves (ɛmsh defined as a power function of the diffuse fraction (Df)) and sunlit leaves (ɛmsu defined as a constant) separately. An Amazonian rainforest site (KM67) was used to calibrate the model by simulating the linear relationship between monthly canopy LUE and Df. This showed a positive response of forest GPP to atmospheric diffuse radiation, and suggested that diffuse radiation was more limiting than global radiation and water availability for Amazon rainforest GPP on a monthly scale. Further evaluation at 20 independent AmeriFlux sites showed that the DTEC model, when driven by monthly meteorological data and MODIS leaf area index (LAI) products, explained 70% of the variability observed in monthly flux tower GPP. This exceeded the 51% accounted for by the MODIS 17A2 big-leaf GPP product. The DTEC model's explicit accounting for the impacts of diffuse radiation and soil water stress along with its parameterization for C4 and C3 plants was responsible for this difference. The evaluation of DTEC at Amazon rainforest sites demonstrated its potential to capture the unique seasonality of higher GPP during the diffuse radiation-dominated wet season. Our results highlight the importance of diffuse radiation in seasonal GPP simulation.Plain Language SummaryAs diffuse radiation can increase canopy light use efficiency (LUE), there is a need to differentiate the effects of direct and diffuse radiation in simulating terrestrial gross primary production (GPP). A novel diffuse-fraction (Df)-based two leaf GPP model (DTEC) developed by this study considers these effects. Evaluation

  11. SOUND TRANSMISSION LOSS OF A DOUBLE-LEAF PARTITION WITH MICRO-PERFORATED PLATE INSERTION UNDER DIFFUSE FIELD INCIDENCE

    Directory of Open Access Journals (Sweden)

    A. Putra

    2013-06-01

    Full Text Available In noise control applications, a double-leaf partition has been applied widely as a lightweight structure for noise insulation, such as in car doors, train bodies, and aircraft fuselages. Unfortunately, the insulation performance deteriorates significantly at mass-air-mass resonance due to coupling between the panels and the air in the gap. This paper investigates the effect of a micro-perforated panel (MPP, inserted in the conventional double-panel partition, on sound transmission loss at troublesome resonant frequencies. It is found that the transmission loss improves at this resonance if the MPP is located at a distance of less than half that of the air gap. A mathematical model is derived for the diffuse field incidence of acoustic loading.

  12. Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem

    Science.gov (United States)

    Knohl, Alexander; Baldocchi, Dennis D.

    2008-06-01

    Forest ecosystems across the globe show an increase in ecosystem carbon uptake efficiency under conditions with high fraction of diffuse radiation. Here, we combine eddy covariance flux measurements at a deciduous temperate forest in central Germany with canopy-scale modeling using the biophysical multilayer model CANVEG to investigate the impact of diffuse radiation on various canopy gas exchange processes and to elucidate the underlying mechanisms. Increasing diffuse radiation enhances canopy photosynthesis by redistributing the solar radiation load from light saturated sunlit leaves to nonsaturated shade leaves. Interactions with atmospheric vapor pressure deficit and reduced leaf respiration are only of minor importance to canopy photosynthesis. The response strength of carbon uptake to diffuse radiation depends on canopy characteristics such as leaf area index and leaf optical properties. Our model computations shows that both canopy photosynthesis and transpiration increase initially with diffuse fraction, but decrease after an optimum at a diffuse fraction of 0.45 due to reduction in global radiation. The initial increase in canopy photosynthesis exceeds the increase in transpiration, leading to a rise in water-use-efficiency. Our model predicts an increase in carbon isotope discrimination with water-use-efficiency resulting from differences in the leaf-to-air vapor pressure gradient and atmospheric vapor pressure deficit. This finding is in contrast to those predicted with simple big-leaf models that do not explicitly calculate leaf energy balance. At an annual scale, we estimate a decrease in annual carbon uptake for a potential increase in diffuse fraction, since diffuse fraction was beyond the optimum for 61% of the data.

  13. Transpiration in an oil palm landscape: effects of palm age

    Science.gov (United States)

    Röll, A.; Niu, F.; Meijide, A.; Hardanto, A.; Hendrayanto; Knohl, A.; Hölscher, D.

    2015-10-01

    Oil palm (Elaeis guineensis Jacq.) plantations cover large and continuously increasing areas of humid tropical lowlands. Landscapes dominated by oil palms usually consist of a mosaic of mono-cultural, homogeneous stands of varying age, which may be heterogeneous in their water use characteristics. However, studies on the water use characteristics of oil palms are still at an early stage and there is a lack of knowledge on how oil palm expansion will affect the major components of the hydrological cycle. To provide first insights into hydrological landscape-level consequences of oil palm cultivation, we derived transpiration rates of oil palms in stands of varying age, estimated the contribution of palm transpiration to evapotranspiration, and analyzed the influence of fluctuations in environmental variables on oil palm water use. We studied 15 two- to 25-year old stands in the lowlands of Jambi, Indonesia. A sap flux technique with an oil palm specific calibration and sampling scheme was used to derive leaf-, palm- and stand-level water use rates in all stands under comparable environmental conditions. Additionally, in a two- and a 12-year old stand, eddy covariance measurements were conducted to derive evapotranspiration rates. Water use rates per leaf and palm increased 5-fold from an age of 2 years to a stand age of approx. 10 years and then remained relatively constant. A similar trend was visible, but less pronounced, for estimated stand transpiration rates of oil palms; they varied 12-fold, from 0.2 mm day-1 in a 2-year old to 2.5 mm day-1 in a 12-year old stand, showing particularly high variability in transpiration rates among medium-aged stands. Comparing sap flux and eddy-covariance derived water fluxes suggests that transpiration contributed 8 % to evapotranspiration in the 2-year old stand and 53 % in the 12-year old stand, indicating variable and substantial additional sources of evaporation, e.g., from the soil, the ground vegetation and from trunk

  14. A natural carbonized leaf as polysulfide diffusion inhibitor for high-performance lithium-sulfur battery cells.

    Science.gov (United States)

    Chung, Sheng-Heng; Manthiram, Arumugam

    2014-06-01

    Attracted by the unique tissue and functions of leaves, a natural carbonized leaf (CL) is presented as a polysulfide diffusion inhibitor in lithium-sulfur (Li-S) batteries. The CL that is covered on the pure sulfur cathode effectively suppresses the polysulfide shuttling mechanism and enables the use of pure sulfur as the cathode. A low charge resistance and a high discharge capacity of 1320 mA h g(-1) arise from the improved cell conductivity due to the innately integral conductive carbon network of the CL. The unique microstructure of CL leads to a high discharge/charge efficiency of >98 %, low capacity fade of 0.18 % per cycle, and good long-term cyclability over 150 cycles. The structural gradient and the micro/mesoporous adsorption sites of CL effectively intercept/trap the migrating polysulfides and facilitate their reutilization. The green CL polysulfide diffusion inhibitor thus offers a viable approach for developing high-performance lithium-sulfur batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Predicting of regional transpiration at elevated atmospheric CO2: influence of the PBL vegetation interaction.

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Bruin, de H.A.R.

    1997-01-01

    A coupled planetary boundary layer (PBL)-vegetation model is used to study the influence of the PBL-vegetation interaction and the ambient CO2 concentration on surface resistance rs and regional transpiration E. Vegetation is described using the big-leaf model in which rs is modeled by means of a

  16. Latent manganese deficiency increases transpiration in barley (Hordeum vulgare)

    DEFF Research Database (Denmark)

    Hebbern, Christopher Alan; Laursen, Kristian Holst; Ladegaard, Anne Hald

    2009-01-01

    To investigate if latent manganese (Mn) deficiency leads to increased transpiration, barley plants were grown for 10 weeks in hydroponics with daily additions of Mn in the low nM range. The Mn-starved plants did not exhibit visual leaf symptoms of Mn deficiency, but Chl a fluorescence measurements...

  17. How Reliable Are Heat Pulse Velocity Methods for Estimating Tree Transpiration?

    Directory of Open Access Journals (Sweden)

    Michael A. Forster

    2017-09-01

    Full Text Available Transpiration is a significant component of the hydrologic cycle and its accurate quantification is critical for modelling, industry, and policy decisions. Sap flow sensors provide a low cost and practical method to measure transpiration. Various methods to measure sap flow are available and a popular family of methods is known as heat pulse velocity (HPV. Theory on thermal conductance and convection, that underpins HPV methods, suggests transpiration can be directly estimated from sensor measurements without the need for laborious calibrations. To test this accuracy, transpiration estimated from HPV sensors is compared with an independent measure of plant water use such as a weighing lysimeter. A meta-analysis of the literature that explicitly tested the accuracy of a HPV sensors against an independent measure of transpiration was conducted. Data from linear regression analysis was collated where an R2 of 1 indicates perfect precision and a slope of 1 of the linear regression curve indicates perfect accuracy. The average R2 and slope from all studies was 0.822 and 0.860, respectively. However, the overall error, or deviation from real transpiration values, was 34.706%. The results indicate that HPV sensors are precise in correlating heat velocity with rates of transpiration, but poor in quantifying transpiration. Various sources of error in converting heat velocity into sap velocity and sap flow are discussed including probe misalignment, wound corrections, thermal diffusivity, stem water content, placement of sensors in sapwood, and scaling of point measurements to whole plants. Where whole plant water use or transpiration is required in a study, it is recommended that all sap flow sensors are calibrated against an independent measure of transpiration.

  18. FPGA-based Fused Smart Sensor for Real-Time Plant-Transpiration Dynamic Estimation

    Directory of Open Access Journals (Sweden)

    Irineo Torres-Pacheco

    2010-09-01

    Full Text Available Plant transpiration is considered one of the most important physiological functions because it constitutes the plants evolving adaptation to exchange moisture with a dry atmosphere which can dehydrate or eventually kill the plant. Due to the importance of transpiration, accurate measurement methods are required; therefore, a smart sensor that fuses five primary sensors is proposed which can measure air temperature, leaf temperature, air relative humidity, plant out relative humidity and ambient light. A field programmable gate array based unit is used to perform signal processing algorithms as average decimation and infinite impulse response filters to the primary sensor readings in order to reduce the signal noise and improve its quality. Once the primary sensor readings are filtered, transpiration dynamics such as: transpiration, stomatal conductance, leaf-air-temperature-difference and vapor pressure deficit are calculated in real time by the smart sensor. This permits the user to observe different primary and calculated measurements at the same time and the relationship between these which is very useful in precision agriculture in the detection of abnormal conditions. Finally, transpiration related stress conditions can be detected in real time because of the use of online processing and embedded communications capabilities.

  19. Transpiration Response and Growth in Pearl Millet Parental Lines and Hybrids Bred for Contrasting Rainfall Environments

    Directory of Open Access Journals (Sweden)

    Susan Medina

    2017-10-01

    Full Text Available Under conditions of high vapor pressure deficit (VPD and soil drying, restricting transpiration is an important avenue to gain efficiency in water use. The question we raise in this article is whether breeding for agro-ecological environments that differ for the rainfall have selected for traits that control plant water use. These are measured in pearl millet materials bred for zones varying in rainfall (8 combinations of parent and F1-hybrids, 18 F1-hybrids and then 40 F1-hybrids. In all cases, we found an agro-ecological variation in the slope of the transpiration response to increasing VPD, and parental line variation in the transpiration response to soil drying within hybrids/parent combinations. The hybrids adapted to lower rainfall had higher transpiration response curves than those from the highest rainfall zones, but showed no variation in how transpiration responded to soil drying. The genotypes bred for lower rainfall zones showed lower leaf area, dry matter, thicker leaves, root development, and exudation, than the ones bred for high rainfall zone when grown in the low VPD environment of the greenhouse, but there was no difference in their root length neither on the root/shoot index in these genotypes. By contrast, when grown under high VPD conditions outdoors, the lower rainfall hybrids had the highest leaf, tiller, and biomass development. Finally, under soil drying the genotypes from the lower rainfall accumulated less biomass than the ones from higher rainfall zone, and so did the parental lines compared to the hybrids. These differences in the transpiration response and growth clearly showed that breeding for different agro-ecological zones also bred for different genotype strategies in relation to traits related to plant water use.Highlights:• Variation in transpiration response reflected breeding for agro-ecological zones• Different growth strategies depended on the environmental conditions• Different ideotypes reflected

  20. Modelling maximum canopy conductance and transpiration in ...

    African Journals Online (AJOL)

    There is much current interest in predicting the maximum amount of water that can be transpired by Eucalyptus trees. It is possible that industrial waste water may be applied as irrigation water to eucalypts and it is important to predict the maximum transpiration rates of these plantations in an attempt to dispose of this ...

  1. Measuring and modelling forest transpiration

    Czech Academy of Sciences Publication Activity Database

    Šír, Miloslav; Čermák, J.; Naděždina, N.; Pražák, Josef; Tesař, Miroslav

    2008-01-01

    Roč. 4, - (2008), č. 012050 ISSN 1755-1315. [Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management /24./. Bled, 02.06.2008-04.06.2008] R&D Projects: GA ČR GA205/06/0375; GA ČR GA205/08/1174; GA ČR GA526/08/1016; GA MŠk MEB0808114; GA MŽP(CZ) SP/1A6/151/07; GA AV ČR 1QS200420562 Institutional research plan: CEZ:AV0Z20600510; CEZ:AV0Z20760514 Keywords : plant transpiration * SAP flow * floodplain forest Subject RIV: DA - Hydrology ; Limnology

  2. Coupling gross primary production and transpiration for a consistent estimate of canopy water use efficiency

    Science.gov (United States)

    Yebra, Marta; van Dijk, Albert

    2015-04-01

    Water use efficiency (WUE, the amount of transpiration or evapotranspiration per unit gross (GPP) or net CO2 uptake) is key in all areas of plant production and forest management applications. Therefore, mutually consistent estimates of GPP and transpiration are needed to analysed WUE without introducing any artefacts that might arise by combining independently derived GPP and ET estimates. GPP and transpiration are physiologically linked at ecosystem level by the canopy conductance (Gc). Estimates of Gc can be obtained by scaling stomatal conductance (Kelliher et al. 1995) or inferred from ecosystem level measurements of gas exchange (Baldocchi et al., 2008). To derive large-scale or indeed global estimates of Gc, satellite remote sensing based methods are needed. In a previous study, we used water vapour flux estimates derived from eddy covariance flux tower measurements at 16 Fluxnet sites world-wide to develop a method to estimate Gc using MODIS reflectance observations (Yebra et al. 2013). We combined those estimates with the Penman-Monteith combination equation to derive transpiration (T). The resulting T estimates compared favourably with flux tower estimates (R2=0.82, RMSE=29.8 W m-2). Moreover, the method allowed a single parameterisation for all land cover types, which avoids artefacts resulting from land cover classification. In subsequent research (Yebra et al, in preparation) we used the same satellite-derived Gc values within a process-based but simple canopy GPP model to constrain GPP predictions. The developed model uses a 'big-leaf' description of the plant canopy to estimate the mean GPP flux as the lesser of a conductance-limited and radiation-limited GPP rate. The conductance-limited rate was derived assuming that transport of CO2 from the bulk air to the intercellular leaf space is limited by molecular diffusion through the stomata. The radiation-limited rate was estimated assuming that it is proportional to the absorbed photosynthetically

  3. The importance of micrometeorological variations for photosynthesis and transpiration in a boreal coniferous forest

    DEFF Research Database (Denmark)

    Schurgers, Guy; Lagergren, F.; Molder, M.

    2015-01-01

    the importance of vertical variations in light, temperature, CO2 concentration and humidity within the canopy for fluxes of photosynthesis and transpiration of a boreal coniferous forest in central Sweden. A leaf-level photosynthesis-stomatal conductance model was used for aggregating these processes to canopy...... abovecanopy and within-canopy humidity, and despite large gradients in CO2 concentration during early morning hours after nights with stable conditions, neither humidity nor CO2 played an important role for vertical heterogeneity of photosynthesis and transpiration....

  4. Bayesian analysis of canopy transpiration models: A test of posterior parameter means against measurements

    Science.gov (United States)

    Mackay, D. Scott; Ewers, Brent E.; Loranty, Michael M.; Kruger, Eric L.; Samanta, Sudeep

    2012-04-01

    SummaryBig-leaf models of transpiration are based on the hypothesis that structural heterogeneity within forest canopies can be ignored at stand or larger scales. However, the adoption of big-leaf models is de facto rather than de jure, as forests are never structurally or functionally homogeneous. We tested big-leaf models both with and without modification to include canopy gaps, in a heterogeneous quaking aspen stand having a range of canopy densities. Leaf area index (L) and canopy closure were obtained from biometric data, stomatal conductance parameters were obtained from sap flux measurements, while leaf gas exchange data provided photosynthetic parameters. We then rigorously tested model-data consistency by incrementally starving the models of these measured parameters and using Bayesian Markov Chain Monte Carlo simulation to retrieve the withheld parameters. Model acceptability was quantified with Deviance Information Criterion (DIC), which penalized model accuracy by the number of retrieved parameters. Big-leaf models overestimated canopy transpiration with increasing error as canopy density declined, but models that included gaps had minimal error regardless of canopy density. When models used measured L the other parameters were retrieved with minimal bias. This showed that simple canopy models could predict transpiration in data scarce regions where only L was measured. Models that had L withheld had the lowest DIC values suggesting that they were the most acceptable models. However, these models failed to retrieve unbiased parameter estimates indicating a mismatch between model structure and data. By quantifying model structure and data requirements this new approach to evaluating model-data fusion has advanced the understanding of canopy transpiration.

  5. Scaling leaf measurements to estimate cotton canopy gas exchange

    Science.gov (United States)

    Diurnal leaf and canopy gas exchange of well watered field grown cotton were measured. Leaf measurements were made with a portable photosynthesis system and canopy measurements with open Canopy Evapo-Transpiration and Assimilation (CETA) systems. Leaf level measurements were arithmetically scaled to...

  6. Processes driving nocturnal transpiration and implications for estimating land evapotranspiration.

    Science.gov (United States)

    de Dios, Víctor Resco; Roy, Jacques; Ferrio, Juan Pedro; Alday, Josu G; Landais, Damien; Milcu, Alexandru; Gessler, Arthur

    2015-06-15

    Evapotranspiration is a major component of the water cycle, yet only daytime transpiration is currently considered in Earth system and agricultural sciences. This contrasts with physiological studies where 25% or more of water losses have been reported to occur occurring overnight at leaf and plant scales. This gap probably arose from limitations in techniques to measure nocturnal water fluxes at ecosystem scales, a gap we bridge here by using lysimeters under controlled environmental conditions. The magnitude of the nocturnal water losses (12-23% of daytime water losses) in row-crop monocultures of bean (annual herb) and cotton (woody shrub) would be globally an order of magnitude higher than documented responses of global evapotranspiration to climate change (51-98 vs. 7-8 mm yr(-1)). Contrary to daytime responses and to conventional wisdom, nocturnal transpiration was not affected by previous radiation loads or carbon uptake, and showed a temporal pattern independent of vapour pressure deficit or temperature, because of endogenous controls on stomatal conductance via circadian regulation. Our results have important implications from large-scale ecosystem modelling to crop production: homeostatic water losses justify simple empirical predictive functions, and circadian controls show a fine-tune control that minimizes water loss while potentially increasing posterior carbon uptake.

  7. Modeling productivity and transpiration of Pinus radiata: climatic effects.

    Science.gov (United States)

    Sheriff, D. W.; Mattay, J. P.; McMurtrie, R. E.

    1996-01-01

    Climatic effects on annual net carbon gain, stem biomass and annual transpiration were simulated for Pinus radiata D. Don at Canberra and Mt. Gambier. Simulations were conducted with an existing process-based forest growth model (BIOMASS, Model 1) and with a modified version of the BIOMASS model (Model 2) in which response functions for carbon assimilation and leaf conductance were replaced with those derived from field gas exchange data collected at Mt. Gambier. Simulated carbon gain was compared with a published report stating that mean annual stem volume increment (MAI) at Mt. Gambier was 1.8 times greater than at Canberra and that the difference could be the result solely of differences in climate. Regional differences in climate resulted in a 20% greater simulated annual transpiration at Canberra than at Mt. Gambier but only small differences in simulated productivity, indicating that climatic differences did not account for the reported differences in productivity. With Model 1, simulated annual net carbon gain and annual increase in stem biomass were greater at Canberra than at Mt. Gambier, whereas Model 2 indicated a similar annual net carbon gain and annual stem biomass increase in both regions.

  8. Quantifying structural and physiological controls on variation in canopy transpiration among planted pine and hardwood species in the southern Appalachians

    Science.gov (United States)

    Chelcy R. Ford; Robert M. Hubbard; James M. Vose

    2010-01-01

    Recent studies have shown that planted pine stands exhibit higher evapotranspiration (ET) and are more sensitive to climatic conditions compared with hardwood stands. Whether this is due to management and stand effects, biological effects or their interaction is poorly understood. We estimated growing season canopy- and sap flux-scaled leaf-level transpiration (Ec and...

  9. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

    Science.gov (United States)

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner

    2011-01-01

    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  10. Leaf hydraulics II: vascularized tissues.

    Science.gov (United States)

    Rockwell, Fulton E; Holbrook, N Michele; Stroock, Abraham D

    2014-01-07

    Current models of leaf hydration employ an Ohm's law analogy of the leaf as an ideal capacitor, neglecting the resistance to flow between cells, or treat the leaf as a plane sheet with a source of water at fixed potential filling the mid-plane, neglecting the discrete placement of veins as well as their resistance. We develop a model of leaf hydration that considers the average conductance of the vascular network to a representative areole (region bounded by the vascular network), and represent the volume of tissue within the areole as a poroelastic composite of cells and air spaces. Solutions to the 3D flow problem are found by numerical simulation, and these results are then compared to 1D models with exact solutions for a range of leaf geometries, based on a survey of temperate woody plants. We then show that the hydration times given by these solutions are well approximated by a sum of the ideal capacitor and plane sheet times, representing the time for transport through the vasculature and tissue respectively. We then develop scaling factors relating this approximate solution to the 3D model, and examine the dependence of these scaling factors on leaf geometry. Finally, we apply a similar strategy to reduce the dimensions of the steady state problem, in the context of peristomatal transpiration, and consider the relation of transpirational gradients to equilibrium leaf water potential measurements. © 2013 Published by Elsevier Ltd. All rights reserved.

  11. Effect of canopy architectural variation on transpiration and thermoregulation

    Science.gov (United States)

    Linn, R.; Banerjee, T.

    2017-12-01

    One of the major scientific questions identified by the NGEE - Tropics campaign is the effect of disturbances such as forest fires, vegetation thinning and land use change on carbon, water and energy fluxes. Answers to such questions can help develop effective forest management strategies and shape policies to mitigate damages under natural and anthropogenic climate change. The absence of horizontal and vertical variation of forest canopy structure in current models is a major source of uncertainty in answering these questions. The current work addresses this issue through a bottom up process based modeling approach to systematically investigate the effect of forest canopy architectural variation on plant physiological response as well as canopy level fluxes. A plant biophysics formulation is used which is based on the following principles: (1) a model for the biochemical demand for CO2 as prescribed by photosynthesis models. This model can differentiate between photosynthesis under light-limited and nutrient-limited scenarios. (2) A Fickian mass transfer model including transfer through the laminar boundary layer on leaves that may be subjected to forced or free convection depending upon the mean velocity and the radiation load; (3) an optimal leaf water use strategy that maximizes net carbon gain for a given transpiration rate to describe the stomatal aperture variation; (4) a leaf-level energy balance to accommodate evaporative cooling. Such leaf level processes are coupled to solutions of atmospheric flow through vegetation canopies. In the first test case, different scenarios of top heavy and bottom heavy (vertical) foliage distributions are investigated within a one-dimensional framework where no horizontal heterogeneity of canopy structure is considered. In another test case, different spatial distributions (both horizontal and vertical) of canopy geometry (land use) are considered, where flow solutions using large eddy simulations (LES) are coupled to the

  12. Transpiration and biomass production of the bioenergy crop Giant Knotweed Igniscum under various supplies of water and nutrients

    Directory of Open Access Journals (Sweden)

    Mantovani Dario

    2014-12-01

    Full Text Available Soil water availability, nutrient supply and climatic conditions are key factors for plant production. For a sustainable integration of bioenergy plants into agricultural systems, detailed studies on their water uses and growth performances are needed. The new bioenergy plant Igniscum Candy is a cultivar of the Sakhalin Knotweed (Fallopia sachalinensis, which is characterized by a high annual biomass production. For the determination of transpiration-yield relations at the whole plant level we used wicked lysimeters at multiple irrigation levels associated with the soil water availability (25, 35, 70, 100% and nitrogen fertilization (0, 50, 100, 150 kg N ha-1. Leaf transpiration and net photosynthesis were determined with a portable minicuvette system. The maximum mean transpiration rate was 10.6 mmol m-2 s-1 for well-watered plants, while the mean net photosynthesis was 9.1 μmol m-2 s-1. The cumulative transpiration of the plants during the growing seasons varied between 49 l (drought stressed and 141 l (well-watered per plant. The calculated transpiration coefficient for Fallopia over all of the treatments applied was 485.6 l kg-1. The transpiration-yield relation of Igniscum is comparable to rye and barley. Its growth performance making Fallopia a potentially good second generation bioenergy crop.

  13. Relating xylem cavitation to transpiration in cotton

    Science.gov (United States)

    Acoustic emmisions (AEs) from xylem cavitation events are characteristic of transpiration processes. Even though a body of work employing AE exists with a large number of species, cotton and other agronomically important crops have either not been investigated, or limited information exists. A few s...

  14. A phytotoxicity test using transpiration of willows

    DEFF Research Database (Denmark)

    Trapp, Stefan; Zambrano, Kim Cecilia; Kusk, Kresten Ole

    2000-01-01

    A short-term acute toxicity assay for willow trees growing in contaminated solution or in polluted soil was developed and tested. The test apparatus consists of an Erlenmeyer flask with a prerooted tree cutting growing in it. Growth and reduction of transpiration are used to determine toxicity...

  15. Terrestrial water fluxes dominated by transpiration: Comment

    Science.gov (United States)

    Daniel R. Schlaepfer; Brent E. Ewers; Bryan N. Shuman; David G. Williams; John M. Frank; William J. Massman; William K. Lauenroth

    2014-01-01

    The fraction of evapotranspiration (ET) attributed to plant transpiration (T) is an important source of uncertainty in terrestrial water fluxes and land surface modeling (Lawrence et al. 2007, Miralles et al. 2011). Jasechko et al. (2013) used stable oxygen and hydrogen isotope ratios from 73 large lakes to investigate the relative roles of evaporation (E) and T in ET...

  16. Towards improved quantification of internal diffusion resistances and CO2 isotope exchange in leaves

    Science.gov (United States)

    West, J. B.; Ogee, J.; Burlett, R.; Gimeno, T.; Genty, B.; Jones, S.; Wohl, S.; Bosc, A.; Cochet, Y.; Domec, J. C.; Wingate, L.

    2016-12-01

    The oxygen isotopic composition (δ18O) of atmospheric CO2 can constrain the C cycle at a range of scales, in particular partitioning net CO2 exchanges into their component gross fluxes and providing insights to linked C and water fluxes. There are significant limitations to utilizing the δ18O of CO2 in this way, however, because of uncertainties associated with the isotopic exchange of CO2 with terrestrial water pools. Leaf water represents a critical pool with ongoing debates about its enrichment in heavy isotopes during transpiration and the hydration of CO2 and the resulting oxygen isotope exchange. Isotopic heterogeneity of the leaf water, the spatial distribution and activity of carbonic anhydrase (CA) within leaves, and resistance to diffusion of CO2 from the substomatal cavity to chloroplasts are all key components with important uncertainties. Better constraints on these would significantly improve our ability to understand and model the global C budget as well as yield insights to fundamental aspects of leaf physiology. We report results using a new measurement system that permits the simultaneous measurement of the 13C and 18O composition of CO2 and the 18O isotopic composition of leaf transpiration. As this new approach permits rapid alteration of the isotopic composition of gases interacting with the leaf, key model parameters can be derived directly and simultaneously. Hence, our approach dos not rely on separate measurements shifted in time from the gas exchange measurements or that may not quantify the relevant scale of heterogeneity (e.g., CA enzyme assays or bulk leaf water extraction and analysis). In particular, this new method explicitly distinguishes the leaf mesophyll resistance to CO2 transport relevant for photosynthesis from the resistance required for interpreting the d18O of CO2. This new measurement system and modeling approach allows a thorough assessment of key elements of our current understanding of CO2-H2O oxygen isotope exchange

  17. Convergent approaches to determine an ecosystem's transpiration fraction

    Science.gov (United States)

    Berkelhammer, M.; Noone, D. C.; Wong, T. E.; Burns, S. P.; Knowles, J. F.; Kaushik, A.; Blanken, P. D.; Williams, M. W.

    2016-06-01

    The transpiration (T) fraction of total terrestrial evapotranspiration (ET), T/ET, can vary across ecosystems between 20-95% with a global average of ˜60%. The wide range may either reflect true heterogeneity between ecosystems and/or uncertainties in the techniques used to derive this property. Here we compared independent approaches to estimate T/ET at two needleleaf forested sites with a factor of 3 difference in leaf area index (LAI). The first method utilized water vapor isotope profiles and the second derived transpiration through its functional relationship with gross primary production. We found strong agreement between T/ET values from these two independent approaches although we noted a discrepancy at low vapor pressure deficits (VPD). We hypothesize that this divergence arises because stomatal conductance is independent of humidity at low VPD. Overall, we document significant synoptic-scale T/ET variability but minimal growing season-scale variability. This result indicates a high sensitivity of T/ET to passing weather but convergence toward a stable mean state, which is set by LAI. While changes in T/ET could emerge from a myriad of processes, including aboveground (LAI) or belowground (rooting depth) changes, there was only minimal interannual variability and no secular trend in our analysis of T/ET from the 15 year eddy covariance time series at Niwot Ridge. If the lack of trend observed here is apparent elsewhere, it suggests that the processes controlling the T and E fluxes are coupled in a way to maintain a stable ratio.

  18. Transpiration of shrub species, Alnus firma under changing atmospheric environments in montane area, Japan

    Science.gov (United States)

    Miyazawa, Y.; Maruyama, A.; Inoue, A.

    2014-12-01

    In the large caldera of Mt. Aso in Japan, grasslands have been traditionally managed by the farmers. Due to changes in the social structure of the region, a large area of the grassland has been abandoned and was invaded by the shrubs with different hydrological and ecophysiological traits. Ecophysiological traits and their responses to seasonally changing environments are fundamental to project the transpiration rates under changing air and soil water environments, but less is understood. We measured the tree- and leaf-level ecophysiological traits of a shrub, Alnus firma in montane region where both rainfall and soil water content drastically changes seasonally. Sap flux reached the annual peak in evaporative summer (July-August) both in 2013 and 2014, although the duration was limited within a short period due to the prolonged rainy season before summer (2014) and rapid decrease in the air vapor pressure deficit (D) in late summer. Leaf ecophysiological traits in close relationship with gas exchange showed modest seasonal changes and the values were kept at relatively high levels typical in plants with nitrogen fixation under nutrient-poor environments. Stomatal conductance, which was measured at leaf-level measurements and sap flux measurements, showed responses to D, which coincided with the theoretical response for isohydric leaves. A multilayer model, which estimates stand-level transpiration by scaling up the leaf-level data, successfully captured the temporal trends in sap flux, suggesting that major processes were incorporated. Thus, ecophysiological traits of A. firma were characterized by the absence of responses to seasonally changing environments and the transpiration rate was the function of the interannually variable environmental conditions.

  19. Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Abrahamsen, Per; Gjettermann, Birgitte

    2010-01-01

    . Experimental data was compared to simulated results from the new enhanced Daisy model which include modelling 2D soil water flow, abscisic acid (ABA) signalling and its effect on stomatal conductance and hence on transpiration and assimilation, and finally crop yield. The results demonstrated that the enhanced......Application of water saving irrigation strategies in agriculture has become increasingly important. Both modelling and experimental work are needed to gain more insights into the biological and physical mechanisms in the soil-plant system, which regulates water flow in the system and plays...... a central role in reducing crop transpiration. This paper presented a mechanistic model (Daisy) developed based on data obtained in the SAFIR project on measured leaf gas exchange and soil water dynamics in irrigated potato crops grown in a semi-field environment subjected to different irrigation regimes...

  20. Effect of Vertical Canopy Architecture on Transpiration, Thermoregulation and Carbon Assimilation

    Directory of Open Access Journals (Sweden)

    Tirtha Banerjee

    2018-04-01

    Full Text Available Quantifying the impact of natural and anthropogenic disturbances such as deforestation, forest fires and vegetation thinning among others on net ecosystem—atmosphere exchanges of carbon dioxide, water vapor and heat—is an important aspect in the context of modeling global carbon, water and energy cycles. The absence of canopy architectural variation in horizontal and vertical directions is a major source of uncertainty in current climate models attempting to address these issues. This manuscript demonstrates the importance of considering the vertical distribution of foliage density by coupling a leaf level plant biophysics model with analytical solutions of wind flow and light attenuation in a horizontally homogeneous canopy. It is demonstrated that plant physiological response in terms of carbon assimilation, transpiration and canopy surface temperature can be widely different for two canopies with the same leaf area index (LAI but different leaf area density distributions, under several conditions of wind speed, light availability, soil moisture availability and atmospheric evaporative demand.

  1. Epicuticular wax on cherry laurel (Prunus laurocerasus) leaves does not constitute the cuticular transpiration barrier.

    Science.gov (United States)

    Zeisler, Viktoria; Schreiber, Lukas

    2016-01-01

    Epicuticular wax of cherry laurel does not contribute to the formation of the cuticular transpiration barrier, which must be established by intracuticular wax. Barrier properties of cuticles are established by cuticular wax deposited on the outer surface of the cuticle (epicuticular wax) and in the cutin polymer (intracuticular wax). It is still an open question to what extent epi- and/or intracuticular waxes contribute to the formation of the transpiration barrier. Epicuticular wax was mechanically removed from the surfaces of isolated cuticles and intact leaf disks of cherry laurel (Prunus laurocerasus L.) by stripping with different polymers (collodion, cellulose acetate and gum arabic). Scanning electron microscopy showed that two consecutive treatments with all three polymers were sufficient to completely remove epicuticular wax since wax platelets disappeared and cuticle surfaces appeared smooth. Waxes in consecutive polymer strips and wax remaining in the cuticle after treatment with the polymers were determined by gas chromatography. This confirmed that two treatments of the polymers were sufficient for selectively removing epicuticular wax. Water permeability of isolated cuticles and cuticles covering intact leaf disks was measured using (3)H-labelled water before and after selectively removing epicuticular wax. Cellulose acetate and its solvent acetone led to a significant increase of cuticular permeability, indicating that the organic solvent acetone affected the cuticular transpiration barrier. However, permeability did not change after two subsequent treatments with collodion and gum arabic or after treatment with the corresponding solvents (diethyl ether:ethanol or water). Thus, in the case of P. laurocerasus the epicuticular wax does not significantly contribute to the formation of the cuticular transpiration barrier, which evidently must be established by the intracuticular wax.

  2. A first look at the SAPFLUXNET database: global patterns in whole-plant transpiration and implications for ecohydrological research

    Science.gov (United States)

    Poyatos, R.; Granda, V.; Mencuccini, M.; Flo, V.; Oren, R.; Molowny-Horas, R.; Katul, G. G.; Mahecha, M. D.; Steppe, K.; Cabon, A.; De Cáceres, M.; Martínez-Vilalta, J.

    2017-12-01

    Plant transpiration is the fundamental process linking water and vegetation and it is therefore a central topic in ecohydrological research. Globally, plants display a huge variety of coordinated adjustments in their physiology and structure to regulate transpiration in response to fluctuations of water demand and supply at multiple temporal scales. Sap flow measured in plant stems reveals the temporal patterns of these responses but sap flow data have remained fragmentary and generally unavailable for syntheses of regional to global scope. Here we present the first global database of sap flow measurements from individual plants (SAPFLUXNET, http://sapfluxnet.creaf.cat/), which has been compiled from > 150 datasets contributed by researchers worldwide. Received datasets were harmonised and conveniently stored in custom-designed R objects holding sap flow and environmental data time series, together with several ancillary metadata, enabling data access for synthesis activities. SAPFLUXNET covers most vegetated biomes and holds data for > 1500 individual plants, mostly trees, belonging to >100 species and > 50 genera. We retrieved water use traits indicative of maximum transpiration rates and of transpiration sensitivity to vapour pressure deficit using quantile regression approaches and moving window analyses. Global patterns of these water use traits were then analysed as a function of climate, plant functional type and stand characteristics. For example, maximum transpiration rates at a given plant diameter or sapwood area tended to be higher for Angiosperms compared to Gymnosperms, but this relationships converged to a more similar scaling between transpiration and leaf area across these groups. SAPFLUXNET is also a valuable tool to evaluate water balance components in ecosystem models. We combined SAPFLUXNET data with the MEDFATE model (https://cran.r-project.org/web/packages/medfate/index.html) to validate an ecohydrological optimisation approach to retrieve

  3. Measurement of transpiration in Pinus taeda L. and Liquidambar styraciflua L. in an environmental chamber using tritiated water

    Science.gov (United States)

    Levy, G. F.; Sonenshine, D. E.; Czoch, J. K.

    1976-01-01

    Transpiration rates of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.) were measured at two different atmospheric water vapor pressure deficits (V.P.D.) in a controlled environment growth chamber using tritiated water as a tracer. The trees were maintained in a sealed plant bed containing a hydroponic nutrient solution into which labeled water (spike) was introduced. Samples of leaves, chamber air, spiked nutrient solution and control water were assayed for ratio-activity using liquid scintillation techniques to determine transpiration rates. The transpiration rate of sweetgum in ml./hr./gm. (4.95) was found to be 5 times greater than that of loblolly pine (1.03) at 1.84 V.P.D. and 8 times greater at 6.74 V.P.D. (15.99 for sweetgum vs. 2.19 for pine). Transpiration (based on measurements of leaf radioactivity) in both species rose with increasing deficit; however sweetgum increased its output by 3 times while pine only doubled its rate. Cyclical changes in transpiration rates were noted in both species; the sweetgum cycle required a 6 hour interval whereas the pine cycle required a 9 hour interval.

  4. Fabrication of Artificial Leaf to Develop Fluid Pump Driven by Surface Tension and Evaporation

    OpenAIRE

    Lee, Minki; Lim, Hosub; Lee, Jinkee

    2017-01-01

    Plants transport water from roots to leaves via xylem through transpiration, which is an evaporation process that occurs at the leaves. During transpiration, suction pressure is generated by the porous structure of mesophyll cells in the leaves. Here, we fabricate artificial leaf consisting of micro and nano hierarchy structures similar to the mesophyll cells and veins of a leaf using cryo-gel method. We show that the microchannels in agarose gel greatly decrease the flow resistance in dye di...

  5. DIFFERENCES IN LEAF GAS EXCHANGE AND LEAF CHARACTERISTICS BETWEEN TWO ALMOND CULTIVARS

    Directory of Open Access Journals (Sweden)

    George D. Nanos

    2013-12-01

    Full Text Available Leaf chlorophyll content, specific leaf weight (SLW, photosynthetic and transpiration rates, stomatal functioning, water use efficiency and quantum yield were assessed during the kernel filling period for two consecutive years in order to understand tissue-centered physiological profile differences between two commercial almond cultivars, ‘Ferragnès’ and ‘Texas’. Similar SLWs were observed on the studied cultivars; however, chlorophyll content, net photosynthetic and transpiration rates and stomatal functioning demonstrated statistically significant differences. In both cultivars, an overall decline in the examined parameters towards fruit maturation (i.e. end of the summer was recorded. ‘Ferragnès’ leaves were found to be more efficient in leaf photosynthesis related performance during kernel filling, when irrigated sufficiently, in comparison to ‘Texas’ leaves. Low average values of leaf conductance during summer in ‘Texas’ leaves revealed its potential for adaptation in cool climates and increased carbon assimilation therein for high kernel yield.

  6. Heat exchanger with transpired, highly porous fins

    Science.gov (United States)

    Kutscher, Charles F.; Gawlik, Keith

    2002-01-01

    The heat exchanger includes a fin and tube assembly with increased heat transfer surface area positioned within a hollow chamber of a housing to provide effective heat transfer between a gas flowing within the hollow chamber and a fluid flowing in the fin and tube assembly. A fan is included to force a gas, such as air, to flow through the hollow chamber and through the fin and tube assembly. The fin and tube assembly comprises fluid conduits to direct the fluid through the heat exchanger, to prevent mixing with the gas, and to provide a heat transfer surface or pathway between the fluid and the gas. A heat transfer element is provided in the fin and tube assembly to provide extended heat transfer surfaces for the fluid conduits. The heat transfer element is corrugated to form fins between alternating ridges and grooves that define flow channels for directing the gas flow. The fins are fabricated from a thin, heat conductive material containing numerous orifices or pores for transpiring the gas out of the flow channel. The grooves are closed or only partially open so that all or substantially all of the gas is transpired through the fins so that heat is exchanged on the front and back surfaces of the fins and also within the interior of the orifices, thereby significantly increasing the available the heat transfer surface of the heat exchanger. The transpired fins also increase heat transfer effectiveness of the heat exchanger by increasing the heat transfer coefficient by disrupting boundary layer development on the fins and by establishing other beneficial gas flow patterns, all at desirable pressure drops.

  7. Daily transpiration rates of woody species on drying soil.

    Science.gov (United States)

    Sinclair, Thomas R; Holbrook, N Michelle; Zwieniecki, Maciej A

    2005-11-01

    Among annual plants, daily transpiration rates, expressed as a fraction of volumetric soil water content available for transpiration, show a common pattern in response to soil drying. Initially, as soil dries, there is little decrease in transpiration rate until water availability has fallen to about one third that at field capacity. With further soil drying, relative transpiration rate decreases in a more-or-less linear fashion until all available water has been used. Data previously obtained for perennial woody species have often been confounded by different methods for determining available soil water. In this study, we investigated the daily transpiration response to soil drying in five woody perennial species: Thuja plicata Donn ex D. Don, Acer rubrum L., Robinia pseudoacacia L., Hibiscus sp. and Ibex aquifolium L. Transpiration was unaffected by soil drying until the initial estimated transpirable soil water fraction had decreased to between 0.23 and 0.32 of that at field capacity. Beyond this point, transpiration rate declined linearly with available soil water fraction until reaching one fifth the rate observed in well-watered plants. With further soil drying, the relative transpiration rates remained between 10 and 20% of that observed in well-watered plants. Maintenance of transpiration at these rates with further soil drying was hypothesized to result from contributions to transpiration of water stored in plant tissues. After taking tissue water storage into account, it was estimated that transpiration was curtailed as the available soil water fraction fell to between 0.26 and 0.37 of that at field capacity, which is comparable to values reported for annual crop plants.

  8. Transpiration of helium and carbon monoxide through a multihundred watt, PICS filter

    International Nuclear Information System (INIS)

    Schaeffer, D.R.

    1976-01-01

    The transpiration of CO through the Multihundred Watt (MHW) filter can be described by Fick's first law or as a first order, reversible reaction. From Fick's first law, a ''diffusion'' coefficient of 7.8 x 10 -4 cm.L/sec (L is the average path length through the filter) was determined. For the first order reversible reaction, a rate constant of 0.0058 hr -1 was obtained for both the forward and reverse reactions (they were assumed to be equal). This corresponds to a half-life of 120 hr. It was also concluded that the rate constants and thus the transpiration rates, which were determined for the test, are smaller than those expected in the IHS. The effect of increasing the number of filters, changing the volumes, and increasing the temperature, changes the rate constant of the transpiration into the PICS to roughly 0.074 hr -1 (t/sub 1 / 2 / = 9.4 hr) and out of the PICS to 0.84 hr -1 (t/sub 1/2/ = 0.8 hr). Of the two suggested mechanisms for the generation of CO inside the IHS, the cyclic process requires a much larger rate of transpiration than the process requiring oxygen exchange of CO given off by the graphite. The data indicate that the cyclic process can provide the CO generation rates observed in the IHS gas taps if there is no delay in time for any other kinetic process involved in the formation of CO or CO 2 . Since the cyclic process (which requires the fastest rate of transpiration) appears possible, this study does not indicate which reaction is occurring but concludes both are possible

  9. Synthesis and characterization of Gold and Silver nano-particles using different leaf extracts namely Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method

    OpenAIRE

    Sarbjeet Singh Gujral

    2014-01-01

    Objective: synthesis of gold and silver nano-particles using leaf extracts of Catharanthus roseus, Datura metel and Azadirachta indica and Estimation of antimicrobial activity of silver nano-particles using disc diffusion method. Method: Green approach has been utilized for the synthesis of gold and silver nano-particles. Different aqueous plant extracts has been prepared which was then utilized for the biosynthesis of gold and silver nano-particles. Estimation for the synthesis of nano-parti...

  10. Aquaporin Expression and Water Transport Pathways inside Leaves Are Affected by Nitrogen Supply through Transpiration in Rice Plants

    Directory of Open Access Journals (Sweden)

    Lei Ding

    2018-01-01

    Full Text Available The photosynthetic rate increases under high-N supply, resulting in a large CO2 transport conductance in mesophyll cells. It is less known that water movement is affected by nitrogen supply in leaves. This study investigated whether the expression of aquaporin and water transport were affected by low-N (0.7 mM and high-N (7 mM concentrations in the hydroponic culture of four rice varieties: (1 Shanyou 63 (SY63, a hybrid variant of the indica species; (2 Yangdao 6 (YD6, a variant of indica species; (3 Zhendao 11 (ZD11, a hybrid variant of japonica species; and (4 Jiuyou 418 (JY418, another hybrid of the japonica species. Both the photosynthetic and transpiration rate were increased by the high-N supply in the four varieties. The expressions of aquaporins, plasma membrane intrinsic proteins (PIPs, and tonoplast membrane intrinsic protein (TIP were higher in high-N than low-N leaves, except in SY63. Leaf hydraulic conductance (Kleaf was lower in high-N than low-N leaves in SY63, while Kleaf increased under high-N supply in the YD6 variant. Negative correlations were observed between the expression of aquaporin and the transpiration rate in different varieties. Moreover, there was a significant negative correlation between transpiration rate and intercellular air space. In conclusion, the change in expression of aquaporins could affect Kleaf and transpiration. A feedback effect of transpiration would regulate aquaporin expression. The present results imply a coordination of gas exchange with leaf hydraulic conductance.

  11. Biophysical control of leaf temperature

    Science.gov (United States)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  12. Theoretical and experimental insights into effects of wind on leaf heat and gas exchange

    Science.gov (United States)

    Schymanski, Stanislaus J.; Or, Dani

    2014-05-01

    Transpiration and heat exchange by plant leaves are coupled physiological processes of significant importance for surface-climate interactions and ecohydrology. The common practice of modelling transpiration as an isothermal process (assuming equal leaf and air temperatures) may introduce significant bias into estimates of transpiration rates and water use efficiency (WUE, the amount of carbon gained by photosynthesis per unit of water lost by transpiration). In contrast, explicit consideration of stomatal and leaf boundary layer resistances in series and the leaf energy balance in a physically-based model led to some surprising results, such as suppressed transpiration rates for increasing wind speed at constant stomatal conductance. The model predicts that for high wind velocities, the same leaf conductance (for water vapour and carbon dioxide) can be maintained with less evaporative losses. If this leaf-scale effect is consistent across most leaves, it may have profound implications for canopy-scale water use efficiency under globally decreasing wind speeds. This presentation reports the results of a systematic study of the effect of wind speed on leaf heat and gas exchange rates and introduces a novel experimental design to verify the modelling results using an insulated wind tunnel and artificial leaves with defined pore geometries, allowing to measure leaf-scale latent and sensible heat fluxes independently. First experimental results and new insights will be highlighted.

  13. A microfluidic pump/valve inspired by xylem embolism and transpiration in plants.

    Directory of Open Access Journals (Sweden)

    Li Jingmin

    Full Text Available In plants, transpiration draws the water upward from the roots to the leaves. However, this flow can be blocked by air bubbles in the xylem conduits, which is called xylem embolism. In this research, we present the design of a biomimetic microfluidic pump/valve based on water transpiration and xylem embolism. This micropump/valve is mainly composed of three parts: the first is a silicon sheet with an array of slit-like micropores to mimic the stomata in a plant leaf; the second is a piece of agarose gel to mimic the mesophyll cells in the sub-cavities of a stoma; the third is a micro-heater which is used to mimic the xylem embolism and its self-repairing. The solution in the microchannels of a microfluidic chip can be driven by the biomimetic "leaf" composed of the silicon sheet and the agarose gel. The halting and flowing of the solution is controlled by the micro-heater. Results have shown that a steady flow rate of 1.12 µl/min can be obtained by using this micropump/valve. The time interval between the turning on/off of the micro-heater and the halt (or flow of the fluid is only 2∼3 s. This micropump/valve can be used as a "plug and play" fluid-driven unit. It has the potential to be used in many application fields.

  14. Global separation of plant transpiration from groundwater and streamflow

    Science.gov (United States)

    Jaivime Evaristo; Scott Jasechko; Jeffrey J. McDonnell

    2015-01-01

    Current land surface models assume that groundwater, streamflow and plant transpiration are all sourced and mediated by the same well mixed water reservoir—the soil. However, recent work in Oregon and Mexico has shown evidence of ecohydrological separation, whereby different subsurface compartmentalized pools of water supply either plant transpiration fluxes or the...

  15. Leaf conductance and carbon gain under salt-stressed conditions

    Science.gov (United States)

    Volpe, V.; Manzoni, S.; Marani, M.; Katul, G.

    2011-12-01

    Exposure of plants to salt stress is often accompanied by reductions in leaf photosynthesis and in stomatal and mesophyll conductances. To separate the effects of salt stress on these quantities, a model based on the hypothesis that carbon gain is maximized subject to a water loss cost is proposed. The optimization problem of adjusting stomatal aperture for maximizing carbon gain at a given water loss is solved for both a non-linear and a linear biochemical demand function. A key novel theoretical outcome of the optimality hypothesis is an explicit relationship between the stomatal and mesophyll conductances that can be evaluated against published measurements. The approaches here successfully describe gas-exchange measurements reported for olive trees (Olea europea L.) and spinach (Spinacia oleraceaL.) in fresh water and in salt-stressed conditions. Salt stress affected both stomatal and mesophyll conductances and photosynthetic efficiency of both species. The fresh water/salt water comparisons show that the photosynthetic capacity is directly reduced by 30%-40%, indicating that reductions in photosynthetic rates under increased salt stress are not due only to a limitation of CO2diffusion. An increase in salt stress causes an increase in the cost of water parameter (or marginal water use efficiency) exceeding 100%, analogous in magnitude to findings from extreme drought stress studies. The proposed leaf-level approach can be incorporated into physically based models of the soil-plant-atmosphere system to assess how saline conditions and elevated atmospheric CO2 jointly impact transpiration and photosynthesis.

  16. Environmental controls on saltcedar (Tamarix spp.) transpiration and stomatal conductance and implications for determining evapotranspiration by remote sensing

    Science.gov (United States)

    Nagler, P. L.; Glenn, E. P.; morino, K.

    2012-12-01

    Saltcedar is an introduced, salt-tolerant shrub that now dominates many flow-regulated western U.S. rivers. Saltcedar control programs have been implemented to salvage water and to allow the return of native vegetation to infested rivers. However, there is much debate about how much water saltcedar actually uses and the range of ecohydrological niches it occupies. Ground methods for measuring riparian zone ET have improved and there is considerable interest in developing remote sensing methods for saltcedar to conduct wide-area monitoring of water use. Both thermal band and vegetation index methods have been used to estimate riparian ET. However, several problems present themselves in applying existing remote sensing methods to riparian corridors. First, many riparian corridors are narrow and are surrounded by arid uplands, hence they cannot be treated as energetically closed systems, an assumption of thermal band methods that calculate ET as a residual in the surface energy balance. Second, contrary to the assumption that riparian phreatophytes typically grow under unstressed conditions since they are rooted into groundwater, we find that saltcedar stands are under substantial degrees of apparent moisture stress, exhibiting midday depression of transpiration and stomatal conductance, and decreases in stomatal conductance over the growing season as depth to groundwater increases. Furthermore, the degree of stress is site-specific, depending on local soil texture, salinity of the groundwater and distance from the river. This violates a key assumption of vegetation index methods for estimating ET. The implications of these findings for arid-zone riparian ecohydrology and for remote sensing methods that assume either a constant daily evaporative fraction or rate of stomatal conductance will be discussed using saltcedar stands measured in the Cibola NWR on the lower Colorado River as a case study. Daily rates of saltcedar transpiration ranged from 1.6-3.0 mm/m2 leaf

  17. Bioenergy Sorghum Crop Model Predicts VPD-Limited Transpiration Traits Enhance Biomass Yield in Water-Limited Environments.

    Science.gov (United States)

    Truong, Sandra K; McCormick, Ryan F; Mullet, John E

    2017-01-01

    Bioenergy sorghum is targeted for production in water-limited annual cropland therefore traits that improve plant water capture, water use efficiency, and resilience to water deficit are necessary to maximize productivity. A crop modeling framework, APSIM, was adapted to predict the growth and biomass yield of energy sorghum and to identify potentially useful traits for crop improvement. APSIM simulations of energy sorghum development and biomass accumulation replicated results from field experiments across multiple years, patterns of rainfall, and irrigation schemes. Modeling showed that energy sorghum's long duration of vegetative growth increased water capture and biomass yield by ~30% compared to short season crops in a water-limited production region. Additionally, APSIM was extended to enable modeling of VPD-limited transpiration traits that reduce crop water use under high vapor pressure deficits (VPDs). The response of transpiration rate to increasing VPD was modeled as a linear response until a VPD threshold was reached, at which the slope of the response decreases, representing a range of responses to VPD observed in sorghum germplasm. Simulation results indicated that the VPD-limited transpiration trait is most beneficial in hot and dry regions of production where crops are exposed to extended periods without rainfall during the season or to a terminal drought. In these environments, slower but more efficient transpiration increases biomass yield and prevents or delays the exhaustion of soil water and onset of leaf senescence. The VPD-limited transpiration responses observed in sorghum germplasm increased biomass accumulation by 20% in years with lower summer rainfall, and the ability to drastically reduce transpiration under high VPD conditions could increase biomass by 6% on average across all years. This work indicates that the productivity and resilience of bioenergy sorghum grown in water-limited environments could be further enhanced by development

  18. Photosynthesis and Transpiration Rates of Rice Cultivated Under the System of Rice Intensification and the Effects on Growth and Yield

    Directory of Open Access Journals (Sweden)

    Nurul Hidayati

    2016-04-01

    Full Text Available The system of rice intensification (SRI crop management method has been reported by many authors to significantly increase rice yield with lower inputs, but physiological bases of yielding improvement has not been studied. In this research we assessed some physiological parameters and the mechanism of rice yield improvement of rice plants under SRI cultivation method during both vegetative and generative phases compared to conventional rice cultivation methods. We measured photosynthetic rate, transpiration rate, leaf temperature, chlorophyll content, N and P uptake, plant growth parameters and yield for those comparison. SRI methods significantly increased both vegetative and reproductive (generative parameters of rice plants compared to conventional cultivation methods. Photosynthetic rate, chlorophyll content, N and P uptake under SRI cultivation were significantly higher compared to those of the conventional rice cultivation, but no differences were found in transpiration rate and leaf temperature. With SRI method, plants in their generative phase (especially in the grain-filling phase had the highest photosynthetic and the lowest transpiration rates. Grain yield under SRI method was significantly higher (ca. 24% than that of conventional method.

  19. The ERECTA gene regulates plant transpiration efficiency in Arabidopsis.

    Science.gov (United States)

    Masle, Josette; Gilmore, Scott R; Farquhar, Graham D

    2005-08-11

    Assimilation of carbon by plants incurs water costs. In the many parts of the world where water is in short supply, plant transpiration efficiency, the ratio of carbon fixation to water loss, is critical to plant survival, crop yield and vegetation dynamics. When challenged by variations in their environment, plants often seem to coordinate photosynthesis and transpiration, but significant genetic variation in transpiration efficiency has been identified both between and within species. This has allowed plant breeders to develop effective selection programmes for the improved transpiration efficiency of crops, after it was demonstrated that carbon isotopic discrimination, Delta, of plant matter was a reliable and sensitive marker negatively related to variation in transpiration efficiency. However, little is known of the genetic controls of transpiration efficiency. Here we report the isolation of a gene that regulates transpiration efficiency, ERECTA. We show that ERECTA, a putative leucine-rich repeat receptor-like kinase (LRR-RLK) known for its effects on inflorescence development, is a major contributor to a locus for Delta on Arabidopsis chromosome 2. Mechanisms include, but are not limited to, effects on stomatal density, epidermal cell expansion, mesophyll cell proliferation and cell-cell contact.

  20. Spatially Explicit Observations to Elucidate Simple Scalars of Forest Canopy Transpiration Across Environmental Gradients

    Science.gov (United States)

    Loranty, M. M.; Ewers, B. E.; Mackay, D. S.; Adelman, J. D.; Kruger, E. L.

    2004-12-01

    The ability to scale from point measurements to watersheds has been a key goal of hydrology. Assumptions are often made that averaging point measurements and scaling them up using a cookie-cutter or paint-by-numbers approach will capture relevant spatial gradients. To test this, we chose a site in the Chequamegon National Forest near Park Falls, WI because of its proximity to the WLEF Ameriflux tower providing kilometer scale estimates of water fluxes from a heterogeneous forest. We used a cyclic sampling design for all 144 plots of spatial measurements within a 1.5 ha area, in order to efficiently quantify spatial trends using geostatistics. Spatial data was collected for sap flux using Granier type sensors daily for ten days in 170 trees representing 7 species, including aspen, alder, and white cedar. Aspen is a dominant species in the managed forests around the WLEF tower and we have previously shown it to have the highest transpiration rates per unit leaf area of all dominant species in the area. Consequently, for this study we focused on aspen. Spatial soil moisture, vapor pressure deficit, and leaf area index were also measured periodically at the same 144 plots. We found that the semivariagram of soil moisture showed a range of 110 meters on a low soil moisture day and 80 meters on a high soil moisture day. When we quantified sap flux per unit xylem area across a 105-meter long gradient from a wetland to an upland we found no differences. However, once we scaled the sap flux measurements to the whole tree using basal area, there was more than a 100 percent increase in whole tree water use in the upland area in comparison to the wetland area. Thus, we will test the hypothesis that in the absence of moisture stress, canopy transpiration in aspen varies spatially with allometrically scaled sapwood area and leaf area and not as a function of sap flux per unit sapwood area.

  1. Bayesian analysis for uncertainty estimation of a canopy transpiration model

    Science.gov (United States)

    Samanta, S.; Mackay, D. S.; Clayton, M. K.; Kruger, E. L.; Ewers, B. E.

    2007-04-01

    A Bayesian approach was used to fit a conceptual transpiration model to half-hourly transpiration rates for a sugar maple (Acer saccharum) stand collected over a 5-month period and probabilistically estimate its parameter and prediction uncertainties. The model used the Penman-Monteith equation with the Jarvis model for canopy conductance. This deterministic model was extended by adding a normally distributed error term. This extension enabled using Markov chain Monte Carlo simulations to sample the posterior parameter distributions. The residuals revealed approximate conformance to the assumption of normally distributed errors. However, minor systematic structures in the residuals at fine timescales suggested model changes that would potentially improve the modeling of transpiration. Results also indicated considerable uncertainties in the parameter and transpiration estimates. This simple methodology of uncertainty analysis would facilitate the deductive step during the development cycle of deterministic conceptual models by accounting for these uncertainties while drawing inferences from data.

  2. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] and reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential ('leaf) if leaf hydraulic conductance (Kleaf) is insufficient to su...

  3. Do general patterns of leaf thermoregulation hold in the tropics?

    Science.gov (United States)

    Michaletz, S. T.; Blonder, B.; Chambers, J.; Enquist, B. J.; Faybishenko, B.; Grossiord, C.; Jardine, K.; Negron Juarez, R. I.; Varadharajan, C.; McDowell, N. G.; Detto, M.; Wolfe, B.

    2016-12-01

    Leaf temperature is a critical driver of plant and ecosystem functioning because it governs rates of photosynthesis and transpiration. While leaf temperatures are often assumed to equal ambient air temperatures, recent studies show that leaves thermoregulate, so they are warmer than air in cool temperatures and cooler than air in warm temperatures. This pattern appears to be general across diverse plant taxa and boreal-to-subtropical air temperature gradients. However, one exception to the general pattern may be the tropics, where scant data suggest that daytime leaf temperatures are always warmer and increase at a faster rate than air temperature, possibly because transpiration and latent heat fluxes are limited by high relative humidity. In this talk, we evaluate tropical leaf thermoregulation using new data from the DOE Next Generation Ecosystem Experiments-Tropics project and a recent analytical energy budget model for leaf temperature. The model expresses leaf temperature as a linear function of air temperature, several additional meteorological variables, and several leaf functional traits. We examine patterns of tropical leaf thermoregulation and identify the relative importance of meteorological variables and leaf traits in driving these patterns. Our results demonstrate that the temperatures of plant tissues, and not just air, are vital to developing more accurate earth system models.

  4. TaER Expression Is Associated with Transpiration Efficiency Traits and Yield in Bread Wheat

    Science.gov (United States)

    Zheng, Jiacheng; Yang, Zhiyuan; Madgwick, Pippa J.; Carmo-Silva, Elizabete; Parry, Martin A. J.; Hu, Yin-Gang

    2015-01-01

    ERECTA encodes a receptor-like kinase and is proposed as a candidate for determining transpiration efficiency of plants. Two genes homologous to ERECTA in Arabidopsis were identified on chromosomes 6 (TaER2) and 7 (TaER1) of bread wheat (Triticum aestivum L.), with copies of each gene on the A, B and D genomes of wheat. Similar expression patterns were observed for TaER1 and TaER2 with relatively higher expression of TaER1 in flag leaves of wheat at heading (Z55) and grain-filling (Z73) stages. Significant variations were found in the expression levels of both TaER1 and TaER2 in the flag leaves at both growth stages among 48 diverse bread wheat varieties. Based on the expression of TaER1 and TaER2, the 48 wheat varieties could be classified into three groups having high (5 varieties), medium (27 varieties) and low (16 varieties) levels of TaER expression. Significant differences were also observed between the three groups varying for TaER expression for several transpiration efficiency (TE)- related traits, including stomatal density (SD), transpiration rate, photosynthetic rate (A), instant water use efficiency (WUEi) and carbon isotope discrimination (CID), and yield traits of biomass production plant-1 (BYPP) and grain yield plant-1 (GYPP). Correlation analysis revealed that the expression of TaER1 and TaER2 at the two growth stages was significantly and negatively associated with SD (Pwheat, implying a function for TaER in regulating leaf development of bread wheat and contributing to expression of these traits. Moreover, the results indicate that TaER could be exploitable for manipulating important agronomical traits in wheat improvement. PMID:26047019

  5. Remote sensing of potential and actual daily transpiration of plant canopies based on spectral reflectance and infrared thermal measurements: Concept with preliminary test

    International Nuclear Information System (INIS)

    Inoue, Y.; Moran, M.S.; Pinter, P.J.Jr.

    1994-01-01

    A new concept for estimating potential and actual values of daily transpiration rate of vegetation canopies is presented along with results of an initial test. The method is based on a physical foundation of spectral radiation balance for a vegetation canopy, the key inputs to the model being the remotely sensed spectral reflectance and the surface temperature of the plant canopy. The radiation interception or absorptance is estimated more directly from remotely sensed spectral data than it is from the leaf area index. The potential daily transpiration is defined as a linear function of the absorbed solar radiation, which can be estimated using a linear relationship between the fraction absorptance of solar radiation and the remotely sensed Soil Adjusted Vegetation Index for the canopy. The actual daily transpiration rate is estimated by combining this concept with the Jackson-Idso Crop Water Stress Index, which also can be calculated from remotely sensed plant leaf temperatures measured by infrared thermometry. An initial demonstration with data sets from an alfalfa crop and a rangeland suggests that the method may give reasonable estimates of potential and actual values of daily transpiration rate over diverse vegetation area based on simple remote sensing measurements and basic meteorological parameters

  6. Diagnosing the Role of Transpiration in the Transition from Dry to Wet Season Over the Amazon Using Satellite Observations

    Science.gov (United States)

    Wright, J. S.; Fu, R.; Yin, L.; Chae, J.

    2013-12-01

    Reanalysis data indicates that land surface evapotranspiration plays a key role in determining the timing of wet season onset over the Amazon. Here, we use satellite observations of water vapor and its stable isotopes, carbon dioxide, leaf area index, and precipitation together with reanalysis data to explore the importance of transpiration in initiating the transition from dry season to wet season over the Amazon. The growth of vegetation in this region is primarily limited by the availability of sunlight rather than the availability of soil moisture, so that the increase of solar radiation during the dry season coincides with dramatic increases in leaf area index within forested ecosystems. This period of plant growth is accompanied by uptake of carbon dioxide and enrichment of heavy isotopes in water vapor, particularly near the land surface. Reanalysis data indicate that this pre-wet season enrichment of HDO is accompanied by sharp increases in the surface latent heat flux, which eventually triggers sporadic moist convection. The transport of transpiration-enriched near-surface air by this convection causes a dramatic increase in free-tropospheric HDO in late August and September. September also marks transition points in the annual cycles of leaf area index (maximum) and carbon dioxide (minimum). The increase in convective activity during this period creates convergence, enhancing moisture transport into the region and initiating the wet season.

  7. Water-use efficiency and transpiration across European forests during the Anthropocene

    Science.gov (United States)

    Frank, D. C.; Poulter, B.; Saurer, M.; Esper, J.; Huntingford, C.; Helle, G.; Treydte, K.; Zimmermann, N. E.; Schleser, G. H.; Ahlström, A.; Ciais, P.; Friedlingstein, P.; Levis, S.; Lomas, M.; Sitch, S.; Viovy, N.; Andreu-Hayles, L.; Bednarz, Z.; Berninger, F.; Boettger, T.; D'Alessandro, C. M.; Daux, V.; Filot, M.; Grabner, M.; Gutierrez, E.; Haupt, M.; Hilasvuori, E.; Jungner, H.; Kalela-Brundin, M.; Krapiec, M.; Leuenberger, M.; Loader, N. J.; Marah, H.; Masson-Delmotte, V.; Pazdur, A.; Pawelczyk, S.; Pierre, M.; Planells, O.; Pukiene, R.; Reynolds-Henne, C. E.; Rinne, K. T.; Saracino, A.; Sonninen, E.; Stievenard, M.; Switsur, V. R.; Szczepanek, M.; Szychowska-Krapiec, E.; Todaro, L.; Waterhouse, J. S.; Weigl, M.

    2015-06-01

    The Earth's carbon and hydrologic cycles are intimately coupled by gas exchange through plant stomata. However, uncertainties in the magnitude and consequences of the physiological responses of plants to elevated CO2 in natural environments hinders modelling of terrestrial water cycling and carbon storage. Here we use annually resolved long-term δ13C tree-ring measurements across a European forest network to reconstruct the physiologically driven response of intercellular CO2 (Ci) caused by atmospheric CO2 (Ca) trends. When removing meteorological signals from the δ13C measurements, we find that trees across Europe regulated gas exchange so that for one ppmv atmospheric CO2 increase, Ci increased by ~0.76 ppmv, most consistent with moderate control towards a constant Ci/Ca ratio. This response corresponds to twentieth-century intrinsic water-use efficiency (iWUE) increases of 14 +/- 10 and 22 +/- 6% at broadleaf and coniferous sites, respectively. An ensemble of process-based global vegetation models shows similar CO2 effects on iWUE trends. Yet, when operating these models with climate drivers reintroduced, despite decreased stomatal opening, 5% increases in European forest transpiration are calculated over the twentieth century. This counterintuitive result arises from lengthened growing seasons, enhanced evaporative demand in a warming climate, and increased leaf area, which together oppose effects of CO2-induced stomatal closure. Our study questions changes to the hydrological cycle, such as reductions in transpiration and air humidity, hypothesized to result from plant responses to anthropogenic emissions.

  8. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  9. Water relations and transpiration of quinoa (Chenopodium quinoa Willd.) under salinity and soil drying

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Ahmadi, Seyed Hamid; Adolf, Verena Isabelle

    2011-01-01

    Drought and salinity are the two major factors limiting crop growth and production in arid and semi-arid regions. The separate and combined effects of salinity and progressive drought in quinoa (Chenopodium quinoa Willd.) were studied in a greenhouse experiment. Stomatal conductance (gs), leaf...... values in both FI and PD. During the drought period, the xylem [ABA] extracted from the shoots increased faster than that extracted from the roots. A reduction in WT, caused by salinity and soil drying, reduced transpiration and increased apparent root resistance (R) to water uptake, especially in PD0.......42 or lower, but under the saline conditions of PD10 and PD20, the threshold values of RAW were 0.67 and 0.96, respectively. In conclusion, due to the additive effect of osmotic and matric potential during soil drying on soil water availability, quinoa should be re-irrigated at higher RAW in salt...

  10. A new approach to quantifying internal diffusion resistances and CO2 isotope exchange in leaves

    Science.gov (United States)

    West, Jason; Ogée, Jérôme; Burlett, Régis; Gimeno, Teresa; Genty, Bernard; Jones, Samuel; Wohl, Steven; Bosc, Alexandre; Wingate, Lisa

    2016-04-01

    The oxygen isotopic composition (δ18O) of atmospheric CO2 can constrain the global CO2 budget at a range of scales, offering the potential to partition net CO2 exchanges into their component gross fluxes and provide insights to linkages between C and water cycles. However, there are significant limitations to utilizing the δ18O of CO2 to constrain C budgets because of uncertainties associated with the isotopic exchange of CO2 with terrestrial water pools. Leaf water in particular represents a critical pool with ongoing debates about its enrichment in heavy isotopes during transpiration and the hydration of CO2 and its oxygen isotope exchange with this pool. Isotopic heterogeneity of the leaf water, the spatial distribution and activity of carbonic anhydrase (CA) within leaves, and resistance to diffusion of CO2 from the substomatal cavity to chloroplasts are all key components with important uncertainties. Better constraints on these would significantly improve our ability to understand and model the global C budget as well as yield insights to fundamental aspects of leaf physiology. We report results using a new measurement system that permits the simultaneous measurement of the 13C and 18O composition of CO2 and the 18O isotopic composition of leaf transpiration. As this new approach permits rapid alteration of the isotopic composition of gases interacting with the leaf, key model parameters can be derived directly and simultaneously. Hence, our approach dos not rely on separate measurements shifted in time from the gas exchange measurements or that may not quantify the relevant scale of heterogeneity (e.g., CA enzyme assays or bulk leaf water extraction and analysis). In particular, this new method explicitly distinguishes the leaf mesophyll resistance to CO2 transport relevant for photosynthesis from the resistance required for interpreting the δ18O of CO2 and allows us to derive other relevant parameters directly. This new measurement system and modeling

  11. Habitat Temperature and Precipitation of Arabidopsis thaliana Ecotypes Determine the Response of Foliar Vasculature, Photosynthesis, and Transpiration to Growth Temperature.

    Science.gov (United States)

    Adams, William W; Stewart, Jared J; Cohu, Christopher M; Muller, Onno; Demmig-Adams, Barbara

    2016-01-01

    Acclimatory adjustments of foliar vascular architecture, photosynthetic capacity, and transpiration rate in Arabidopsis thaliana ecotypes (Italian, Polish [Col-0], Swedish) were characterized in the context of habitat of origin. Temperatures of the habitat of origin decreased linearly with increasing habitat latitude, but habitat precipitation was greatest in Italy, lowest in Poland, and intermediate in Sweden. Plants of the three ecotypes raised under three different growth temperature regimes (low, moderate, and high) exhibited highest photosynthetic capacities, greatest leaf thickness, highest chlorophyll a/b ratio and levels of β-carotene, and greatest levels of wall ingrowths in phloem transfer cells, and, in the Col-0 and Swedish ecotypes, of phloem per minor vein in plants grown at the low temperature. In contrast, vein density and minor vein tracheary to sieve element ratio increased with increasing growth temperature - most strongly in Col-0 and least strongly in the Italian ecotype - and transpirational water loss correlated with vein density and number of tracheary elements per minor vein. Plotting of these vascular features as functions of climatic conditions in the habitat of origin suggested that temperatures during the evolutionary history of the ecotypes determined acclimatory responses of the foliar phloem and photosynthesis to temperature in this winter annual that upregulates photosynthesis in response to lower temperature, whereas the precipitation experienced during the evolutionary history of the ecotypes determined adjustment of foliar vein density, xylem, and transpiration to temperature. In particular, whereas photosynthetic capacity, leaf thickness, and foliar minor vein phloem features increased linearly with increasing latitude and decreasing temperature of the habitats of origin in response to experimental growth at low temperature, transpiration rate, foliar vein density, and minor vein tracheary element numbers and cross

  12. Dependence of Plant Uptake and Diffusion of Polycyclic Aromatic Hydrocarbons on the Leaf Surface Morphology and Micro-structures of Cuticular Waxes

    Science.gov (United States)

    Li, Qingqing; Li, Yungui; Zhu, Lizhong; Xing, Baoshan; Chen, Baoliang

    2017-04-01

    The uptake of organic chemicals by plants is considered of great significance as it impacts their environmental transport and fate and threatens crop growth and food safety. Herein, the dependence of the uptake, penetration, and distribution of sixteen polycyclic aromatic hydrocarbons (PAHs) on the morphology and micro-structures of cuticular waxes on leaf surfaces was investigated. Plant surface morphologies and wax micro-structures were examined by scanning emission microscopy, and hydrophobicities of plant surfaces were monitored through contact angle measurements. PAHs in the cuticles and inner tissues were distinguished by sequential extraction, and the cuticle was verified to be the dominant reservoir for the accumulation of lipophilic pollutants. The interspecies differences in PAH concentrations cannot be explained by normalizing them to the plant lipid content. PAHs in the inner tissues became concentrated with the increase of tissue lipid content, while a generally negative correlation between the PAH concentration in cuticles and the epicuticular wax content was found. PAHs on the adaxial and abaxial sides of a leaf were differentiated for the first time, and the divergence between these two sides can be ascribed to the variations in surface morphologies. The role of leaf lipids was redefined and differentiated.

  13. Modeling productivity and transpiration of Pinus radiata: climatic effects

    Energy Technology Data Exchange (ETDEWEB)

    Sheriff, D. W.; Mattay, J. P. [Commonwealth Scientific and Industrial Research Organization (CSIRO), Canberra, ACT (Australia). Div. of Forestry and Forest Products; McMurtrie, R. E. [New South Wales Univ., Sydney, NSW (Australia)

    1996-01-01

    Using a process-based forest growth model, BIOMASS, the climatic effect on annual net carbon gain, stem biomass and annual transpiration were simulated for Pinus radiata. Regional variation in climate between Canberra and Mt. Gambier resulted in a 20 per cent difference in simulated annual transpiration rate, but only a relatively small difference in simulated productivity. Simulated carbon gain values averaged about 1.4 per cent; this result was not consistent with the predicted 8 per cent annual carbon assimilation difference between the two sites, based on differences in climate. These results suggest that climatic differences do not account for differences in productivity. 12 refs., 3 tabs., 2 figs.

  14. Expanding our understanding of leaf functional syndromes in savanna systems: the role of plant growth form.

    Science.gov (United States)

    Rossatto, Davi Rodrigo; Franco, Augusto Cesar

    2017-04-01

    The assessment of leaf strategies has been a common theme in ecology, especially where multiple sources of environmental constraints (fire, seasonal drought, nutrient-poor soils) impose a strong selection pressure towards leaf functional diversity, leading to inevitable tradeoffs among leaf traits, and ultimately to niche segregation among coexisting species. As diversification on leaf functional strategies is dependent on integration at whole plant level, we hypothesized that regardless of phylogenetic relatedness, leaf trait functional syndromes in a multivariate space would be associated with the type of growth form. We measured traits related to leaf gas exchange, structure and nutrient status in 57 coexisting species encompassing all Angiosperms major clades, in a wide array of plant morphologies (trees, shrubs, sub-shrubs, herbs, grasses and palms) in a savanna of Central Brazil. Growth forms differed in mean values for the studied functional leaf traits. We extracted 4 groups of functional typologies: grasses (elevated leaf dark respiration, light-saturated photosynthesis on a leaf mass and area basis, lower values of leaf Ca and Mg), herbs (high values of SLA, leaf N and leaf Fe), palms (high values of stomatal conductance, leaf transpiration and leaf K) and woody eudicots (sub-shrubs, shrubs and trees; low SLA and high leaf Ca and Mg). Despite the large range of variation among species for each individual trait and the independent evolutionary trajectory of individual species, growth forms were strongly associated with particular leaf trait combinations, suggesting clear evolutionary constraints on leaf function for morphologically similar species in savanna ecosystems.

  15. Differentiating transpiration from evaporation in seasonal agricultural wetlands and the link to advective fluxes in the root zone

    Science.gov (United States)

    Bachand, P.A.M.; S. Bachand,; Fleck, Jacob A.; Anderson, Frank E.; Windham-Myers, Lisamarie

    2014-01-01

    The current state of science and engineering related to analyzing wetlands overlooks the importance of transpiration and risks data misinterpretation. In response, we developed hydrologic and mass budgets for agricultural wetlands using electrical conductivity (EC) as a natural conservative tracer. We developed simple differential equations that quantify evaporation and transpiration rates using flowrates and tracer concentrations atwetland inflows and outflows. We used two ideal reactormodel solutions, a continuous flowstirred tank reactor (CFSTR) and a plug flow reactor (PFR), to bracket real non-ideal systems. From those models, estimated transpiration ranged from 55% (CFSTR) to 74% (PFR) of total evapotranspiration (ET) rates, consistent with published values using standard methods and direct measurements. The PFR model more appropriately represents these nonideal agricultural wetlands in which check ponds are in series. Using a fluxmodel, we also developed an equation delineating the root zone depth at which diffusive dominated fluxes transition to advective dominated fluxes. This relationship is similar to the Peclet number that identifies the dominance of advective or diffusive fluxes in surface and groundwater transport. Using diffusion coefficients for inorganic mercury (Hg) and methylmercury (MeHg) we calculated that during high ET periods typical of summer, advective fluxes dominate root zone transport except in the top millimeters below the sediment–water interface. The transition depth has diel and seasonal trends, tracking those of ET. Neglecting this pathway has profound implications: misallocating loads along different hydrologic pathways; misinterpreting seasonal and diel water quality trends; confounding Fick's First Law calculations when determining diffusion fluxes using pore water concentration data; and misinterpreting biogeochemicalmechanisms affecting dissolved constituent cycling in the root zone. In addition,our understanding of internal

  16. Development of air conditioning system using ecological shading window. Part 1. Characteristics of temperature transpiration rate on liana; Ecological shading window system no kaihatsu. 1. Tsuru shokubutsu no josan sokudo no ondo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, T.; Tanaka, H.; Tokunaga, M. [Kajima Corp., Tokyo (Japan)

    1994-10-31

    This paper summarizes an air conditioning system using an ecological shading window. The system uses plants in a double window in place of a blind to cut off sunlight, and operates the room air conditioning equipment combined with the plant utilization. Its features may be summarized as follows: perimeter cooling load in summer and perimeter heating load in winter can be reduced; and the plants purify the air in rooms, making clean humidification possible. Four kinds of liana were used to experiment the temperature characteristics of their transpiration. The transpiration rate, photosynthesizing rate and leaf temperature were measured, and the following findings were obtained: such plants that are adapted to weak light as philodendron and potos cannot control the leaf temperature under such a high illuminance and temperature as in the experimental condition, hence are not suitable for this system; and plants that have high transpiration rate under high temperatures such as ivy and cucumber can control the leaf temperature, performing photosynthesis stably, hence are suitable for the system. Insolation reducing effect was trially calculated. In the case of using ivy, the insolation can be cut down by 41% because of the transpiration cooling effect. 5 refs., 5 figs., 1 tab.

  17. Revisiting the contribution of transpiration to global terrestrial evapotranspiration

    NARCIS (Netherlands)

    Wei, Zhongwang; Yoshimura, Kei; Wang, Lixin; Miralles, Diego G.; Jasechko, Scott; Lee, Xuhui

    2017-01-01

    Even though knowing the contributions of transpiration (T), soil and open water evaporation (E), and interception (I) to terrestrial evapotranspiration (ET = T + E + I) is crucial for understanding the hydrological cycle and its connection to ecological processes, the fraction of T is unattainable

  18. respiration and transpiration characteristics of selected fresh fruits

    African Journals Online (AJOL)

    AISA

    Respiration and transpiration characteristics of mushrooms, strawberries, broccoli and tomatoes were determined under different temperature, atmospheric and humidity conditions in order to get information for modified humidity atmosphere conception. The respiration rate was determined using a static method. (scanning ...

  19. Partitioning evapotranspiration into evaporation and transpiration in a corn field

    Science.gov (United States)

    Evapotranspiration (ET) is a main component of the hydrology cycle. It consists of soil water evaporation (E) and plant transpiration (T). Accurate partitioning of ET into E and T is challenging. We measured soil water E using heat pulse sensors and a micro-Bowen ratio system, T using stem flow gaug...

  20. Entropy production and plant transpiration in the Liz catchment

    Czech Academy of Sciences Publication Activity Database

    Šír, Miloslav; Tesař, Miroslav; Krejča, M.; Weger, J.

    2008-01-01

    Roč. 1, č. 1 (2008), s. 81-89 ISSN 1802-503X Grant - others:MŠMT(CZ) 2B06132 Institutional research plan: CEZ:AV0Z20600510 Keywords : plant transpiration * phytomass productivity * heat balance * entropy production Subject RIV: DA - Hydrology ; Limnology

  1. The effect of grass transpiration on the air temperature

    Czech Academy of Sciences Publication Activity Database

    Šír, M.; Tesař, Miroslav; Lichner, Ľ.; Czachor, H.

    2014-01-01

    Roč. 69, č. 11 (2014), s. 1570-1576 ISSN 0006-3088 Institutional support: RVO:67985874 Keywords : air temperature oscillations * embolism * plant transpiration * soil water * tensiometric pressure * xylem tension Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.827, year: 2014

  2. The transpiration cooled first wall and blanket concept

    International Nuclear Information System (INIS)

    Barleon, Leopold; Wong, Clement

    2002-01-01

    To achieve high thermal performance at high power density the EVOLVE concept was investigated under the APEX program. The EVOLVE W-alloy first wall and blanket concept proposes to use transpiration cooling of the first wall and boiling or vaporizing lithium (Li) in the blanket zone. Critical issues of this concept are: the Magnetohydrodynamic (MHD) pressure losses of the Li circuit, the evaporation through a capillary structure and the needed superheating of the Li at the first wall and blanket zones. Application of the transpiration concept to the blanket region results in the integrated transpiration cooling concept (ITCC) with either toroidal or poloidal first wall channels. For both orientations the routing of the liquid Li and the Li vapor has been modeled and the corresponding pressure losses have been calculated by varying the width of the supplying slot and the capillary diameter. The concept works when the sum of the active and passive pumping head is higher than the total system pressure losses and when the temperature at the inner side of the first wall does not override the superheating limit of the coolant. This cooling concept has been extended to the divertor design, and the removal of a surface heat flux of up to 10 MW/m 2 appears to be possible, but this paper will focus on the transpiration cooled first wall and blanket concept assessment

  3. Respiration and transpiration characteristics of selected fresh fruits ...

    African Journals Online (AJOL)

    Respiration and transpiration characteristics of mushrooms, strawberries, broccoli and tomatoes were determined under different temperature, atmospheric and humidity conditions in order to get information for modified humidity atmosphere conception. The respiration rate was determined using a static method (scanning ...

  4. Effects of storage conditions on transpiration rate of pomegranate ...

    African Journals Online (AJOL)

    This study investigated the effects of temperature (5, 10, 15 and 22 °C) and relative humidity (RH) (76%, 86% and 96%) on the transpiration rate (TR) of pomegranate (Punica granatum L.) cv. Bhagwa fruit fractions, namely arils and aril-sac. Both temperature and RH had significant effects on the TR of fruit fractions. The TR ...

  5. Transpiration of glasshouse rose crops: evaluation of regression models

    NARCIS (Netherlands)

    Baas, R.; Rijssel, van E.

    2006-01-01

    Regression models of transpiration (T) based on global radiation inside the greenhouse (G), with or without energy input from heating pipes (Eh) and/or vapor pressure deficit (VPD) were parameterized. Therefore, data on T, G, temperatures from air, canopy and heating pipes, and VPD from both a

  6. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  7. Biophysical control of whole tree transpiration under an urban environment in Northern China

    Science.gov (United States)

    Lixin Chen; Zhiqiang Zhang; Zhandong Li; Jianwu Tang; Peter Caldwell; et al

    2011-01-01

    Urban reforestation in China has led to increasing debate about the impact of urban trees and forests on water resources. Although transpiration is the largest water flux leaving terrestrial ecosystems, little is known regarding whole tree transpiration in urban environments. In this study, we quantified urban tree transpiration at various temporal scales and examined...

  8. Mechanistic assessment of hillslope transpiration controls of diel subsurface flow: a steady-state irrigation approach

    Science.gov (United States)

    H.R. Barnard; C.B. Graham; W.J. van Verseveld; J.R. Brooks; B.J. Bond; J.J. McDonnell

    2010-01-01

    Mechanistic assessment of how transpiration influences subsurface flow is necessary to advance understanding of catchment hydrology. We conducted a 24-day, steady-state irrigation experiment to quantify the relationships among soil moisture, transpiration and hillslope subsurface flow. Our objectives were to: (1) examine the time lag between maximum transpiration and...

  9. Effects of Bois noir on carbon assimilation, transpiration, stomatal conductance of leaves and yield of grapevine (Vitis vinifera) cv. Chardonnay.

    Science.gov (United States)

    Endeshaw, Solomon T; Murolo, Sergio; Romanazz, Gianfranco; Neri, Davide

    2012-06-01

    Bois noir (BN) is one of the main phytoplasma diseases of grapevine (Vitis vinifera). It is widespread, and can cause severe losses in European vineyards. The infective agent colonizes phloem elements and induces visible symptoms of leaf yellowing or reddening after a relatively long incubation period. As the most sensitive cultivars to BN, Chardonnay plants were grouped as healthy or symptomatic in spring, based on the records from the previous year. Leaf gas exchange and chlorophyll a fluorescence were measured weekly from July to September in healthy plants, and in symptomatic and asymptomatic leaves from symptomatic plants. The midday relative water content (mRWC) was measured once per month. The detection of phytoplasma DNA by nested-polymerase chain reaction revealed BN infection in symptomatic leaf samples at the end of September. A significant decrease in pigment content and maximum quantum efficiency of photosystem II (Fv/Fm) of these symptomatic leaves was detected from July to September, although in the asymptomatic leaves of the symptomatic plants the net photosynthesis (Pn) decrease was not significant. In the leaves from the healthy plants, Pn and transpiration were relatively stable. Of note, in July, an initially healthy plant showed a strong Pn reduction that was followed by visible leaf yellowing symptoms only in August. The phytoplasma infection also stimulated significant reductions in mRWC of the symptomatic leaves, with a final large decrease in yield.

  10. Carbonyl sulfide (COS) as a tracer for canopy photosynthesis, transpiration and stomatal conductance: potential and limitations.

    Science.gov (United States)

    Wohlfahrt, Georg; Brilli, Federico; Hörtnagl, Lukas; Xu, Xiaobin; Bingemer, Heinz; Hansel, Armin; Loreto, Francesco

    2012-04-01

    The theoretical basis for the link between the leaf exchange of carbonyl sulfide (COS), carbon dioxide (CO(2)) and water vapour (H(2)O) and the assumptions that need to be made in order to use COS as a tracer for canopy net photosynthesis, transpiration and stomatal conductance, are reviewed. The ratios of COS to CO(2) and H(2)O deposition velocities used to this end are shown to vary with the ratio of the internal to ambient CO(2) and H(2)O mole fractions and the relative limitations by boundary layer, stomatal and internal conductance for COS. It is suggested that these deposition velocity ratios exhibit considerable variability, a finding that challenges current parameterizations, which treat these as vegetation-specific constants. COS is shown to represent a better tracer for CO(2) than H(2)O. Using COS as a tracer for stomatal conductance is hampered by our present poor understanding of the leaf internal conductance to COS. Estimating canopy level CO(2) and H(2)O fluxes requires disentangling leaf COS exchange from other ecosystem sources/sinks of COS. We conclude that future priorities for COS research should be to improve the quantitative understanding of the variability in the ratios of COS to CO(2) and H(2)O deposition velocities and the controlling factors, and to develop operational methods for disentangling ecosystem COS exchange into contributions by leaves and other sources/sinks. To this end, integrated studies, which concurrently quantify the ecosystem-scale CO(2), H(2)O and COS exchange and the corresponding component fluxes, are urgently needed. © 2011 Blackwell Publishing Ltd.

  11. Constraining Ecosystem Gross Primary Production and Transpiration with Measurements of Photosynthetic 13CO2 Discrimination

    Science.gov (United States)

    Blonquist, J. M.; Wingate, L.; Ogeé, J.; Bowling, D. R.

    2011-12-01

    The stable carbon isotope composition of atmospheric CO2 (δ13Ca) can provide useful information on water use efficiency (WUE) dynamics of terrestrial ecosystems and potentially constrain models of CO2 and water fluxes at the land surface. This is due to the leaf-level relationship between photosynthetic 13CO2 discrimination (Δ), which influences δ13Ca, and the ratio of leaf intercellular to atmospheric CO2 mole fractions (Ci / Ca), which is related to WUE and is determined by the balance between C assimilation (CO2 demand) and stomatal conductance (CO2 supply). We used branch-scale Δ derived from tunable diode laser absorption spectroscopy measurements collected in a Maritime pine forest to estimate Ci / Ca variations over an entire growing season. We combined Ci / Ca estimates with rates of gross primary production (GPP) derived from eddy covariance (EC) to estimate canopy-scale stomatal conductance (Gs) and transpiration (T). Estimates of T were highly correlated to T estimates derived from sapflow data (y = 1.22x + 0.08; r2 = 0.61; slope P MuSICA) (y = 0.88x - 0.05; r2 = 0.64; slope P MuSICA (y = 1.10 + 0.42; r2 = 0.50; slope P < 0.001). Results demonstrate that the leaf-level relationship between Δ and Ci / Ca can be extended to the canopy-scale and that Δ measurements have utility for partitioning ecosystem-scale CO2 and water fluxes.

  12. The influence of clouds and diffuse radiation on ecosystem-atmosphere CO2 and CO18O exhanges

    Energy Technology Data Exchange (ETDEWEB)

    Still, C.J.; Riley, W.J.; Biraud, S.C.; Noone, D.C.; Buenning, N.H.; Randerson, J.T.; Torn, M.S.; Welker, J.; White, J.W.C.; Vachon, R.; Farquhar, G.D.; Berry, J.A.

    2009-05-01

    This study evaluates the potential impact of clouds on ecosystem CO{sub 2} and CO{sub 2} isotope fluxes ('isofluxes') in two contrasting ecosystems (a broadleaf deciduous forest and a C{sub 4} grassland), in a region for which cloud cover, meteorological, and isotope data are available for driving the isotope-enabled land surface model, ISOLSM. Our model results indicate a large impact of clouds on ecosystem CO{sub 2} fluxes and isofluxes. Despite lower irradiance on partly cloudy and cloudy days, predicted forest canopy photosynthesis was substantially higher than on clear, sunny days, and the highest carbon uptake was achieved on the cloudiest day. This effect was driven by a large increase in light-limited shade leaf photosynthesis following an increase in the diffuse fraction of irradiance. Photosynthetic isofluxes, by contrast, were largest on partly cloudy days, as leaf water isotopic composition was only slightly depleted and photosynthesis was enhanced, as compared to adjacent clear sky days. On the cloudiest day, the forest exhibited intermediate isofluxes: although photosynthesis was highest on this day, leaf-to-atmosphere isofluxes were reduced from a feedback of transpiration on canopy relative humidity and leaf water. Photosynthesis and isofluxes were both reduced in the C{sub 4} grass canopy with increasing cloud cover and diffuse fraction as a result of near-constant light limitation of photosynthesis. These results suggest that some of the unexplained variation in global mean {delta}{sup 18}O of CO{sub 2} may be driven by large-scale changes in clouds and aerosols and their impacts on diffuse radiation, photosynthesis, and relative humidity.

  13. Leaf Senescence by Magnesium Deficiency

    Directory of Open Access Journals (Sweden)

    Keitaro Tanoi

    2015-12-01

    Full Text Available Magnesium ions (Mg2+ are the second most abundant cations in living plant cells, and they are involved in various functions, including photosynthesis, enzyme catalysis, and nucleic acid synthesis. Low availability of Mg2+ in an agricultural field leads to a decrease in yield, which follows the appearance of Mg-deficient symptoms such as chlorosis, necrotic spots on the leaves, and droop. During the last decade, a variety of physiological and molecular responses to Mg2+ deficiency that potentially link to leaf senescence have been recognized, allowing us to reconsider the mechanisms of Mg2+ deficiency. This review focuses on the current knowledge about the physiological responses to Mg2+ deficiency including a decline in transpiration, accumulation of sugars and starch in source leaves, change in redox states, increased oxidative stress, metabolite alterations, and a decline in photosynthetic activity. In addition, we refer to the molecular responses that are thought to be related to leaf senescence. With these current data, we give an overview of leaf senescence induced by Mg deficiency.

  14. High resolution mapping of traits related to whole-plant transpiration under increasing evaporative demand in wheat.

    Science.gov (United States)

    Schoppach, Rémy; Taylor, Julian D; Majerus, Elisabeth; Claverie, Elodie; Baumann, Ute; Suchecki, Radoslaw; Fleury, Delphine; Sadok, Walid

    2016-04-01

    Atmospheric vapor pressure deficit (VPD) is a key component of drought and has a strong influence on yields. Whole-plant transpiration rate (TR) response to increasing VPD has been linked to drought tolerance in wheat, but because of its challenging phenotyping, its genetic basis remains unexplored. Further, the genetic control of other key traits linked to daytime TR such as leaf area, stomata densities and - more recently - nocturnal transpiration remains unknown. Considering the presence of wheat phenology genes that can interfere with drought tolerance, the aim of this investigation was to identify at an enhanced resolution the genetic basis of the above traits while investigating the effects of phenology genes Ppd-D1 and Ppd-B1 Virtually all traits were highly heritable (heritabilities from 0.61 to 0.91) and a total of mostly trait-specific 68 QTL were detected. Six QTL were identified for TR response to VPD, with one QTL (QSLP.ucl-5A) individually explaining 25.4% of the genetic variance. This QTL harbored several genes previously reported to be involved in ABA signaling, interaction with DREB2A and root hydraulics. Surprisingly, nocturnal TR and stomata densities on both leaf sides were characterized by highly specific and robust QTL. In addition, negative correlations were found between TR and leaf area suggesting trade-offs between these traits. Further, Ppd-D1 had strong but opposite effects on these traits, suggesting an involvement in this trade-off. Overall, these findings revealed novel genetic resources while suggesting a more direct role of phenology genes in enhancing wheat drought tolerance. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  15. Estimating the total leaf area of the green dwarf coconut tree (Cocos nucifera L.

    Directory of Open Access Journals (Sweden)

    Sousa Elias Fernandes de

    2005-01-01

    Full Text Available Leaf area has significant effect on tree transpiration, and its measurement is important to many study areas. This work aimed at developing a non-destructive, practical, and empirical method to estimate the total leaf area of green dwarf coconut palms (Cocos nucifera L. in plantations located at the northern region of Rio de Janeiro state, Brazil. A mathematical model was developed to estimate total leaf area values (TLA as function of the average lengths of the last three leaf raquis (LR3, and of the number of leaves in the canopy (NL. The model has satisfactory degree of accuracy for agricultural engineering purposes.

  16. Does homeostasis or disturbance of homeostasis in minimum leaf water potential explain the isohydric versus anisohydric behavior of Vitis vinifera L. cultivars?

    Science.gov (United States)

    Jean-Christophe Domec; Daniel M. Johnson

    2012-01-01

    Due to the diurnal and seasonal fluctuations in leaf-to-air vapor pressure deficit (D), one of the key regulatory roles played by stomata is to limit transpiration-induced leaf water deficit. Different types of plants are known to vary in the sensitivity of stomatal conductance (gs) to D with important consequences for their survival and growth. Plants that minimize...

  17. Diurnal depression in leaf hydraulic conductance at ambient and elevated [CO2] reveals anisohydric water management in field-grown soybean

    Science.gov (United States)

    Diurnal cycles of photosynthesis and water use in field-grown soybean (Glycine max) are tied to light intensity and vapor pressure deficit (VPD). At high mid-day VPD, transpiration rates can lead to a decline in leaf water potential if leaf hydraulic conductance is insufficient to supply water to in...

  18. Revisiting the contribution of transpiration to global terrestrial evapotranspiration

    OpenAIRE

    Wei, Zhongwang; Yoshimura, Kei; Wang, Lixin; Gonzalez Miralles, Diego; Jasechko, Scott; Lee, Xuhui

    2017-01-01

    Even though knowing the contributions of transpiration (T), soil and open water evaporation (E), and interception (I) to terrestrial evapotranspiration (ET = T + E + I) is crucial for understanding the hydrological cycle and its connection to ecological processes, the fraction of T is unattainable by traditional measurement techniques over large scales. Previously reported global mean T/(E + T + I) from multiple independent sources, including satellite-based estimations, reanalysis, land surf...

  19. A method to determine plant water source using transpired water

    Science.gov (United States)

    Menchaca, L. B.; Smith, B. M.; Connolly, J.; Conrad, M.; Emmett, B.

    2007-04-01

    A method to determine the stable isotope ratio of a plant's water source using the plant's transpired water is proposed as an alternative to standard xylem extraction methods. The method consists of periodically sampling transpired waters from shoots or leaves enclosed in sealed, transparent bags which create a saturated environment, preclude further evaporation and allow the progressive mixing of evaporated transpired water and un-evaporated xylem water. The method was applied on trees and shrubs coexisting in a non-irrigated area where stable isotope ratios of local environmental waters are well characterized. The results show Eucalyptus globulus (tree) and Genista monspessulana (shrub) using water sources of different isotopic ratios congruent with groundwater and soil water respectively. In addition, tritium concentrations indicate that pine trees (Pinus sylvestris) switch water source from soil water in the winter to groundwater in the summer. The method proposed is particularly useful in remote or protected areas and in large scale studies related to water management, environmental compliance and surveillance, because it eliminates the need for destructive sampling and greatly reduces costs associated with laboratory extraction of xylem waters from plant tissues for isotopic analyses.

  20. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  1. Strategies of leaf expansion in Ficus carica under semiarid conditions.

    Science.gov (United States)

    González-Rodríguez, A M; Peters, J

    2010-05-01

    Leaf area expansion, thickness and inclination, gas exchange parameters and relative chlorophyll content were analysed in field-grown fig (Ficus carica L.) leaves over time, from emergence until after full leaf expansion (FLE). Ficus carica leaves showed a subtle change in shape during the early stages of development, and FLE was reached within ca. 30 days after emergence. Changes in leaf thickness and inclination after FLE demonstrated good adaptation to environmental conditions during summer in areas with a Mediterranean climate. Changes in gas exchange parameters and relative chlorophyll content showed that F. carica is a delayed-greening species, reaching maximum values 20 days after FLE. Correlation analysis of datasets collected during leaf expansion, confirmed dependence among structural and functional traits in F. carica. Pn was directly correlated with stomatal conductance (Gs), transpiration (E), leaf area (LA) and relative chlorophyll content up to FLE. The effect of pruning on leaf expansion, a cultural technique commonly applied in this fruit tree, was also evaluated. Although leaf development in pruned branches gave a significantly higher relative leaf area growth rate (RGR(l)) and higher LA than non-pruned branches, no significant differences were found in other morphological and physiological traits, indicating no pruning effect on leaf development. All studied morphological and physiological characteristics indicate that F. carica is well adapted to semiarid conditions. The delayed greening strategy of this species is discussed.

  2. Water, heat, and airborne pollutants effects on transpiration of urban trees

    International Nuclear Information System (INIS)

    Wang Hua; Ouyang Zhiyun; Chen Weiping; Wang Xiaoke; Zheng Hua; Ren Yufen

    2011-01-01

    Transpiration rates of six urban tree species in Beijing evaluated by thermal dissipation method for one year were correlated to environmental variables in heat, water, and pollutant groups. To sort out colinearity of the explanatory variables, their individual and joint contributions to variance of tree transpiration were determined by the variation and hierarchical partitioning methods. Majority of the variance in transpiration rates was associated with joint effects of variables in heat and water groups and variance due to individual effects of explanatory group were in comparison small. Atmospheric pollutants exerted only minor effects on tree transpiration. Daily transpiration rate was most affected by air temperature, soil temperature, total radiation, vapor pressure deficit, and ozone. Relative humidity would replace soil temperature when factors influencing hourly transpiration rate was considered. - Highlights: → Heat, water, pollutants effect on transpiration was evaluated by partitioning method. → Urban tree transpiration was mainly affected by combined effects of these variables. → The heat and water variables affected transpiration of urban trees. → The urban air pollution merely acts as an antagonistic factor. - Heat and water related environmental variables affected transpiration of urban trees and ozone was an added yet minor stress factor.

  3. Genotypic variation in transpiration efficiency, carbon-isotope discrimination and carbon allocation during early growth in sunflower

    International Nuclear Information System (INIS)

    Virgona, J.M.; Farquhar, G.D.; Hubick, K.T.; Rawson, H.M.; Downes, R.W.

    1990-01-01

    Transpiration efficiency of dry matter production (W), carbon-isotope discrimination (Δ) and dry matter partitioning were measured on six sunflower (Helianthus annuus L.) genotypes grown for 32 days in a glasshouse. Two watering regimes, one well watered (HW) and the other delivering half the water used by the HW plants (LW), were imposed. Four major results emerged from this study: Three was significant genotypic variation in W in sunflower and this was closely reflected in Δ for both watering treatments; the low watering regime caused a decrease in Δ but no change in W; nonetheless the genotypic ranking for either Δ or W was not significantly altered by water stress; a positive correlation between W and biomass accumulation occurred among genotypes of HW plants; ρ, the ratio of total plant carbon content to leaf area, was positively correlated with W and negatively correlated with Δ. These results are discussed with reference to the connection between transpiration efficiency and plant growth, indicating that Δ can be used to select for W among young sunflower plants. However, selection for W may be accompanied by changes in other important plant growth characteristics such as ρ. 19 refs., 4 figs

  4. Effects of air current speed, light intensity and co2 concentration on photosynthesis and transpiration of plant leaves

    Science.gov (United States)

    Kitaya, Y.; Tsuruyama, J.; Shibuya, T.; Kiyota, M.

    To obtain basic data for adequate air circulation to promote gas exchange and growth of plants in closed plant culture modules in bioregenerative life support systems in space, the effects of air current speeds less than 0.8 m s-1 on transpiration (Tr) and net photosynthetic rates (Pn) of sweetpotato and barley leaves were determined using a leaf chamber method under different photosynthetic photon flux densities (PPFDs) and CO_2 concentrations. The air current speed inside the leaf chamber was controlled by controlling the input voltages for an air circulation fan. The leaf surface boundary layer resistance was determined by the evaporation rate of wet paper and the water vapor pressure difference between the paper and surrounding air in the leaf chamber. The Tr and Pn of leaves rapidly increased as the air current speed increased from 0.01 to 0.1 m s-1 and gradually increased from 0.1 to 0.8 m s-1. These changes are correspondent to the change of the leaf surface boundary layer resistance. The depression of Tr by low air current speeds was greater than that of Pn. Tr and Pn decreased by 0.5 and 0.7 times, respectively, as the air current speed decreased from 0.8 to 0.01 m s-1. The depressions of Tr and Pn by low air current speeds were most notable at PPFDs of 500 and 250 μmol m-2 s-1, respectively. The air current speeds affected Tr and Pn at a CO_2 concentration of 700 μmol mol-1 as well as at 400 μmol mol-1. The results confirmed the importance of controlling air movement for enhancing Tr and Pn under the relatively high PPFD and elevated CO_2 levels likely in plant culture systems in space.

  5. Characterization of Leaf Photosynthetic Properties for No-Tillage Rice

    Directory of Open Access Journals (Sweden)

    Song CHEN

    2007-12-01

    Full Text Available A study was conducted to determine the influence of no-tillage cultivation on leaf photosynthesis of rice plants under field conditions. Experiments with the treatments, no-tillage and conventional tillage were carried out at three locations (Jiaxing, Hangzhou, and Xiaoshan, Zhejiang Province, China for two years (2005 and 2006. Grain yield was constant in Jiaxing, but slightly higher in Hangzhou and Xiaoshan under no-tillage cultivation than that under conventional cultivation. In comparison with the conventional cultivation, no-tillage cultivation showed less biomass accumulation before heading and higher capacity of matter production during grain filling. A significantly higher leaf net photosynthetic rate was observed for the plants under no-tillage than for those under conventional tillage. The fluorescence parameter (Fv/Fm in leaf did not show any difference between the two cultivations. The effect of cultivation management on transpiration rate (Tr and SPAD value of rice leaf was dependent on the location and year.

  6. [Photosynthetic rate, transpiration rate, and water use efficiency of cotton canopy in oasis edge of Linze].

    Science.gov (United States)

    Xie, Ting-Ting; Su, Pei-Xi; Gao, Song

    2010-06-01

    The measurement system of Li-8100 carbon flux and the modified assimilation chamber were used to study the photosynthetic characteristics of cotton (Gossypium hirsutum L.) canopy in the oasis edge region in middle reach of Heihe River Basin, mid Hexi Corridor of Gansu. At the experimental site, soil respiration and evaporation rates were significantly higher in late June than in early August, and the diurnal variation of canopy photosynthetic rate showed single-peak type. The photosynthetic rate was significantly higher (P water use efficiency in late June and early August was (15.67 +/- 1.77) mmol CO2 x mol(-1) H2O and (23.08 +/- 5.54) mmol CO2 x mol(-1) H2O, respectively, but the difference was not significant (P > 0.05). Both in late June and in early August, the canopy photosynthetic rate was positively correlated with air temperature, PAR, and soil moisture content, suggesting that there was no midday depression of photosynthesis in the two periods. In August, the canopy photosynthetic rate and transpiration rate decreased significantly, because of the lower soil moisture content and leaf senescence, but the canopy water use efficiency had no significant decrease.

  7. Wheat cultivars selected for high Fv/Fm under heat stress maintain high photosynthesis, total chlorophyll, stomatal conductance, transpiration and dry matter

    DEFF Research Database (Denmark)

    Sharma, Dew Kumari; Andersen, Sven Bode; Ottosen, Carl Otto

    2015-01-01

    ) than the low group, accompanied by higher stomatal conductance (gs), transpiration rate (E) and evaporative cooling of the leaf (ΔT). The difference in PN between the groups was not caused by differences in PSII capacity or gs as the variation in Fv/Fm and intracellular CO2 (Ci) was non...... variation for tolerance to severe heat stress (3 days at 40∘C in controlled conditions) in wheat (Triticum aestivum L.). Here we investigated the performance of the previously selected cultivars (high and low group based on Fv/Fm value) in terms of growth and photosynthetic traits undermoderate heat stress...

  8. Fog reduces transpiration in tree species of the Canarian relict heath-laurel cloud forest (Garajonay National Park, Spain).

    Science.gov (United States)

    Ritter, Axel; Regalado, Carlos M; Aschan, Guido

    2009-04-01

    The ecophysiologic role of fog in the evergreen heath-laurel 'laurisilva' cloud forests of the Canary Islands has not been unequivocally demonstrated, although it is generally assumed that fog water is important for the survival and the distribution of this relict paleoecosystem of the North Atlantic Macaronesian archipelagos. To determine the role of fog in this ecosystem, we combined direct transpiration measurements of heath-laurel tree species, obtained with Granier's heat dissipation probes, with micrometeorological and artificial fog collection measurements carried out in a 43.7-ha watershed located in the Garajonay National Park (La Gomera, Canary Islands, Spain) over a 10-month period. Median ambient temperature spanned from 7 to 15 degrees C under foggy conditions whereas higher values, ranging from 9 to 21 degrees C, were registered during fog-free periods. Additionally, during the periods when fog water was collected, global solar radiation values were linearly related (r2=0.831) to those under fog-free conditions, such that there was a 75+/-1% reduction in median radiation in response to fog. Fog events greatly reduced median diurnal tree transpiration, with rates about 30 times lower than that during fog-free conditions and approximating the nighttime rates in both species studied (the needle-like leaf Erica arborea L. and the broadleaf Myrica faya Ait.). This large decrease in transpiration in response to fog was independent of the time of the day, tree size and species and micrometeorological status, both when expressed on a median basis and in cumulative terms for the entire 10-month measuring period. We conclude that, in contrast to the turbulent deposition of fog water droplets on the heath-laurel species, which may be regarded as a localized hydrological phenomenon that is important for high-altitude wind-exposed E. arborea trees, the cooler, wetter and shaded microenvironment provided by the cloud immersion belt represents a large-scale effect

  9. From leaf to whole-plant water use efficiency (WUE in complex canopies: Limitations of leaf WUE as a selection target

    Directory of Open Access Journals (Sweden)

    Hipólito Medrano

    2015-06-01

    Full Text Available Plant water use efficiency (WUE is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of food production in these areas. Given that climate change predictions include increases in temperature and drought in semiarid regions, improving crop WUE is mandatory for global food production. WUE is commonly measured at the leaf level, because portable equipment for measuring leaf gas exchange rates facilitates the simultaneous measurement of photosynthesis and transpiration. However, when those measurements are compared with daily integrals or whole-plant estimates of WUE, the two sometimes do not agree. Scaling up from single-leaf to whole-plant WUE was tested in grapevines in different experiments by comparison of daily integrals of instantaneous water use efficiency [ratio between CO2 assimilation (AN and transpiration (E; AN/E] with midday AN/E measurements, showing a low correlation, being worse with increasing water stress. We sought to evaluate the importance of spatial and temporal variation in carbon and water balances at the leaf and plant levels. The leaf position (governing average light interception in the canopy showed a marked effect on instantaneous and daily integrals of leaf WUE. Night transpiration and respiration rates were also evaluated, as well as respiration contributions to total carbon balance. Two main components were identified as filling the gap between leaf and whole plant WUE: the large effect of leaf position on daily carbon gain and water loss and the large flux of carbon losses by dark respiration. These results show that WUE evaluation among genotypes or treatments needs to be revised.

  10. Flexible Transpiration Cooled Thermal Protection System for Inflatable Atmospheric Capture and Entry Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Andrews Space, Inc. proposes an innovative transpiration cooled aerobrake TPS design that is thermally protective, structurally flexible, and lightweight. This...

  11. Flexible Transpiration Cooled Thermal Protection System for Inflatable Atmospheric Capture and Entry Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Andrews Space, Inc. proposes an innovative transpiration cooled aerobrake TPS design that is thermally protective, structurally flexible, and lightweight. This...

  12. Two-Site Comparison of Transpiration by Larrea Tridentata

    Science.gov (United States)

    Cavanaugh, M. L.; Kurc, S. A.; Scott, R. L.; Bryant, R. B.

    2008-12-01

    As a result of landscape changes within the desert southwestern U.S. such as increased grazing, reduced wildfire frequency, and changes in atmospheric conditions, the native creosotebush (Larrea tridentata) has encroached upon historically grass-dominated ecosystems, expanding in range and land cover density. To understand how creosotebush influences the water budget of ecosystems, heat balance sap flow sensors were employed on creosotebush stems at both the Santa Rita Experimental Range (SRER) and Walnut Gulch Experimental Watershed (WGEW). Additionally, both sites are equipped with eddy covariance towers, associated micrometeorological measurements, and profiles of water content reflectometers for soil moisture. The differences found between the two sites, including soil type and precipitation regime, are the basis of the following hypotheses. Firstly, we hypothesize that we will not see transpiration (T) responses following storms less than 5 mm at both sites. Secondly, we hypothesize that at both sites we will see a lagged response of T to large precipitation events, with evaporation being the dominate component in the partitioning of evapotranspiration (ET) for the first two days. Thirdly, we hypothesize that the ratio of plant transpiration to total evapotranspiration (T/ET) will be less at SRER due to the larger amount of bare soil exposed at this site. In this study, we show data from one summer at both sites and show how these relate to different precipitation events and soil moisture reservoirs.

  13. Metric diffusion along foliations

    CERN Document Server

    Walczak, Szymon M

    2017-01-01

    Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.

  14. Transpiration response of 'slow-wilting' and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors.

    Science.gov (United States)

    Sadok, Walid; Sinclair, Thomas R

    2010-03-01

    The slow-wilting soybean [Glycine max (L.) Merr.] genotype, PI 416937, exhibits a limiting leaf hydraulic conductance for transpiration rate (TR) under high vapour pressure deficit (VPD). This genotype has a constant TR at VPD greater than 2 kPa, which may be responsible for its drought tolerance as a result of soil water conservation. However, the exact source of the hydraulic limitation between symplastic and apoplastic water flow in the leaf under high VPD conditions are not known for PI 416937. A comparison was made in the TR response to aquaporin (AQP) inhibitors between PI 416937 and N01-11136, a commercial genotype that has a linear TR response to VPD in the 1-3.5 kPa range. Three AQP inhibitors were tested: cycloheximide (CHX, a de novo synthesis inhibitor), HgCl(2), and AgNO(3). Dose-response curves for the decrease in TR following exposure to each inhibitor were developed. Decreases in TR of N01-11136 following treatment with inhibitors were up to 60% for CHX, 82% for HgCl(2), and 42% for AgNO(3). These results indicate that the symplastic pathway terminating in the guard cells of these soybean leaves may be at least as important as the apoplastic pathway for water flow in the leaf under high VPD. While the decrease in TR for PI 416937 was similar to that of N01-11136 following exposure to CHX and HgCl(2), TR of PI 416937 was insensitive to AgNO(3) exposure. These results indicate the possibility of a lack of a Ag-sensitive leaf AQP population in the slow-wilting line, PI 416937, and the presence of such a population in the commercial line, N01-11136.

  15. Transpiration response of ‘slow-wilting’ and commercial soybean (Glycine max (L.) Merr.) genotypes to three aquaporin inhibitors

    Science.gov (United States)

    Sadok, Walid; Sinclair, Thomas R.

    2010-01-01

    The slow-wilting soybean [Glycine max (L.) Merr.] genotype, PI 416937, exhibits a limiting leaf hydraulic conductance for transpiration rate (TR) under high vapour pressure deficit (VPD). This genotype has a constant TR at VPD greater than 2 kPa, which may be responsible for its drought tolerance as a result of soil water conservation. However, the exact source of the hydraulic limitation between symplastic and apoplastic water flow in the leaf under high VPD conditions are not known for PI 416937. A comparison was made in the TR response to aquaporin (AQP) inhibitors between PI 416937 and N01-11136, a commercial genotype that has a linear TR response to VPD in the 1–3.5 kPa range. Three AQP inhibitors were tested: cycloheximide (CHX, a de novo synthesis inhibitor), HgCl2, and AgNO3. Dose–response curves for the decrease in TR following exposure to each inhibitor were developed. Decreases in TR of N01-11136 following treatment with inhibitors were up to 60% for CHX, 82% for HgCl2, and 42% for AgNO3. These results indicate that the symplastic pathway terminating in the guard cells of these soybean leaves may be at least as important as the apoplastic pathway for water flow in the leaf under high VPD. While the decrease in TR for PI 416937 was similar to that of N01-11136 following exposure to CHX and HgCl2, TR of PI 416937 was insensitive to AgNO3 exposure. These results indicate the possibility of a lack of a Ag-sensitive leaf AQP population in the slow-wilting line, PI 416937, and the presence of such a population in the commercial line, N01-11136. PMID:19969533

  16. Desirable leaf traits for hydrological reinforcement of soil

    Directory of Open Access Journals (Sweden)

    Boldrin D.

    2016-01-01

    Full Text Available Vegetation has an important influence on slope hydrology and hence slope stability via plant transpiration. Little is known about the relative merit of evergreen versus deciduous shrubs in maintaining suctions through the year. This study aims to quantify the soil-plant-water relations of two shrub species and to identify relevant plant traits that correlate with hydro-mechanical properties of vegetated soil. Corylus avellana L. (Hazel and Ilex aquifolium L. (Holly were chosen as contrasting deciduous and evergreen broadleaf species. For each species, three replicates were planted in separated pots of sandy loam soil. Each pot was irrigated until the soil was saturated and then was left to transpire for 20 days. Soil suction, leaf conductance to water vapour (gL and soil penetration resistance were recorded. After testing, some key plant traits were determined. It was found that Hazel dried soil faster than Holly. The mean suction induced by Hazel (82.9±1.5 kPa was 2.7 times greater than that induced by Holly (30.6±8.2 kPa, as Hazel has significantly higher gL and specific leaf area. Both suction and soil penetration resistance were strongly correlated with the total leaf area, but not the total leaf biomass.

  17. Leafminers help us understand leaf hydraulic design.

    Science.gov (United States)

    Nardini, Andrea; Raimondo, Fabio; Lo Gullo, Maria A; Salleo, Sebastiano

    2010-07-01

    Leaf hydraulics of Aesculus hippocastanum L. were measured over the growing season and during extensive leaf mining by the larvae of an invasive moth (Cameraria ohridella Deschka et Dimic) that specifically destroy the palisade tissue. Leaves showed seasonal changes in hydraulic resistance (R(lamina)) which were related to ontogeny. After leaf expansion was complete, the hydraulic resistance of leaves and the partitioning of resistances between vascular and extra-vascular compartments remained unchanged despite extensive disruption of the palisade by leafminers (up to 50%). This finding suggests that water flow from the petiole to the evaporation sites might not directly involve the palisade cells. The analysis of the temperature dependence of R(lamina) in terms of Q(10) revealed that at least one transmembrane step was involved in water transport outside the leaf vasculature. Anatomical analysis suggested that this symplastic step may be located at the bundle sheath where the apoplast is interrupted by hydrophobic thickening of cell walls. Our findings offer some support to the view of a compartmentalization of leaves into well-organized water pools so that the transpiration stream would involve veins, bundle sheath and spongy parenchyma, while the palisade tissue would be largely by-passed with the possible advantage of protecting cells from short-term fluctuations in water status.

  18. Fruit calcium accumulation coupled and uncoupled from its transpiration in kiwifruit.

    Science.gov (United States)

    Montanaro, Giuseppe; Dichio, Bartolomeo; Lang, Alexander; Mininni, Alba N; Xiloyannis, Cristos

    2015-06-01

    Accumulation of Ca in several fleshy fruit is often supposed to depend, among others, by climatic variables driving fruit transpiration. This study tests the whole causal chain hypothesis: VPD → fruit transpiration → Ca accumulation. Also there are evidences that relationship between fruit transpiration and Ca content is not always clear, hence the hypothesis that low VPD reduces the fraction of xylemic water destined to transpiration was tested by examining the water budget of fruit. Attached fruits of Actinidia deliciosa were subjected to Low (L) and High (H) VPD. Their transpiration was measured from early after fruit-set to day 157 after full bloom (DAFB). Fruits were picked at 70, 130 and 157 DAFB for Ca and K determinations and for water budget analysis. Cumulative transpired water was ∼ 70 g and ∼ 16 g H2O f(-1) in HVPD and LVPD, respectively. Calcium accumulated linearly (R(2) = 0.71) with cumulative transpiration when VPD was high, while correlation was weaker (R(2) = 0.24) under LVPD. Under low VPD the fraction of xylem stream destined to transpiration declined to 40-50%. Results suggest that Ca accumulation is coupled to cumulative transpiration under high VPD because under that condition cumulative transpiration equals xylem stream (which carry the nutrient). At LVPD, Ca gain by fruit is uncoupled from transpiration because ∼ 60% of the xylemic water is needed to sustain fruit growth. Results will apply to most fruits (apples, tomatoes, capsicum, grapes etc.) since most suffer Ca deficiency disorders and grow in changing environments with variable VPD, also they could be supportive for the implementation of fruit quality models accounting also for mineral compositions and for a reinterpretation of certain field practices aimed at naturally improve fruit Ca content. Copyright © 2015 Elsevier GmbH. All rights reserved.

  19. Leaf Gas Exchange and Chlorophyll a Fluorescence in Maize Leaves Infected with Stenocarpella macrospora.

    Science.gov (United States)

    Bermúdez-Cardona, Maria Bianney; Wordell Filho, João Américo; Rodrigues, Fabrício Ávila

    2015-01-01

    This study investigated the effect of macrospora leaf spot (MLS), caused by Stenocarpella macrospora, on photosynthetic gas exchange parameters and chlorophyll a fluorescence parameters determined in leaves of plants from two maize cultivars ('ECVSCS155' and 'HIB 32R48H') susceptible and highly susceptible, respectively, to S. macrospora. MLS severity was significantly lower in the leaves of plants from ECVSCS155 relative to the leaves of plants from HIB 32R48H. In both cultivars, net CO2 assimilation rate, stomatal conductance, and transpiration rate significantly decreased, while the internal to ambient CO2 concentration ratio increased in inoculated plants relative to noninoculated plants. The initial fluorescence and nonphotochemical quenching significantly increased in inoculated plants of ECVSCS155 and HIB 32R48H, respectively, relative to noninoculated plants. The maximum fluorescence, maximum PSII quantum efficiency, coefficient for photochemical quenching, and electron transport rate significantly decreased in inoculated plants relative to noninoculated plants. For both cultivars, concentrations of total chlorophyll (Chl) (a+b) and carotenoids and the Chl a/b ratio significantly decreased in inoculated plants relative to noninoculated plants. In conclusion, the results from the present study demonstrate, for the first time, that photosynthesis in the leaves of maize plants is dramatically affected during the infection process of S. macrospora, and impacts are primarily associated with limitations of a diffusive and biochemical nature.

  20. Measuring whole-plant transpiration gravimetrically: a scalable automated system built from components

    Science.gov (United States)

    Damian Cirelli; Victor J. Lieffers; Melvin T. Tyree

    2012-01-01

    Measuring whole-plant transpiration is highly relevant considering the increasing interest in understanding and improving plant water use at the whole-plant level. We present an original software package (Amalthea) and a design to create a system for measuring transpiration using laboratory balances based on the readily available commodity hardware. The system is...

  1. Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest

    Science.gov (United States)

    Dohyoung Kim; Ram Oren; A. Christopher Oishi; Cheng-I Hsieh; Nathan Phillips; Kimberly A. Novick; Paul C. Stoy

    2014-01-01

    Wind velocity (U) within and above forest canopies can alter the coupling between the vapor-saturated sub-stomatal airspace and the drier atmosphere aloft, thereby influencing transpiration rates. In practice, however, the actual increase in transpiration with increasing U depends on the aerodynamic resistance (RA) to vapor transfer compared to canopy resistance to...

  2. The sensitivity of regional transpiration to land-surface characteristics: significance of feedback.

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Bruin, de H.A.R.

    1992-01-01

    Several authors have determined the sensitivity of transpiration to different environmental parameters using the Penman-Monteith equation. In their studies the interaction between transpiration and, for example, the humidity of the air is ignored: the feedback with the planetary boundary layer (PBL)

  3. The shape of the transpiration reduction function under plant water stress

    NARCIS (Netherlands)

    Metselaar, K.; Jong van Lier, de Q.

    2007-01-01

    Assuming transpiration to be reduced after a critical pressure head (usually chosen as −1.5 MPa or −150 m) at the root surface has been reached, transpiration rates in this so-called falling-rate phase were analyzed numerically for soils described by the van Genuchten–Mualem equations (numerical

  4. Transpiration and assimilation of early Devonian land plants with axially symmetric telomes-simulations on the tissue level.

    Science.gov (United States)

    Konrad, W; Roth-Nebelsick, A; Kerp, H; Hass, H

    2000-09-07

    Early terrestrial ancestors of the land flora are characterized by a simple, axially symmetric habit and evolved in an atmosphere with much higher CO(2)concentrations than today. In order to gain information about the ecophysiological interrelationships of these plants, a model dealing with their gaseous exchange, which is basic to transpiration and photosynthesis, is introduced. The model is based on gas diffusion inside a porous medium and on a well-established photosynthesis model and allows for the simulation of the local gas fluxes through the various tissue layers of a plant axis. Necessary parameters consist of kinetical properties of the assimilation process and other physiological parameters (which have to be taken from extant plants), as well as physical constants and anatomical parameters which can be obtained from well-preserved fossil specimens. The model system is applied to an Early Devonian land plant, Aglaophyton major. The results demonstrate that, under an Early Devonian CO(2)concentration, A. major shows an extremely low transpiration rate and a low, but probably sufficiently high assimilation rate. Variation of the atmospheric CO(2)concentration shows that the assimilation is fully saturated even if the CO(2)content is decreased to about one-third of the initial value. This result indicates that A. major was probably able to exist under a wide range of atmospheric CO(2)concentrations. Further applications of this model system to ecophysiological studies of early land plant evolution are discussed. Copyright 2000 Academic Press.

  5. Transpirational demand affects aquaporin expression in poplar roots.

    Science.gov (United States)

    Laur, Joan; Hacke, Uwe G

    2013-05-01

    Isohydric plants tend to maintain a water potential homeostasis primarily by controlling water loss via stomatal conductance. However, there is accumulating evidence that plants can also modulate water uptake in a dynamic manner. The dynamics of water uptake are influenced by aquaporin-mediated changes in root hydraulics. Most studies in this area have been conducted on herbaceous plants, and less is known about responses of woody plants. Here a study was conducted to determine how roots of hybrid poplar plants (Populus trichocarpa×deltoides) respond to a step change in transpirational demand. The main objective was to measure the expression of selected aquaporin genes and to assess how transcriptional responses correspond to changes in root water flow (Q R) and other parameters of water relations. A subset of plants was grown in shade and was subsequently exposed to a 5-fold increase in light level. Another group of plants was grown at ~95% relative humidity (RH) and was then subjected to lower RH while the light level remained unchanged. Both plant groups experienced a transient drop in stem water potentials. At 28h after the increase in transpirational demand, water potentials recovered. This recovery was associated with changes in the expression of PIP1 and PIP2 subfamily genes and an increase in Q R. Stomata of plants growing at high RH were larger and showed incomplete closure after application of abscisic acid. Since stomatal conductance remained high and unchanged in these plants, it is suggested that the recovery in water potential in these plants was largely driven by the increase in Q R.

  6. A prototype photovoltaic/thermal system integrated with transpired collector

    Energy Technology Data Exchange (ETDEWEB)

    Athienitis, Andreas K.; Bambara, James; O' Neill, Brendan; Faille, Jonathan [Dept. of Building, Civil and Environmental Engineering, Concordia University, 1455 Maisonneuve W., Montreal, Quebec (Canada)

    2011-01-15

    Building-integrated photovoltaic/thermal (BIPV/T) systems may be utilized to produce useful heat while simultaneously generating electricity from the same building envelope surface. A well known highly efficient collector is the open-loop unglazed transpired collector (UTC) which consists of dark porous cladding through which outdoor air is drawn and heated by absorbed solar radiation. Commercially available photovoltaic systems typically produce electricity with efficiencies up to about 18%. Thus, it is beneficial to obtain much of the normally wasted heat from the systems, possibly by combining UTC with photovoltaics. Combination of BIPV/T and UTC systems for building facades is considered in this paper - specifically, the design of a prototype facade-integrated photovoltaic/thermal system with transpired collector (BIPV/T). A full scale prototype is constructed with 70% of UTC area covered with PV modules specially designed to enhance heat recovery and compared to a UTC of the same area under outdoor sunny conditions with low wind. The orientation of the corrugations in the UTC is horizontal and the black-framed modules are attached so as to facilitate flow into the UTC plenum. While the overall combined thermal efficiency of the UTC is higher than that of the BIPV/T system, the value of the generated energy - assuming that electricity is at least four times more valuable than heat - is between 7% and 17% higher. Also, the electricity is always useful while the heat is usually utilized only in the heating season. The BIPV/T concept is applied to a full scale office building demonstration project in Montreal, Canada. The ratio of photovoltaic area coverage of the UTC may be selected based on the fresh air heating needs of the building, the value of the electricity generated and the available building surfaces. (author)

  7. Antimicrobial effect of Pistacia atlantica leaf extract.

    Science.gov (United States)

    Ali Roozegar, Mohamad; Azizi Jalilian, Farid; Reza Havasian, Mohamad; Panahi, Jafar; Pakzad, Iraj

    2016-01-01

    The antimicrobial effect of the mastic tree (Pistacia atlantica) under in vitro conditions has been reported. Therefore, it is of interest to evaluate the effect of the plant leaf extract (aqueous) on bacterial load in mouth and saliva. The leaf of the Pistacia atlantica plant was collected and cleaned, dried at 40⁰c and then powdered. The extraction was carried out using the maceration method in vacuum with the rotary evaporator device. Bacterial inhibition (Streptococcus species) by the leaf extract was studied using the disc diffusion and embedding sink diffusion methods. The values of MIC and MBC were determined. The collected data was further analyzed using t-test and repeated measure statistical tests. The disc diffusion technique showed a significant inhibitory effect for Pistacia atlantica leaf extract on S. mutans (ATCC 35668) and S. mitis (ATCC 49456) with inhibition zones of 19 and 25 millimeters, respectively. This is for the highest leaf extract concentration used in this study (pmitis was 75, 110 μg/ml (psalivarius (ATCC 13419). Thus, the antimicrobial properties of the aqueous leaf extract from Pistacia atlantica is demonstrated in this study.

  8. Increased contribution of wheat nocturnal transpiration to daily water use under drought.

    Science.gov (United States)

    Claverie, Elodie; Meunier, Félicien; Javaux, Mathieu; Sadok, Walid

    2018-03-01

    Increasing evidence suggests that in crops, nocturnal water use could represent 30% of daytime water consumption, particularly in semi-arid and arid areas. This raises the questions of whether nocturnal transpiration rates (TR N ) are (1) less influenced by drought than daytime TR (TR D ), (2) increased by higher nocturnal vapor pressure deficit (VPD N ), which prevails in such environments and (3) involved in crop drought tolerance. In this investigation, we addressed those questions by subjecting two wheat genotypes differing in drought tolerance to progressive soil drying under two long-term VPD N regimes imposed under naturally fluctuating conditions. A first goal was to characterize the response curves of whole-plant TR N and TR N /TR D ratios to progressive soil drying. A second goal was to examine the effect of VPD N increase on TR N response to soil drying and on 13 other developmental traits. The study revealed that under drought, TR N was not responsive to progressive soil drying and - intriguingly - that TR N seemingly increased with drought under high VPD N consistently for the drought-sensitive genotype. Because TR D was concomitantly decreasing with progressive drought, this resulted in TR N representing up to 70% of TR D at the end of the drydown. In addition, under drought, VPD N increase was found not to influence traits such as leaf area or stomata density. Overall, those findings indicate that TR N contribution to daily water use under drought might be much higher than previously thought, that it is controlled by specific mechanisms and that decreasing TR N under drought might be a valuable trait for improving drought tolerance. © 2017 Scandinavian Plant Physiology Society.

  9. Ecophysiological variation of transpiration of pine forests: synthesis of new and published results.

    Science.gov (United States)

    Tor-Ngern, Pantana; Oren, Ram; Oishi, Andrew C; Uebelherr, Joshua M; Palmroth, Sari; Tarvainen, Lasse; Ottosson-Löfvenius, Mikaell; Linder, Sune; Domec, Jean-Christophe; Näsholm, Torgny

    2017-01-01

    Canopy transpiration (E C ) is a large fraction of evapotranspiration, integrating physical and biological processes within the energy, water, and carbon cycles of forests. Quantifying E C is of both scientific and practical importance, providing information relevant to questions ranging from energy partitioning to ecosystem services, such as primary productivity and water yield. We estimated E C of four pine stands differing in age and growing on sandy soils. The stands consisted of two wide-ranging conifer species: Pinus taeda and Pinus sylvestris, in temperate and boreal zones, respectively. Combining results from these and published studies on all soil types, we derived an approach to estimate daily E C of pine forests, representing a wide range of conditions from 35° S to 64° N latitude. During the growing season and under moist soils, maximum daily E C (E Cm ) at day-length normalized vapor pressure deficit of 1 kPa (E Cm-ref ) increased by 0.55 ± 0.02 (mean ± SE) mm/d for each unit increase of leaf area index (L) up to L = ~5, showing no sign of saturation within this range of quickly rising mutual shading. The initial rise of E Cm with atmospheric demand was linearly related to E Cm-ref . Both relations were unaffected by soil type. Consistent with theoretical prediction, daily E C was sensitive to decreasing soil moisture at an earlier point of relative extractable water in loamy than sandy soils. Our finding facilitates the estimation of daily E C of wide-ranging pine forests using remotely sensed L and meteorological data. We advocate an assembly of worldwide sap flux database for further evaluation of this approach. © 2016 by the Ecological Society of America.

  10. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata.

    Science.gov (United States)

    Carins Murphy, Madeline R; Jordan, Gregory J; Brodribb, Timothy J

    2014-01-01

    The coordination of veins and stomata during leaf acclimation to sun and shade can be facilitated by differential epidermal cell expansion so large leaves with low vein and stomatal densities grow in shade, effectively balancing liquid- and vapour-phase conductances. As the difference in vapour pressure between leaf and atmosphere (VPD) determines transpiration at any given stomatal density, we predict that plants grown under high VPD will modify the balance between veins and stomata to accommodate greater maximum transpiration. Thus, we examined the developmental responses of these traits to contrasting VPD in a woody angiosperm (Toona ciliata M. Roem.) and tested whether the relationship between them was altered. High VPD leaves were one-third the size of low VPD leaves with only marginally greater vein and stomatal density. Transpirational homeostasis was thus maintained by reducing stomatal conductance. VPD acclimation changed leaf size by modifying cell number. Hence, plasticity in vein and stomatal density appears to be generated by plasticity in cell size rather than cell number. Thus, VPD affects cell number and leaf size without changing the relationship between liquid- and vapour-phase conductances. This results in inefficient acclimation to VPD as stomata remain partially closed under high VPD. © 2013 John Wiley & Sons Ltd.

  11. ANNUAL AND DIURNAL CYCLES OF THE INVERSE RELATION BETWEEN PLANT TRANSPIRATION AND CARBON SEQUESTRATION

    Directory of Open Access Journals (Sweden)

    Hernán Alonso Moreno

    2008-07-01

    Full Text Available Understanding biogeochemical cycles and especially carbon budgets is clue to validate global change models in the present and near future. As a consequence, sinks and sources of carbon in the world are being studied. One of those sinks is the non-well known behavior of the planet vegetation which involves the processes of photosynthesis and respiration. Carbon sequestration rates are highly related to the transpiration through a molecular diffusion process occurring at the stomatal level which can be recorded by an eddy covariance micrometeorological station. This paper explores annual and diurnal cycles of latent heat (LE and CO2 net (FC fluxes over 6 different ecosystems. Based on the physics of the transpiration process, different time-scale analysis are performed, finding a near-linear relation between LE and CO2 net fluxes, which is stronger at the more vegetated areas. The North American monsoon season increases carbon up taking and LE-CO2 flux relation preserves at different time scales analysis (hours to days to months.El conocimiento de los ciclos biogeoquímicos y, en especial, de los balances de carbono es clave para la validación de los modelos de cambio global para el presente y el futuro cercano. Como consecuencia, en el mundo se estudian las fuentes y los sumideros de carbono. Uno de esos sumideros es la vegetación del planeta, que involucra los procesos de respiración y fotosíntesis y cuyo comportamiento se empieza a estudiar. Las tasas de captura del carbono están muy ligadas a la transpiración mediante un proceso de difusión molecular en los estomas, que puede registrarse por un sistema micrometeorológico de eddy covarianza. Este artículo explora los ciclos anuales y diurnos de los flujos netos de CO2 y calor latente de seis ecosistemas diferentes. Se desarrollan diversos análisis de escala temporal, basados en la física de la transpiración, y se halla una relación cuasilineal entre los flujos netos de calor

  12. Diffusion of Innovation: A Roadmap for Inclusive Community Recreation Services

    Science.gov (United States)

    Schleien, Stuart J.; Miller, Kimberly D.

    2010-01-01

    Inclusive community recreation is an optimal environment for the development of recreation and sports skills and social relationships between people with and without disabilities. Although we know much about best practices for inclusion, little systemic change in recreation agencies has transpired. Diffusion of Innovation Theory is proposed as a…

  13. Application of the Transpiration Method To Determine the Vapor Pressure and Related Physico-Chemical Data of Low Volatile, Thermolabile, and Toxic Organo(thio)phosphates.

    Science.gov (United States)

    Althoff, Marc A; Grieger, Kathrin; Härtel, Martin A C; Karaghiosoff, Konstantin L; Klapötke, Thomas M; Metzulat, Manfred

    2017-04-06

    The present work represents the most recent study on the physico-chemical properties of the organophosphate compound class being directly related to the Chemical Weapons Convention (CWC). This compound class is of great importance in the ongoing conflict in Syria. Here, the vapor pressure of the deadly organo(thio)phosphate Amiton and seven of its derivatives was investigated. These medium to low volatile analytes pose a potential threat toward human life by inhalation or direct contact with the skin at very low doses. Therefore, the vapor pressures in ambient temperature regimes were measured by utilizing the transpiration method to determine the saturation vapor pressure p sat and the enthalpy of vaporization Δ l g H m ° at 298.15 K. We also successfully applied the transpiration method for the examination of thermolabile compounds. In particular, five of the molecules can undergo a thiono-thiolo rearrangement at elevated temperatures within a couple of hours and thus could possibly alter in the course of the experiment. In addition we demonstrate that the concentration under diffusion conditions, c dif , is a useful parameter for the choice of suitable gas phase detection equipment for Amiton and its derivatives, because it can be directly compared with the limit of detection LOD [ng L -1 ] of the device used. Finally, we proved the transpiration method to be applicable for the investigation of toxic and also high boiling and even thermolabile chemicals in general.

  14. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    Science.gov (United States)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf

  15. Evaporative demand, transpiration, and photosynthesis: How are they changing?

    Science.gov (United States)

    Farquhar, G. D.; Roderick, M. L.

    2009-04-01

    Carbon dioxide concentration is increasing. This affects photosynthesis via increases in substrate availability (Farquhar et al. 1980). It reduces the amount of water transpired by plants to fix a given amount of carbon into an organic form; i.e it increases transpiration efficiency (Wong et al. 1979). It also warms the earth's surface. It is commonly supposed that this warming causes an increase in evaporative demand - the rate of water loss from a wet surface. This supposition has then been extended to effects on plant water availability, with the idea that there would be offsets to the gains in productivity associated with increased transpiration efficiency. The assumption that increased temperature means increased evaporative demand has also been applied to global maps of changes in soil water content. However, observations of pan evaporation rate show that this measure of evaporative demand has been decreasing in most areas examined over the last few decades. We reconcile these observations with theory by noting that, on long time scales, warming also involves water bodies, so that the vapour pressure at the earth's surface also increases. Using the physics of pan evaporation (Rotstayn et al. 2006) we show that the reduction in evaporative demand has been associated with two main effects, (1) "dimming", a reduction in sunlight received at the earth's surface because of aerosols and clouds, being the first phenomenon identified (Roderick and Farquhar 2002), and (2) "stilling", a reduction in wind speed, being the second (Roderick et al. 2007). We show that better accounting for changes in evaporative demand is important for estimating soil water changes, particularly in regions where precipitation exceeds evaporative demand (i.e where there are rivers) (Hobbins et al. 2008). We synthesise some of these results with others on vegetation change. References: Farquhar, GD, von Caemmerer, S, and Berry, JA, 1980: A biochemical model of photosynthetic CO2 assimilation

  16. Tamarix transpiration along a semiarid river has negligible impact on water resources

    Science.gov (United States)

    McDonald, Alyson K.; Wilcox, Bradford P.; Moore, Georgianne W.; Hart, Charles R.; Sheng, Zhuping; Owens, M. Keith

    2015-07-01

    The proliferation of saltcedar (Tamarix spp.) along regulated rivers in the western United States has transformed riparian plant communities. It is commonly assumed that transpiration by these alien plants has led to large losses of water that would otherwise contribute to streamflow. Control of saltcedar, therefore, has been considered a viable strategy for conserving water and increasing streamflow in these regions. In an effort to better understand the linkage between transpiration by saltcedar and streamflow, we monitored transpiration, stream stage, and groundwater elevations within a saltcedar stand along the Pecos River during June 2004. Transpiration, as determined by sap flow measurements, exhibited a strong diel pattern; stream stage did not. Diel fluctuations in groundwater levels were observed, but only in one well, which was located in the center of the saltcedar stand. In that well, the correlation between maximal transpiration and minimal groundwater elevation was weak (R2 = 0.16). No effects of transpiration were detected in other wells within the saltcedar stand, nor in the stream stage. The primary reason, we believe, is that the saltcedar stand along this reach of the Pecos River has relatively low sapwood area and a limited spatial extent resulting in very low transpiration compared with the stream discharge. Our results are important because they provide a mechanistic explanation for the lack of increase in streamflow following large-scale control of invasive trees along semiarid rivers.

  17. Transpiration of A Mixed Forest Stand: Field Measurements and Model Estimations

    Science.gov (United States)

    Oltchev, A.; Cermak, J.; Nadezhdina, N.; Tatarinov, F.; Gravenhorst, G.

    Transpiration of a mixed spruce-aspen-birch forest stand at the southern part of the Valday Hills in Russia was determined using sap flow measurements and SVAT mod- els. The measurements showed a significant variability of transpiration rates between different species and different trees. Under non-limited soil water conditions broadleaf trees transpired about 10-20% more than spruces trees. Deficit of available water in the upper soil layers had a more pronounced influence on water uptake of spruce than of deciduous tree species due to the shallow spruce root system. Under surplus wa- ter in the upper soil layers the transpiration rates were slightly suppressed both for spruce and for broadleaf tree species. Two one-dimensional multi-layer SVAT mod- els were applied to describe energy and water exchanges between mixed forest stand and the atmosphere. A more simplified MLOD-SVAT model uses averaged biophys- ical properties of different tree species. Estimation of forest water uptake in a more sophisticated EWE-MF model is based on separate description of water uptakes for individual tree species. Comparisons of modelling and measuring results show that under non-limited soil water conditions both modelling approaches allow to describe in a representative way the water uptake and transpiration rates. Under limited soil water conditions more sophisticated model could deduce more representatively the effect of different tree species on forest transpiration. Application of more simplified MLOD-SVAT model can result in an overestimation of daily total forest transpiration up to 50%.

  18. Effects of increased atmospheric CO{sub 2} concentrations on transpiration of a wheat field in consideration of water and nitrogen limitation; Die Wirkung von erhoehten atmosphaerischen CO{sub 2}-Konzentrationen auf die Transpiration eines Weizenbestandes unter Beruecksichtigung von Wasser- und Stickstofflimitierung

    Energy Technology Data Exchange (ETDEWEB)

    Grossman-Clarke, S.

    2000-09-01

    Primary responses of C{sub 3}-plants to elevated atmospheric CO{sub 2} concentrations are an increase in the net assimilation rate, leading to greater biomass, and an associated decrease in the transpiration rate per unit leaf area due to CO{sub 2}-induced stomatal closure. The question has therefore arisen: does canopy transpiration increase because of the greater biomass, or decrease because of the stomatal closure? The direct impact of an elevated atmospheric CO{sub 2} concentration of 550 {mu}mol mol{sup -1} on the seasonal course of canopy transpiration of a spring wheat crop was investigated by means of the simulation model DEMETER for production under unlimited water and nutrient supply, production under limited water but unlimited nutrient supply and the production under unlimited water but limited nitrogen supply. Independent data of the free-air carbon dioxide enrichment wheat experiments in Arizona, USA (1993-96) were used to test if the model is able to make reasonable predictions of water use and productivity of the spring wheat crop using only parameters derived from the literature. A model integrating leaf photosynthesis, stomatal conductance and energy fluxes between the plant and the atmosphere was scaled to a canopy level in order to be used in the wheat crop growth model. Temporal changes of the model parameters were considered by describing them as dependent on the changing leaf nitrogen content. Comparison of the simulation and experimental results showed that the applicability of the model approach was limited after anthesis by asynchronous changes in mesophyll and stomatal conductance. Therefore a new model approach was developed describing the interaction between assimilation rate and stomatal conductance during grain filling. The simulation results revealed only small differences in the cumulative sum of canopy transpiration and soil evaporation between elevated CO{sub 2} and control conditions. For potential growth conditions the model

  19. Abscisic acid controlled sex before transpiration in vascular plants.

    Science.gov (United States)

    McAdam, Scott A M; Brodribb, Timothy J; Banks, Jo Ann; Hedrich, Rainer; Atallah, Nadia M; Cai, Chao; Geringer, Michael A; Lind, Christof; Nichols, David S; Stachowski, Kye; Geiger, Dietmar; Sussmilch, Frances C

    2016-10-26

    Sexual reproduction in animals and plants shares common elements, including sperm and egg production, but unlike animals, little is known about the regulatory pathways that determine the sex of plants. Here we use mutants and gene silencing in a fern species to identify a core regulatory mechanism in plant sexual differentiation. A key player in fern sex differentiation is the phytohormone abscisic acid (ABA), which regulates the sex ratio of male to hermaphrodite tissues during the reproductive cycle. Our analysis shows that in the fern Ceratopteris richardii, a gene homologous to core ABA transduction genes in flowering plants [SNF1-related kinase2s (SnRK2s)] is primarily responsible for the hormonal control of sex determination. Furthermore, we provide evidence that this ABA-SnRK2 signaling pathway has transitioned from determining the sex of ferns to controlling seed dormancy in the earliest seed plants before being co-opted to control transpiration and CO 2 exchange in derived seed plants. By tracing the evolutionary history of this ABA signaling pathway from plant reproduction through to its role in the global regulation of plant-atmosphere gas exchange during the last 450 million years, we highlight the extraordinary effect of the ABA-SnRK2 signaling pathway in plant evolution and vegetation function.

  20. Interactions Between Leaf Extracts of Ageratum conyzoides and ...

    African Journals Online (AJOL)

    The synergistic activity of the mixture of 200 mg/ml leaf extract concentrate and the respective antibiotics; Ciprofloxacin, Norfloxacin and Septrin against P. aeruginosa and S.aureus was evaluated using both spread plate and disc diffusion methods. The aqueous leaf extract elicited an inhibitory zone diameter of inhibition ...

  1. Antimicrobial properties of the leaf extract of Loranthus Bengwensis ...

    African Journals Online (AJOL)

    The leaf extracts were obtained by soxhlet extraction. Using the in vitro cup plate method of agar diffusion technique, the activity of the leaf extracts was evaluated against viable pure cultures of Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella spp and Escherichia coli. The results showed slight antimicrobial ...

  2. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest

    Directory of Open Access Journals (Sweden)

    Kolby J. Jardine

    2015-09-01

    Full Text Available Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C5 and C6 GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C6 GLVs were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  3. Green Leaf Volatile Emissions during High Temperature and Drought Stress in a Central Amazon Rainforest.

    Science.gov (United States)

    Jardine, Kolby J; Chambers, Jeffrey Q; Holm, Jennifer; Jardine, Angela B; Fontes, Clarissa G; Zorzanelli, Raquel F; Meyers, Kimberly T; de Souza, Vinicius Fernadez; Garcia, Sabrina; Gimenez, Bruno O; Piva, Luani R de O; Higuchi, Niro; Artaxo, Paulo; Martin, Scot; Manzi, Antônio O

    2015-09-15

    Prolonged drought stress combined with high leaf temperatures can induce programmed leaf senescence involving lipid peroxidation, and the loss of net carbon assimilation during early stages of tree mortality. Periodic droughts are known to induce widespread tree mortality in the Amazon rainforest, but little is known about the role of lipid peroxidation during drought-induced leaf senescence. In this study, we present observations of green leaf volatile (GLV) emissions during membrane peroxidation processes associated with the combined effects of high leaf temperatures and drought-induced leaf senescence from individual detached leaves and a rainforest ecosystem in the central Amazon. Temperature-dependent leaf emissions of volatile terpenoids were observed during the morning, and together with transpiration and net photosynthesis, showed a post-midday depression. This post-midday depression was associated with a stimulation of C₅ and C₆ GLV emissions, which continued to increase throughout the late afternoon in a temperature-independent fashion. During the 2010 drought in the Amazon Basin, which resulted in widespread tree mortality, green leaf volatile emissions (C₆ GLVs) were observed to build up within the forest canopy atmosphere, likely associated with high leaf temperatures and enhanced drought-induced leaf senescence processes. The results suggest that observations of GLVs in the tropical boundary layer could be used as a chemical sensor of reduced ecosystem productivity associated with drought stress.

  4. Na+ accumulation in root symplast of sunflower plants exposed to moderate salinity is transpiration-dependent.

    Science.gov (United States)

    Quintero, José Manuel; Fournier, José María; Benlloch, Manuel; Rodríguez-Navarro, Alonso

    2008-08-25

    Twenty-day-old sunflower plants (Helianthus annuus L. cv Sun-Gro 380) grown hydroponically under controlled conditions were used to study the effect of transpiration on Na(+) compartmentalization in roots. The plants were exposed to low Na(+) concentrations (25 mM NaCl) and different environmental humidity conditions over a short time period (8.5 h). Under these conditions, Na(+) was accumulated primarily in the root, but only the Na(+) accumulated in the root symplast was dependent on transpiration, while the Na(+) accumulated in both the shoot and the root apoplast exhibited a low transpiration dependence. Moreover, Na(+) content in the root apoplast was reached quickly (0.25 h) and increased little with time. These results suggest that, in sunflower plants under moderate salinity conditions, Na(+) uptake in the root symplast is mediated by a transport system whose activity is enhanced by transpiration.

  5. Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland

    NARCIS (Netherlands)

    Balugani, E.; Lubczynski, M.W.; Reyes-Acosta, L.; Tol, van der C.; Francés, A.P.; Metselaar, K.

    2017-01-01

    Studies on evapotranspiration partitioning under eddy covariance (EC) towers rarely address the separate effects of transpiration and evaporation on groundwater resources. Such partitioning is important to accurately assess groundwater resources, especially in arid and semi-arid areas. The main

  6. Low-Cost and Light-Weight Transpiration-Cooled Thrust Chambers, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort aims to evaluate the feasibility of using transpiration-cooled Titanium as the primary material in small-scale thrust chambers for in-space...

  7. DYNAMIC ANALYSES OF WATER RELATIONS AND LEAF GROWTH IN CUCUMBER PLANTS UNDER MIDDAY WATER DEFICIT

    OpenAIRE

    Kitano, Masaharu; Eguchi, Hiromi

    1993-01-01

    Effects of transient and mild midday water deficit on whole-plant water relations and on leaf expansive growth in cucumber plants (Cucumis sativus L.) were analyzed by applying on-line evaluations of evaporative demand and whole-plant water balance. Around the fair midday, the larger impact of the evaporative demand was imposed on plant water balance, and the competitive relationship between the higher evaporative demand and transpiration induced the midday water deficit, in which 10% of the ...

  8. The effect of blue light on stomatal oscillations and leaf turgor pressure in banana leaves.

    Science.gov (United States)

    Zait, Yotam; Shapira, Or; Schwartz, Amnon

    2017-07-01

    Stomatal oscillations are cyclic opening and closing of stomata, presumed to initiate from hydraulic mismatch between leaf water supply and transpiration rate. To test this assumption, mismatches between water supply and transpiration were induced using manipulations of vapour pressure deficit (VPD) and light spectrum in banana (Musa acuminata). Simultaneous measurements of gas exchange with changes in leaf turgor pressure were used to describe the hydraulic mismatches. An increase of VPD above a certain threshold caused stomatal oscillations with variable amplitudes. Oscillations in leaf turgor pressure were synchronized with stomatal oscillations and balanced only when transpiration equaled water supply. Surprisingly, changing the light spectrum from red and blue to red alone at constant VPD also induced stomatal oscillations - while the addition of blue (10%) to red light only ended oscillations. Blue light is known to induce stomatal opening and thus should increase the hydraulic mismatch, reduce the VPD threshold for oscillations and increase the oscillation amplitude. Unexpectedly, blue light reduced oscillation amplitude, increased VPD threshold and reduced turgor pressure loss. These results suggest that additionally, to the known effect of blue light on the hydroactive opening response of stomata, it can also effect stomatal movement by increased xylem-epidermis water supply. © 2017 John Wiley & Sons Ltd.

  9. Thermographic visualization of leaf response in cucumber plants infected with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum.

    Science.gov (United States)

    Wang, Min; Ling, Ning; Dong, Xian; Zhu, Yiyong; Shen, Qirong; Guo, Shiwei

    2012-12-01

    Infection with the soil-borne pathogen Fusarium oxysporum f. sp. cucumerinum (FOC), which causes Fusarium wilt of cucumber plants, might result in changes in plant transpiration and water status within leaves. To monitor leaf response in cucumber infected with FOC, digital infrared thermography (DIT) was employed to detect changes in leaf temperature. During the early stages of FOC infection, stomata closure was induced by ABA in leaves, resulting in a decreased transpiration rate and increased leaf temperature. Subsequently, cell death occurred, accompanied by water loss, resulting in a little decrease in leaf temperature. A negative correlation between transpiration rate and leaf temperature was existed. But leaf temperature exhibited a special pattern with different disease severity on light-dark cycle. Lightly wilted leaves had a higher temperature in light and a lower temperature in dark than did in healthy leaves. We identified that the water loss from wilted leaves was regulated not by stomata but rather by cells damage caused by pathogen infection. Finally, water balance in infected plants became disordered and dead tissue was dehydrated, so leaf temperature increased again. These data suggest that membrane injury caused by FOC infection induces uncontrolled water loss from damaged cells and an imbalance in leaf water status, and ultimately accelerate plant wilting. Combining detection of the temperature response of leaves to light-dark conditions, DIT not only permits noninvasive detection and indirect visualization of the development of the soil-borne disease Fusarium wilt, but also demonstrates certain internal metabolic processes correlative with water status. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  10. Mistletoe infection alters the transpiration flow path and suppresses water regulation of host trees during extreme events

    Science.gov (United States)

    Griebel, A.; Maier, C.; Barton, C. V.; Metzen, D.; Renchon, A.; Boer, M. M.; Pendall, E.

    2017-12-01

    Mistletoe is a globally distributed group of parasitic plants that infiltrates the vascular tissue of its host trees to acquire water, carbon and nutrients, making it a leading agent of biotic disturbance. Many mistletoes occur in water-limited ecosystems, thus mistletoe infection in combination with increased climatic stress may exacerbate water stress and potentially accelerate mortality rates of infected trees during extreme events. This is an emerging problem in Australia, as mistletoe distribution is increasing and clear links between mistletoe infection and mortality have been established. However, direct observations about how mistletoes alter host physiological processes during extreme events are rare, which impedes our understanding of mechanisms underlying increased tree mortality rates. We addressed this gap by continuously monitoring stem and branch sap flow and a range of leaf traits of infected and uninfected trees of two co-occurring eucalypt species during a severe heatwave in south-eastern Australia. We demonstrate that mistletoes' leaf water potentials were maintained 30% lower than hosts' to redirect the trees' transpiration flow path towards mistletoe leaves. Eucalypt leaves reduced water loss through stomatal regulation when atmospheric dryness exceeded 2 kPa, but the magnitude of stomatal regulation in non-infected eucalypts differed by species (between 40-80%). Remarkably, when infected, sap flow rates of stems and branches of both eucalypt species remained unregulated even under extreme atmospheric dryness (>8 kPa). Our observations indicate that excessive water use of mistletoes likely increases xylem cavitation rates in hosts during prolonged droughts and supports that hydraulic failure contributes to increased mortality of infected trees. Hence, in order to accurately model the contribution of biotic disturbances to tree mortality under a changing climate, it will be crucial to increase our process-based understanding of the interaction

  11. Photochemical Reflectance Index (PRI) as a proxy of Light Use Efficiency (LUE) and transpiration in Mediterranean crop sites

    Science.gov (United States)

    LE Dantec, V.; Chebbi, W.; Boulet, G.; Merlin, O.; Lili-Chabaane, Z.; Er Raki, S.; Ceschia, E.; Khabba, S.; Fanise, P.; Zawilski, B.; Simonneaux, V.; Jarlan, L.

    2016-12-01

    The Photochemical Reflectance Index (PRI) is based on the short term reversible xanthophyll pigment changes accompanying plant stress and therefore of the associated photosynthetic activities. Strong relationships between PRI and Light Use Efficiency (LUE) were shown at leaf and canopy scales and over a wide range of species (Garbulsky et al., 2011). But very few previous works have explored the potential link with plant water status. In this study, we have first analyzed the link between PRI and LUE at canopy scale on two different crops in terms of canopy structure and crop management: olive grove (Tunisia) and wheat grown under different water regimes (irrigated or rainfed) and climate zones (France, Morocco). We have investigated the daily and seasonal dynamics of PRI; linking its variations to meteorological factors (global radiation and sun angle effects, soil water content, relative air humidity …) and plant processes. The highest correlations were mainly observed in clear skies conditions. We have found, whatever site, linear negative relationships between PRI and LUE using data acquired in midday (i.e. in solar zenithal angle condition). Linear link between PRI and sapflow measurements was also revealed. This correlation was obtained over periods characterized by a moderate soil water deficit, i.e. by when transpiration rate was mainly control by Vapor Pressure Deficit. We will then briefly presented alternative and complementary approaches to this index, to detect different level of water stress using thermal infrared emissions.

  12. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  13. Herbivory mitigation through increased water-use efficiency in a leaf-mining moth-apple tree relationship.

    Science.gov (United States)

    Pincebourde, Sylvain; Frak, Ela; Sinoquet, Hervé; Regnard, Jean Luc; Casas, Jérôme

    2006-12-01

    Herbivory alters plant gas exchange but the effects depend on the type of leaf damage. In contrast to ectophagous insects, leaf miners, by living inside the leaf tissues, do not affect the integrity of the leaf surface. Thus, the effect of leaf miners on CO2 uptake and water-use efficiency by leaves remains unclear. We explored the impacts of the leaf-mining moth Phyllonorycter blancardella (Lepidoptera: Gracillariidae) on light responses of the apple leaf gas exchanges to determine the balance between the negative effects of reduced photosynthesis and potential positive impacts of increased water-use efficiency (WUE). Gas exchange in intact and mined leaf tissues was measured using an infrared gas analyser. The maximal assimilation rate was slightly reduced but the light response of net photosynthesis was not affected in mined leaf tissues. The transpiration rate was far more affected than the assimilation rate in the mine integument as a result of stomatal closure from moderate to high irradiance level. The WUE was about 200% higher in the mined leaf tissues than in intact leaf portions. Our results illustrate a novel mechanism by which plants might minimize losses from herbivore attacks; via trade-offs between the negative impacts on photosynthesis and the positive effects of increased WUE.

  14. Controls on the D/H ratios of plant leaf waxes in an arid ecosystem

    Science.gov (United States)

    Feakins, Sarah J.; Sessions, Alex L.

    2010-04-01

    The extent to which leaf water D-enrichment (transpiration) and soil water D-enrichment (evaporation) affect the D/H ratio of plant leaf waxes remains a contentious issue, with important implications for paleohydrologic reconstructions. In this study we measure δD values of precipitation ( δD p), groundwater ( δD gw), plant xylem water ( δD xw) and leaf water ( δD lw) to understand their impact on the δD values of plant leaf wax n-alkanes ( δD wax) in an arid ecosystem. Our survey includes multiple species at four sites across an aridity gradient (80-30% relative humidity) in southern California. We find that many species take up groundwater or precipitation without significant fractionation. D-enriched soil water is a minor source even in species known to perform and utilize waters from hydraulic lift, such as Larrea tridentata (+10‰). Measurements of leaf water isotopic composition demonstrate that transpiration is an important mechanism for D-enrichment of leaf waters (+74 ± 20‰, 1 σ), resulting in the smallest net fractionation yet reported between source water and leaf waxes ( L. tridentata -41‰; multi-species mean value is -94 ± 21‰, 1 σ). We find little change in leaf water D-enrichment or net fractionation across the climatic gradient sampled by our study, suggesting that a net fractionation of ca. -90‰ may be appropriate for paleohydrologic reconstructions in semi-arid to arid environments. Large interspecies offsets in net fractionations (1 σ = 21‰) are potentially troublesome, given the observed floristic diversity and the likelihood of species assemblage changes with climate shifts.

  15. Angiosperm leaf vein evolution was physiologically and environmentally transformative.

    Science.gov (United States)

    Boyce, C Kevin; Brodribb, Tim J; Feild, Taylor S; Zwieniecki, Maciej A

    2009-05-22

    The veins that irrigate leaves during photosynthesis are demonstrated to be strikingly more abundant in flowering plants than in any other vascular plant lineage. Angiosperm vein densities average 8 mm of vein per mm(2) of leaf area and can reach 25 mm mm(-2), whereas such high densities are absent from all other plants, living or extinct. Leaves of non-angiosperms have consistently averaged close to 2 mm mm(-2) throughout 380 million years of evolution despite a complex history that has involved four or more independent origins of laminate leaves with many veins and dramatic changes in climate and atmospheric composition. We further demonstrate that the high leaf vein densities unique to the angiosperms enable unparalleled transpiration rates, extending previous work indicating a strong correlation between vein density and assimilation rates. Because vein density is directly measurable in fossils, these correlations provide new access to the physiology of extinct plants and how they may have impacted their environments. First, the high assimilation rates currently confined to the angiosperms among living plants are likely to have been unique throughout evolutionary history. Second, the transpiration-driven recycling of water that is important for bolstering precipitation in modern tropical rainforests might have been significantly less in a world before the angiosperms.

  16. Estimation of Transpiration and Water Use Efficiency Using Satellite and Field Observations

    Science.gov (United States)

    Choudhury, Bhaskar J.; Quick, B. E.

    2003-01-01

    Structure and function of terrestrial plant communities bring about intimate relations between water, energy, and carbon exchange between land surface and atmosphere. Total evaporation, which is the sum of transpiration, soil evaporation and evaporation of intercepted water, couples water and energy balance equations. The rate of transpiration, which is the major fraction of total evaporation over most of the terrestrial land surface, is linked to the rate of carbon accumulation because functioning of stomata is optimized by both of these processes. Thus, quantifying the spatial and temporal variations of the transpiration efficiency (which is defined as the ratio of the rate of carbon accumulation and transpiration), and water use efficiency (defined as the ratio of the rate of carbon accumulation and total evaporation), and evaluation of modeling results against observations, are of significant importance in developing a better understanding of land surface processes. An approach has been developed for quantifying spatial and temporal variations of transpiration, and water-use efficiency based on biophysical process-based models, satellite and field observations. Calculations have been done using concurrent meteorological data derived from satellite observations and four dimensional data assimilation for four consecutive years (1987-1990) over an agricultural area in the Northern Great Plains of the US, and compared with field observations within and outside the study area. The paper provides substantive new information about interannual variation, particularly the effect of drought, on the efficiency values at a regional scale.

  17. Energy and exergy analyses of Photovoltaic/Thermal flat transpired collectors: Experimental and theoretical study

    International Nuclear Information System (INIS)

    Gholampour, Maysam; Ameri, Mehran

    2016-01-01

    Highlights: • A Photovoltaic/Thermal flat transpired collector was theoretically and experimentally studied. • Performance of PV/Thermal flat transpired plate was evaluated using equivalent thermal, first, and second law efficiencies. • According to the actual exergy gain, a critical radiation level was defined and its effect was investigated. • As an appropriate tool, equivalent thermal efficiency was used to find optimum suction velocity and PV coverage percent. - Abstract: PV/Thermal flat transpired plate is a kind of air-based hybrid Photovoltaic/Thermal (PV/T) system concurrently producing both thermal and electrical energy. In order to develop a predictive model, validate, and investigate the PV/Thermal flat transpired plate capabilities, a prototype was fabricated and tested under outdoor conditions at Shahid Bahonar University of Kerman in Kerman, Iran. In order to develop a mathematical model, correlations for Nusselt numbers for PV panel and transpired plate were derived using CFD technique. Good agreement was obtained between measured and simulated values, with the maximum relative root mean square percent deviation (RMSE) being 9.13% and minimum correlation coefficient (R-squared) 0.92. Based on the critical radiation level defined in terms of the actual exergy gain, it was found that with proper fan and MPPT devices, there is no concern about the critical radiation level. To provide a guideline for designers, using equivalent thermal efficiency as an appropriate tool, optimum values for suction velocity and PV coverage percent under different conditions were obtained.

  18. A whole-plant hydraulic capacitance approach to modeling distributed root water uptake and actual transpiration

    Science.gov (United States)

    Vogel, Tomas; Votrubova, Jana; Dohnal, Michal; Dusek, Jaromir

    2017-04-01

    In the present study, we propose a simple transpiration stream model, based on the concept of whole-plant hydraulic capacitance. The suggested algorithm is implemented in a one-dimensional soil water flow model involving vertically distributed macroscopic root water uptake. The proposed transient plant water storage approach is compared with the more conventionally used quasi- steady-state approach. Both approaches are used to simulate soil water flow and diurnal variations of transpiration at a forest site covered with Norway spruce. The key parameter of the transient storage approach - plant hydraulic capacitance - is estimated by comparing the variations of potential transpiration rate, derived from micrometeorological measurements, with observed sap flow intensities. The application of the proposed model leads to improved predictions of root water uptake and actual transpiration rates. The algorithm can be easily implemented into existing soil water flow models and used to simulate transpiration stream responses to varying atmospheric and soil moisture conditions including isohydric and anisohydric plant responses to drought stress.

  19. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression.

    Science.gov (United States)

    Augé, Robert M; Toler, Heather D; Saxton, Arnold M

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (g s), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of g s and E (28 and 26%, respectively). CER has been over twice as sensitive as g s and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for g s and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  20. Dominant controls of transpiration along a hillslope transect inferred from ecohydrological measurements and thermodynamic limits

    Science.gov (United States)

    Renner, Maik; Hassler, Sibylle K.; Blume, Theresa; Weiler, Markus; Hildebrandt, Anke; Guderle, Marcus; Schymanski, Stanislaus J.; Kleidon, Axel

    2016-05-01

    We combine ecohydrological observations of sap flow and soil moisture with thermodynamically constrained estimates of atmospheric evaporative demand to infer the dominant controls of forest transpiration in complex terrain. We hypothesize that daily variations in transpiration are dominated by variations in atmospheric demand, while site-specific controls, including limiting soil moisture, act on longer timescales. We test these hypotheses with data of a measurement setup consisting of five sites along a valley cross section in Luxembourg. Both hillslopes are covered by forest dominated by European beech (Fagus sylvatica L.). Two independent measurements are used to estimate stand transpiration: (i) sap flow and (ii) diurnal variations in soil moisture, which were used to estimate the daily root water uptake. Atmospheric evaporative demand is estimated through thermodynamically constrained evaporation, which only requires absorbed solar radiation and temperature as input data without any empirical parameters. Both transpiration estimates are strongly correlated to atmospheric demand at the daily timescale. We find that neither vapor pressure deficit nor wind speed add to the explained variance, supporting the idea that they are dependent variables on land-atmosphere exchange and the surface energy budget. Estimated stand transpiration was in a similar range at the north-facing and the south-facing hillslopes despite the different aspect and the largely different stand composition. We identified an inverse relationship between sap flux density and the site-average sapwood area per tree as estimated by the site forest inventories. This suggests that tree hydraulic adaptation can compensate for heterogeneous conditions. However, during dry summer periods differences in topographic factors and stand structure can cause spatially variable transpiration rates. We conclude that absorption of solar radiation at the surface forms a dominant control for turbulent heat and

  1. Isotopic steady state of transpired water in wheat leaves grown under different watering regimes

    Science.gov (United States)

    Hu, J.; Simonin, K.; Barbour, M.

    2013-12-01

    Stable oxygen isotopes have been used to answer a range of ecological, hydrological, and climate questions. One important application is to use oxygen isotopes to partition ecosystem evapotranspiration (ET), since the two components, transpiration and evaporation have distinctly different isotopic compositions (δ18O). However, in order to partition ET using isotopes, accurate measurements or modeling of evaporation and transpiration, are needed. Many studies use the Craig-Gordon Model to model the isotopic composition of transpired water (δ18OT), which assume plants are transpiring at isotopic steady state (ISS), such that the isotopic composition of transpired water (δ18OT) is equal to the δ18O of stem water. However, many studies are questioning the assumption that plants are transpiring at ISS, especially across diurnal time scales. A significant motivation for assuming ISS is the difficulty of collecting transpired water for isotopic analysis. However, with the introduction of laser based spectroscopy methods for isotope analysis, we can now measure δ18O of water vapor at high frequency. Furthermore, these laser based instruments can also be coupled with gas exchange systems to not only measure the isotopic composition of δ18OT, but also to examine the physiological and environmental variables that influence the isotope values, and directly test process-based models. In our study, our first objective was to assess how quickly plants reached isotopic constancy (IC) under a range of environmental conditions. We used two different wheat cultivars that had different stomatal conductance (gs) and subjected them to two different watering treatments to extend the range of gs. Our second objective was to compare δ18OT at IC with δ18O of irrigation water to understand the difference between ISS and IC. We found a significant positive relationship between gs and time to IC (pirrigation water; in other words, δ18OT never reached ISS. This has implications for

  2. A high CO2 -driven decrease in plant transpiration leads to perturbations in the hydrological cycle and may link terrestrial and marine loss of biodiversity: deep-time evidence.

    Science.gov (United States)

    Steinthorsdottir, Margret; Woodward, F. Ian; Surlyk, Finn; McElwain, Jennifer C.

    2013-04-01

    CO2 is obtained and water vapor simultaneously transpired through plant stomata, driving the water uptake of roots. Stomata are key elements of the Earth's hydrological cycle, since a large part of the evapotranspiration from the surface to the atmosphere takes place via stomatal pores. Plants exercise stomatal control, by adjusting stomatal size and/or density in order to preserve water while maintaining carbon uptake for photosynthesis. A global decrease in stomatal density and/or size causes a decrease in transpiration and has the potential to increase global runoff. Here we show, from 91 fossil leaf cuticle specimens from the Triassic/Jurassic boundary transition (Tr-J) of East Greenland, that both stomatal size and density decreased dramatically during the Tr-J, coinciding with mass extinctions, major environmental upheaval and a negative C-isotope excursion. We estimate that these developmental and structural changes in stomata resulted in a 50-60% drop in stomatal and canopy transpiration as calibrated using a stomatal model, based on empirical measurements and adjusted for fossil plants. We additionally present new field evidence indicating a change to increased erosion and bad-land formation at the Tr-J. We hypothesize that plant physiological responses to high carbon dioxide concentrations at the Tr-J may have increased runoff at the local and perhaps even regional scale. Increased runoff may result in increased flux of nutrients from land to oceans, leading to eutrophication, anoxia and ultimately loss of marine biodiversity. High-CO2 driven changes in stomatal and canopy transpiration therefore provide a possible mechanistic link between terrestrial ecological crisis and marine mass extinction at the Tr-J.

  3. The effect of water and nitrogen amendments on photosynthesis, leaf demography, and resource-use efficiency in Larrea tridentata, a desert evergreen shrub.

    Science.gov (United States)

    Lajtha, Kate; Whitford, Walter G

    1989-08-01

    In the Chihuahuan Desert of southern New Mexico, both water and nitrogen limit the primary productivity of Larrea tridentata, a xerophytic evergreen shrub. Net photosynthesis was positively correlated to leaf N, but only in plants that received supplemental water. Nutrient-use efficiency, defined as photosynthetic carbon gain per unit N invested in leaf tissue, declined with increasing leaf N. However, water-use efficiency, defined as the ratio of photosynthesis to transpiration, increased with increasing leaf N, and thus these two measures of resource-use efficiency were inversely correlated. Resorption efficiency was not significantly altered over the nutrient gradient, nor was it affected by irrigation treatments. Leaf longevity decreased significantly with fertilization although the absolute magnitude of this decrease was fairly small, in part due to a large background of insect-induced mortality. Age-specific gas exchange measurements support the hypothesis that leaf aging represents a redistribution of resources, rather than actual deterioration or declining resource-use efficiency.

  4. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    Science.gov (United States)

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  5. Elevated CO2 enhances leaf senescence during extreme heat and drought in a temperate forest

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Jeffrey [ORNL; Norby, Richard J [ORNL; Wullschleger, Stan D [ORNL

    2011-01-01

    In 2007, an extreme drought and acute heat wave damaged ecosystems across the southeastern US, including a 19-year-old Liquidambar styraciflua L. (sweetgum) tree plantation exposed to long-term elevated CO2 treatments. Stem sap velocities in trees exposed to ambient (A) or elevated (E) CO2 were analyzed to assess potential interactions between CO2 and these weather extremes. Leaf temperature (Tleaf) and net carbon uptake (GPP) were modeled based on patterns of sap velocity to estimate indirect impacts of CO2-reduced transpiration on premature leaf senescence. Elevated CO2 reduced sap flow by 28% during early summer, and by up to 45% late in the drought during record-setting high air temperatures. Canopy transpiration and conductance declined more rapidly in ECO2 plots, resulting in ECO2 Tleaf up to 45 C, which was 1-2 C greater than ACO2 Tleaf. Pre-drought GPP was ~7% greater in ECO2 plots, then declined to 30% less than ACO2 GPP as the drought progressed. Leaf abscission peaked during this period, and was 30% greater for ECO2 trees. While ECO2 can reduce leaf-level water use under droughty conditions, acute drought or heat conditions may induce excessive stomatal closure that could offset benefits of ECO2 to temperate forest species during extreme weather events.

  6. Spatial trends in leaf size of Amazonian rainforest trees

    Directory of Open Access Journals (Sweden)

    A. C. M. Malhado

    2009-08-01

    Full Text Available Leaf size influences many aspects of tree function such as rates of transpiration and photosynthesis and, consequently, often varies in a predictable way in response to environmental gradients. The recent development of pan-Amazonian databases based on permanent botanical plots has now made it possible to assess trends in leaf size across environmental gradients in Amazonia. Previous plot-based studies have shown that the community structure of Amazonian trees breaks down into at least two major ecological gradients corresponding with variations in soil fertility (decreasing from southwest to northeast and length of the dry season (increasing from northwest to south and east. Here we describe the geographic distribution of leaf size categories based on 121 plots distributed across eight South American countries. We find that the Amazon forest is predominantly populated by tree species and individuals in the mesophyll size class (20.25–182.25 cm2. The geographic distribution of species and individuals with large leaves (>20.25 cm2 is complex but is generally characterized by a higher proportion of such trees in the northwest of the region. Spatially corrected regressions reveal weak correlations between the proportion of large-leaved species and metrics of water availability. We also find a significant negative relationship between leaf size and wood density.

  7. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum--a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species.

    Directory of Open Access Journals (Sweden)

    Wenzel Kröber

    Full Text Available While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether xylem traits that describe drought tolerance and vulnerability to cavitation are linked to particular leaf traits. We assessed xylem vulnerability, using the pressure sleeve technique, and anatomical xylem characteristics in 39 subtropical tree species grown under common garden conditions in the BEF-China experiment and tested for correlations with traits related to the leaf economics spectrum as well as to stomatal control, including maximum stomatal conductance, vapor pressure deficit at maximum stomatal conductance and vapor pressure deficit at which stomatal conductance is down-regulated. Our results revealed that specific xylem hydraulic conductivity and cavitation resistance were closely linked to traits represented in the leaf economic spectrum, in particular to leaf nitrogen concentration, as well as to log leaf area and leaf carbon to nitrogen ratio but not to any parameter of stomatal conductance. The study highlights the potential use of well-known leaf traits from the leaf economics spectrum to predict plant species' drought resistance.

  8. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    Science.gov (United States)

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  9. HESS Opinions "a perspective on isotope versus non-isotope approaches to determine the contribution of transpiration to total evaporation"

    NARCIS (Netherlands)

    Sutanto, S. J.; Van Den Hurk, B.; Dirmeyer, P. A.; Seneviratne, S. I.; Röckmann, T.; Trenberth, K. E.; Blyth, E. M.; Wenninger, J.; Hoffmann, G.

    2014-01-01

    Current techniques to disentangle the evaporative fluxes from the continental surface into a contribution evaporated from soils and canopy, or transpired by plants, are under debate. Many isotope-based studies show that transpiration contributes generally more than 70% to the total evaporation,

  10. How soil moisture mediates the influence of transpiration on streamflow at hourly to interannual scales in a forested catchment

    Science.gov (United States)

    G.W. Moore; J.A. Jones; B.J. Bond

    2011-01-01

    The water balance equation dictates that streamflow may be reduced by transpiration. Yet temporal disequilibrium weakens the relationship between transpiration and streamflow in many cases where inputs and outputs are unbalanced. We address two critical knowledge barriers in ecohydrology with respect to time, scale dependence and lags. Study objectives were to...

  11. Poiseuille, thermal transpiration and Couette flows of a rarefied gas between plane parallel walls with nonuniform surface properties in the transverse direction and their reciprocity relations

    Science.gov (United States)

    Doi, Toshiyuki

    2018-04-01

    Slow flows of a rarefied gas between two plane parallel walls with nonuniform surface properties are studied based on kinetic theory. It is assumed that one wall is a diffuse reflection boundary and the other wall is a Maxwell-type boundary whose accommodation coefficient varies periodically in the direction perpendicular to the flow. The time-independent Poiseuille, thermal transpiration and Couette flows are considered. The flow behavior is numerically studied based on the linearized Bhatnagar–Gross–Krook–Welander model of the Boltzmann equation. The flow field, the mass and heat flow rates in the gas, and the tangential force acting on the wall surface are studied over a wide range of the gas rarefaction degree and the parameters characterizing the distribution of the accommodation coefficient. The locally convex velocity distribution is observed in Couette flow of a highly rarefied gas, similarly to Poiseuille flow and thermal transpiration. The reciprocity relations are numerically confirmed over a wide range of the flow parameters.

  12. Dependence of leaf surface potential response of a plant (Ficus Elastica) to light irradiation on room temperature; Shokubutsu (gomunoki) hamen den`i no hikari shosha oto no shitsuon izonsei

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, H.; Kenmoku, Y.; Sakakibara, T. [Toyohashi University of Technology, Aichi (Japan); Nakagawa, S. [Maizuru National College of Technology, Kyoto (Japan); Kawamoto, T. [Shizuoka University, Shizuoka (Japan)

    1997-11-25

    In order to clarify plant body potential information, study was made on a leaf surface potential response to light irradiation. The leaf surface potential change, total transpiration and transpiration rate of Ficus Elastica were measured using light irradiation period and room temperature as parameters. The leaf surface potential change shows a positive peak after the start of light irradiation, while a negative peak after its end. Arrival time to both peaks is constant regardless of the light irradiation period, while decrease with an increase in room temperature. Although the total transpiration increases with room temperature, this tendency disappears with an increase in light irradiation period. The transpiration rate shows its peak after the start of light irradiation. Arrival time to the peak is saturated with the light irradiation period of 60min, while decreases with an increase in room temperature. These results suggest that opening of stomata becomes active with an increase in room temperature, and the peak of the leaf surface potential after the start of light irradiation relates to the opening. 3 refs., 11 figs.

  13. 18O Spatial Patterns of Vein Xylem Water, Leaf Water, and Dry Matter in Cotton Leaves

    Science.gov (United States)

    Gan, Kim Suan; Wong, Suan Chin; Yong, Jean Wan Hong; Farquhar, Graham Douglas

    2002-01-01

    Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the 18O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves. PMID:12376664

  14. (18)O spatial patterns of vein xylem water, leaf water, and dry matter in cotton leaves.

    Science.gov (United States)

    Gan, Kim Suan; Wong, Suan Chin; Yong, Jean Wan Hong; Farquhar, Graham Douglas

    2002-10-01

    Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the (18)O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves.

  15. Leaf temperature and stomatal influences on sap velocity diurnal hysteresis in the Amazon rainforest

    Science.gov (United States)

    Jardine, K.; Gimenez, B.; Negron Juarez, R. I.; Koven, C.; Powell, T.; Higuchi, N.; Chambers, J.; Varadharajan, C.

    2016-12-01

    In order to improve our ability to predict terrestrial evapotranspiration fluxes, an understanding of the interactions between plant physiology and environmental conditions is necessary, but remains poorly characterized, especially in tropical ecosystems. In this study we show a tight positive correlation between sap velocity (at 1 m of height) and leaf surface temperature (LST, 20-30 m of height) in canopy dominant trees in two primary rainforest sites in the Amazon basin (Santarém and Manaus, Brazil). As leaf temperatures varied throughout the day, sap velocity responded with little delay (<15 min). Positive sap velocity was often observed at night, but also closely followed night time LSTs. When plotted versus LST, sap velocity showed an exponential increase before reaching a reflection point and a plateau and is characterized as a sigmoidal curve, in all observed trees. Moreover, a clear diurnal hysteresis in sap velocity was evident with morning periods showing higher temperature sensitivities than afternoon and night periods. Diurnal leaf observations showed a morning peak in stomatal conductance ( 10:00-10:30), but a mid-day to afternoon peak in transpiration and leaf temperature (12:00-14:00). Our observations suggest the sap velocity-LST hysteresis pattern arises due to the temporal offset between stomatal conductance and vapor pressure deficits (VPD) and demonstrates the dominating effect of VPD over stomatal conductance in maintaining high transpiration/sap flow rates under elevated temperatures. Our results have important implications for modeling tropical forest transpiration and suggests the possibility of predicting evapotranspiration fluxes at the ecosystem to regional scales based on remote sensed vegetation temperature.

  16. Suppression of transpiration due to cloud immersion in a seasonally dry Mexican Weeping Pine plantation

    NARCIS (Netherlands)

    Alvarado-Barrientos, M.S.; Holwerda, F.; Asbjornsen, H.; Dawson, T.E.; Bruijnzeel, L.A.

    2013-01-01

    Cloud immersion affects the water budget of fog-affected forests not only by introducing an additional source of water (via cloud water interception by the canopy), but also by suppressing plant transpiration. The latter effect is often overlooked and not routinely quantified, restricting a complete

  17. Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin

    NARCIS (Netherlands)

    Mallick, Kaniska; Trebs, Ivonne; Boegh, Eva; Giustarini, Laura; Schlerf, Martin; Drewry, Darren T.; Hoffmann, Lucien; Randow, Von Celso; Kruijt, Bart; Araùjo, Alessandro; Saleska, Scott; Ehleringer, James R.; Domingues, Tomas F.; Ometto, Jean Pierre H.B.; Nobre, Antonio D.; Luiz Leal De Moraes, Osvaldo; Hayek, Matthew; William Munger, J.; Wofsy, Steven C.

    2016-01-01

    Canopy and aerodynamic conductances (gC and gA) are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET) and

  18. Partitioning evaporation and transpiration in a maize field using heat pulse sensors for evaporation measurement

    Science.gov (United States)

    Evapotranspiration (ET) is the sum of soil water evaporation (E) and plant transpiration (T). E and T occur simultaneously in many systems with varying levels of importance, yet it is often very challenging to distinguish these fluxes separately in the field. Few studies have measured all three term...

  19. Data Driven Estimation of Transpiration from Net Water Fluxes: the TEA Algorithm

    Science.gov (United States)

    Nelson, J. A.; Carvalhais, N.; Cuntz, M.; Delpierre, N.; Knauer, J.; Migliavacca, M.; Ogee, J.; Reichstein, M.; Jung, M.

    2017-12-01

    The eddy covariance method, while powerful, can only provide a net accounting of ecosystem fluxes. Particularly with water cycle components, efforts to partitioning total evapotranspiration (ET) into the biotic component (transpiration, T) and the abiotic component (here evaporation, E) have seen limited success, with no one method emerging as a standard.Here we demonstrate a novel method that uses ecosystem WUE to predict transpiration in two steps: (1) a filtration step that to isolate the signal of ET for periods where E is minimized and ET is likely dominated by the signal of T; and (2) a step which predicts the WUE using meteorological variables, as well as information derived from the carbon and energy fluxes. To assess the the underlying assumptions, we tested the proposed method on three ecological models, allowing validation where the underlying carbon:water relationships, as well as the transpiration estimates, are know.The partitioning method shows high correlation (R²>0.8) between Tmodel/ET and TTEA/ET across timescales from half-hourly to annually, as well as capturing spatial variability across sites. Apart from predictive performance, we explore the sensitivities of the method to the underlying assumptions, such as the effects of residual evaporation in the training dataset. Furthermore, we show initial transpiration estimates from the algorithm at global scale, via the FLUXNET dataset.

  20. Athletic field paint color impacts transpiration and canopy temperature in bermudagrass

    Science.gov (United States)

    Athletic field paints have varying impacts on turfgrass health which have been linked to their ability to alter photosynthetically active radiation (PAR) and photosynthesis based on color. It was further hypothesized they may also alter transpiration and canopy temperature by disrupting gas exchange...

  1. Silver and zinc inhibitors influence transpiration rate and aquaporin transcript levels in intact soybean plants

    Science.gov (United States)

    Some soybean (Glycine max (L.) Merr.) have been identified that expressed limited transpiration rate (TR) above a threshold vapor pressure deficit (VPD). Restriction of TR at high VPD conditions is considered a water conservation trait that allows water to be retained in the soil to benefit of crop...

  2. Transpiration response of upland rice to water deficit changed by different levels of eucalyptus biochar

    Directory of Open Access Journals (Sweden)

    Rogério Gomes Pereira

    2012-05-01

    Full Text Available The objective of this work was to evaluate the effect of eucalyptus biochar on the transpiration rate of upland rice 'BRSMG Curinga' as an alternative means to decrease the effect of water stress on plant growth and development. Two-pot experiments were carried out using a completely randomized block design, in a split-plot arrangement, with six replicates. Main plots were water stress (WS and no-water stress (NWS, and the subplots were biochar doses at 0, 6, 12 and 24% in growing medium (sand. Total transpirable soil water (TTSW, the p factor - defined as the average fraction of TTSW which can be depleted from the root zone before water stress limits growth -, and the normalized transpiration rate (NTR were determined. Biochar addition increased TTSW and the p factor, and reduced NTR. Consequently, biochar addition was able to change the moisture threshold (p factor of the growing medium, up to 12% maximum concentration, delaying the point where transpiration declines and affects yield.

  3. Partitioning evaporation and transpiration in a maize field with heat-pulse sensors used for evaporation

    Science.gov (United States)

    Evaporation (E) and transpiration (T) occur simultaneously in many systems with varying levels of importance, yet terms are typically lumped as evapotranspiration (ET) due to difficulty with distinguishing component fluxes. Few studies have measured all three terms (ET, E, and T), and in the few cas...

  4. Inter-annual variation in the response of leaf-out onset to soil moisture increase in a teak plantation in northern Thailand.

    Science.gov (United States)

    Yoshifuji, Natsuko; Igarashi, Yasunori; Tanaka, Nobuaki; Tanaka, Katsunori; Sato, Takanori; Tantasirin, Chatchai; Suzuki, Masakazu

    2014-11-01

    To understand the impact of inter-annual climate change on vegetation-atmosphere mass and energy exchanges, it has become necessary to explore changes in leaf-out onset in response to climatic fluctuations. We examined the response of leaf-out and transpiration onset dates to soil moisture in a teak plantation in northern Thailand based on a 12-year leaf area index and sap flow measurements. The date of leaf-out and transpiration onset varied between years by up to 40 days, and depended on the initial date when the relative extractable water in a soil layer of 0-0.6 m (Θ) was greater than 0.2 being consistent with our previous results. Our new finding is that the delay in leaf-out and transpiration onset relative to the initial date when Θ > 0.2 increases linearly as the initial date on which Θ > 0.2 becomes earlier. The delay spans about 20 days in years when Θ > 0.2 occurs in March (the late dry season)-much earlier than usual because of heavy pre-monsoon rainfalls-while there is little delay in years when Θ > 0.2 occurs in May. This delay indicates the influence of additional factors on leaf-out onset, which controls the delay in the response of leaf-out to soil moisture increase. The results increased our knowledge about the pattern and extent of the changes in leaf phenology that occur in response to the inter-annual climate variation in tropical regions, where, in particular, such research is needed.

  5. Smaller stomata require less severe leaf drying to close: A case study in Rosa hydrida

    DEFF Research Database (Denmark)

    Gebraegziabher, Habtamu Giday; Kjær, Katrine Heinsvig; Fanourakis, D.

    2013-01-01

    Stomata formed at high relative air humidity (RH) close less as leaf dries; an effect that varies depending on the genotype. We here quantified the contribution of each stomatal response characteristic to the higher water loss of high RH-grown plants, and assessed the relationship between response...... characteristics and intraspecific variation in stomatal size. Stomatal size (length multiplied by width), density and responsiveness to desiccation, as well as pore dimensions were analyzed in ten rose cultivars grown at moderate (60%) or high (85%) RH. Leaf morphological components and transpiration at growth...

  6. Soil moisture and wild olive tree transpiration relationship in a water-limited Mediterranean ecosystem.

    Science.gov (United States)

    Curreli, M.; Montaldo, N.; Oren, R.

    2016-12-01

    Typically, during the dry summers, Mediterranean ecosystems are characterized by a simple dual PFTs system with strong-resistant woody vegetation and bare soil, since grass died. In these conditions the combined use of sap flow measurements, based on Granier's thermo-dissipative probes, eddy covariance technique and soil water content measurements provides a robust estimation of evapotranspiration (ET). An eddy covariance micrometeorological tower, thermo-dissipative probes based on the Granier technique and TDR sensors have been installed in the Orroli site in Sardinia (Italy). The site landscape is a mixture of Mediterranean patchy vegetation types: wild olives, different shrubs and herbaceous species, which died during the summer. 33 sap flow sensors have been installed at the Orroli site into 15 wild olives clumps with different characteristics (tree size, exposition to wind, solar radiation and soil depth). Sap flow measurements show the significantly impacts on transpiration of soil moisture, radiation and vapor pressure deficit (VPD). In addition ET is strongly influenced by the tree position into the clump. Results show a significant difference in sap flow rate for the south exposed trees compared to inside clump and north exposed trees. Using an innovative scaling procedure, the transpiration calculated from sap flow measurements have been compared to the eddy covariance ET. Sap flow measurements show night time uptake allows the recharge of the stem capacity, depleted during the day before due to transpiration. The night uptake increases with increasing VPD and transpiration but surprisingly it is independent to soil water content. Soil moisture probes allow monitoring spatial and temporal dynamics of water content at different soil depth and distance to the trees, and estimating its correlation with hydraulic lift. During the light hours soil moisture is depleted by roots to provide the water for transpiration and during night time the lateral roots

  7. Canopy-scale biophysical controls of transpiration and evaporation in the Amazon Basin

    Directory of Open Access Journals (Sweden)

    K. Mallick

    2016-10-01

    Full Text Available Canopy and aerodynamic conductances (gC and gA are two of the key land surface biophysical variables that control the land surface response of land surface schemes in climate models. Their representation is crucial for predicting transpiration (λET and evaporation (λEE flux components of the terrestrial latent heat flux (λE, which has important implications for global climate change and water resource management. By physical integration of radiometric surface temperature (TR into an integrated framework of the Penman–Monteith and Shuttleworth–Wallace models, we present a novel approach to directly quantify the canopy-scale biophysical controls on λET and λEE over multiple plant functional types (PFTs in the Amazon Basin. Combining data from six LBA (Large-scale Biosphere-Atmosphere Experiment in Amazonia eddy covariance tower sites and a TR-driven physically based modeling approach, we identified the canopy-scale feedback-response mechanism between gC, λET, and atmospheric vapor pressure deficit (DA, without using any leaf-scale empirical parameterizations for the modeling. The TR-based model shows minor biophysical control on λET during the wet (rainy seasons where λET becomes predominantly radiation driven and net radiation (RN determines 75 to 80 % of the variances of λET. However, biophysical control on λET is dramatically increased during the dry seasons, and particularly the 2005 drought year, explaining 50 to 65 % of the variances of λET, and indicates λET to be substantially soil moisture driven during the rainfall deficit phase. Despite substantial differences in gA between forests and pastures, very similar canopy–atmosphere "coupling" was found in these two biomes due to soil moisture-induced decrease in gC in the pasture. This revealed the pragmatic aspect of the TR-driven model behavior that exhibits a high sensitivity of gC to per unit change in wetness as opposed to gA that is marginally sensitive to

  8. PROTEOMIC PROFILE REVEALS THE DIVERSITY AND COMPLEXITY OF LEAF PROTEINS IN SPINACH (BETA VULGARIS VAR. ALL GREEN

    Directory of Open Access Journals (Sweden)

    Sudip Ghosh

    2016-06-01

    Full Text Available Leaf is a source organ that serves dual function in photosynthesis and transpiration. As a primary interface between plant and ecosystem, it performs a range of biological processes from carbon assimilation and metabolite partitioning to plant productivity. Basic features of the leaf functionality are conserved in angiosperms exhibiting common and unique characteristics. Spinach has been the model crop for studying leaf function, primarily photosynthesis. It is a reservoir of several hundreds of primary and secondary biomolecules. To better understand the molecular basis for photochemical reaction and metabolic partitioning, we developed leaf proteome of Indian spinach (Beta vulgaris var. all green. LC-ESI-MS/MS analysis identified 639 proteins exhibiting discrete molecular features and functions, including photosynthesis, transpiration, gaseous exchange, transport, redox status, cell defense, and floral induction besides the presence of proteins with unknown function. This represents the first comprehensive foliage proteome of green leafy vegetable. Together, this work provides important insights into the molecular networks underlying spinach leaf biological processes.

  9. Seagrass leaf element content

    NARCIS (Netherlands)

    Vonk, J.A.; Smulders, Fee O.H.; Christianen, Marjolijn J.A.; Govers, Laura L.

    2017-01-01

    Knowledge on the role of seagrass leaf elements and in particular micronutrients and their ranges is limited. We present a global database, consisting of 1126 unique leaf values for ten elements, obtained from literature and unpublished data, spanning 25 different seagrass species from 28 countries.

  10. Leaf Size in Swietenia

    Science.gov (United States)

    Charles B. Briscoe; F. Bruce. Lamb

    1962-01-01

    A study was made of the putative hybrid of bigleaf and small-leaf mahoganies. Initial measurements indicated that bigleaf mahogany can be distinguished from small-leaf mahogany by gross measurements of leaflets. Isolated mother trees yield typical progeny. Typical mother trees in mixed stands yield like progeny plus, usually, mediumleaf progeny. Mediumleaf mother trees...

  11. Evaluating potential impacts of species conversion on transpiration in the Piedmont of North Carolina

    Science.gov (United States)

    Boggs, J.; Treasure, E.; Simpson, G.; Domec, J.; Sun, G.; McNulty, S.

    2010-12-01

    Land management practices that include species conversion or vegetation manipulation can have consequences to surface water availability, groundwater recharge, streamflow generation, and water quality through altering the transpiration processes in forested watersheds. Our objective in this study is to compare stand water use or transpiration in a piedmont mixed hardwood stand (i.e., present stand) to five hypothetical single species stands (i.e., management scenarios), [Quercus spp. (oak), Acer Rubrum (red maple), Liquidambar styraciflua (sweetgum), Liriodendron tulipifera (tulip poplar), and Pinus Taeda (loblolly pine]. Since October 2007, six watersheds with a flume or v-notch weir installed at the watershed outlet have been monitored for baseline streamflow rates (mm d-1). In the summer of 2010, five trees from each of the above species were instrumented with sap flow sensors in the riparian upland of one watershed to develop linkages between stand stream runoff and transpiration. The sap flow or thermal heat dissipation method was used to calculate tree sap flux density for the mixed hardwood stand. Tree sapwood area and stand tree density were then used to compute stand transpiration rates, mm d-1, from June - August 2010. The parameters of the hypothetical single species stands were based on values determined from mixed hardwood stand conditions (e.g., the same stand sapwood area and stand tree density were applied to each option). The diameter at beast height of the monitored trees ranged from 10 cm to 38 cm with a water use range of 1.8 kg d-1 to 104 kg d-1. From our preliminary data, we found daily transpiration from the mixed hardwood stand (2.8 mm d-1 ± 0.06) was significantly (p < 0.05) lower than daily transpiration from the red maple (3.7 mm d-1 ± 0.14) and tulip poplar (3.5 mm d-1 ± 0.12) single species stand management option and significantly (p < 0.05) higher than the loblolly pine (2.3 mm d-1 ± 0.08), sweetgum (2.1 mm d-1 ± 0.08) and oak

  12. A 3-D functional-structural grapevine model that couples the dynamics of water transport with leaf gas exchange.

    Science.gov (United States)

    Zhu, Junqi; Dai, Zhanwu; Vivin, Philippe; Gambetta, Gregory A; Henke, Michael; Peccoux, Anthony; Ollat, Nathalie; Delrot, Serge

    2017-12-23

    Predicting both plant water status and leaf gas exchange under various environmental conditions is essential for anticipating the effects of climate change on plant growth and productivity. This study developed a functional-structural grapevine model which combines a mechanistic understanding of stomatal function and photosynthesis at the leaf level (i.e. extended Farqhuhar-von Caemmerer-Berry model) and the dynamics of water transport from soil to individual leaves (i.e. Tardieu-Davies model). The model included novel features that account for the effects of xylem embolism (fPLC) on leaf hydraulic conductance and residual stomatal conductance (g0), variable root and leaf hydraulic conductance, and the microclimate of individual organs. The model was calibrated with detailed datasets of leaf photosynthesis, leaf water potential, xylem sap abscisic acid (ABA) concentration and hourly whole-plant transpiration observed within a soil drying period, and validated with independent datasets of whole-plant transpiration under both well-watered and water-stressed conditions. The model well captured the effects of radiation, temperature, CO2 and vapour pressure deficit on leaf photosynthesis, transpiration, stomatal conductance and leaf water potential, and correctly reproduced the diurnal pattern and decline of water flux within the soil drying period. In silico analyses revealed that decreases in g0 with increasing fPLC were essential to avoid unrealistic drops in leaf water potential under severe water stress. Additionally, by varying the hydraulic conductance along the pathway (e.g. root and leaves) and changing the sensitivity of stomatal conductance to ABA and leaf water potential, the model can produce different water use behaviours (i.e. iso- and anisohydric). The robust performance of this model allows for modelling climate effects from individual plants to fields, and for modelling plants with complex, non-homogenous canopies. In addition, the model provides a

  13. Transpiration of Eucalyptus woodlands across a natural gradient of depth-to-groundwater.

    Science.gov (United States)

    Zolfaghar, Sepideh; Villalobos-Vega, Randol; Zeppel, Melanie; Cleverly, James; Rumman, Rizwana; Hingee, Matthew; Boulain, Nicolas; Li, Zheng; Eamus, Derek

    2017-07-01

    Water resources and their management present social, economic and environmental challenges, with demand for human consumptive, industrial and environmental uses increasing globally. However, environmental water requirements, that is, the allocation of water to the maintenance of ecosystem health, are often neglected or poorly quantified. Further, transpiration by trees is commonly a major determinant of the hydrological balance of woodlands but recognition of the role of groundwater in hydrological balances of woodlands remains inadequate, particularly in mesic climates. In this study, we measured rates of tree water-use and sapwood 13C isotopic ratio in a mesic, temperate Eucalypt woodland along a naturally occurring gradient of depth-to-groundwater (DGW), to examine daily, seasonal and annual patterns of transpiration. We found that: (i) the maximum rate of stand transpiration was observed at the second shallowest site (4.3 m) rather than the shallowest (2.4 m); (ii) as DGW increased from 4.3 to 37.5 m, stand transpiration declined; (iii) the smallest rate of stand transpiration was observed at the deepest (37.5 m) site; (iv) intrinsic water-use efficiency was smallest at the two intermediate DGW sites as reflected in the Δ13C of the most recently formed sapwood and largest at the deepest and shallowest DGW sites, reflecting the imposition of flooding at the shallowest site and the inaccessibility of groundwater at the deepest site; and (v) there was no evidence of convergence in rates of water-use for co-occurring species at any site. We conclude that even in mesic environments groundwater can be utilized by trees. We further conclude that these forests are facultatively groundwater-dependent when groundwater depth is <9 m and suggest that during drier-than-average years the contribution of groundwater to stand transpiration is likely to increase significantly at the three shallowest DGW sites. © The Author 2017. Published by Oxford University Press. All

  14. Effects of thinning intensities on transpiration and productivity of 50-year-old Pinus koraeinsis stands

    Science.gov (United States)

    Park, J.; Kim, T.; Cho, S.; Ryu, D.; Moon, M.; Kim, H. S.

    2015-12-01

    This study investigated the effects of thinning intensities on stand transpiration and productivity of 50-year-old Korean pine forests for three years. Forest thinning, which remove some fraction of trees from stand, alters the microclimatic conditions such as radiation distribution within canopy, vapor pressure deficit, and amount of available soil water. These changes influence on the tree water use, and related tree growth. Thinning was conducted on March, 2012 with two intensities (Control, Light-thinning, and Heavy-thinning). Transpiration was estimated from sap flux density, which was measured with Granier-type thermal dissipation sensors. Tree diameter growth was measured with dendrometer, and converted to tree productivity using allometric equations developed specifically in our study sites.The climatic conditions showed remarkable differences among three years. In 2012, total precipitation was highest but spring was dry. 2013 was normal year with frequent rain events. In contrast, 2014 was hot and extremely dry. Stand transpiration was initially decreased ca. 20% and 42% on light-thinning and heavy-thinning stand, respectively. In second year, it gradually recovered in both thinning intensities, and was 19% and 37% lower on light-thinning and heavy-thinning stand, respectively. However, the recovery trends were different between two thinning intensities. Transpiration of heavy-thinning stand was recovered slowly than that of light thinning stand. In 2014, heavy-thinning stand transpired ca. 5% more than control plot in early growing season, but severe drought had negative effects that caused reduction of stand transpiration in thinned stand on late growing season. The tree-level productivity was increased initially ca. 24% and 28% on light-thinning and heavy-thinning stand, respectively. During the following growing seasons, this thinning-induced enhancement of productivity was diminished in light-thinning stand (21% in 2013 and 20% in 2014), but was

  15. Soybean leaf hydraulic conductance does not acclimate to growth at elevated [CO2] or temperature in growth chambers or in the field.

    Science.gov (United States)

    Locke, Anna M; Sack, Lawren; Bernacchi, Carl J; Ort, Donald R

    2013-09-01

    Leaf hydraulic properties are strongly linked with transpiration and photosynthesis in many species. However, it is not known if gas exchange and hydraulics will have co-ordinated responses to climate change. The objective of this study was to investigate the responses of leaf hydraulic conductance (Kleaf) in Glycine max (soybean) to growth at elevated [CO2] and increased temperature compared with the responses of leaf gas exchange and leaf water status. Two controlled-environment growth chamber experiments were conducted with soybean to measure Kleaf, stomatal conductance (gs) and photosynthesis (A) during growth at elevated [CO2] and temperature relative to ambient levels. These results were validated with field experiments on soybean grown under free-air elevated [CO2] (FACE) and canopy warming. In chamber studies, Kleaf did not acclimate to growth at elevated [CO2], even though stomatal conductance decreased and photosynthesis increased. Growth at elevated temperature also did not affect Kleaf, although gs and A showed significant but inconsistent decreases. The lack of response of Kleaf to growth at increased [CO2] and temperature in chamber-grown plants was confirmed with field-grown soybean at a FACE facility. Leaf hydraulic and leaf gas exchange responses to these two climate change factors were not strongly linked in soybean, although gs responded to [CO2] and increased temperature as previously reported. This differential behaviour could lead to an imbalance between hydraulic supply and transpiration demand under extreme environmental conditions likely to become more common as global climate continues to change.

  16. Transpiration and root development of urban trees in structural soil stormwater reservoirs.

    Science.gov (United States)

    Bartens, Julia; Day, Susan D; Harris, J Roger; Wynn, Theresa M; Dove, Joseph E

    2009-10-01

    Stormwater management that relies on ecosystem processes, such as tree canopy interception and rhizosphere biology, can be difficult to achieve in built environments because urban land is costly and urban soil inhospitable to vegetation. Yet such systems offer a potentially valuable tool for achieving both sustainable urban forests and stormwater management. We evaluated tree water uptake and root distribution in a novel stormwater mitigation facility that integrates trees directly into detention reservoirs under pavement. The system relies on structural soils: highly porous engineered mixes designed to support tree root growth and pavement. To evaluate tree performance under the peculiar conditions of such a stormwater detention reservoir (i.e., periodically inundated), we grew green ash (Fraxinus pennsylvanica Marsh.) and swamp white oak (Quercus bicolor Willd.) in either CUSoil or a Carolina Stalite-based mix subjected to three simulated below-system infiltration rates for two growing seasons. Infiltration rate affected both transpiration and rooting depth. In a factorial experiment with ash, rooting depth always increased with infiltration rate for Stalite, but this relation was less consistent for CUSoil. Slow-drainage rates reduced transpiration and restricted rooting depth for both species and soils, and trunk growth was restricted for oak, which grew the most in moderate infiltration. Transpiration rates under slow infiltration were 55% (oak) and 70% (ash) of the most rapidly transpiring treatment (moderate for oak and rapid for ash). We conclude this system is feasible and provides another tool to address runoff that integrates the function of urban green spaces with other urban needs.

  17. Groundwater and unsaturated zone evaporation and transpiration in a semi-arid open woodland

    Science.gov (United States)

    Balugani, E.; Lubczynski, M. W.; Reyes-Acosta, L.; van der Tol, C.; Francés, A. P.; Metselaar, K.

    2017-04-01

    Studies on evapotranspiration partitioning under eddy covariance (EC) towers rarely address the separate effects of transpiration and evaporation on groundwater resources. Such partitioning is important to accurately assess groundwater resources, especially in arid and semi-arid areas. The main objective of this study was to partition (evaluate separately) the evaporation and transpiration components of evapotranspiration, originated either from saturated or unsaturated zone, and estimate their contributions in a semi-arid area characterized by relatively shallow groundwater Table (0-10 m deep). Evapotranspiration, tree transpiration and subsurface evaporation were estimated with EC tower, using sap flow methods and HYDRUS1D model, respectively. To set up the HYDRUS1D model, soil material properties, soil moisture, soil temperature, soil matric potential and water table depth were measured in the area. The tree transpiration was sourced into groundwater and unsaturated zone components (∼0.017 mm d-1 for both) and accounted for only ∼6% of the evapotranspiration measured by the EC tower (∼0.565 mm d-1), due to the low canopy coverage in the study area (7%). The subsurface evaporation fluxes were also sourced into groundwater and unsaturated zone components using the SOURCE package, and their relative relevance in total evapotranspiration was assessed. Subsurface evaporation was the main flux year-round (∼0.526 mm d-1). During late autumn, winter and early spring time, the unsaturated zone evaporation was dominant, while in dry summer the relevance of groundwater evaporation increased, reaching one third of evapotranspiration, although errors in the water balance closure point still at its possible underestimation. The results show that, in arid and semi-arid areas with sparse vegetation, the often neglected groundwater evaporation is a relevant contribution to evapotranspiration, and that water vapor flow should be taken into account in the calculation of

  18. Plant transpiration and net entropy exchange on the Earth’s surface in a Czech watershed

    Czech Academy of Sciences Publication Activity Database

    Tesař, Miroslav; Šír, Miloslav; Lichner, Ľ.; Čermák, J.

    2007-01-01

    Roč. 62, č. 5 (2007), s. 547-551 ISSN 0006-3088 R&D Projects: GA AV ČR 1QS200420562; GA ČR GA205/05/2312 Institutional research plan: CEZ:AV0Z20600510 Keywords : entropy * Gaia theory * hydrologic cycle * plant transpiration Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.207, year: 2007

  19. Transpiration effect on the uptake and distribution of bromacil, nitrobenzene, and phenol in soybean plants

    International Nuclear Information System (INIS)

    McFarlane, J.C.; Pfleeger, T.; Fletcher, J.

    1987-01-01

    The influence of transpiration rate on the uptake and translocation of two industrial waste compounds, phenol and nitrobenzene, and one pesticide, 5-bromo-3-sec-butyl-6-methyluracil (bromacil), was examined. Carbon-14 moieties of each compound were provided separately in hydroponic solution to mature soybean plants maintained under three humidity conditions. The uptake of each compound was determined by monitoring the removal of 14 C from the hydroponic solution. The extent to which 14 C was adsorbed to roots and translocated to plant shoots and leaves was examined by assaying root and shoot parts for 14 C. Bromacil was taken up slower than the other chemicals, had the most 14 C translocated to the shoot, and the amount translocated to the shoot responded directly to the rate of transpiration. In contrast, both phenol and nitrobenzene were rapidly lost from solution and bound to the roots. Less than 1.5% of the 14 C from phenol or nitrobenzene was translocated to the plant shoots. Increased transpiration rates had little influence on root binding of 14 C; however, increasing transpiration rate from low to medium was associated with an increased uptake of nitrobenzene. The three chemicals studied have similar Log K/sub ow/ values, but their interactions with soybean were not the same. Thus, despite the usefulness of the octanol/water partitioning coefficient in predicting the fate of organic chemicals in animals and in correlating with root binding and plant uptake for many pesticides, log K/sub ow/ may not be equally useful in describing uptake and binding of nonpesticide chemicals in plants

  20. The heterogeneity and spatial patterning of structure and physiology across the leaf surface in giant leaves of Alocasia macrorrhiza.

    Directory of Open Access Journals (Sweden)

    Shuai Li

    Full Text Available Leaf physiology determines the carbon acquisition of the whole plant, but there can be considerable variation in physiology and carbon acquisition within individual leaves. Alocasia macrorrhiza (L. Schott is an herbaceous species that can develop very large leaves of up to 1 m in length. However, little is known about the hydraulic and photosynthetic design of such giant leaves. Based on previous studies of smaller leaves, and on the greater surface area for trait variation in large leaves, we hypothesized that A. macrorrhiza leaves would exhibit significant heterogeneity in structure and function. We found evidence of reduced hydraulic supply and demand in the outer leaf regions; leaf mass per area, chlorophyll concentration, and guard cell length decreased, as did stomatal conductance, net photosynthetic rate and quantum efficiency of photosystem II. This heterogeneity in physiology was opposite to that expected from a thinner boundary layer at the leaf edge, which would have led to greater rates of gas exchange. Leaf temperature was 8.8°C higher in the outer than in the central region in the afternoon, consistent with reduced stomatal conductance and transpiration caused by a hydraulic limitation to the outer lamina. The reduced stomatal conductance in the outer regions would explain the observed homogeneous distribution of leaf water potential across the leaf surface. These findings indicate substantial heterogeneity in gas exchange across the leaf surface in large leaves, greater than that reported for smaller-leafed species, though the observed structural differences across the lamina were within the range reported for smaller-leafed species. Future work will determine whether the challenge of transporting water to the outer regions can limit leaf size for plants experiencing drought, and whether the heterogeneity of function across the leaf surface represents a particular disadvantage for large simple leaves that might explain their

  1. Antimicrobial olive leaf gelatin films for enhancing the quality of cold smoked salmon

    Science.gov (United States)

    Olive leaf products were evaluated as antimicrobial/antioxidant ingredients in edible films for smoked fish preservation. Olive leaf powder (OLP) and its water/ethanol extract (OLE) were tested against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella enterica using agar diffusion test...

  2. Within-field advection enhances evaporation and transpiration in a vineyard in an arid environment

    Science.gov (United States)

    Kool, Dilia; Ben-Gal, Alon; Agam, Nurit

    2017-04-01

    Advection of hot air from a warmer to a cooler surface is known to enhance evaporation through additional supply of energy, provided that water is readily available. This study investigated advection in an isolated irrigated vineyard in the Negev desert, over a period of several months under changing plant cover and environmental conditions, and for different degrees of water availability. Field, canopy, and soil energy balance fluxes were assessed, as well as likely indicators of advection such as wind speed, VPD, vertical temperature gradients between the soil, the canopy air space, and the air, and lateral temperature gradients between the vineyard and the surrounding desert. It was found that for a period from May to July, advection enhanced transpiration by 8%, of which an estimated 80% was soil-to-canopy advection and 20% was local advection. At times, soil-to-canopy advection was responsible for as much as 30-40% of transpiration. Wet irrigated strips likewise experienced soil-to-soil advection from drier soil, but to a much lesser degree. A surprisingly large difference was observed in the contribution of advection to transpiration between June (2%) and July (11%), which had almost identical environmental conditions. This indicates that small changes in the agro-system could have a large impact on within-field advection, and that systems could potentially be managed to reduce or enhance advection.

  3. Canopy Transpiration and Stomatal Responses to Prolonged Drought by a Dominant Desert Species in Central Asia

    Directory of Open Access Journals (Sweden)

    Daxing Gu

    2017-06-01

    Full Text Available In arid and semiarid lands, canopy transpiration and its dynamics depend largely on stomatal sensitivity to drought. In this study, the sap flow of a dominant species, Haloxylon ammodendron growing in Central Asian deserts, was monitored using Granier-type sensors, from which the canopy stomatal conductance was derived. The responses of canopy transpiration and stomatal conductance to environmental variables during the second half of the growing season, when annual prolonged drought occurred, was analyzed for four continuous years, from 2013 to 2016. A soil water content (SWC of 3% was identified as the lower soil water threshold for this species, below which the plant lost the ability for stomatal regulation on water loss and suffered the risk of mortality. Above this threshold, the sensitivity of canopy transpiration to vapor pressure deficit, VPD (K, was linearly correlated with SWC, which mainly resulted from different stomatal behaviors at varying drought intensities. Stomatal sensitivity to VPD (m/Gsref increased linearly with soil moisture deficit, inducing a shift from more anisohydric to a more isohydric stomatal behavior. The flexibility of stomatal behavior regarding soil drought was one key element facilitating the survival of H. ammodendron in such an extreme dry environment.

  4. Limited-transpiration response to high vapor pressure deficit in crop species.

    Science.gov (United States)

    Sinclair, Thomas R; Devi, Jyostna; Shekoofa, Avat; Choudhary, Sunita; Sadok, Walid; Vadez, Vincent; Riar, Mandeep; Rufty, Thomas

    2017-07-01

    Water deficit under nearly all field conditions is the major constraint on plant yields. Other than empirical observations, very little progress has been made in developing crop plants in which specific physiological traits for drought are expressed. As a consequence, there was little known about under what conditions and to what extent drought impacts crop yield. However, there has been rapid progress in recent years in understanding and developing a limited-transpiration trait under elevated atmospheric vapor pressure deficit to increase plant growth and yield under water-deficit conditions. This review paper examines the physiological basis for the limited-transpiration trait as result of low plant hydraulic conductivity, which appears to be related to aquaporin activity. Methodology was developed based on aquaporin involvement to identify candidate genotypes for drought tolerance of several major crop species. Cultivars of maize and soybean are now being marketed specifically for arid conditions. Understanding the mechanism of the limited-transpiration trait has allowed a geospatial analyses to define the environments in which increased yield responses can be expected. This review highlights the challenges and approaches to finally develop physiological traits contributing directly to plant improvement for water-limited environments. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Downwind evolution of transpiration by two irrigated crops under conditions of local advection

    Science.gov (United States)

    McAneney, K. J.; Brunet, Y.; Itier, B.

    1994-09-01

    Previous measurements of water loss from small-dish evaporimeters mounted at the height of irrigated crops grown under conditions of extreme local advection in the Sudan are reexamined. From these evaporimeter measurements, it is possible to calculate fractional changes in the saturation deficit. Relationships between canopy conductance and saturation deficit are briefly reviewed and introduced into the Penman-Monteith equation to calculate transpiration rates as a function of distance downwind of the boundary between the upwind desert and the irrigated crop. In contradiction to most theoretical predictions, these new calculations show rates of transpiration to undergo only modest changes with increasing fetch. This occurs because of the feedback interaction between saturation deficit and stomatal conductance. This result is in good accord with a recent study suggesting that a dry-moist boundary transition may be best modelled as a simple step change in surface fluxes and further that the advective enhancement of evaporation may have been overestimated by many advection models. Larger effects are expected on dry matter yields because of the direct influence of saturation deficit on the yield-transpiration ratio.

  6. Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance

    Directory of Open Access Journals (Sweden)

    D. Lombardozzi

    2012-08-01

    Full Text Available Plants exchange greenhouse gases carbon dioxide and water with the atmosphere through the processes of photosynthesis and transpiration, making them essential in climate regulation. Carbon dioxide and water exchange are typically coupled through the control of stomatal conductance, and the parameterization in many models often predict conductance based on photosynthesis values. Some environmental conditions, like exposure to high ozone (O3 concentrations, alter photosynthesis independent of stomatal conductance, so models that couple these processes cannot accurately predict both. The goals of this study were to test direct and indirect photosynthesis and stomatal conductance modifications based on O3 damage to tulip poplar (Liriodendron tulipifera in a coupled Farquhar/Ball-Berry model. The same modifications were then tested in the Community Land Model (CLM to determine the impacts on gross primary productivity (GPP and transpiration at a constant O3 concentration of 100 parts per billion (ppb. Modifying the Vcmax parameter and directly modifying stomatal conductance best predicts photosynthesis and stomatal conductance responses to chronic O3 over a range of environmental conditions. On a global scale, directly modifying conductance reduces the effect of O3 on both transpiration and GPP compared to indirectly modifying conductance, particularly in the tropics. The results of this study suggest that independently modifying stomatal conductance can improve the ability of models to predict hydrologic cycling, and therefore improve future climate predictions.

  7. Can Sap Flow Help Us to Better Understand Transpiration Patterns in Landscapes?

    Science.gov (United States)

    Hassler, S. K.; Weiler, M.; Blume, T.

    2017-12-01

    Transpiration is a key process in the hydrological cycle and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions and for improving the parameterisation of hydrological and soil-vegetation-atmosphere transfer models. At the tree scale, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status, stand-specific characteristics such as basal area or stand density and site-specific characteristics such as geology, slope position or aspect control sap flow of individual trees. However, little is known about the relative importance or the dynamic interplay of these controls. We studied these influences with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites spread over a 290 km²-catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we applied linear models to the daily spatial pattern of sap velocity and determined the importance of the different predictors. By upscaling sap velocities to the tree level with the help of species-dependent empirical estimates for sapwood area we also examined patterns of sap flow as a more direct representation of transpiration. Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in this landscape, namely tree species, tree diameter, geology and aspect. For sap flow, the site-specific predictors provided the largest contribution to the explained variance, however, in contrast to the sap velocity analysis, geology was more important than aspect. Spatial variability of atmospheric demand and soil moisture explained only a small fraction of the variance. However, the temporal dynamics of the explanatory power of the tree-specific characteristics, especially species, were

  8. Tree-, stand- and site-specific controls on landscape-scale patterns of transpiration

    Science.gov (United States)

    Kathrin Hassler, Sibylle; Weiler, Markus; Blume, Theresa

    2018-01-01

    Transpiration is a key process in the hydrological cycle, and a sound understanding and quantification of transpiration and its spatial variability is essential for management decisions as well as for improving the parameterisation and evaluation of hydrological and soil-vegetation-atmosphere transfer models. For individual trees, transpiration is commonly estimated by measuring sap flow. Besides evaporative demand and water availability, tree-specific characteristics such as species, size or social status control sap flow amounts of individual trees. Within forest stands, properties such as species composition, basal area or stand density additionally affect sap flow, for example via competition mechanisms. Finally, sap flow patterns might also be influenced by landscape-scale characteristics such as geology and soils, slope position or aspect because they affect water and energy availability; however, little is known about the dynamic interplay of these controls.We studied the relative importance of various tree-, stand- and site-specific characteristics with multiple linear regression models to explain the variability of sap velocity measurements in 61 beech and oak trees, located at 24 sites across a 290 km2 catchment in Luxembourg. For each of 132 consecutive days of the growing season of 2014 we modelled the daily sap velocity and derived sap flow patterns of these 61 trees, and we determined the importance of the different controls.Results indicate that a combination of mainly tree- and site-specific factors controls sap velocity patterns in the landscape, namely tree species, tree diameter, geology and aspect. For sap flow we included only the stand- and site-specific predictors in the models to ensure variable independence. Of those, geology and aspect were most important. Compared to these predictors, spatial variability of atmospheric demand and soil moisture explains only a small fraction of the variability in the daily datasets. However, the temporal

  9. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development.

    Directory of Open Access Journals (Sweden)

    Thibault Nordey

    Full Text Available Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.

  10. Combination of Ageratum conyzoides leaf extracts with antibiotics ...

    African Journals Online (AJOL)

    There has been increasing prevalence of bacterial resistance to commonly used antibiotics. The present study investigates the synergistic action of Ageratum conyzoides leaf extracts and antibiotics against Pseudomonas aeruginosa and Staphylococcus aureus isolated from wounds. The disc diffusion method was used.

  11. Phytochemical and antimicrobial study on the leaf extracts of ...

    African Journals Online (AJOL)

    USER

    2014-01-22

    Jan 22, 2014 ... The leaf of Erythrophleum africanum was exhaustively extracted with ethanol using cold maceration techniques. This was subsequently partitioned with petroleum ether, chloroform, ethylacetate and n- butanol. The agar diffusion method was used to determine the antimicrobial activity against the following ...

  12. In vitro antibacterial activity of Anogeissus leiocarpus leaf extracts on ...

    African Journals Online (AJOL)

    In vitro antibacterial activity of aqueous and ethanol extracts of the leaf of Anogeissus leiocarpus was tested on some bacteria associated with diarrhea which included Escherichia coli,Salmonella typhi,Salmonella typhimurium, Klebsiella aerogens and Yersinia enterocolitica using agar well diffusion method. There was ...

  13. Seasonal, synoptic and diurnal variation of atmospheric water-isotopologues in the boundary layer of Southwestern Germany caused by plant transpiration, cold-front passages and dewfall.

    Science.gov (United States)

    Christner, Emanuel; Dyroff, Christoph; Kohler, Martin; Zahn, Andreas; Gonzales, Yenny; Schneider, Matthias

    2013-04-01

    Atmospheric water is an enormously crucial trace gas. It is responsible for ~70 % of the natural greenhouse effect (Schmidt et al., JGR, 2010) and carries huge amounts of latent heat. The isotopic composition of water vapor is an elegant tracer for a better understanding and quantification of the extremely complex and variable hydrological cycle in Earth's atmosphere (evaporation, cloud condensation, rainout, re-evaporation, snow), which in turn is a prerequisite to improve climate modeling and predictions. As H216O, H218O and HDO differ in vapor pressure and mass, isotope fractionation occurs due to condensation, evaporation and diffusion processes. In contrast to that, plants are able to transpire water with almost no isotope fractionation. For that reason the ratio of isotopologue concentrations in the boundary layer (BL) provides, compared to humidity measurements alone, independent and additional constraints for quantifying the strength of evaporation and transpiration. Furthermore the isotope ratios contain information about transport history of an air mass and microphysical processes, that is not accessible by humidity measurements. Within the project MUSICA (MUlti-platform remote Sensing of Isotopologues for investigating the Cycle of Atmospheric water) a commercial Picarro Analyzer L2120-i is operated at Karlsruhe in Southwestern Germany, which is continuously measuring the isotopologues H216O, HDO and H218O of atmospheric water vapor since January 2012. A one year record of H216O, HDO and H218O shows clear seasonal, synoptic and diurnal characteristics and reveals the main driving processes affecting the isotopic composition of water vapor in the Middle European BL. Changes in continental plant transpiration and evaporation throughout the year lead to a slow seasonal HDO/H216O-variation, that cannot be explained by pure Rayleigh condensation. Furthermore, cold-front passages from NW lead to fast and pronounced depletion of the HDO/H216O-ratio within

  14. Functional design space of single-veined leaves: role of tissue hydraulic properties in constraining leaf size and shape.

    Science.gov (United States)

    Zwieniecki, Maciej A; Boyce, C Kevin; Holbrook, N Michele

    2004-10-01

    Morphological diversity of leaves is usually quantified with geometrical characters, while in many cases a simple set of biophysical parameters are involved in constraining size and shape. One of the main physiological functions of the leaf is transpiration and thus one can expect that leaf hydraulic parameters can be used to predict potential morphologies, although with the caveat that morphology in turn influences physiological parameters including light interception and boundary layer thickness and thereby heat transfer and net photosynthesis. An iterative model was used to determine the relative sizes and shapes that are functionally possible for single-veined leaves as defined by their ability to supply the entire leaf lamina with sufficient water to prevent stomatal closure. The model variables include the hydraulic resistances associated with vein axial and radial transport, as well as with water movement through the mesophyll and the leaf surface. The four parameters included in the model are sufficient to define a hydraulic functional design space that includes all single-veined leaf shapes found in nature, including scale-, awl- and needle-like morphologies. This exercise demonstrates that hydraulic parameters have dissimilar effects: surface resistance primarily affects leaf size, while radial and mesophyll resistances primarily affect leaf shape. These distinctions between hydraulic parameters, as well as the differential accessibility of different morphologies, might relate to the convergent evolutionary patterns seen in a variety of fossil lineages concerning overall morphology and anatomical detail that frequently have evolved in linear and simple multi-veined leaves.

  15. Acclimation to high CO2 in maize is related to water status and dependent on leaf rank.

    Science.gov (United States)

    Prins, Anneke; Mukubi, Josephine Muchwesi; Pellny, Till K; Verrier, Paul J; Beyene, Getu; Lopes, Marta Silva; Emami, Kaveh; Treumann, Achim; Lelarge-Trouverie, Caroline; Noctor, Graham; Kunert, Karl J; Kerchev, Pavel; Foyer, Christine H

    2011-02-01

    The responses of C(3) plants to rising atmospheric CO(2) levels are considered to be largely dependent on effects exerted through altered photosynthesis. In contrast, the nature of the responses of C(4) plants to high CO(2) remains controversial because of the absence of CO(2) -dependent effects on photosynthesis. In this study, the effects of atmospheric CO(2) availability on the transcriptome, proteome and metabolome profiles of two ranks of source leaves in maize (Zea mays L.) were studied in plants grown under ambient CO(2) conditions (350 +/- 20 µL L(-1) CO(2) ) or with CO(2) enrichment (700 +/- 20 µL L(-1) CO(2) ). Growth at high CO(2) had no effect on photosynthesis, photorespiration, leaf C/N ratios or anthocyanin contents. However, leaf transpiration rates, carbohydrate metabolism and protein carbonyl accumulation were altered at high CO(2) in a leaf-rank specific manner. Although no significant CO(2) -dependent changes in the leaf transcriptome were observed, qPCR analysis revealed that the abundance of transcripts encoding a Bowman-Birk protease inhibitor and a serpin were changed by the growth CO(2) level in a leaf rank specific manner. Moreover, CO(2) -dependent changes in the leaf proteome were most evident in the oldest source leaves. Small changes in water status may be responsible for the observed responses to high CO(2,) particularly in the older leaf ranks. © 2010 Blackwell Publishing Ltd.

  16. Curso diário e sazonal das trocas gasosas e do potencial hídrico foliar em aceroleiras Daily and seasonal course of gas exchange and leaf water potential in acerola plants

    Directory of Open Access Journals (Sweden)

    REJANE JUREMA MANSUR CUSTÓDIO NOGUEIRA

    2000-07-01

    Full Text Available Este trabalho objetivou avaliar o curso diário e sazonal das trocas gasosas, da temperatura foliar e do potencial hídrico da acerola (Malpighia emarginata D.C., no campo. O experimento realizou-se no município de Paudalho, PE. Os valores da transpiração e do potencial da água foram, de modo geral, mais elevados no início da manhã e no final da tarde; os da resistência difusiva e temperatura foliar foram menores no início da manhã e no final da tarde. Houve uma limitação das trocas gasosas com o ambiente, em decorrência da redução da transpiração nas horas mais quentes do dia, sendo mais acentuada na estação seca e na matriz UFRPE 7. Os valores mínimos do potencial ocorreram na época seca, variando de -3,4 MPa (UFRPE 7 a -4,3 MPa (UFRPE 8, enquanto os valores máximos da resistência variaram de 16,30 s cm-1 (UFRPE 7 a 22,10 s cm-1 (UFRPE 8 na mesma estação. O potencial hídrico e a resistência difusiva mostraram forte correlação com o déficit de pressão de vapor. A maior capacidade fotossintética foi verificada em folhas maduras da matriz UFRPE 8. Os mecanismos fisiológicos apresentados pelas plantas demonstram que elas podem resistir a períodos de estresse hídrico quando estes se manifestam. A matriz UFRPE 8 é mais adaptada a períodos de estiagem do que a UFRPE 7.The daily and seasonal course of the gas exchanges, leaf temperature and water potential of Barbados cherry (Malpighia emarginata D.C. were evaluated under field conditions. The experiment was carried out in Paudalho, Pernambuco State, Brazil. Measurements of photosynthetic capacity in the wet season were also made. Changes in daily and seasonal behavior of gas exchange, water potential, and leaf temperature were observed. The transpiration and water potential measurements were higher at the beginning of the morning and at the end of the afternoon, while those for diffusive resistance and leaf temperature were lower at these same periods of the day

  17. Stem girdling evidences a trade-off between cambial activity and sprouting and dramatically reduces plant transpiration due to feedback inhibition of photosynthesis and hormone signaling

    Directory of Open Access Journals (Sweden)

    Rosana eLópez

    2015-04-01

    Full Text Available The photosynthesis source-sink relationship in young Pinus canariensis seedlings was modified by stem girdling to investigate sprouting and cambial activity, feedback inhibition of photosynthesis, and stem and root hydraulic capacity. Removal of bark tissue showed a trade-off between sprouting and diameter growth. Above the girdle, growth was accelerated but the number of sprouts was almost negligible, whereas below the girdle the response was reversed. Girdling resulted in a sharp decrease in whole plant transpiration and root hydraulic conductance. The reduction of leaf area after girdling was strengthened by the high levels of ABA found in buds which pointed to stronger bud dormancy, preventing a new needle flush. Accumulation of sugars in leaves led to a coordinated reduction in net photosynthesis (AN and stomatal conductance (gS in the short term, but later (gS below 0.07 mol m-2 s-1 AN decreased faster. The decrease in maximal efficiency of photosystem II (FV/FM and the operating quantum efficiency of photosystem II (ΦPSII in girdled plants could suggest photoprotection of leaves, as shown by the vigorous recovery of AN and ΦPSII after reconnection of the phloem. Stem girdling did not affect xylem embolism but increased stem hydraulic conductance above the girdle. This study shows that stem girdling affects not only the carbon balance, but also the water status of the plant.

  18. Gravimetric phenotyping of whole plant transpiration responses to atmospheric vapour pressure deficit identifies genotypic variation in water use efficiency.

    Science.gov (United States)

    Ryan, Annette C; Dodd, Ian C; Rothwell, Shane A; Jones, Ros; Tardieu, Francois; Draye, Xavier; Davies, William J

    2016-10-01

    There is increasing interest in rapidly identifying genotypes with improved water use efficiency, exemplified by the development of whole plant phenotyping platforms that automatically measure plant growth and water use. Transpirational responses to atmospheric vapour pressure deficit (VPD) and whole plant water use efficiency (WUE, defined as the accumulation of above ground biomass per unit of water used) were measured in 100 maize (Zea mays L.) genotypes. Using a glasshouse based phenotyping platform with naturally varying VPD (1.5-3.8kPa), a 2-fold variation in WUE was identified in well-watered plants. Regression analysis of transpiration versus VPD under these conditions, and subsequent whole plant gas exchange at imposed VPDs (0.8-3.4kPa) showed identical responses in specific genotypes. Genotype response of transpiration versus VPD fell into two categories: 1) a linear increase in transpiration rate with VPD with low (high WUE) or high (low WUE) transpiration rate at all VPDs, 2) a non-linear response with a pronounced change point at low VPD (high WUE) or high VPD (low WUE). In the latter group, high WUE genotypes required a significantly lower VPD before transpiration was restricted, and had a significantly lower rate of transpiration in response to VPD after this point, when compared to low WUE genotypes. Change point values were significantly positively correlated with stomatal sensitivity to VPD. A change point in stomatal response to VPD may explain why some genotypes show contradictory WUE rankings according to whether they are measured under glasshouse or field conditions. Furthermore, this novel use of a high throughput phenotyping platform successfully reproduced the gas exchange responses of individuals measured in whole plant chambers, accelerating the identification of plants with high WUE. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Antimony (SbIII) reduces growth, declines photosynthesis, and modifies leaf tissue anatomy in sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Vaculík, Marek; Mrázová, Anna; Lux, Alexander

    2015-12-01

    The role of antimony (Sb)--a non-essential trace metalloid--in physiological processes running in crops is still poorly understood. Present paper describes the effect of Sb tartrate (SbIII) on growth, Sb uptake, photosynthesis, photosynthetic pigments, and leaf tissue organization in young sunflower plants grown in hydroponics. We found that growth of below- and aboveground part was reduced with increasing concentration of Sb in the medium. Although Sb was mostly taken up by sunflower roots and only small part (1-2%) was translocated to the shoots, decline in photosynthesis, transpiration, and decreased content of photosynthetic pigments were observed. This indicates that despite relatively low mobility of Sb in root-shoot system, Sb in shoot noticeably modifies physiological status and reduced plant growth. Additionally, leaf anatomical changes indicated that Sb reduced the size of intercellular spaces and made leaf tissue more compact.

  20. Leaf expansion of soybean subjected to high and low atmospheric vapour pressure deficits.

    Science.gov (United States)

    Devi, M Jyostna; Taliercio, Earl W; Sinclair, Thomas R

    2015-04-01

    Vapour pressure deficit (VPD) is considered an important environmental factor that might affect leaf expansion and transpiration rate (TR) in plants. Two slow-wilting soybean (Glycine max (L.) Merr.) genotypes PI 416937 and PI 471938 along with commercial cultivar Hutcheson were subjected to low (1.2-1.6 kPa) and high VPD (2.8-3 kPa) environments to study their leaf expansion and TR over five days. Among the three genotypes, PI 416937 had the lowest increase in its TR (34%) at high VPD compared with low VPD and the greatest decrease in leaf area (31%). In contrast, Hutcheson had the highest increase in TR (87%) under high VPD and the lowest decrease in leaf expansion rate (18%). Expansin and extensin genes were isolated in PI 416937 to determine if changes in leaf expansion were associated with changes at the molecular level. The four studied genes were all suppressed after five days in the high VPD environment. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  1. Plant-pathogen interactions: leaf physiology alterations in poplars infected with rust (Melampsora medusae).

    Science.gov (United States)

    Gortari, Fermín; Guiamet, Juan José; Graciano, Corina

    2018-01-23

    Rust produced by Melampsora sp. is considered one of the most relevant diseases in poplar plantations. Growth reduction in poplar plantations takes place because rust, like other pathogens, alters leaf physiology. There is not a complete evaluation of several of the physiological traits that can be affected by rust at leaf level. Therefore, the aim of this work was to evaluate, in an integrative way and in the same pathosystem, which physiological processes are affected when Populus deltoides Bartr. ex Marsh. leaves are infected by rust (Melampsora medusae Thümen). Leaves of two clones with different susceptibility to rust were analyzed. Field and pot experiments were performed, and several physiological traits were measured in healthy and infected leaves. We conclude that rust affects leaf mesophyll integrity, and so water movement in the leaf in liquid phase is affected. As a consequence, gas exchange is reduced, affecting both carbon fixation and transpiration. However, there is an increase in respiration rate, probably due to plant and fungal respiration. The increase in respiration rate is important in the reduction of net photosynthetic rate, but also some damage in the photosynthetic apparatus limits leaf capacity to fix carbon. The decrease in chlorophyll content would start later and seems not to explain the reduction in net photosynthetic rate. Both clones, although they have different susceptibility to rust, are affected in the same physiological mechanisms. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Potential application of glazed transpired collectors to space heating in cold climates

    International Nuclear Information System (INIS)

    Gao, Lixin; Bai, Hua; Mao, Shufeng

    2014-01-01

    Highlights: • A mathematical model for glazed transpired collectors (GTC) is developed. • Glazing results in optical loss, but it decreases convective heat loss effectively. • Thermal performance of GTC shows considerable improvement on flat-plate collectors. • GTC using recirculated air is applicable to space heating in cold climates. - Abstract: Although unglazed transpired collectors (UTC) succeed in industrial ventilation applications, solar fraction is very low when they are used in space heating in cold climates due to the lower exit air temperature. Considering the potential for glazed transpired collectors (GTC) using recirculated air for space heating applications in cold climates, a mathematical model is developed for predicting the thermal performance of GTC. Simulation results show that although glazing results in optical loss, it could decrease convective heat loss resulted from high crosswind velocities effectively. For a solar radiation of 400 W/m 2 , an ambient temperature of −10 °C, and a suction velocity of 0.01 m/s, the exit air temperature of GTC is higher than that of UTC for crosswind velocities exceeding 3.0 m/s. By comparison with a conventional flat-plate solar air collector operating under the same conditions, the thermal performance of GTC shows a significant improvement. For a five-storey hotel building located in the severe cold climate zone of China, case study shows that the annual solar fraction of the GTC-based solar air heating system is about 20%, which is two times higher than that of the flat-plate collector-based system and nearly nine times higher than that of the UTC-based system respectively. Hence, an enormous amount of energy will be saved with the application of GTC to space heating in cold climates

  3. Transpiration and hydraulic strategies in a piñon-juniper woodland.

    Science.gov (United States)

    West, A G; Hultine, K R; Sperry, J S; Bush, S E; Ehleringer, J R

    2008-06-01

    Anthropogenic climate change is likely to alter the patterns of moisture availability globally. The consequences of these changes on species distributions and ecosystem function are largely unknown, but possibly predictable based on key ecophysiological differences among currently coexisting species. In this study, we examined the environmental and biological controls on transpiration from a piñon-juniper (Pinus edulis-Juniperus osteosperma) woodland in southern Utah, USA. The potential for climate-change-associated shifts in moisture inputs could play a critical role in influencing the relative vulnerabilities of piñons and junipers to drought and affecting management decisions regarding the persistence of this dominant landscape type in the Intermountain West. We aimed to assess the sensitivity of this woodland to seasonal variations in moisture and to mechanistically explain the hydraulic strategies of P. edulis and J. osteosperma through the use of a hydraulic transport model. Transpiration from the woodland was highly sensitive to variations in seasonal moisture inputs. There were two distinct seasonal pulses of transpiration: a reliable spring pulse supplied by winter-derived precipitation, and a highly variable summer pulse supplied by monsoonal precipitation. Transpiration of P. edulis and J. osteosperma was well predicted by a mechanistic hydraulic transport model (R2 = 0.83 and 0.92, respectively). Our hydraulic model indicated that isohydric regulation of water potential in P. edulis minimized xylem cavitation during drought, which facilitated drought recovery (94% of pre-drought water uptake) but came at the cost of cessation of gas exchange for potentially extended periods. In contrast, the anisohydric J. osteosperma was able to maintain gas exchange at lower water potentials than P. edulis but experienced greater cavitation over the drought and showed a lesser degree of post-drought recovery (55% of pre-drought uptake). As a result, these species

  4. An Analysis of Unglazed Transpired Solar Collectors Based on Exergetic Performance Criteria

    OpenAIRE

    Motahar, Sadegh

    2010-01-01

    In this paper, an exergetic performance analysis of unglazed transpired collectors (UTC), as well as an exergetic optimization of a typical UTC is performed. Incorporating maps of leaf chlorophyll in a thermal-based two-source energy balance scheme for mapping coupled fluxes of carbon and water exchange at a range of scales

    Science.gov (United States)

    Houborg, R.; Anderson, M. C.; Kustas, W. P.

    2008-12-01

    A light-use efficiency (LUE) based model of canopy resistance was recently implemented within a thermal- based Two-Source Energy Balance (TSEB) scheme facilitating coupled simulations of land-surface fluxes of water, energy and CO2 exchange from field to regional scales (Anderson et al., 2008). The LUE model component computes canopy-scale carbon assimilation and transpiration fluxes and incorporates LUE modifications from biome specific nominal values (Bn) in response to variations in humidity, CO2 concentration, temperature (soil and air), wind speed, and direct beam vs. diffuse light composition. Here we incorporate leaf chlorophyll content (Cab) as a determinant of spatial and temporal variations in Bn as Cab is related to key LUE modulating factors such as crop phenology, vegetation stress and photosynthetic capacity. A linear relationship between Bn and Cab, established from stand-level measurement of LUE for unstressed environmental conditions and a representative set of Cab values for a range of agricultural and natural vegetation groups, is used to distribute Bn over the modeling domain. The technique is tested for an agricultural area near Bushland, Texas by fusing reflective and thermal based remote sensing inputs from SPOT, Landsat, ASTER and aircraft sensor systems. Maps of LAI and Cab are generated by using at-sensor radiances in green, red and near-infrared wavelengths as input to a REGularized canopy reFLECtance (REGFLEC) modeling tool that couples leaf optics (PROSPECT), canopy reflectance (ACRM), and atmospheric radiative transfer (6SV1) model components. Modeled carbon and water fluxes are compared with eddy covariance measurements made in stands of cotton and with fluxes measured by an aircraft flying transects over irrigated and non-irrigated agricultural land and natural vegetation. The technique is flexible and scalable and is portable to continental scales using GOES and MODIS data products. The results demonstrate utility in combining

  5. Leaf spring, and electromagnetic actuator provided with a leaf spring

    NARCIS (Netherlands)

    Berkhoff, Arthur P.; Lemmen, Remco Louis Christiaan

    2002-01-01

    The invention relates to a leaf spring for an electromagnetic actuator and to such an electromagnetic actuator. The leaf spring is formed as a whole from a disc of plate-shaped, resilient material. The leaf spring comprises a central fastening part, an outer fastening part extending therearound and

  6. Arbuscular Mycorrhizal Fungus Species Dependency Governs Better Plant Physiological Characteristics and Leaf Quality of Mulberry (Morus alba L.) Seedlings

    Science.gov (United States)

    Shi, Song-Mei; Chen, Ke; Gao, Yuan; Liu, Bei; Yang, Xiao-Hong; Huang, Xian-Zhi; Liu, Gui-Xi; Zhu, Li-Quan; He, Xin-Hua

    2016-01-01

    Understanding the synergic interactions between arbuscular mycorrhizal fungi (AMF) and its host mulberry (Morus alba L.), an important perennial multipurpose plant, has theoretical and practical significance in mulberry plantation, silkworm cultivation, and relevant textile industry. In a greenhouse study, we compared functional distinctions of three genetically different AMF species (Acaulospora scrobiculata, Funneliformis mosseae, and Rhizophagus intraradices) on physiological and growth characteristics as well as leaf quality of 6-month-old mulberry seedlings. Results showed that mulberry was AMF-species dependent, and AMF colonization significantly increased shoot height and taproot length, stem base and taproot diameter, leaf and fibrous root numbers, and shoot and root biomass production. Meanwhile, leaf chlorophyll a or b and carotenoid concentrations, net photosynthetic rate, transpiration rate and stomatal conductance were generally significantly greater, while intercellular CO2 concentration was significantly lower in AMF-inoculated seedlings than in non-AMF-inoculated counterparts. These trends were also generally true for leaf moisture, total nitrogen, all essential amino acids, histidine, proline, soluble protein, sugar, and fatty acid as they were significantly increased under mycorrhization. Among these three tested AMFs, significantly greater effects of AMF on above-mentioned mulberry physiological and growth characteristics ranked as F. mosseae > A. scrobiculata > R. intraradices, whilst on mulberry leaf quality (e.g., nutraceutical values) for better silkworm growth as F. mosseae ≈A. scrobiculata > R. intraradices. In conclusion, our results showed that greater mulberry biomass production, and nutritional quality varied with AMF species or was AMF-species dependent. Such improvements were mainly attributed to AMF-induced positive alterations of mulberry leaf photosynthetic pigments, net photosynthetic rate, transpiration rate, and N

  7. Induced leaf intercellular CO₂, photosynthesis, potassium and nitrate retention and strawberry early fruit formation under macronutrient limitation.

    Science.gov (United States)

    Li, Hong; Li, Tingxian; Fu, Gang; Katulanda, Panchali

    2013-07-01

    Relationships between induced high leaf intercellular CO₂ concentrations, leaf K⁺ and NO₃⁻ ion movement and early fruit formation under macronutrient limitation are not well understood. We examined the effects and interactions of reduced K/N input treatments on leaf intercellular CO₂, photosynthesis rate, carboxylation and water use efficiency, berry formation as well as leaf/fruit K⁺, NO₃⁻ and photosynthate retention of strawberry (Fragaria × ananassa Duch.) to enhance low-input agriculture. The field study was conducted in Nova Scotia, eastern Canada during 2009-2010. The experimental treatments consisted of five K₂O rates (0, 6, 12, 18, and 24 kg ha(-1)) and five N rates (0, 5, 10, 15, and 20 kg ha(-1)), representing respectively, 0, 25, 50, 75, and 100 % of regular macronutrient recommendations based on the soil testing. The treatments were arranged in a split-plot design with three blocks in the field. The cultivar was 'Mira', a June-bearing crop. The results showed that strawberry plants treated with 25 %-reduced inputs could induce significantly higher leaf intercellular CO₂ concentrations to improve plant photosynthesis, carboxylation and water use efficiency and translocation of leaf/fruit K⁺ and dissolved solids, which could advance berry formation by 6 days and produce significantly higher marketable yields (P < 0.05). Higher leaf intercellular CO₂ inhibited leaf/fruit NO₃⁻ ion retention, but this inhibition did not occur in leaf/fruit K⁺ retention. Linear interactions of the K/N treatments were significant on fruit marketable yields, intercellular CO₂, net photosynthesis, leaf transpiration rates, and leaf temperatures (P < 0.05). It was concluded that higher leaf CO₂ could enhance plant photosynthesis, promote plant carboxylation and water use efficiency, and advance berry formation, but it could inhibit leaf NO₃⁻ retention. This inhibition did not find in leaf K⁺ ion and dissolved solid retention. Overlay co

  8. Transport and coordination in the coupled soil-root-xylem-phloem leaf system

    Science.gov (United States)

    Huang, C. W.; Katul, G. G.; Pockman, W.; Litvak, M. E.; Domec, J. C.; Palmroth, S.

    2016-12-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the dry atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior

  9. 'Dangshansuli' pear leaf

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... Effects of calcium, potassium and magnesium on oxalic, malic and citric acid content of Valencia orange leaf tissue. Plant Physiol. 36: 39-101. Ruffner HP, Possner D, Brem S, Rast DM (1984). The physiological role of malic enzyme in grape ripening. Plant, 160: 444-448. Sadka A, Artzi B, Cohen L, Dahan E ...

  10. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds

    Science.gov (United States)

    Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.; McCray, John E.

    2014-01-01

    The recent climate-exacerbated mountain pine beetle infestation in the Rocky Mountains of North America has resulted in tree death that is unprecedented in recorded history. The spatial and temporal heterogeneity inherent in insect infestation creates a complex and often unpredictable watershed response, influencing the primary storage and flow components of the hydrologic cycle. Despite the increased vulnerability of forested ecosystems under changing climate1, watershed-scale implications of interception, ground evaporation, and transpiration changes remain relatively unknown, with conflicting reports of streamflow perturbations across regions. Here, contributions to streamflow are analysed through time and space to investigate the potential for increased groundwater inputs resulting from hydrologic change after infestation. Results demonstrate that fractional late-summer groundwater contributions from impacted watersheds are 30 ± 15% greater after infestation and when compared with a neighbouring watershed that experienced earlier and less-severe attack, albeit uncertainty propagations through time and space are considerable. Water budget analysis confirms that transpiration loss resulting from beetle kill can account for the relative increase in groundwater contributions to streams, often considered the sustainable flow fraction and critical to mountain water supplies and ecosystems.

  11. Cooling Duct Analysis for Transpiration/Film Cooled Liquid Propellant Rocket Engines

    Science.gov (United States)

    Micklow, Gerald J.

    1996-01-01

    The development of a low cost space transportation system requires that the propulsion system be reusable, have long life, with good performance and use low cost propellants. Improved performance can be achieved by operating the engine at higher pressure and temperature levels than previous designs. Increasing the chamber pressure and temperature, however, will increase wall heating rates. This necessitates the need for active cooling methods such as film cooling or transpiration cooling. But active cooling can reduce the net thrust of the engine and add considerably to the design complexity. Recently, a metal drawing process has been patented where it is possible to fabricate plates with very small holes with high uniformity with a closely specified porosity. Such a metal plate could be used for an inexpensive transpiration/film cooled liner to meet the demands of advanced reusable rocket engines, if coolant mass flow rates could be controlled to satisfy wall cooling requirements and performance. The present study investigates the possibility of controlling the coolant mass flow rate through the porous material by simple non-active fluid dynamic means. The coolant will be supplied to the porous material by series of constant geometry slots machined on the exterior of the engine.

  12. An Experimental Investigation of Transpiration Cooling. Part I: Application of an Infrared Measurement Technique

    Directory of Open Access Journals (Sweden)

    J. H. Wang

    2003-01-01

    Full Text Available This study was an investigation into the application of the infrared thermal imaging technique (IRTIT to evaluate transpiration cooling performance through a porous wall. Two typical infrared thermograph systems, the AGA 782 short-wavelength system and the VARIOSCAN 3021 long-wavelength system, were employed to demonstrate the availability of the IRTIT measurement. In comparison with general infrared apparent temperature measurement, several factors that influence measurement accuracy need to be addressed in the application of the IRTIT in the region of transpiration cooling on the porous surfaces of turbine components. In this article, the influence of these factors on measurement accuracy is discussed, the corresponding calibration methods of the two infrared systems are described, and the ambient conditions and stability of the measurement are analyzed. Aporous circular tube was used as a specimen. The tube consisted of sintered chromium-nickel steel with a porosity of 21%. The experiment was carried out in the hotgas wind tunnel at the Institute of Thermal Turbomachinery at the University of Stuttgart, Stuttgart, Germany.

  13. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    Science.gov (United States)

    Ding, Risheng; Kang, Shaozhong; Du, Taisheng; Hao, Xinmei; Zhang, Yanqun

    2014-01-01

    The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET). Canopy stomatal conductance (Gsc), an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1) the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2) leaf area for the sunlit and shaded fractions; and (3) a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98), with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL) agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and partitioning λET.

  14. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    Directory of Open Access Journals (Sweden)

    Risheng Ding

    Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  15. Diffuse scattering

    Energy Technology Data Exchange (ETDEWEB)

    Kostorz, G. [Eidgenoessische Technische Hochschule, Angewandte Physik, Zurich (Switzerland)

    1996-12-31

    While Bragg scattering is characteristic for the average structure of crystals, static local deviations from the average lattice lead to diffuse elastic scattering around and between Bragg peaks. This scattering thus contains information on the occupation of lattice sites by different atomic species and on static local displacements, even in a macroscopically homogeneous crystalline sample. The various diffuse scattering effects, including those around the incident beam (small-angle scattering), are introduced and illustrated by typical results obtained for some Ni alloys. (author) 7 figs., 41 refs.

  16. Sound Propagation in Saturated Gas-Vapor-Droplet Suspensions Considering the Effect of Transpiration on Droplet Evaporation

    Science.gov (United States)

    Kandula, Max

    2012-01-01

    The Sound attenuation and dispersion in saturated gas-vapor-droplet mixtures with evaporation has been investigated theoretically. The theory is based on an extension of the work of Davidson (1975) to accommodate the effects of transpiration on the linear particle relaxation processes of mass, momentum and energy transfer. It is shown that the inclusion of transpiration in the presence of mass transfer improves the agreement between the theory and the experimental data of Cole and Dobbins (1971) for sound attenuation in air-water fogs at low droplet mass concentrations. The results suggest that transpiration has an appreciable effect on both sound absorption and dispersion for both low and high droplet mass concentrations.

  17. [A comparative study on chlorophyll content, chlorophyll fluorescence and diurnal course of leaf gas exchange of two ecotypes of banyan].

    Science.gov (United States)

    Zhao, P; Sun, G; Zeng, X; Peng, S; Mo, X; Li, Y

    2000-06-01

    The morphological differences, chlorophyll contents, fluorescence and diurnal course of leaf gas exchange between terrestrial banyan and amphibious banyan were compared with pot culture. The amphibious banyan possesses well developed aerial and hydro-adventitious roots, and wider leaf with inclination of evolution toward mesophytic traits. The chlorophyll content of terrestrial banyan was higher than that of amphibious banyan. The diurnal course of leaf gas exchange indicated that net photosynthetic rate of terrestrial banyan was slightly higher than that of amphibious banyan grown in water, but much higher than that grown in soil. The amphibious banyan grown in water had the highest transpiration rate, the terrestrial banyan had a lower one, and the amphibious banyan grown in soil had the lowest. Linear regression analysis showed a positive correlation between net photosynthetic rate and stomatal conductance, implying that the stomatal conductance was dominant factor controlling the gas exchange. In this study, the term of intrinsic water use efficiency (net photosynthetic rate/stomatal conductance ratio, Intrinsic WUE) was applied to describe the photosynthesis and water properties, and the result showed that it was a more suitable measure compared to the usual WUE(net photosynthetic rate/transpiration rate). Among the three banyan plants examined, the amphibious banyan had the highest intrinsic WUE.

  18. Evolution of leaf-form in land plants linked to atmospheric CO2 decline in the Late Palaeozoic era.

    Science.gov (United States)

    Beerling, D J; Osborne, C P; Chaloner, W G

    2001-03-15

    The widespread appearance of megaphyll leaves, with their branched veins and planate form, did not occur until the close of the Devonian period at about 360 Myr ago. This happened about 40 Myr after simple leafless vascular plants first colonized the land in the Late Silurian/Early Devonian, but the reason for the slow emergence of this common feature of present-day plants is presently unresolved. Here we show, in a series of quantitative analyses using fossil leaf characters and biophysical principles, that the delay was causally linked with a 90% drop in atmospheric pCO2 during the Late Palaeozoic era. In contrast to simulations for a typical Early Devonian land plant, possessing few stomata on leafless stems, those for a planate leaf with the same stomatal characteristics indicate that it would have suffered lethal overheating, because of greater interception of solar energy and low transpiration. When planate leaves first appeared in the Late Devonian and subsequently diversified in the Carboniferous period, they possessed substantially higher stomatal densities. This observation is consistent with the effects of the pCO2 on stomatal development and suggests that the evolution of planate leaves could only have occurred after an increase in stomatal density, allowing higher transpiration rates that were sufficient to maintain cool and viable leaf temperatures.

  19. Antimicrobial activity of medicinal plant leaf extracts against pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Atikya Farjana

    2014-09-01

    Full Text Available Objective: To determine antibacterial activity of water, oil and methanol extracts of guava (Psidium guajava, green tea (Camellia sinensis, neem (Azadirachta indica and marigold (Calendula officinalis against different species of bacteria, Pseudomonas spp., Vibrio cholerae, Vibrio parahaemolyticus (V. parahaemolyticus, Klebsiella spp., Escherichia coli, Salmonella spp. and Staphylococcus aureus (S. aureus. Methods: Antibacterial activity of plant extracts was measured by agar well diffusion method. Results: Boiled water extracts of guava leaf showed the largest zone of inhibition (22 mm against V. parahaemolyticus. Water extracts of green tea leaf at boiling and room temperature showed 17.5 mm and 19 mm zone of inhibitions against V. parahaemolyticus and S. aureus, respectively. Boiled water extract of neem leaf showed moderate zone of inhibition against Escherichia coli (10 mm and Klebsiella spp. (11 mm. Water and oil extracts of marigold leaf at both boiling and room temperature did not show any zone of inhibition against any of the tested microorganisms. Methanol extracts of both guava and green tea leaves showed same zone of inhibition against Pseudomonus spp. (18 mm. Methanol extract of neem leaf showed antibacterial acitivity against Klebsiella spp. (16 mm and Vibrio cholerae (14 mm and that of marigold leaf showed antimicrobial activity against S. aureus (18 mm and Klebsiella spp. (12 mm. Conclusions: The results from the study suggest that the leaves of guava, green tea, neem and marigold show anibacterial activity against different bacterial species. They could be used as alternatives to common antimicrobial agents for treatment of bacterial infections.

  1. Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence

    NARCIS (Netherlands)

    Jing, Hai-Chun; Sturre, Marcel J.G.; Hille, Jacques; Dijkwel, Paul P.

    2002-01-01

    The onset of leaf senescence is controlled by leaf age and ethylene can promote leaf senescence within a specific age window. We exploited the interaction between leaf age and ethylene and isolated mutants with altered leaf senescence that are named as onset of leaf death (old) mutants. Early leaf

  2. Does leaf shedding protect stems from cavitation during seasonal droughts? A test of the hydraulic fuse hypothesis.

    Science.gov (United States)

    Wolfe, Brett T; Sperry, John S; Kursar, Thomas A

    2016-12-01

    During droughts, leaves are predicted to act as 'hydraulic fuses' by shedding when plants reach critically low water potential (Ψ plant ), thereby slowing water loss, stabilizing Ψ plant and protecting against cavitation-induced loss of stem hydraulic conductivity (K s ). We tested these predictions among trees in seasonally dry tropical forests, where leaf shedding is common, yet variable, among species. We tracked leaf phenology, Ψ plant and K s in saplings of six tree species distributed across two forests. Species differed in their timing and extent of leaf shedding, yet converged in shedding leaves as they approached the Ψ plant value associated with a 50% loss of K s and at which their model-estimated maximum sustainable transpiration rate approached zero. However, after shedding all leaves, the Ψ plant value of one species, Genipa americana, continued to decline, indicating that water loss continued after leaf shedding. K s was highly variable among saplings within species and seasons, suggesting a minimal influence of seasonal drought on K s . Hydraulic limits appear to drive diverse patterns of leaf shedding among tropical trees, supporting the hydraulic fuse hypothesis. However, leaf shedding is not universally effective at stabilizing Ψ plant , suggesting that the main function of drought deciduousness may vary among species. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  3. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  4. The Amazon forest-rainfall feedback: the roles of transpiration and interception

    Science.gov (United States)

    Dekker, Stefan; Staal, Arie; Tuinenburg, Obbe

    2017-04-01

    In the Amazon, deep-rooted trees increase local transpiration and high tree cover increase local interception evaporation. These increased local evapotranspiration fluxes to the atmosphere have both positive effects on forests down-wind, as they stimulate rainfall. Although important for the functioning of the Amazon, we have an inadequate assessment on the strength and the timing of these forest-rainfall feedbacks. In this study we (i) estimate local forest transpiration and local interception evaporation, (ii) simulate the trajectories of these moisture flows through the atmosphere and (iii) quantify their contributions to the forest-rainfall feedback for the whole Amazon basin. To determine the atmospheric moisture flows in tropical South America we use a Lagrangian moisture tracking algorithm on 0.25° (c. 25 km) resolution with eight atmospheric layers on a monthly basis for the period 2003-2015. With our approach we account for multiple re-evaporation cycles of this moisture. We also calculate for each month the potential effects of forest loss on evapotranspiration. Combined, these calculations allow us to simulate the effects of land-cover changes on rainfall in downwind areas and estimate the effect on the forest. We found large regional and temporal differences in the importance how forest contribute to rainfall. The transpiration-rainfall feedback is highly important during the dry season. Between September-November, when large parts of the Amazon are at the end of the dry season, more than 50% of the rainfall is caused by the forests upstream. This means that droughts in the Amazon are alleviated by the forest. Furthermore, we found that much moisture cycles several times during its trajectory over the Amazon. After one evapotranspiration-rainfall cycle, more than 40% of the moisture is re-evaporated again. The interception-evaporation feedback is less important during droughts. Finally from our analysis, we show that the forest-rainfall feedback is

  5. Development and assessment of Transpirative Deficit Index (D-TDI) for agricultural drought monitoring

    Science.gov (United States)

    Borghi, Anna; Rienzner, Michele; Gandolfi, Claudio; Facchi, Arianna

    2017-04-01

    Drought is a major cause of crop yield loss, both in rainfed and irrigated agroecosystems. In past decades, many approaches have been developed to assess agricultural drought, usually based on the monitoring or modelling of the soil water content condition. All these indices show weaknesses when applied for a real time drought monitoring and management at the local scale, since they do not consider explicitly crops and soil properties at an adequate spatial resolution. This work describes a newly developed agricultural drought index, called Transpirative Deficit Index (D-TDI), and assesses the results of its application over a study area of about 210 km2 within the Po River Plain (northern Italy). The index is based on transforming the interannual distribution of the transpirative deficit (potential crop transpiration minus actual transpiration), calculated daily by means of a spatially distributed conceptual hydrological model and cumulated over user-selected time-steps, to a standard normal distribution (following the approach proposed by the meteorological index SPI - Standard Precipitation Index). For the application to the study area a uniform maize crop cover (maize is the most widespread crop in the area) and 22-year (1993-2014) meteorological data series were considered. Simulation results consist in maps of the index cumulated over 10-day time steps over a mesh with cells of 250 m. A correlation analysis was carried out (1) to study the characteristics and the memory of D-TDI and to assess its intra- and inter-annual variability, (2) to assess the response of the agricultural drought (i.e., the information provided by D-TDI) to the meteorological drought computed through the SPI over different temporal steps. The D-TDI is positively auto-correlated with a persistence of 30 days, and positively cross-correlated to the SPI with a persistence of 40 days, demonstrating that D-TDI responds to meteorological forcing. Correlation analyses demonstrate that soils

  6. Absence of Hg transpiration by shoot after Hg uptake by roots of six terrestrial plant species

    International Nuclear Information System (INIS)

    Greger, Maria; Wang Yaodong; Neuschuetz, Clara

    2005-01-01

    In this paper we investigated if, and to what extent, six different plant species accumulate, translocate and emit mercury (Hg) into the air. The Hg uptake by roots, distribution of Hg to the shoot and release of Hg via shoots of garden pea, spring wheat, sugar beet, oil-seed rape, white clover and willow were investigated in a transpiration chamber. The airborne Hg was trapped in a Hopcalite trap or a gold trap. Traps and plant materials were analysed for content of Hg by CVAAS. The results show that all plant species were able to take up Hg to a large extent from a nutrient solution containing 200 μg L -1 Hg. However, the Hg translocation to the shoot was low (0.17-2.5%) and the Hg that reached the leaves was trapped and no release of the absorbed Hg to the air was detected. - Mercury translocation to shoots was low

  7. Diffusion bonding

    International Nuclear Information System (INIS)

    Anderson, R.C.

    1976-01-01

    A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions

  8. Sugar and hexokinase suppress expression of PIP aquaporins and reduce leaf hydraulics that preserves leaf water potential.

    Science.gov (United States)

    Kelly, Gilor; Sade, Nir; Doron-Faigenboim, Adi; Lerner, Stephen; Shatil-Cohen, Arava; Yeselson, Yelena; Egbaria, Aiman; Kottapalli, Jayaram; Schaffer, Arthur A; Moshelion, Menachem; Granot, David

    2017-07-01

    Sugars affect central aspects of plant physiology, including photosynthesis, stomatal behavior and the loss of water through the stomata. Yet, the potential effects of sugars on plant aquaporins (AQPs) and water conductance have not been examined. We used database and transcriptional analyses, as well as cellular and whole-plant functional techniques to examine the link between sugar-related genes and AQPs. Database analyses revealed a high level of correlation between the expression of AQPs and that of sugar-related genes, including the Arabidopsis hexokinases 1 (AtHXK1). Increased expression of AtHXK1, as well as the addition of its primary substrate, glucose (Glc), repressed the expression of 10 AQPs from the plasma membrane-intrinsic proteins (PIP) subfamily (PIP-AQPs) and induced the expression of two stress-related PIP-AQPs. The osmotic water permeability of mesophyll protoplasts of AtHXK1-expressing plants and the leaf hydraulic conductance of those plants were significantly reduced, in line with the decreased expression of PIP-AQPs. Conversely, hxk1 mutants demonstrated a higher level of hydraulic conductance, with increased water potential in their leaves. In addition, the presence of Glc reduced leaf water potential, as compared with an osmotic control, indicating that Glc reduces the movement of water from the xylem into the mesophyll. The production of sugars entails a significant loss of water and these results suggest that sugars and AtHXK1 affect the expression of AQP genes and reduce leaf water conductance, to coordinate sugar levels with the loss of water through transpiration. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. Multipassage diffuser

    International Nuclear Information System (INIS)

    Lalis, A.; Rouviere, R.; Simon, G.

    1976-01-01

    A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture

  10. Biophysical controls on canopy transpiration in a black locust ( Robinia pseudoacacia ) plantation on the semi-arid Loess Plateau, China

    Science.gov (United States)

    Lei Jiao; Nan Lu; Ge Sun; Eric J. Ward; Bojie Fu

    2015-01-01

    In the semi-arid Loess Plateau of China, black locust (Robinia pseudoacacia) was widely planted for soil conservation and afforestation purposes during the past three decades. Investigating biophysical controls on canopy transpiration (Ec) of the plantations is essential to understanding the effects of afforestation on watershed hydrology and regional water resources....

  11. Advances in the two-source energy balance model: Partioning of evaporation and transpiration for row crops for cotton

    Science.gov (United States)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  12. Comparative measurements of transpiration an canopy conductance in two mixed deciduous woodlands differing in structure and species composition

    DEFF Research Database (Denmark)

    Herbst, Mathias; Rosier, Paul T.W.; Morecroft, Michael D.

    2008-01-01

    a continuous hazel (Corylus avellana L.) understory. Wytham Woods, which had an LAI of 3.6, was dominated by ash (Fraxinus excelsior L.) and sycamore (Acer pseudoplatanus L.) and had only a sparse understory. Annual canopy transpiration was 367 mm for Grimsbury Wood and 397 mm for Wytham Woods. These values...

  13. Controls on stand transpiration and soil water utilization along a tree density gradient in a Neotropical savanna

    Science.gov (United States)

    Sandra J. Bucci; Fabian G. Scholz; Guillermo Goldstein; William A. Hoffmann; Frederick C. Meinzer; Augusto C. Franco; Thomas Giambelluca; Fernando Miralles-Wilhelm

    2008-01-01

    Environmental controls of stand-level tree transpiration (E) and seasonal patterns of soil water utilization were studied in five central Brazilian savanna (Cerrado) sites differing in tree density. Tree density of Cerrado vegetation in the study area consistently changes along topographic gradients from ~1,000 trees ha-1 in open savannas (campo...

  14. Plant water relations as affected by osmotic potential of the nutrient solution and potential transpiration in tomato (Lycopersicon esculentum Mill.)

    NARCIS (Netherlands)

    Li, Y.L.; Marcelis, L.F.M.; Stanghellini, C.

    2004-01-01

    The hypothesis that water flow into tomato fruits is affected similarly by osmotic potential of the nutrient solution and potential transpiration (shoot environment) via their effects on stem water potential, was tested through experiments carried out in two glasshouses where climate was controlled

  15. Modelled hydraulic redistribution by sunflower (Helianthus annuus L.) matches observed data only after including night-time transpiration.

    Science.gov (United States)

    Neumann, Rebecca B; Cardon, Zoe G; Teshera-Levye, Jennifer; Rockwell, Fulton E; Zwieniecki, Maciej A; Holbrook, N Michele

    2014-04-01

    The movement of water from moist to dry soil layers through the root systems of plants, referred to as hydraulic redistribution (HR), occurs throughout the world and is thought to influence carbon and water budgets and ecosystem functioning. The realized hydrologic, biogeochemical and ecological consequences of HR depend on the amount of redistributed water, whereas the ability to assess these impacts requires models that correctly capture HR magnitude and timing. Using several soil types and two ecotypes of sunflower (Helianthus annuus L.) in split-pot experiments, we examined how well the widely used HR modelling formulation developed by Ryel et al. matched experimental determination of HR across a range of water potential driving gradients. H. annuus carries out extensive night-time transpiration, and although over the last decade it has become more widely recognized that night-time transpiration occurs in multiple species and many ecosystems, the original Ryel et al. formulation does not include the effect of night-time transpiration on HR. We developed and added a representation of night-time transpiration into the formulation, and only then was the model able to capture the dynamics and magnitude of HR we observed as soils dried and night-time stomatal behaviour changed, both influencing HR. © 2013 John Wiley & Sons Ltd.

  16. Nutrient and water addition effects on day- and night-time conductance and transpiration in a C3 desert annual

    NARCIS (Netherlands)

    Ludwig, F.; Jewitt, R.A.; Donovan, L.A.

    2006-01-01

    Recent research has shown that many C3 plant species have significant stomatal opening and transpire water at night even in desert habitats. Day-time stomatal regulation is expected to maximize carbon gain and prevent runaway cavitation, but little is known about the effect of soil resource

  17. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil

    Science.gov (United States)

    Benjamin N. Sulman; Daniel Tyler Roman; Koong Yi; Lixin Wang; Richard P. Phillips; Kimberly A. Novick

    2016-01-01

    When stressed by low soil water content (SWC) or high vapor pressure deficit (VPD), plants close stomata, reducing transpiration and photosynthesis. However, it has historically been difficult to disentangle the magnitudes of VPD compared to SWC limitations on ecosystem-scale fluxes. We used a 13 year record of eddy covariance measurements from a forest in south...

  18. Advances in the two-source energy balance model:Partioning of evaporation and transpiration for row crops

    Science.gov (United States)

    Accurate partitioning of the evaporation (E) and transpiration (T) components of evapotranspiration (ET) in remote sensing models is important for evaluating strategies aimed at increasing crop water productivity. The two-source energy balance (TSEB) model solves the energy balance of the soil-plant...

  19. Leaf conductance response of phaseolus vulgaris to ozone flux density

    Science.gov (United States)

    Amiro, B. D.; Gillespie, T. J.

    The effect of ozone flux density on leaf conductance to ozone in Phaseolus vulgaris was examined. The change in conductance was measured within the first two hours of fumigation for mature, fruiting 6-week-old plants of an ozone sensitive cultivar (Seafarer); for young, 14-day-old plants of the same cultivar; and for an ozone resistant cultivar (Gold Crop). Young Seafarer plants showed no change in conductance to ozone over a wide range of ozone flux densities. Gold Crop showed a decrease in conductance of -3.1 % /(mgO 3 m -2 h -1) whereas mature Seafarer plants exhibited a stronger decrease of -7.7% /(mgO 3 m -2 h -1). Diffusion porometer measurements taken on fruiting Seafarer plants in the field illustrated that a decrease in leaf diffusive conductance to water is related to visual ozone injury.

  20. Comparing Leaf and Root Insertion

    Directory of Open Access Journals (Sweden)

    Jaco Geldenhuys

    2010-07-01

    Full Text Available We consider two ways of inserting a key into a binary search tree: leaf insertion which is the standard method, and root insertion which involves additional rotations. Although the respective cost of constructing leaf and root insertion binary search trees trees, in terms of comparisons, are the same in the average case, we show that in the worst case the construction of a root insertion binary search tree needs approximately 50% of the number of comparisons required by leaf insertion.

  1. Leaf development: A cellular perspective

    Directory of Open Access Journals (Sweden)

    Gerrit TS Beemster

    2014-07-01

    Full Text Available Through its photosynthetic capacity the leaf provides the basis for growth of the whole plant. In order to improve crops for higher productivity and resistance for future climate scenarios, it is important to obtain a mechanistic understanding of leaf growth and development and the effect of genetic and environmental factors on the process. Cells are both the basic building blocks of the leaf and the regulatory units that integrate genetic and environmental information into the developmental program. Therefore, to fundamentally understand leaf development, one needs to be able to reconstruct the developmental pathway of individual cells (and their progeny from the stem cell niche to their final position in the mature leaf. To build the basis for such understanding, we review current knowledge on the spatial and temporal regulation mechanisms operating on cells, contributing to the formation of a leaf. We focus on the molecular networks that control exit from stem cell fate, leaf initiation, polarity, cytoplasmic growth, cell division, endoreduplication, transition between division and expansion, expansion and differentiation and their regulation by intercellular signaling molecules, including plant hormones, sugars, peptides, proteins and microRNAs. We discuss to what extent the knowledge available in the literature is suitable to be applied in systems biology approaches to model the process of leaf growth, in order to better understand and predict leaf growth starting with the model species Arabidopsis thaliana.

  2. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups

    Science.gov (United States)

    Peter B. Reich; Michael B. Walters; David S. Ellsworth; [and others; [Editor’s note: James M.. Vose is the SRS co-author for this publication.

    1998-01-01

    Based on prior evidence of coordinated multiple leaf trait scaling, the authors hypothesized that variation among species in leaf dark respiration rate (Rd) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (Amax). However, it is not known whether such scaling, if it exists, is...

  3. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    Science.gov (United States)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  4. Increase in leaf temperature opens stomata and decouples net photosynthesis from stomatal conductance in Pinus taeda and Populus deltoides x nigra.

    Science.gov (United States)

    Urban, Josef; Ingwers, Miles W; McGuire, Mary Anne; Teskey, Robert O

    2017-03-01

    The effect of temperature on stomatal conductance (gs) and corresponding gas exchange parameters was studied in two tree species with contrasting leaf anatomy and ecophysiology-a broadleaf angiosperm, Populus deltoides x nigra (poplar), and a needle-leaf gymnosperm, Pinus taeda (loblolly pine). Experiments were conducted in growth chambers across a leaf temperature range of 19-48°C. Manipulations of temperature were done in well-watered and drought soil conditions and under ambient (400 ppm) and elevated (800 ppm) air CO2 concentrations. Increases in leaf temperature caused stomatal opening at both ambient and elevated [CO2]. The gs increased by 42% in poplar and by 40% in loblolly pine when leaf temperature increased from 30°C to 40°C at a vapour pressure difference of 1 kPa. Stomatal limitation to photosynthesis decreased in elevated temperature in loblolly pine but not in poplar. The ratio of net photosynthesis to gs depended on leaf temperature, especially at high temperatures. Evaporative cooling of transpiring leaves resulted in reductions in leaf temperature up to 9°C in well-watered poplar but only 1°C in drought-stressed poplar and in loblolly pine. As global mean temperatures rise and temperature extremes become more frequent and severe, understanding the effect of temperature on gs, and modelling that relationship, will become increasingly important. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Developing allometric equations for estimating leaf area and leaf ...

    African Journals Online (AJOL)

    Estimation of leaf area (LA) and leaf biomass (LB) is important to understand plant physiological and carbon assimilation processes, and tree growth models. The aim of this study was to develop and compare allometric equations for predicting LA and LB of Artocarpus chaplasha Roxb. taking diameter at breast height ...

  6. Do epidermal lens cells facilitate the absorptance of diffuse light?

    Science.gov (United States)

    Brodersen, Craig R; Vogelmann, Thomas C

    2007-07-01

    Many understory plants rely on diffuse light for photosynthesis because direct light is usually scattered by upper canopy layers before it strikes the forest floor. There is a considerable gap in the literature concerning the interaction of direct and diffuse light with leaves. Some understory plants have well-developed lens-shaped epidermal cells, which have long been thought to increase the absorption of diffuse light. To assess the role of epidermal cell shape in capturing direct vs. diffuse light, we measured leaf reflectance and transmittance with an integrating sphere system using leaves with flat (Begonia erythrophylla, Citrus reticulata, and Ficus benjamina) and lens-shaped epidermal cells (B. bowerae, Colocasia esculenta, and Impatiens velvetea). In all species examined, more light was absorbed when leaves were irradiated with direct as opposed to diffuse light. When leaves were irradiated with diffuse light, more light was transmitted and more was reflected in both leaf types, resulting in absorptance values 2-3% lower than in leaves irradiated with direct light. These data suggest that lens-shaped epidermal cells do not aid the capture of diffuse light. Palisade and mesophyll cell anatomy and leaf thickness appear to have more influence in the capture and absorption of light than does epidermal cell shape.

  7. Whole-plant versus leaf-level regulation of photosynthetic responses after partial defoliation in Eucalyptus globulus saplings.

    Science.gov (United States)

    Eyles, Alieta; Pinkard, Elizabeth A; Davies, Noel W; Corkrey, Ross; Churchill, Keith; O'Grady, Anthony P; Sands, Peter; Mohammed, Caroline

    2013-04-01

    Increases in photosynthetic capacity (A1500) after defoliation have been attributed to changes in leaf-level biochemistry, water, and/or nutrient status. The hypothesis that transient photosynthetic responses to partial defoliation are regulated by whole-plant (e.g. source-sink relationships or changes in hydraulic conductance) rather than leaf-level mechanisms is tested here. Temporal variation in leaf-level gas exchange, chemistry, whole-plant soil-to-leaf hydraulic conductance (KP), and aboveground biomass partitioning were determined to evaluate mechanisms responsible for increases in A1500 of Eucalyptus globulus L. potted saplings. A1500 increased in response to debudding (B), partial defoliation (D), and combined B&D treatments by up to 36% at 5 weeks after treatment. Changes in leaf-level factors partly explained increases in A1500 of B and B&D treatments but not for D treatment. By week 5, saplings in B, B&D, and D treatments had similar leaf-specific KP to control trees by maintaining lower midday water potentials and higher transpiration rate per leaf area. Whole-plant source:sink ratios correlated strongly with A1500. Further, unlike KP, temporal changes in source:sink ratios tracked well with those observed for A1500. The results indicate that increases in A1500 after partial defoliation treatments were largely driven by an increased demand for assimilate by developing sinks rather than improvements in whole-plant water relations and changes in leaf-level factors. Three carbohydrates, galactional, stachyose, and, to a lesser extent, raffinose, correlated strongly with photosynthetic capacity, indicating that these sugars may function as signalling molecules in the regulation of longer term defoliation-induced gas exchange responses.

  8. Wheat response to CO2 enrichment: CO2 exchanges transpiration and mineral uptakes

    Science.gov (United States)

    Andre, M.; Ducloux, H.; Richaud, C.

    1986-01-01

    When simulating canopies planted in varied densities, researchers were able to demonstrate that increase of dry matter production by enhancing CO2 quickly becomes independant of increase of leaf area, especially above leaf area index of 2; dry matter gain results mainly from photosynthesis stimulation per unit of surface (primary CO2 effect). When crop density is low (the plants remaining alone a longer time), the effects of increasing leaf surface (tillering, leaf elongation here, branching for other plants etc.) was noticeable and dry matter simulation factor reached 1.65. This area effect decreased when canopy was closed in, as the effect of different surfaces no longer worked. The stimulation of photosynthesis reached to the primary CO2 effect. The accumulation in dry matter which was fast during that phase made the original weight advantage more and more neglectible. Comparison with short term measurements showed that first order long term effect of CO2 in wheat is predictible with short term experiment, from the effect of CO2 on photosynthesis measured on reference sample.

  9. Modelling surface conductance and transpiration of an oak forest in The Netherlands

    NARCIS (Netherlands)

    Ogink-Hendriks, M.J.

    1995-01-01

    The surface conductance of an oak forest was modelled as a non-linear function of solar radiation, temperature, specific humidity deficit, soil moisture deficit and leaf area index. Two Jarvis-Stewart type models were used, differing only in the formulation of the specific humidity function. Both

  10. (TECTONA GRANDIS LEAF POWDER

    Directory of Open Access Journals (Sweden)

    Yash Mishra

    2015-01-01

    Full Text Available In this study, the adsorption potential of Teak (Tectona grandis leaf powder (TLP toremove Methylene blue (MB and Malachite Green (MG dye molecules from aqueoussolution was investigated. Batch experiments were conducted to evaluate the influenceof operational parameters such as, pH (2−9, adsorbent dosage (1−7 g/L, contact time(15−150 minutes and initial dye concentration (20−120 mg/L at stirring speed of 150rpm for the adsorption of MB and MG on TLP. Maximum removal efficiency of 98.4%and 95.1% was achieved for MB and MG dye, respectively. The experimentalequilibrium data were analysed using Langmuir, Freundlich and Temkin isothermmodels and it was found that, it fitted well to the Freundlich isotherm model. Thesurface structure and morphology of the adsorbent was characterized using scanningelectron microscopy (SEM and the presence of functional groups and its interactionwith the dye molecules were analysed using Fourier transform infrared spectroscopy(FTIR. Based on the investigation, it has been demonstrated that the teak leaf powderhas good potential for effective adsorption of methylene blue and malachite green dye.

  11. Mesophyll conductance in Zea mays responds transiently to CO2availability: implications for transpiration efficiency in C4crops.

    Science.gov (United States)

    Kolbe, Allison R; Cousins, Asaph B

    2018-03-01

    Mesophyll conductance (g m ) describes the movement of CO 2 from the intercellular air spaces below the stomata to the site of initial carboxylation in the mesophyll. In contrast with C 3 -g m , little is currently known about the intraspecific variation in C 4 -g m or its responsiveness to environmental stimuli. To address these questions, g m was measured on five maize (Zea mays) lines in response to CO 2 , employing three different estimates of g m . Each of the methods indicated a significant response of g m to CO 2 . Estimates of g m were similar between methods at ambient and higher CO 2 , but diverged significantly at low partial pressures of CO 2 . These differences are probably driven by incomplete chemical and isotopic equilibrium between CO 2 and bicarbonate under these conditions. Carbonic anhydrase and phosphoenolpyruvate carboxylase in vitro activity varied significantly despite similar values of g m and leaf anatomical traits. These results provide strong support for a CO 2 response of g m in Z. mays, and indicate that g m in maize is probably driven by anatomical constraints rather than by biochemical limitations. The CO 2 response of g m indicates a potential role for facilitated diffusion in C 4 -g m . These results also suggest that water-use efficiency could be enhanced in C 4 species by targeting g m . © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. The artificial leaf.

    Science.gov (United States)

    Nocera, Daniel G

    2012-05-15

    To convert the energy of sunlight into chemical energy, the leaf splits water via the photosynthetic process to produce molecular oxygen and hydrogen, which is in a form of separated protons and electrons. The primary steps of natural photosynthesis involve the absorption of sunlight and its conversion into spatially separated electron-hole pairs. The holes of this wireless current are captured by the oxygen evolving complex (OEC) of photosystem II (PSII) to oxidize water to oxygen. The electrons and protons produced as a byproduct of the OEC reaction are captured by ferrodoxin of photosystem I. With the aid of ferrodoxin-NADP(+) reductase, they are used to produce hydrogen in the form of NADPH. For a synthetic material to realize the solar energy conversion function of the leaf, the light-absorbing material must capture a solar photon to generate a wireless current that is harnessed by catalysts, which drive the four electron/hole fuel-forming water-splitting reaction under benign conditions and under 1 sun (100 mW/cm(2)) illumination. This Account describes the construction of an artificial leaf comprising earth-abundant elements by interfacing a triple junction, amorphous silicon photovoltaic with hydrogen- and oxygen-evolving catalysts made from a ternary alloy (NiMoZn) and a cobalt-phosphate cluster (Co-OEC), respectively. The latter captures the structural and functional attributes of the PSII-OEC. Similar to the PSII-OEC, the Co-OEC self-assembles upon oxidation of an earth-abundant metal ion from 2+ to 3+, may operate in natural water at room temperature, and is self-healing. The Co-OEC also activates H(2)O by a proton-coupled electron transfer mechanism in which the Co-OEC is increased by four hole equivalents akin to the S-state pumping of the Kok cycle of PSII. X-ray absorption spectroscopy studies have established that the Co-OEC is a structural relative of Mn(3)CaO(4)-Mn cubane of the PSII-OEC, where Co replaces Mn and the cubane is extended in a

  13. Toward an improved understanding of the role of transpiration in critical zone dynamics

    Science.gov (United States)

    Mitra, B.; Papuga, S. A.

    2012-12-01

    Evapotranspiration (ET) is an important component of the total water balance across any ecosystem. In subalpine mixed-conifer ecosystems, transpiration (T) often dominates the total water flux and therefore improved understanding of T is critical for accurate assessment of catchment water balance and for understanding of the processes that governs the complex dynamics across critical zone (CZ). The interaction between T and plant vegetation not only modulates soil water balance but also influences water transit time and hydrochemical flux - key factors in our understanding of how the CZ evolves and responds. Unlike an eddy covariance system which provides only an integrated ET flux from an ecosystem, a sap flow system can provide an estimate of the T flux from the ecosystem. By isolating T, the ecohydrological drivers of this major water loss from the CZ can be identified. Still, the species composition of mixed-conifer ecosystems vary and the drivers of T associated with each species are expected to be different. Therefore, accurate quantification of T from a mixed-conifer requires knowledge of the unique transpiration dynamics of each of the tree species. Here, we installed a sap flow system within two mixed-conifer study sites of the Jemez River Basin - Santa Catalina Mountains Critical Zone Observatory (JRB - SCM CZO). At both sites, we identified the dominant tree species and installed sap flow sensors on healthy representatives for each of those species. At the JRB CZO site, sap sensors were installed in fir (4) and spruce (4) trees; at the SCM CZO site, sap sensors were installed at white fir (4) and maple (4) and one dead tree. Meteorological data as well as soil temperature (Ts) and soil moisture (θ) at multiple depths were also collected from each of the two sites. Preliminary analysis of two years of sap flux rate at JRB - SCM CZO shows that the environmental drivers of fir, spruce, and maple are different and also vary throughout the year. For JRB fir

  14. The worldwide leaf economics spectrum

    NARCIS (Netherlands)

    Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.J.J.M.; Cavender-Bares, J.; Chapin, T.; Cornelissen, J.H.C.; Diemer, M.; Flexas, J.; Garnier, E.; Groom, P.K.; Gulias, J.; Hikosaka, K.; Lamont, B.B.; Lee, T.; Lee, W.; Lusk, C.; Midgley, J.J.; Navas, M.L.; Niinements, Ü.; Oleksyn, J.; Osada, N.; Poorter, H.; Poot, P.; Prior, L.; Pyankov, V.I.; Roumet, C.; Thomas, S.C.; Tjoelker, M.G.; Veneklaas, E.J.; Villar, R.

    2004-01-01

    Bringing together leaf trait data spanning 2,548 species and 175 sites we describe, for the first time at global scale, a universal spectrum of leaf economics consisting of key chemical, structural and physiological properties. The spectrum runs from quick to slow return on investments of nutrients

  15. Diffusion coefficient in photon diffusion theory

    NARCIS (Netherlands)

    Graaff, R; Ten Bosch, JJ

    2000-01-01

    The choice of the diffusion coefficient to be used in photon diffusion theory has been a subject of discussion in recent publications on tissue optics. We compared several diffusion coefficients with the apparent diffusion coefficient from the more fundamental transport theory, D-app. Application to

  16. Leaf oxygen and Carbon Isotopic Signatures Reflect Drought Resistance and Water Use Efficiency in the C4 Grass, Setaria viridis

    Science.gov (United States)

    Ellsworth, P.; Cousins, A. B.

    2014-12-01

    Low water availability is a major constraint in crop production, especially as agriculture is pushed to marginal lands. Therefore, improving drought resistance such as increasing water use efficiency (WUE) through plant breeding is needed to expand the range of soil water availability adequate for food production. With the goal of finding the genomic basis for WUE in C4 grasses, Setaria viridis makes an ideal model species because of its small size, short lifespan, and sequenced genome. Also it is part of the panicoid grass clade, which is one of the most important clades for food and biofuel production. In plant breeding programs, large numbers of genotypes must be quickly screened for drought resistance traits, but there is no well-defined method of screening for WUE in C4 grasses. However, bulk leaf oxygen (Δ18OBL) and carbon (δ13C) isotopic signatures have shown potential as recorders of transpiration rate (E) and stomatal conductance (gs), and combined with biomass production potentially serve as a measure of WUE. Values of Δ18OBL record differences in transpiration rate because leaf water becomes more enriched as transpiration rate decreases, and leaf tissue records the isotopic composition of leaf water in which it is synthesized. Additionally, in C4 plants δ13C values decrease as gs decreases but the change in δ13C in response to gs may not be adequate to tease apart differences in WUE. In this study, we grew S. viridis plants under well-watered and water-limited conditions to determine if Δ18OBL and δ13C could be used as proxies for E and gs, and be used to screen S. viridis for differences in WUE in breeding programs. The Δ18OBL and δ13C were significantly different between well-watered and water-limited plants and correlated with each other and with E, gs, and instantaneous water use efficiency (Anet/gs). Therefore, Δ18OBL and δ13C can be useful proxies to screen genotypes for drought resistance by recording differences in E, gs, and WUE

  17. Detailed modeling of electron emission for transpiration cooling of hypersonic vehicles

    Science.gov (United States)

    Hanquist, Kyle M.; Hara, Kentaro; Boyd, Iain D.

    2017-02-01

    Electron transpiration cooling (ETC) is a recently proposed approach to manage the high heating loads experienced at the sharp leading edges of hypersonic vehicles. Computational fluid dynamics (CFD) can be used to investigate the feasibility of ETC in a hypersonic environment. A modeling approach is presented for ETC, which includes developing the boundary conditions for electron emission from the surface, accounting for the space-charge limit effects of the near-wall plasma sheath. The space-charge limit models are assessed using 1D direct-kinetic plasma sheath simulations, taking into account the thermionically emitted electrons from the surface. The simulations agree well with the space-charge limit theory proposed by Takamura et al. for emitted electrons with a finite temperature, especially at low values of wall bias, which validates the use of the theoretical model for the hypersonic CFD code. The CFD code with the analytical sheath models is then used for a test case typical of a leading edge radius in a hypersonic flight environment. The CFD results show that ETC can lower the surface temperature of sharp leading edges of hypersonic vehicles, especially at higher velocities, due to the increase in ionized species enabling higher electron heat extraction from the surface. The CFD results also show that space-charge limit effects can limit the ETC reduction of surface temperatures, in comparison to thermionic emission assuming no effects of the electric field within the sheath.

  18. Evaluation of a low cost wireless heat ratio method system for measuring transpiration

    Science.gov (United States)

    Eiriksson, D.; Boyer, B.; Aishlin, P. S.; Bowling, D. R.

    2016-12-01

    For decades, environmental measurements in remote locations have consisted of sensors hard wired to loggers that send data to central servers via radio, satellite, or cellular telemetry. This model of data collection is effective when all sensors are located in close proximity to the central data logger, such as on a weather station. Frequently, however, in order to adequately capture the spatial heterogeneity associated with environmental processes (e.g., transpiration, soil moisture, or snow depth), it is necessary to install many sensors 10's to 100's of meters from a central data logging station. This presents a practical and financial obstacle when considering the cost of cabling and conduit, in addition to the potential data collection and data quality problems associated with long cable runs. We offer a solution to this persistent challenge with a hybrid datalogging system that combines the power and reliability of Campbell Scientific logging and telemetry equipment with low cost Xbee radios and Arduino based data logging platforms. To evaluate the promise of this hybrid datalogging concept we developed a new generation of low cost, homemade heat ratio sapflux sensors and tested them at a forested site in the Wasatch Mountains, near Salt Lake City, Utah. We present data from this test site, heat ratio method sensor construction details, and example code that merges the capabilities of Arduino and Campbell Scientific datalogging systems.

  19. Partitioning of evaporation into transpiration, soil evaporation and interception: a comparison between isotope measurements and a HYDRUS-1D model

    Directory of Open Access Journals (Sweden)

    S. J. Sutanto

    2012-08-01

    Full Text Available Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In this study, we compared three different methods to estimate evaporation fluxes during simulated summer conditions in a grass-covered lysimeter in the laboratory. Only two of these methods can be used to partition total evaporation into transpiration, soil evaporation and interception. A water balance calculation (whereby rainfall, soil moisture and percolation were measured was used for comparison as a benchmark. A HYDRUS-1D model and isotope measurements were used for the partitioning of total evaporation. The isotope mass balance method partitions total evaporation of 3.4 mm d−1 into 0.4 mm d−1 for soil evaporation, 0.3 mm d−1 for interception and 2.6 mm d−1 for transpiration, while the HYDRUS-1D partitions total evaporation of 3.7 mm d−1 into 1 mm d−1 for soil evaporation, 0.3 mm d−1 for interception and 2.3 mm d−1 for transpiration. From the comparison, we concluded that the isotope mass balance is better for low temporal resolution analysis than the HYDRUS-1D. On the other hand, HYDRUS-1D is better for high temporal resolution analysis than the isotope mass balance.

  20. Diurnal Regulation of Leaf Water Status in High- and Low-Mannitol Olive Cultivars

    Directory of Open Access Journals (Sweden)

    Riccardo Lo Bianco

    2014-03-01

    Full Text Available The role of mannitol and malic acid in the regulation of diurnal leaf water relations was investigated in ‘Biancolilla’ (high-mannitol and ‘Cerasuola’ (low-mannitol olive trees. Photosynthetic photon flux density (PPFD, vapor pressure deficit (VPD, stomatal conductance (gs, transpiration rate (T, relative water content (RWC, mannitol and malic acid were measured in ‘Biancolilla’ and ‘Cerasuola’ leaves during a dry and hot day of summer in Sicily. In general, leaves of ‘Biancolilla’ trees exhibited greater mannitol content, higher gs and T, but lower RWC than leaves of ‘Cerasuola’ trees. Differences in gs and T between the two cultivars were evident mainly in mid to late morning. ‘Biancolilla’ leaves accumulated mannitol at midday and again late in the evening. Stomatal responses to VPD were RWC dependent, and limited somewhat T, only in ‘Biancolilla’. Mannitol was directly related to RWC, and may play an osmotic role, in ‘Biancolilla’ leaves, whereas ‘Cerasuola’ leaves remained well hydrated by just transpiring less and regardless of mannitol. A day-time accumulation and night-time utilization of mannitol in ‘Biancolilla’ leaves is proposed as an efficient mechanism to regulate water status and growth.

  1. Diurnal Regulation of Leaf Water Status in High- and Low-Mannitol Olive Cultivars

    Science.gov (United States)

    Lo Bianco, Riccardo; Avellone, Giuseppe

    2014-01-01

    The role of mannitol and malic acid in the regulation of diurnal leaf water relations was investigated in ‘Biancolilla’ (high-mannitol) and ‘Cerasuola’ (low-mannitol) olive trees. Photosynthetic photon flux density (PPFD), vapor pressure deficit (VPD), stomatal conductance (gs), transpiration rate (T), relative water content (RWC), mannitol and malic acid were measured in ‘Biancolilla’ and ‘Cerasuola’ leaves during a dry and hot day of summer in Sicily. In general, leaves of ‘Biancolilla’ trees exhibited greater mannitol content, higher gs and T, but lower RWC than leaves of ‘Cerasuola’ trees. Differences in gs and T between the two cultivars were evident mainly in mid to late morning. ‘Biancolilla’ leaves accumulated mannitol at midday and again late in the evening. Stomatal responses to VPD were RWC dependent, and limited somewhat T, only in ‘Biancolilla’. Mannitol was directly related to RWC, and may play an osmotic role, in ‘Biancolilla’ leaves, whereas ‘Cerasuola’ leaves remained well hydrated by just transpiring less and regardless of mannitol. A day-time accumulation and night-time utilization of mannitol in ‘Biancolilla’ leaves is proposed as an efficient mechanism to regulate water status and growth. PMID:27135500

  2. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    Science.gov (United States)

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  3. Triple oxygen isotope composition of leaf waters in Mpala, central Kenya

    Science.gov (United States)

    Li, Shuning; Levin, Naomi E.; Soderberg, Keir; Dennis, Kate J.; Caylor, Kelly K.

    2017-06-01

    Variations in triple oxygen isotopes have been used in studies of atmospheric photochemistry, global productivity and increasingly in studies of hydroclimate. Understanding the distribution of triple oxygen isotopes in plant waters is critical to studying the fluxes of oxygen isotopes between the atmosphere and hydrosphere, in which plants play an important role. In this paper we report triple oxygen isotope data for stem and leaf waters from Mpala, Kenya and explore how Δ17 O, the deviation from an expected relationship between 17O /16O and 18O /16O ratios, in plant waters vary with respect to relative humidity and deuterium excess (d-excess). We observe significant variation in Δ17 O among waters in leaves and stems from a single plant (up to 0.16‰ range in Δ17 O in leaf water in a plant over the course of a signal day), which correlates to changes in relative humidity. A steady state model for evaporation in leaf water reproduces the majority of variation in Δ17 O and d-excess we observed in leaf waters, except for samples that were collected in the morning, when relative humidity is high and the degree of fractionation in the system is minimal. The data and the steady state model indicate that the slope, λtransp, that links δ17 O and δ18 O values of stem and leaf waters and characterizes the fractionation during transpiration, is strongly influenced by the isotopic composition of ambient vapor when relative humidity is high. We observe a strong, positive relationship between d-excess and Δ17 O, with a slope 2.2 ± 0.2 per meg ‰-1, which is consistent with the observed relationship in tropical rainfall and in water in an evaporating open pan. The strong linear relationship between d-excess and Δ17 O should be typical for any process involving evaporation or any other fractionation that is governed by kinetic effects.

  4. Leaf Relative Water Content Estimated from Leaf Reflectance and Transmittance

    Science.gov (United States)

    Vanderbilt, Vern; Daughtry, Craig; Dahlgren, Robert

    2016-01-01

    Remotely sensing the water status of plants and the water content of canopies remain long term goals of remote sensing research. In the research we report here, we used optical polarization techniques to monitor the light reflected from the leaf interior, R, as well as the leaf transmittance, T, as the relative water content (RWC) of corn (Zea mays) leaves decreased. Our results show that R and T both change nonlinearly. The result show that the nonlinearities cancel in the ratio R/T, which appears linearly related to RWC for RWC less than 90%. The results suggest that potentially leaf water status and perhaps even canopy water status could be monitored starting from leaf and canopy optical measurements.

  5. Elevated CO₂ enhances leaf senescence during extreme drought in a temperate forest.

    Science.gov (United States)

    Warren, Jeffrey M; Norby, Richard J; Wullschleger, Stan D

    2011-02-01

    In 2007, an extreme drought and acute heat wave impacted ecosystems across the southeastern USA, including a 19-year-old Liquidambar styraciflua L. (sweetgum) tree plantation exposed to long-term elevated (E(CO(2))) or ambient (A(CO(2))) CO(2) treatments. Stem sap velocities were analyzed to assess plant response to potential interactions between CO(2) and these weather extremes. Canopy conductance and net carbon assimilation (A(net)) were modeled based on patterns of sap velocity to estimate indirect impacts of observed reductions in transpiration under E(CO(2)) on premature leaf senescence. Elevated CO(2) reduced sap flow by 28% during early summer, and by up to 45% late in the drought during record-setting temperatures. Modeled canopy conductance declined more rapidly in E(CO(2)) plots during this period, thereby directly reducing carbon gain at a greater rate than in A(CO(2)) plots. Indeed, pre-drought canopy A(net) was similar across treatment plots, but declined to ∼40% less than A(net) in A(CO(2)) as the drought progressed, likely leading to negative net carbon balance. Consequently, premature leaf senescence and abscission increased rapidly during this period, and was 30% greater for E(CO(2)). While E(CO(2)) can reduce leaf-level water use under droughty conditions, acute drought may induce excessive stomatal closure that could offset benefits of E(CO(2)) to temperate forest species during extreme weather events.

  6. Leaf Gas Exchange and Chlorophyll a Fluorescence Imaging of Rice Leaves Infected with Monographella albescens.

    Science.gov (United States)

    Tatagiba, Sandro Dan; DaMatta, Fábio Murilo; Rodrigues, Fabrício Ávila

    2015-02-01

    This study was intended to analyze the photosynthetic performance of rice leaf blades infected with Monographella albescens by combining chlorophyll (Chl) a fluorescence images with gas exchange and photosynthetic pigment pools. The net CO2 assimilation rate, stomatal conductance, transpiration rate, total Chl and carotenoid pools, and Chl a/b ratio all decreased but the internal CO2 concentration increased in the inoculated plants compared with their noninoculated counterparts. The first detectable changes in the images of Chl a fluorescence from the leaves of inoculated plants were already evident at 24 h after inoculation (hai) and increased dramatically as the leaf scald lesions expanded. However, these changes were negligible for the photosystem II photochemical efficiency (Fv/Fm) at 24 hai, in contrast to other Chl fluorescence traits such as the photochemical quenching coefficient, yield of photochemistry, and yield for dissipation by downregulation; which, therefore, were much more sensitive than the Fv/Fm ratio in assessing the early stages of fungal infection. It was also demonstrated that M. albescens was able to impair the photosynthetic process in both symptomatic and asymptomatic leaf areas. Overall, it was proven that Chl a fluorescence imaging is an excellent tool to describe the loss of functionality of the photosynthetic apparatus occurring in rice leaves upon infection by M. albescens.

  7. Rapid hydraulic recovery in Eucalyptus pauciflora after drought: linkages between stem hydraulics and leaf gas exchange.

    Science.gov (United States)

    Martorell, Sebastià; Diaz-Espejo, Antonio; Medrano, Hipólito; Ball, Marilyn C; Choat, Brendan

    2014-03-01

    In woody plants, photosynthetic capacity is closely linked to rates at which the plant hydraulic system can supply water to the leaf surface. Drought-induced embolism can cause sharp declines in xylem hydraulic conductivity that coincide with stomatal closure and reduced photosynthesis. Recovery of photosynthetic capacity after drought is dependent on restored xylem function, although few data exist to elucidate this coordination. We examined the dynamics of leaf gas exchange and xylem function in Eucalyptus pauciflora seedlings exposed to a cycle of severe water stress and recovery after re-watering. Stomatal closure and leaf turgor loss occurred at water potentials that delayed the extensive spread of embolism through the stem xylem. Stem hydraulic conductance recovered to control levels within 6 h after re-watering despite a severe drought treatment, suggesting an active mechanism embolism repair. However, stomatal conductance did not recover after 10 d of re-watering, effecting tighter control of transpiration post drought. The dynamics of recovery suggest that a combination of hydraulic and non-hydraulic factors influenced stomatal behaviour post drought. © 2013 John Wiley & Sons Ltd.

  8. STATIC ANALYSIS OF LEAF SPRING

    OpenAIRE

    E VENUGOPAL GOUD; G HARINATH GOWD

    2012-01-01

    Leaf springs are special kind of springs used in automobile suspension systems. The advantage of leaf spring over helical spring is that the ends of the spring may be guided along a definite path as it deflects to act as a structural member in addition to energy absorbing device. The main function of leaf spring is not only tosupport vertical load but also to isolate road induced vibrations. It is subjected to millions of load cycles leading to fatigue failure. Static analysis determines the ...

  9. Validation of a simple evaporation-transpiration scheme (SETS) to estimate evaporation using micro-lysimeter measurements

    Science.gov (United States)

    Ghazanfari, Sadegh; Pande, Saket; Savenije, Hubert

    2014-05-01

    Several methods exist to estimate E and T. The Penman-Montieth or Priestly-Taylor methods along with the Jarvis scheme for estimating vegetation resistance are commonly used to estimate these fluxes as a function of land cover, atmospheric forcing and soil moisture content. In this study, a simple evaporation transpiration method is developed based on MOSAIC Land Surface Model that explicitly accounts for soil moisture. Soil evaporation and transpiration estimated by SETS is validated on a single column of soil profile with measured evaporation data from three micro-lysimeters located at Ferdowsi University of Mashhad synoptic station, Iran, for the year 2005. SETS is run using both implicit and explicit computational schemes. Results show that the implicit scheme estimates the vapor flux close to that by the explicit scheme. The mean difference between the implicit and explicit scheme is -0.03 mm/day. The paired T-test of mean difference (p-Value = 0.042 and t-Value = 2.04) shows that there is no significant difference between the two methods. The sum of soil evaporation and transpiration from SETS is also compared with P-M equation and micro-lysimeters measurements. The SETS predicts the actual evaporation with a lower bias (= 1.24mm/day) than P-M (= 1.82 mm/day) and with R2 value of 0.82.

  10. Uptake of 32P and 86Rb as influenced by temperature, transpiration suppress and shading treatment in rice plants

    International Nuclear Information System (INIS)

    Lee, G.B.; Hong, Y.P.; Im, J.N.; Chung, K.W.

    1989-01-01

    This study was carried out to know the uptake pattern of phosphorous and potassium in rice plants using by two radioisotopes, 32P and 86Rb as tracers for two years, 1987 and 1988. Rice plants were grown in the hydroponic culture with Yoshida's solution, and treated with different temperatures, transpiration suppress, shading, and phosphorous and potassium deletions. The uptake amount of 32P and 86Rb were increased with the increasing temperature in root sphere of rice plant, particularly remarkable increase of 86Rb uptake at 35deg C. The uptake of 32P tended to be promoted at the treatment of low air-high water temperature (17-30deg C), while that of 86Rb was not significantly differenced from different temperature treatments. The effect of transpiration on the uptake of 32P and 86Rb was extremely low. This phenomenon may suggest that the absorption be depending on active uptake rather than passive one by transpiration stream. The total carbohydrate contents of rice root were decreased by shading treatment, resulting significant reduction in the uptake of 32P and 86Rb. The uptake of 86Rb was remarkably increased in the treatment of potassium deletion, but that of 32P was not significantly increased in the delection of phosphorous

  11. Homeostasis of tree leaf temperatures determined through oxygen isotope analysis of tree cellulose: implications for ecosystem water loss.

    Science.gov (United States)

    Helliker, B.; Richter, S.

    2008-12-01

    Water loss from terrestrial systems is controlled by the product of water-vapor conductance and the evaporative gradient from tree leaves to the ambient air. While a great deal of attention has been paid to stomatal and whole canopy conductance as controls over transpiration, considerably less effort has gone into determining true evaporative gradients from the leaf to the atmosphere. Far too often the assumption is that the leaf-to-air evaporative gradient can be approximated by the ambient evaporative gradient. Or more succinctly, the assumption has been that the temperature and relative humidity experienced at the leaf-level equals that of ambient air. Any systematic deviation from this assumption can have dramatic effects on real and modeled water loss from terrestrial systems. We recently developed a new method to resolve tree- canopy leaf temperature using the oxygen isotope ratio of tree-ring cellulose. We show a remarkably constant leaf temperature of 21.4 ± 2.2° C in 39 tree species across 50° of latitude, from subtropical to boreal biomes. This means that when carbon assimilation is maximal, the physiological and morphological properties of tree branches serve to raise leaf temperature above air temperature to a much greater extent in more northern latitudes. We found that leaf-to-air evaporative gradients can be more than 25 percent over the ambient evaporative gradient in northern systems. The effect of this finding on canopy and ecosystem scale water cycles, along with independent support for our findings, will be discussed.

  12. Diffusion archeology for diffusion progression history reconstruction.

    Science.gov (United States)

    Sefer, Emre; Kingsford, Carl

    2016-11-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring - perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial diffusion data. Here, we tackle the problem of reconstructing a diffusion history from one or more snapshots of the diffusion state. This ability can be invaluable to learn when certain computer nodes are infected or which people are the initial disease spreaders to control future diffusions. We formulate this problem over discrete-time SEIRS-type diffusion models in terms of maximum likelihood. We design methods that are based on submodularity and a novel prize-collecting dominating-set vertex cover (PCDSVC) relaxation that can identify likely diffusion steps with some provable performance guarantees. Our methods are the first to be able to reconstruct complete diffusion histories accurately in real and simulated situations. As a special case, they can also identify the initial spreaders better than the existing methods for that problem. Our results for both meme and contaminant diffusion show that the partial diffusion data problem can be overcome with proper modeling and methods, and that hidden temporal characteristics of diffusion can be predicted from limited data.

  13. Use of remotely sensed precipitation and leaf area index in a distributed hydrological model

    DEFF Research Database (Denmark)

    Andersen, J.; Dybkjær, G.; Jensen, Karsten Høgh

    2002-01-01

    Remotely sensed precipitation from METEOSAT data and leaf area index (LAI) from NOAA AVHRR data is used as input data to the distributed hydrological modelling of three sub catchments (82.000 km(2)) in the Senegal River Basin. Further, root depths of annual vegetation are related to the temporal...... and spatial variation of LAI. The modelling results are compared with results based on conventional input of precipitation and vegetation characteristics. The introduction of remotely sensed LAI shows improvements in the simulated hydrographs, a marked change in the relative proportions of actual...... evapotranspiration comprising canopy evaporation, soil evaporation and transpiration. while no clear trend in the spatial pattern could be found, The remotely sensed precipitation resulted in similar model performances with respect to the simulated hydrographs as with the conventional raingauge input. A simple...

  14. Sapfluxnet: a global database of sap flow measurements to unravel the ecological factors of transpiration regulation in woody plants

    Science.gov (United States)

    Poyatos, Rafael; Martínez-Vilalta, Jordi; Molowny-Horas, Roberto; Steppe, Kathy; Oren, Ram; Katul, Gabriel; Mahecha, Miguel

    2016-04-01

    Plant transpiration is one of the main components of the global water cycle, it controls land energy balance, determines catchment hydrological responses and exerts strong feedbacks on regional and global climate. At the same time, plant productivity, growth and survival are severely constrained by water availability, which is expected to decline in many areas of the world because of global-change driven increases in drought conditions. While global surveys of drought tolerance traits at the organ level are rapidly increasing our knowledge of the diversity in plant functional strategies to cope with drought stress, a whole-plant perspective of drought vulnerability is still lacking. Sap flow measurements using thermal methods have now been applied to measure seasonal patterns in water use and the response of transpiration to environmental drivers across hundreds of species of woody plants worldwide, covering a wide range of climates, soils and stand structural characteristics. Here, we present the first effort to build a global database of sub-daily, tree-level sap flow (SAPFLUXNET) that will be used to improve our understanding of physiological and structural determinants of plant transpiration and to further investigate the role of vegetation in controlling global water balance. We already have the expression of interest of data contributors representing >115 globally distributed sites, > 185 species and > 700 trees, measured over at least one growing season. However, the potential number of available sites and species is probably much higher given that > 2500 sap flow-related papers have been identified in a Scopus literature search conducted in November 2015. We will give an overview of how data collection, harmonisation and quality control procedures are implemented within the project. We will also discuss potential analytical strategies to synthesize hydroclimatic controls on sap flow into biologically meaningful traits related to whole-plant transpiration

  15. Water stable isotope shifts of surface waters as proxies to quantify evaporation, transpiration and carbon uptake on catchment scales

    Science.gov (United States)

    Barth, Johannes; van Geldern, Robert; Veizer, Jan; Karim, Ajaz; Freitag, Heiko; Fowlwer, Hayley

    2017-04-01

    Comparison of water stable isotopes of rivers to those of precipitation enables separation of evaporation from transpiration on the catchment scale. The method exploits isotope ratio changes that are caused exclusively by evaporation over longer time periods of at least one hydrological year. When interception is quantified by mapping plant types in catchments, the amount of water lost by transpiration can be determined. When in turn pairing transpiration with the water use efficiency (WUE i.e. water loss by transpiration per uptake of CO2) and subtracting heterotrophic soil respiration fluxes (Rh), catchment-wide carbon balances can be established. This method was applied to several regions including the Great Lakes and the Clyde River Catchments ...(Barth, et al., 2007, Karim, et al., 2008). In these studies evaporation loss was 24 % and 1.3 % and transpiration loss was 47 % and 22 % when compared to incoming precipitation for the Great Lakes and the Clyde Catchment, respectively. Applying WUE values for typical plant covers and using area-typical Rh values led to estimates of CO2 uptake of 251 g C m-2 a-1 for the Great Lakes Catchment and CO2 loss of 21 g C m2 a-1 for the Clyde Catchment. These discrepancies are most likely due to different vegetation covers. The method applies to scales of several thousand km2 and has good potential for improvement via calibration on smaller scales. This can for instance be achieved by separate treatment of sub-catchments with more detailed mapping of interception as a major unknown. These previous studies have shown that better uncertainty analyses are necessary in order to estimate errors in water and carbon balances. The stable isotope method is also a good basis for comparison to other landscape carbon balances for instance by eddy covariance techniques. This independent method and its up-scaling combined with the stable isotope and area-integrating methods can provide cross validation of large-scale carbon budgets

  16. Is leaf dry matter content a better predictor of soil fertility than specific leaf area?

    NARCIS (Netherlands)

    Hodgson, J.G.; Montserrat-Marti, G.; Charles, M.; Jones, G.; Wilson, P.; Shipley, B.; Sharafi, M.; Cerabolini, B.E.L.; Cornelissen, J.H.C.; Band, S.R.; Bogard, A.; Castro-Diez, P.; Guerrere-Campo, J.; Palmer, C.; Peréz-Rontomé, M.C.; Carter, G.; Hynd, A.; Romo-Diez, A.; De Torres Espuny, L.; Royo Pla, F.

    2011-01-01

    Background and Aims: Specific leaf area (SLA), a key element of the 'worldwide leaf economics spectrum', is the preferred 'soft' plant trait for assessing soil fertility. SLA is a function of leaf dry matter content (LDMC) and leaf thickness (LT). The first, LDMC, defines leaf construction costs and

  17. Agave Americana Leaf Fibers

    Directory of Open Access Journals (Sweden)

    Ashish Hulle

    2015-02-01

    Full Text Available The growing environmental problems, the problem of waste disposal and the depletion of non-renewable resources have stimulated the use of green materials compatible with the environment to reduce environmental impacts. Therefore, there is a need to design products by using natural resources. Natural fibers seem to be a good alternative since they are abundantly available and there are a number of possibilities to use all the components of a fiber-yielding crop; one such fiber-yielding plant is Agave Americana. The leaves of this plant yield fibers and all the parts of this plant can be utilized in many applications. The “zero-waste” utilization of the plant would enable its production and processing to be translated into a viable and sustainable industry. Agave Americana fibers are characterized by low density, high tenacity and high moisture absorbency in comparison with other leaf fibers. These fibers are long and biodegradable. Therefore, we can look this fiber as a sustainable resource for manufacturing and technical applications. Detailed discussion is carried out on extraction, characterization and applications of Agave Americana fiber in this paper.

  18. Why do leaf-tying caterpillars abandon their leaf ties?

    Directory of Open Access Journals (Sweden)

    Michelle Sliwinski

    2013-09-01

    Full Text Available Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats, but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently

  19. Transpiration and CO2 fluxes of a pine forest: modelling the undergrowth effect

    Directory of Open Access Journals (Sweden)

    V. Rivalland

    2005-02-01

    Full Text Available A modelling study is performed in order to quantify the relative effect of allowing for the physiological properties of an undergrowth grass sward on total canopy water and carbon fluxes of the Le-Bray forest (Les-Landes, South-western France. The Le-Bray forest consists of maritime pine and an herbaceous undergrowth (purple moor-grass, which is characterised by a low stomatal control of transpiration, in contrast to maritime pine. A CO2-responsive land surface model is used that includes responses of woody and herbaceous species to water stress. An attempt is made to represent the properties of the undergrowth vegetation in the land surface model Interactions between Soil, Biosphere, and Atmosphere, CO2-responsive, ISBA-A-gs. The new adjustment allows for a fairly different environmental response between the forest canopy and the understory in a simple manner. The model's simulations are compared with long term (1997 and 1998 micro-meteorological measurements over the Le-Bray site. The fluxes of energy, water and CO2, are simulated with and without the improved representation of the undergrowth vegetation, and the two simulations are compared with the observations. Accounting for the undergrowth permits one to improve the model's scores. A simple sensitivity experiment shows the behaviour of the model in response to climate change conditions, and the understory effect on the water balance and carbon storage of the forest. Accounting for the distinct characteristics of the undergrowth has a substantial and positive effect on the model accuracy and leads to a different response to climate change scenarios.

  20. Drought response in wheat: key genes and regulatory mechanisms controlling root system architecture and transpiration efficiency

    Science.gov (United States)

    Kulkarni, Manoj; Soolanayakanahally, Raju; Ogawa, Satoshi; Uga, Yusaku; Selvaraj, Michael G.; Kagale, Sateesh

    2017-12-01

    Abiotic stresses such as drought, heat, salinity and flooding threaten global food security. Crop genetic improvement with increased resilience to abiotic stresses is a critical component of crop breeding strategies. Wheat is an important cereal crop and a staple food source globally. Enhanced drought tolerance in wheat is critical for sustainable food production and global food security. Recent advances in drought tolerance research have uncovered many key genes and transcription regulators governing morpho-physiological traits. Genes controlling root architecture and stomatal development play an important role in soil moisture extraction and its retention, and therefore have been targets of molecular breeding strategies for improving drought tolerance. In this systematic review, we have summarized evidence of beneficial contributions of root and stomatal traits to plant adaptation to drought stress. Specifically, we discuss a few key genes such as DRO1 in rice and ERECTA in Arabidopsis and rice that were identified to be the enhancers of drought tolerance via regulation of root traits and transpiration efficiency. Additionally, we highlight several transcription factor families, such as ERF (ethylene response factors), DREB (dehydration responsive element binding), ZFP (zinc finger proteins), WRKY and MYB that were identified to be both positive and negative regulators of drought responses in wheat, rice, maize and/or Arabidopsis. The overall aim of this review was to provide an overview of candidate genes that have been tested as regulators of drought response in plants. The lack of a reference genome sequence for wheat and nontransgenic approaches for manipulation of gene functions in the past had impeded high-resolution interrogation of functional elements, including genes and QTLs, and their application in cultivar improvement. The recent developments in wheat genomics and reverse genetics, including the availability of a gold-standard reference genome

  1. Effects of Psidium guajava Leaf Infusion on Streptococci viridans

    Directory of Open Access Journals (Sweden)

    Hing Yi Chen

    2016-09-01

    Full Text Available Background: Dental caries is recognized as the most important oral burden. It is caused by the formation of lactate acid formed through reaction of bacteria and carbohydrates. Streptococci viridans has been proven as the primary etiologic agents for dental caries. Low accessibility in oral care services leads the Indonesian community to use plants in order to prevent dental caries. One of those plants is Psidium guajava (pink guava. The leaves were suggested to have antimicrobial effects on some gram-positive bacteria. When the organism is resistant to specific substance tested on media, a circular/inhibition zone around a disc containing antimicrobial substance was formed. The purpose of this study was to identify the presence of inhibition zones by infusion of Psidium guajava leaf on Streptococci viridians in vitro. Methods: This laboratory experiment was carried out in September to October 2014 at the Microbiology Laboratory, Faculty of Medicine, Universitas Padjadjaran. Infusions of Psidium guajava leaf were made into four different concentrations (10%, 25%, 50% and 100%, respectively and the identification of inhibition zones on Streptococci viridans obtained from the laboratory was tested using modified disk diffusion test. Distilled water acted as negative control. The results were then interpreted after 24 hours of incubation. Every procedure was repeated three times. Results: All four concentrations of Psidium guajava leaf infusions have formed inhibition zones on the media, with the highest concentration (100% producing largest average diameter. Conclusions: The infusion of Psidium guajava leaf produces inhibition zones on Streptococci virdans in vitro.

  2. Excess Entropy and Diffusivity

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Excess Entropy and Diffusivity. Excess entropy scaling of diffusivity (Rosenfeld,1977). Analogous relationships also exist for viscosity and thermal conductivity.

  3. Palaeo leaf economics reveal a shift in ecosystem function associated with the end-Triassic mass extinction event.

    Science.gov (United States)

    Soh, W K; Wright, I J; Bacon, K L; Lenz, T I; Steinthorsdottir, M; Parnell, A C; McElwain, J C

    2017-07-17

    Climate change is likely to have altered the ecological functioning of past ecosystems, and is likely to alter functioning in the future; however, the magnitude and direction of such changes are difficult to predict. Here we use a deep-time case study to evaluate the impact of a well-constrained CO 2 -induced global warming event on the ecological functioning of dominant plant communities. We use leaf mass per area (LMA), a widely used trait in modern plant ecology, to infer the palaeoecological strategy of fossil plant taxa. We show that palaeo-LMA can be inferred from fossil leaf cuticles based on a tight relationship between LMA and cuticle thickness observed among extant gymnosperms. Application of this new palaeo-LMA proxy to fossil gymnosperms from East Greenland reveals significant shifts in the dominant ecological strategies of vegetation found across the Triassic-Jurassic transition. Late Triassic forests, dominated by low-LMA taxa with inferred high transpiration rates and short leaf lifespans, were replaced in the Early Jurassic by forests dominated by high-LMA taxa that were likely to have slower metabolic rates. We suggest that extreme CO 2 -induced global warming selected for taxa with high LMA associated with a stress-tolerant strategy and that adaptive plasticity in leaf functional traits such as LMA contributed to post-warming ecological success.

  4. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax...

  5. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum...

  6. Anti-vibrio potentials of acetone and aqueous leaf extracts of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the anti-vibrio potentials of acetone and aqueous leaf extracts of Ocimum gratissimum and determine its relevance in the treatment of vibrios infection. Methods: The agar-well diffusion method was used for screening the extracts for their anti-vibrio activity. Broth micro-dilution assay was used to ...

  7. Antibacterial activities of extracts of leaf, fruit, seed and bark of ...

    African Journals Online (AJOL)

    Antibacterial activities of extracts of leaf, fruit, seed and bark of Phoenix dactylifera. ... Phytochemical analysis revealed the presence of carbohydrates and alkaloids in all parts, and flavonoids, steroids, saponins and tannins were present in some parts. Key words: Antibacterial activity, Phoenix dactylifera, disc diffusion ...

  8. Effects of the natural microstructures on the wettability of leaf surfaces

    Directory of Open Access Journals (Sweden)

    L.F. Wang

    2016-06-01

    Full Text Available The effects of natural microstructures on the wettability are investigated based on the systematic analysis on the contact angles and morphology of the leaf surfaces of four kinds of plants, Photinia serrulata, Ginkgo, Aloe vera and Hypericum monogynum. P. serrulata possesses the most wettable leaf surface due to the small corrugation and raised boundary of the microstructures, while H. monogynum leaf shows the largest contact angle as it exhibits corrugated microstructures with smaller pitch value and larger height compared with that of Aloe vera. The long-shaped and well aligned microstructures, which are beneficial for the diffusion of water, make the Ginkgo leaf surface to be hydrophilic. The study elaborates the effects of microstructures on the surface wettability, which shed light on the design of surfaces for different wettable needs.

  9. Coordination and transport of water and carbohydrates in the coupled soil-root-xylem-phloem leaf system

    Science.gov (United States)

    Katul, Gabriel; Huang, Cheng-Wei

    2017-04-01

    In response to varying environmental conditions, stomatal pores act as biological valves that dynamically adjust their size thereby determining the rate of CO2 assimilation and water loss (i.e., transpiration) to the atmosphere. Although the significance of this biotic control on gas exchange is rarely disputed, representing parsimoniously all the underlying mechanisms responsible for stomatal kinetics remain a subject of some debate. It has been conjectured that stomatal control in seed plants (i.e., angiosperm and gymnosperm) represents a compromise between biochemical demand for CO2 and prevention of excessive water loss. This view has been amended at the whole-plant level, where xylem hydraulics and sucrose transport efficiency in phloem appear to impose additional constraints on gas exchange. If such additional constraints impact stomatal opening and closure, then seed plants may have evolved coordinated photosynthetic-hydraulic-sugar transporting machinery that confers some competitive advantages in fluctuating environmental conditions. Thus, a stomatal optimization model that explicitly considers xylem hydraulics and maximum sucrose transport is developed to explore this coordination in the leaf-xylem-phloem system. The model is then applied to progressive drought conditions. The main findings from the model calculations are that (1) the predicted stomatal conductance from the conventional stomatal optimization theory at the leaf and the newly proposed models converge, suggesting a tight coordination in the leaf-xylem-phloem system; (2) stomatal control is mainly limited by the water supply function of the soil-xylem hydraulic system especially when the water flux through the transpiration stream is significantly larger than water exchange between xylem and phloem; (3) thus, xylem limitation imposed on the supply function can be used to differentiate species with different water use strategy across the spectrum of isohydric to anisohydric behavior.

  10. Functional relationships of leafing intensity to plant height, growth form and leaf habit

    Science.gov (United States)

    Yan, En-Rong; Milla, Rubén; Aarssen, Lonnie W.; Wang, Xi-Hua

    2012-05-01

    Leafing intensity, i.e. the number of leaves per unit of stem volume or mass, is a common developmental correlate of leaf size. However, the ecological significance and the functional implications of variation in leafing intensity, other than its relation to leaf size, are unknown. Here, we explore its relationships with plant height, growth form, leaf size, and leaf habit to test a series of corollaries derived from the leafing intensity premium hypothesis. Volume-based leafing intensities and plant heights were recorded for 109 woody species from the subtropical evergreen broadleaf forests of eastern China. In addition, we compiled leafing intensity data from published literature, and combined it with our data to form a 398 species dataset, to test for differences of leafing intensity between plant growth forms (i.e. herbaceous and woody) and leaf habits (i.e. deciduous and evergreens). Leafing intensity was negatively correlated with plant height and individual leaf mass. Volume-based leafing intensities were significantly higher in herbaceous species than in woody species, and also higher in deciduous than in evergreen woody species. In conclusion, leafing intensity relates strongly to plant height, growth form, leaf size, and leaf habit in directions generally in accordance to the leafing intensity premium hypothesis. These results can be interpreted in terms of the evolution of adaptive strategies involving response to herbivory, competitive ability for light and reproductive economy.

  11. Antifungal activity of Piper aduncum and Peperomia pellucida leaf ethanol extract against Candida albicans

    Science.gov (United States)

    Hastuti, Utami Sri; Ummah, Yunita Putri Irsadul; Khasanah, Henny Nurul

    2017-05-01

    This research was done to 1) examine the effect of Piper aduncum leaf ethanol extract at certain concentrations against Candida albicans colony growth inhibition in vitro; 2) examine the effect of Peperomia pellucida leaf ethanol extract at certain concentrations toward Candida albicans colony growth inhibition in vitro; and 3) determine the most effective concentration of P. aduncum and P. pellucida leaves ethanol extract against C. albicans colony growth inhibition in vitro. These plant extracts were prepared by the maceration technique using 95% ethanol, and then sterile filtered and evaporated to obtain the filtrate. The filtrate was diluted with sterile distilled water at certain concentrations, i.e.: 0%, 10%, 20%, 30%, 405, 50%, 60%, 70%, 80%, and 90%. The antifungal effect of each leaf extract concentration was examined by the agar diffusion method on Sabouraud Dextrose Agar medium. The research results are: 1) the P.aduncum leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 2) the P.pellucida leaf ethanol extract at some concentrations has an effect against C. albicans colony growth inhibition in vitro; 3) the P. aduncum leaf ethanol extract at 80% is the most effective for C. albicans colony growth inhibition in vitro; and 4) the P. pellucida leaf ethanol extract at 70% is the most effective for C. albicans colony growth inhibition in vitro.

  12. Benefits of increasing transpiration efficiency in wheat under elevated CO2for rainfed regions.

    Science.gov (United States)

    Christy, Brendan; Tausz-Posch, Sabine; Tausz, Michael; Richards, Richard; Rebetzke, Greg; Condon, Anthony; McLean, Terry; Fitzgerald, Glenn; Bourgault, Maryse; O'Leary, Garry

    2018-01-13

    Higher transpiration efficiency (TE) has been proposed as a mechanism to increase crop yields in dry environments where water availability usually limits yield. The application of a coupled radiation and TE simulation model shows wheat yield advantage of a high-TE cultivar (cv. Drysdale) over its almost identical low-TE parent line (Hartog), from about -7 to 558 kg/ha (mean 187 kg/ha) over the rainfed cropping region in Australia (221-1,351 mm annual rainfall), under the present-day climate. The smallest absolute yield response occurred in the more extreme drier and wetter areas of the wheat belt. However, under elevated CO 2 conditions, the response of Drysdale was much greater overall, ranging from 51 to 886 kg/ha (mean 284 kg/ha) with the greatest response in the higher rainfall areas. Changes in simulated TE under elevated CO 2 conditions are seen across Australia with notable increased areas of higher TE under a drier climate in Western Australia, Queensland and parts of New South Wales and Victoria. This improved efficiency is subtly deceptive, with highest yields not necessarily directly correlated with highest TE. Nevertheless, the advantage of Drysdale over Hartog is clear with the benefit of the trait advantage attributed to TE ranging from 102% to 118% (mean 109%). The potential annual cost-benefits of this increased genetic TE trait across the wheat growing areas of Australia (5 year average of area planted to wheat) totaled AUD 631 MIL (5-year average wheat price of AUD/260 t) with an average of 187 kg/ha under the present climate. The benefit to an individual farmer will depend on location but elevated CO 2 raises this nation-wide benefit to AUD 796 MIL in a 2°C warmer climate, slightly lower (AUD 715 MIL) if rainfall is also reduced by 20%. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  13. Drought Response in Wheat: Key Genes and Regulatory Mechanisms Controlling Root System Architecture and Transpiration Efficiency

    Directory of Open Access Journals (Sweden)

    Manoj Kulkarni

    2017-12-01

    Full Text Available Abiotic stresses such as, drought, heat, salinity, and flooding threaten global food security. Crop genetic improvement with increased resilience to abiotic stresses is a critical component of crop breeding strategies. Wheat is an important cereal crop and a staple food source globally. Enhanced drought tolerance in wheat is critical for sustainable food production and global food security. Recent advances in drought tolerance research have uncovered many key genes and transcription regulators governing morpho-physiological traits. Genes controlling root architecture and stomatal development play an important role in soil moisture extraction and its retention, and therefore have been targets of molecular breeding strategies for improving drought tolerance. In this systematic review, we have summarized evidence of beneficial contributions of root and stomatal traits to plant adaptation to drought stress. Specifically, we discuss a few key genes such as, DRO1 in rice and ERECTA in Arabidopsis and rice that were identified to be the enhancers of drought tolerance via regulation of root traits and transpiration efficiency. Additionally, we highlight several transcription factor families, such as, ERF (ethylene response factors, DREB (dehydration responsive element binding, ZFP (zinc finger proteins, WRKY, and MYB that were identified to be both positive and negative regulators of drought responses in wheat, rice, maize, and/or Arabidopsis. The overall aim of this review is to provide an overview of candidate genes that have been identified as regulators of drought response in plants. The lack of a reference genome sequence for wheat and non-transgenic approaches for manipulation of gene functions in wheat in the past had impeded high-resolution interrogation of functional elements, including genes and QTLs, and their application in cultivar improvement. The recent developments in wheat genomics and reverse genetics, including the availability of a

  14. Leaf physiology, production, water use, and nitrogen dynamics of the grassland invader Acacia smallii at elevated CO(2) concentrations.

    Science.gov (United States)

    Polley, H W; Johnson, H B; Mayeux, H S

    1997-02-01

    Invasion by woody legumes can alter hydrology, nutrient accumulation and cycling, and carbon sequestration on grasslands. The rate and magnitude of these changes are likely to be sensitive to the effects of atmospheric CO(2) enrichment on growth and water and nitrogen dynamics of leguminous shrubs. To assess potential effects of increased atmospheric CO(2) concentrations on plant growth and acquisition and utilization of water and nitrogen, seedlings of Acacia smallii Isely (huisache) were grown for 13 months at CO(2) concentrations of 385 (ambient), 690, and 980 micro mol mol(-1). Seedlings grown at elevated CO(2) concentrations exhibited parallel declines in leaf N concentration and photosynthetic capacity; however, at the highest CO(2) concentration, biomass production increased more than 2.5-fold as a result of increased leaf photosynthetic rates, leaf area, and N(2) fixation. Measurements of leaf gas exchange and aboveground biomass production and soil water balance indicated that water use efficiency increased in proportion to the increase in atmospheric CO(2) concentration. The effects on transpiration of an accompanying decline in leaf conductance were offset by an increase in leaf area, and total water loss was similar across CO(2) treatments. Plants grown at elevated CO(2) fixed three to four times as much N as plants grown at ambient CO(2) concentration. The increase in N(2) fixation resulted from an increase in fixation per unit of nodule mass in the 690 micro mol mol(-1) CO(2) treatment and from a large increase in the number and mass of nodules in plants in the 980 micro mol mol(-1) CO(2) treatment. Increased symbiotic N(2) fixation by woody invaders in response to CO(2) enrichment may result in increased N deposition in litterfall, and thus increased productivity on many grasslands.

  15. Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy.

    Science.gov (United States)

    Panchen, Zoe A; Primack, Richard B; Nordt, Birgit; Ellwood, Elizabeth R; Stevens, Albert-Dieter; Renner, Susanne S; Willis, Charles G; Fahey, Robert; Whittemore, Alan; Du, Yanjun; Davis, Charles C

    2014-09-01

    Leaf out phenology affects a wide variety of ecosystem processes and ecological interactions and will take on added significance as leaf out times increasingly shift in response to warming temperatures associated with climate change. There is, however, relatively little information available on the factors affecting species differences in leaf out phenology. An international team of researchers from eight Northern Hemisphere temperate botanical gardens recorded leaf out dates of c. 1600 woody species in 2011 and 2012. Leaf out dates in woody species differed by as much as 3 months at a single site and exhibited strong phylogenetic and anatomical relationships. On average, angiosperms leafed out earlier than gymnosperms, deciduous species earlier than evergreen species, shrubs earlier than trees, diffuse and semi-ring porous species earlier than ring porous species, and species with smaller diameter xylem vessels earlier than species with larger diameter vessels. The order of species leaf out was generally consistent between years and among sites. As species distribution and abundance shift due to climate change, interspecific differences in leaf out phenology may affect ecosystem processes such as carbon, water, and nutrient cycling. Our open access leaf out data provide a critical framework for monitoring and modelling such changes going forward. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  16. Diffusion in solids

    International Nuclear Information System (INIS)

    Tiwari, G.P.; Kale, G.B.; Patil, R.V.

    1999-01-01

    The article presents a brief survey of process of diffusion in solids. It is emphasised that the essence of diffusion is the mass transfer through the atomic jumps. To begin with formal equations for diffusion coefficient are presented. This is followed by discussions on mechanisms of diffusion. Except for solutes which form interstitial solid solution, diffusion in majority of cases is mediated through exchange of sites between an atom and its neighbouring vacancy. Various vacancy parameters such as activation volume, correlation factor, mass effect etc are discussed and their role in establishing the mode of diffusion is delineated. The contribution of dislocations and grain boundaries in diffusion process is brought out. The experimental determination of different types of diffusion coefficients are described. Finally, the pervasive nature of diffusion process in number of commercial processes is outlined to show the importance of diffusion studies in materials science and technology. (author)

  17. Nighttime evaporative demand induces plasticity in leaf and root hydraulic traits.

    Science.gov (United States)

    Claverie, Elodie; Schoppach, Rémy; Sadok, Walid

    2016-12-01

    Increasing evidence suggests that nocturnal transpiration rate (TR N ) is a non-negligible contributor to global water cycles. Short-term variation in nocturnal vapor pressure deficit (VPD N ) has been suggested to be a key environmental variable influencing TR N . However, the long-term effects of VPD N on plant growth and development remain unknown, despite recent evidence documenting long-term effects of daytime VPD on plant anatomy, growth and productivity. Here we hypothesized that plant anatomical and functional traits influencing leaf and root hydraulics could be influenced by long-term exposure to VPD N . A total of 23 leaf and root traits were examined on four wheat (Triticum aestivum) genotypes, which were subjected to two long-term (30 day long) growth experiments where daytime VPD and daytime/nighttime temperature regimes were kept identical, with variation only stemming from VPD N , imposed at two levels (0.4 and 1.4 kPa). The VPD N treatment did not influence phenology, leaf areas, dry weights, number of tillers or their dry weights, consistently with a drought and temperature-independent treatment. In contrast, vein densities, adaxial stomata densities, TR N and cuticular TR, were strongly increased following exposure to high VPD N . Simultaneously, whole-root system xylem sap exudation and seminal root endodermis thickness were decreased, hypothetically indicating a change in root hydraulic properties. Overall these results suggest that plants 'sense' and adapt to variations in VPD N conditions over developmental scales by optimizing both leaf and root hydraulics. © 2016 Scandinavian Plant Physiology Society.

  18. Hyperspectral narrowband and multispectral broadband indices for remote sensing of crop evapotranspiration and its components (transpiration and soil evaporation)

    Science.gov (United States)

    Marshall, Michael T.; Thenkabail, Prasad S.; Biggs, Trent; Post, Kirk

    2016-01-01

    Evapotranspiration (ET) is an important component of micro- and macro-scale climatic processes. In agriculture, estimates of ET are frequently used to monitor droughts, schedule irrigation, and assess crop water productivity over large areas. Currently, in situ measurements of ET are difficult to scale up for regional applications, so remote sensing technology has been increasingly used to estimate crop ET. Ratio-based vegetation indices retrieved from optical remote sensing, like the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index, and Enhanced Vegetation Index are critical components of these models, particularly for the partitioning of ET into transpiration and soil evaporation. These indices have their limitations, however, and can induce large model bias and error. In this study, micrometeorological and spectroradiometric data collected over two growing seasons in cotton, maize, and rice fields in the Central Valley of California were used to identify spectral wavelengths from 428 to 2295 nm that produced the highest correlation to and lowest error with ET, transpiration, and soil evaporation. The analysis was performed with hyperspectral narrowbands (HNBs) at 10 nm intervals and multispectral broadbands (MSBBs) commonly retrieved by Earth observation platforms. The study revealed that (1) HNB indices consistently explained more variability in ET (ΔR2 = 0.12), transpiration (ΔR2 = 0.17), and soil evaporation (ΔR2 = 0.14) than MSBB indices; (2) the relationship between transpiration using the ratio-based index most commonly used for ET modeling, NDVI, was strong (R2 = 0.51), but the hyperspectral equivalent was superior (R2 = 0.68); and (3) soil evaporation was not estimated well using ratio-based indices from the literature (highest R2 = 0.37), but could be after further evaluation, using ratio-based indices centered on 743 and 953 nm (R2 = 0.72) or 428 and 1518 nm (R2 = 0.69).

  19. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    Science.gov (United States)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  20. Diffusion archeology for diffusion progression history reconstruction

    OpenAIRE

    Sefer, Emre; Kingsford, Carl

    2015-01-01

    Diffusion through graphs can be used to model many real-world processes, such as the spread of diseases, social network memes, computer viruses, or water contaminants. Often, a real-world diffusion cannot be directly observed while it is occurring — perhaps it is not noticed until some time has passed, continuous monitoring is too costly, or privacy concerns limit data access. This leads to the need to reconstruct how the present state of the diffusion came to be from partial d...

  1. Adaptative changes of leaf surface of tropical orchid Cattleya gaskelliana (N.E.Br. B.S. Williams after transferring from in vitro to ex vitro conditions

    Directory of Open Access Journals (Sweden)

    Lyudmila I. Buyun

    2013-04-01

    Full Text Available The leaf surface micromorphology of Cattleya gaskellianajuvenile plants, propagated in vitrofrom seeds, as well as of adult plants, cultivated in glasshouse, was analyzed by scanning electron microscopy (SEM. The leaves of both juvenile and adult plants are hypostomatic, their stomata are of tetracytic type. It was found that development of single stomata on the adaxial leaf surface of juvenile plants was induced byin vitro conditions. During the acclimation of in vitro propagated plants to glasshouse conditions the following changes of leaf surface micromorphology have been observed: 1 configuration of epidermal cells changed; 2 dimensions of typical epidermal cells reduced; 3 stomata density and their dimensions increased. The results suggest that structural changes, probably, can be regarded as an adaptation to avoid excessive rate leaf transpiration during a period of C. gaskelliana juvenile plants acclimation to glasshouse conditions. In the case when micromorphological leaf characteristics (stomata density per mm2, stomatal index, epidermal cells number per mm 2 of in vitro propagated plants of C. gaskelliana were comparable to those of adult plants, survival rate was more than 95%.

  2. Environmental constraints on plant transpiration and the hydrological implications in a northern high latitude upland headwater catchment

    Science.gov (United States)

    Wang, H.; Tetzlaff, D.; Soulsby, C.

    2016-12-01

    Vegetation affects water, carbon and energy transfer in the soil-plant-atmosphere system and mediates land-atmosphere interactions by altering surface albedo, roughness and soil macro-porosity, intercepting rainfall and transpiring water from soil layers. Vegetation water use (Ec) is regulated by stomata behaviour which is constrained by environmental variables including radiation, temperature, vapour pressure deficit, and soil water content. The relative influences of these variables on Ec are usually site specific reflecting climate and species differences. At a catchment scale, Ec can account for a large proportion of total evapotranspiration, and hence regulates water storage and fluxes in the soils, groundwater reservoirs and streams. In this study, we estimated transpiration from short vegetation (Calluna vulgaris) using the Maximum Entropy Production model (MEP), and measured sap flow of two forest plantations, together with meteorological variables, soil moisture and streamflow in an upland headwater catchment in northern Scotland. Our objectives were to investigate the environmental constraints on Ec in this wet humid and cool summer climate, and the hydrological responses and regulations of Ec in terms of rainfall and streamflow. Results will assist the assessment of hydrological implications of land management in terms of afforestation/deforestation.

  3. Spin-diffusions and diffusive molecular dynamics

    Science.gov (United States)

    Farmer, Brittan; Luskin, Mitchell; Plecháč, Petr; Simpson, Gideon

    2017-12-01

    Metastable configurations in condensed matter typically fluctuate about local energy minima at the femtosecond time scale before transitioning between local minima after nanoseconds or microseconds. This vast scale separation limits the applicability of classical molecular dynamics (MD) methods and has spurned the development of a host of approximate algorithms. One recently proposed method is diffusive MD which aims at integrating a system of ordinary differential equations describing the likelihood of occupancy by one of two species, in the case of a binary alloy, while quasistatically evolving the locations of the atoms. While diffusive MD has shown itself to be efficient and provide agreement with observations, it is fundamentally a model, with unclear connections to classical MD. In this work, we formulate a spin-diffusion stochastic process and show how it can be connected to diffusive MD. The spin-diffusion model couples a classical overdamped Langevin equation to a kinetic Monte Carlo model for exchange amongst the species of a binary alloy. Under suitable assumptions and approximations, spin-diffusion can be shown to lead to diffusive MD type models. The key assumptions and approximations include a well-defined time scale separation, a choice of spin-exchange rates, a low temperature approximation, and a mean field type approximation. We derive several models from different assumptions and show their relationship to diffusive MD. Differences and similarities amongst the models are explored in a simple test problem.

  4. On the use of leaf spectral indices to assess water status and photosynthetic limitations in Olea europaea L. during water-stress and recovery.

    Directory of Open Access Journals (Sweden)

    Pengsen Sun

    Full Text Available Diffusional limitations to photosynthesis, relative water content (RWC, pigment concentrations and their association with reflectance indices were studied in olive (Olea europaea saplings subjected to water-stress and re-watering. RWC decreased sharply as drought progressed. Following rewatering, RWC gradually increased to pre-stress values. Photosynthesis (A, stomatal conductance (gs, mesophyll conductance (gm, total conductance (gt, photochemical reflectance index (PRI, water index (WI and relative depth index (RDI closely followed RWC. In contrast, carotenoid concentration, the carotenoid to chlorophyll ratio, water content reflectance index (WCRI and structural independent pigment index (SIPI showed an opposite trend to that of RWC. Photosynthesis scaled linearly with leaf conductance to CO2; however, A measured under non-photorespiratory conditions (A1%O2 was approximately two times greater than A measured at 21% [O2], indicating that photorespiration likely increased in response to drought. A1%O2 also significantly correlated with leaf conductance parameters. These relationships were apparent in saturation type curves, indicating that under non-photorespiratory conditions, CO2 conductance was not the major limitations to A. PRI was significant correlated with RWC. PRI was also very sensitive to pigment concentrations and photosynthesis, and significantly tracked all CO2 conductance parameters. WI, RDI and WCRI were all significantly correlated with RWC, and most notably to leaf transpiration. Overall, PRI correlated more closely with carotenoid concentration than SIPI; whereas WI tracked leaf transpiration more effectively than RDI and WCRI. This study clearly demonstrates that PRI and WI can be used for the fast detection of physiological traits of olive trees subjected to water-stress.

  5. Fotossíntese, condutância estomática e transpiração em pupunheira sob deficiência hídrica Photosynthesis, stomatal conductance and transpiration in peach palm under water stress

    Directory of Open Access Journals (Sweden)

    Maria Aparecida José de Oliveira

    2002-03-01

    Full Text Available Resultados de pesquisa envolvendo aspectos fisiológicos da pupunheira (Bactris gasipaes Kunth, fruteira nativa da América Tropical, são escassos. Procurando completar essa lacuna, um experimento sob deficiência hídrica foi conduzido em casa de vegetação, durante um período de 13 dias, utilizando plantas de 12 meses de idade. O objetivo principal foi avaliar as respostas da pupunheira à deficiência hídrica. As variáveis observadas foram: taxa de assimilação de CO2, transpiração, condutância estomática e potencial de água das folhas. As coletas dos dados foram realizadas diariamente em laboratório e sob fluxo de 1200 mim-2 s-1. Os resultados foram submetidos à análise de variância e de regressão. Verificou-se decréscimo no potencial de água da folha e nas trocas gasosas quando a irrigação foi interrompida por mais de seis dias. Valores mínimos foram obtidos no décimo dia, com redução de 92% da fotossíntese líquida, 87% da condutância estomática e 70% da transpiração. O menor potencial de água nas folhas (-1,9 MPa foi também observado nesse período. Houve recuperação total de todas as variáveis dois dias após reirrigação, com exceção da condutância estomática. A diminuição da condutância estomática e a queda mais rápida da taxa de transpiração que a queda na fotossíntese, indicam a existência de mecanismos de aclimatação em pupunheira, no sentido de diminuir as perdas de água, quando sob condição de estresse hídrico moderado.Research results on physiological aspects of peach palm (Bactris gasipaes Kunth, a native fruit tree from tropical America, are scarce. Trying to fill this gap, a water deficit experiment was performed under nursery conditions during 13 days, utilizing 12 months old plants. The main objective was to evaluate peach palm responses to water deficit. The measured variables were: CO2 assimilation rate, transpiration rate, stomatal conductance and leaf water potential

  6. Microfabricated diffusion source

    Science.gov (United States)

    Oborny, Michael C [Albuquerque, NM; Frye-Mason, Gregory C [Cedar Crest, NM; Manginell, Ronald P [Albuquerque, NM

    2008-07-15

    A microfabricated diffusion source to provide for a controlled diffusion rate of a vapor comprises a porous reservoir formed in a substrate that can be filled with a liquid, a headspace cavity for evaporation of the vapor therein, a diffusion channel to provide a controlled diffusion of the vapor, and an outlet to release the vapor into a gas stream. The microfabricated diffusion source can provide a calibration standard for a microanalytical system. The microanalytical system with an integral diffusion source can be fabricated with microelectromechanical systems technologies.

  7. Transpiration and water use efficiency in native chilean and exotic species, a usefull tool for catchment management?

    Science.gov (United States)

    Hervé-Fernández, P.; Oyarzun, C. E.

    2012-04-01

    Land-use and forest cover change play important roles in socio-economic processes and have been linked with water supply and other ecosystem services in various regions of the world. Water yield from watersheds is a major ecosystem service for human activities but has been altered by landscape management superimposed on climatic variability and change. Sustaining ecosystem services important to humans, while providing a dependable water supply for agriculture and urban needs is a major challenge faced by managers of human-dominated or increased antropical effect over watersheds. Since water is mostly consumed by vegetation (i.e: transpiration), which strongly depends on trees physiological characteristics (i.e: foliar area, transpiration capacity) are very important. The quantity of water consumed by plantations is influenced mainly by forest characteristics (species physiology, age and management), catchment water retention capacity and meteorological characteristics. Eventhough in Chile, the forest sector accounts for 3.6% of the gross domestic product (GDP) and 12.5% of total exports (INFOR, 2003), afforestation with fast growing exotic species has ended up being socially and politically questionable because of the supposed impact on the environment and water resources. We present data of trees transpiration and water use efficiency from three headwater catchments: (a) second growth native evergreen forest (Aetoxicon punctatum, Drimys winterii, Gevuina avellana, Laureliopsis philippiana); (b) Eucalyptus globulus plantation, and (c) a mixed native deciduous (Nothofagus obliqua and some evergreen species) forest and Eucalyptus globulus and Acacia melanoxylon plantation located at the Coastal Mountain Range in southern Chile (40°S). Annual transpiration rates ranged from 1.24 ± 0.41 mol•m-2•s-1 (0.022 ± 0.009 L•m-2•s-1) for E. globulus, while the lowest observed was for L. philippiana 0.44 ± 0.31 mol•m-2•s-1 (0.008 ± 0.006 L•m-2•s-1). However

  8. Enhancement of crop photosynthesis by diffuse light: quantifying the contributing factors.

    Science.gov (United States)

    Li, T; Heuvelink, E; Dueck, T A; Janse, J; Gort, G; Marcelis, L F M

    2014-07-01

    Plants use diffuse light more efficiently than direct light. However, experimental comparisons between diffuse and direct light have been obscured by co-occurring differences in environmental conditions (e.g. light intensity). This study aims to analyse the factors that contribute to an increase in crop photosynthesis in diffuse light and to quantify their relative contribution under different levels of diffuseness at similar light intensities. The hypothesis is that the enhancement of crop photosynthesis in diffuse light results not only from the direct effects of more uniform vertical and horizontal light distribution in the crop canopy, but also from crop physiological and morphological acclimation. Tomato (Solanum lycopersicum) crops were grown in three greenhouse compartments that were covered by glass with different degrees of light diffuseness (0, 45 and 71 % of the direct light being converted into diffuse light) while maintaining similar light transmission. Measurements of horizontal and vertical photosynthetic photon flux density (PPFD) distribution in the crop, leaf photosynthesis light response curves and leaf area index (LAI) were used to quantify each factor's contribution to an increase in crop photosynthesis in diffuse light. In addition, leaf temperature, photoinhibition, and leaf biochemical and anatomical properties were studied. The highest degree of light diffuseness (71 %) increased the calculated crop photosynthesis by 7·2 %. This effect was mainly attributed to a more uniform horizontal (33 % of the total effect) and vertical PPFD distribution (21 %) in the crop. In addition, plants acclimated to the high level of diffuseness by gaining a higher photosynthetic capacity of leaves in the middle of the crop and a higher LAI, which contributed 23 and 13 %, respectively, to the total increase in crop photosynthesis in diffuse light. Moreover, diffuse light resulted in lower leaf temperatures and less photoinhibition at the top of the canopy when

  9. 7 CFR 29.6022 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results...

  10. 7 CFR 30.2 - Leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf...

  11. 7 CFR 29.6023 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  12. Wind and mechanical stimuli differentially affect leaf traits in Plantago major.

    Science.gov (United States)

    Anten, Niels P R; Alcalá-Herrera, Rafael; Schieving, Feike; Onoda, Yusuke

    2010-10-01

    • Analysing plant phenotypic plasticity in response to wind is complicated as this factor entails not only mechanical stress but also affects leaf gas and heat exchange. • We exposed Plantago major plants to brushing (mechanical stress, MS) and wind (MS and air flow) and determined the effects on physiological, morphological and mechanical characteristics of leaf petioles and laminas as well as on growth and biomass allocation at the whole-plant level. • Both MS and wind similarly reduced growth but their effects on morphological and mechanical plant traits were different. MS induced the formation of leaves with more slender petioles, and more elliptic and thinner laminas, while wind tended to evoke the opposite response. These morphological and mechanical changes increased lamina and petiole flexibility in MS plants, thus reducing mechanical stress by reconfiguration of plant structure. Responses to wind, on the other hand, seemed to be more associated with reducing transpiration. • These results show that responses to mechanical stress and wind can be different and even in the opposite direction. Plant responses to wind in the field can therefore be variable depending on overall environmental conditions and plant characteristics. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  13. Discrepancies between Leaf and Ecosystem Measures of Water-Use Efficiency

    Science.gov (United States)

    Knauer, J.; De Kauwe, M. G.; Lin, Y. S.; Duursma, R.; Williams, C. A.; Arneth, A.; Clement, R.; Isaac, P. R.; Linderson, M. L.; Limousin, J. M.; Meir, P.; Martin-StPaul, N. K.; Wingate, L.; Medlyn, B. E.

    2016-12-01

    The terrestrial carbon and water cycles are intimately linked: the carbon cycle isdriven by photosynthesis, while the water balance is dominated by transpiration,and both fluxes are controlled by plant stomatal conductance. The link betweenthese two cycles can be characterised by the water-use efficiency (WUE, mol C mol-1H2O), the rate at which plants exchange water for carbon. An understanding of thespatial and temporal variability in WUE provides fundamental insights into thebehaviour of the terrestrial biosphere and is essential for prediction of terrestrialcarbon and water budgets under global change. WUE can be estimated usingseveral techniques operating at different scales. Leaf gas exchange indicatesinstantaneous leaf WUE; stable isotope 13C discrimination indicates WUEintegrated over time; and eddy flux indicates whole-ecosystem instantaneous WUE.Here we compare global compilations of data for each of these three techniques. Weuse a model of stomatal conductance to define a measure of WUE (g1, kPa0.5) that iscomparable across datasets, and use this measure to examine whether the threeglobal datasets indicate consistent patterns of variation in WUE. Our comparisonhighlights important discrepancies among the three datasets. These discrepanciesmust be resolved if we are to have confidence in our use of these datasets tounderstand and model the terrestrial biosphere.

  14. Betel leaf in stoma care.

    Science.gov (United States)

    Banu, Tahmina; Talukder, Rupom; Chowdhury, Tanvir Kabir; Hoque, Mozammel

    2007-07-01

    Construction of a stoma is a common procedure in pediatric surgical practice. For care of these stomas, commercially available devices such as ostomy bag, either disposable or of longer duration are usually used. These are expensive, particularly in countries like Bangladesh, and proper-sized ones are not always available. We have found an alternative for stoma care, betel leaf, which is suitable for Bangladeshis. We report the outcome of its use. After construction of stoma, at first zinc oxide paste was applied on the peristomal skin. A betel leaf with shiny, smooth surface outwards and rough surface inwards was put over the stoma with a hole made in the center according to the size of stoma. Another intact leaf covers the stomal opening. When bowel movement occurs, the overlying intact leaf was removed and the fecal matter was washed away from both. The leaves were reused after cleaning. Leaves were changed every 2 to 3 days. From June 1998 to December 2005, in the department of pediatric surgery, Chittagong Medical College and Hospital, Chittagong, Bangladesh, a total of 623 patients had exteriorization of bowel. Of this total, 495 stomas were cared for with betel leaves and 128 with ostomy bags. Of 623 children, 287 had sigmoid colostomy, 211 had transverse colostomy, 105 had ileostomy, and 20 had jejunostomy. Of the 495 children under betel leaf stoma care, 13 patients (2.6%) developed skin excoriation. There were no allergic reactions. Of the 128 patients using ostomy bag, 52 (40.65%) had skin excoriation. Twenty-four (18.75%) children developed some allergic reactions to adhesive. Monthly costs for betel leaves were 15 cents (10 BDT), whereas ostomy bags cost about US$24. In the care of stoma, betel leaves are cheap, easy to handle, nonirritant, and nonallergic.

  15. 7 CFR 28.471 - Below Leaf Grade Cotton.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Below Leaf Grade Cotton. 28.471 Section 28.471... REGULATIONS COTTON CLASSING, TESTING, AND STANDARDS Standards Below Leaf Grade Cotton § 28.471 Below Leaf Grade Cotton. Below leaf grade cotton is American Upland cotton which is lower in leaf grade than Leaf...

  16. Lung diffusion testing

    Science.gov (United States)

    ... medlineplus.gov/ency/article/003854.htm Lung diffusion testing To use the sharing features on this page, please enable JavaScript. Lung diffusion testing measures how well the lungs exchange gases. This ...

  17. Nonlinear ambipolar diffusion waves

    Energy Technology Data Exchange (ETDEWEB)

    Mendonca, J.T.; Rowlands, G.

    1985-07-01

    The evolution of a plasma perturbation in a neutral gas is considered using the ambipolar diffusion approximation. A nonlinear diffusion equation is derived and, in the one-dimensional case, exact solutions of shock type are obtained.

  18. Optimal allocation of leaf epidermal area for gas exchange.

    Science.gov (United States)

    de Boer, Hugo J; Price, Charles A; Wagner-Cremer, Friederike; Dekker, Stefan C; Franks, Peter J; Veneklaas, Erik J

    2016-06-01

    A long-standing research focus in phytology has been to understand how plants allocate leaf epidermal space to stomata in order to achieve an economic balance between the plant's carbon needs and water use. Here, we present a quantitative theoretical framework to predict allometric relationships between morphological stomatal traits in relation to leaf gas exchange and the required allocation of epidermal area to stomata. Our theoretical framework was derived from first principles of diffusion and geometry based on the hypothesis that selection for higher anatomical maximum stomatal conductance (gsmax ) involves a trade-off to minimize the fraction of the epidermis that is allocated to stomata. Predicted allometric relationships between stomatal traits were tested with a comprehensive compilation of published and unpublished data on 1057 species from all major clades. In support of our theoretical framework, stomatal traits of this phylogenetically diverse sample reflect spatially optimal allometry that minimizes investment in the allocation of epidermal area when plants evolve towards higher gsmax . Our results specifically highlight that the stomatal morphology of angiosperms evolved along spatially optimal allometric relationships. We propose that the resulting wide range of viable stomatal trait combinations equips angiosperms with developmental and evolutionary flexibility in leaf gas exchange unrivalled by gymnosperms and pteridophytes. © 2016 The Authors New Phytologist © 2016 New Phytologist Trust.

  19. Leaf anatomy of the South African Danthonieae (Poaceae. XVI. The genus Urochlaena

    Directory of Open Access Journals (Sweden)

    R. P. Ellis

    1988-10-01

    Full Text Available The leaf blade anatomy of Urochlaena pusilla Nees is described and illustrated. The transectional anatomy is non- Kranz with diffuse but uniformly distributed chlorenchyma. The abaxial epidermis has dome-shaped stomata, dumbbell­shaped silica bodies, elongated finger-like microhairs, and cushion-based macrohairs may or may not be present. This type of arundinoid anatomy closely resembles that o f  Tribolium Desv.,  Chaetobromus Nees,  Schismus Beauv., and certain species of Pentaschistis Stapf.  Urochlaena pusilla is very similar to  Tribolium utriculosum (Nees Renv. in leaf anatomy and these two species appear to be closely related.

  20. Habitat Complexity of Stream Leaf Packs: Effects on Benthic Macroinvertebrates and Leaf Litter Breakdown

    Science.gov (United States)

    Ruetz, C. R.; Vanhaitsma, D. L.; Breen, M. J.

    2005-05-01

    We investigated two attributes of leaf-pack complexity (i.e., leaf-pack mass and leaf surface area) on fish predation, colonization of benthic macroinvertebrates, and leaf breakdown rates in a coldwater Michigan stream. We manipulated three factors using a factorial design: fish (exclusion or control cage), leaf-pack mass (1, 3, or 5 g dry mass), and leaf surface area (10 cm leaf width). Acer leaves were fastened into leaf packs. Exclusion cages had mesh on all sides; control cages lacked mesh on two sides to provide access to fishes. Two replicate leaf packs were randomly collected after 25-31 d from two sections of the stream (n = 4). Common shredders were Gammarus, Pycnopsyche, and Lepidostoma. We did not detect a significant effect of fish predation on benthic macroinvertebrates or leaf breakdown (i.e., mass loss). Colonization of benthic macroinvertebrates appeared proportional to leaf-pack mass but was unaffected by the surface area of leaves. Leaf breakdown was more rapid among leaf packs with fewer leaves (i.e., leaves with large surface area and leaf packs with low mass) and greater numbers of shredders. We suspect that physical fragmentation is the primary mechanism for higher breakdown rates among leaf packs with fewer leaves.

  1. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    Directory of Open Access Journals (Sweden)

    Shmuel Assouline

    Full Text Available Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss. Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d and size (s, and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d, exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  2. Plant Water Use Efficiency over Geological Time – Evolution of Leaf Stomata Configurations Affecting Plant Gas Exchange

    Science.gov (United States)

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax. We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws, A and E and maximal relative transpiring leaf area, (amax⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle. PMID:23844085

  3. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange.

    Science.gov (United States)

    Assouline, Shmuel; Or, Dani

    2013-01-01

    Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.

  4. The epidermal resistance to diffusion of water vapour : an improved measuring method and field results in Indian corn (Zea mays)

    NARCIS (Netherlands)

    Stigter, C.J.

    1974-01-01

    The resistance of the epidermis of the leaf to diffusion of water vapour can be measured most accurately in the field by closed diffusion porometers. It was possible to overcome the problems related to calibration and to dynamical use of a LiCl humidity sensor in the porometer. The dynamic behaviour

  5. Disruption of mycorrhizal extraradical mycelium and changes in leaf water status and soil aggregate stability in rootbox-grown trifoliate orange

    Directory of Open Access Journals (Sweden)

    Ying-Ning eZou

    2015-03-01

    Full Text Available Arbuscular mycorrhizas possess well developed extraradical mycelium (ERM network that enlarge the surrounding soil for better acquisition of water and nutrients, besides soil aggregation. Distinction in ERM functioning was studied under a rootbox system, which consisted of root+hyphae and root-free hyphae compartments separated by 37-μm nylon mesh with an air gap. Trifoliate orange (Poncirus trifoliata seedlings were inoculated with Funneliformis mosseae in root+hyphae compartment, and the ERM network was established between the two compartments. The ERM network of air gap was disrupted before 8 h of the harvest (one time disruption or multiple disruptions during seedlings acclimation. Our results showed that mycorrhizal inoculation induced a significant increase in growth (plant height, stem diameter, and leaf, stem, and root biomass and physiological characters (leaf relative water content, leaf water potential, and transpiration rate, irrespective of ERM status. Easily-extractable glomalin-related soil protein (EE-GRSP and total GRSP (T-GRSP concentration and mean weight diameter (MWD, an indicator of soil aggregate stability were significantly higher in mycorrhizosphere of root+hyphae and root-free hyphae compartments than non-mycorrhizosphere. One time disruption of ERM network did not influence plant growth and soil properties but only notably decreased leaf water. Periodical disruption of ERM network at weekly interval markedly inhibited the mycorrhizal roles on plant growth, leaf water, GRSP production, and MWD in root+hyphae and hyphae chambers. EE-GRSP was the most responsive GRSP fraction to changes in leaf water and MWD under root+hyphae and hyphae conditions. It suggests that effect of peridical disruption of ERM network was more impactful than one-time disruption of ERM network with regard to leaf water, plant growth, and aggregate stability responses, thereby, implying ERM network aided in developing the host plant metabolically

  6. Hormonal regulation of leaf senescence in Lilium.

    Science.gov (United States)

    Arrom, Laia; Munné-Bosch, Sergi

    2012-10-15

    In addition to floral senescence and longevity, the control of leaf senescence is a major factor determining the quality of several cut flowers, including Lilium, in the commercial market. To better understand the physiological process underlying leaf senescence in this species, we evaluated: (i) endogenous variation in the levels of phytohormones during leaf senescence, (ii) the effects of leaf darkening in senescence and associated changes in phytohormones, and (iii) the effects of spray applications of abscisic acid (ABA) and pyrabactin on leaf senescence. Results showed that while gibberellin 4 (GA(4)) and salicylic acid (SA) contents decreased, that of ABA increased during the progression of leaf senescence. However, dark-induced senescence increased ABA levels, but did not affect GA(4) and SA levels, which appeared to correlate more with changes in air temperature and/or photoperiod than with the induction of leaf senescence. Furthermore, spray applications of pyrabactin delayed the progression of leaf senescence in cut flowers. Thus, we conclude that (i) ABA plays a major role in the regulation of leaf senescence in Lilium, (ii) darkness promotes leaf senescence and increases ABA levels, and (iii) exogenous applications of pyrabactin inhibit leaf senescence in Lilium, therefore suggesting that it acts as an antagonist of ABA in senescing leaves of cut lily flowers. Copyright © 2012 Elsevier GmbH. All rights reserved.

  7. Transpiration and stomatal resistance variations of perennial tropical crops under soil water availability conditions and water deficit

    Directory of Open Access Journals (Sweden)

    José Ozinaldo Alves de Sena

    2007-03-01

    Full Text Available During the dry and rainy seasons, determinations of stomatal resistance and transpiration of five tropical crops were carried out: guarana (Paullinia cupana Kunth, coffee (Coffea arabica L., cashew (Anacardium occidentale L., guava (Psidium guajava L. and rubber (Hevea brasiliensis Muell. - Arg. trees. Experimental design was done at randomized complete blocks with five replications. During the dry season there was a decrease in values of stomatal resistance in the following order: guarana > coffee> cashew> guava > rubber, with values from 2.5 to 30.0 s.cm-1. During the rainy season the stomatal resistance values varied from 1.5 to 3.0 s.cm-1. The guarana and coffee crops showed higher resistance to water transpiration when compared to other crops. During the rainy season, the rubber tree continued to present lower stomatal resistance and, consequently, higher transpiration.O experimento foi realizado no Departamento de Produção Vegetal da Escola Superior de Agricultura "Luiz de Queiroz", ESALQ/USP, Piracicaba, São Paulo, Brasil, utilizando-se as culturas de guaranazeiro (Paullinia cupana Kunth, cafeeiro (Coffea arabica L., cajueiro (Anacardium occidentale L., goiabeira (Psidium guajava L. e seringueira (Hevea brasiliensis Muell. - Arg.. No período de seca (setembro/94 e de chuvas (novembro/94, realizaram-se determinações de resistência estomática (RE (s cm-1 e transpiração (T (µg cm-1 s-1 nas diferentes espécies. O delineamento experimental foi em blocos casualizados com cinco repetições. A partir das análises dos dados pode-se concluir: 1. diferenças significativas entre espécies, em termos das variáveis avaliadas no período de deficiência hídrica, com valores decrescentes de resistência estomática e crescente de transpiração na seguinte ordem: guaranazeiro > cafeeiro > cajueiro > goiabeira > seringueira; 2. Nas águas as diferenças entre espécies, para ambas as variáveis, foram menos evidentes, continuando a

  8. Fractional diffusion equations and anomalous diffusion

    CERN Document Server

    Evangelista, Luiz Roberto

    2018-01-01

    Anomalous diffusion has been detected in a wide variety of scenarios, from fractal media, systems with memory, transport processes in porous media, to fluctuations of financial markets, tumour growth, and complex fluids. Providing a contemporary treatment of this process, this book examines the recent literature on anomalous diffusion and covers a rich class of problems in which surface effects are important, offering detailed mathematical tools of usual and fractional calculus for a wide audience of scientists and graduate students in physics, mathematics, chemistry and engineering. Including the basic mathematical tools needed to understand the rules for operating with the fractional derivatives and fractional differential equations, this self-contained text presents the possibility of using fractional diffusion equations with anomalous diffusion phenomena to propose powerful mathematical models for a large variety of fundamental and practical problems in a fast-growing field of research.

  9. Analysis of Peanut Leaf Proteome

    DEFF Research Database (Denmark)

    Ramesh, R.; Suravajhala, Prashanth; Pechan, T.

    2010-01-01

    Peanut (Arachis hypogaea) is one of the most important sources of plant protein. Current selection of genotypes requires molecular characterization of available populations. Peanut genome database has several EST cDNAs which can be used to analyze gene expression. Analysis of proteins is a direct...... approach to define function of their associated genes. Proteome analysis linked to genome sequence information is critical for functional genomics. However, the available protein expression data is extremely inadequate. Proteome analysis of peanut leaf was conducted using two-dimensional gel...... electrophoresis in combination with sequence identification using MALDI/TOF to determine their identity and function related to growth, development and responses to stresses. Peanut leaf proteins were resolved into 300 polypeptides with pI values between 3.5 and 8.0 and relative molecular masses from 12 to 100 k...

  10. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and "higher-level" traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

  11. Imaging the experiments on respiration and transpiration of Lavoisier and Séguin: two unknown drawings by Madame Lavoisier.

    Science.gov (United States)

    Beretta, Marco

    2012-01-01

    This paper presents two hitherto unknown drawings by Marie-Anne-Pierrette Lavoisier dating to the early 1790s that illustrate the experiments on respiration and transpiration of her husband Antoine-Laurent Lavoisier and his assistant Armand Séguin. These works may be associated with the well-known sepia drawings that were published for the first time by Edouard Grimaux in 1888. Details contained in these newly discovered drawings by M.me Lavoisier provide fresh evidence as to the nature and aims of Lavoisier's innovative experiments. As we will show, these drawings were intended to illustrate the collection of papers on respiration being prepared by Lavoisier for his Mémoires de physique et de chimie (1792-1805).

  12. Integrating modelling and phenotyping approaches to identify and screen complex traits - Illustration for transpiration efficiency in cereals.

    Science.gov (United States)

    Chenu, K; van Oosterom, E J; McLean, G; Deifel, K S; Fletcher, A; Geetika, G; Tirfessa, A; Mace, E S; Jordan, D R; Sulman, R; Hammer, G L

    2018-02-21

    Following advances in genetics, genomics, and phenotyping, trait selection in breeding is limited by our ability to understand interactions within the plants and with their environments, and to target traits of most relevance for the target population of environments. We propose an integrated approach that combines insights from crop modelling, physiology, genetics, and breeding to identify traits valuable for yield gain in the target population of environments, develop relevant high-throughput phenotyping platforms, and identify genetic controls and their values in production environments. This paper uses transpiration efficiency (biomass produced per unit of water used) as an example of a complex trait of interest to illustrate how the approach can guide modelling, phenotyping, and selection in a breeding program. We believe that this approach, by integrating insights from diverse disciplines, can increase the resource use efficiency of breeding programs for improving yield gains in target populations of environments.

  13. TG-based transpiration techniques for the determination of equilibrium vapor pressure of zirconium volatile complex for MOCVD applications

    International Nuclear Information System (INIS)

    Arul Jeevan, T.S.; Nagaraja, K.S.; Mathews, Tom; Raghunathan, V.S.

    2008-01-01

    The metallo-organic complex of Zr (tmhd) 4 tetrakis 2,2,6,6-tetramethylheptanedionato) zirconium(IV) was synthesized and it can be identified as an ideal precursor. The thermal stability and complete volatility of this precursor was verified from thermo gravimetric analysis and characterized by elemental analyses. The monomeric structure of the complex was confirmed by electronspray-ionization mass spectroscopy. The vapor pressure measurement was carried out by TG-based transpiration technique and the enthalpy of sublimation was calculated from the slope of Clausius-Clapeyron equation. This yielded a value of 89.0 kJ.mol -1 for the standard enthalpy of sublimation over the temperature span of 411-463K. (author)

  14. Uncorrelated evolution of leaf and petal venation patterns across the angiosperm phylogeny.

    Science.gov (United States)

    Roddy, Adam B; Guilliams, C Matt; Lilittham, Terapan; Farmer, Jessica; Wormser, Vanessa; Pham, Trang; Fine, Paul V A; Feild, Taylor S; Dawson, Todd E

    2013-10-01

    Early angiosperm evolution, beginning approximately 140 million years ago, saw many innovations that enabled flowering plants to alter ecosystems globally. These included the development of novel, flower-based pollinator attraction mechanisms and the development of increased water transport capacity in stems and leaves. Vein length per area (VLA) of leaves increased nearly threefold in the first 30-40 million years of angiosperm evolution, increasing the capacity for transpiration and photosynthesis. In contrast to leaves, high water transport capacities in flowers may not be an advantage because flowers do not typically contribute to plant carbon gain. Although flowers of extant basal angiosperms are hydrated by the xylem, flowers of more recently derived lineages may be hydrated predominantly by the phloem. In the present study, we measured leaf and flower VLA for a phylogenetically diverse sample of 132 species from 52 angiosperm families to ask (i) whether flowers have lower VLA than leaves, (ii) whether flowers of basal angiosperm lineages have higher VLA than more recently derived lineages because of differences between xylem and phloem hydration, and (iii) whether flower and leaf VLA evolved independently. It was found that floral structures had lower VLA than leaves, but basal angiosperm flowers did not have higher VLA than more derived lineages. Furthermore, the independent evolution of leaf and petal VLA suggested that these organs may be developmentally modular. Unlike leaves, which have experienced strong selection for increased water transport capacity, flowers may have been shielded from such selective pressures by different developmental processes controlling VLA throughout the plant bauplan.

  15. Antimicrobial activity of Piper nigrum L. and Cassia didymobotyra L. leaf extract on selected food borne pathogens

    Directory of Open Access Journals (Sweden)

    Mohd. Sayeed Akthar

    2014-09-01

    Full Text Available Objective: To investigate the antimicrobial activity of leaf extract of Piper nigrum (P. nigrum and Cassia didymobotyra (C. didymobotyra (aqueous, methanol, ethanol and petroleum ether against the food borne pathogenic bacteria [Staphylococcus aureus (S. aureus, Escherichia coli (E. coli, Salmonella typhimurium and Pseudomonas aeruginosa] and fungi [Aspergillus spp. and Candida albicans (C. albicans] and also to investigate the presence of various phytochemicals in the leaf extracts of tested plants. Methods: The antimicrobial activity was determined by disc diffusion method. Minimum inhibitory concentration (MIC, minimum bactericidal and fungicidal concentration were determined by serial dilution method. Results: Methanol leaf extract of test plants exhibited greater antimicrobial activity against the selected bacterial and fungal strains. The MIC results showed that ethanol, methanol and petroleum ether leaf extract of P. nigrum inhibited the growth of S. aureus and E. coli at concentration of 12.5 mg/mL. While, ethanol and methanol leaf extracts of C. didymobotyra inhibited the growth of S. aureus at concentration of 6.25 mg/mL. The MIC values for ethanol, methanol and petroleum ether leaf extract of P. nigrum inhibited the growth of C. albicans at concentration of 25.0 mg/mL. While, it was reported that at concentration of 12.5 mg/mL methanol leaf extract of P. nigrum was against the Aspergillus spp. The MIC values of methanol leaf extract of C. didymobotyra inhibited the growth of C. albicans and Aspergillus spp. at concentration of 12.5 mg/mL and 6.25 mg/mL, respectively. The minimum bactericidal concentration of ethanol, methanol leaf extract of P. nigrum for E. coli and ethanol, methanol leaf extract of C. didymobotyra for S. aureus was recorded at concentration 12.5 mg/mL. The minimum fungicidal concentration of ethanol and methanol leaf extract of P. nigrum and C. didymobotyra on C. albicans was recorded at concentration of 25.0 mg

  16. Relationships between SAP-flow measurements, whole-canopy transpiration and reference evapotranspiration in field-grown papaya (Carica papaya L.)

    Science.gov (United States)

    Whole-canopy gas exchange measurement in papaya can provide a scientific basis to optimize irrigation, and fruit yield and quality. The objectives of this study were to: 1) verify the relationship between xylem sap flow measured by the heat coefficient method and whole canopy transpiration in ‘Gra...

  17. Partitioning of evaporation into transpiration, soil evaporation and interception : A comparison between isotope measurements and a HYDRUS-1D model + Corrigendum

    NARCIS (Netherlands)

    Sutanto, S.J.; Wenninger, J.; Coenders-Gerrits, A.M.J.; Uhlenbrook, S.

    Knowledge of the water fluxes within the soil-vegetation-atmosphere system is crucial to improve water use efficiency in irrigated land. Many studies have tried to quantify these fluxes, but they encountered difficulties in quantifying the relative contribution of evaporation and transpiration. In

  18. Connections between groundwater flow and transpiration partitioning: using integrated continental-scale simulations at high resolution to diagnose hydrologic process interaction

    Science.gov (United States)

    Maxwell, Reed; Condon, Laura

    2017-04-01

    Understanding freshwater fluxes at continental scales will help us better predict hydrologic response and manage our terrestrial water resources. The partitioning of evapotranspiration into bare soil evaporation and plant transpiration remains a key uncertainty in the terrestrial water balance. We used integrated hydrologic simulations that couple vegetation and land energy processes with surface and subsurface hydrology to study transpiration partitioning at the continental scale. These high resolution, transient simulations encompass the major watersheds of the United States and demonstrate great complexity in hydrologic and land energy states. Two simulations were used to study the role lateral groundwater flow plays in transpiration partitioning. Results show that both latent heat flux and partitioning are connected to water table depth, and including lateral groundwater flow in the model increases transpiration partitioning from 47±13% to 62±12%. This suggests that lateral groundwater flow, which is generally simplified or excluded in earth system models, may provide a missing link to reconciling observations and global models of terrestrial water fluxes.

  19. Effect of a short and severe intermittent drought on transpiration, seed yield components, and harvest index in four landraces of bambara groundnut

    DEFF Research Database (Denmark)

    Jørgensen, Søren Thorndal; Ntundu, W.H.; Ouédraogo, M.

    2011-01-01

    Drought is a major constraint to crop production worldwide and landraces are one of the important genetic resources to crop improvement in the dry areas. The objective of this study was to investigate transpiration and yield responses of bambara groundnut (Vigna subterranea L. Verdc.) landraces e...

  20. Effect of near-infrared-radiation reflective screen materials on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop

    NARCIS (Netherlands)

    Stanghellini, C.; Jianfeng, D.; Kempkes, F.L.K.

    2011-01-01

    The effect of Near Infrared (NIR)-reflective screen material on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop was investigated in an experiment whereby identical climate was ensured in greenhouse compartments installed with either NIR-reflective or

  1. Effects of CO[sub 2] enrichment and nitrogen fertilization on leaf gas exchange and yield of field-grown sweet potatoes

    Energy Technology Data Exchange (ETDEWEB)

    Hileman, D.R.; Strachan, R.; Alemayehu, M.; Huluka, G.; Moore, J.; Biswas, P.K. (Tuskegee Univ., AL (United States))

    1993-06-01

    Sweet potatoes (Ipomoea batatas L.) were grown in the field in open-top chambers at two levels of CO[sub 2] (ambient and 300 [mu]L L[sup [minus]1] above ambient) and two levels of nitrogen fertilization. Leaf gas exchange rates were determined during midday hours under sunny conditions. CO[sub 2] enrichment led to an increase of 48% in net photosynthetic rates and to decreases of 15% and 29% in leaf transpiration and stomatal conductance. The nitrogen treatment had no significant effects on leaf gas exchange, The number of storage roots and total storage root fresh weight increased 33% and 38%, respectively, at elevated CO[sub 2]. There was a non-significant trend towards larger storage roots at high nitrogen levels. The lack of significant effects due to the nitrogen treatment (except for a positive effect on leaf size) may indicate that nitrogen was not limiting, Elemental analysis of plant and soil samples, currently in progress, will help clarify this situation.

  2. A microfluidic design to provide a stable and uniform in vitro microenvironment for cell culture inspired by the redundancy characteristic of leaf areoles.

    Science.gov (United States)

    Li, Jingmin; Wei, Juan; Liu, Yuanchang; Liu, Bo; Liu, Tao; Jiang, Yang; Ding, Laiqian; Liu, Chong

    2017-11-07

    The leaf venation is considered to be an optimal transportation system with the mesophyll cells being divided by minor veins into small regions named areoles. The transpiration of water in different regions of a leaf fluctuates over time making the transportation of water in veins fluctuate as well. However, because of the existence of multiple paths provided by the leaf venation network and the pits on the walls of the vessels, the pressure field and nutrient concentration in the areoles that the mesophyll cells live in are almost uniform. Therefore, inspired by such structures, a microfluidic design of a novel cell culture chamber has been proposed to obtain a stable and uniform microenvironment. The device consists of a novel microchannel system imitating the vessels in the leaf venation to transport the culture medium, a cell culture chamber imitating the areole and microgaps imitating the pits. The effects of the areole and pit on flow fields in the cell culture chamber have been discussed. The results indicate that the bio-inspired microfluidic device is a robust platform to provide an in vivo like fluidic microenvironment.

  3. Water Use Efficiency as a Means for Up Scaling Carbon Fluxes from Leaf to Stand

    Science.gov (United States)

    Linderson, M. L.; Tarvainen, L.; Wallin, G.; Uddling, J.; Klemedtsson, L.

    2014-12-01

    Estimation of carbon fluxes of small forest stands is needed in order to adequately assess the effect of variable stand conditions and of different management strategies. Such estimations may not be possible using micrometeorological methods such as the eddy covariance technique (EC), as large areas are required with homogeneous land use, management and species composition. Earlier findings show that the leaf scale carbon uptake and water use ratio (water use efficiency, WUE) of beech (Fagus Sylvatica, L.) is homogenous within the canopy only depending on air humidity and light conditions (Linderson et al., 2012). This finding enables estimations of the canopy carbon uptake from its water use as estimated by sap flow measurements and thus to assess the individual tree carbon uptake and its variability.In this study, the methodology developed for beech is tested for Norway spruce (Picea abies, L.) and further developed to comprise longer time scales (days to seasons) using existing leaf flux measurements from the Skogaryd ecosystem field research station (www.fieldsites.se). The shoot gas exchange was measured once every half hour at several heights in the canopy between 2007 and 2010, using automated chambers tracking ambient meteorological conditions. Air temperature, humidity and PAR were measured simultaneously and adjacent to the shoots. The VPD normalized WUE is assessed as the ratio between the carbon uptake and the conductance, where conductance is estimated from the measured transpiration divided by VPD.Preliminary results, using data from May to September and 6-18h to make the spruce and beech measurements comparable, show that the leaf scale VPD normalized WUE for spruce reaches light saturation at low PAR (on average 250 μmolm-2s-1), compared to beech (on avg. 500 μmolm-2s-1). For light saturating conditions, WUE is also higher for spruce (avg. 9 mmolmol-1hPa) than for beech (avg. 5 mmolmol-1hPa). These results indicate that spruce has a different

  4. Hereditary Diffuse Infiltrating Retinoblastoma.

    Science.gov (United States)

    Schedler, Katharina J E; Traine, Peter G; Lohmann, Dietmar R; Haritoglou, Christos; Metz, Klaus A; Rodrigues, Eduardo B

    2016-01-01

    Retinoblastoma is one of the most common childhood cancers. The diffuse infiltrating retinoblastoma is a rare subtype of this neoplasm. The majority of cases of diffuse infiltrating retinoblastoma are unilateral and occur sporadically. Herein we report on a family with three children affected by retinoblastoma, among them one girl with diffuse infiltrating retinoblastoma. This girl was diagnosed at the age of 8 years with a unilateral diffuse infiltrating retinoblastoma. By contrast, the two brothers became clinically apparent in the first 2 years of life with bilateral retinoblastoma. The parents were clinically unremarkable. Genetic analysis of RB1 gene was performed. The girl with diffuse infiltrating RB was found to be heterozygous for an oncogenic mutation in the RB1 gene that was also carried by both brothers and the father of the family. These results show that diffuse infiltrating retinoblastoma can develop on the background of a hereditary predisposition to retinoblastoma.

  5. Gaseous diffusion system

    International Nuclear Information System (INIS)

    Garrett, G.A.; Shacter, J.

    1978-01-01

    A gaseous diffusion system is described comprising a plurality of diffusers connected in cascade to form a series of stages, each of the diffusers having a porous partition dividing it into a high pressure chamber and a low pressure chamber, and means for combining a portion of the enriched gas from a succeeding stage with a portion of the enriched gas from the low pressure chamber of each stage and feeding it into one extremity of the high pressure chamber thereof

  6. Leveraging multiple datasets for deep leaf counting

    OpenAIRE

    Dobrescu, Andrei; Giuffrida, Mario Valerio; Tsaftaris, Sotirios A

    2017-01-01

    The number of leaves a plant has is one of the key traits (phenotypes) describing its development and growth. Here, we propose an automated, deep learning based approach for counting leaves in model rosette plants. While state-of-the-art results on leaf counting with deep learning methods have recently been reported, they obtain the count as a result of leaf segmentation and thus require per-leaf (instance) segmentation to train the models (a rather strong annotation). Instead, our method tre...

  7. Effects of γ-rays on vegetable leaf and leaf tissue resistance

    International Nuclear Information System (INIS)

    Ma Fei; Luo Shishi; Feng Min; Wang Zegang; Ge Cailin; Guo Yifeng

    2003-01-01

    The change of the leaf tissue resistance and ion exosmosis of two kinds of vegetables by γ-rays were studied and the apparent characters were observed. The results showed as follows. The effect of γ-rays on vegetable firstly appears on leaf and the leaf is the sensitive part to γ-rays. The peak value of leaf tissue resistance changes paralleled to the ability of resistance to γ-rays, the higher the resistant ability is, the higher the peak value of the leaf tissue resistance will be. The peak value of leaf tissue resistance can be used as the index of the ability of vegetable resistance to γ-rays. Contrast with ion exosmosis, leaf tissue resistance showed different resistant abilities to γ-rays with different leaves of the same plant. The death dose of vegetable can be determined with the change of leaf tissue resistance and ion exosmosis

  8. The enigma of effective pathlength for 18O enrichment in leaf water of conifers

    Science.gov (United States)

    Roden, J. S.; Kahmen, A.; Buchmann, N. C.; Siegwolf, R. T.

    2013-12-01

    The stable isotopes of oxygen (δ18O) in tree ring cellulose provide valuable proxy information about past environments and climate. Mechanistic models have been used to clarify the important drivers of isotope fractionation and help interpret δ18O variation in tree rings. A critical component to these models is an estimate of leaf water enrichment. However, standard models seldom accurately predict 18O enrichment in conifer needles and Péclet corrections often require effective pathlengths (L) that seem unreasonable from the perspective of needle morphology (>0.5 m). To analyze the potential role of path length on the Péclet effect in conifers we carried out experiments in controlled environment chambers. We exposed seedlings of six species of conifer (Abies alba, Larix decidua, Picea abies, Pinus cembra, P. sylvestris, Taxus bacata), that differ in needle morphology, to four different vapor pressure deficits (VPD), in order to modify transpiration rates (E) and leaf water 18O enrichment. Environmental and δ18O data (leaf, stem and chamber water vapor) were collected to parameterize leaf water models. Cross-sections of needles were sampled for an analysis of needle anatomy. Conifer needles have a single strand of vascular tissue making pathlength determinations through anatomical assessments possible. The six species differed in mesophyll distance (measured from endodermis to epidermis) and cell number, with Pinus and Picea species having the shortest distance and Abies and Taxus the longest (flat needle morphology). Other anatomical measures (transfusion distance, cell size etc.) did not differ significantly. A suberized strip was apparent in the endodermis of all species except Taxus and Abies. Conifer needles have a large proportion (from 0.2 to 0.4) of needle cross-sectional area in vascular tissues that may not be subject to evaporative enrichment. As expected, leaf water δ18O and E responded strongly to VPD and standard models (Craig

  9. Leaf water enrichment of stable water isotopes (δ18O and δD) in a mature oil palm plantation in Jambi province, Indonesia.

    Science.gov (United States)

    Bonazza, Mattia; Tjoa, Aiyen; Knohl, Alexander

    2017-04-01

    During the last few decades, Indonesia experienced rapid and large scale land-use change towards intensively managed crops, one of them is oil palm. This transition results in warmer and dryer conditions in microclimate. The impacts on the hydrological cycle and on water-use by plants are, however, not yet completely clear. Water stable isotopes are useful tracers of the hydrological processes and can provide means to partition evapotranspiration into evaporation and transpiration. A key parameter, however, is the enrichment of water stable isotope in plant tissue such as leaves that can provide estimates on the isotopic composition of transpiration. Here we present the results of a field campaign conducted in a mature oil palm plantation in Jambi province, Indonesia. We combined continuous measurements of water vapor isotopic composition and mixing ratio with isotopic analysis of water stored in different pools like oil palm leaves, epiphytes, trunk organic matter and soil collected over a three days period. Leaf enrichment varied from -2 ‰ to 10 ‰ relative to source (ground) water. The temporal variability followed Craig and Gordon model predictions for leaf water enrichment. An improved agreement was reached after considering the Péclet effect with an appropriate value of the characteristic length (L). Measured stomatal conductance (gs) on two different sets of leaves (top and bottom canopy) was mainly controlled by radiation (photosynthetically active radiation) and vapor pressure deficit. We assume that this control could be explained in conditions where soil water content is not representing a limiting factor. Understanding leaf water enrichment provides one step towards partitioning ET.

  10. Inpainting using airy diffusion

    Science.gov (United States)

    Lorduy Hernandez, Sara

    2015-09-01

    One inpainting procedure based on Airy diffusion is proposed, implemented via Maple and applied to some digital images. Airy diffusion is a partial differential equation with spatial derivatives of third order in contrast with the usual diffusion with spatial derivatives of second order. Airy diffusion generates the Airy semigroup in terms of the Airy functions which can be rewritten in terms of Bessel functions. The Airy diffusion can be used to smooth an image with the corresponding noise elimination via convolution. Also the Airy diffusion can be used to erase objects from an image. We build an algorithm using the Maple package ImageTools and such algorithm is tested using some images. Our results using Airy diffusion are compared with the similar results using standard diffusion. We observe that Airy diffusion generates powerful filters for image processing which could be incorporated in the usual packages for image processing such as ImageJ and Photoshop. Also is interesting to consider the possibility to incorporate the Airy filters as applications for smartphones and smart-glasses.

  11. Deficiência hídrica no solo e seu efeito sobre transpiração, crescimento e desenvolvimento de mudas de duas espécies de eucalipto Soil water defcit affecting transpiration, growth and development of seedlings of two eucalyptus species

    Directory of Open Access Journals (Sweden)

    Fabrina Bolzan Martins

    2008-06-01

    Full Text Available A água é fundamental no metabolismo das plantas e uma redução na sua disponibilidade no solo pode afetar o crescimento, o desenvolvimento e a produtividade das culturas. O objetivo deste trabalho foi quantificar a influência do déficit hídrico no solo sobre a transpiração e sobre alguns parâmetros de crescimento (altura de planta e diâmetro do caule e desenvolvimento (número de folhas acumuladas na haste principal, em mudas de Eucalyptus grandis (Hill ex Maiden e Eucalyptus saligna (Smith. Para realização deste estudo, foi instalado um experimento em casa de vegetação, no Departamento de Fitotecnia da Universidade Federal de Santa Maria (Santa Maria, RS, que consistiu em duas épocas de semeadura, sendo a primeira em 1/10/2005 (E1 e a segunda em 12/5/2006 (E2. A água disponível, representada pela fração de água transpirável no solo (FATS, e os demais parâmetros foram medidos diariamente durante o período de imposição da deficiência hídrica. O início do decréscimo da transpiração, indicativo do fechamento dos estômatos, ocorreu quando a FATS foi de 0,9 (E2 e 0,7 (E1, para E. grandis, e de 0,7, para E. saligna, em ambas as épocas, indicando que o fechamento estomático em resposta ao déficit hídrico no solo é mais rápido nessas espécies perenes do que em culturas agrícolas anuais. Os parâmetros de crescimento e desenvolvimento das mudas decresceram imediatamente após o início do déficit hídrico no solo, antes mesmo de ser a transpiração afetada pela redução da água no solo.Water is a critical component of plant metabolism, and a reduction in soil water availability may affect crop growth, development and yield. The objective of this study was to quantify the influence of soil water deficit on transpiration and on some growth (plant height and stem diameter and development (main stem leaf number parameters of Eucalyptus grandis (Hill ex Maiden and E. saligna (Smith seedlings. For this purpose, a

  12. Sap Flux Scaled Transpiration in Ring-porous Tree Species: Assumptions, Pitfalls and Calibration

    Science.gov (United States)

    Bush, S. E.; Hultine, K. R.; Ehleringer, J. R.

    2008-12-01

    Thermal dissipation probes for measuring sap flow (Granier-type) at the whole tree and stand level are routinely used in forest ecology and site water balance studies. While the original empirical relationship used to calculate sap flow was reported as independent of wood anatomy (ring-porous, diffuse-porous, tracheid), it has been suggested that potentially large errors in sap flow calculations may occur when using the original calibration for ring-porous species, due to large radial trends in sap velocity and/or shallow sapwood depth. Despite these concerns, sap flux measurements have rarely been calibrated in ring-porous taxa. We used a simple technique to calibrate thermal dissipation sap flux measurements on ring-porous trees in the lab. Calibration measurements were conducted on five ring-porous species in the Salt Lake City, USA metropolitan area including Quercus gambelii (Gambel oak), Gleditsia triacanthos (Honey locust), Elaeagnus angustifolia (Russian olive), Sophora japonica (Japanese pagoda), and Celtis occidentalis (Common hackberry). Six stems per species of approximately 1 m in length were instrumented with heat dissipation probes to measure sap flux concurrently with gravimetric measurements of water flow through each stem. Safranin dye was pulled through the stems following flow rate measurements to determine sapwood area. As expected, nearly all the conducting sapwood area was limited to regions within the current year growth rings. Consequently, we found that the original Granier equation underestimated sap flux density for all species considered. Our results indicate that the use of thermal dissipation probes for measuring sap flow in ring-porous species should be independently calibrated, particularly when species- specific calibration data are not available. Ring-porous taxa are widely distributed and represent an important component of the regional water budgets of many temperate regions. Our results are important for evaluating plant water

  13. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time

    OpenAIRE

    Franks, Peter J.; Beerling, David J.

    2009-01-01

    Stomatal pores are microscopic structures on the epidermis of leaves formed by 2 specialized guard cells that control the exchange of water vapor and CO2 between plants and the atmosphere. Stomatal size (S) and density (D) determine maximum leaf diffusive (stomatal) conductance of CO2 (gcmax) to sites of assimilation. Although large variations in D observed in the fossil record have been correlated with atmospheric CO2, the crucial significance of similarly large variations in S has been over...

  14. Cultivar Differences in Plant Transpiration Rate at High Relative Air Humidity Are Not Related to Genotypic Variation in Stomatal Responsiveness

    DEFF Research Database (Denmark)

    Gebraegziabher, Habtamu Giday; Kjær, Katrine Heinsvig; Ottosen, Carl-Otto

    2015-01-01

    Plants grown at high relative air humidity (RH) often show disturbed water relations due to less responsive stomata. The attenuation of stomatal responsiveness as a result of high RH during leaf expansion depends on the cultivar. We hypothesized that tolerant cultivars to high RH experience a lower...

  15. Effect of Addition of Moringa Leaf By-Product (Leaf-Waste) on ...

    African Journals Online (AJOL)

    The effects of incorporation of Moringa leaf fibre (a by-product of leaf processing which contains 24% Crude Fibre by dry weight at 0, 5 and 10 % substitution of wheat flour in cookies was investigated. Three products containing wheat flour: Moringa leaf fibre ratios of 100:0, 95:5, and 90:10 respectively were prepared, and a ...

  16. Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa).

    Science.gov (United States)

    Zhu, Xiaoyan; Guo, Shuang; Wang, Zhongwei; Du, Qing; Xing, Yadi; Zhang, Tianquan; Shen, Wenqiang; Sang, Xianchun; Ling, Yinghua; He, Guanghua

    2016-06-13

    As the indispensable part of plant, leaf blade mainly functions as the production workshops where organic substance is produced by photosynthesis. Leaf colour mutation is a genetic phenomenon that has a high frequency and is easily identified. The mutations always exhibit negative impact on the development of plants in any of the different stages of growth. Up to now, numerous genes involved in leaf colour mutations have been cloned. In this study, a yellow-green leaf mutant, yellow-green leaf 8 (ygl8), with stable genetic phenotype, has been screened out in the progeny of an excellent indica restorer line Jinhui 10 with seeds treated by EMS. The levels of Chl a, Chl b and total chlorophyll were significantly lower in ygl8 than those in the WT throughout the whole growth period, while no clear change was noted in the Chl a/b ratio. Transmission electron microscopy demonstrated that the lamellae were clearly intumescent and intricately stacked in ygl8. Furthermore, compared with those of the WT, the stomatal conductance, intercellular CO2 concentration, photosynthetic rate and transpiration rate of ylg8 were all significantly lower. Map-based cloning results showed that Loc_Os01g73450, encoding a chloroplast-targeted UMP kinase, corresponded to Ygl8 and played an important role in regulating leaf colour in rice (Oryza sativa). Complementation of ygl8 with the WT DNA sequence of Loc_Os01g73450 led to restoration of the normal phenotype, and transgenic RNA interference plants showed a yellow-green colour. Analysis of the spatial and temporal expression of Ygl8 indicated that it was highly expressed in leaf blades and weakly expressed in other tissues. qRT-PCR also showed that the expression levels of the major Photosystem I core subunits plastome-encoded PsaA, PsaB and PsbC were significantly reduced in ygl8. The expression levels of nuclear-encoded gene involved in Chl biosynthesis HEMC, HEME, and PORA were also decreased when compared with the wild-type. Independent

  17. Oxygen Diffusion in Titanite

    Science.gov (United States)

    Zhang, X. Y.; Cherniak, D. J.; Watson, E. B.

    2004-05-01

    Oxygen diffusion in natural and synthetic single-crystal titanite was characterized under both dry and water-present conditions. For the dry experiments, pre-polished titanite samples were packed in 18O-enriched quartz powder inside Ag-Pd capsules, along with an FMQ buffer assemblage maintained physically separate by Ag-Pd strips. The sealed Ag-Pd capsules were themselves sealed inside evacuated silica glass tubes and run at 700-1050° C and atmospheric pressure for durations ranging from 1 hour to several weeks. The hydrothermal experiments were conducted by encapsulating polished titanite crystals with 18O enriched water and running them at 700-900° C and 10-160MPa in standard cold-seal pressure vessels for durations of 1 day to several weeks. Diffusive uptake profiles of 18O were measured in all cases by nuclear reaction analysis (NRA) using the 18O (p,α ) 15N reaction. For the experiments on natural crystals, under both dry and hydrothermal conditions, two mechanisms could be recognized responsible for oxygen diffusion. The diffusion profiles showed two segments: a steep one close to the initial surface attributed to self-diffusion in the titanite lattice; and a "tail" reaching deeper into the sample attributable to diffusion in a "fast path" such as sub-grain boundaries or dislocations. For the dry experiments, the following Arrhenius relation was obtained: D{dry lattice} = 2.6×10-8exp (-275 kJmol-1/RT) m2/s Under wet conditions at PH2O = 100MPa, Oxygen diffusion conforms to the following Arrehenius relation: D{wet lattice} = 9.7× 10-13exp (-174 kJmol-1/RT) m2/s Oxygen diffusivity shows only a slight dependence on water pressure at the following conditions we explored: temperatures 800° C, PH2O = 10-160MPa, and 880° C, PH2O =10-100MPa. For diffusive anisotropy, we explored it only at hydrothermal conditions, and no diffusive anisotropy was observed. Like many other silicates, titanite shows lower activation energy for oxygen diffusion in the presence of

  18. Technical note: An experimental set-up to measure latent and sensible heat fluxes from (artificial plant leaves

    Directory of Open Access Journals (Sweden)

    S. J. Schymanski

    2017-07-01

    Full Text Available Leaf transpiration and energy exchange are coupled processes that operate at small scales yet exert a significant influence on the terrestrial hydrological cycle and climate. Surprisingly, experimental capabilities required to quantify the energy–transpiration coupling at the leaf scale are lacking, challenging our ability to test basic questions of importance for resolving large-scale processes. The present study describes an experimental set-up for the simultaneous observation of transpiration rates and all leaf energy balance components under controlled conditions, using an insulated closed loop miniature wind tunnel and artificial leaves with pre-defined and constant diffusive conductance for water vapour. A range of tests documents the above capabilities of the experimental set-up and points to potential improvements. The tests reveal a conceptual flaw in the assumption that leaf temperature can be characterized by a single value, suggesting that even for thin, planar leaves, a temperature gradient between the irradiated and shaded or transpiring and non-transpiring leaf side can lead to bias when using observed leaf temperatures and fluxes to deduce effective conductances to sensible heat or water vapour transfer. However, comparison of experimental results with an explicit leaf energy balance model revealed only minor effects on simulated leaf energy exchange rates by the neglect of cross-sectional leaf temperature gradients, lending experimental support to our current understanding of leaf gas and energy exchange processes.

  19. Technical note: An experimental set-up to measure latent and sensible heat fluxes from (artificial) plant leaves

    Science.gov (United States)

    Schymanski, Stanislaus J.; Breitenstein, Daniel; Or, Dani

    2017-07-01

    Leaf transpiration and energy exchange are coupled processes that operate at small scales yet exert a significant influence on the terrestrial hydrological cycle and climate. Surprisingly, experimental capabilities required to quantify the energy-transpiration coupling at the leaf scale are lacking, challenging our ability to test basic questions of importance for resolving large-scale processes. The present study describes an experimental set-up for the simultaneous observation of transpiration rates and all leaf energy balance components under controlled conditions, using an insulated closed loop miniature wind tunnel and artificial leaves with pre-defined and constant diffusive conductance for water vapour. A range of tests documents the above capabilities of the experimental set-up and points to potential improvements. The tests reveal a conceptual flaw in the assumption that leaf temperature can be characterized by a single value, suggesting that even for thin, planar leaves, a temperature gradient between the irradiated and shaded or transpiring and non-transpiring leaf side can lead to bias when using observed leaf temperatures and fluxes to deduce effective conductances to sensible heat or water vapour transfer. However, comparison of experimental results with an explicit leaf energy balance model revealed only minor effects on simulated leaf energy exchange rates by the neglect of cross-sectional leaf temperature gradients, lending experimental support to our current understanding of leaf gas and energy exchange processes.

  20. Using ISBA model for partitioning evapotranspiration into soil evaporation and plant transpiration of irrigated crops under semi-arid climate

    Science.gov (United States)

    Aouade, Ghizlane; Jarlan, Lionel; Ezzahar, Jamal; Er-raki, Salah; Napoly, Adrien; Benkaddour, Abdelfettah; Khabba, Said; Boulet, Gilles; Chehbouni, Abdelghani; Boone, Aaron

    2016-04-01

    The Haouz region, typical of southern Mediterranean basins, is characterized by a semi-arid climate, with average annual rainfall of 250, whilst evaporative demand is about 1600 mm per year. Under these conditions, crop irrigation is inevitable for growth and development. Irrigated agriculture currently consumes the majority of total available water (up to 85%), making it critical for more efficient water use. Flood irrigation is widely practiced by the majority of the farmers (more than 85 %) with an efficiency which does not exceed 50%. In this context, a good knowledge of the partitioning of evapotranspiration (ET) into soil evaporation and plant transpiration is of crucial need for improving the irrigation scheduling and thus water use efficiency. In this study, the ISBA (Interactions Soil-Biosphere-Atmosphere) model was used for estimating ET and its partition over an olive orchard and a wheat field located near to the Marrakech City (Centre of Morocco). Two versions were evaluated: standard version which simulates a single energy balance for the soil and vegetation and the recently developed multiple energy balance (MEB) version which solves a separate energy balance for each of the two sources. Eddy covariance system, which provides the sensible and latent heat fluxes and meteorological instruments were operated during years 2003-2004 for the Olive Orchard and during years 2013 for wheat. The transpiration component was measured using a Sap flow system during summer over the wheat crop and stable isotope samples were gathered over wheat. The comparison between ET estimated by ISBA model and that measured by the Eddy covariance system showed that MEB version yielded a remarkable improvement compared to the standard version. The root mean square error (RMSE) and the correlation coefficient (R²) were about 45wm-2 and 0.8 for MEB version. By contrast, for the standard version, the RMSE and R² were about 60wm-2 and 0.7, respectively. The result also showed that

  1. Weak coordination between leaf structure and function among closely related tomato species.

    Science.gov (United States)

    Muir, Christopher D; Conesa, Miquel À; Roldán, Emilio J; Molins, Arántzazu; Galmés, Jeroni

    2017-03-01

    Theory predicts that natural selection should favor coordination between leaf physiology, biochemistry and anatomical structure along a functional trait spectrum from fast, resource-acquisitive syndromes to slow, resource-conservative syndromes. However, the coordination hypothesis has rarely been tested at a phylogenetic scale most relevant for understanding rapid adaptation in the recent past or for the prediction of evolutionary trajectories in response to climate change. We used a common garden to examine genetically based coordination between leaf traits across 19 wild and cultivated tomato taxa. We found weak integration between leaf structure (e.g. leaf mass per area) and physiological function (photosynthetic rate, biochemical capacity and CO 2 diffusion), even though all were arrayed in the predicted direction along a 'fast-slow' spectrum. This suggests considerable scope for unique trait combinations to evolve in response to new environments or in crop breeding. In particular, we found that partially independent variation in stomatal and mesophyll conductance may allow a plant to improve water-use efficiency without necessarily sacrificing maximum photosynthetic rates. Our study does not imply that functional trait spectra, such as the leaf economics spectrum, are unimportant, but that many important axes of variation within a taxonomic group may be unique and not generalizable to other taxa. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  2. Leaf anatomical traits of non-arboreal savanna species along a gradient of tree encroachment

    Directory of Open Access Journals (Sweden)

    Luiz Felipe Souza Pinheiro

    2017-10-01

    Full Text Available ABSTRACT In the Brazilian savanna (Cerrado of Brazil, fire suppression has transformed typical savanna formations (TS into forested savanna (FS due to the phenomenon of encroachment. Under encroachment, non-arboreal plants begin to receive less light due to greater tree density and canopy closure. Here we aim to evaluate if leaf anatomical traits of non-arboreal species differ according to the degree of tree encroachment at the Assis Ecological Station - São Paulo, Brazil. To this end, we evaluated leaf tissue thickness and specific leaf area (SLA in representative non-arboreal species occurring along a gradient of tree encroachment. Leaves of TS species showed a trend towards xeromorphism, with traits reported to facilitate survival under high luminosity, such as thick leaves, thick epidermis and mesophyll, and low SLA. In contrast, FS species exhibited mesomorphic leaves, with thin mesophyll and high SLA, which are able to capture diffuse light in denser environments. Thus, non-arboreal understory species with mesomorphic leaf traits should be favored in environments with denser vegetation in contrast to typical savanna species. The results suggest that typical non-arboreal savanna species would not survive under tree encroachment due to the low competitiveness of their leaf anatomical strategies in shady environments.

  3. Modelling of Innovation Diffusion

    Directory of Open Access Journals (Sweden)

    Arkadiusz Kijek

    2010-01-01

    Full Text Available Since the publication of the Bass model in 1969, research on the modelling of the diffusion of innovation resulted in a vast body of scientific literature consisting of articles, books, and studies of real-world applications of this model. The main objective of the diffusion model is to describe a pattern of spread of innovation among potential adopters in terms of a mathematical function of time. This paper assesses the state-of-the-art in mathematical models of innovation diffusion and procedures for estimating their parameters. Moreover, theoretical issues related to the models presented are supplemented with empirical research. The purpose of the research is to explore the extent to which the diffusion of broadband Internet users in 29 OECD countries can be adequately described by three diffusion models, i.e. the Bass model, logistic model and dynamic model. The results of this research are ambiguous and do not indicate which model best describes the diffusion pattern of broadband Internet users but in terms of the results presented, in most cases the dynamic model is inappropriate for describing the diffusion pattern. Issues related to the further development of innovation diffusion models are discussed and some recommendations are given. (original abstract

  4. Thermal diffusion (1963)

    International Nuclear Information System (INIS)

    Lemarechal, A.

    1963-01-01

    This report brings together the essential principles of thermal diffusion in the liquid and gaseous phases. The macroscopic and molecular aspects of the thermal diffusion constant are reviewed, as well as the various measurement method; the most important developments however concern the operation of the CLUSIUS and DICKEL thermo-gravitational column and its applications. (author) [fr

  5. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Olsen, Ole Fogh; Sporring, Jon

    2006-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features......, while eliminating noise. We call our method diffusion based photon mapping....

  6. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...... momentum supply. In addition, this ventilation system uses a ceiling plenum to deliver air and requires less energy consumption for air transport than full-ducted systems. There is a growing interest in applying diffuse ceiling ventilation in offices and other commercial buildings due to the benefits from...... both thermal comfort and energy efficient aspects. The present study aims to characterize the air distribution and thermal comfort in the rooms with diffuse ceiling ventilation. Both the stand-alone ventilation system and its integration with a radiant ceiling system are investigated. This study also...

  7. Atomic diffusion in stars

    CERN Document Server

    Michaud, Georges; Richer, Jacques

    2015-01-01

    This book gives an overview of atomic diffusion, a fundamental physical process, as applied to all types of stars, from the main sequence to neutron stars. The superficial abundances of stars as well as their evolution can be significantly affected. The authors show where atomic diffusion plays an essential role and how it can be implemented in modelling.  In Part I, the authors describe the tools that are required to include atomic diffusion in models of stellar interiors and atmospheres. An important role is played by the gradient of partial radiative pressure, or radiative acceleration, which is usually neglected in stellar evolution. In Part II, the authors systematically review the contribution of atomic diffusion to each evolutionary step. The dominant effects of atomic diffusion are accompanied by more subtle effects on a large number of structural properties throughout evolution. One of the goals of this book is to provide the means for the astrophysicist or graduate student to evaluate the importanc...

  8. Diffusing Best Practices

    DEFF Research Database (Denmark)

    Pries-Heje, Jan; Baskerville, Richard

    2014-01-01

    resulting from the design were two-day training workshops conceptually anchored to TBP. The design theory was evaluated through execution of eight diffusion workshops involving three different groups in the same company. The findings indicate that the match between the practice and the context materialized...... in the successful techniques in one context. While the value for other contexts is unproven, knowledge of best practices circulates under an assumption that the practices will usefully self-diffuse through innovation and adoption in other contexts. We study diffusion of best practices using a design science...... approach. The study context is a design case in which an organization desires to diffuse its best practices across different groups. The design goal is embodied in organizational mechanisms to achieve this diffusion. The study used Theory of Planned Behavior (TPB) as a kernel theory. The artifacts...

  9. Degenerate nonlinear diffusion equations

    CERN Document Server

    Favini, Angelo

    2012-01-01

    The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...

  10. Hydrological, chemical, and isotopic budgets of Lake Chad: a quantitative assessment of evaporation, transpiration and infiltration fluxes

    Science.gov (United States)

    Bouchez, Camille; Goncalves, Julio; Deschamps, Pierre; Vallet-Coulomb, Christine; Hamelin, Bruno; Doumnang, Jean-Claude; Sylvestre, Florence

    2016-04-01

    In the Sahelian belt, Lake Chad is a key water body for 13 million people, who live on its resources. It experiences, however, substantial and frequent surface changes. Located at the centre of one of the largest endorheic basins in the world, its waters remain surprisingly fresh. Its low salinity has been attributed to a low infiltration flow whose value remains poorly constrained. Understanding the lake's hydrological behaviour in response to climate variability requires a better constraint of the factors that control its water and chemical balance. Based on the three-pool conceptualization of Lake Chad proposed by Bader et al. (2011), this study aims to quantify the total water outflow from the lake, the respective proportions of evaporation (E), transpiration (T), and infiltration (I), and the associated uncertainties. A Bayesian inversion method based on lake-level data was used, leading to total water loss estimates in each pool (E + T + I = ETI). Sodium and stable isotope mass balances were then used to separate total water losses into E, T, and I components. Despite the scarcity of representative data available on the lake, the combination of these two geochemical tracers is relevant to assess the relative contribution of these three outflows involved in the control of the hydrological budget. Mean evapotranspiration rates were estimated at 2070 ± 100 and 2270 ± 100 mm yr-1 for the southern and northern pools, respectively. Infiltration represents between 100 and 300 mm yr-1 but most of the water is evapotranspirated in the first few kilometres from the shorelines and does not efficiently recharge the Quaternary aquifer. Transpiration is shown to be significant, around 300 mm yr-1 and reaches 500 mm yr-1 in the vegetated zone of the archipelagos. Hydrological and chemical simulations reproduce the marked hydrological change between the normal lake state that occurred before 1972 and the small lake state after 1972 when the lake surface shrunk to a one

  11. Transpiration flow controls Zn transport in Brassica napus and Lolium multiflorum under toxic levels as evidenced from isotopic fractionation

    Science.gov (United States)

    Couder, Eléonore; Mattielli, Nadine; Drouet, Thomas; Smolders, Erik; Delvaux, Bruno; Iserentant, Anne; Meeus, Coralie; Maerschalk, Claude; Opfergelt, Sophie; Houben, David

    2015-11-01

    Stable zinc (Zn) isotope fractionation between soil and plant has been used to suggest the mechanisms affecting Zn uptake under toxic conditions. Here, changes in Zn isotope composition in soil, soil solution, root and shoot were studied for ryegrass (Lolium multiflorum L.) and rape (Brassica napus L.) grown on three distinct metal-contaminated soils collected near Zn smelters (total Zn 0.7-7.5%, pH 4.8-7.3). The Zn concentrations in plants reflected a toxic Zn supply. The Zn isotopic fingerprint of total soil Zn varied from -0.05‰ to +0.26 ± 0.02‰ (δ66Zn values relative to the JMC 3-0749L standard) among soils, but the soil solution Zn was depleted in 66Zn, with a constant Zn isotope fractionation of about -0.1‰ δ66Zn unit compared to the bulk soil. Roots were enriched with 66Zn relative to soil solution (δ66Znroot - δ66Znsoil solution = Δ66Znroot-soil solution = +0.05 to +0.2 ‰) and shoots were strongly depleted in 66Zn relative to roots (Δ66Znshoot-root = -0.40 to -0.04 ‰). The overall δ66Zn values in shoots reflected that of the bulk soil, but were lowered by 0.1-0.3 ‰ units as compared to the latter. The isotope fractionation between root and shoot exhibited a markedly strong negative correlation (R2 = 0.83) with transpiration per unit of plant weight. Thus, the enrichment with light Zn isotopes in shoot progressed with increasing water flux per unit plant biomass dry weight, showing a passive mode of Zn transport by transpiration. Besides, the light isotope enrichment in shoots compared to roots was larger for rape than for rye grass, which may be related to the higher Zn retention in rape roots. This in turn may be related to the higher cation exchange capacity of rape roots. Our finding can be of use to trace the biogeochemical cycles of Zn and evidence the tolerance strategies developed by plants in Zn-excess conditions.

  12. Oxygen diffusion in monazite

    Science.gov (United States)

    Cherniak, D. J.; Zhang, X. Y.; Nakamura, M.; Watson, E. B.

    2004-09-01

    We report measurements of oxygen diffusion in natural monazites under both dry, 1-atm conditions and hydrothermal conditions. For dry experiments, 18O-enriched CePO4 powder and monazite crystals were sealed in Ag-Pd capsules with a solid buffer (to buffer at NNO) and annealed in 1-atm furnaces. Hydrothermal runs were conducted in cold-seal pressure vessels, where monazite grains were encapsulated with 18O-enriched water. Following the diffusion anneals, oxygen concentration profiles were measured with Nuclear Reaction Analysis (NRA) using the reaction 18O(p,α)15N. Over the temperature range 850-1100 °C, the Arrhenius relation determined for dry diffusion experiments on monazite is given by: Under wet conditions at 100 MPa water pressure, over the temperature range 700-880 °C, oxygen diffusion can be described by the Arrhenius relationship: Oxygen diffusion under hydrothermal conditions has a significantly lower activation energy for diffusion than under dry conditions, as has been found the case for many other minerals, both silicate and nonsilicate. Given these differences in activation energies, the differences between dry and wet diffusion rates increase with lower temperatures; for example, at 600 °C, dry diffusion will be more than 4 orders of magnitude slower than diffusion under hydrothermal conditions. These disparate diffusivities will result in pronounced differences in the degree of retentivity of oxygen isotope signatures. For instance, under dry conditions (presumably rare in the crust) and high lower-crustal temperatures (∼800 °C), monazite cores of 70-μm radii will preserve O isotope ratios for about 500,000 years; by comparison, they would be retained at this temperature under wet conditions for about 15,000 years.

  13. Evolutionary and Environmental Forces Sculpting Leaf Development.

    Science.gov (United States)

    Chitwood, Daniel H; Sinha, Neelima R

    2016-04-04

    Leaf shape is spectacularly diverse. As a major component of plant architecture and an interface for light capture, gas exchange, and thermoregulation, the potential contributions of leaves to plant fitness are innumerable. Particularly because of their intimate association and interaction with the surrounding environment, both the plasticity of leaf shape during the lifetime of a plant and the evolution of leaf shape over geologic time are revealing with respect to leaf function. Leaf shapes arise within a developmental context that constrains both their evolution and environmental plasticity. Quantitative models capturing genetic diversity, developmental context, and environmental plasticity will be required to fully understand the evolution and development of leaf shape and its response to environmental pressures. In this review, we discuss recent literature demonstrating that distinct molecular pathways are modulated by specific environmental inputs, the output of which regulates leaf dissection. We propose a synthesis explaining both historical patterns in the paleorecord and conserved plastic responses in extant plants. Understanding the potential adaptive value of leaf shape, and how to molecularly manipulate it, will prove to be invaluable in designing crops optimized for future climates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. PROFILE OF Nauclea diderrichii LEAF EXTRACTS

    African Journals Online (AJOL)

    pc

    problems, gonorrhea and menstruation problems, while a bark infusion is taken for the treatment of hepatitis and as a vermifuge. In Guinea, leaf preparations are applied on tumours. In Sierra Leone, leaf decoctions are drunk against diarrhea and as a wash for the treatment of measles and the ripe infructescence is eaten as ...

  15. [Study on pharmacognosy of Ginkgo leaf].

    Science.gov (United States)

    Geng, Guo-Ping; Ma, Zhi-Gang; Mao, Chong-Wu

    2007-05-01

    The primary study of Ginkgo leaf such as crude drug macroscopic and powder characteristics were carried out, and the flavonoids content in the leaf of Ginkgo in different areas of Gansu province was determined by HPLC, in order to provide scientific references for the exploitation of Ginkgo in Gansu province.

  16. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.

    2005-01-01

    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  17. Effects of leaf area of downy oak (Quercus pubescens Willd ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-08-18

    Aug 18, 2009 ... On the other hand, the light energy that is held by a leaf depends on the size of the leaf area (leaf surface). The measure of the leaf surface area (l.a.) is total leaf surface area of the plant (m2). The ratio between the total surface leaf area of a plant and the land area it covers (m2/ha or m2/m2) at a certain ...

  18. Possible Roles of Strigolactones during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Yusuke Yamada

    2015-09-01

    Full Text Available Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

  19. Why size matters: the interactive influences of tree diameter distribution and sap flow parameters on upscaled transpiration.

    Science.gov (United States)

    Berry, Z Carter; Looker, Nathaniel; Holwerda, Friso; Gómez Aguilar, León Rodrigo; Ortiz Colin, Perla; González Martínez, Teresa; Asbjornsen, Heidi

    2018-02-01

    In stands with a broad range of diameters, a small number of very large trees can disproportionately influence stand basal area and transpiration (Et). Sap flow-based Et estimates may be particularly sensitive to large trees due to nonlinear relationships between tree-level water use (Q) and tree diameter at breast height (DBH). Because Q is typically predicted on the basis of DBH and sap flow rates measured in a subset of trees and then summed to obtain Et, we assessed the relative importance of DBH and sap flow variables (sap velocity, Vs, and sapwood depth, Rs) in determining the magnitude of Et and its dependence on large trees in a tropical montane forest ecosystem. Specifically, we developed a data-driven simulation framework to vary the relationship between DBH and Vs and stand DBH distribution and then calculate Q, Et and the proportion of Et contributed by the largest tree in each stand. Our results demonstrate that variation in how Rs is determined in the largest trees can alter estimates up to 26% of Et while variation in how Vs is determined can vary results by up to 132%. Taken together, these results highlight a great need to expand our understanding of water transport in large trees as this hinders our ability to predict water fluxes accurately from stand to catchment scales. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. How soil water storage moderates climate changes effects on transpiration, across the different climates of the Critical Zone Observatories

    Science.gov (United States)

    Heckman, C.; Tague, C.

    2017-12-01

    While the demand side of transpiration is predicted to increase under a warmer climate, actual evapotranspiration (AET) will be moderated by the supply of water available to vegetation. A key question to ask is how will plant accessible water storage capacity (PAWSC) affect the partitioning of precipitation between AET and runoff. Our results indicate that whether AET increases or decreases, and how much, is significantly based upon interactions between PAWSC and characteristics of precipitation such as the amount, frequency, and skew as well the partitioning between rain and snow. In snow dominated climates, if PAWSC cannot make up for the loss of storage as snowpack then AET could decrease, and in rain dominated climates, PAWSC could significantly limit the increase in AET. These results highlight the importance of critical zone research: constraining PAWSC is critical in predicting not only the magnitude but also the direction of the change in AET with climate warming. Due to the highly heterogeneous nature of PAWSC and the difficulty of measuring it across large scales, we use a well-tested hydrologic model to estimate the impacts from a range of PAWSC on the partitioning of precipitation between runoff and AET. We completed this analysis for the range of precipitation and vegetation characteristics found across 9 of the Critical Zone Observatories.

  1. Diffuse interstellar clouds

    International Nuclear Information System (INIS)

    Black, J.H.

    1987-01-01

    The author defines and discusses the nature of diffuse interstellar clouds. He discusses how they contribute to the general extinction of starlight. The atomic and molecular species that have been identified in the ultraviolet, visible, and near infrared regions of the spectrum of a diffuse cloud are presented. The author illustrates some of the practical considerations that affect absorption line observations of interstellar atoms and molecules. Various aspects of the theoretical description of diffuse clouds required for a full interpretation of the observations are discussed

  2. Self diffusion in tungsten

    International Nuclear Information System (INIS)

    Mundy, J.N.; Rothman, S.J.; Lam, N.Q.; Nowicki, L.J.; Hoff, H.A.

    1978-01-01

    The lack of understanding of self-diffusion in Group VI metals together with the wide scatter in the measured values of tungsten self-diffusion has prompted the present measurements to be made over a wide temperature range (1/2Tsub(m) to Tsub(m)). The diffusion coefficients have been measured in the temperature range 1430-2630 0 C. The present measurements show non-linear Arrhenius behavior but a reliable two-exponential fit of the data should await further measurements. (Auth.)

  3. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    -cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... in applying diffuse ceiling ventilation in offices and other commercial buildings because of the benefits from both thermal comfort and energy efficiency aspects. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation and the design...

  4. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Yu, Tao; Heiselberg, Per Kvols

    -cooling period and night cooling potential. The investment cost of this ventilation system is about 5-10% lower than the conventional ones, because the acoustic ceiling could be directly applied as air diffuser and the use of plenum to distribute air reduces the cost of ductwork. There is a growing interest...... and manufacturers and the users of diffuse ceiling technology. The design guide introduces the principle and key characteristics of room air distribution with diffuse ceiling ventilation. It provides an overview of potential benefit and limitations of this technology. The benefits include high thermal comfort, high...

  5. Is the lotus leaf superhydrophobic?

    Science.gov (United States)

    Cheng, Yang-Tse; Rodak, Daniel E.

    2005-04-01

    Superhydrophobic surfaces have important technical applications ranging from self-cleaning window glasses, paints, and fabrics to low-friction surfaces. The archetype superhydrophobic surface is that of the lotus leaf. When rain falls on lotus leaves, water beads up with a contact angle in the superhydrophobic range of about 160°. The water drops promptly roll off the leaves collecting dirt along the way. This lotus effect has, in recent years, stimulated much research effort worldwide in the fabrication of surfaces with superhydrophobicity. But, is the lotus surface truly superhydrophobic? This work shows that the lotus leaves can be either hydrophobic or hydrophilic, depending on how the water gets on to their surfaces. This finding has significant ramifications on how to make and use superhydrophobic surfaces.

  6. [Leaf nutrient contents and photosynthetic physiological characteristics of Ulmus pumila-Robinia pseudocacia mixed forests].

    Science.gov (United States)

    Qin, Juan; Shangguan, Zhou-ping

    2010-09-01

    A field experiment was conducted to study the leaf N, P, and chlorophyll contents, photosynthetic gas exchange parameters, and chlorophyll fluorescence parameters in pure Ulmus pumila forest, pure Robinia pseudoacacia forest, and U. pumila-R. pseudoacacia mixed forests [1:1 (1B1C), 1:2 (1B2C), and 2:1 (2B1C)] in different growth periods. From May to September, the plant leaf N and P contents in pure and mixed forests all presented a decreasing trend. By the end of growth period, the leaf N content of U. pumila and the P content of R. pseudoacacia in 1B2C were obviously higher than those in pure forests. In the mixed forests, the chlorophyll content of U. pumila was obviously higher than that of R. pseudoacacia, and the chlorophyll content of U. pumila in 1B2C reached the highest in July. The photosynthetic rate (Pn) of U. pumila and R. pseudoacacia in mixed forests was higher than that in pure forests, and the Pn of R. pseudoacacia in 1B2C reached the highest (18.54 micromol x m(-2) x s(-1)) in July. The transpiration rate (Tr) and stomatal conductance (Gs) of R. pseudoacacia in mixed forests were higher than those in pure forests, and the Tr and Gs in mixed forests were in the order of 1B2C>1B1C>2B1C. In September, the quantum yield of PSII electron transport (phi(PS II)) of U. pumila in mixed forests was obviously higher than that in pure forest. The photochemical quenching coefficients (q(P)) of U. pumila and R. pseudoacacia in pure and mixed forests had no significant difference, but the non-photochemical quenching coefficient (NPQ) of the two tree species in 1B2C was significantly lower than that in corresponding pure forests. It was suggested that mixed planting U. pumila and R. pseudoacacia could significantly improve the leaf nutrient contents and photosynthetic capacity of the two tree species, and the optimum mixed ratio of U. pumila and R. pseudoacacia was 1:2.

  7. Leaf patch clamp pressure probe measurements on olive leaves in a nearly turgorless state.

    Science.gov (United States)

    Ehrenberger, W; Rüger, S; Rodríguez-Domínguez, C M; Díaz-Espejo, A; Fernández, J E; Moreno, J; Zimmermann, D; Sukhorukov, V L; Zimmermann, U

    2012-07-01

    The non-invasive leaf patch clamp pressure (LPCP) probe measures the attenuated pressure of a leaf patch, P(p) , in response to an externally applied magnetic force. P(p) is inversely coupled with leaf turgor pressure, P(c) , i.e. at high P(c) values the P(p) values are small and at low P(c) values the P(p) values are high. This relationship between P(c) and P(p) could also be verified for 2-m tall olive trees under laboratory conditions using the cell turgor pressure probe. When the laboratory plants were subjected to severe water stress (P(c) dropped below ca. 50 kPa), P(p) curves show reverse diurnal changes, i.e. during the light regime (high transpiration) a minimum P(p) value, and during darkness a peak P(p) value is recorded. This reversal of the P(p) curves was completely reversible. Upon watering, the original diurnal P(p) changes were re-established within 2-3 days. Olive trees in the field showed a similar turnover of the shape of the P(p) curves upon drought, despite pronounced fluctuations in microclimate. The reversal of the P(p) curves is most likely due to accumulation of air in the leaves. This assumption was supported with cross-sections through leaves subjected to prolonged drought. In contrast to well-watered leaves, microscopic inspection of leaves exhibiting inverse diurnal P(p) curves revealed large air-filled areas in parenchyma tissue. Significantly larger amounts of air could also be extracted from water-stressed leaves than from well-watered leaves using the cell turgor pressure probe. Furthermore, theoretical analysis of the experimental P(p) curves shows that the propagation of pressure through the nearly turgorless leaf must be exclusively dictated by air. Equations are derived that provide valuable information about the water status of olive leaves close to zero P(c) . © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  8. [Influence of drought on leaf photosynthetic capacity and root growth of soybeans at grain filling stage].

    Science.gov (United States)

    Guo, Shu-jin; Yang, Kai-min; Huo, Jin; Zhou, Yong-hang; Wang, Yan-ping; Li, Gui-quan

    2015-05-01

    A drought-resistant soybean cultivar Jinda 70 and a drought-sensitive soybean cultivar Jindou 26 were taken as test materials. At the grain filling stage, the cultivars were subject to three water treatments including sufficient water supply, light drought stress, and severe drought stress by using pot experiments for research on influence of drought on leaf photosynthetic capacity and root growth of soybeans. The results showed that as the degree of drought stress was aggravated, all of the indices including leaf area, chlorophyll content, net photosynthetic rates (Pn), stomatal conductance (g(s)), transpiration rate (Tr), intercellular CO2 concentration (Ci), plant mass, plant height, seed yield, and harvest index in the two cultivars declined. The root length and root mass increased under light drought stress, and decreased under severe drought stress. Root-shoot ratio ascended as the degree of drought stress was aggravated. Under severe drought stress, the increase of root-shoot ratio of the drought-resistant soybean cultivar Jinda 70 was up to 135.7%, which was higher than the that (116.7%) of the drought-sensitive soybean cultivar Jindou 26. Simultaneously, leaf area and chlorophyll content in Jinda 70 were respectively 69.3% and 85.5% of those in the control, which were better than those of Jindou 26. g(s) and Pn of Jinda 70 respectively declined 67.9% and 77.9%, but still lower than those of Jindou 26. Therefore, the decline range of harvest index of Jinda 70 was 43.8%, which was lower than the range of 78.8% of Jindou 26. The Biplot revealed that under different dry treatments, there were significant positive correlations among the six indexes including leaf area, chlorophyll content, Pn, g(s), Tr, and Ci of the two cultivars. There were also significant positive correlations among the six indices including plant mass, plant height, root length, root mass, seed yield, and harvest index. Root-shoot ratio only had significant positive correlation with root

  9. Transpiration and water potential of young Quercus petraea (M.) Liebl. coppice sprouts and seedlings during favourable and drought conditions

    Czech Academy of Sciences Publication Activity Database

    Stojanović, Marko; Szatniewska, Justyna; Kyselová, Ina; Pokorný, R.; Čater, M.

    2017-01-01

    Roč. 63, č. 7 (2017), s. 313-323 ISSN 1212-4834 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : sessile oak * management system * comparison * sap flow * leaf water potential * water availability Subject RIV: EH - Ecology, Behaviour OBOR OECD: Environmental sciences (social aspects to be 5.7) http://www.agriculturejournals.cz/ web /jfs.htm?type=article&id=36_2017-JFS

  10. Theories on diffusion of technology

    DEFF Research Database (Denmark)

    Munch, Birgitte

    Tracing the body of the diffusion proces by analysing the diffusion process from historical, sociological, economic and technical approaches. Discussing central characteristics of the proces of diffusion og CAD/CAM in Denmark....

  11. Response of ammonium removal to growth and transpiration of Juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands.

    Science.gov (United States)

    Wiessner, A; Kappelmeyer, U; Kaestner, M; Schultze-Nobre, L; Kuschk, P

    2013-09-01

    The correlation between nitrogen removal and the role of the plants in the rhizosphere of constructed wetlands are the subject of continuous discussion, but knowledge is still insufficient. Since the influence of plant growth and physiological activity on ammonium removal has not been well characterized in constructed wetlands so far, this aspect is investigated in more detail in model wetlands under defined laboratory conditions using Juncus effusus for treating an artificial sewage. Growth and physiological activity, such as plant transpiration, have been found to correlate with both the efficiency of ammonium removal within the rhizosphere of J. effusus and the methane formation. The uptake of ammonium by growing plant stocks is within in a range of 45.5%, but under conditions of plant growth stagnation, a further nearly complete removal of the ammonium load points to the likely existence of additional nitrogen removal processes. In this way, a linear correlation between the ammonium concentration inside the rhizosphere and the transpiration of the plant stocks implies that an influence of plant physiological activity on the efficiency of N-removal exists. Furthermore, a linear correlation between methane concentration and plant transpiration has been estimated. The findings indicate a fast response of redox processes to plant activities. Accordingly, not only the influence of plant transpiration activity on the plant-internal convective gas transport, the radial oxygen loss by the plant roots and the efficiency of nitrification within the rhizosphere, but also the nitrogen gas released by phytovolatilization are discussed. The results achieved by using an unplanted control system are different in principle and characterized by a low efficiency of ammonium removal and a high methane enrichment of up to a maximum of 72.7% saturation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. BOREAS TE-11 Leaf Gas Exchange Measurements

    Science.gov (United States)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Saugier, Bernard; Pontailler, J. Y.

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-11 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the sap flow, gas exchange, and lichen photosynthesis of boreal vegetation and meteorological data of the area studied. This data set contains measurements of assimilation and transpiration conducted at the Old Jack Pine (OJP) site during the growing seasons of 1993 and 1994. The data are stored in ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  13. Diffusion of Wilson loops

    International Nuclear Information System (INIS)

    Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.

    2005-01-01

    A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory

  14. On Diffusion and Permeation

    KAUST Repository

    Peppin, Stephen S. L.

    2009-01-01

    Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.

  15. Computational Diffusion MRI

    CERN Document Server

    Grussu, Francesco; Ning, Lipeng; Tax, Chantal; Veraart, Jelle

    2018-01-01

    This volume presents the latest developments in the highly active and rapidly growing field of diffusion MRI. The reader will find numerous contributions covering a broad range of topics, from the mathematical foundations of the diffusion process and signal generation, to new computational methods and estimation techniques for the in-vivo recovery of microstructural and connectivity features, as well as frontline applications in neuroscience research and clinical practice. These proceedings contain the papers presented at the 2017 MICCAI Workshop on Computational Diffusion MRI (CDMRI’17) held in Québec, Canada on September 10, 2017, sharing new perspectives on the most recent research challenges for those currently working in the field, but also offering a valuable starting point for anyone interested in learning computational techniques in diffusion MRI. This book includes rigorous mathematical derivations, a large number of rich, full-colour visualisations and clinically relevant results. As such, it wil...

  16. Isomorphism, Diffusion and Decoupling

    DEFF Research Database (Denmark)

    Boxenbaum, Eva; Jonsson, Stefan

    2017-01-01

    This chapter traces the evolution of the core theoretical constructs of isomorphism, decoupling and diffusion in organizational institutionalism. We first review the original theoretical formulations of these constructs and then examine their evolution in empirical research conducted over the past...

  17. Resilient Diffusive Clouds

    Science.gov (United States)

    2017-02-01

    RESILIENT DIFFUSIVE CLOUDS TRUSTEES OF DARTMOUTH COLLEGE FEBRUARY 2017 FINAL TECHNICAL REPORT APPROVED FOR PUBLIC...To) SEP 2011 – SEP 2016 4. TITLE AND SUBTITLE RESILIENT DIFFUSIVE CLOUDS 5a. CONTRACT NUMBER FA8750-11-2-0257 5b. GRANT NUMBER N/A 5c. PROGRAM...diversified virtual machines. The concepts lead to a view of cloud computing in which vulnerabilities are different at every host, attackers cannot

  18. Long term leaf phenology and leaf exchange strategies of a cerrado savanna community

    Science.gov (United States)

    de Camargo, Maria Gabriela G.; Costa Alberton, Bruna; de Carvalho, Gustavo H.; Magalhães, Paula A. N. R.; Morellato, Leonor Patrícia C.

    2017-04-01

    Leaf development and senescence cycles are linked to a range of ecosystem processes, affecting seasonal patterns of atmosphere-ecosystem carbon and energy exchanges, resource availability and nutrient cycling. The degree of deciduousness of tropical trees and communities depend on ecosystems characteristics such as amount of biomass, species diversity and the strength and length of the dry season. Besides defining the growing season, deciduousness can also be an indicator of species response to climate changes in the tropics, mainly because severity of dry season can intensify leaf loss. Based on seven-years of phenological observations (2005 to 2011) we describe the long-term patterns of leafing phenology of a Brazilian cerrado savanna, aiming to (i) identify leaf exchange strategies of species, quantifying the degree of deciduousness, and verify whether these strategies vary among years depending on the length and strength of the dry seasons; (ii) define the growing seasons along the years and the main drivers of leaf flushing in the cerrado. We analyzed leafing patterns of 107 species and classified 69 species as deciduous (11 species), semi-deciduous (29) and evergreen (29). Leaf exchange was markedly seasonal, as expected for seasonal tropical savannas. Leaf fall predominated in the dry season, peaking in July, and leaf flushing in the transition between dry to wet seasons, peaking in September. Leafing patterns were similar among years with the growing season starting at the end of dry season, in September, for most species. However, leaf exchange strategies varied among years for most species (65%), except for evergreen strategy, mainly constant over years. Leafing patterns of cerrado species were strongly constrained by rainfall. The length of the dry season and rainfall intensity were likely affecting the individuals' leaf exchange strategies and suggesting a differential resilience of species to changes of rainfall regime, predicted on future global

  19. Seasonal Water Relations and Leaf Temperature in a Deciduous Dipterocarp Forest in Northeastern Thailand

    Directory of Open Access Journals (Sweden)

    Philip W. Rundel

    2017-09-01

    Full Text Available Deciduous dipterocarp forests across mainland Southeast Asia are dominated by two families: the Dipterocarpaceae and Fabaceae. Monsoon conditions produce strong seasonal climates with a hot dry season of 5–7 months extending from late November or early December through April or early May. Seasonal measurements of stomatal conductance and plant water potential found important differences between members of the two families. Despite their long dry season, Shorea siamensis and S. obtusa (Dipterocarpaceae showed little significant patterns of seasonal change in xylem water potentials, with midday potentials never dropping below −1.3 MPa. These species present a classic example of isohydric strategies of adaptation where stomatal regulation maintains a relatively stable minimum water potential over the course of the year. However, maximum rates of stomatal conductance dropped sharply in the late dry season as the leaves heated in full sun without significant transpirational cooling, reaching as high as 44–45 °C, making them potentially sensitive to global increases in extreme temperature. The woody legumes Xylia kerrii and Dalbergia oliveri present different patterns of seasonal water relations and leaf response to high temperatures. The legumes exhibit anisohydric behavior where water potential decreases over the dry season as evaporative demand increases. Dry season midday water potentials dropped from high wet season levels to −2.4 to −3.2 MPa, moderately lowering maximum stomatal conductance. The relatively small leaflets of these legumes responded to the high temperatures of the late dry season by temporarily wilting, reducing their exposure to solar radiation and taking advantage of convective cooling. Large leaf size of dipterocarps in this community may not be an adaptive trait but rather an ancestral condition compensated for with ecophysiological adaptations.

  20. [Effects of reduced solar radiation on winter wheat flag leaf net photosynthetic rate].

    Science.gov (United States)

    Zheng, You-Fei; Ni, Yan-Li; Mai, Bo-Ru; Wu, Rong-Jun; Feng, Yan; Sun, Jian; Li, Jian; Xu, Jing-Xin

    2011-06-01

    Taking winter wheat Triticum aestivum L. (cv. Yangmai 13) as test material, a field experiment was conducted in Nanjing City to study the effects of simulated reduced solar radiation on the diurnal variation of winter wheat flag leaf photosynthetic rate and the main affecting factors. Five treatments were installed, i. e., 15% (T15), 20% (T20) , 40% (T40), 60% (T60), and 100% (CK) of total incident solar radiation. Reduced solar irradiance increased the chlorophyll and lutein contents significantly, but decreased the net photosynthetic rate (Pn). Under different solar irradiance, the diurnal variation of Pn had greater difference, and the daily maximum Pn was in the order of CK > T60 > T40 > T 20 > T15. In CK, the Pn exhibited a double peak diurnal curve; while in the other four treatments, the Pn showed a single peak curve, and the peak was lagged behind that of CK. Correlation analysis showed that reduced solar irradiance was the main factor affecting the diurnal variation of Pn, but the physiological parameters also played important roles in determining the diurnal variation of Pn. In treatments T60 and T40, the photosynthesis active radiation (PAR), leaf temperature (T1) , stomatal conductance (Gs) , and transpiration rate (Tr) were significantly positively correlated with Pn, suggesting their positive effects on Pn. The intercellular CO2 concentration (Ci) and stomatal limitation (Ls) had significant negative correlations with Pn in treatments T60 and T40 but significant positive correlations with Pn in treatments T20 and T15, implying that the Ci and Ls had negative (or positive) effects on Pn when the solar irradiance was higher (or lower) than 40% of incident solar irradiance.

  1. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  2. Advanced manufacturing: Technology diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Tesar, A.

    1995-12-01

    In this paper we examine how manufacturing technology diffuses rom the developers of technology across national borders to those who do not have the capability or resources to develop advanced technology on their own. None of the wide variety of technology diffusion mechanisms discussed in this paper are new, yet the opportunities to apply these mechanisms are growing. A dramatic increase in technology diffusion occurred over the last decade. The two major trends which probably drive this increase are a worldwide inclination towards ``freer`` markets and diminishing isolation. Technology is most rapidly diffusing from the US In fact, the US is supplying technology for the rest of the world. The value of the technology supplied by the US more than doubled from 1985 to 1992 (see the Introduction for details). History shows us that technology diffusion is inevitable. It is the rates at which technologies diffuse to other countries which can vary considerably. Manufacturers in these countries are increasingly able to absorb technology. Their manufacturing efficiency is expected to progress as technology becomes increasingly available and utilized.

  3. Low-Profile Diffuser

    Science.gov (United States)

    Martin, Michael A.; Nettles, Mindy

    2015-01-01

    The propellant tanks used in liquid rockets require pressurization gases in order to maintain tank pressure while the tanks are being drained during engine operation. The pressurization gas, which is typically much warmer than the relatively cold propellants in the tank, must be introduced into the empty ullage space at the top of the tank. The purpose of the diffuser is to control the flow of the gas into the tank in order to prevent direct impingement of the gas on the liquid surface and/or the tank walls. If the diffuser did not perform those tasks, the warm gas can create excess heat transfer causing an increase in the amount of pressurization mass required. Typical diffusers are long vertical cylinders that create a large exit area in order to minimize gas velocities. However, long vertical cylinders limit the amount of liquid that can be loaded into the tank in order not to have the liquid surface near the diffuser. A design goal for a pressurization diffuser is to create uniform flow in order to prevent jets that can impact the liquid surface and/or tank walls. The purpose of the task was to create a diffuser design that had a lower vertical profile (in order to be able to raise the liquid surface) while still maintaining uniform flow.

  4. Effects of diffuse radiation on carbon and water fluxes of a high latitude temperate deciduous forest

    Science.gov (United States)

    Wang, Sheng; Ibrom, Andreas; Pilegaard, Kim; Bauer-Gottwein, Peter; Garcia, Monica

    2017-04-01

    Ecosystem carbon and water fluxes are controlled by the interplay of biophysical factors such as solar radiation, temperature and soil moisture. In high latitudes, cloudy days are prevalent with a low amount of solar radiation and a higher proportion of diffuse radiation. For instance, in Denmark 90% of all days are non-clear (fraction of direct radiation radiation, which can modify the coupled photosynthesis and transpiration rates in future. This study aims to evaluate effects of diffuse radiation on the ecosystem carbon and water fluxes in a temperate deciduous forest using long term eddy covariance observations. Eddy covariance records (Gross Primary Productivity: GPP; Evapotranspiration: ET) from 2002 to 2012, field data, Normalized Difference Vegetation Index (NDVI) from Moderate Resolution Imaging Spectroradiometer (MODIS), and sap flow data during the period of 2009-2011 at Sorø, a Danish beech forest flux site, were used for analysis. A Cloudiness Index (CI), which is based on actual and potential shortwave incoming radiation and can indicate the proportion of diffuse radiation, was used. First, multiple regression based path analysis was applied to daily and monthly observations to partition direct and indirect effects from CI to GPP and ET. Results indicate diffuse radiation increases the light use efficiency (LUE) with CI being as important as other constraints, e.g. air temperature (Tair), vapor pressure deficit (VPD) and Photosynthetically Active Radiation (PAR), on regulating LUE. An increase of the CI value of 0.1 can increase maximum LUE by about 0.286 gC•MJ-1. Following PAR and LAI, CI has the third largest effects on GPP. For ET, path analysis showed the impact of CI is limited. Further, the CI constraint was added to two physiologically based models for estimating GPP (LUE, Potter et al., 1993) and ET (Priestley-Taylor Jet Propulsion Laboratory, PT-JPL, Fisher et al., 2008) at the daily time scale to assess model improvement. When considering

  5. Grapevine species from varied native habitats exhibit differences in embolism formation/repair associated with leaf gas exchange and root pressure.

    Science.gov (United States)

    Knipfer, Thorsten; Eustis, Ashley; Brodersen, Craig; Walker, Andrew M; McElrone, Andrew J

    2015-08-01

    Drought induces xylem embolism formation, but grapevines can refill non-functional vessels to restore transport capacity. It is unknown whether vulnerability to embolism formation and ability to repair differ among grapevine species. We analysed in vivo embolism formation and repair using x-ray computed microtomography in three wild grapevine species from varied native habitats (Vitis riparia, V. arizonica, V. champinii) and related responses to measurements of leaf gas exchange and root pressure. Vulnerability to embolism formation was greatest in V. riparia, intermediate in V. arizonica and lowest in V. champinii. After re-watering, embolism repair was rapid and pronounced in V. riparia and V. arizonica, but limited or negligible in V. champinii even after numerous days. Similarly, root pressure measured after re-watering was positively correlated with drought stress severity for V. riparia and V. arizonica (species exhibiting embolism repair) but not for V. champinii. Drought-induced reductions in transpiration were greatest for V. riparia and least in V. champinii. Recovery of transpiration after re-watering was delayed for all species, but was greatest for V. champinii and most rapid in V. arizonica. These species exhibit varied responses to drought stress that involve maintenance/recovery of xylem transport capacity coordinated with root pressure and gas exchange responses. © 2014 John Wiley & Sons Ltd.

  6. A meta-analysis of leaf gas exchange and water status responses to drought.

    Science.gov (United States)

    Yan, Weiming; Zhong, Yangquanwei; Shangguan, Zhouping

    2016-02-12

    Drought is considered to be one of the most devastating natural hazards, and it is predicted to become increasingly frequent and severe in the future. Understanding the plant gas exchange and water status response to drought is very important with regard to future climate change. We conducted a meta-analysis based on studies of plants worldwide and aimed to determine the changes in gas exchange and water status under different drought intensities (mild, moderate and severe), different photosynthetic pathways (C3 and C4) and growth forms (herbs, shrubs, trees and lianas). Our results were as follows: 1) drought negatively impacted gas exchange and water status, and stomatal conductance (gs) decreased more than other physiological traits and declined to the greatest extent in shrubs and C3 plants. Furthermore, C4 plants had an advantage compared to C3 plants under the same drought conditions. 2) The decrease in gs mainly reduced the transpiration rate (Tr), and gs could explain 55% of the decrease in the photosynthesis (A) and 74% of the decline in Tr. 3). Finally, gas exchange showed a close relationship with the leaf water status. Our study provides comprehensive information about the changes in plant gas exchange and water status under drought.

  7. Gas exchange and leaf contents in bell pepper under energized water and biofertilizer doses

    Directory of Open Access Journals (Sweden)

    Francisca R. M. Borges

    2016-06-01

    Full Text Available ABSTRACT The objective of this study was to evaluate the effect of energized water and bovine biofertilizer doses on the gas exchange and NPK contents in leaves of yellow bell pepper plants. The experiment was conducted at the experimental area of the Federal University of Ceará, in Fortaleza-CE, Brazil, from June to November 2011. The experiment was set in a randomized block design, in a split-plot scheme; the plots were composed of treatments with energized and non-energized water and the subplots of five doses of liquid biofertilizer (0, 250, 500, 750 and 1000 mL plant-1 week-1. The following variables were analyzed: transpiration, stomatal conductance, photosynthesis and leaf contents of nitrogen (N, phosphorus (P and potassium (K. Water energization did not allow significant increases in the analyzed variables. The use of biofertilizer as the only source of fertilization was sufficient to provide the nutrients N, P and K at appropriate levels for the bell pepper crop.

  8. Leaf gas exchange in cowpea and CO2 efflux in soil irrigated with saline water

    Directory of Open Access Journals (Sweden)

    Wanderson J. de Oliveira

    Full Text Available ABSTRACT Leaf gas exchanges in plants and soil respiration are important tools for assessing the effects of salinity on the soil-plant system. An experiment was conducted with cowpea irrigated with saline water (0, 2.5, 5.0, 7.5, 10.0 and 12.5 dS m-1 prepared with two sources: NaCl and a mixture of Ca, Mg, Na, K and Cl ions in a randomized block design and a 6 x 2 factorial scheme, with four replicates, totaling 48 experimental plots. At 20 days after planting (DAP, plants were evaluated for net photosynthesis (A, stomatal conductance (gs and transpiration (E using the Infra-Red Gas Analyzer (Model XT6400- LICOR, and water use efficiency, intrinsic water use efficiency and instantaneous efficiency of carboxylation were calculated. At 60 DAP, the soil CO2 efflux (soil respiration was determined with a camera (Model 6400-09- LICOR. Salinity caused reductions in A, gs and E. However, the salt source did not have significant effect on these variables. Soil CO2 efflux was reduced with the increase in the electrical conductivity, especially in the mixture of ions.

  9. Stem photosynthesis in a desert ephemeral, Eriogonum inflatum : Characterization of leaf and stem CO2 fixation and H2O vapor exchange under controlled conditions.

    Science.gov (United States)

    Osmond, C B; Smith, S D; Gui-Ying, B; Sharkey, T D

    1987-07-01

    The gas exchange characteristics of photosynthetic tissues of leaves and stems of Eriogonum inflatum are described. Inflated stems were found to contain extraordinarily high internal CO 2 concentrations (to 14000 μbar), but fixation of this internal CO 2 was 6-10 times slower than fixation of atmospheric CO 2 by these stems. Although the pool of CO 2 is a trivial source of CO 2 for stem photosynthesis, it may result in higher water-use efficiency of stem tissues. Leaf and stem photosynthetic activities were compared by means of CO 2 fixation in CO 2 response curves, light and temperature response curves in IRGA systems, and by means of O 2 exchange at CO 2 saturation in a leaf disc O 2 electrode system. On an area basis leaves contain about twice the chlorophyll and nitrogen as stems, and are capable of up to 4-times the absolute CO 2 and O 2 exchange rates. However, the stem shape is such that lighting of the shaded side leads to a substantial increase in overall stem photosynthesis on a projected area basis, to about half the leaf rate in air. Stem conductance is lower than leaf conductance under most conditions and is less sensitive to high temperature or high VPD. Under most conditions, the ratio C i /C a is lower in stems than in leaves and stems show greater water-use efficiency (higher ratio assimilation/transpiration) as a function of VPD. This potential advantage of stem photosynthesis in a water limited environment may be offset by the higher VPD conditions in the hotter, drier part of the year when stems are active after leaves have senesced. Stem and leaf photosynthesis were similarly affected by decreasing plant water potential.

  10. Leaf gas exchange, fv/fm ratio, ion content and growth conditions of the two moringa species under magnetic water treatment

    International Nuclear Information System (INIS)

    Hasan, M.M.; Alharby, H.F.; Hajar, A.; Hakeem, K.R.

    2017-01-01

    The current greenhouse experiment investigates the role of magnetic water on the two Moringa species (Moringa oleifera and Moringa peregrina). Both species were exposed to the magnetic field (30 mT). The magnetic water increased the plant height, leaf number, leaflet number, and internode distances in both the species, respectively. Relative water content (RWC) and leaf area in both the species showed changes under magnetic water treatment. The results showed in magnetic water treatment, the leaf gas exchange parameters such as assimilation (A), stomatal conductance (gs), transpiration rate (E), and vapor pressure deficit (VPD) were increased. Similarly, Photosynthetic pigments (Chl a, Chl b, Chl (a+b), Carotenoids), photosynthetic water use efficiency (WUE) were also increased significantly. Magnetized water had also significant effects on the maximal efficiency of PSII photochemistry (Fv/Fm). Our study suggested that magnetic water treatment could be used as an environment-friendly technology for improving the growth and physiology of Moringa species. In addition, this technology could be further incorporated into the traditional methods of agriculture for the improvement of crop plants, particularly in the arid and sub-arid areas of the world. (author)

  11. Determination of Leaf Water Content by Visible and Near-Infrared Spectrometry and Multivariate Calibration in Miscanthus

    Directory of Open Access Journals (Sweden)

    Xiaoli Jin

    2017-05-01

    Full Text Available Leaf water content is one of the most common physiological parameters limiting efficiency of photosynthesis and biomass productivity in plants including Miscanthus. Therefore, it is of great significance to determine or predict the water content quickly and non-destructively. In this study, we explored the relationship between leaf water content and diffuse reflectance spectra in Miscanthus. Three multivariate calibrations including partial least squares (PLS, least squares support vector machine regression (LSSVR, and radial basis function (RBF neural network (NN were developed for the models of leaf water content determination. The non-linear models including RBF_LSSVR and RBF_NN showed higher accuracy than the PLS and Lin_LSSVR models. Moreover, 75 sensitive wavelengths were identified to be closely associated with the leaf water content in Miscanthus. The RBF_LSSVR and RBF_NN models for predicting leaf water content, based on 75 characteristic wavelengths, obtained the high determination coefficients of 0.9838 and 0.9899, respectively. The results indicated the non-linear models were more accurate than the linear models using both wavelength intervals. These results demonstrated that visible and near-infrared (VIS/NIR spectroscopy combined with RBF_LSSVR or RBF_NN is a useful, non-destructive tool for determinations of the leaf water content in Miscanthus, and thus very helpful for development of drought-resistant varieties in Miscanthus.

  12. Transient Enhanced Diffusion

    Science.gov (United States)

    Gossmann, Hans-Joachim L.

    1996-03-01

    Ion implantation is the standard method for dopant introduction during integrated circuit manufacturing, determining crucial device characteristics. Implantation creates point-defects, such as Si self-interstitials and vacancies, far in excess of equilibrium concentrations. Since the diffusion of common dopants involves Si point defects, the interaction of damage and dopants during subsequent annealing steps leads to the phenomenon known as "transient enhanced diffusion" (TED): The dopant diffusivities are enhanced, possibly by many orders of magnitude. The enhancement is transient since the intrinsic defects eventually diffuse into the bulk or annihilate at the surface. The desired specific dopant profile of the device is thus the result of a complex reaction, involving the creation of damage and its spatial distribution, diffusion, and interaction of the point defects among themselves and with interfaces and other defects. As device dimensions shrink and experiments become more and more expensive, the capability to predict these kinds of non-equilibrium phenomena accurately becomes crucial to Si technology development. In our experiments to extract physical mechanisms and parameters of TED we use the method of sharp B- and Sb doping spikes to track interstitial and vacancy concentrations as a function of depth during processing. Thus we gain sensitivity to small diffusion distances (low temperatures) and separate the damaged region from the region of the interaction with dopants. In addition, our method yields directly the actual point defect diffusivity. Although an ion implant initially produces Frenkel pairs, Monte-carlo simulations show that the vacancies annihilate quickly. The excess interstitials, roughly one for each implanted ion coalesce into 311defects. The subsequent evaporation of interstitials from 311ś drives TED. Si interstitial diffusion is influenced by carbon-related traps and we will demonstrate that this finding reconciles quantitatively a

  13. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    Science.gov (United States)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  14. Lead diffusion in monazite

    International Nuclear Information System (INIS)

    Gardes, E.

    2006-06-01

    Proper knowledge of the diffusion rates of lead in monazite is necessary to understand the U-Th-Pb age anomalies of this mineral, which is one of the most used in geochronology after zircon. Diffusion experiments were performed in NdPO 4 monocrystals and in Nd 0.66 Ca 0.17 Th 0.17 PO 4 polycrystals from Nd 0.66 Pb 0.17 Th 0.17 PO 4 thin films to investigate Pb 2+ + Th 4+ ↔ 2 Nd 3+ and Pb 2+ ↔ Ca 2+ exchanges. Diffusion annealings were run between 1200 and 1500 Celsius degrees, at room pressure, for durations ranging from one hour to one month. The diffusion profiles were analysed using TEM (transmission electronic microscopy) and RBS (Rutherford backscattering spectroscopy). The diffusivities extracted for Pb 2+ + Th 4+ ↔ 2 Nd 3+ exchange follow an Arrhenius law with parameters E equals 509 ± 24 kJ mol -1 and log(D 0 (m 2 s -1 )) equals -3.41 ± 0.77. Preliminary data for Pb 2+ ↔ Ca 2+ exchange are in agreement with this result. The extrapolation of our data to crustal temperatures yields very slow diffusivities. For instance, the time necessary for a 50 μm grain to lose all of its lead at 800 Celsius degrees is greater than the age of the Earth. From these results and other evidence from the literature, we conclude that most of the perturbations in U-Th-Pb ages of monazite cannot be attributed to lead diffusion, but rather to interactions with fluids. (author)

  15. Cryo-scanning electron microscopy observations of vessel content during transpiration in walnut petioles. Facts or artifacts?

    Science.gov (United States)

    Cochard, H; Bodet, C; Améglio, T; Cruiziat, P

    2000-11-01

    The current controversy about the "cohesion-tension" of water ascent in plants arises from the recent cryo-scanning electron microscopy (cryo-SEM) observations of xylem vessels content by Canny and coworkers (1995). On the basis of these observations it has been claimed that vessels were emptying and refilling during active transpiration in direct contradiction to the previous theory. In this study we compared the cryo-SEM data with the standard hydraulic approach on walnut (Juglans regia) petioles. The results of the two techniques were in clear conflict and could not both be right. Cryo-SEM observations of walnut petioles frozen intact on the tree in a bath of liquid nitrogen (LN(2)) suggested that vessel cavitation was occurring and reversing itself on a diurnal basis. Up to 30% of the vessels were embolized at midday. In contrast, the percentage of loss of hydraulic conductance (PLC) of excised petiole segments remained close to 0% throughout the day. To find out which technique was erroneous we first analyzed the possibility that PLC values were rapidly returned to zero when the xylem pressures were released. We used the centrifugal force to measure the xylem conductance of petiole segments exposed to very negative pressures and established the relevance of this technique. We then analyzed the possibility that vessels were becoming partially air-filled when exposed to LN(2). Cryo-SEM observations of petiole segments frozen shortly after their xylem pressure was returned to atmospheric values agreed entirely with the PLC values. We confirmed, with water-filled capillary tubes exposed to a large centrifugal force, that it was not possible to freeze intact their content with LN(2). We concluded that partially air-filled conduits were artifacts of the cryo-SEM technique in our study. We believe that the cryo-SEM observations published recently should probably be reconsidered in the light of our results before they may be used as arguments against the cohesion

  16. Effects of some growth regulating applications on leaf yield, raw ...

    African Journals Online (AJOL)

    This study investigated the effects of repetitive applications of herbagreen (HG), humic acid (HA), combined foliar fertilizer (CFF) and HG+CFF performed in the Müsküle grape variety grafted on 5 BB rootstock on fresh or pickled leaf size and leaf raw cellulose content. HA application increased leaf area and leaf water ...

  17. Effect of sunlight shielding on leaf structure and amino acids ...

    African Journals Online (AJOL)

    In this case, the chloroplasts showed partially lysed, with few thylakoids. The leaf albinism was reverted when the leaf was shielded from direct illumination of strong sunlight. It is considered that the blocked development of chloroplast and photosynthetic pigments in the albinism leaf inhibited the biosynthesis of leaf proteins, ...

  18. 7 CFR 30.31 - Classification of leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  19. 7 CFR 29.1163 - Smoking Leaf (H Group).

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, strong color intensity... Quality Orange Smoking Leaf Mellow, open leaf structure, medium body, lean in oil, moderate color...

  20. 7 CFR 29.3648 - Thin Leaf (C Group).

    Science.gov (United States)

    2010-01-01

    ... Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... tolerance. C4L Fair Quality Light-brown Thin Leaf. Mature, thin, close leaf structure, rough, lean in oil... tolerance. C5L Low Quality Light-brown Thin Leaf Underripe, thin, close leaf structure, rough, lean in oil...

  1. 7 CFR 29.1162 - Leaf (B Group).

    Science.gov (United States)

    2010-01-01

    ... Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Quality Lemon Leaf Ripe, firm leaf structure, medium body, lean in oil, weak color intensity, narrow... Quality Lemon Leaf Ripe, firm leaf structure, medium body, lean in oil, weak color intensity, stringy...

  2. Effects of some growth regulating applications on leaf yield, raw ...

    African Journals Online (AJOL)

    Jane

    2011-06-22

    Jun 22, 2011 ... herbagreen (HG), humic acid (HA), combined foliar fertilizer (CFF) and HG+CFF performed in the. Müşküle grape variety grafted on 5 BB rootstock on fresh or pickled leaf size and leaf raw cellulose content. HA application increased leaf area and leaf water content values whereas HG+CFF application.

  3. PHARMACOGNOSITIC STUDIES OF THE LEAF AND STEMBARK ...

    African Journals Online (AJOL)

    PHARMACOGNOSITIC STUDIES OF THE LEAF AND STEMBARK OF STEGANOTAENIA ARALIACEAE HOCHST. Z Mohammed, M Shok, EM Abdurahman. Abstract. Microscopical investigation of the powdered leaves and stembark of Steganotaenia araliaceae (family Umbelliferae) shows the presence of anisocytic ...

  4. BOREAS TE-10 Leaf Chemistry Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: Leaf chemistry data collected by TE-10. Contains 3 granules: 1) biochemical data; 2) biochemical data on a per dry weight basis; and 3) biochemical carbon,...

  5. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  6. Anomalous Diffusion Near Resonances

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Tanaji; /Fermilab

    2010-05-01

    Synchro-betatron resonances can lead to emittance growth and the loss of luminosity. We consider the detailed dynamics of a bunch near such a low order resonance driven by crossing angles at the collision points. We characterize the nature of diffusion and find that it is anomalous and sub-diffusive. This affects both the shape of the beam distribution and the time scales for growth. Predictions of a simplified anomalous diffusion model are compared with direct simulations. Transport of particles near resonances is still not a well understood phenomenon. Often, without justification, phase space motion is assumed to be a normal diffusion process although at least one case of anomalous diffusion in beam dynamics has been reported [1]. Here we will focus on the motion near synchro-betatron resonances which can be excited by several means, including beams crossing at an angle at the collision points as in the LHC. We will consider low order resonances which couple the horizontal and longitudinal planes, both for simplicity and to observe large effects over short time scales. While the tunes we consider are not practical for a collider, nonetheless the transport mechanisms we uncover are also likely to operate at higher order resonances.

  7. Response of chickpea (Cicer arietinum L.) to terminal drought: leaf stomatal conductance, pod abscisic acid concentration, and seed set.

    Science.gov (United States)

    Pang, Jiayin; Turner, Neil C; Khan, Tanveer; Du, Yan-Lei; Xiong, Jun-Lan; Colmer, Timothy D; Devilla, Rosangela; Stefanova, Katia; Siddique, Kadambot H M

    2017-04-01

    Flower and pod production and seed set of chickpea (Cicer arietinum L.) are sensitive to drought stress. A 2-fold range in seed yield was found among a large number of chickpea genotypes grown at three dryland field sites in south-western Australia. Leaf water potential, photosynthetic characteristics, and reproductive development of two chickpea genotypes with contrasting yields in the field were compared when subjected to terminal drought in 106kg containers of soil in a glasshouse. The terminal drought imposed from early podding reduced biomass, reproductive growth, harvest index, and seed yield of both genotypes. Terminal drought at least doubled the percentage of flower abortion, pod abscission, and number of empty pods. Pollen viability and germination decreased when the fraction of transpirable soil water (FTSW) decreased below 0.18 (82% of the plant-available soil water had been transpired); however, at least one pollen tube in each flower reached the ovary. The young pods which developed from flowers produced when the FTSW was 0.50 had viable embryos, but contained higher abscisic acid (ABA) concentrations than those of the well-watered plants; all pods ultimately aborted in the drought treatment. Cessation of seed set at the same soil water content at which stomata began to close and ABA increased strongly suggested a role for ABA signalling in the failure to set seed either directly through abscission of developing pods or seeds or indirectly through the reduction of photosynthesis and assimilate supply to the seeds. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  8. The ecological impacts of leaf drought tolerance

    OpenAIRE

    Bartlett, Megan Kathleen

    2016-01-01

    Climate change is expected to exacerbate drought for many plants, making drought tolerance a key driver of species and ecosystem responses. However, predicting responses from traits requires greater understanding of how physiological processes impact ecology. I developed new theory and methods and applied meta-analyses to characterize the ecological impacts of leaf drought tolerance. I compared the predictive ability of several traits for ecological drought tolerance and showed that the leaf ...

  9. Hydrogen isotope ratios of terrestrial leaf wax n-alkanes from the Tibetan Plateau: Controls on apparent enrichment factors, effect of vapor sources and implication for altimetry

    Science.gov (United States)

    Zhang, Xiaolong; Xu, Baiqing; Günther, Franziska; Mügler, Ines; Lange, Markus; Zhao, Huabiao; Li, Jiule; Gleixner, Gerd

    2017-08-01

    Empirical evidence suggested that the altitudinal dependence of hydrogen isotope ratios of leaf wax n-alkanes (δDwax) can be used to estimate paleoaltitudinal changes. However, the application of δDwax-based paleoaltimetry remains difficult, as the impacts of evaporative, transpirative and biosynthetic processes on hydrogen isotope fractionations in changing environments and the influence of likely changing water vapor sources are not well explored. For this study, we sampled stream waters, soils and plant leaves along two transects spanning large gradients of altitude, precipitation amount, vapor source, temperature and vegetation type on the Tibetan Plateau (TP). δD values of stream water (as an approximation for δDp), soil water (δDsw) and plant leaf water (δDlw) as well as leaf wax n-alkanes were measured in order to quantify isotopic fractionations in the formation of leaf waxes. Most interestingly, we found a strong negative correlation between the evapotranspirative enrichment of leaf water against precipitation (εlw-p), which combines the effects of soil evaporation and leaf transpiration, and the biosynthetic hydrogen isotope fractionation (εwax-lw), which describes isotopic enrichment between leaf wax and leaf water. The relationship yields a steady apparent isotopic enrichment factor (εwax-p) between leaf wax and precipitation, which is independent from climatic parameters and has an average value of -107 ± 26‰ for grasses (monocotyledons) and -77 ± 22‰ for trees (dicotyledons). Since the terrestrial n-alkanes, especially n-C27 and n-C29, in sediments are derived from trees and grasses, the likely change of the vegetation type in the uplift of mountains can change the isotopic estimates by about ±30‰, which corresponds to an altitudinal change of ∼1600 m. We, therefore, suggest that hydrogen isotope ratio of sedimentary n-C31 alkane, which is mainly derived from grasses might be better proxies to reconstruct paleoaltitudes. Our large

  10. Leaf d15N as a physiological indicator of the responsiveness of N2-fixing alfalfa plants to elevated [CO2], temperature and low water availability

    Directory of Open Access Journals (Sweden)

    Idoia eAriz

    2015-08-01

    Full Text Available The natural 15N/14N isotope composition (δ15N of a tissue is a consequence of its N source and N physiological mechanisms in response to the environment. It could potentially be used as a tracer of N metabolism in plants under changing environmental conditions, where primary N metabolism may be complex, and losses and gains of N fluctuate over time. In order to test the utility of δ15N as an indicator of plant N status in N2-fixing plants grown under various environmental conditions, alfalfa (Medicago sativa L. plants were subjected to distinct conditions of [CO2] (400 versus 700 mol mol-1, temperature (ambient versus ambient + 4ºC and water availability (fully watered versus water deficiency - WD. As expected, increased [CO2] and temperature stimulated photosynthetic rates and plant growth, whereas these parameters were negatively affected by WD. The determination of δ15N in leaves, stems, roots and nodules showed that leaves were the most representative organs of the plant response to increased [CO2] and WD. Depletion of heavier N isotopes in plants grown under higher [CO2] and WD conditions reflected decreased transpiration rates, but could also be related to a higher N demand in leaves, as suggested by the decreased leaf N and total soluble protein (TSP contents detected at 700 mol mol-1 [CO2] and WD conditions. In summary, leaf δ15N provides relevant information integrating parameters which condition plant responsiveness (e.g. photosynthesis, TSP, N demand and water transpiration to environmental conditions.

  11. Thermal-based modeling of coupled carbon, water, and energy fluxes using nominal light use efficiencies constrained by leaf chlorophyll observations

    KAUST Repository

    Schull, M. A.

    2015-03-11

    Recent studies have shown that estimates of leaf chlorophyll content (Chl), defined as the combined mass of chlorophyll a and chlorophyll b per unit leaf area, can be useful for constraining estimates of canopy light use efficiency (LUE). Canopy LUE describes the amount of carbon assimilated by a vegetative canopy for a given amount of absorbed photosynthetically active radiation (APAR) and is a key parameter for modeling land-surface carbon fluxes. A carbon-enabled version of the remote-sensing-based two-source energy balance (TSEB) model simulates coupled canopy transpiration and carbon assimilation using an analytical sub-model of canopy resistance constrained by inputs of nominal LUE (βn), which is modulated within the model in response to varying conditions in light, humidity, ambient CO2 concentration, and temperature. Soil moisture constraints on water and carbon exchange are conveyed to the TSEB-LUE indirectly through thermal infrared measurements of land-surface temperature. We investigate the capability of using Chl estimates for capturing seasonal trends in the canopy βn from in situ measurements of Chl acquired in irrigated and rain-fed fields of soybean and maize near Mead, Nebraska. The results show that field-measured Chl is nonlinearly related to βn, with variability primarily related to phenological changes during early growth and senescence. Utilizing seasonally varying βn inputs based on an empirical relationship with in situ measured Chl resulted in improvements in carbon flux estimates from the TSEB model, while adjusting the partitioning of total water loss between plant transpiration and soil evaporation. The observed Chl-βn relationship provides a functional mechanism for integrating remotely sensed Chl into the TSEB model, with the potential for improved mapping of coupled carbon, water, and energy fluxes across vegetated landscapes.

  12. Soil water effect on crop growth, leaf gas exchange, water and radiation use efficiency of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel in semi-arid Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Danilo Scordia

    2015-12-01

    Full Text Available Great effort has been placed to identify the most suited bioenergy crop under different environments and management practices, however, there is still need to find new genetic resources for constrained areas. For instance, South Mediterranean area is strongly affected by prolonged drought, high vapour pressure deficit (VPD and extremely high temperatures during summertime. In the present work we investigated the soil water effect on crop growth and leaf gas exchange of Saccharum spontaneum L. ssp. aegyptiacum (Willd. Hackel, a perennial, rhizomatous, herbaceous grass. Furthermore, the net increase of biomass production per unit light intercepted [radiation use efficiency (RUE] and per unit water transpired [water use efficiency (WUE] was also studied. To this end a field trial was carried out imposing three levels of soil water availability (I100, I50 and I0, corresponding to 100%, 50% and 0% of ETm restutition under a semi-arid Mediterranean environment. Leaf area index (LAI, stem height, biomass dry matter yield, CO2 assimilation rate, and transpiration rate resulted significantly affected by measurement time and irrigation treatment, with the highest values in I100 and the lowest in I0. RUE was the highest in I100 followed by I50 and I0; on the other hand, WUE was higher in I0 than I50 and I100. At LAI values greater than 2.0, 85% photosynthetically active radiation was intercepted by the Saccharum stand, irrespective of the irrigation treatment. Saccharum spontaneum spp. aegyptiacum is a potential species for biomass production in environment characterized by drought stress, high temperatures and high VPD, as those of Southern Europe and similar semi-arid areas.

  13. Leaf morphology shift linked to climate change.

    Science.gov (United States)

    Guerin, Greg R; Wen, Haixia; Lowe, Andrew J

    2012-10-23

    Climate change is driving adaptive shifts within species, but research on plants has been focused on phenology. Leaf morphology has demonstrated links with climate and varies within species along climate gradients. We predicted that, given within-species variation along a climate gradient, a morphological shift should have occurred over time due to climate change. We tested this prediction, taking advantage of latitudinal and altitudinal variations within the Adelaide Geosyncline region, South Australia, historical herbarium specimens (n = 255) and field sampling (n = 274). Leaf width in the study taxon, Dodonaea viscosa subsp. angustissima, was negatively correlated with latitude regionally, and leaf area was negatively correlated with altitude locally. Analysis of herbarium specimens revealed a 2 mm decrease in leaf width (total range 1-9 mm) over 127 years across the region. The results are consistent with a morphological response to contemporary climate change. We conclude that leaf width is linked to maximum temperature regionally (latitude gradient) and leaf area to minimum temperature locally (altitude gradient). These data indicate a morphological shift consistent with a direct response to climate change and could inform provenance selection for restoration with further investigation of the genetic basis and adaptive significance of observed variation.

  14. Tissue-level leaf toughness, but not lamina thickness, predicts sapling leaf lifespan and shade tolerance of tropical tree species

    NARCIS (Netherlands)

    Kitajima, K.; Poorter, L.

    2010-01-01

    Leaf toughness is thought to enhance physical defense and leaf lifespan. Here, we evaluated the relative importance of tissue-level leaf traits vs lamina thickness, as well as their ontogenetic changes, for structure-level leaf toughness and regeneration ecology of 19 tropical tree species. We

  15. Distributed Control Diffusion

    DEFF Research Database (Denmark)

    Schultz, Ulrik Pagh

    2007-01-01

    . Programming a modular, self-reconfigurable robot is however a complicated task: the robot is essentially a real-time, distributed embedded system, where control and communication paths often are tightly coupled to the current physical configuration of the robot. To facilitate the task of programming modular....... This approach allows the programmer to dynamically distribute behaviors throughout a robot and moreover provides a partial abstraction over the concrete physical shape of the robot. We have implemented a prototype of a distributed control diffusion system for the ATRON modular, self-reconfigurable robot......, self-reconfigurable robots, we present the concept of distributed control diffusion: distributed queries are used to identify modules that play a specific role in the robot, and behaviors that implement specific control strategies are diffused throughout the robot based on these role assignments...

  16. Cesium diffusion in graphite

    International Nuclear Information System (INIS)

    Evans, R.B. III; Davis, W. Jr.; Sutton, A.L. Jr.

    1980-05-01

    Experiments on diffusion of 137 Cs in five types of graphite were performed. The document provides a completion of the report that was started and includes a presentation of all of the diffusion data, previously unpublished. Except for data on mass transfer of 137 Cs in the Hawker-Siddeley graphite, analyses of experimental results were initiated but not completed. The mass transfer process of cesium in HS-1-1 graphite at 600 to 1000 0 C in a helium atmosphere is essentially pure diffusion wherein values of (E/epsilon) and ΔE of the equation D/epsilon = (D/epsilon) 0 exp [-ΔE/RT] are about 4 x 10 -2 cm 2 /s and 30 kcal/mole, respectively

  17. Apparatus for diffusion separation

    International Nuclear Information System (INIS)

    Nierenberg, W.A.; Pontius, R.B.

    1976-01-01

    The method of testing the separation efficiency of porous permeable membranes is described which comprises causing a stream of a gaseous mixture to flow into contact with one face of a finely porous permeable membrane under such conditions that a major fraction of the mixture diffuses through the membrane, maintaining a rectangular cross section of the gaseous stream so flowing past said membrane, continuously recirculating the gas that diffuses through said membrane and continuously withdrawing the gas that does not diffuse through said membrane and maintaining the volume of said recirculating gas constant by continuously introducing into said continuously recirculating gas stream a mass of gas equivalent to that which is continuously withdrawn from said gas stream and comparing the concentrations of the light component in the entering gas, the withdrawn gas and the recirculated gas in order to determine the efficiency of said membrane

  18. Diffusion in flexible pipes

    Energy Technology Data Exchange (ETDEWEB)

    Brogaard Kristensen, S.

    2000-06-01

    This report describes the work done on modelling and simulation of the complex diffusion of gas through the wall of a flexible pipe. The diffusion and thus the pressure in annulus depends strongly on the diffusion and solubility parameters of the gas-polymer system and on the degree of blocking of the outer surface of the inner liner due to pressure reinforcements. The report evaluates the basis modelling required to describe the complex geometries and flow patterns. Qualitatively results of temperature and concentration profiles are shown in the report. For the program to serve any modelling purpose in 'real life' the results need to be validated and possibly the model needs corrections. Hopefully, a full-scale test of a flexible pipe will provide the required temperatures and pressures in annulus to validate the models. (EHS)

  19. Diffusion and mass transfer

    CERN Document Server

    Vrentas, James S

    2013-01-01

    The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...

  20. Antibacterial Activity of Leaf Extract of Annona muricata and Simarouba glauca on Enterococcus faecalis.

    Science.gov (United States)

    Mathew, Jain; George, Reshmi; Theruvil, Robin; Padavil, Tobin C; Tomy, Lincy; Kurian, Anil

    2016-08-01

    To determine the antimicrobial effect of water extracts of leaves of Annona muricata and Simarouba glauca on Enterococcus faecalis using agar diffusion method. Dried leaves of A. muricata and S. glauca were powdered and extracted in a soxhlet apparatus. Enterococcus faecalis was grown overnight in Trypticase soy agar plates. About 10 μl of each extract was placed on agar plates and incubated overnight. The zone of inhibition was measured after 24 hours. About 1% sodium hypochlorite and distilled water were used as positive and negative controls. The leaf extract of A. muricata showed similar effectiveness as that of sodium hypochlorite, whereas the leaf extract of S. glauca showed only a slight reduction in growth of E. faecalis. Leaf extract of A. muricata can be developed as an alternative to sodium hypochlorite for root canal irrigants. Success of endodontic treatment depends on complete disinfection of the root canals. Root canal irrigants have a major role in complete disinfection of the root canals. Chemical root canal irrigants are more or less toxic to the oral environment. In this study, naturally derived leaf extracts of A. muricata and S. glauca are compared with sodium hypochlorite for its effectiveness against E. faecalis - the most common pathogen found in the root canals.

  1. A Constrained Maximization Model for inspecting the impact of leaf shape on optimal leaf size and stoma resistance

    Science.gov (United States)

    Ding, J.; Johnson, E. A.; Martin, Y. E.

    2017-12-01

    Leaf is the basic production unit of plants. Water is the most critical resource of plants. Its availability controls primary productivity of plants by affecting leaf carbon budget. To avoid the damage of cavitation from lowering vein water potential t caused by evapotranspiration, the leaf must increase the stomatal resistance to reduce evapotranspiration rate. This comes at the cost of reduced carbon fixing rate as increasing stoma resistance meanwhile slows carbon intake rate. Studies suggest that stoma will operate at an optimal resistance to maximize the carbon gain with respect to water. Different plant species have different leaf shapes, a genetically determined trait. Further, on the same plant leaf size can vary many times in size that is related to soil moisture, an indicator of water availability. According to metabolic scaling theory, increasing leaf size will increase total xylem resistance of vein, which may also constrain leaf carbon budget. We present a Constrained Maximization Model of leaf (leaf CMM) that incorporates metabolic theory into the coupling of evapotranspiration and carbon fixation to examine how leaf size, stoma resistance and maximum net leaf primary productivity change with petiole xylem water potential. The model connects vein network structure to leaf shape and use the difference between petiole xylem water potential and the critical minor vein cavitation forming water potential as the budget. The CMM shows that both maximum net leaf primary production and optimal leaf size increase with petiole xylem water potential while optimal stoma resistance decreases. Narrow leaf has overall lower optimal leaf size and maximum net leaf carbon gain and higher optimal stoma resistance than those of broad leaf. This is because with small width to length ratio, total xylem resistance increases faster with leaf size. Total xylem resistance of narrow leaf increases faster with leaf size causing higher average and marginal cost of xylem water

  2. The Trouble with Diffusion

    Directory of Open Access Journals (Sweden)

    R.T. DeHoff

    2002-09-01

    Full Text Available The phenomenological formalism, which yields Fick's Laws for diffusion in single phase multicomponent systems, is widely accepted as the basis for the mathematical description of diffusion. This paper focuses on problems associated with this formalism. This mode of description of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the central material properties that require a large experimental investment for their evaluation in three component systems, and, indeed cannot be evaluated for systems with more than three components. It is also argued that the physical meaning of the numerical values of these properties with respect to the atom motions in the system remains unknown. The attempt to understand the physical content of the diffusion coefficients in the phenomenological formalism has been the central fundamental problem in the theory of diffusion in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous samples which directly report the jump frequencies of the atoms as a function of composition and temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would provide the basis for understanding the physical content of interdiffusion coefficients. Definitive tests of the resulting theoretical connection have been carried out for a number of binary systems for which all three kinds of observations are available. In a number of systems predictions of intrinsic coefficients from tracer data do not agree with measured values although predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete

  3. Hydrogen diffusion in Zircon

    Science.gov (United States)

    Ingrin, Jannick; Zhang, Peipei

    2016-04-01

    Hydrogen mobility in gem quality zircon single crystals from Madagascar was investigated through H-D exchange experiments. Thin slices were annealed in a horizontal furnace flushed with a gas mixture of Ar/D2(10%) under ambient pressure between 900 ° C to 1150 ° C. FTIR analyses were performed on oriented slices before and after each annealing run. H diffusion along [100] and [010] follow the same diffusion law D = D0exp[-E /RT], with log D0 = 2.24 ± 1.57 (in m2/s) and E = 374 ± 39 kJ/mol. H diffusion along [001] follows a slightly more rapid diffusion law, with log D0 = 1.11 ± 0.22 (in m2/s) and E = 334 ± 49 kJ/mol. H diffusion in zircon has much higher activation energy and slower diffusivity than other NAMs below 1150 ° C even iron-poor garnets which are known to be among the slowest (Blanchard and Ingrin, 2004; Kurka et al. 2005). During H-D exchange zircon incorporates also deuterium. This hydration reaction involves uranium reduction as it is shown from the exchange of U5+ and U4+ characteristic bands in the near infrared region during annealing. It is the first time that a hydration reaction U5+ + OH- = U4+ + O2- + 1/2H2, is experimentally reported. The kinetics of deuterium incorporation is slightly slower than hydrogen diffusion, suggesting that the reaction is limited by hydrogen mobility. Hydrogen isotopic memory of zircon is higher than other NAMs. Zircons will be moderately retentive of H signatures at mid-crustal metamorphic temperatures. At 500 ° C, a zircon with a radius of 300 μm would retain its H isotopic signature over more than a million years. However, a zircon is unable to retain this information for geologically significant times under high-grade metamorphism unless the grain size is large enough. Refrences Blanchard, M. and Ingrin, J. (2004) Hydrogen diffusion in Dora Maira pyrope. Physics and Chemistry of Minerals, 31, 593-605. Kurka, A., Blanchard, M. and Ingrin, J. (2005) Kinetics of hydrogen extraction and deuteration in

  4. Phase transformation and diffusion

    CERN Document Server

    Kale, G B; Dey, G K

    2008-01-01

    Given that the basic purpose of all research in materials science and technology is to tailor the properties of materials to suit specific applications, phase transformations are the natural key to the fine-tuning of the structural, mechanical and corrosion properties. A basic understanding of the kinetics and mechanisms of phase transformation is therefore of vital importance. Apart from a few cases involving crystallographic martensitic transformations, all phase transformations are mediated by diffusion. Thus, proper control and understanding of the process of diffusion during nucleation, g

  5. Drift in Diffusion Gradients

    Directory of Open Access Journals (Sweden)

    Fabio Marchesoni

    2013-08-01

    Full Text Available The longstanding problem of Brownian transport in a heterogeneous quasi one-dimensional medium with space-dependent self-diffusion coefficient is addressed in the overdamped (zero mass limit. A satisfactory mesoscopic description is obtained in the Langevin equation formalism by introducing an appropriate drift term, which depends on the system macroscopic observables, namely the diffuser concentration and current. The drift term is related to the microscopic properties of the medium. The paradoxical existence of a finite drift at zero current suggests the possibility of designing a Maxwell demon operating between two equilibrium reservoirs at the same temperature.

  6. Nonlinear diffusion equations

    CERN Document Server

    Wu Zhuo Qun; Li Hui Lai; Zhao Jun Ning

    2001-01-01

    Nonlinear diffusion equations, an important class of parabolic equations, come from a variety of diffusion phenomena which appear widely in nature. They are suggested as mathematical models of physical problems in many fields, such as filtration, phase transition, biochemistry and dynamics of biological groups. In many cases, the equations possess degeneracy or singularity. The appearance of degeneracy or singularity makes the study more involved and challenging. Many new ideas and methods have been developed to overcome the special difficulties caused by the degeneracy and singularity, which

  7. Diffusion in advanced materials

    CERN Document Server

    Murch, Graeme; Belova, Irina

    2014-01-01

    In the first chapter Prof. Kozubski and colleagues present atomisticsimulations of superstructure transformations of intermetallic nanolayers.In Chapter 2, Prof. Danielewski and colleagues discuss a formalism for themorphology of the diffusion zone in ternary alloys. In Chapter 3, ProfessorsSprengel and Koiwa discuss the classical contributions of Boltzmann andMatano for the analysis of concentration-dependent diffusion. This isfollowed by Chapter 4 by Professor Cserháti and colleagues on the use of Kirkendall porosity for fabricating hollow hemispheres. In Chapter 5,Professor Morton-Blake rep

  8. Ambipolar diffusion in plasma

    International Nuclear Information System (INIS)

    Silva, T.L. da.

    1987-01-01

    Is this thesis, a numerical method for the solution of the linear diffusion equation for a plasma containing two types of ions, with the possibility of charge exchange, has been developed. It has been shown that the decay time of the electron and ion densities is much smaller than that in a plasma containing only a single type of ion. A non-linear diffusion equation, which includes the effects of an external electric field varying linearly in time, to describe a slightly ionized plasma has also been developed. It has been verified that the decay of the electron density in the presence of such an electric field is very slow. (author)

  9. Barley Leaf Area and Leaf Growth Rates Are Maximized during the Pre-Anthesis Phase

    Directory of Open Access Journals (Sweden)

    Ahmad M. Alqudah

    2015-04-01

    Full Text Available Leaf developmental traits are an important component of crop breeding in small-grain cereals. Surprisingly, little is known about the genetic basis for the differences in barley (Hordeum vulgare L. leaf development. The two barley row-type classes, i.e., two- and six-rowed, show clear-cut differences in leaf development. To quantify these differences and to measure the genetic component of the phenotypic variance for the leaf developmental differences in both row-type classes we investigated 32 representative spring barley accessions (14 two- and 18 six-rowed accessions under three independent growth conditions. Leaf mass area is lower in plants grown under greenhouse (GH conditions due to fewer, smaller, and lighter leaf blades per main culm compared to pot- and soil-grown field plants. Larger and heavier leaf blades of six-rowed barley correlate with higher main culm spike grain yield, spike dry weight, and harvest index; however, smaller leaf area (LA in two-rowed barley can be attributed to more spikes, tillers, and biological yield (aboveground parts. In general, leaf growth rate was significantly higher between awn primordium and tipping stages. Moderate to very high broad-sense heritabilities (0.67–0.90 were found under all growth conditions, indicating that these traits are predominantly genetically controlled. In addition, our data suggests that GH conditions are suitable for studying leaf developmental traits. Our results also demonstrated that LA impacts single plant yield and can be reconsidered in future breeding programs. Six-rowed spike 1 (Vrs1 is the major determinate of barley row-types, the differences in leaf development between two- and six-rowed barleys may be attributed to the regulation of Vrs1 in these two classes, which needs further testing.

  10. Evaporation and transpiration

    Science.gov (United States)

    Robert R. Ziemer

    1979-01-01

    For years, the principal objective of evapotranspiration research has been to calculate the loss of water under varying conditions of climate, soil, and vegetation. The early simple empirical methods have generally been replaced by more detailed models which more closely represent the physical and biological processes involved. Monteith's modification of the...

  11. Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada

    2017-01-01

    Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...

  12. Designing oil palm architectural ideotypes for optimal light interception and carbon assimilation through a sensitivity analysis of leaf traits.

    Science.gov (United States)

    Perez, Raphaël P A; Dauzat, Jean; Pallas, Benoît; Lamour, Julien; Verley, Philippe; Caliman, Jean-Pierre; Costes, Evelyne; Faivre, Robert

    2017-12-26

    Enhancement of light harvesting in annual crops has successfully led to yield increases since the green revolution. Such an improvement has mainly been achieved by selecting plants with optimal canopy architecture for specific agronomic practices. For perennials such as oil palm, breeding programmes were focused more on fruit yield, but now aim at exploring more complex traits. The aim of the present study is to investigate potential improvements in light interception and carbon assimilation in the study case of oil palm, by manipulating leaf traits and proposing architectural ideotypes. Sensitivity analyses (Morris method and metamodel) were performed on a functional-structural plant model recently developed for oil palm which takes into account genetic variability, in order to virtually assess the impact of plant architecture on light interception efficiency and potential carbon acquisition. The most sensitive parameters found over plant development were those related to leaf area (rachis length, number of leaflets, leaflet morphology), although fine attributes related to leaf geometry showed increasing influence when the canopy became closed. In adult stands, optimized carbon assimilation was estimated on plants with a leaf area index between 3.2 and 5.5 m2 m-2 (corresponding to usual agronomic conditions), with erect leaves, short rachis and petiole, and high number of leaflets on the rachis. Four architectural ideotypes for carbon assimilation are proposed based on specific combinations of organ dimensions and arrangement that limit mutual shading and optimize light distribution within the plant crown. A rapid set-up of leaf area is critical at young age to optimize light interception and subsequently carbon acquisition. At the adult stage, optimization of carbon assimilation could be achieved through specific combinations of architectural traits. The proposition of multiple morphotypes with comparable level of carbon assimilation opens the way to further

  13. Between-clone, between-leaf and within-leaf variation in leaf epidermis traits in Iris pumila clones

    Directory of Open Access Journals (Sweden)

    Miljković Danijela

    2013-01-01

    Full Text Available The goal of this study was to analyze variation and covariation in epidermal characteristics (epidermal cell density -ECD, stomata density - SD, and stomata index - SI on Iris pumila clones on between-clone, between-leaf and within-leaf levels. ECD (similar to the pattern previously observed for SD increased from the base to the top of leaf, while SI remained constant. Results of profile analyses indicated that clones, individual plants whitin clones (ramets, and three successive leaves on the same plant were not significantly different for examined characteristics, but genetic variation for position effect was detected (significant Zone x clone interaction. Results of the contrast analysis confirmed differences between the base and middle leaf positions for ECD (similar to those for SD as well as between clone variation for those differences. Observed differences between leaf zones and correlations between analyzed traits were mostly consistent with the expansion hypothesis of stomata differentiation. [Projekat Ministarstva nauke Republike Srbije, br. OI 173025

  14. NARROW LEAF 7 controls leaf shape mediated by auxin in rice

    NARCIS (Netherlands)

    Fujino, Kenji; Matsuda, Yasuyuki; Ozawa, Kenjirou; Nishimura, Takeshi; Koshiba, Tomokazu; Fraaije, Marco W.; Sekiguchi, Hiroshi

    Elucidation of the genetic basis of the control of leaf shape could be of use in the manipulation of crop traits, leading to more stable and increased crop production. To improve our understanding of the process controlling leaf shape, we identified a mutant gene in rice that causes a significant

  15. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  16. Prophylactic effect of paw-paw leaf and bitter leaf extracts on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... (ANOVA) and significant means separated using FLSD = LSD procedure as outlined in Obi (2002). RESULTS AND DISCUSSION. In pre-soaking, paw-paw leaf (PL) extract had no significant effect (P > 0.05) on the disease incidence at. 50% anthesis. Bitter leaf (BL) extract had a high signifi- cant effect (P ...

  17. Diffusion Based Photon Mapping

    DEFF Research Database (Denmark)

    Schjøth, Lars; Fogh Olsen, Ole; Sporring, Jon

    2007-01-01

    . To address this problem we introduce a novel photon mapping algorithm based on nonlinear anisotropic diffusion. Our algorithm adapts according to the structure of the photon map such that smoothing occurs along edges and structures and not across. In this way we preserve the important illumination features...

  18. Diffusion welding of metals

    International Nuclear Information System (INIS)

    Susei, Shuzo; Matsui, Shigetomo; Yamada, Takeshi

    1978-01-01

    Recently, the materials with high heat resistance, corrosion resistance or strength have been developed, and some of them cannot be welded by ordinary method. Thereupon solid phase joining method is noticed, the mechanism of which is entirely different from conventional fusion welding. Among various solid phase joining methods, diffusion welding has many features. In case of joining same material, the joint can be made chemically and mechanically same as the parent material, and in case of joining different materials, joining can be made without forming any harmful compound, and the embrittlement of joints can be avoided. Kawasaki Heavy Industries Corp. has carried out a series of research on the diffusion welding of various metals, but in this paper, the characteristics of the joints of same material and different materials in titanium alloys are reported. The diffusion welding apparatus used adopts radiation heating using a tungsten heater and a hydraulic cylinder for pressing. The atmosphere of welded materials is kept in vacuum. The tested materials were industrial pure titanium TB 35 and Ti-6 Al-4 V alloy. The weldability of these materials by diffusion welding was studied, and it was confirmed that the joint efficiency of 100% was able to be obtained. However, for the practical application, more studies are required. (Kako, I.)

  19. Bronnen van diffuse bodembelasting

    NARCIS (Netherlands)

    Lijzen JPA; Ekelenkamp A; LBG; DGM/BO

    1995-01-01

    The aim of this study was to support the policy on preventive soil protection with information on the diffuse (non-local) emissions to soil and the influence on future soil quality. This study is related to inventories on (potential) sources of local soil pollution (e.g. industrial areas,

  20. Diffusion in ceramics

    CERN Document Server

    Pelleg, Joshua

    2016-01-01

    This textbook provides an introduction to changes that occur in solids such as ceramics, mainly at high temperatures, which are diffusion controlled, as well as presenting research data. Such changes are related to the kinetics of various reactions such as precipitation, oxidation and phase transformations, but are also related to some mechanical changes, such as creep. The book is composed of two parts, beginning with a look at the basics of diffusion according to Fick's Laws. Solutions of Fick’s second law for constant D, diffusion in grain boundaries and dislocations are presented along with a look at the atomistic approach for the random motion of atoms. In the second part, the author discusses diffusion in several technologically important ceramics. The ceramics selected are monolithic single phase ones, including: A12O3, SiC, MgO, ZrO2 and Si3N4. Of these, three refer to oxide ceramics (alumina, magnesia and zirconia). Carbide based ceramics are represented by the technologically very important Si-ca...