WorldWideScience

Sample records for translation motion perception

  1. Effects of Frequency and Motion Paradigm on Perception of Tilt and Translation During Periodic Linear Acceleration

    Science.gov (United States)

    Beaton, K. H.; Holly, J. E.; Clement, G. R.; Wood, Scott J.

    2009-01-01

    Previous studies have demonstrated an effect of frequency on the gain of tilt and translation perception. Results from different motion paradigms are often combined to extend the stimulus frequency range. For example, Off-Vertical Axis Rotation (OVAR) and Variable Radius Centrifugation (VRC) are useful to test low frequencies of linear acceleration at amplitudes that would require impractical sled lengths. The purpose of this study was to compare roll-tilt and lateral translation motion perception in 12 healthy subjects across four paradigms: OVAR, VRC, sled translation and rotation about an earth-horizontal axis. Subjects were oscillated in darkness at six frequencies from 0.01875 to 0.6 Hz (peak acceleration equivalent to 10 deg, less for sled motion below 0.15 Hz). Subjects verbally described the amplitude of perceived tilt and translation, and used a joystick to indicate the direction of motion. Consistent with previous reports, tilt perception gain decreased as a function of stimulus frequency in the motion paradigms without concordant canal tilt cues (OVAR, VRC and Sled). Translation perception gain was negligible at low stimulus frequencies and increased at higher frequencies. There were no significant differences between the phase of tilt and translation, nor did the phase significantly vary across stimulus frequency. There were differences in perception gain across the different paradigms. Paradigms that included actual tilt stimuli had the larger tilt gains, and paradigms that included actual translation stimuli had larger translation gains. In addition, the frequency at which there was a crossover of tilt and translation gains appeared to vary across motion paradigm between 0.15 and 0.3 Hz. Since the linear acceleration in the head lateral plane was equivalent across paradigms, differences in gain may be attributable to the presence of linear accelerations in orthogonal directions and/or cognitive aspects based on the expected motion paths.

  2. Motion perception during tilt and translation after space flight

    Science.gov (United States)

    Clément, Gilles; Wood, Scott J.

    2013-11-01

    Preliminary results of an ongoing study examining the effects of space flight on astronauts' motion perception induced by independent tilt and translation motions are presented. This experiment used a sled and a variable radius centrifuge that translated the subjects forward-backward or laterally, and simultaneously tilted them in pitch or roll, respectively. Tests were performed on the ground prior to and immediately after landing. The astronauts were asked to report about their perceived motion in response to different combinations of body tilt and translation in darkness. Their ability to manually control their own orientation was also evaluated using a joystick with which they nulled out the perceived tilt while the sled and centrifuge were in motion. Preliminary results confirm that the magnitude of perceived tilt increased during static tilt in roll after space flight. A deterioration in the crewmember to control tilt using non-visual inertial cues was also observed post-flight. However, the use of a tactile prosthesis indicating the direction of down on the subject's trunk improved manual control performance both before and after space flight.

  3. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    Science.gov (United States)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  4. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Science.gov (United States)

    Rosenblatt, Steven David; Crane, Benjamin Thomas

    2015-01-01

    A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37) participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s) at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001) and rotation (pperception was shifted in the direction consistent with the visual stimulus. Arrows had a small effect on self-motion

  5. Influence of Visual Motion, Suggestion, and Illusory Motion on Self-Motion Perception in the Horizontal Plane.

    Directory of Open Access Journals (Sweden)

    Steven David Rosenblatt

    Full Text Available A moving visual field can induce the feeling of self-motion or vection. Illusory motion from static repeated asymmetric patterns creates a compelling visual motion stimulus, but it is unclear if such illusory motion can induce a feeling of self-motion or alter self-motion perception. In these experiments, human subjects reported the perceived direction of self-motion for sway translation and yaw rotation at the end of a period of viewing set visual stimuli coordinated with varying inertial stimuli. This tested the hypothesis that illusory visual motion would influence self-motion perception in the horizontal plane. Trials were arranged into 5 blocks based on stimulus type: moving star field with yaw rotation, moving star field with sway translation, illusory motion with yaw, illusory motion with sway, and static arrows with sway. Static arrows were used to evaluate the effect of cognitive suggestion on self-motion perception. Each trial had a control condition; the illusory motion controls were altered versions of the experimental image, which removed the illusory motion effect. For the moving visual stimulus, controls were carried out in a dark room. With the arrow visual stimulus, controls were a gray screen. In blocks containing a visual stimulus there was an 8s viewing interval with the inertial stimulus occurring over the final 1s. This allowed measurement of the visual illusion perception using objective methods. When no visual stimulus was present, only the 1s motion stimulus was presented. Eight women and five men (mean age 37 participated. To assess for a shift in self-motion perception, the effect of each visual stimulus on the self-motion stimulus (cm/s at which subjects were equally likely to report motion in either direction was measured. Significant effects were seen for moving star fields for both translation (p = 0.001 and rotation (p0.1 for both. Thus, although a true moving visual field can induce self-motion, results of this

  6. Eye Movements in Darkness Modulate Self-Motion Perception.

    Science.gov (United States)

    Clemens, Ivar Adrianus H; Selen, Luc P J; Pomante, Antonella; MacNeilage, Paul R; Medendorp, W Pieter

    2017-01-01

    During self-motion, humans typically move the eyes to maintain fixation on the stationary environment around them. These eye movements could in principle be used to estimate self-motion, but their impact on perception is unknown. We had participants judge self-motion during different eye-movement conditions in the absence of full-field optic flow. In a two-alternative forced choice task, participants indicated whether the second of two successive passive lateral whole-body translations was longer or shorter than the first. This task was used in two experiments. In the first ( n = 8), eye movements were constrained differently in the two translation intervals by presenting either a world-fixed or body-fixed fixation point or no fixation point at all (allowing free gaze). Results show that perceived translations were shorter with a body-fixed than a world-fixed fixation point. A linear model indicated that eye-movement signals received a weight of ∼25% for the self-motion percept. This model was independently validated in the trials without a fixation point (free gaze). In the second experiment ( n = 10), gaze was free during both translation intervals. Results show that the translation with the larger eye-movement excursion was judged more often to be larger than chance, based on an oculomotor choice probability analysis. We conclude that eye-movement signals influence self-motion perception, even in the absence of visual stimulation.

  7. Human Perception of Ambiguous Inertial Motion Cues

    Science.gov (United States)

    Zhang, Guan-Lu

    2010-01-01

    Human daily activities on Earth involve motions that elicit both tilt and translation components of the head (i.e. gazing and locomotion). With otolith cues alone, tilt and translation can be ambiguous since both motions can potentially displace the otolithic membrane by the same magnitude and direction. Transitions between gravity environments (i.e. Earth, microgravity and lunar) have demonstrated to alter the functions of the vestibular system and exacerbate the ambiguity between tilt and translational motion cues. Symptoms of motion sickness and spatial disorientation can impair human performances during critical mission phases. Specifically, Space Shuttle landing records show that particular cases of tilt-translation illusions have impaired the performance of seasoned commanders. This sensorimotor condition is one of many operational risks that may have dire implications on future human space exploration missions. The neural strategy with which the human central nervous system distinguishes ambiguous inertial motion cues remains the subject of intense research. A prevailing theory in the neuroscience field proposes that the human brain is able to formulate a neural internal model of ambiguous motion cues such that tilt and translation components can be perceptually decomposed in order to elicit the appropriate bodily response. The present work uses this theory, known as the GIF resolution hypothesis, as the framework for experimental hypothesis. Specifically, two novel motion paradigms are employed to validate the neural capacity of ambiguous inertial motion decomposition in ground-based human subjects. The experimental setup involves the Tilt-Translation Sled at Neuroscience Laboratory of NASA JSC. This two degree-of-freedom motion system is able to tilt subjects in the pitch plane and translate the subject along the fore-aft axis. Perception data will be gathered through subject verbal reports. Preliminary analysis of perceptual data does not indicate that

  8. Gravito-Inertial Force Resolution in Perception of Synchronized Tilt and Translation

    Science.gov (United States)

    Wood, Scott J.; Holly, Jan; Zhang, Guen-Lu

    2011-01-01

    Natural movements in the sagittal plane involve pitch tilt relative to gravity combined with translation motion. The Gravito-Inertial Force (GIF) resolution hypothesis states that the resultant force on the body is perceptually resolved into tilt and translation consistently with the laws of physics. The purpose of this study was to test this hypothesis for human perception during combined tilt and translation motion. EXPERIMENTAL METHODS: Twelve subjects provided verbal reports during 0.3 Hz motion in the dark with 4 types of tilt and/or translation motion: 1) pitch tilt about an interaural axis at +/-10deg or +/-20deg, 2) fore-aft translation with acceleration equivalent to +/-10deg or +/-20deg, 3) combined "in phase" tilt and translation motion resulting in acceleration equivalent to +/-20deg, and 4) "out of phase" tilt and translation motion that maintained the resultant gravito-inertial force aligned with the longitudinal body axis. The amplitude of perceived pitch tilt and translation at the head were obtained during separate trials. MODELING METHODS: Three-dimensional mathematical modeling was performed to test the GIF-resolution hypothesis using a dynamical model. The model encoded GIF-resolution using the standard vector equation, and used an internal model of motion parameters, including gravity. Differential equations conveyed time-varying predictions. The six motion profiles were tested, resulting in predicted perceived amplitude of tilt and translation for each. RESULTS: The modeling results exhibited the same pattern as the experimental results. Most importantly, both modeling and experimental results showed greater perceived tilt during the "in phase" profile than the "out of phase" profile, and greater perceived tilt during combined "in phase" motion than during pure tilt of the same amplitude. However, the model did not predict as much perceived translation as reported by subjects during pure tilt. CONCLUSION: Human perception is consistent with

  9. Rocking or rolling--perception of ambiguous motion after returning from space.

    Directory of Open Access Journals (Sweden)

    Gilles Clément

    Full Text Available The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive an accurate representation of spatial orientation. Adaptive changes during spaceflight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions after return to Earth. The purpose of this study was to compare tilt and translation motion perception in astronauts before and after returning from spaceflight. We hypothesized that these stimuli would be the most ambiguous in the low-frequency range (i.e., at about 0.3 Hz where the linear acceleration can be interpreted either as a translation or as a tilt relative to gravity. Verbal reports were obtained in eleven astronauts tested using a motion-based tilt-translation device and a variable radius centrifuge before and after flying for two weeks on board the Space Shuttle. Consistent with previous studies, roll tilt perception was overestimated shortly after spaceflight and then recovered with 1-2 days. During dynamic linear acceleration (0.15-0.6 Hz, ±1.7 m/s2 perception of translation was also overestimated immediately after flight. Recovery to baseline was observed after 2 days for lateral translation and 8 days for fore-aft translation. These results suggest that there was a shift in the frequency dynamic of tilt-translation motion perception after adaptation to weightlessness. These results have implications for manual control during landing of a space vehicle after exposure to microgravity, as it will be the case for human asteroid and Mars missions.

  10. Modification of Motion Perception and Manual Control Following Short-Durations Spaceflight

    Science.gov (United States)

    Wood, S. J.; Vanya, R. D.; Esteves, J. T.; Rupert, A. H.; Clement, G.

    2011-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with other sensory information can lead to impaired movement coordination and spatial disorientation following G-transitions. This ESA-NASA study was designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances following short-duration spaceflights. The goals of this study were to (1) examine the effects of stimulus frequency on adaptive changes in motion perception during passive tilt and translation motion, (2) quantify decrements in manual control of tilt motion, and (3) evaluate vibrotactile feedback as a sensorimotor countermeasure.

  11. Unaffected perceptual thresholds for biological and non-biological form-from-motion perception in autism spectrum conditions.

    Directory of Open Access Journals (Sweden)

    Ayse Pinar Saygin

    2010-10-01

    Full Text Available Perception of biological motion is linked to the action perception system in the human brain, abnormalities within which have been suggested to underlie impairments in social domains observed in autism spectrum conditions (ASC. However, the literature on biological motion perception in ASC is heterogeneous and it is unclear whether deficits are specific to biological motion, or might generalize to form-from-motion perception.We compared psychophysical thresholds for both biological and non-biological form-from-motion perception in adults with ASC and controls. Participants viewed point-light displays depicting a walking person (Biological Motion, a translating rectangle (Structured Object or a translating unfamiliar shape (Unstructured Object. The figures were embedded in noise dots that moved similarly and the task was to determine direction of movement. The number of noise dots varied on each trial and perceptual thresholds were estimated adaptively. We found no evidence for an impairment in biological or non-biological object motion perception in individuals with ASC. Perceptual thresholds in the three conditions were almost identical between the ASC and control groups.Impairments in biological motion and non-biological form-from-motion perception are not across the board in ASC, and are only found for some stimuli and tasks. We discuss our results in relation to other findings in the literature, the heterogeneity of which likely relates to the different tasks performed. It appears that individuals with ASC are unaffected in perceptual processing of form-from-motion, but may exhibit impairments in higher order judgments such as emotion processing. It is important to identify more specifically which processes of motion perception are impacted in ASC before a link can be made between perceptual deficits and the higher-level features of the disorder.

  12. Ambiguous Tilt and Translation Motion Cues in Astronauts after Space Flight

    Science.gov (United States)

    Clement, G.; Harm, D. L.; Rupert, A. H.; Beaton, K. H.; Wood, S. J.

    2008-01-01

    Adaptive changes during space flight in how the brain integrates vestibular cues with visual, proprioceptive, and somatosensory information can lead to impaired movement coordination, vertigo, spatial disorientation, and perceptual illusions following transitions between gravity levels. This joint ESA-NASA pre- and post-flight experiment is designed to examine both the physiological basis and operational implications for disorientation and tilt-translation disturbances in astronauts following short-duration space flights. The first specific aim is to examine the effects of stimulus frequency on adaptive changes in eye movements and motion perception during independent tilt and translation motion profiles. Roll motion is provided by a variable radius centrifuge. Pitch motion is provided by NASA's Tilt-Translation Sled in which the resultant gravitoinertial vector remains aligned with the body longitudinal axis during tilt motion (referred to as the Z-axis gravitoinertial or ZAG paradigm). We hypothesize that the adaptation of otolith-mediated responses to these stimuli will have specific frequency characteristics, being greatest in the mid-frequency range where there is a crossover of tilt and translation. The second specific aim is to employ a closed-loop nulling task in which subjects are tasked to use a joystick to null-out tilt motion disturbances on these two devices. The stimuli consist of random steps or sum-of-sinusoids stimuli, including the ZAG profiles on the Tilt-Translation Sled. We hypothesize that the ability to control tilt orientation will be compromised following space flight, with increased control errors corresponding to changes in self-motion perception. The third specific aim is to evaluate how sensory substitution aids can be used to improve manual control performance. During the closed-loop nulling task on both devices, small tactors placed around the torso vibrate according to the actual body tilt angle relative to gravity. We hypothesize

  13. Integration time for the perception of depth from motion parallax.

    Science.gov (United States)

    Nawrot, Mark; Stroyan, Keith

    2012-04-15

    The perception of depth from relative motion is believed to be a slow process that "builds-up" over a period of observation. However, in the case of motion parallax, the potential accuracy of the depth estimate suffers as the observer translates during the viewing period. Our recent quantitative model for the perception of depth from motion parallax proposes that relative object depth (d) can be determined from retinal image motion (dθ/dt), pursuit eye movement (dα/dt), and fixation distance (f) by the formula: d/f≈dθ/dα. Given the model's dynamics, it is important to know the integration time required by the visual system to recover dα and dθ, and then estimate d. Knowing the minimum integration time reveals the incumbent error in this process. A depth-phase discrimination task was used to determine the time necessary to perceive depth-sign from motion parallax. Observers remained stationary and viewed a briefly translating random-dot motion parallax stimulus. Stimulus duration varied between trials. Fixation on the translating stimulus was monitored and enforced with an eye-tracker. The study found that relative depth discrimination can be performed with presentations as brief as 16.6 ms, with only two stimulus frames providing both retinal image motion and the stimulus window motion for pursuit (mean range=16.6-33.2 ms). This was found for conditions in which, prior to stimulus presentation, the eye was engaged in ongoing pursuit or the eye was stationary. A large high-contrast masking stimulus disrupted depth-discrimination for stimulus presentations less than 70-75 ms in both pursuit and stationary conditions. This interval might be linked to ocular-following response eye-movement latencies. We conclude that neural mechanisms serving depth from motion parallax generate a depth estimate much more quickly than previously believed. We propose that additional sluggishness might be due to the visual system's attempt to determine the maximum dθ/dα ratio

  14. Action Video Games Improve Direction Discrimination of Parafoveal Translational Global Motion but Not Reaction Times.

    Science.gov (United States)

    Pavan, Andrea; Boyce, Matthew; Ghin, Filippo

    2016-10-01

    Playing action video games enhances visual motion perception. However, there is psychophysical evidence that action video games do not improve motion sensitivity for translational global moving patterns presented in fovea. This study investigates global motion perception in action video game players and compares their performance to that of non-action video game players and non-video game players. Stimuli were random dot kinematograms presented in the parafovea. Observers discriminated the motion direction of a target random dot kinematogram presented in one of the four visual quadrants. Action video game players showed lower motion coherence thresholds than the other groups. However, when the task was performed at threshold, we did not find differences between groups in terms of distributions of reaction times. These results suggest that action video games improve visual motion sensitivity in the near periphery of the visual field, rather than speed response. © The Author(s) 2016.

  15. Perception of biological motion in visual agnosia

    Directory of Open Access Journals (Sweden)

    Elisabeth eHuberle

    2012-08-01

    Full Text Available Over the past twenty-five years, visual processing has been discussed in the context of the dual stream hypothesis consisting of a ventral (‘what' and a dorsal ('where' visual information processing pathway. Patients with brain damage of the ventral pathway typically present with signs of visual agnosia, the inability to identify and discriminate objects by visual exploration, but show normal perception of motion perception. A dissociation between the perception of biological motion and non-biological motion has been suggested: Perception of biological motion might be impaired when 'non-biological' motion perception is intact and vice versa. The impact of object recognition on the perception of biological motion remains unclear. We thus investigated this question in a patient with severe visual agnosia, who showed normal perception of non-biological motion. The data suggested that the patient's perception of biological motion remained largely intact. However, when tested with objects constructed of coherently moving dots (‘Shape-from-Motion’, recognition was severely impaired. The results are discussed in the context of possible mechanisms of biological motion perception.

  16. Deficient Biological Motion Perception in Schizophrenia: Results from a Motion Noise Paradigm

    Directory of Open Access Journals (Sweden)

    Jejoong eKim

    2013-07-01

    Full Text Available Background: Schizophrenia patients exhibit deficient processing of perceptual and cognitive information. However, it is not well understood how basic perceptual deficits contribute to higher level cognitive problems in this mental disorder. Perception of biological motion, a motion-based cognitive recognition task, relies on both basic visual motion processing and social cognitive processing, thus providing a useful paradigm to evaluate the potentially hierarchical relationship between these two levels of information processing. Methods: In this study, we designed a biological motion paradigm in which basic visual motion signals were manipulated systematically by incorporating different levels of motion noise. We measured the performances of schizophrenia patients (n=21 and healthy controls (n=22 in this biological motion perception task, as well as in coherent motion detection, theory of mind, and a widely used biological motion recognition task. Results: Schizophrenia patients performed the biological motion perception task with significantly lower accuracy than healthy controls when perceptual signals were moderately degraded by noise. A more substantial degradation of perceptual signals, through using additional noise, impaired biological motion perception in both groups. Performance levels on biological motion recognition, coherent motion detection and theory of mind tasks were also reduced in patients. Conclusion: The results from the motion-noise biological motion paradigm indicate that in the presence of visual motion noise, the processing of biological motion information in schizophrenia is deficient. Combined with the results of poor basic visual motion perception (coherent motion task and biological motion recognition, the association between basic motion signals and biological motion perception suggests a need to incorporate the improvement of visual motion perception in social cognitive remediation.

  17. Direct Contribution of Auditory Motion Information to Sound-Induced Visual Motion Perception

    Directory of Open Access Journals (Sweden)

    Souta Hidaka

    2011-10-01

    Full Text Available We have recently demonstrated that alternating left-right sound sources induce motion perception to static visual stimuli along the horizontal plane (SIVM: sound-induced visual motion perception, Hidaka et al., 2009. The aim of the current study was to elucidate whether auditory motion signals, rather than auditory positional signals, can directly contribute to the SIVM. We presented static visual flashes at retinal locations outside the fovea together with a lateral auditory motion provided by a virtual stereo noise source smoothly shifting in the horizontal plane. The flashes appeared to move in the situation where auditory positional information would have little influence on the perceived position of visual stimuli; the spatiotemporal position of the flashes was in the middle of the auditory motion trajectory. Furthermore, the auditory motion altered visual motion perception in a global motion display; in this display, different localized motion signals of multiple visual stimuli were combined to produce a coherent visual motion perception so that there was no clear one-to-one correspondence between the auditory stimuli and each visual stimulus. These findings suggest the existence of direct interactions between the auditory and visual modalities in motion processing and motion perception.

  18. Development Of Translational Motion Of Unmanned Aerial Vehicle Using MATLAB

    Directory of Open Access Journals (Sweden)

    Thwe Thwe Htoo

    2015-08-01

    Full Text Available This research work describes the translational motion analysis of unmanned aerial vehicle UAV. Since the center of mass of the receiver is timevarying the equations are written in a reference frame that is geometrically fixed in the aircraft. Due to the fact that aerial vehicle simulation and control deal with the position and orientation of the UAV the equations of motion are derived in terms of the translational and rotational position and velocity with respect to the aircraft location. The formation relative motion control is a challenging problem due to the coupled translational and rotational dynamics. As the translational vector depends on the current attitude and its angular velocity and some of the attitude constraints also couple the position and attitude of the spacecraft it makes the formation control problem high dimensional. This work develops UAV stability conditions including translational vector maneuverability condition and included angle condition between the translational and the rotational motion of UAV system and then presents two methods to calculate the UAV attitude. Both of the two methods need first design the optimal trajectory of the translational vector and then use geometric and nonlinear programming methods to calculate the target trajectory. The validity of the proposed approach is demonstrated in a UAV by using MATLAB. The performance of the translational motion control is evaluated by the simulated results.

  19. Visual motion perception predicts driving hazard perception ability.

    Science.gov (United States)

    Lacherez, Philippe; Au, Sandra; Wood, Joanne M

    2014-02-01

    To examine the basis of previous findings of an association between indices of driving safety and visual motion sensitivity and to examine whether this association could be explained by low-level changes in visual function. A total of 36 visually normal participants (aged 19-80 years) completed a battery of standard vision tests including visual acuity, contrast sensitivity and automated visual fields and two tests of motion perception including sensitivity for movement of a drifting Gabor stimulus and sensitivity for displacement in a random dot kinematogram (Dmin ). Participants also completed a hazard perception test (HPT), which measured participants' response times to hazards embedded in video recordings of real-world driving, which has been shown to be linked to crash risk. Dmin for the random dot stimulus ranged from -0.88 to -0.12 log minutes of arc, and the minimum drift rate for the Gabor stimulus ranged from 0.01 to 0.35 cycles per second. Both measures of motion sensitivity significantly predicted response times on the HPT. In addition, while the relationship involving the HPT and motion sensitivity for the random dot kinematogram was partially explained by the other visual function measures, the relationship with sensitivity for detection of the drifting Gabor stimulus remained significant even after controlling for these variables. These findings suggest that motion perception plays an important role in the visual perception of driving-relevant hazards independent of other areas of visual function and should be further explored as a predictive test of driving safety. Future research should explore the causes of reduced motion perception to develop better interventions to improve road safety. © 2012 The Authors. Acta Ophthalmologica © 2012 Acta Ophthalmologica Scandinavica Foundation.

  20. Ambiguity in Tactile Apparent Motion Perception.

    Directory of Open Access Journals (Sweden)

    Emanuela Liaci

    Full Text Available In von Schiller's Stroboscopic Alternative Motion (SAM stimulus two visually presented diagonal dot pairs, located on the corners of an imaginary rectangle, alternate with each other and induce either horizontal, vertical or, rarely, rotational motion percepts. SAM motion perception can be described by a psychometric function of the dot aspect ratio ("AR", i.e. the relation between vertical and horizontal dot distances. Further, with equal horizontal and vertical dot distances (AR = 1 perception is biased towards vertical motion. In a series of five experiments, we presented tactile SAM versions and studied the role of AR and of different reference frames for the perception of tactile apparent motion.We presented tactile SAM stimuli and varied the ARs, while participants reported the perceived motion directions. Pairs of vibration stimulators were attached to the participants' forearms and stimulator distances were varied within and between forearms. We compared straight and rotated forearm conditions with each other in order to disentangle the roles of exogenous and endogenous reference frames.Increasing the tactile SAM's AR biased perception towards vertical motion, but the effect was weak compared to the visual modality. We found no horizontal disambiguation, even for very small tactile ARs. A forearm rotation by 90° kept the vertical bias, even though it was now coupled with small ARs. A 45° rotation condition with crossed forearms, however, evoked a strong horizontal motion bias.Existing approaches to explain the visual SAM bias fail to explain the current tactile results. Particularly puzzling is the strong horizontal bias in the crossed-forearm conditions. In the case of tactile apparent motion, there seem to be no fixed priority rule for perceptual disambiguation. Rather the weighting of available evidence seems to depend on the degree of stimulus ambiguity, the current situation and on the perceptual strategy of the individual

  1. Visual-vestibular interaction in motion perception

    NARCIS (Netherlands)

    Hosman, Ruud J A W; Cardullo, Frank M.; Bos, Jelte E.

    2011-01-01

    Correct perception of self motion is of vital importance for both the control of our position and posture when moving around in our environment. With the development of human controlled vehicles as bicycles, cars and aircraft motion perception became of interest for the understanding of vehicle

  2. The role of human ventral visual cortex in motion perception

    Science.gov (United States)

    Saygin, Ayse P.; Lorenzi, Lauren J.; Egan, Ryan; Rees, Geraint; Behrmann, Marlene

    2013-01-01

    Visual motion perception is fundamental to many aspects of visual perception. Visual motion perception has long been associated with the dorsal (parietal) pathway and the involvement of the ventral ‘form’ (temporal) visual pathway has not been considered critical for normal motion perception. Here, we evaluated this view by examining whether circumscribed damage to ventral visual cortex impaired motion perception. The perception of motion in basic, non-form tasks (motion coherence and motion detection) and complex structure-from-motion, for a wide range of motion speeds, all centrally displayed, was assessed in five patients with a circumscribed lesion to either the right or left ventral visual pathway. Patients with a right, but not with a left, ventral visual lesion displayed widespread impairments in central motion perception even for non-form motion, for both slow and for fast speeds, and this held true independent of the integrity of areas MT/V5, V3A or parietal regions. In contrast with the traditional view in which only the dorsal visual stream is critical for motion perception, these novel findings implicate a more distributed circuit in which the integrity of the right ventral visual pathway is also necessary even for the perception of non-form motion. PMID:23983030

  3. Impaired Perception of Biological Motion in Parkinson’s Disease

    Science.gov (United States)

    Jaywant, Abhishek; Shiffrar, Maggie; Roy, Serge; Cronin-Golomb, Alice

    2016-01-01

    Objective We examined biological motion perception in Parkinson’s disease (PD). Biological motion perception is related to one’s own motor function and depends on the integrity of brain areas affected in PD, including posterior superior temporal sulcus. If deficits in biological motion perception exist, they may be specific to perceiving natural/fast walking patterns that individuals with PD can no longer perform, and may correlate with disease-related motor dysfunction. Method 26 non-demented individuals with PD and 24 control participants viewed videos of point-light walkers and scrambled versions that served as foils, and indicated whether each video depicted a human walking. Point-light walkers varied by gait type (natural, parkinsonian) and speed (0.5, 1.0, 1.5 m/s). Participants also completed control tasks (object motion, coherent motion perception), a contrast sensitivity assessment, and a walking assessment. Results The PD group demonstrated significantly less sensitivity to biological motion than the control group (pperception (p=.02, Cohen’s d=.68). There was no group difference in coherent motion perception. Although individuals with PD had slower walking speed and shorter stride length than control participants, gait parameters did not correlate with biological motion perception. Contrast sensitivity and coherent motion perception also did not correlate with biological motion perception. Conclusion PD leads to a deficit in perceiving biological motion, which is independent of gait dysfunction and low-level vision changes, and may therefore arise from difficulty perceptually integrating form and motion cues in posterior superior temporal sulcus. PMID:26949927

  4. Visual Motion Perception

    Science.gov (United States)

    1991-08-15

    displace- ment limit for motion in random dots," Vision Res., 24, 293-300. Pantie , A. & K. Turano (1986) "Direct comparisons of apparent motions...Hicks & AJ, Pantie (1978) "Apparent movement of successively generated subjec. uve figures," Perception, 7, 371-383. Ramachandran. V.S. & S.M. Anstis...thanks think deaf girl until world uncle flag home talk finish short thee our screwdiver sonry flower wrCstlir~g plan week wait accident guilty tree

  5. Neck proprioception shapes body orientation and perception of motion.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Schieppati, Marco

    2014-01-01

    This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead (SSA), and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers. We first remind the early findings on human balance, gait trajectory, SSA, induced by limb, and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, SSA, and walking trajectory. Neck vibration also induces persistent aftereffects on the SSA and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck-proprioceptive input may induce persistent influences on the subject's mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes.

  6. Neck proprioception shapes body orientation and perception of motion

    Directory of Open Access Journals (Sweden)

    Vito Enrico Pettorossi

    2014-11-01

    Full Text Available This review article deals with some effects of neck muscle proprioception on human balance, gait trajectory, subjective straight-ahead, and self-motion perception. These effects are easily observed during neck muscle vibration, a strong stimulus for the spindle primary afferent fibers.We first remind the early findings on human balance, gait trajectory, subjective straight-ahead, induced by limb and neck muscle vibration. Then, more recent findings on self-motion perception of vestibular origin are described. The use of a vestibular asymmetric yaw-rotation stimulus for emphasizing the proprioceptive modulation of motion perception from the neck is mentioned. In addition, an attempt has been made to conjointly discuss the effects of unilateral neck proprioception on motion perception, subjective straight-ahead and walking trajectory.Neck vibration also induces persistent aftereffects on the subjective straight-ahead and on self-motion perception of vestibular origin. These perceptive effects depend on intensity, duration, side of the conditioning vibratory stimulation, and on muscle status. These effects can be maintained for hours when prolonged high-frequency vibration is superimposed on muscle contraction. Overall, this brief outline emphasizes the contribution of neck muscle inflow to the construction and fine-tuning of perception of body orientation and motion. Furthermore, it indicates that tonic neck proprioceptive input may induce persistent influences on the subject's mental representation of space. These plastic changes might adapt motion sensitiveness to lasting or permanent head positional or motor changes.

  7. The perception of object versus objectless motion.

    Science.gov (United States)

    Hock, Howard S; Nichols, David F

    2013-05-01

    Wertheimer, M. (Zeitschrift für Psychologie und Physiologie der Sinnesorgane, 61:161-265, 1912) classical distinction between beta (object) and phi (objectless) motion is elaborated here in a series of experiments concerning competition between two qualitatively different motion percepts, induced by sequential changes in luminance for two-dimensional geometric objects composed of rectangular surfaces. One of these percepts is of spreading-luminance motion that continuously sweeps across the entire object; it exhibits shape invariance and is perceived most strongly for fast speeds. Significantly for the characterization of phi as objectless motion, the spreading luminance does not involve surface boundaries or any other feature; the percept is driven solely by spatiotemporal changes in luminance. Alternatively, and for relatively slow speeds, a discrete series of edge motions can be perceived in the direction opposite to spreading-luminance motion. Akin to beta motion, the edges appear to move through intermediate positions within the object's changing surfaces. Significantly for the characterization of beta as object motion, edge motion exhibits shape dependence and is based on the detection of oppositely signed changes in contrast (i.e., counterchange) for features essential to the determination of an object's shape, the boundaries separating its surfaces. These results are consistent with area MT neurons that differ with respect to speed preference Newsome et al (Journal of Neurophysiology, 55:1340-1351, 1986) and shape dependence Zeki (Journal of Physiology, 236:549-573, 1974).

  8. A Pursuit Theory Account for the Perception of Common Motion in Motion Parallax.

    Science.gov (United States)

    Ratzlaff, Michael; Nawrot, Mark

    2016-09-01

    The visual system uses an extraretinal pursuit eye movement signal to disambiguate the perception of depth from motion parallax. Visual motion in the same direction as the pursuit is perceived nearer in depth while visual motion in the opposite direction as pursuit is perceived farther in depth. This explanation of depth sign applies to either an allocentric frame of reference centered on the fixation point or an egocentric frame of reference centered on the observer. A related problem is that of depth order when two stimuli have a common direction of motion. The first psychophysical study determined whether perception of egocentric depth order is adequately explained by a model employing an allocentric framework, especially when the motion parallax stimuli have common rather than divergent motion. A second study determined whether a reversal in perceived depth order, produced by a reduction in pursuit velocity, is also explained by this model employing this allocentric framework. The results show than an allocentric model can explain both the egocentric perception of depth order with common motion and the perceptual depth order reversal created by a reduction in pursuit velocity. We conclude that an egocentric model is not the only explanation for perceived depth order in these common motion conditions. © The Author(s) 2016.

  9. General-relativistic celestial mechanics. II. Translational equations of motion

    International Nuclear Information System (INIS)

    Damour, T.; Soffel, M.; Xu, C.

    1992-01-01

    The translational laws of motion for gravitationally interacting systems of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies are obtained at the first post-Newtonian approximation of general relativity. The derivation uses our recently introduced multi-reference-system method and obtains the translational laws of motion by writing that, in the local center-of-mass frame of each body, relativistic inertial effects combine with post-Newtonian self- and externally generated gravitational forces to produce a global equilibrium (relativistic generalization of d'Alembert's principle). Within the first post-Newtonian approximation [i.e., neglecting terms of order (v/c) 4 in the equations of motion], our work is the first to obtain complete and explicit results, in the form of infinite series, for the laws of motion of arbitrarily composed and shaped bodies. We first obtain the laws of motion of each body as an infinite series exhibiting the coupling of all the (Blanchet-Damour) post-Newtonian multipole moments of this body to the post-Newtonian tidal moments (recently defined by us) felt by this body. We then give the explicit expression of these tidal moments in terms of post-Newtonian multipole moments of the other bodies

  10. THE STUDENTS’ PERCEPTIONS OF AUTHENTIC TEXTS-BASED TRANSLATION

    Directory of Open Access Journals (Sweden)

    Rusiana .

    2017-12-01

    Full Text Available Translation requires lots of practice. As it is generally known, authentic texts provide fruitful experience for students to translate either Indonesian-English or vice versa. Authentic texts give many real uses of language in varied meaningful contexts The texts used were advertisement, abstract, local stories, tourist attraction, community service and project for money. This research is aimed at investigating whether the use of authentic texts benefits the students and describing the students’ perceptions toward the use of authentic texts in Translation class. It is a qualitative research. Questionnaires were used to obtain the students’ perceptions on the use of authentic texts in translation. The findings show that authentic texts-based translation benefits students in experiencing better translation. Advertisement was considered to be the most relevant text. On the contrary, they find it difficult to cope with authentic texts particularly dealing with words/terms/vocabulary, meanings, culture, and grammar. The recommendations are that the students have to be exposed to many authentic texts of varied topics in both English and Indonesian in order that they understand both the SL and TL well. For further researchers, it would be possible to research on the influence of authentic texts based translation on the students’ translation skill.

  11. Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control During Variable Radius Centrifugation Following Space Flight

    Science.gov (United States)

    Wood, Scott J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, less than 20 cm radius), the effects of stimulus frequency (0.15 - 0.6 Hz) are examined on eye movements and motion perception. A closed-loop nulling task is also performed with and without vibrotactile display feedback of chair radial position. Data collection is currently ongoing. Results to date suggest there is a trend for perceived tilt and translation amplitudes to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. One result of this study will be to characterize the variability (gain, asymmetry) in both otolith-ocular responses and motion perception during variable radius centrifugation, and measure the time course of post-flight recovery. This study will also address how adaptive changes in otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved

  12. PLANAR MECHANISMS USED FOR GENERATING CURVE LINE TRANSLATION MOTION

    Directory of Open Access Journals (Sweden)

    Ovidiu ANTONESCU

    2015-05-01

    Full Text Available The curve line translation motion can be generated in the particular form of the circular translation, through mono-mobile mechanisms with articulated links of simple parallelogram type (with a fixed side or through transmission with toothed belt with a fixed wheel. Also, the circular translation can be generated through planar mechanisms with two cylindrical gears with a fixed central wheel. It is mentioned that the two cylindrical gearings of the Fergusson mechanisms are both exterior and interior.

  13. Tracking without perceiving: a dissociation between eye movements and motion perception.

    Science.gov (United States)

    Spering, Miriam; Pomplun, Marc; Carrasco, Marisa

    2011-02-01

    Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adaptation to one grating prior to the presentation of both gratings. Reflexive eye movements tracked the vector average of both gratings (pattern motion) even though perceptual responses followed one motion direction exclusively (component motion). Observers almost never perceived pattern motion. This dissociation implies the existence of visual-motion signals that guide eye movements in the absence of a corresponding conscious percept.

  14. Bubble Driven Quasioscillatory Translational Motion of Catalytic Micromotors

    Science.gov (United States)

    Manjare, Manoj; Yang, Bo; Zhao, Y.-P.

    2012-09-01

    A new quasioscillatory translational motion has been observed for big Janus catalytic micromotors with a fast CCD camera. Such motional behavior is found to coincide with both the bubble growth and burst processes resulting from the catalytic reaction, and the competition of the two processes generates a net forward motion. Detailed physical models have been proposed to describe the above processes. It is suggested that the bubble growth process imposes a growth force moving the micromotor forward, while the burst process induces an instantaneous local pressure depression pulling the micromotor backward. The theoretic predictions are consistent with the experimental data.

  15. Contrast and assimilation in motion perception and smooth pursuit eye movements.

    Science.gov (United States)

    Spering, Miriam; Gegenfurtner, Karl R

    2007-09-01

    The analysis of visual motion serves many different functions ranging from object motion perception to the control of self-motion. The perception of visual motion and the oculomotor tracking of a moving object are known to be closely related and are assumed to be controlled by shared brain areas. We compared perceived velocity and the velocity of smooth pursuit eye movements in human observers in a paradigm that required the segmentation of target object motion from context motion. In each trial, a pursuit target and a visual context were independently perturbed simultaneously to briefly increase or decrease in speed. Observers had to accurately track the target and estimate target speed during the perturbation interval. Here we show that the same motion signals are processed in fundamentally different ways for perception and steady-state smooth pursuit eye movements. For the computation of perceived velocity, motion of the context was subtracted from target motion (motion contrast), whereas pursuit velocity was determined by the motion average (motion assimilation). We conclude that the human motion system uses these computations to optimally accomplish different functions: image segmentation for object motion perception and velocity estimation for the control of smooth pursuit eye movements.

  16. New inverse synthetic aperture radar algorithm for translational motion compensation

    Science.gov (United States)

    Bocker, Richard P.; Henderson, Thomas B.; Jones, Scott A.; Frieden, B. R.

    1991-10-01

    Inverse synthetic aperture radar (ISAR) is an imaging technique that shows real promise in classifying airborne targets in real time under all weather conditions. Over the past few years a large body of ISAR data has been collected and considerable effort has been expended to develop algorithms to form high-resolution images from this data. One important goal of workers in this field is to develop software that will do the best job of imaging under the widest range of conditions. The success of classifying targets using ISAR is predicated upon forming highly focused radar images of these targets. Efforts to develop highly focused imaging computer software have been challenging, mainly because the imaging depends on and is affected by the motion of the target, which in general is not precisely known. Specifically, the target generally has both rotational motion about some axis and translational motion as a whole with respect to the radar. The slant-range translational motion kinematic quantities must be first accurately estimated from the data and compensated before the image can be focused. Following slant-range motion compensation, the image is further focused by determining and correcting for target rotation. The use of the burst derivative measure is proposed as a means to improve the computational efficiency of currently used ISAR algorithms. The use of this measure in motion compensation ISAR algorithms for estimating the slant-range translational motion kinematic quantities of an uncooperative target is described. Preliminary tests have been performed on simulated as well as actual ISAR data using both a Sun 4 workstation and a parallel processing transputer array. Results indicate that the burst derivative measure gives significant improvement in processing speed over the traditional entropy measure now employed.

  17. Integration of canal and otolith inputs by central vestibular neurons is subadditive for both active and passive self-motion: implication for perception.

    Science.gov (United States)

    Carriot, Jerome; Jamali, Mohsen; Brooks, Jessica X; Cullen, Kathleen E

    2015-02-25

    Traditionally, the neural encoding of vestibular information is studied by applying either passive rotations or translations in isolation. However, natural vestibular stimuli are typically more complex. During everyday life, our self-motion is generally not restricted to one dimension, but rather comprises both rotational and translational motion that will simultaneously stimulate receptors in the semicircular canals and otoliths. In addition, natural self-motion is the result of self-generated and externally generated movements. However, to date, it remains unknown how information about rotational and translational components of self-motion is integrated by vestibular pathways during active and/or passive motion. Accordingly, here, we compared the responses of neurons at the first central stage of vestibular processing to rotation, translation, and combined motion. Recordings were made in alert macaques from neurons in the vestibular nuclei involved in postural control and self-motion perception. In response to passive stimulation, neurons did not combine canal and otolith afferent information linearly. Instead, inputs were subadditively integrated with a weighting that was frequency dependent. Although canal inputs were more heavily weighted at low frequencies, the weighting of otolith input increased with frequency. In response to active stimulation, neuronal modulation was significantly attenuated (∼ 70%) relative to passive stimulation for rotations and translations and even more profoundly attenuated for combined motion due to subadditive input integration. Together, these findings provide insights into neural computations underlying the integration of semicircular canal and otolith inputs required for accurate posture and motor control, as well as perceptual stability, during everyday life. Copyright © 2015 the authors 0270-6474/15/353555-11$15.00/0.

  18. Effects of auditory information on self-motion perception during simultaneous presentation of visual shearing motion

    Science.gov (United States)

    Tanahashi, Shigehito; Ashihara, Kaoru; Ujike, Hiroyasu

    2015-01-01

    Recent studies have found that self-motion perception induced by simultaneous presentation of visual and auditory motion is facilitated when the directions of visual and auditory motion stimuli are identical. They did not, however, examine possible contributions of auditory motion information for determining direction of self-motion perception. To examine this, a visual stimulus projected on a hemisphere screen and an auditory stimulus presented through headphones were presented separately or simultaneously, depending on experimental conditions. The participant continuously indicated the direction and strength of self-motion during the 130-s experimental trial. When the visual stimulus with a horizontal shearing rotation and the auditory stimulus with a horizontal one-directional rotation were presented simultaneously, the duration and strength of self-motion perceived in the opposite direction of the auditory rotation stimulus were significantly longer and stronger than those perceived in the same direction of the auditory rotation stimulus. However, the auditory stimulus alone could not sufficiently induce self-motion perception, and if it did, its direction was not consistent within each experimental trial. We concluded that auditory motion information can determine perceived direction of self-motion during simultaneous presentation of visual and auditory motion information, at least when visual stimuli moved in opposing directions (around the yaw-axis). We speculate that the contribution of auditory information depends on the plausibility and information balance of visual and auditory information. PMID:26113828

  19. Audiovisual associations alter the perception of low-level visual motion

    Directory of Open Access Journals (Sweden)

    Hulusi eKafaligonul

    2015-03-01

    Full Text Available Motion perception is a pervasive nature of vision and is affected by both immediate pattern of sensory inputs and prior experiences acquired through associations. Recently, several studies reported that an association can be established quickly between directions of visual motion and static sounds of distinct frequencies. After the association is formed, sounds are able to change the perceived direction of visual motion. To determine whether such rapidly acquired audiovisual associations and their subsequent influences on visual motion perception are dependent on the involvement of higher-order attentive tracking mechanisms, we designed psychophysical experiments using regular and reverse-phi random dot motions isolating low-level pre-attentive motion processing. Our results show that an association between the directions of low-level visual motion and static sounds can be formed and this audiovisual association alters the subsequent perception of low-level visual motion. These findings support the view that audiovisual associations are not restricted to high-level attention based motion system and early-level visual motion processing has some potential role.

  20. Self-motion perception: assessment by real-time computer-generated animations

    Science.gov (United States)

    Parker, D. E.; Phillips, J. O.

    2001-01-01

    We report a new procedure for assessing complex self-motion perception. In three experiments, subjects manipulated a 6 degree-of-freedom magnetic-field tracker which controlled the motion of a virtual avatar so that its motion corresponded to the subjects' perceived self-motion. The real-time animation created by this procedure was stored using a virtual video recorder for subsequent analysis. Combined real and illusory self-motion and vestibulo-ocular reflex eye movements were evoked by cross-coupled angular accelerations produced by roll and pitch head movements during passive yaw rotation in a chair. Contrary to previous reports, illusory self-motion did not correspond to expectations based on semicircular canal stimulation. Illusory pitch head-motion directions were as predicted for only 37% of trials; whereas, slow-phase eye movements were in the predicted direction for 98% of the trials. The real-time computer-generated animations procedure permits use of naive, untrained subjects who lack a vocabulary for reporting motion perception and is applicable to basic self-motion perception studies, evaluation of motion simulators, assessment of balance disorders and so on.

  1. Criterion-free measurement of motion transparency perception at different speeds

    Science.gov (United States)

    Rocchi, Francesca; Ledgeway, Timothy; Webb, Ben S.

    2018-01-01

    Transparency perception often occurs when objects within the visual scene partially occlude each other or move at the same time, at different velocities across the same spatial region. Although transparent motion perception has been extensively studied, we still do not understand how the distribution of velocities within a visual scene contribute to transparent perception. Here we use a novel psychophysical procedure to characterize the distribution of velocities in a scene that give rise to transparent motion perception. To prevent participants from adopting a subjective decision criterion when discriminating transparent motion, we used an “odd-one-out,” three-alternative forced-choice procedure. Two intervals contained the standard—a random-dot-kinematogram with dot speeds or directions sampled from a uniform distribution. The other interval contained the comparison—speeds or directions sampled from a distribution with the same range as the standard, but with a notch of different widths removed. Our results suggest that transparent motion perception is driven primarily by relatively slow speeds, and does not emerge when only very fast speeds are present within a visual scene. Transparent perception of moving surfaces is modulated by stimulus-based characteristics, such as the separation between the means of the overlapping distributions or the range of speeds presented within an image. Our work illustrates the utility of using objective, forced-choice methods to reveal the mechanisms underlying motion transparency perception. PMID:29614154

  2. IQ Predicts Biological Motion Perception in Autism Spectrum Disorders

    Science.gov (United States)

    Rutherford, M. D.; Troje, Nikolaus F.

    2012-01-01

    Biological motion is easily perceived by neurotypical observers when encoded in point-light displays. Some but not all relevant research shows significant deficits in biological motion perception among those with ASD, especially with respect to emotional displays. We tested adults with and without ASD on the perception of masked biological motion…

  3. Contextual effects on motion perception and smooth pursuit eye movements.

    Science.gov (United States)

    Spering, Miriam; Gegenfurtner, Karl R

    2008-08-15

    Smooth pursuit eye movements are continuous, slow rotations of the eyes that allow us to follow the motion of a visual object of interest. These movements are closely related to sensory inputs from the visual motion processing system. To track a moving object in the natural environment, its motion first has to be segregated from the motion signals provided by surrounding stimuli. Here, we review experiments on the effect of the visual context on motion processing with a focus on the relationship between motion perception and smooth pursuit eye movements. While perception and pursuit are closely linked, we show that they can behave quite distinctly when required by the visual context.

  4. A research on motion design for APP's loading pages based on time perception

    Science.gov (United States)

    Cao, Huai; Hu, Xiaoyun

    2018-04-01

    Due to restrictions caused by objective reasons like network bandwidth, hardware performance and etc., waiting is still an inevitable phenomenon that appears in our using mobile-terminal products. Relevant researches show that users' feelings in a waiting scenario can affect their evaluations on the whole product and services the product provides. With the development of user experience and inter-facial design subjects, the role of motion effect in the interface design has attracted more and more scholars' attention. In the current studies, the research theory of motion design in a waiting scenario is imperfect. This article will use the basic theory and experimental research methods of cognitive psychology to explore the motion design's impact on user's time perception when users are waiting for loading APP pages. Firstly, the article analyzes the factors that affect waiting experience of loading APP pages based on the theory of time perception, and then discusses motion design's impact on the level of time-perception when loading pages and its design strategy. Moreover, by the operation analysis of existing loading motion designs, the article classifies the existing loading motions and designs an experiment to verify the impact of different types of motions on the user's time perception. The result shows that the waiting time perception of mobile's terminals' APPs is related to the loading motion types, the combination type of loading motions can effectively shorten the waiting time perception as it scores a higher mean value in the length of time perception.

  5. Clinical significance of perceptible fetal motion.

    Science.gov (United States)

    Rayburn, W F

    1980-09-15

    The monitoring of fetal activity during the last trimester of pregnancy has been proposed to be useful in assessing fetal welfare. The maternal perception of fetal activity was tested among 82 patients using real-time ultrasonography. All perceived fetal movements were visualized on the scanner and involved motion of the lower limbs. Conversely, 82% of all visualized motions of fetal limbs were perceived by the patients. All combined motions of fetal trunk with limbs were preceived by the patients and described as strong movements, whereas clusters of isolated, weak motions of the fetal limbs were less accurately perceived (56% accuracy). The number of fetal movements perceived during the 15-minute test period was significantly (p fetal motion was present (44 of 45 cases) than when it was absent (five of 10 cases). These findings reveal that perceived fetal motion is: (1) reliable; (2) related to the strength of lower limb motion; (3) increased with ruptured amniotic membranes; and (4) reassuring if considered to be active.

  6. Drifting while stepping in place in old adults: Association of self-motion perception with reference frame reliance and ground optic flow sensitivity.

    Science.gov (United States)

    Agathos, Catherine P; Bernardin, Delphine; Baranton, Konogan; Assaiante, Christine; Isableu, Brice

    2017-04-07

    Optic flow provides visual self-motion information and is shown to modulate gait and provoke postural reactions. We have previously reported an increased reliance on the visual, as opposed to the somatosensory-based egocentric, frame of reference (FoR) for spatial orientation with age. In this study, we evaluated FoR reliance for self-motion perception with respect to the ground surface. We examined how effects of ground optic flow direction on posture may be enhanced by an intermittent podal contact with the ground, and reliance on the visual FoR and aging. Young, middle-aged and old adults stood quietly (QS) or stepped in place (SIP) for 30s under static stimulation, approaching and receding optic flow on the ground and a control condition. We calculated center of pressure (COP) translation and optic flow sensitivity was defined as the ratio of COP translation velocity over absolute optic flow velocity: the visual self-motion quotient (VSQ). COP translation was more influenced by receding flow during QS and by approaching flow during SIP. In addition, old adults drifted forward while SIP without any imposed visual stimulation. Approaching flow limited this natural drift and receding flow enhanced it, as indicated by the VSQ. The VSQ appears to be a motor index of reliance on the visual FoR during SIP and is associated with greater reliance on the visual and reduced reliance on the egocentric FoR. Exploitation of the egocentric FoR for self-motion perception with respect to the ground surface is compromised by age and associated with greater sensitivity to optic flow. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  7. Global motion perception is associated with motor function in 2-year-old children.

    Science.gov (United States)

    Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E

    2017-09-29

    The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, Pmotor scores (r 2 =0.06, pmotor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Biological Motion Perception in Autism

    Directory of Open Access Journals (Sweden)

    J Cusack

    2011-04-01

    Full Text Available Typically developing adults can readily recognize human actions, even when conveyed to them via point-like markers placed on the body of the actor (Johansson, 1973. Previous research has suggested that children affected by autism spectrum disorder (ASD are not equally sensitive to this type of visual information (Blake et al, 2003, but it remains unknown why ASD would impact the ability to perceive biological motion. We present evidence which looks at how adolescents and adults with autism are affected by specific factors which are important in biological motion perception, such as (eg, inter-agent synchronicity, upright/inverted, etc.

  9. Being moved by the self and others: influence of empathy on self-motion perception.

    Directory of Open Access Journals (Sweden)

    Christophe Lopez

    Full Text Available BACKGROUND: The observation of conspecifics influences our bodily perceptions and actions: Contagious yawning, contagious itching, or empathy for pain, are all examples of mechanisms based on resonance between our own body and others. While there is evidence for the involvement of the mirror neuron system in the processing of motor, auditory and tactile information, it has not yet been associated with the perception of self-motion. METHODOLOGY/PRINCIPAL FINDINGS: We investigated whether viewing our own body, the body of another, and an object in motion influences self-motion perception. We found a visual-vestibular congruency effect for self-motion perception when observing self and object motion, and a reduction in this effect when observing someone else's body motion. The congruency effect was correlated with empathy scores, revealing the importance of empathy in mirroring mechanisms. CONCLUSIONS/SIGNIFICANCE: The data show that vestibular perception is modulated by agent-specific mirroring mechanisms. The observation of conspecifics in motion is an essential component of social life, and self-motion perception is crucial for the distinction between the self and the other. Finally, our results hint at the presence of a "vestibular mirror neuron system".

  10. Can walking motions improve visually induced rotational self-motion illusions in virtual reality?

    Science.gov (United States)

    Riecke, Bernhard E; Freiberg, Jacob B; Grechkin, Timofey Y

    2015-02-04

    Illusions of self-motion (vection) can provide compelling sensations of moving through virtual environments without the need for complex motion simulators or large tracked physical walking spaces. Here we explore the interaction between biomechanical cues (stepping along a rotating circular treadmill) and visual cues (viewing simulated self-rotation) for providing stationary users a compelling sensation of rotational self-motion (circular vection). When tested individually, biomechanical and visual cues were similarly effective in eliciting self-motion illusions. However, in combination they yielded significantly more intense self-motion illusions. These findings provide the first compelling evidence that walking motions can be used to significantly enhance visually induced rotational self-motion perception in virtual environments (and vice versa) without having to provide for physical self-motion or motion platforms. This is noteworthy, as linear treadmills have been found to actually impair visually induced translational self-motion perception (Ash, Palmisano, Apthorp, & Allison, 2013). Given the predominant focus on linear walking interfaces for virtual-reality locomotion, our findings suggest that investigating circular and curvilinear walking interfaces offers a promising direction for future research and development and can help to enhance self-motion illusions, presence and immersion in virtual-reality systems. © 2015 ARVO.

  11. An Adaptive Neural Mechanism for Acoustic Motion Perception with Varying Sparsity.

    Science.gov (United States)

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    Biological motion-sensitive neural circuits are quite adept in perceiving the relative motion of a relevant stimulus. Motion perception is a fundamental ability in neural sensory processing and crucial in target tracking tasks. Tracking a stimulus entails the ability to perceive its motion, i.e., extracting information about its direction and velocity. Here we focus on auditory motion perception of sound stimuli, which is poorly understood as compared to its visual counterpart. In earlier work we have developed a bio-inspired neural learning mechanism for acoustic motion perception. The mechanism extracts directional information via a model of the peripheral auditory system of lizards. The mechanism uses only this directional information obtained via specific motor behaviour to learn the angular velocity of unoccluded sound stimuli in motion. In nature however the stimulus being tracked may be occluded by artefacts in the environment, such as an escaping prey momentarily disappearing behind a cover of trees. This article extends the earlier work by presenting a comparative investigation of auditory motion perception for unoccluded and occluded tonal sound stimuli with a frequency of 2.2 kHz in both simulation and practice. Three instances of each stimulus are employed, differing in their movement velocities-0.5°/time step, 1.0°/time step and 1.5°/time step. To validate the approach in practice, we implement the proposed neural mechanism on a wheeled mobile robot and evaluate its performance in auditory tracking.

  12. Balancing bistable perception during self-motion.

    Science.gov (United States)

    van Elk, Michiel; Blanke, Olaf

    2012-10-01

    In two experiments we investigated whether bistable visual perception is influenced by passive own body displacements due to vestibular stimulation. For this we passively rotated our participants around the vertical (yaw) axis while observing different rotating bistable stimuli (bodily or non-bodily) with different ambiguous motion directions. Based on previous work on multimodal effects on bistable perception, we hypothesized that vestibular stimulation should alter bistable perception and that the effects should differ for bodily versus non-bodily stimuli. In the first experiment, it was found that the rotation bias (i.e., the difference between the percentage of time that a CW or CCW rotation was perceived) was selectively modulated by vestibular stimulation: the perceived duration of the bodily stimuli was longer for the rotation direction congruent with the subject's own body rotation, whereas the opposite was true for the non-bodily stimulus (Necker cube). The results found in the second experiment extend the findings from the first experiment and show that these vestibular effects on bistable perception only occur when the axis of rotation of the bodily stimulus matches the axis of passive own body rotation. These findings indicate that the effect of vestibular stimulation on the rotation bias depends on the stimulus that is presented and the rotation axis of the stimulus. Although most studies on vestibular processing have traditionally focused on multisensory signal integration for posture, balance, and heading direction, the present data show that vestibular self-motion influences the perception of bistable bodily stimuli revealing the importance of vestibular mechanisms for visual consciousness.

  13. Motion perception and driving: predicting performance through testing and shortening braking reaction times through training.

    Science.gov (United States)

    Wilkins, Luke; Gray, Rob; Gaska, James; Winterbottom, Marc

    2013-12-30

    A driving simulator was used to examine the relationship between motion perception and driving performance. Although motion perception test scores have been shown to be related to driving safety, it is not clear which combination of tests are the best predictors and whether motion perception training can improve driving performance. In experiment 1, 60 younger drivers (22.4 ± 2.5 years) completed three motion perception tests (2-dimensional [2D] motion-defined letter [MDL] identification, 3D motion in depth sensitivity [MID], and dynamic visual acuity [DVA]) followed by two driving tests (emergency braking [EB] and hazard perception [HP]). In experiment 2, 20 drivers (21.6 ± 2.1 years) completed 6 weeks of motion perception training (using the MDL, MID, and DVA tests), while 20 control drivers (22.0 ± 2.7 years) completed an online driving safety course. The EB performance was measured before and after training. In experiment 1, MDL (r = 0.34) and MID (r = 0.46) significantly correlated with EB score. The change in DVA score as a function of target speed (i.e., "velocity susceptibility") was correlated most strongly with HP score (r = -0.61). In experiment 2, the motion perception training group had a significant decrease in brake reaction time on the EB test from pre- to posttreatment, while there was no significant change for the control group: t(38) = 2.24, P = 0.03. Tests of 3D motion perception are the best predictor of EB, while DVA velocity susceptibility is the best predictor of hazard perception. Motion perception training appears to result in faster braking responses.

  14. Tracking Without Perceiving: A Dissociation Between Eye Movements and Motion Perception

    OpenAIRE

    Spering, Miriam; Pomplun, Marc; Carrasco, Marisa

    2010-01-01

    Can people react to objects in their visual field that they do not consciously perceive? We investigated how visual perception and motor action respond to moving objects whose visibility is reduced, and we found a dissociation between motion processing for perception and for action. We compared motion perception and eye movements evoked by two orthogonally drifting gratings, each presented separately to a different eye. The strength of each monocular grating was manipulated by inducing adapta...

  15. Visual-vestibular integration motion perception reporting

    Science.gov (United States)

    Harm, Deborah L.; Reschke, Millard R.; Parker, Donald E.

    1999-01-01

    Self-orientation and self/surround-motion perception derive from a multimodal sensory process that integrates information from the eyes, vestibular apparatus, proprioceptive and somatosensory receptors. Results from short and long duration spaceflight investigations indicate that: (1) perceptual and sensorimotor function was disrupted during the initial exposure to microgravity and gradually improved over hours to days (individuals adapt), (2) the presence and/or absence of information from different sensory modalities differentially affected the perception of orientation, self-motion and surround-motion, (3) perceptual and sensorimotor function was initially disrupted upon return to Earth-normal gravity and gradually recovered to preflight levels (individuals readapt), and (4) the longer the exposure to microgravity, the more complete the adaptation, the more profound the postflight disturbances, and the longer the recovery period to preflight levels. While much has been learned about perceptual and sensorimotor reactions and adaptation to microgravity, there is much remaining to be learned about the mechanisms underlying the adaptive changes, and about how intersensory interactions affect perceptual and sensorimotor function during voluntary movements. During space flight, SMS and perceptual disturbances have led to reductions in performance efficiency and sense of well-being. During entry and immediately after landing, such disturbances could have a serious impact on the ability of the commander to land the Orbiter and on the ability of all crew members to egress from the Orbiter, particularly in a non-nominal condition or following extended stays in microgravity. An understanding of spatial orientation and motion perception is essential for developing countermeasures for Space Motion Sickness (SMS) and perceptual disturbances during spaceflight and upon return to Earth. Countermeasures for optimal performance in flight and a successful return to Earth require

  16. Equations of motion for free-flight systems of rotating-translating bodies

    International Nuclear Information System (INIS)

    Hodapp, A.E. Jr.

    1976-09-01

    General vector differential equations of motion are developed for a system of rotating-translating, unbalanced, constant mass bodies. Complete flexibility is provided in placement of the reference coordinates within the system of bodies and in placement of body fixed axes within each body. Example cases are presented to demonstrate the ease in reduction of these equations to the equations of motion for systems of interest

  17. Neural mechanisms underlying sound-induced visual motion perception: An fMRI study.

    Science.gov (United States)

    Hidaka, Souta; Higuchi, Satomi; Teramoto, Wataru; Sugita, Yoichi

    2017-07-01

    Studies of crossmodal interactions in motion perception have reported activation in several brain areas, including those related to motion processing and/or sensory association, in response to multimodal (e.g., visual and auditory) stimuli that were both in motion. Recent studies have demonstrated that sounds can trigger illusory visual apparent motion to static visual stimuli (sound-induced visual motion: SIVM): A visual stimulus blinking at a fixed location is perceived to be moving laterally when an alternating left-right sound is also present. Here, we investigated brain activity related to the perception of SIVM using a 7T functional magnetic resonance imaging technique. Specifically, we focused on the patterns of neural activities in SIVM and visually induced visual apparent motion (VIVM). We observed shared activations in the middle occipital area (V5/hMT), which is thought to be involved in visual motion processing, for SIVM and VIVM. Moreover, as compared to VIVM, SIVM resulted in greater activation in the superior temporal area and dominant functional connectivity between the V5/hMT area and the areas related to auditory and crossmodal motion processing. These findings indicate that similar but partially different neural mechanisms could be involved in auditory-induced and visually-induced motion perception, and neural signals in auditory, visual, and, crossmodal motion processing areas closely and directly interact in the perception of SIVM. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. The Importance of Spatiotemporal Information in Biological Motion Perception: White Noise Presented with a Step-like Motion Activates the Biological Motion Area.

    Science.gov (United States)

    Callan, Akiko; Callan, Daniel; Ando, Hiroshi

    2017-02-01

    Humans can easily recognize the motion of living creatures using only a handful of point-lights that describe the motion of the main joints (biological motion perception). This special ability to perceive the motion of animate objects signifies the importance of the spatiotemporal information in perceiving biological motion. The posterior STS (pSTS) and posterior middle temporal gyrus (pMTG) region have been established by many functional neuroimaging studies as a locus for biological motion perception. Because listening to a walking human also activates the pSTS/pMTG region, the region has been proposed to be supramodal in nature. In this study, we investigated whether the spatiotemporal information from simple auditory stimuli is sufficient to activate this biological motion area. We compared spatially moving white noise, having a running-like tempo that was consistent with biological motion, with stationary white noise. The moving-minus-stationary contrast showed significant differences in activation of the pSTS/pMTG region. Our results suggest that the spatiotemporal information of the auditory stimuli is sufficient to activate the biological motion area.

  19. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary; Wiersma, Rodney D., E-mail: rwiersma@uchicago.edu [Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-06-15

    Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared head position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS.

  20. Robotic real-time translational and rotational head motion correction during frameless stereotactic radiosurgery

    International Nuclear Information System (INIS)

    Liu, Xinmin; Belcher, Andrew H.; Grelewicz, Zachary; Wiersma, Rodney D.

    2015-01-01

    Purpose: To develop a control system to correct both translational and rotational head motion deviations in real-time during frameless stereotactic radiosurgery (SRS). Methods: A novel feedback control with a feed-forward algorithm was utilized to correct for the coupling of translation and rotation present in serial kinematic robotic systems. Input parameters for the algorithm include the real-time 6DOF target position, the frame pitch pivot point to target distance constant, and the translational and angular Linac beam off (gating) tolerance constants for patient safety. Testing of the algorithm was done using a 4D (XY Z + pitch) robotic stage, an infrared head position sensing unit and a control computer. The measured head position signal was processed and a resulting command was sent to the interface of a four-axis motor controller, through which four stepper motors were driven to perform motion compensation. Results: The control of the translation of a brain target was decoupled with the control of the rotation. For a phantom study, the corrected position was within a translational displacement of 0.35 mm and a pitch displacement of 0.15° 100% of the time. For a volunteer study, the corrected position was within displacements of 0.4 mm and 0.2° over 98.5% of the time, while it was 10.7% without correction. Conclusions: The authors report a control design approach for both translational and rotational head motion correction. The experiments demonstrated that control performance of the 4D robotic stage meets the submillimeter and subdegree accuracy required by SRS

  1. Effect of Dimension and Shape of Magnet on the Performance AC Generator with Translation Motion

    Science.gov (United States)

    Indriani, A.; Dimas, S.; Hendra

    2018-02-01

    The development of power plants using the renewable energy sources is very rapid. Renewable energy sources used solar energy, wind energy, ocean wave energy and other energy. All of these renewable energy sources require a processing device or a change of motion system to become electrical energy. One processing device is a generator which have work principle of converting motion (mechanical) energy into electrical energy with rotary shaft, blade and other motion components. Generator consists of several types of rotation motion and linear motion (translational). The generator have components such as rotor, stator and anchor. In the rotor and stator having magnet and winding coil as an electric generating part of the electric motion force. Working principle of AC generator with linear motion (translation) also apply the principle of Faraday that is using magnetic induction which change iron magnet to produce magnetic flux. Magnetic flux is captured by the stator to be converted into electrical energy. Linear motion generators consist of linear induction machine, wound synchronous machine field, and permanent magnet synchronous [1]. Performance of synchronous generator of translation motion is influenced by magnet type, magnetic shape, coil winding, magnetic and coil spacing and others. In this paper focus on the neodymium magnet with varying shapes, number of coil windings and gap of magnetic distances. This generator work by using pneumatic mechanism (PLTGL) for power plants system. Result testing of performance AC generator translation motion obtained that maximum voltage, current and power are 63 Volt for diameter winding coil 0.15 mm, number of winding coil 13000 and distance of magnet 20 mm. For effect shape of magnet, maximum voltage happen on rectangle magnet 30x20x5 mm with 4.64 Volt. Voltage and power on effect of diameter winding coil is 14.63 V and 17.82 W at the diameter winding coil 0.7 and number of winding coil is 1260 with the distance of magnet 25

  2. Vestibular signals in primate cortex for self-motion perception.

    Science.gov (United States)

    Gu, Yong

    2018-04-21

    The vestibular peripheral organs in our inner ears detect transient motion of the head in everyday life. This information is sent to the central nervous system for automatic processes such as vestibulo-ocular reflexes, balance and postural control, and higher cognitive functions including perception of self-motion and spatial orientation. Recent neurophysiological studies have discovered a prominent vestibular network in the primate cerebral cortex. Many of the areas involved are multisensory: their neurons are modulated by both vestibular signals and visual optic flow, potentially facilitating more robust heading estimation through cue integration. Combining psychophysics, computation, physiological recording and causal manipulation techniques, recent work has addressed both the encoding and decoding of vestibular signals for self-motion perception. Copyright © 2018. Published by Elsevier Ltd.

  3. Perceptual Training Strongly Improves Visual Motion Perception in Schizophrenia

    Science.gov (United States)

    Norton, Daniel J.; McBain, Ryan K.; Ongur, Dost; Chen, Yue

    2011-01-01

    Schizophrenia patients exhibit perceptual and cognitive deficits, including in visual motion processing. Given that cognitive systems depend upon perceptual inputs, improving patients' perceptual abilities may be an effective means of cognitive intervention. In healthy people, motion perception can be enhanced through perceptual learning, but it…

  4. The upper spatial limit for perception of displacement is affected by preceding motion.

    Science.gov (United States)

    Stefanova, Miroslava; Mateeff, Stefan; Hohnsbein, Joachim

    2009-03-01

    The upper spatial limit D(max) for perception of apparent motion of a random dot pattern may be strongly affected by another, collinear, motion that precedes it [Mateeff, S., Stefanova, M., &. Hohnsbein, J. (2007). Perceived global direction of a compound of real and apparent motion. Vision Research, 47, 1455-1463]. In the present study this phenomenon was studied with two-dimensional motion stimuli. A random dot pattern moved alternately in the vertical and oblique direction (zig-zag motion). The vertical motion was of 1.04 degrees length; it was produced by three discrete spatial steps of the dots. Thereafter the dots were displaced by a single spatial step in oblique direction. Each motion lasted for 57ms. The upper spatial limit for perception of the oblique motion was measured under two conditions: the vertical component of the oblique motion and the vertical motion were either in the same or in opposite directions. It was found that the perception of the oblique motion was strongly influenced by the relative direction of the vertical motion that preceded it; in the "same" condition the upper spatial limit was much shorter than in the "opposite" condition. Decreasing the speed of the vertical motion reversed this effect. Interpretations based on networks of motion detectors and on Gestalt theory are discussed.

  5. Development of movie caption translation lecture site using MobileMotion{sub TM}; MobileMotion{sub TM} wo mochiita jimaku hon'yaku koza site no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    The site of Internet that performs the correspondence education for bringing up a movie caption translator was developed. Correspondence education that fully deepens understanding was obtained by distributing a motion picture using MPEG-4 distribution software (MobileMotion{sub TM}) and performing the learning based on bi-directional communication. HTML distribution and E-mail transmission and reception are done from Gaga Communications, and a MobileMotion{sub TM} file is distributed from the OnDemand Server of Toshiba. This reduces the communication traffic of heavy motion picture data. (translated by NEDO)

  6. The effect of occlusion therapy on motion perception deficits in amblyopia.

    Science.gov (United States)

    Giaschi, Deborah; Chapman, Christine; Meier, Kimberly; Narasimhan, Sathyasri; Regan, David

    2015-09-01

    There is growing evidence for deficits in motion perception in amblyopia, but these are rarely assessed clinically. In this prospective study we examined the effect of occlusion therapy on motion-defined form perception and multiple-object tracking. Participants included children (3-10years old) with unilateral anisometropic and/or strabismic amblyopia who were currently undergoing occlusion therapy and age-matched control children with normal vision. At the start of the study, deficits in motion-defined form perception were present in at least one eye in 69% of the children with amblyopia. These deficits were still present at the end of the study in 55% of the amblyopia group. For multiple-object tracking, deficits were present initially in 64% and finally in 55% of the children with amblyopia, even after completion of occlusion therapy. Many of these deficits persisted in spite of an improvement in amblyopic eye visual acuity in response to occlusion therapy. The prevalence of motion perception deficits in amblyopia as well as their resistance to occlusion therapy, support the need for new approaches to amblyopia treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Translational and rotational motions of proteins in a protein crowded environment

    NARCIS (Netherlands)

    Zorilla, S.; Hink, M.A.; Visser, A.J.W.G.; Lillo, M.P.

    2007-01-01

    Fluorescence correlation spectroscopy (FCS) was used to measure the translational diffusion of labeled apomyoglobin (tracer) in concentrated solutions of ribonuclease A and human serum albumin (crowders), as a quantitative model system of protein diffusive motions in crowded physiological

  8. Neural representations of kinematic laws of motion: evidence for action-perception coupling.

    Science.gov (United States)

    Dayan, Eran; Casile, Antonino; Levit-Binnun, Nava; Giese, Martin A; Hendler, Talma; Flash, Tamar

    2007-12-18

    Behavioral and modeling studies have established that curved and drawing human hand movements obey the 2/3 power law, which dictates a strong coupling between movement curvature and velocity. Human motion perception seems to reflect this constraint. The functional MRI study reported here demonstrates that the brain's response to this law of motion is much stronger and more widespread than to other types of motion. Compliance with this law is reflected in the activation of a large network of brain areas subserving motor production, visual motion processing, and action observation functions. Hence, these results strongly support the notion of similar neural coding for motion perception and production. These findings suggest that cortical motion representations are optimally tuned to the kinematic and geometrical invariants characterizing biological actions.

  9. Motion of the Mantle in the Translational Modes of the Earth and Mercury

    Science.gov (United States)

    Grinfeld, Pavel; Wisdom, Jack

    2005-01-01

    Slichter modes refer to the translational motion of the inner core with respect to the outer core and the mantle. The polar Slichter mode is the motion of the inner core along the axis of rotation. Busse presented an analysis of the polar mode which yielded an expression for its period. Busse's analysis included the assumption that the mantle was stationary. This approximation is valid for planets with small inner cores, such as the Earth whose inner core is about 1/60 of the total planet mass. On the other hand, many believe that Mercury's core may be enormous. If so, the motion of the mantle should be expected to produce a significant effect. We present a formal framework for including the motion of the mantle in the analysis of the translational motion of the inner core. We analyze the effect of the motion of the mantle on the Slichter modes for a non-rotating planet with an inner core of arbitrary size. We omit the effects of viscosity in the outer core, magnetic effects, and solid tides. Our approach is perturbative and is based on a linearization of Euler's equations for the motion of the fluid and Newton's second law for the motion of the inner core. We find an analytical expression for the period of the Slichter mode. Our result agrees with Busse's in the limiting case of small inner core. We present the unexpected result that even for Mercury the motion of the mantle does not significantly change the period of oscillation.

  10. Tuning self-motion perception in virtual reality with visual illusions.

    Science.gov (United States)

    Bruder, Gerd; Steinicke, Frank; Wieland, Phil; Lappe, Markus

    2012-07-01

    Motion perception in immersive virtual environments significantly differs from the real world. For example, previous work has shown that users tend to underestimate travel distances in virtual environments (VEs). As a solution to this problem, researchers proposed to scale the mapped virtual camera motion relative to the tracked real-world movement of a user until real and virtual motion are perceived as equal, i.e., real-world movements could be mapped with a larger gain to the VE in order to compensate for the underestimation. However, introducing discrepancies between real and virtual motion can become a problem, in particular, due to misalignments of both worlds and distorted space cognition. In this paper, we describe a different approach that introduces apparent self-motion illusions by manipulating optic flow fields during movements in VEs. These manipulations can affect self-motion perception in VEs, but omit a quantitative discrepancy between real and virtual motions. In particular, we consider to which regions of the virtual view these apparent self-motion illusions can be applied, i.e., the ground plane or peripheral vision. Therefore, we introduce four illusions and show in experiments that optic flow manipulation can significantly affect users' self-motion judgments. Furthermore, we show that with such manipulations of optic flow fields the underestimation of travel distances can be compensated.

  11. Motion perception tasks as potential correlates to driving difficulty in the elderly

    Science.gov (United States)

    Raghuram, A.; Lakshminarayanan, V.

    2006-09-01

    Changes in the demographics indicates that the population older than 65 is on the rise because of the aging of the ‘baby boom’ generation. This aging trend and driving related accident statistics reveal the need for procedures and tests that would assess the driving ability of older adults and predict whether they would be safe or unsafe drivers. Literature shows that an attention based test called the useful field of view (UFOV) was a significant predictor of accident rates compared to any other visual function tests. The present study evaluates a qualitative trend on using motion perception tasks as a potential visual perceptual correlates in screening elderly drivers who might have difficulty in driving. Data was collected from 15 older subjects with a mean age of 71. Motion perception tasks included—speed discrimination with radial and lamellar motion, time to collision using prediction motion and estimating direction of heading. A motion index score was calculated which was indicative of performance on all of the above-mentioned motion tasks. Scores on visual attention was assessed using UFOV. A driving habit questionnaire was also administered for a self report on the driving difficulties and accident rates. A qualitative trend based on frequency distributions show that thresholds on the motion perception tasks are successful in identifying subjects who reported to have had difficulty in certain aspects of driving and had accidents. Correlation between UFOV and motion index scores was not significant indicating that probably different aspects of visual information processing that are crucial to driving behaviour are being tapped by these two paradigms. UFOV and motion perception tasks together can be a better predictor for identifying at risk or safe drivers than just using either one of them.

  12. Translational motion of an atom in a weakly driven fiber-Bragg-grating cavity

    International Nuclear Information System (INIS)

    Kien, Fam Le; Hakuta, K

    2012-01-01

    We study the translational motion of an atom in the vicinity of a weakly driven nanofiber with two fiber-Bragg-grating mirrors. We find that the spatial dependences of the force, the friction coefficients and the momentum diffusion are very complicated due to the evanescent-wave nature of the atom–field coupling as well as the effect of the van der Waals potential. We show that the time development of the mean number of photons in the cavity closely follows the translational motion of the atom through the nodes and antinodes of the fiber-guided cavity standing-wave field even though the cavity finesse is moderate, the cavity is long and the probe field is weak

  13. Neural mechanisms of speed perception: transparent motion

    NARCIS (Netherlands)

    Krekelberg, Bart; van Wezel, Richard Jack Anton

    2013-01-01

    Visual motion on the macaque retina is processed by direction- and speed-selective neurons in extrastriate middle temporal cortex (MT). There is strong evidence for a link between the activity of these neurons and direction perception. However, there is conflicting evidence for a link between speed

  14. Ventral aspect of the visual form pathway is not critical for the perception of biological motion

    Science.gov (United States)

    Gilaie-Dotan, Sharon; Saygin, Ayse Pinar; Lorenzi, Lauren J.; Rees, Geraint; Behrmann, Marlene

    2015-01-01

    Identifying the movements of those around us is fundamental for many daily activities, such as recognizing actions, detecting predators, and interacting with others socially. A key question concerns the neurobiological substrates underlying biological motion perception. Although the ventral “form” visual cortex is standardly activated by biologically moving stimuli, whether these activations are functionally critical for biological motion perception or are epiphenomenal remains unknown. To address this question, we examined whether focal damage to regions of the ventral visual cortex, resulting in significant deficits in form perception, adversely affects biological motion perception. Six patients with damage to the ventral cortex were tested with sensitive point-light display paradigms. All patients were able to recognize unmasked point-light displays and their perceptual thresholds were not significantly different from those of three different control groups, one of which comprised brain-damaged patients with spared ventral cortex (n > 50). Importantly, these six patients performed significantly better than patients with damage to regions critical for biological motion perception. To assess the necessary contribution of different regions in the ventral pathway to biological motion perception, we complement the behavioral findings with a fine-grained comparison between the lesion location and extent, and the cortical regions standardly implicated in biological motion processing. This analysis revealed that the ventral aspects of the form pathway (e.g., fusiform regions, ventral extrastriate body area) are not critical for biological motion perception. We hypothesize that the role of these ventral regions is to provide enhanced multiview/posture representations of the moving person rather than to represent biological motion perception per se. PMID:25583504

  15. Percussive drilling application of translational motion permanent magnet machine

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Shujun

    2012-07-01

    It is clear that percussive drills are very promising since they can increase the rate of penetration in hard rock formations. Any small improvements on the percussive drills can make a big contribution to lowering the drilling costs since drilling a well for the oil and gas industry is very costly. This thesis presents a percussive drilling system mainly driven by a tubular reciprocating translational motion permanent magnet synchronous motor (RTPMSM), which efficiently converts electric energy to kinetic energy for crushing the hard rock since there is no mechanical media. The thesis starts from state-of-the-art of percussive drilling techniques, reciprocating translational motion motors, and self-sensing control of electric motors and its implementation issues. The following chapters present modeling the hard rock, modeling the drill, the design issues of the drill, the RTPMSM and its control. A single-phase RTPMSM prototype is tested for the hard rock drilling. The presented variable voltage variable frequency control is also validated on it. The space vector control and self-sensing control are also explored on a three-phase RTPMSM prototype. The results show that the percussive drill can be implemented to the hard rock drilling applications. A detailed summarisation of contributions and future work is presented at the end of the thesis.(Author)

  16. Magnetic navigation system for the precise helical and translational motions of a microrobot in human blood vessels

    Science.gov (United States)

    Jeon, S. M.; Jang, G. H.; Choi, H. C.; Park, S. H.; Park, J. O.

    2012-04-01

    Different magnetic navigation systems (MNSs) have been investigated for the wireless manipulation of microrobots in human blood vessels. Here we propose a MNS and methodology for generation of both the precise helical and translational motions of a microrobot to improve its maneuverability in complex human blood vessel. We then present experiments demonstrating the helical and translational motions of a spiral-type microrobot to verify the proposed MNS.

  17. Applications of computer-graphics animation for motion-perception research

    Science.gov (United States)

    Proffitt, D. R.; Kaiser, M. K.

    1986-01-01

    The advantages and limitations of using computer animated stimuli in studying motion perception are presented and discussed. Most current programs of motion perception research could not be pursued without the use of computer graphics animation. Computer generated displays afford latitudes of freedom and control that are almost impossible to attain through conventional methods. There are, however, limitations to this presentational medium. At present, computer generated displays present simplified approximations of the dynamics in natural events. Very little is known about how the differences between natural events and computer simulations influence perceptual processing. In practice, the differences are assumed to be irrelevant to the questions under study, and that findings with computer generated stimuli will generalize to natural events.

  18. S1-3: Perception of Biological Motion in Schizophrenia and Obsessive-Compulsive Disorder

    Directory of Open Access Journals (Sweden)

    Jejoong Kim

    2012-10-01

    Full Text Available Major mental disorders including schizophrenia, autism, and obsessive-compulsive disorder (OCD are characterized by impaired social functioning regardless of wide range of clinical symptoms. Past studies also revealed that people with these mental illness exhibit perceptual problems with altered neural activation. For example, schizophrenia patients are deficient in processing rapid and dynamic visual stimuli. As well documented, people are very sensitive to motion signals generated by others (i.e., biological motion even when those motions are portrayed by point-light display. Therefore, ability to perceive biological motion is important for both visual perception and social functioning. Nevertheless, there have been no systematic attempts to investigate biological motion perception in people with mental illness associated with impaired social functioning until a decade ago. Recently, a series of studies newly revealed abnormal patterns of biological motion perception and associated neural activations in schizophrenia and OCD. These new achievements will be reviewed focusing on perceptual and neural difference between patients with schizophrenia/OCD and healthy individuals. Then implications and possible future research will be discussed in this talk.

  19. First-person and third-person verbs in visual motion-perception regions.

    Science.gov (United States)

    Papeo, Liuba; Lingnau, Angelika

    2015-02-01

    Verb-related activity is consistently found in the left posterior lateral cortex (PLTC), encompassing also regions that respond to visual-motion perception. Besides motion, those regions appear sensitive to distinctions among the entities beyond motion, including that between first- vs. third-person ("third-person bias"). In two experiments, using functional magnetic resonance imaging (fMRI), we studied whether the implied subject (first/third-person) and/or the semantic content (motor/non-motor) of verbs modulate the neural activity in the left PLTC-regions responsive during basic- and biological-motion perception. In those sites, we found higher activity for verbs than for nouns. This activity was modulated by the person (but not the semantic content) of the verbs, with stronger response to third- than first-person verbs. The third-person bias elicited by verbs supports a role of motion-processing regions in encoding information about the entity beyond (and independently from) motion, and sets in a new light the role of these regions in verb processing. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Neutron quasi-elastic scattering study of translational motions in the smectic H, C and A phases of TBBA

    International Nuclear Information System (INIS)

    Dianoux, A.J.; Volino, F.; Heidemann, A.; Hervet, H.

    1975-01-01

    Neutron quasi-elastic scattering experiments in the smectic H, C and A phases of TBBA are presented, using the high resolution backscattering technique. The data are analyzed in terms of translational motion and are characterized by an apparent self diffusion coefficient Dsub(ap). The physical meaning of Dsub(ap) is discussed in terms of the true bulk self diffusion tensor and other kinds of translational motions [fr

  1. Perception of biological motion from size-invariant body representations

    Directory of Open Access Journals (Sweden)

    Markus eLappe

    2015-03-01

    Full Text Available The visual recognition of action is one of the socially most important and computationally demanding capacities of the human visual system. It combines visual shape recognition with complex non-rigid motion perception. Action presented as a point-light animation is a striking visual experience for anyone who sees it for the first time. Information about the shape and posture of the human body is sparse in point-light animations, but it is essential for action recognition. In the posturo-temporal filter model of biological motion perception posture information is picked up by visual neurons tuned to the form of the human body before body motion is calculated. We tested whether point-light stimuli are processed through posture recognition of the human body form by using a typical feature of form recognition, namely size invariance. We constructed a point-light stimulus that can only be perceived through a size-invariant mechanism. This stimulus changes rapidly in size from one image to the next. It thus disrupts continuity of early visuo-spatial properties but maintains continuity of the body posture representation. Despite this massive manipulation at the visuo-spatial level, size-changing point-light figures are spontaneously recognized by naive observers, and support discrimination of human body motion.

  2. Neural dynamics of motion perception: direction fields, apertures, and resonant grouping.

    Science.gov (United States)

    Grossberg, S; Mingolla, E

    1993-03-01

    A neural network model of global motion segmentation by visual cortex is described. Called the motion boundary contour system (BCS), the model clarifies how ambiguous local movements on a complex moving shape are actively reorganized into a coherent global motion signal. Unlike many previous researchers, we analyze how a coherent motion signal is imparted to all regions of a moving figure, not only to regions at which unambiguous motion signals exist. The model hereby suggests a solution to the global aperture problem. The motion BCS describes how preprocessing of motion signals by a motion oriented contrast (MOC) filter is joined to long-range cooperative grouping mechanisms in a motion cooperative-competitive (MOCC) loop to control phenomena such as motion capture. The motion BCS is computed in parallel with the static BCS of Grossberg and Mingolla (1985a, 1985b, 1987). Homologous properties of the motion BCS and the static BCS, specialized to process motion directions and static orientations, respectively, support a unified explanation of many data about static form perception and motion form perception that have heretofore been unexplained or treated separately. Predictions about microscopic computational differences of the parallel cortical streams V1-->MT and V1-->V2-->MT are made--notably, the magnocellular thick stripe and parvocellular interstripe streams. It is shown how the motion BCS can compute motion directions that may be synthesized from multiple orientations with opposite directions of contrast. Interactions of model simple cells, complex cells, hyper-complex cells, and bipole cells are described, with special emphasis given to new functional roles in direction disambiguation for endstopping at multiple processing stages and to the dynamic interplay of spatially short-range and long-range interactions.

  3. Prolonged asymmetric vestibular stimulation induces opposite, long-term effects on self-motion perception and ocular responses.

    Science.gov (United States)

    Pettorossi, V E; Panichi, R; Botti, F M; Kyriakareli, A; Ferraresi, A; Faralli, M; Schieppati, M; Bronstein, A M

    2013-04-01

    Self-motion perception and the vestibulo-ocular reflex (VOR) were investigated in healthy subjects during asymmetric whole body yaw plane oscillations while standing on a platform in the dark. Platform oscillation consisted of two half-sinusoidal cycles of the same amplitude (40°) but different duration, featuring a fast (FHC) and a slow half-cycle (SHC). Rotation consisted of four or 20 consecutive cycles to probe adaptation further with the longer duration protocol. Self-motion perception was estimated by subjects tracking with a pointer the remembered position of an earth-fixed visual target. VOR was measured by electro-oculography. The asymmetric stimulation pattern consistently induced a progressive increase of asymmetry in motion perception, whereby the gain of the tracking response gradually increased during FHCs and decreased during SHCs. The effect was observed already during the first few cycles and further increased during 20 cycles, leading to a totally distorted location of the initial straight-ahead. In contrast, after some initial interindividual variability, the gain of the slow phase VOR became symmetric, decreasing for FHCs and increasing for SHCs. These oppositely directed adaptive effects in motion perception and VOR persisted for nearly an hour. Control conditions using prolonged but symmetrical stimuli produced no adaptive effects on either motion perception or VOR. These findings show that prolonged asymmetric activation of the vestibular system leads to opposite patterns of adaptation of self-motion perception and VOR. The results provide strong evidence that semicircular canal inputs are processed centrally by independent mechanisms for perception of body motion and eye movement control. These divergent adaptation mechanisms enhance awareness of movement toward the faster body rotation, while improving the eye stabilizing properties of the VOR.

  4. Multisensory perception of spatial orientation and self-motion

    NARCIS (Netherlands)

    de Winkel, K.N.

    2013-01-01

    The aim of this project was to improve our insight in how the brain combines information from different sensory systems (e.g. vestibular and visual system) into an integrated percept of self-motion and spatial orientation. Based on evidence from other research in different areas, such as hand-eye

  5. Two independent mechanisms for motion-in-depth perception: evidence from individual differences

    Directory of Open Access Journals (Sweden)

    Harold T Nefs

    2010-10-01

    Full Text Available Our forward-facing eyes allow us the advantage of binocular visual information: using the tiny differences between right and left eye views to learn about depth and location in three dimensions. Our visual systems also contain specialized mechanisms to detect motion-in-depth from binocular vision, but the nature of these mechanisms remains controversial. Binocular motion-in-depth perception could theoretically be based on first detecting binocular disparity and then monitoring how it changes over time. The alternative is to monitor the motion in the right and left eye separately and then compare these motion signals. Here we used an individual differences approach to test whether the two sources of information are processed via dissociated mechanisms, and to measure the relative importance of those mechanisms. Our results suggest the existence of two distinct mechanisms, each contributing to the perception of motion in depth in most observers. Additionally, for the first time, we demonstrate the relative prevalence of the two mechanisms within a normal population. In general, visual systems appear to rely mostly on the mechanism sensitive to changing binocular disparity, but perception of motion in depth is augmented by the presence of a less sensitive mechanism that uses interocular velocity differences. Occasionally, we find observers with the opposite pattern of sensitivity. More generally this work showcases the power of the individual differences approach in studying the functional organisation of cognitive systems.

  6. Rotational and Translational Components of Motion Parallax: Observers' Sensitivity and Implications for Three-Dimensional Computer Graphics

    Science.gov (United States)

    Kaiser, Mary K.; Montegut, Michael J.; Proffitt, Dennis R.

    1995-01-01

    The motion of objects during motion parallax can be decomposed into 2 observer-relative components: translation and rotation. The depth ratio of objects in the visual field is specified by the inverse ratio of their angular displacement (from translation) or equivalently by the inverse ratio of their rotations. Despite the equal mathematical status of these 2 information sources, it was predicted that observers would be far more sensitive to the translational than rotational component. Such a differential sensitivity is implicitly assumed by the computer graphics technique billboarding, in which 3-dimensional (3-D) objects are drawn as planar forms (i.e., billboards) maintained normal to the line of sight. In 3 experiments, observers were found to be consistently less sensitive to rotational anomalies. The implications of these findings for kinetic depth effect displays and billboarding techniques are discussed.

  7. Asymmetric vestibular stimulation reveals persistent disruption of motion perception in unilateral vestibular lesions.

    Science.gov (United States)

    Panichi, R; Faralli, M; Bruni, R; Kiriakarely, A; Occhigrossi, C; Ferraresi, A; Bronstein, A M; Pettorossi, V E

    2017-11-01

    Self-motion perception was studied in patients with unilateral vestibular lesions (UVL) due to acute vestibular neuritis at 1 wk and 4, 8, and 12 mo after the acute episode. We assessed vestibularly mediated self-motion perception by measuring the error in reproducing the position of a remembered visual target at the end of four cycles of asymmetric whole-body rotation. The oscillatory stimulus consists of a slow (0.09 Hz) and a fast (0.38 Hz) half cycle. A large error was present in UVL patients when the slow half cycle was delivered toward the lesion side, but minimal toward the healthy side. This asymmetry diminished over time, but it remained abnormally large at 12 mo. In contrast, vestibulo-ocular reflex responses showed a large direction-dependent error only initially, then they normalized. Normalization also occurred for conventional reflex vestibular measures (caloric tests, subjective visual vertical, and head shaking nystagmus) and for perceptual function during symmetric rotation. Vestibular-related handicap, measured with the Dizziness Handicap Inventory (DHI) at 12 mo correlated with self-motion perception asymmetry but not with abnormalities in vestibulo-ocular function. We conclude that 1 ) a persistent self-motion perceptual bias is revealed by asymmetric rotation in UVLs despite vestibulo-ocular function becoming symmetric over time, 2 ) this dissociation is caused by differential perceptual-reflex adaptation to high- and low-frequency rotations when these are combined as with our asymmetric stimulus, 3 ) the findings imply differential central compensation for vestibuloperceptual and vestibulo-ocular reflex functions, and 4 ) self-motion perception disruption may mediate long-term vestibular-related handicap in UVL patients. NEW & NOTEWORTHY A novel vestibular stimulus, combining asymmetric slow and fast sinusoidal half cycles, revealed persistent vestibuloperceptual dysfunction in unilateral vestibular lesion (UVL) patients. The compensation of

  8. Visual Motion Perception and Visual Attentive Processes.

    Science.gov (United States)

    1988-04-01

    88-0551 Visual Motion Perception and Visual Attentive Processes George Spering , New YorkUnivesity A -cesson For DTIC TAB rant AFOSR 85-0364... Spering . HIPSt: A Unix-based image processing syslem. Computer Vision, Graphics, and Image Processing, 1984,25. 331-347. ’HIPS is the Human Information...Processing Laboratory’s Image Processing System. 1985 van Santen, Jan P. It, and George Spering . Elaborated Reichardt detectors. Journal of the Optical

  9. Synesthesia for color is linked to improved color perception but reduced motion perception.

    Science.gov (United States)

    Banissy, Michael J; Tester, Victoria; Muggleton, Neil G; Janik, Agnieszka B; Davenport, Aimee; Franklin, Anna; Walsh, Vincent; Ward, Jamie

    2013-12-01

    Synesthesia is a rare condition in which one property of a stimulus (e.g., shape) triggers a secondary percept (e.g., color) not typically associated with the first. Work on synesthesia has predominantly focused on confirming the authenticity of synesthetic experience, but much less research has been conducted to examine the extent to which synesthesia is linked to broader perceptual differences. In the research reported here, we examined whether synesthesia is associated with differences in color and motion processing by comparing these abilities in synesthetes who experience color as their evoked sensation with nonsynesthetic participants. We show that synesthesia for color is linked to facilitated color sensitivity but decreased motion sensitivity. These findings are discussed in relation to the neurocognitive mechanisms of synesthesia and interactions between color and motion processing in typical adults.

  10. Suppressive mechanisms in visual motion processing: From perception to intelligence.

    Science.gov (United States)

    Tadin, Duje

    2015-10-01

    Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and individuals with schizophrenia-a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  11. Shared sensory estimates for human motion perception and pursuit eye movements.

    Science.gov (United States)

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio; Osborne, Leslie C

    2015-06-03

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. Copyright © 2015 the authors 0270-6474/15/358515-16$15.00/0.

  12. Auditory Motion Elicits a Visual Motion Aftereffect.

    Science.gov (United States)

    Berger, Christopher C; Ehrsson, H Henrik

    2016-01-01

    The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect-an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  13. Auditory Motion Elicits a Visual Motion Aftereffect

    Directory of Open Access Journals (Sweden)

    Christopher C. Berger

    2016-12-01

    Full Text Available The visual motion aftereffect is a visual illusion in which exposure to continuous motion in one direction leads to a subsequent illusion of visual motion in the opposite direction. Previous findings have been mixed with regard to whether this visual illusion can be induced cross-modally by auditory stimuli. Based on research on multisensory perception demonstrating the profound influence auditory perception can have on the interpretation and perceived motion of visual stimuli, we hypothesized that exposure to auditory stimuli with strong directional motion cues should induce a visual motion aftereffect. Here, we demonstrate that horizontally moving auditory stimuli induced a significant visual motion aftereffect—an effect that was driven primarily by a change in visual motion perception following exposure to leftward moving auditory stimuli. This finding is consistent with the notion that visual and auditory motion perception rely on at least partially overlapping neural substrates.

  14. Self-motion perception: assessment by computer-generated animations

    Science.gov (United States)

    Parker, D. E.; Harm, D. L.; Sandoz, G. R.; Skinner, N. C.

    1998-01-01

    The goal of this research is more precise description of adaptation to sensory rearrangements, including microgravity, by development of improved procedures for assessing spatial orientation perception. Thirty-six subjects reported perceived self-motion following exposure to complex inertial-visual motion. Twelve subjects were assigned to each of 3 perceptual reporting procedures: (a) animation movie selection, (b) written report selection and (c) verbal report generation. The question addressed was: do reports produced by these procedures differ with respect to complexity and reliability? Following repeated (within-day and across-day) exposures to 4 different "motion profiles," subjects either (a) selected movies presented on a laptop computer, or (b) selected written descriptions from a booklet, or (c) generated self-motion verbal descriptions that corresponded most closely with their motion experience. One "complexity" and 2 reliability "scores" were calculated. Contrary to expectations, reliability and complexity scores were essentially equivalent for the animation movie selection and written report selection procedures. Verbal report generation subjects exhibited less complexity than did subjects in the other conditions and their reports were often ambiguous. The results suggest that, when selecting from carefully written descriptions and following appropriate training, people may be better able to describe their self-motion experience with words than is usually believed.

  15. Enhancing Motion-In-Depth Perception of Random-Dot Stereograms.

    Science.gov (United States)

    Zhang, Di; Nourrit, Vincent; De Bougrenet de la Tocnaye, Jean-Louis

    2018-07-01

    Random-dot stereograms have been widely used to explore the neural mechanisms underlying binocular vision. Although they are a powerful tool to stimulate motion-in-depth (MID) perception, published results report some difficulties in the capacity to perceive MID generated by random-dot stereograms. The purpose of this study was to investigate whether the performance of MID perception could be improved using an appropriate stimulus design. Sixteen inexperienced observers participated in the experiment. A training session was carried out to improve the accuracy of MID detection before the experiment. Four aspects of stimulus design were investigated: presence of a static reference, background texture, relative disparity, and stimulus contrast. Participants' performance in MID direction discrimination was recorded and compared to evaluate whether varying these factors helped MID perception. Results showed that only the presence of background texture had a significant effect on MID direction perception. This study provides suggestions for the design of 3D stimuli in order to facilitate MID perception.

  16. Psilocybin impairs high-level but not low-level motion perception.

    Science.gov (United States)

    Carter, Olivia L; Pettigrew, John D; Burr, David C; Alais, David; Hasler, Felix; Vollenweider, Franz X

    2004-08-26

    The hallucinogenic serotonin(1A&2A) agonist psilocybin is known for its ability to induce illusions of motion in otherwise stationary objects or textured surfaces. This study investigated the effect of psilocybin on local and global motion processing in nine human volunteers. Using a forced choice direction of motion discrimination task we show that psilocybin selectively impairs coherence sensitivity for random dot patterns, likely mediated by high-level global motion detectors, but not contrast sensitivity for drifting gratings, believed to be mediated by low-level detectors. These results are in line with those observed within schizophrenic populations and are discussed in respect to the proposition that psilocybin may provide a model to investigate clinical psychosis and the pharmacological underpinnings of visual perception in normal populations.

  17. Perception of the dynamic visual vertical during sinusoidal linear motion.

    Science.gov (United States)

    Pomante, A; Selen, L P J; Medendorp, W P

    2017-10-01

    The vestibular system provides information for spatial orientation. However, this information is ambiguous: because the otoliths sense the gravitoinertial force, they cannot distinguish gravitational and inertial components. As a consequence, prolonged linear acceleration of the head can be interpreted as tilt, referred to as the somatogravic effect. Previous modeling work suggests that the brain disambiguates the otolith signal according to the rules of Bayesian inference, combining noisy canal cues with the a priori assumption that prolonged linear accelerations are unlikely. Within this modeling framework the noise of the vestibular signals affects the dynamic characteristics of the tilt percept during linear whole-body motion. To test this prediction, we devised a novel paradigm to psychometrically characterize the dynamic visual vertical-as a proxy for the tilt percept-during passive sinusoidal linear motion along the interaural axis (0.33 Hz motion frequency, 1.75 m/s 2 peak acceleration, 80 cm displacement). While subjects ( n =10) kept fixation on a central body-fixed light, a line was briefly flashed (5 ms) at different phases of the motion, the orientation of which had to be judged relative to gravity. Consistent with the model's prediction, subjects showed a phase-dependent modulation of the dynamic visual vertical, with a subject-specific phase shift with respect to the imposed acceleration signal. The magnitude of this modulation was smaller than predicted, suggesting a contribution of nonvestibular signals to the dynamic visual vertical. Despite their dampening effect, our findings may point to a link between the noise components in the vestibular system and the characteristics of dynamic visual vertical. NEW & NOTEWORTHY A fundamental question in neuroscience is how the brain processes vestibular signals to infer the orientation of the body and objects in space. We show that, under sinusoidal linear motion, systematic error patterns appear in the

  18. Effects of aging on perception of motion

    Science.gov (United States)

    Kaur, Manpreet; Wilder, Joseph; Hung, George; Julesz, Bela

    1997-09-01

    Driving requires two basic visual components: 'visual sensory function' and 'higher order skills.' Among the elderly, it has been observed that when attention must be divided in the presence of multiple objects, their attentional skills and relational processes, along with impairment of basic visual sensory function, are markedly impaired. A high frame rate imaging system was developed to assess the elderly driver's ability to locate and distinguish computer generated images of vehicles and to determine their direction of motion in a simulated intersection. Preliminary experiments were performed at varying target speeds and angular displacements to study the effect of these parameters on motion perception. Results for subjects in four different age groups, ranging from mid- twenties to mid-sixties, show significantly better performance for the younger subjects as compared to the older ones.

  19. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness.

    Science.gov (United States)

    Spering, Miriam; Carrasco, Marisa

    2012-05-30

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth-pursuit eye movements in response to moving dichoptic plaids--stimuli composed of two orthogonally drifting gratings, presented separately to each eye--in human observers. Monocular adaptation to one grating before the presentation of both gratings renders the adapted grating perceptually weaker than the unadapted grating and decreases the level of awareness. Feature-based attention was directed to either the adapted or the unadapted grating's motion direction or to both (neutral condition). We show that observers were better at detecting a speed change in the attended than the unattended motion direction, indicating that they had successfully attended to one grating. Speed change detection was also better when the change occurred in the unadapted than the adapted grating, indicating that the adapted grating was perceptually weaker. In neutral conditions, perception and pursuit in response to plaid motion were dissociated: While perception followed one grating's motion direction almost exclusively (component motion), the eyes tracked the average of both gratings (pattern motion). In attention conditions, perception and pursuit were shifted toward the attended component. These results suggest that attention affects perception and pursuit similarly even though only the former reflects awareness. The eyes can track an attended feature even if observers do not perceive it.

  20. Contribution of self-motion perception to acoustic target localization.

    Science.gov (United States)

    Pettorossi, V E; Brosch, M; Panichi, R; Botti, F; Grassi, S; Troiani, D

    2005-05-01

    The findings of this study suggest that acoustic spatial perception during head movement is achieved by the vestibular system, which is responsible for the correct dynamic of acoustic target pursuit. The ability to localize sounds in space during whole-body rotation relies on the auditory localization system, which recognizes the position of sound in a head-related frame, and on the sensory systems, namely the vestibular system, which perceive head and body movement. The aim of this study was to analyse the contribution of head motion cues to the spatial representation of acoustic targets in humans. Healthy subjects standing on a rotating platform in the dark were asked to pursue with a laser pointer an acoustic target which was horizontally rotated while the body was kept stationary or maintained stationary while the whole body was rotated. The contribution of head motion to the spatial acoustic representation could be inferred by comparing the gains and phases of the pursuit in the two experimental conditions when the frequency was varied. During acoustic target rotation there was a reduction in the gain and an increase in the phase lag, while during whole-body rotations the gain tended to increase and the phase remained constant. The different contributions of the vestibular and acoustic systems were confirmed by analysing the acoustic pursuit during asymmetric body rotation. In this particular condition, in which self-motion perception gradually diminished, an increasing delay in target pursuit was observed.

  1. Development of visual motion perception for prospective control: Brain and behavioural studies in infants

    Directory of Open Access Journals (Sweden)

    Seth B. Agyei

    2016-02-01

    Full Text Available During infancy, smart perceptual mechanisms develop allowing infants to judge time-space motion dynamics more efficiently with age and locomotor experience. This emerging capacity may be vital to enable preparedness for upcoming events and to be able to navigate in a changing environment. Little is known about brain changes that support the development of prospective control and about processes, such as preterm birth, that may compromise it. As a function of perception of visual motion, this paper will describe behavioural and brain studies with young infants investigating the development of visual perception for prospective control. By means of the three visual motion paradigms of occlusion, looming, and optic flow, our research shows the importance of including behavioural data when studying the neural correlates of prospective control.

  2. Receptive fields for smooth pursuit eye movements and motion perception.

    Science.gov (United States)

    Debono, Kurt; Schütz, Alexander C; Spering, Miriam; Gegenfurtner, Karl R

    2010-12-01

    Humans use smooth pursuit eye movements to track moving objects of interest. In order to track an object accurately, motion signals from the target have to be integrated and segmented from motion signals in the visual context. Most studies on pursuit eye movements used small visual targets against a featureless background, disregarding the requirements of our natural visual environment. Here, we tested the ability of the pursuit and the perceptual system to integrate motion signals across larger areas of the visual field. Stimuli were random-dot kinematograms containing a horizontal motion signal, which was perturbed by a spatially localized, peripheral motion signal. Perturbations appeared in a gaze-contingent coordinate system and had a different direction than the main motion including a vertical component. We measured pursuit and perceptual direction discrimination decisions and found that both steady-state pursuit and perception were influenced most by perturbation angles close to that of the main motion signal and only in regions close to the center of gaze. The narrow direction bandwidth (26 angular degrees full width at half height) and small spatial extent (8 degrees of visual angle standard deviation) correspond closely to tuning parameters of neurons in the middle temporal area (MT). Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Self-Motion Perception: Assessment by Real-Time Computer Generated Animations

    Science.gov (United States)

    Parker, Donald E.

    1999-01-01

    Our overall goal is to develop materials and procedures for assessing vestibular contributions to spatial cognition. The specific objective of the research described in this paper is to evaluate computer-generated animations as potential tools for studying self-orientation and self-motion perception. Specific questions addressed in this study included the following. First, does a non- verbal perceptual reporting procedure using real-time animations improve assessment of spatial orientation? Are reports reliable? Second, do reports confirm expectations based on stimuli to vestibular apparatus? Third, can reliable reports be obtained when self-motion description vocabulary training is omitted?

  4. ZAG-Otolith: Modification of Otolith-Ocular Reflexes, Motion Perception and Manual Control during Variable Radius Centrifugation Following Space Flight

    Science.gov (United States)

    Wood, S. J.; Clarke, A. H.; Rupert, A. H.; Harm, D. L.; Clement, G. R.

    2009-01-01

    Two joint ESA-NASA studies are examining changes in otolith-ocular reflexes and motion perception following short duration space flights, and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data is currently being collected on astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation is utilized to elicit otolith reflexes in the lateral plane without concordant roll canal cues. Unilateral centrifugation (400 deg/s, 3.5 cm radius) stimulates one otolith positioned off-axis while the opposite side is centered over the axis of rotation. During this paradigm, roll-tilt perception is measured using a subjective visual vertical task and ocular counter-rolling is obtained using binocular video-oculography. During a second paradigm (216 deg/s, otolith-mediated reflexes correspond to one's ability to perform closed-loop nulling tasks following G-transitions, and whether manual control performance can be improved with vibrotactile feedback of orientation.

  5. Perceived radial translation during centrifugation

    NARCIS (Netherlands)

    Bos, J.E.; Correia Grácio, B.J.

    2015-01-01

    BACKGROUND: Linear acceleration generally gives rise to translation perception. Centripetal acceleration during centrifugation, however, has never been reported giving rise to a radial, inward translation perception. OBJECTIVE: To study whether centrifugation can induce a radial translation

  6. Illusory motion reveals velocity matching, not foveation, drives smooth pursuit of large objects.

    Science.gov (United States)

    Ma, Zheng; Watamaniuk, Scott N J; Heinen, Stephen J

    2017-10-01

    When small objects move in a scene, we keep them foveated with smooth pursuit eye movements. Although large objects such as people and animals are common, it is nonetheless unknown how we pursue them since they cannot be foveated. It might be that the brain calculates an object's centroid, and then centers the eyes on it during pursuit as a foveation mechanism might. Alternatively, the brain merely matches the velocity by motion integration. We test these alternatives with an illusory motion stimulus that translates at a speed different from its retinal motion. The stimulus was a Gabor array that translated at a fixed velocity, with component Gabors that drifted with motion consistent or inconsistent with the translation. Velocity matching predicts different pursuit behaviors across drift conditions, while centroid matching predicts no difference. We also tested whether pursuit can segregate and ignore irrelevant local drifts when motion and centroid information are consistent by surrounding the Gabors with solid frames. Finally, observers judged the global translational speed of the Gabors to determine whether smooth pursuit and motion perception share mechanisms. We found that consistent Gabor motion enhanced pursuit gain while inconsistent, opposite motion diminished it, drawing the eyes away from the center of the stimulus and supporting a motion-based pursuit drive. Catch-up saccades tended to counter the position offset, directing the eyes opposite to the deviation caused by the pursuit gain change. Surrounding the Gabors with visible frames canceled both the gain increase and the compensatory saccades. Perceived speed was modulated analogous to pursuit gain. The results suggest that smooth pursuit of large stimuli depends on the magnitude of integrated retinal motion information, not its retinal location, and that the position system might be unnecessary for generating smooth velocity to large pursuit targets.

  7. Perception of linear horizontal self-motion induced by peripheral vision /linearvection/ - Basic characteristics and visual-vestibular interactions

    Science.gov (United States)

    Berthoz, A.; Pavard, B.; Young, L. R.

    1975-01-01

    The basic characteristics of the sensation of linear horizontal motion have been studied. Objective linear motion was induced by means of a moving cart. Visually induced linear motion perception (linearvection) was obtained by projection of moving images at the periphery of the visual field. Image velocity and luminance thresholds for the appearance of linearvection have been measured and are in the range of those for image motion detection (without sensation of self motion) by the visual system. Latencies of onset are around 1 sec and short term adaptation has been shown. The dynamic range of the visual analyzer as judged by frequency analysis is lower than the vestibular analyzer. Conflicting situations in which visual cues contradict vestibular and other proprioceptive cues show, in the case of linearvection a dominance of vision which supports the idea of an essential although not independent role of vision in self motion perception.

  8. The Coordination Dynamics of Observational Learning: Relative Motion Direction and Relative Phase as Informational Content Linking Action-Perception to Action-Production.

    Science.gov (United States)

    Buchanan, John J

    2016-01-01

    The primary goal of this chapter is to merge together the visual perception perspective of observational learning and the coordination dynamics theory of pattern formation in perception and action. Emphasis is placed on identifying movement features that constrain and inform action-perception and action-production processes. Two sources of visual information are examined, relative motion direction and relative phase. The visual perception perspective states that the topological features of relative motion between limbs and joints remains invariant across an actor's motion and therefore are available for pickup by an observer. Relative phase has been put forth as an informational variable that links perception to action within the coordination dynamics theory. A primary assumption of the coordination dynamics approach is that environmental information is meaningful only in terms of the behavior it modifies. Across a series of single limb tasks and bimanual tasks it is shown that the relative motion and relative phase between limbs and joints is picked up through visual processes and supports observational learning of motor skills. Moreover, internal estimations of motor skill proficiency and competency are linked to the informational content found in relative motion and relative phase. Thus, the chapter links action to perception and vice versa and also links cognitive evaluations to the coordination dynamics that support action-perception and action-production processes.

  9. Perception of self motion during and after passive rotation of the body around an earth-vertical axis.

    Science.gov (United States)

    Sinha, N; Zaher, N; Shaikh, A G; Lasker, A G; Zee, D S; Tarnutzer, A A

    2008-01-01

    We investigated the perception of self-rotation using constant-velocity chair rotations. Subjects signalled self motion during three independent tasks (1) by pushing a button when rotation was first sensed, when velocity reached a peak, when velocity began to decrease, and when velocity reached zero, (2) by rotating a disc to match the perceived motion of the body, or (3) by changing the static position of the dial such that a bigger change in its position correlated with a larger perceived velocity. All three tasks gave a consistent quantitative measure of perceived angular velocity. We found a delay in the time at which peak velocity of self-rotation was perceived (2-5 s) relative to the beginning or to the end of chair rotation. In addition the decay of the perception of self-rotation was preceded by a sensed constant-velocity interval or plateau (9-14 s). This delay in the rise of self-motion perception, and the plateau for the maximum perceived velocity, contrasts with the rapid rise and the immediate decay of the angular vestibuloocular reflex (aVOR). This difference suggests that the sensory signal from the semicircular canals undergoes additional neural processing, beyond the contribution of the velocity-storage mechanism of the aVOR, to compute the percept of self-motion.

  10. Object Manipulation and Motion Perception: Evidence of an Influence of Action Planning on Visual Processing

    NARCIS (Netherlands)

    Lindemann, O.; Bekkering, H.

    2009-01-01

    In 3 experiments, the authors investigated the bidirectional coupling of perception and action in the context of object manipulations and motion perception. Participants prepared to grasp an X-shaped object along one of its 2 diagonals and to rotate it in a clockwise or a counterclockwise direction.

  11. Neurons compute internal models of the physical laws of motion.

    Science.gov (United States)

    Angelaki, Dora E; Shaikh, Aasef G; Green, Andrea M; Dickman, J David

    2004-07-29

    A critical step in self-motion perception and spatial awareness is the integration of motion cues from multiple sensory organs that individually do not provide an accurate representation of the physical world. One of the best-studied sensory ambiguities is found in visual processing, and arises because of the inherent uncertainty in detecting the motion direction of an untextured contour moving within a small aperture. A similar sensory ambiguity arises in identifying the actual motion associated with linear accelerations sensed by the otolith organs in the inner ear. These internal linear accelerometers respond identically during translational motion (for example, running forward) and gravitational accelerations experienced as we reorient the head relative to gravity (that is, head tilt). Using new stimulus combinations, we identify here cerebellar and brainstem motion-sensitive neurons that compute a solution to the inertial motion detection problem. We show that the firing rates of these populations of neurons reflect the computations necessary to construct an internal model representation of the physical equations of motion.

  12. Primary visual cortex activity along the apparent-motion trace reflects illusory perception.

    Directory of Open Access Journals (Sweden)

    Lars Muckli

    2005-08-01

    Full Text Available The illusion of apparent motion can be induced when visual stimuli are successively presented at different locations. It has been shown in previous studies that motion-sensitive regions in extrastriate cortex are relevant for the processing of apparent motion, but it is unclear whether primary visual cortex (V1 is also involved in the representation of the illusory motion path. We investigated, in human subjects, apparent-motion-related activity in patches of V1 representing locations along the path of illusory stimulus motion using functional magnetic resonance imaging. Here we show that apparent motion caused a blood-oxygenation-level-dependent response along the V1 representations of the apparent-motion path, including regions that were not directly activated by the apparent-motion-inducing stimuli. This response was unaltered when participants had to perform an attention-demanding task that diverted their attention away from the stimulus. With a bistable motion quartet, we confirmed that the activity was related to the conscious perception of movement. Our data suggest that V1 is part of the network that represents the illusory path of apparent motion. The activation in V1 can be explained either by lateral interactions within V1 or by feedback mechanisms from higher visual areas, especially the motion-sensitive human MT/V5 complex.

  13. What women like: influence of motion and form on esthetic body perception

    Directory of Open Access Journals (Sweden)

    Valentina eCazzato

    2012-07-01

    Full Text Available Several studies have shown the distinct contribution of motion and form to the esthetic evaluation of female bodies. Here, we investigated how variations of implied motion and body size interact in the esthetic evaluation of female and male bodies in a sample of young healthy women. Participants provided attractiveness, beauty, and liking ratings for the shape and posture of virtual renderings of human bodies with variable body size and implied motion. The esthetic judgments for both shape and posture of human models were influenced by body size and implied motion, with a preference for thinner and more dynamic stimuli. Implied motion, however, attenuated the impact of extreme body size on the esthetic evaluation of body postures, and body size variations did not affect the preference for more dynamic stimuli. Results show that body form and action cues interact in esthetic perception, but the final esthetic appreciation of human bodies is predicted by a mixture of perceptual and affective evaluative components.

  14. Motion interactive video games in home training for children with cerebral palsy: parents' perceptions.

    Science.gov (United States)

    Sandlund, Marlene; Dock, Katarina; Häger, Charlotte K; Waterworth, Eva Lindh

    2012-01-01

    To explore parents' perceptions of using low-cost motion interactive video games as home training for their children with mild/moderate cerebral palsy. Semi-structured interviews were carried out with parents from 15 families after participation in an intervention where motion interactive games were used daily in home training for their child. A qualitative content analysis approach was applied. The parents' perception of the training was very positive. They expressed the view that motion interactive video games may promote positive experiences of physical training in rehabilitation, where the social aspects of gaming were especially valued. Further, the parents experienced less need to take on coaching while gaming stimulated independent training. However, there was a desire for more controlled and individualized games to better challenge the specific rehabilitative need of each child. Low-cost motion interactive games may provide increased motivation and social interaction to home training and promote independent training with reduced coaching efforts for the parents. In future designs of interactive games for rehabilitation purposes, it is important to preserve the motivational and social features of games while optimizing the individualized physical exercise.

  15. Combined fMRI- and eye movement-based decoding of bistable plaid motion perception.

    Science.gov (United States)

    Wilbertz, Gregor; Ketkar, Madhura; Guggenmos, Matthias; Sterzer, Philipp

    2018-05-01

    The phenomenon of bistable perception, in which perception alternates spontaneously despite constant sensory stimulation, has been particularly useful in probing the neural bases of conscious perception. The study of such bistability requires access to the observer's perceptual dynamics, which is usually achieved via active report. This report, however, constitutes a confounding factor in the study of conscious perception and can also be biased in the context of certain experimental manipulations. One approach to circumvent these problems is to track perceptual alternations using signals from the eyes or the brain instead of observers' reports. Here we aimed to optimize such decoding of perceptual alternations by combining eye and brain signals. Eye-tracking and functional magnetic resonance imaging (fMRI) was performed in twenty participants while they viewed a bistable visual plaid motion stimulus and reported perceptual alternations. Multivoxel pattern analysis (MVPA) for fMRI was combined with eye-tracking in a Support vector machine to decode participants' perceptual time courses from fMRI and eye-movement signals. While both measures individually already yielded high decoding accuracies (on average 86% and 88% correct, respectively) classification based on the two measures together further improved the accuracy (91% correct). These findings show that leveraging on both fMRI and eye movement data may pave the way for optimized no-report paradigms through improved decodability of bistable motion perception and hence for a better understanding of the neural correlates of consciousness. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. The Independent and Shared Mechanisms of Intrinsic Brain Dynamics: Insights From Bistable Perception

    Directory of Open Access Journals (Sweden)

    Teng Cao

    2018-04-01

    Full Text Available In bistable perception, constant input leads to alternating perception. The dynamics of the changing perception reflects the intrinsic dynamic properties of the “unconscious inferential” process in the brain. Under the same condition, individuals differ in how fast they experience the perceptual alternation. In this study, testing many forms of bistable perception in a large number of observers, we investigated the key question of whether there is a general and common mechanism or multiple and independent mechanisms that control the dynamics of the inferential brain. Bistable phenomena tested include binocular rivalry, vase-face, Necker cube, moving plaid, motion induced blindness, biological motion, spinning dancer, rotating cylinder, Lissajous-figure, rolling wheel, and translating diamond. Switching dynamics for each bistable percept was measured in 100 observers. Results show that the switching rates of subsets of bistable percept are highly correlated. The clustering of dynamic properties of some bistable phenomena but not an overall general control of switching dynamics implies that the brain’s inferential processes are both shared and independent – faster in constructing 3D structure from motion does not mean faster in integrating components into an objects.

  17. Visual working memory contents bias ambiguous structure from motion perception.

    Directory of Open Access Journals (Sweden)

    Lisa Scocchia

    Full Text Available The way we perceive the visual world depends crucially on the state of the observer. In the present study we show that what we are holding in working memory (WM can bias the way we perceive ambiguous structure from motion stimuli. Holding in memory the percept of an unambiguously rotating sphere influenced the perceived direction of motion of an ambiguously rotating sphere presented shortly thereafter. In particular, we found a systematic difference between congruent dominance periods where the perceived direction of the ambiguous stimulus corresponded to the direction of the unambiguous one and incongruent dominance periods. Congruent dominance periods were more frequent when participants memorized the speed of the unambiguous sphere for delayed discrimination than when they performed an immediate judgment on a change in its speed. The analysis of dominance time-course showed that a sustained tendency to perceive the same direction of motion as the prior stimulus emerged only in the WM condition, whereas in the attention condition perceptual dominance dropped to chance levels at the end of the trial. The results are explained in terms of a direct involvement of early visual areas in the active representation of visual motion in WM.

  18. Morphing technique reveals intact perception of object motion and disturbed perception of emotional expressions by low-functioning adolescents with Autism Spectrum Disorder.

    Science.gov (United States)

    Han, Bora; Tijus, Charles; Le Barillier, Florence; Nadel, Jacqueline

    2015-12-01

    A morphing procedure has been designed to compare directly the perception of emotional expressions and of moving objects. Morphing tasks were presented to 12 low-functioning teenagers with Autism Spectrum Disorder (LF ASD) compared to 12 developmental age-matched typical children and a group presenting ceiling performance. In a first study, when presented with morphed stimuli of objects and emotional faces, LF ASD showed an intact perception of object change of state together with an impaired perception of emotional facial change of state. In a second study, an eye-tracker recorded visual exploration of morphed emotional stimuli displayed by a human face and a robotic set-up. Facing the morphed robotic stimuli, LF ASD displayed equal duration of fixations toward emotional regions and toward mechanical sources of motion, while the typical groups tracked the emotional regions only. Altogether the findings of the two studies suggest that individuals with ASD process motion rather than emotional signals when facing facial expressions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Motion of two spheres translating and rotating through a viscous fluid with slip surfaces

    International Nuclear Information System (INIS)

    Saad, E I

    2012-01-01

    The axisymmetrical motion of two spherical particles translating along and rotating about a common line that joins their centers in viscous fluid with slip flow boundary conditions on their surfaces has been studied numerically. The particles may differ in radius and in translational and angular velocities. Under the Stokesian approximation, a general solution is constructed from the superposition of the basic functions in the two spherical coordinate systems based on the centers of the particles. The boundary conditions at their surfaces are satisfied by the collocation technique. Numerical results for the normalized drag force and couple acting on each sphere are obtained for various values of the slip coefficients, size ratio, separation parameter, and velocity ratio of the particles. The normalized force and couple on each particle reach the single particle limit as the distance between the centers grows large enough and each particle may then be translated and rotated independently of each other. The accuracy of the numerical technique has been tested against the known analytical solution for two spheres with no-slip surfaces. (paper)

  20. Adaptation, translation and reliability of the Australian 'Juniors Enjoying Cricket Safely' injury risk perception questionnaire for Sri Lanka.

    Science.gov (United States)

    Gamage, Prasanna J; Fortington, Lauren V; Finch, Caroline F

    2018-01-01

    Cricket is a very popular sport in Sri Lanka. In this setting there has been limited research; specifically, there is little knowledge of cricket injuries. To support future research possibilities, the aim of this study was to cross-culturally adapt, translate and test the reliability of an Australian-developed questionnaire for the Sri Lankan context. The Australian 'Juniors Enjoying Cricket Safely' (JECS-Aus) injury risk perception questionnaire was cross-culturally adapted to suit the Sri Lankan context and subsequently translated into the two main languages (Sinhala and Tamil) based on standard forward-back translation. The translated questionnaires were examined for content validity by two language schoolteachers. The questionnaires were completed twice, 2 weeks apart, by two groups of school cricketers (males) aged 11-15 years (Sinhala (n=24), Tamil (n=30)) to assess reliability. Test-retest scores were evaluated for agreement. Where responses were statistics were calculated. Questions with moderate-to-poor test-retest reliability (κAus questionnaire for use in a different population, providing an outcome measure for assessing injury risk perceptions in Sri Lankan junior cricketers.

  1. Color improves speed of processing but not perception in a motion illusion

    Directory of Open Access Journals (Sweden)

    Carolyn J Perry

    2012-03-01

    Full Text Available When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, the addition of color reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception. We propose 4 potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception. Potential neural bases are also explored.

  2. Color improves speed of processing but not perception in a motion illusion.

    Science.gov (United States)

    Perry, Carolyn J; Fallah, Mazyar

    2012-01-01

    When two superimposed surfaces of dots move in different directions, the perceived directions are shifted away from each other. This perceptual illusion has been termed direction repulsion and is thought to be due to mutual inhibition between the representations of the two directions. It has further been shown that a speed difference between the two surfaces attenuates direction repulsion. As speed and direction are both necessary components of representing motion, the reduction in direction repulsion can be attributed to the additional motion information strengthening the representations of the two directions and thus reducing the mutual inhibition. We tested whether bottom-up attention and top-down task demands, in the form of color differences between the two surfaces, would also enhance motion processing, reducing direction repulsion. We found that the addition of color differences did not improve direction discrimination and reduce direction repulsion. However, we did find that adding a color difference improved performance on the task. We hypothesized that the performance differences were due to the limited presentation time of the stimuli. We tested this in a follow-up experiment where we varied the time of presentation to determine the duration needed to successfully perform the task with and without the color difference. As we expected, color segmentation reduced the amount of time needed to process and encode both directions of motion. Thus we find a dissociation between the effects of attention on the speed of processing and conscious perception of direction. We propose four potential mechanisms wherein color speeds figure-ground segmentation of an object, attentional switching between objects, direction discrimination and/or the accumulation of motion information for decision-making, without affecting conscious perception of the direction. Potential neural bases are also explored.

  3. Do we track what we see? Common versus independent processing for motion perception and smooth pursuit eye movements: a review.

    Science.gov (United States)

    Spering, Miriam; Montagnini, Anna

    2011-04-22

    Many neurophysiological studies in monkeys have indicated that visual motion information for the guidance of perception and smooth pursuit eye movements is - at an early stage - processed in the same visual pathway in the brain, crucially involving the middle temporal area (MT). However, these studies left some questions unanswered: Are perception and pursuit driven by the same or independent neuronal signals within this pathway? Are the perceptual interpretation of visual motion information and the motor response to visual signals limited by the same source of neuronal noise? Here, we review psychophysical studies that were motivated by these questions and compared perception and pursuit behaviorally in healthy human observers. We further review studies that focused on the interaction between perception and pursuit. The majority of results point to similarities between perception and pursuit, but dissociations were also reported. We discuss recent developments in this research area and conclude with suggestions for common and separate principles for the guidance of perceptual and motor responses to visual motion information. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Teachers and Learners’ Perceptions of Applying Translation as a Method, Strategy, or Technique in an Iranian EFL Setting

    Directory of Open Access Journals (Sweden)

    Fatemeh Mollaei

    2017-04-01

    Full Text Available It has been found that translation is an efficient means to teach/learn grammar, syntax, and lexis of a foreign language. Meanwhile, translation is good for beginners who do not still enjoy the critical level of proficiency in their target language for expression.  This study was conducted to examine the teachers and learners’ perceptions of employing translation in the foreign language classroom; i.e., the effects, merits, demerits, limitations, as well as its use as a method, strategy or technique. Both quantitative and qualitative methods were used to collect and analyze the data from graduate and undergraduate learners (n=56 and teachers (n=44, male and female, who responded to two questionnaires. Additionally, only the teachers were interviewed to gain richer insight into their perceptions and attitudes. According to the results of independent samples t-test, there was no significant difference between teachers and learners’ attitude to applying translation as a method, strategy, or technique in learning a foreign language.  Based on the interview results, some teachers believed that employing translation in the foreign language context was helpful but not constantly. They claimed that translation was only effective in teaching vocabulary and grammar apart from leaners’ proficiency level as it can clarify meaning. But some other teachers noted that mother tongue would interfere with learning foreign language; they considered translation as a time-consuming activity through which students cannot capture the exact meaning.

  5. Whole-Motion Model of Perception during Forward- and Backward-Facing Centrifuge Runs

    Science.gov (United States)

    Holly, Jan E.; Vrublevskis, Arturs; Carlson, Lindsay E.

    2009-01-01

    Illusory perceptions of motion and orientation arise during human centrifuge runs without vision. Asymmetries have been found between acceleration and deceleration, and between forward-facing and backward-facing runs. Perceived roll tilt has been studied extensively during upright fixed-carriage centrifuge runs, and other components have been studied to a lesser extent. Certain, but not all, perceptual asymmetries in acceleration-vs-deceleration and forward-vs-backward motion can be explained by existing analyses. The immediate acceleration-deceleration roll-tilt asymmetry can be explained by the three-dimensional physics of the external stimulus; in addition, longer-term data has been modeled in a standard way using physiological time constants. However, the standard modeling approach is shown in the present research to predict forward-vs-backward-facing symmetry in perceived roll tilt, contradicting experimental data, and to predict perceived sideways motion, rather than forward or backward motion, around a curve. The present work develops a different whole-motion-based model taking into account the three-dimensional form of perceived motion and orientation. This model predicts perceived forward or backward motion around a curve, and predicts additional asymmetries such as the forward-backward difference in roll tilt. This model is based upon many of the same principles as the standard model, but includes an additional concept of familiarity of motions as a whole. PMID:19208962

  6. Velocity storage contribution to vestibular self-motion perception in healthy human subjects.

    Science.gov (United States)

    Bertolini, G; Ramat, S; Laurens, J; Bockisch, C J; Marti, S; Straumann, D; Palla, A

    2011-01-01

    Self-motion perception after a sudden stop from a sustained rotation in darkness lasts approximately as long as reflexive eye movements. We hypothesized that, after an angular velocity step, self-motion perception and reflexive eye movements are driven by the same vestibular pathways. In 16 healthy subjects (25-71 years of age), perceived rotational velocity (PRV) and the vestibulo-ocular reflex (rVOR) after sudden decelerations (90°/s(2)) from constant-velocity (90°/s) earth-vertical axis rotations were simultaneously measured (PRV reported by hand-lever turning; rVOR recorded by search coils). Subjects were upright (yaw) or 90° left-ear-down (pitch). After both yaw and pitch decelerations, PRV rose rapidly and showed a plateau before decaying. In contrast, slow-phase eye velocity (SPV) decayed immediately after the initial increase. SPV and PRV were fitted with the sum of two exponentials: one time constant accounting for the semicircular canal (SCC) dynamics and one time constant accounting for a central process, known as velocity storage mechanism (VSM). Parameters were constrained by requiring equal SCC time constant and VSM time constant for SPV and PRV. The gains weighting the two exponential functions were free to change. SPV were accurately fitted (variance-accounted-for: 0.85 ± 0.10) and PRV (variance-accounted-for: 0.86 ± 0.07), showing that SPV and PRV curve differences can be explained by a greater relative weight of VSM in PRV compared with SPV (twofold for yaw, threefold for pitch). These results support our hypothesis that self-motion perception after angular velocity steps is be driven by the same central vestibular processes as reflexive eye movements and that no additional mechanisms are required to explain the perceptual dynamics.

  7. The Maximum Cross-Correlation approach to detecting translational motions from sequential remote-sensing images

    Science.gov (United States)

    Gao, J.; Lythe, M. B.

    1996-06-01

    This paper presents the principle of the Maximum Cross-Correlation (MCC) approach in detecting translational motions within dynamic fields from time-sequential remotely sensed images. A C program implementing the approach is presented and illustrated in a flowchart. The program is tested with a pair of sea-surface temperature images derived from Advanced Very High Resolution Radiometer (AVHRR) images near East Cape, New Zealand. Results show that the mean currents in the region have been detected satisfactorily with the approach.

  8. Examining the Effect of Age on Visual-Vestibular Self-Motion Perception Using a Driving Paradigm.

    Science.gov (United States)

    Ramkhalawansingh, Robert; Keshavarz, Behrang; Haycock, Bruce; Shahab, Saba; Campos, Jennifer L

    2017-05-01

    Previous psychophysical research has examined how younger adults and non-human primates integrate visual and vestibular cues to perceive self-motion. However, there is much to be learned about how multisensory self-motion perception changes with age, and how these changes affect performance on everyday tasks involving self-motion. Evidence suggests that older adults display heightened multisensory integration compared with younger adults; however, few previous studies have examined this for visual-vestibular integration. To explore age differences in the way that visual and vestibular cues contribute to self-motion perception, we had younger and older participants complete a basic driving task containing visual and vestibular cues. We compared their performance against a previously established control group that experienced visual cues alone. Performance measures included speed, speed variability, and lateral position. Vestibular inputs resulted in more precise speed control among older adults, but not younger adults, when traversing curves. Older adults demonstrated more variability in lateral position when vestibular inputs were available versus when they were absent. These observations align with previous evidence of age-related differences in multisensory integration and demonstrate that they may extend to visual-vestibular integration. These findings may have implications for vehicle and simulator design when considering older users.

  9. Self-motion perception and vestibulo-ocular reflex during whole body yaw rotation in standing subjects: the role of head position and neck proprioception.

    Science.gov (United States)

    Panichi, Roberto; Botti, Fabio Massimo; Ferraresi, Aldo; Faralli, Mario; Kyriakareli, Artemis; Schieppati, Marco; Pettorossi, Vito Enrico

    2011-04-01

    Self-motion perception and vestibulo-ocular reflex (VOR) were studied during whole body yaw rotation in the dark at different static head positions. Rotations consisted of four cycles of symmetric sinusoidal and asymmetric oscillations. Self-motion perception was evaluated by measuring the ability of subjects to manually track a static remembered target. VOR was recorded separately and the slow phase eye position (SPEP) was computed. Three different head static yaw deviations (active and passive) relative to the trunk (0°, 45° to right and 45° to left) were examined. Active head deviations had a significant effect during asymmetric oscillation: the movement perception was enhanced when the head was kept turned toward the side of body rotation and decreased in the opposite direction. Conversely, passive head deviations had no effect on movement perception. Further, vibration (100 Hz) of the neck muscles splenius capitis and sternocleidomastoideus remarkably influenced perceived rotation during asymmetric oscillation. On the other hand, SPEP of VOR was modulated by active head deviation, but was not influenced by neck muscle vibration. Through its effects on motion perception and reflex gain, head position improved gaze stability and enhanced self-motion perception in the direction of the head deviation. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Validating the Japanese translation of the Force and Motion Conceptual Evaluation and comparing performance levels of American and Japanese students

    Directory of Open Access Journals (Sweden)

    Michi Ishimoto

    2014-08-01

    Full Text Available This study assesses the Japanese translation of the Force and Motion Conceptual Evaluation (FMCE. Researchers are often interested in comparing the conceptual ideas of students with different cultural backgrounds. The FMCE has been useful in identifying the concepts of English-speaking students from different backgrounds. To identify effectively the conceptual ideas of Japanese students and to compare them to those of their English-speaking counterparts, more work is required. Because of differences between the Japanese and English languages, and between the Japanese and American educational systems, it is important to assess the Japanese translation of the FMCE, a conceptual evaluation originally developed in English for American students. To assess its appropriateness, we examined the performance of a large sample of students on the translated version of the FMCE and then compared the results to those of English-speaking students. The data comprise the pretest results of 1095 students, most of whom were first-year students at a midlevel engineering school between 2003 and 2012. Basic statistics and the classical test theory indices of the translated FMCE indicate that its reliability and discrimination are appropriate to assess Japanese students’ concepts about force and motion. In general, the preconcepts of Japanese students assessed with the Japanese translation of the FMCE are quite similar to those of American students assessed with the FMCE, thereby supporting the validity of the translated version. However, our findings do show (1 that only a small percentage of Japanese students grasped Newtonian concepts and (2 that the percentage of Japanese students who used two different concept models together to answer some questions seems to be higher than that of American students.

  11. Validating the Japanese translation of the Force and Motion Conceptual Evaluation and comparing performance levels of American and Japanese students

    Science.gov (United States)

    Ishimoto, Michi; Thornton, Ronald K.; Sokoloff, David R.

    2014-12-01

    This study assesses the Japanese translation of the Force and Motion Conceptual Evaluation (FMCE). Researchers are often interested in comparing the conceptual ideas of students with different cultural backgrounds. The FMCE has been useful in identifying the concepts of English-speaking students from different backgrounds. To identify effectively the conceptual ideas of Japanese students and to compare them to those of their English-speaking counterparts, more work is required. Because of differences between the Japanese and English languages, and between the Japanese and American educational systems, it is important to assess the Japanese translation of the FMCE, a conceptual evaluation originally developed in English for American students. To assess its appropriateness, we examined the performance of a large sample of students on the translated version of the FMCE and then compared the results to those of English-speaking students. The data comprise the pretest results of 1095 students, most of whom were first-year students at a midlevel engineering school between 2003 and 2012. Basic statistics and the classical test theory indices of the translated FMCE indicate that its reliability and discrimination are appropriate to assess Japanese students' concepts about force and motion. In general, the preconcepts of Japanese students assessed with the Japanese translation of the FMCE are quite similar to those of American students assessed with the FMCE, thereby supporting the validity of the translated version. However, our findings do show (1) that only a small percentage of Japanese students grasped Newtonian concepts and (2) that the percentage of Japanese students who used two different concept models together to answer some questions seems to be higher than that of American students.

  12. Comparison of two Simon tasks: neuronal correlates of conflict resolution based on coherent motion perception.

    Science.gov (United States)

    Wittfoth, Matthias; Buck, Daniela; Fahle, Manfred; Herrmann, Manfred

    2006-08-15

    The present study aimed at characterizing the neural correlates of conflict resolution in two variations of the Simon effect. We introduced two different Simon tasks where subjects had to identify shapes on the basis of form-from-motion perception (FFMo) within a randomly moving dot field, while (1) motion direction (motion-based Simon task) or (2) stimulus location (location-based Simon task) had to be ignored. Behavioral data revealed that both types of Simon tasks induced highly significant interference effects. Using event-related fMRI, we could demonstrate that both tasks share a common cluster of activated brain regions during conflict resolution (pre-supplementary motor area (pre-SMA), superior parietal lobule (SPL), and cuneus) but also show task-specific activation patterns (left superior temporal cortex in the motion-based, and the left fusiform gyrus in the location-based Simon task). Although motion-based and location-based Simon tasks are conceptually very similar (Type 3 stimulus-response ensembles according to the taxonomy of [Kornblum, S., Stevens, G. (2002). Sequential effects of dimensional overlap: findings and issues. In: Prinz, W., Hommel., B. (Eds.), Common mechanism in perception and action. Oxford University Press, Oxford, pp. 9-54]) conflict resolution in both tasks results in the activation of different task-specific regions probably related to the different sources of task-irrelevant information. Furthermore, the present data give evidence those task-specific regions are most likely to detect the relationship between task-relevant and task-irrelevant information.

  13. The economics of motion perception and invariants of visual sensitivity.

    Science.gov (United States)

    Gepshtein, Sergei; Tyukin, Ivan; Kubovy, Michael

    2007-06-21

    Neural systems face the challenge of optimizing their performance with limited resources, just as economic systems do. Here, we use tools of neoclassical economic theory to explore how a frugal visual system should use a limited number of neurons to optimize perception of motion. The theory prescribes that vision should allocate its resources to different conditions of stimulation according to the degree of balance between measurement uncertainties and stimulus uncertainties. We find that human vision approximately follows the optimal prescription. The equilibrium theory explains why human visual sensitivity is distributed the way it is and why qualitatively different regimes of apparent motion are observed at different speeds. The theory offers a new normative framework for understanding the mechanisms of visual sensitivity at the threshold of visibility and above the threshold and predicts large-scale changes in visual sensitivity in response to changes in the statistics of stimulation and system goals.

  14. Spectral fingerprints of large-scale cortical dynamics during ambiguous motion perception.

    Science.gov (United States)

    Helfrich, Randolph F; Knepper, Hannah; Nolte, Guido; Sengelmann, Malte; König, Peter; Schneider, Till R; Engel, Andreas K

    2016-11-01

    Ambiguous stimuli have been widely used to study the neuronal correlates of consciousness. Recently, it has been suggested that conscious perception might arise from the dynamic interplay of functionally specialized but widely distributed cortical areas. While previous research mainly focused on phase coupling as a correlate of cortical communication, more recent findings indicated that additional coupling modes might coexist and possibly subserve distinct cortical functions. Here, we studied two coupling modes, namely phase and envelope coupling, which might differ in their origins, putative functions and dynamics. Therefore, we recorded 128-channel EEG while participants performed a bistable motion task and utilized state-of-the-art source-space connectivity analysis techniques to study the functional relevance of different coupling modes for cortical communication. Our results indicate that gamma-band phase coupling in extrastriate visual cortex might mediate the integration of visual tokens into a moving stimulus during ambiguous visual stimulation. Furthermore, our results suggest that long-range fronto-occipital gamma-band envelope coupling sustains the horizontal percept during ambiguous motion perception. Additionally, our results support the idea that local parieto-occipital alpha-band phase coupling controls the inter-hemispheric information transfer. These findings provide correlative evidence for the notion that synchronized oscillatory brain activity reflects the processing of sensory input as well as the information integration across several spatiotemporal scales. The results indicate that distinct coupling modes are involved in different cortical computations and that the rich spatiotemporal correlation structure of the brain might constitute the functional architecture for cortical processing and specific multi-site communication. Hum Brain Mapp 37:4099-4111, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Long-lasting effects of neck muscle vibration and contraction on self-motion perception of vestibular origin.

    Science.gov (United States)

    Pettorossi, Vito Enrico; Panichi, Roberto; Botti, Fabio Massimo; Biscarini, Andrea; Filippi, Guido Maria; Schieppati, Marco

    2015-10-01

    To show that neck proprioceptive input can induce long-term effects on vestibular-dependent self-motion perception. Motion perception was assessed by measuring the subject's error in tracking in the dark the remembered position of a fixed target during whole-body yaw asymmetric rotation of a supporting platform, consisting in a fast rightward half-cycle and a slow leftward half-cycle returning the subject to the initial position. Neck muscles were relaxed or voluntarily contracted, and/or vibrated. Whole-body rotation was administered during or at various intervals after the vibration train. The tracking position error (TPE) at the end of the platform rotation was measured during and after the muscle conditioning maneuvers. Neck input produced immediate and sustained changes in the vestibular perceptual response to whole-body rotation. Vibration of the left sterno-cleido-mastoideus (SCM) or right splenius capitis (SC) or isometric neck muscle effort to rotate the head to the right enhanced the TPE by decreasing the perception of the slow rotation. The reverse effect was observed by activating the contralateral muscle. The effects persisted after the end of SCM conditioning, and slowly vanished within several hours, as tested by late asymmetric rotations. The aftereffect increased in amplitude and persistence by extending the duration of the vibration train (from 1 to 10min), augmenting the vibration frequency (from 5 to 100Hz) or contracting the vibrated muscle. Symmetric yaw rotation elicited a negligible TPE, upon which neck muscle vibrations were ineffective. Neck proprioceptive input induces enduring changes in vestibular-dependent self-motion perception, conditional on the vestibular stimulus feature, and on the side and the characteristics of vibration and status of vibrated muscles. This shows that our perception of whole-body yaw-rotation is not only dependent on accurate vestibular information, but is modulated by proprioceptive information related to

  16. Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data.

    Directory of Open Access Journals (Sweden)

    Marko Wilke

    Full Text Available Subject motion has long since been known to be a major confound in functional MRI studies of the human brain. For resting-state functional MRI in particular, data corruption due to motion artefacts has been shown to be most relevant. However, despite 6 parameters (3 for translations and 3 for rotations being required to fully describe the head's motion trajectory between timepoints, not all are routinely used to assess subject motion. Using structural (n = 964 as well as functional MRI (n = 200 data from public repositories, a series of experiments was performed to assess the impact of using a reduced parameter set (translationonly and rotationonly versus using the complete parameter set. It could be shown that the usage of 65 mm as an indicator of the average cortical distance is a valid approximation in adults, although care must be taken when comparing children and adults using the same measure. The effect of using slightly smaller or larger values is minimal. Further, both translationonly and rotationonly severely underestimate the full extent of subject motion; consequently, both translationonly and rotationonly discard substantially fewer datapoints when used for quality control purposes ("motion scrubbing". Finally, both translationonly and rotationonly severely underperform in predicting the full extent of the signal changes and the overall variance explained by motion in functional MRI data. These results suggest that a comprehensive measure, taking into account all available parameters, should be used to characterize subject motion in fMRI.

  17. Isolated assessment of translation or rotation severely underestimates the effects of subject motion in fMRI data.

    Science.gov (United States)

    Wilke, Marko

    2014-01-01

    Subject motion has long since been known to be a major confound in functional MRI studies of the human brain. For resting-state functional MRI in particular, data corruption due to motion artefacts has been shown to be most relevant. However, despite 6 parameters (3 for translations and 3 for rotations) being required to fully describe the head's motion trajectory between timepoints, not all are routinely used to assess subject motion. Using structural (n = 964) as well as functional MRI (n = 200) data from public repositories, a series of experiments was performed to assess the impact of using a reduced parameter set (translationonly and rotationonly) versus using the complete parameter set. It could be shown that the usage of 65 mm as an indicator of the average cortical distance is a valid approximation in adults, although care must be taken when comparing children and adults using the same measure. The effect of using slightly smaller or larger values is minimal. Further, both translationonly and rotationonly severely underestimate the full extent of subject motion; consequently, both translationonly and rotationonly discard substantially fewer datapoints when used for quality control purposes ("motion scrubbing"). Finally, both translationonly and rotationonly severely underperform in predicting the full extent of the signal changes and the overall variance explained by motion in functional MRI data. These results suggest that a comprehensive measure, taking into account all available parameters, should be used to characterize subject motion in fMRI.

  18. The 50s cliff: a decline in perceptuo-motor learning, not a deficit in visual motion perception.

    Science.gov (United States)

    Ren, Jie; Huang, Shaochen; Zhang, Jiancheng; Zhu, Qin; Wilson, Andrew D; Snapp-Childs, Winona; Bingham, Geoffrey P

    2015-01-01

    Previously, we measured perceptuo-motor learning rates across the lifespan and found a sudden drop in learning rates between ages 50 and 60, called the "50s cliff." The task was a unimanual visual rhythmic coordination task in which participants used a joystick to oscillate one dot in a display in coordination with another dot oscillated by a computer. Participants learned to produce a coordination with a 90° relative phase relation between the dots. Learning rates for participants over 60 were half those of younger participants. Given existing evidence for visual motion perception deficits in people over 60 and the role of visual motion perception in the coordination task, it remained unclear whether the 50s cliff reflected onset of this deficit or a genuine decline in perceptuo-motor learning. The current work addressed this question. Two groups of 12 participants in each of four age ranges (20s, 50s, 60s, 70s) learned to perform a bimanual coordination of 90° relative phase. One group trained with only haptic information and the other group with both haptic and visual information about relative phase. Both groups were tested in both information conditions at baseline and post-test. If the 50s cliff was caused by an age dependent deficit in visual motion perception, then older participants in the visual group should have exhibited less learning than those in the haptic group, which should not exhibit the 50s cliff, and older participants in both groups should have performed less well when tested with visual information. Neither of these expectations was confirmed by the results, so we concluded that the 50s cliff reflects a genuine decline in perceptuo-motor learning with aging, not the onset of a deficit in visual motion perception.

  19. Structure-from-motion: dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation.

    Science.gov (United States)

    Pastukhov, Alexander; Braun, Jochen

    2013-02-01

    In the structure-from-motion paradigm, physical motion on a screen produces the vivid illusion of an object rotating in depth. Here, we show how to dissociate illusory depth and illusory rotation in a structure-from-motion stimulus using a rotationally asymmetric shape and reversals of physical motion. Reversals of physical motion create a conflict between the original illusory states and the new physical motion: Either illusory depth remains constant and illusory rotation reverses, or illusory rotation stays the same and illusory depth reverses. When physical motion reverses after the interruption in presentation, we find that illusory rotation tends to remain constant for long blank durations (T (blank) ≥ 0.5 s), but illusory depth is stabilized if interruptions are short (T (blank) ≤ 0.1 s). The stability of illusory depth over brief interruptions is consistent with the effect of neural persistence. When this is curtailed using a mask, stability of ambiguous vision (for either illusory depth or illusory rotation) is disrupted. We also examined the selectivity of the neural persistence of illusory depth. We found that it relies on a static representation of an interpolated illusory object, since changes to low-level display properties had little detrimental effect. We discuss our findings with respect to other types of history dependence in multistable displays (sensory stabilization memory, neural fatigue, etc.). Our results suggest that when brief interruptions are used during the presentation of multistable displays, switches in perception are likely to rely on the same neural mechanisms as spontaneous switches, rather than switches due to the initial percept choice at the stimulus onset.

  20. 6-C polarization analysis using point measurements of translational and rotational ground-motion: theory and applications

    Science.gov (United States)

    Sollberger, David; Greenhalgh, Stewart A.; Schmelzbach, Cedric; Van Renterghem, Cédéric; Robertsson, Johan O. A.

    2018-04-01

    We provide a six-component (6-C) polarization model for P-, SV-, SH-, Rayleigh-, and Love-waves both inside an elastic medium as well as at the free surface. It is shown that single-station 6-C data comprised of three components of rotational motion and three components of translational motion provide the opportunity to unambiguously identify the wave type, propagation direction, and local P- and S-wave velocities at the receiver location by use of polarization analysis. To extract such information by conventional processing of three-component (3-C) translational data would require large and dense receiver arrays. The additional rotational components allow the extension of the rank of the coherency matrix used for polarization analysis. This enables us to accurately determine the wave type and wave parameters (propagation direction and velocity) of seismic phases, even if more than one wave is present in the analysis time window. This is not possible with standard, pure-translational 3-C recordings. In order to identify modes of vibration and to extract the accompanying wave parameters, we adapt the multiple signal classification algorithm (MUSIC). Due to the strong nonlinearity of the MUSIC estimator function, it can be used to detect the presence of specific wave types within the analysis time window at very high resolution. We show how the extracted wavefield properties can be used, in a fully automated way, to separate the wavefield into its different wave modes using only a single 6-C recording station. As an example, we apply the method to remove surface wave energy while preserving the underlying reflection signal and to suppress energy originating from undesired directions, such as side-scattered waves.

  1. The effect of oxytocin on biological motion perception in dogs (Canis familiaris).

    Science.gov (United States)

    Kovács, Krisztina; Kis, Anna; Kanizsár, Orsolya; Hernádi, Anna; Gácsi, Márta; Topál, József

    2016-05-01

    Recent studies have shown that the neuropeptide oxytocin is involved in the regulation of several complex human social behaviours. There is, however, little research on the effect of oxytocin on basic mechanisms underlying human sociality, such as the perception of biological motion. In the present study, we investigated the effect of oxytocin on biological motion perception in dogs (Canis familiaris), a species adapted to the human social environment and thus widely used to model many aspects of human social behaviour. In a within-subjects design, dogs (N = 39), after having received either oxytocin or placebo treatment, were presented with 2D projection of a moving point-light human figure and the inverted and scrambled version of the same movie. Heart rate (HR) and heart rate variability (HRV) were measured as physiological responses, and behavioural response was evaluated by observing dogs' looking time. Subjects were also rated on the personality traits of Neuroticism and Agreeableness by their owners. As expected, placebo-pretreated (control) dogs showed a spontaneous preference for the biological motion pattern; however, there was no such preference after oxytocin pretreatment. Furthermore, following the oxytocin pretreatment female subjects looked more at the moving point-light figure than males. The individual variations along the dimensions of Agreeableness and Neuroticism also modulated dogs' behaviour. Furthermore, HR and HRV measures were affected by oxytocin treatment and in turn played a role in subjects' looking behaviour. We discuss how these findings contribute to our understanding of the neurohormonal regulatory mechanisms of human (and non-human) social skills.

  2. Translating Partnerships: How Faculty-Student Collaboration in Explorations of Teaching and Learning Can Transform Perceptions, Terms, and Selves

    Directory of Open Access Journals (Sweden)

    Alison Cook-Sather

    2016-09-01

    Full Text Available Linguistic, literary, and feminist studies define translation as a process of rendering a new version of an original with attention to context, power, and purpose. Processes of translation in the context of student-faculty co-inquiry in the Scholarship of Teaching and Learning offer examples of how this re-rendering can play out in the realm of academic development. In this article, translation serves as a conceptual framework that allows us to bring a fresh interpretation to the collaborative work of participants in a student-faculty pedagogical partnership program based at two colleges in the mid-Atlantic United States. We argue that faculty members and student consultants who participate in this program engage in processes of translation that lead to transformed perceptions of classroom engagement, transformed terms for naming pedagogical practices, and, more metaphorically, transformed selves. Drawing on data from an ongoing action research study of this program and on articles and essays we and other participants in the program have published, we use a form of narrative analysis as it intersects with the conceptual framework offered by translation to illustrate how, through their collaboration, faculty and students engage in never-finished processes of change that enable mental perceptions, linguistic terms, and human selves to be newly comprehended, communicated, and expressed. We touch upon what is lost in translation as well and the necessity of ongoing efforts to make meaning through collaborative explorations, analyses, and re-renderings. Finally, we provide examples of how the changes participants experience and effect endure beyond the time of partnership and in other realms of their lives.

  3. High-level, but not low-level, motion perception is impaired in patients with schizophrenia.

    Science.gov (United States)

    Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia

    2013-01-01

    Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.

  4. Biological motion perception links diverse facets of theory of mind during middle childhood.

    Science.gov (United States)

    Rice, Katherine; Anderson, Laura C; Velnoskey, Kayla; Thompson, James C; Redcay, Elizabeth

    2016-06-01

    Two cornerstones of social development--social perception and theory of mind--undergo brain and behavioral changes during middle childhood, but the link between these developing domains is unclear. One theoretical perspective argues that these skills represent domain-specific areas of social development, whereas other perspectives suggest that both skills may reflect a more integrated social system. Given recent evidence from adults that these superficially different domains may be related, the current study examined the developmental relation between these social processes in 52 children aged 7 to 12 years. Controlling for age and IQ, social perception (perception of biological motion in noise) was significantly correlated with two measures of theory of mind: one in which children made mental state inferences based on photographs of the eye region of the face and another in which children made mental state inferences based on stories. Social perception, however, was not correlated with children's ability to make physical inferences from stories about people. Furthermore, the mental state inference tasks were not correlated with each other, suggesting a role for social perception in linking various facets of theory of mind. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Embodied learning of a generative neural model for biological motion perception and inference.

    Science.gov (United States)

    Schrodt, Fabian; Layher, Georg; Neumann, Heiko; Butz, Martin V

    2015-01-01

    Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons.

  6. Embodied Learning of a Generative Neural Model for Biological Motion Perception and Inference

    Directory of Open Access Journals (Sweden)

    Fabian eSchrodt

    2015-07-01

    Full Text Available Although an action observation network and mirror neurons for understanding the actions and intentions of others have been under deep, interdisciplinary consideration over recent years, it remains largely unknown how the brain manages to map visually perceived biological motion of others onto its own motor system. This paper shows how such a mapping may be established, even if the biologically motion is visually perceived from a new vantage point. We introduce a learning artificial neural network model and evaluate it on full body motion tracking recordings. The model implements an embodied, predictive inference approach. It first learns to correlate and segment multimodal sensory streams of own bodily motion. In doing so, it becomes able to anticipate motion progression, to complete missing modal information, and to self-generate learned motion sequences. When biological motion of another person is observed, this self-knowledge is utilized to recognize similar motion patterns and predict their progress. Due to the relative encodings, the model shows strong robustness in recognition despite observing rather large varieties of body morphology and posture dynamics. By additionally equipping the model with the capability to rotate its visual frame of reference, it is able to deduce the visual perspective onto the observed person, establishing full consistency to the embodied self-motion encodings by means of active inference. In further support of its neuro-cognitive plausibility, we also model typical bistable perceptions when crucial depth information is missing. In sum, the introduced neural model proposes a solution to the problem of how the human brain may establish correspondence between observed bodily motion and its own motor system, thus offering a mechanism that supports the development of mirror neurons.

  7. Validating the Japanese Translation of the Force and Motion Conceptual Evaluation and Comparing Performance Levels of American and Japanese Students

    Science.gov (United States)

    Ishimoto, Michi; Thornton, Ronald K.; Sokoloff, David R.

    2014-01-01

    This study assesses the Japanese translation of the Force and Motion Conceptual Evaluation (FMCE). Researchers are often interested in comparing the conceptual ideas of students with different cultural backgrounds. The FMCE has been useful in identifying the concepts of English-speaking students from different backgrounds. To identify effectively…

  8. Human otolith-ocular reflexes during off-vertical axis rotation: effect of frequency on tilt-translation ambiguity and motion sickness

    Science.gov (United States)

    Wood, Scott J.; Paloski, W. H. (Principal Investigator)

    2002-01-01

    The purpose of this study was to examine how the modulation of tilt and translation otolith-ocular responses during constant velocity off-vertical axis rotation varies as a function of stimulus frequency. Eighteen human subjects were rotated in darkness about their longitudinal axis 30 degrees off-vertical at stimulus frequencies between 0.05 and 0.8 Hz. The modulation of torsion decreased while the modulation of horizontal slow phase velocity (SPV) increased with increasing frequency. It is inferred that the ambiguity of otolith afferent information is greatest in the frequency region where tilt (torsion) and translational (horizontal SPV) otolith-ocular responses crossover. It is postulated that the previously demonstrated peak in motion sickness susceptibility during linear accelerations around 0.3 Hz is the result of frequency segregation of ambiguous otolith information being inadequate to distinguish between tilt and translation.

  9. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Directory of Open Access Journals (Sweden)

    Qingcui eWang

    2015-05-01

    Full Text Available Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ or ‘group motion’. In element motion, the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in group motion, both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside. Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of group motion as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50-230 ms in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps. The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role.

  10. Apparent motion perception in lower limb amputees with phantom sensations: "obstacle shunning" and "obstacle tolerance".

    Science.gov (United States)

    Saetta, Gianluca; Grond, Ilva; Brugger, Peter; Lenggenhager, Bigna; Tsay, Anthony J; Giummarra, Melita J

    2018-03-21

    Phantom limbs are the phenomenal persistence of postural and sensorimotor features of an amputated limb. Although immaterial, their characteristics can be modulated by the presence of physical matter. For instance, the phantom may disappear when its phenomenal space is invaded by objects ("obstacle shunning"). Alternatively, "obstacle tolerance" occurs when the phantom is not limited by the law of impenetrability and co-exists with physical objects. Here we examined the link between this under-investigated aspect of phantom limbs and apparent motion perception. The illusion of apparent motion of human limbs involves the perception that a limb moves through or around an object, depending on the stimulus onset asynchrony (SOA) for the two images. Participants included 12 unilateral lower limb amputees matched for obstacle shunning (n = 6) and obstacle tolerance (n = 6) experiences, and 14 non-amputees. Using multilevel linear models, we replicated robust biases for short perceived trajectories for short SOA (moving through the object), and long trajectories (circumventing the object) for long SOAs in both groups. Importantly, however, amputees with obstacle shunning perceived leg stimuli to predominantly move through the object, whereas amputees with obstacle tolerance perceived leg stimuli to predominantly move around the object. That is, in people who experience obstacle shunning, apparent motion perception of lower limbs was not constrained to the laws of impenetrability (as the phantom disappears when invaded by objects), and legs can therefore move through physical objects. Amputees who experience obstacle tolerance, however, had stronger solidity constraints for lower limb apparent motion, perhaps because they must avoid co-location of the phantom with physical objects. Phantom limb experience does, therefore, appear to be modulated by intuitive physics, but not in the same way for everyone. This may have important implications for limb experience post

  11. Facilitating Effects of Emotion on the Perception of Biological Motion: Evidence for a Happiness Superiority Effect.

    Science.gov (United States)

    Lee, Hannah; Kim, Jejoong

    2017-06-01

    It has been reported that visual perception can be influenced not only by the physical features of a stimulus but also by the emotional valence of the stimulus, even without explicit emotion recognition. Some previous studies reported an anger superiority effect while others found a happiness superiority effect during visual perception. It thus remains unclear as to which emotion is more influential. In the present study, we conducted two experiments using biological motion (BM) stimuli to examine whether emotional valence of the stimuli would affect BM perception; and if so, whether a specific type of emotion is associated with a superiority effect. Point-light walkers with three emotion types (anger, happiness, and neutral) were used, and the threshold to detect BM within noise was measured in Experiment 1. Participants showed higher performance in detecting happy walkers compared with the angry and neutral walkers. Follow-up motion velocity analysis revealed that physical difference among the stimuli was not the main factor causing the effect. The results of the emotion recognition task in Experiment 2 also showed a happiness superiority effect, as in Experiment 1. These results show that emotional valence (happiness) of the stimuli can facilitate the processing of BM.

  12. The Posture of Putting One's Palms Together Modulates Visual Motion Event Perception.

    Science.gov (United States)

    Saito, Godai; Gyoba, Jiro

    2018-02-01

    We investigated the effect of an observer's hand postures on visual motion perception using the stream/bounce display. When two identical visual objects move across collinear horizontal trajectories toward each other in a two-dimensional display, observers perceive them as either streaming or bouncing. In our previous study, we found that when observers put their palms together just below the coincidence point of the two objects, the percentage of bouncing responses increased, mainly depending on the proprioceptive information from their own hands. However, it remains unclear if the tactile or haptic (force) information produced by the postures mostly influences the stream/bounce perception. We solved this problem by changing the tactile and haptic information on the palms of the hands. Experiment 1 showed that the promotion of bouncing perception was observed only when the posture of directly putting one's palms together was used, while there was no effect when a brick was sandwiched between the participant's palms. Experiment 2 demonstrated that the strength of force used when putting the palms together had no effect on increasing bounce perception. Our findings indicate that the hands-induced bounce effect derives from the tactile information produced by the direct contact between both palms.

  13. A New Development in Audiovisual Translation Studies: Focus on Target Audience Perception

    Directory of Open Access Journals (Sweden)

    John Denton

    2013-03-01

    Full Text Available Audiovisual translation is now a well-established sub-discipline of Translation Studies (TS: a position that it has reached over the last twenty years or so. Italian scholars and professionals in the field have made a substantial contribution to this successful development, a brief overview of which will be given in the first part of this article, inevitably concentrating on dubbing in the Italian context. Special attention will be devoted to the question of target audience perception, an area where researchers in the University of Bologna at Forlì have excelled. The second part of the article applies the methodology followed by the above mentioned researchers in a case study of how Italian end users perceive the dubbed version of the British film The History Boys (2006, which contains a plethora of culture-specific verbal and visual references to the English education system. The aim of the study was to ascertain: a whether translation/adaptation allows the transmission in this admittedly constrained medium of all the intended culture-bound issues, only too well known to the source audience, and, if so, to what extent, and b whether the target audience respondents to the e-questionnaire used were aware that they were missing information. The linked, albeit controversial, issue of quality assessment will also be addressed.

  14. S1-1: Individual Differences in the Perception of Biological Motion

    Directory of Open Access Journals (Sweden)

    Ian Thornton

    2012-10-01

    Full Text Available Our ability to accurately perceive the actions of others based on reduced visual cues has been well documented. Previous work has suggested that this ability is probably made possible by separable mechanisms that can operate in either a passive, bottom-up fashion or an active, top-down fashion (Thornton, Rensink, & Shiffrar, 2002 Perception 31 837–853. One line of evidence for exploring the contribution of top-down mechanisms is to consider the extent to which individual differences in more general cognitive abilities, such as attention and working memory, predict performance on biological motion tasks. In this talk, I will begin by reviewing previous work that has looked at biological motion processing in clinical settings and as a function of domain-specific expertise. I will then introduce a new task that we are using in my lab to explore individual variation in action matching as a function of independently assessed attentional control and working memory capacity.

  15. Auditory motion capturing ambiguous visual motion

    Directory of Open Access Journals (Sweden)

    Arjen eAlink

    2012-01-01

    Full Text Available In this study, it is demonstrated that moving sounds have an effect on the direction in which one sees visual stimuli move. During the main experiment sounds were presented consecutively at four speaker locations inducing left- or rightwards auditory apparent motion. On the path of auditory apparent motion, visual apparent motion stimuli were presented with a high degree of directional ambiguity. The main outcome of this experiment is that our participants perceived visual apparent motion stimuli that were ambiguous (equally likely to be perceived as moving left- or rightwards more often as moving in the same direction than in the opposite direction of auditory apparent motion. During the control experiment we replicated this finding and found no effect of sound motion direction on eye movements. This indicates that auditory motion can capture our visual motion percept when visual motion direction is insufficiently determinate without affecting eye movements.

  16. Precision axial translator with high stability.

    Science.gov (United States)

    Bösch, M A

    1979-08-01

    We describe a new type of translator which is inherently stable against torsion and twisting. This concentric translator is also ideally suited for precise axial motion with clearance of the center line.

  17. Magnetic translator bearings

    Science.gov (United States)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  18. Detecting Biological Motion for Human–Robot Interaction: A Link between Perception and Action

    Directory of Open Access Journals (Sweden)

    Alessia Vignolo

    2017-06-01

    Full Text Available One of the fundamental skills supporting safe and comfortable interaction between humans is their capability to understand intuitively each other’s actions and intentions. At the basis of this ability is a special-purpose visual processing that human brain has developed to comprehend human motion. Among the first “building blocks” enabling the bootstrapping of such visual processing is the ability to detect movements performed by biological agents in the scene, a skill mastered by human babies in the first days of their life. In this paper, we present a computational model based on the assumption that such visual ability must be based on local low-level visual motion features, which are independent of shape, such as the configuration of the body and perspective. Moreover, we implement it on the humanoid robot iCub, embedding it into a software architecture that leverages the regularities of biological motion also to control robot attention and oculomotor behaviors. In essence, we put forth a model in which the regularities of biological motion link perception and action enabling a robotic agent to follow a human-inspired sensory-motor behavior. We posit that this choice facilitates mutual understanding and goal prediction during collaboration, increasing the pleasantness and safety of the interaction.

  19. Age differences in visual-auditory self-motion perception during a simulated driving task

    Directory of Open Access Journals (Sweden)

    Robert eRamkhalawansingh

    2016-04-01

    Full Text Available Recent evidence suggests that visual-auditory cue integration may change as a function of age such that integration is heightened among older adults. Our goal was to determine whether these changes in multisensory integration are also observed in the context of self-motion perception under realistic task constraints. Thus, we developed a simulated driving paradigm in which we provided older and younger adults with visual motion cues (i.e. optic flow and systematically manipulated the presence or absence of congruent auditory cues to self-motion (i.e. engine, tire, and wind sounds. Results demonstrated that the presence or absence of congruent auditory input had different effects on older and younger adults. Both age groups demonstrated a reduction in speed variability when auditory cues were present compared to when they were absent, but older adults demonstrated a proportionally greater reduction in speed variability under combined sensory conditions. These results are consistent with evidence indicating that multisensory integration is heightened in older adults. Importantly, this study is the first to provide evidence to suggest that age differences in multisensory integration may generalize from simple stimulus detection tasks to the integration of the more complex and dynamic visual and auditory cues that are experienced during self-motion.

  20. Similar effects of feature-based attention on motion perception and pursuit eye movements at different levels of awareness

    OpenAIRE

    Spering, Miriam; Carrasco, Marisa

    2012-01-01

    Feature-based attention enhances visual processing and improves perception, even for visual features that we are not aware of. Does feature-based attention also modulate motor behavior in response to visual information that does or does not reach awareness? Here we compare the effect of feature-based attention on motion perception and smooth pursuit eye movements in response to moving dichoptic plaids–stimuli composed of two orthogonally-drifting gratings, presented separately to each eye–in ...

  1. Characteristics and classification of hippocampal θ rhythm induced by passive translational displacement.

    Science.gov (United States)

    Xie, Kangning; Yan, Yili; Fang, Xiaolei; Gao, Shangkai; Hong, Bo

    2012-04-25

    Theta rhythms in the hippocampus are believed to be the "metric" relating to various behavior patterns for free roaming rats. In this study, the theta rhythms were studied while rats either walked or were passively translated by a toy car on a linear track (referred to as WALK and TRANS respectively). For the similar running speeds in WALK and TRANS conditions, theta frequency and amplitude were both reduced during TRANS. Theta modulation of pyramidal cells during TRANS was reduced compared to that during WALK. Theta frequency was positively correlated with translation speed during TRANS. Theta rhythm remained apparent during TRANS and WALK after large dose of atropine sulfate (blocking the cholinergic pathway) was injected compared to still states. The present study demonstrated the patterns of theta rhythm induced by passive translation in rats and suggested that the Type I theta rhythm could occur during non-voluntary locomotion. We further argued that the perception of actual self-motion may be the underlying mechanism that initiates and modulates type I theta. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Dynamic Stimuli And Active Processing In Human Visual Perception

    Science.gov (United States)

    Haber, Ralph N.

    1990-03-01

    Theories of visual perception traditionally have considered a static retinal image to be the starting point for processing; and has considered processing both to be passive and a literal translation of that frozen, two dimensional, pictorial image. This paper considers five problem areas in the analysis of human visually guided locomotion, in which the traditional approach is contrasted to newer ones that utilize dynamic definitions of stimulation, and an active perceiver: (1) differentiation between object motion and self motion, and among the various kinds of self motion (e.g., eyes only, head only, whole body, and their combinations); (2) the sources and contents of visual information that guide movement; (3) the acquisition and performance of perceptual motor skills; (4) the nature of spatial representations, percepts, and the perceived layout of space; and (5) and why the retinal image is a poor starting point for perceptual processing. These newer approaches argue that stimuli must be considered as dynamic: humans process the systematic changes in patterned light when objects move and when they themselves move. Furthermore, the processing of visual stimuli must be active and interactive, so that perceivers can construct panoramic and stable percepts from an interaction of stimulus information and expectancies of what is contained in the visual environment. These developments all suggest a very different approach to the computational analyses of object location and identification, and of the visual guidance of locomotion.

  3. Reprint of "Biological motion perception links diverse facets of theory of mind during middle childhood".

    Science.gov (United States)

    Rice, Katherine; Anderson, Laura C; Velnoskey, Kayla; Thompson, James C; Redcay, Elizabeth

    2016-09-01

    Two cornerstones of social development-social perception and theory of mind-undergo brain and behavioral changes during middle childhood, but the link between these developing domains is unclear. One theoretical perspective argues that these skills represent domain-specific areas of social development, whereas other perspectives suggest that both skills may reflect a more integrated social system. Given recent evidence from adults that these superficially different domains may be related, the current study examined the developmental relation between these social processes in 52 children aged 7 to 12years. Controlling for age and IQ, social perception (perception of biological motion in noise) was significantly correlated with two measures of theory of mind: one in which children made mental state inferences based on photographs of the eye region of the face and another in which children made mental state inferences based on stories. Social perception, however, was not correlated with children's ability to make physical inferences from stories about people. Furthermore, the mental state inference tasks were not correlated with each other, suggesting a role for social perception in linking various facets of theory of mind. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Unconscious Local Motion Alters Global Image Speed

    Science.gov (United States)

    Khuu, Sieu K.; Chung, Charles Y. L.; Lord, Stephanie; Pearson, Joel

    2014-01-01

    Accurate motion perception of self and object speed is crucial for successful interaction in the world. The context in which we make such speed judgments has a profound effect on their accuracy. Misperceptions of motion speed caused by the context can have drastic consequences in real world situations, but they also reveal much about the underlying mechanisms of motion perception. Here we show that motion signals suppressed from awareness can warp simultaneous conscious speed perception. In Experiment 1, we measured global speed discrimination thresholds using an annulus of 8 local Gabor elements. We show that physically removing local elements from the array attenuated global speed discrimination. However, removing awareness of the local elements only had a small effect on speed discrimination. That is, unconscious local motion elements contributed to global conscious speed perception. In Experiment 2 we measured the global speed of the moving Gabor patterns, when half the elements moved at different speeds. We show that global speed averaging occurred regardless of whether local elements were removed from awareness, such that the speed of invisible elements continued to be averaged together with the visible elements to determine the global speed. These data suggest that contextual motion signals outside of awareness can both boost and affect our experience of motion speed, and suggest that such pooling of motion signals occurs before the conscious extraction of the surround motion speed. PMID:25503603

  5. Rotational and translational Brownian motion

    International Nuclear Information System (INIS)

    Coffey, W.T.; Salford Univ.

    1980-01-01

    In this review it is proposed to summarise the work on the theory of the translational and rotational Brownian movement which has been carried on over roughly the past 30 years. The review is intended to take the form of a tutorial paper rather than a list of the results obtained by the various investigators over the period in question. In this vein then it seems appropriate to firstly give a brief account of those parts of the theory of probability which are relevant to the problems under discussion. (orig.)

  6. Helicopter flight simulation motion platform requirements

    Science.gov (United States)

    Schroeder, Jeffery Allyn

    Flight simulators attempt to reproduce in-flight pilot-vehicle behavior on the ground. This reproduction is challenging for helicopter simulators, as the pilot is often inextricably dependent on external cues for pilot-vehicle stabilization. One important simulator cue is platform motion; however, its required fidelity is unknown. To determine the required motion fidelity, several unique experiments were performed. A large displacement motion platform was used that allowed pilots to fly tasks with matched motion and visual cues. Then, the platform motion was modified to give cues varying from full motion to no motion. Several key results were found. First, lateral and vertical translational platform cues had significant effects on fidelity. Their presence improved performance and reduced pilot workload. Second, yaw and roll rotational platform cues were not as important as the translational platform cues. In particular, the yaw rotational motion platform cue did not appear at all useful in improving performance or reducing workload. Third, when the lateral translational platform cue was combined with visual yaw rotational cues, pilots believed the platform was rotating when it was not. Thus, simulator systems can be made more efficient by proper combination of platform and visual cues. Fourth, motion fidelity specifications were revised that now provide simulator users with a better prediction of motion fidelity based upon the frequency responses of their motion control laws. Fifth, vertical platform motion affected pilot estimates of steady-state altitude during altitude repositionings. This refutes the view that pilots estimate altitude and altitude rate in simulation solely from visual cues. Finally, the combined results led to a general method for configuring helicopter motion systems and for developing simulator tasks that more likely represent actual flight. The overall results can serve as a guide to future simulator designers and to today's operators.

  7. Neural correlates of visually induced self-motion illusion in depth.

    Science.gov (United States)

    Kovács, Gyula; Raabe, Markus; Greenlee, Mark W

    2008-08-01

    Optic-flow fields can induce the conscious illusion of self-motion in a stationary observer. Here we used functional magnetic resonance imaging to reveal the differential processing of self- and object-motion in the human brain. Subjects were presented a constantly expanding optic-flow stimulus, composed of disparate red-blue dots, viewed through red-blue glasses to generate a vivid percept of three-dimensional motion. We compared the activity obtained during periods of illusory self-motion with periods of object-motion percept. We found that the right MT+, precuneus, as well as areas located bilaterally along the dorsal part of the intraparietal sulcus and along the left posterior intraparietal sulcus were more active during self-motion perception than during object-motion. Additional signal increases were located in the depth of the left superior frontal sulcus, over the ventral part of the left anterior cingulate, in the depth of the right central sulcus and in the caudate nucleus/putamen. We found no significant deactivations associated with self-motion perception. Our results suggest that the illusory percept of self-motion is correlated with the activation of a network of areas, ranging from motion-specific areas to regions involved in visuo-vestibular integration, visual imagery, decision making, and introspection.

  8. [The German version of the Bath Body Perception Disturbance Scale (BBPDS-D) : Translation, cultural adaptation and linguistic validation on patients with complex regional pain syndrome].

    Science.gov (United States)

    Tschopp, M; Swanenburg, J; Wertli, M W; Langenfeld, A; McCabe, C S; Lewis, J; Baertschi, E; Brunner, F

    2018-05-07

    Besides the classical clinical manifestations, body perception disturbances are common among patients with complex regional pain syndrome (CRPS). The Bath Body Perception Disturbance Scale (BBPDS) represents a useful tool to assess these changes in CRPS patients; however, to date no validated German version is available. The aim of this study was to translate the BBPDS into German, to perform a cross-cultural adaptation and linguistic validation in patients with acute (symptoms German according to published guidelines (translation and back translation) and tested on 56 patients (mean age 50.9 ± 13.1 years) with acute (n = 28) or stable (n = 28) CRPS. The relative reliability, intraclass correlation and test-retest reliability were excellent overall and in the groups with acute and stable CRPS. The smallest detectable change was at 10 points. In the test-retest 48 points lay within the 95% confidence interval and visual inspection showed no tendency towards heteroscedasticity. Spearman's ρ‑coefficient values showed no correlation between the total score of the BBPDS-D with the numerical rating scale (NRS, ρ = -0.19) and the EuroQol-5 D (ρ = 0.16). There were no significant differences between patients with acute and stable CRPS (p = 0.412). There were also no floor or ceiling effects. This German translation and cross-cultural adaptation of the original English version of the BBPDS is a valid instrument to assess body perception disturbances in German speaking CRPS patients. Future research should further assess the impact of body perception disturbance on treatment outcome and prognosis.

  9. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    Science.gov (United States)

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  10. Performance assessment of a programmable five degrees-of-freedom motion platform for quality assurance of motion management techniques in radiotherapy.

    Science.gov (United States)

    Huang, Chen-Yu; Keall, Paul; Rice, Adam; Colvill, Emma; Ng, Jin Aun; Booth, Jeremy T

    2017-09-01

    Inter-fraction and intra-fraction motion management methods are increasingly applied clinically and require the development of advanced motion platforms to facilitate testing and quality assurance program development. The aim of this study was to assess the performance of a 5 degrees-of-freedom (DoF) programmable motion platform HexaMotion (ScandiDos, Uppsala, Sweden) towards clinically observed tumor motion range, velocity, acceleration and the accuracy requirements of SABR prescribed in AAPM Task Group 142. Performance specifications for the motion platform were derived from literature regarding the motion characteristics of prostate and lung tumor targets required for real time motion management. The performance of the programmable motion platform was evaluated against (1) maximum range, velocity and acceleration (5 DoF), (2) static position accuracy (5 DoF) and (3) dynamic position accuracy using patient-derived prostate and lung tumor motion traces (3 DoF). Translational motion accuracy was compared against electromagnetic transponder measurements. Rotation was benchmarked with a digital inclinometer. The static accuracy and reproducibility for translation and rotation was quality assurance and commissioning of motion management systems in radiation oncology.

  11. Sound-contingent visual motion aftereffect

    Directory of Open Access Journals (Sweden)

    Kobayashi Maori

    2011-05-01

    Full Text Available Abstract Background After a prolonged exposure to a paired presentation of different types of signals (e.g., color and motion, one of the signals (color becomes a driver for the other signal (motion. This phenomenon, which is known as contingent motion aftereffect, indicates that the brain can establish new neural representations even in the adult's brain. However, contingent motion aftereffect has been reported only in visual or auditory domain. Here, we demonstrate that a visual motion aftereffect can be contingent on a specific sound. Results Dynamic random dots moving in an alternating right or left direction were presented to the participants. Each direction of motion was accompanied by an auditory tone of a unique and specific frequency. After a 3-minutes exposure, the tones began to exert marked influence on the visual motion perception, and the percentage of dots required to trigger motion perception systematically changed depending on the tones. Furthermore, this effect lasted for at least 2 days. Conclusions These results indicate that a new neural representation can be rapidly established between auditory and visual modalities.

  12. Social network size relates to developmental neural sensitivity to biological motion

    Directory of Open Access Journals (Sweden)

    L.A. Kirby

    2018-04-01

    Full Text Available The ability to perceive others’ actions and goals from human motion (i.e., biological motion perception is a critical component of social perception and may be linked to the development of real-world social relationships. Adult research demonstrates two key nodes of the brain’s biological motion perception system—amygdala and posterior superior temporal sulcus (pSTS—are linked to variability in social network properties. The relation between social perception and social network properties, however, has not yet been investigated in middle childhood—a time when individual differences in social experiences and social perception are growing. The aims of this study were to (1 replicate past work showing amygdala and pSTS sensitivity to biological motion in middle childhood; (2 examine age-related changes in the neural sensitivity for biological motion, and (3 determine whether neural sensitivity for biological motion relates to social network characteristics in children. Consistent with past work, we demonstrate a significant relation between social network size and neural sensitivity for biological motion in left pSTS, but do not find age-related change in biological motion perception. This finding offers evidence for the interplay between real-world social experiences and functional brain development and has important implications for understanding disorders of atypical social experience. Keywords: Biological motion, Social networks, Middle childhood, Neural specialization, Brain-behavior relations, pSTS

  13. GLOBAL PERCEPTION IN TRANSLATING THE CONTENT OF WEBSITES

    OpenAIRE

    Mariana Coancă

    2012-01-01

    Most of the time the visitors of a website are willing to purchase products if the content of the website is presented in their native language. Therefore, translators become the most import key, because they translate not only the words and sentences on the website, but also the general tone and the key messages, adapting each cultural reference. We focused on the translators’ task and we presented some techniques regarding the translation process. In order to exemplify this aspect, we selec...

  14. Modeling and control of lateral vibration of an axially translating flexible link

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Heon Seop; Rhim, Sung Soo [Kyung Hee University, Yongin (Korea, Republic of)

    2015-01-15

    Manipulators used for the transportation of large panel-shape payloads often adopt long and slender links (or forks) with translational joins to carry the payloads. As the size of the payload increases, the length of the links also increases to hold the payload securely. The increased length of the link inevitably amplifies the effect of the flexure in the link. Intuitively, the translational motion of the link in its longitudinal direction should have no effect on the lateral vibration of the link because of the orthogonality between the direction of the translational motion and the lateral vibration. If, however, the link was flexible and translated horizontally (perpendicular to the gravitational field) the asymmetric deflection of the link caused by gravity would break the orthogonality between the two directions, and the longitudinal motion of the link would excite lateral motion in the link. In this paper, the lateral oscillatory motion of the flexible link in a large-scale solar cell panel handling robot is investigated where the links carry the panel in its longitudinal direction. The Newtonian approach in conjunction with the assumed modes method is used for derivation of the equation of motion for the flexible forks where non-zero control force is applied at the base of the link. The analysis illustrates the effect of longitudinal motion on the lateral vibration and dynamic stiffening effect (variation of the natural frequency) of the link due to the translational velocity. Lateral vibration behavior is simulated using the derived equations of the motion. A robust vibration control scheme, the input shaping filter technique, is implemented on the model and the effectiveness of the scheme is verified numerically.

  15. Modeling and control of lateral vibration of an axially translating flexible link

    International Nuclear Information System (INIS)

    Shin, Heon Seop; Rhim, Sung Soo

    2015-01-01

    Manipulators used for the transportation of large panel-shape payloads often adopt long and slender links (or forks) with translational joins to carry the payloads. As the size of the payload increases, the length of the links also increases to hold the payload securely. The increased length of the link inevitably amplifies the effect of the flexure in the link. Intuitively, the translational motion of the link in its longitudinal direction should have no effect on the lateral vibration of the link because of the orthogonality between the direction of the translational motion and the lateral vibration. If, however, the link was flexible and translated horizontally (perpendicular to the gravitational field) the asymmetric deflection of the link caused by gravity would break the orthogonality between the two directions, and the longitudinal motion of the link would excite lateral motion in the link. In this paper, the lateral oscillatory motion of the flexible link in a large-scale solar cell panel handling robot is investigated where the links carry the panel in its longitudinal direction. The Newtonian approach in conjunction with the assumed modes method is used for derivation of the equation of motion for the flexible forks where non-zero control force is applied at the base of the link. The analysis illustrates the effect of longitudinal motion on the lateral vibration and dynamic stiffening effect (variation of the natural frequency) of the link due to the translational velocity. Lateral vibration behavior is simulated using the derived equations of the motion. A robust vibration control scheme, the input shaping filter technique, is implemented on the model and the effectiveness of the scheme is verified numerically.

  16. Visual-vestibular cue integration for heading perception: applications of optimal cue integration theory.

    Science.gov (United States)

    Fetsch, Christopher R; Deangelis, Gregory C; Angelaki, Dora E

    2010-05-01

    The perception of self-motion is crucial for navigation, spatial orientation and motor control. In particular, estimation of one's direction of translation, or heading, relies heavily on multisensory integration in most natural situations. Visual and nonvisual (e.g., vestibular) information can be used to judge heading, but each modality alone is often insufficient for accurate performance. It is not surprising, then, that visual and vestibular signals converge frequently in the nervous system, and that these signals interact in powerful ways at the level of behavior and perception. Early behavioral studies of visual-vestibular interactions consisted mainly of descriptive accounts of perceptual illusions and qualitative estimation tasks, often with conflicting results. In contrast, cue integration research in other modalities has benefited from the application of rigorous psychophysical techniques, guided by normative models that rest on the foundation of ideal-observer analysis and Bayesian decision theory. Here we review recent experiments that have attempted to harness these so-called optimal cue integration models for the study of self-motion perception. Some of these studies used nonhuman primate subjects, enabling direct comparisons between behavioral performance and simultaneously recorded neuronal activity. The results indicate that humans and monkeys can integrate visual and vestibular heading cues in a manner consistent with optimal integration theory, and that single neurons in the dorsal medial superior temporal area show striking correlates of the behavioral effects. This line of research and other applications of normative cue combination models should continue to shed light on mechanisms of self-motion perception and the neuronal basis of multisensory integration.

  17. Motion perception in motion : how we perceive object motion during smooth pursuit eye movements

    NARCIS (Netherlands)

    Souman, J.L.

    2005-01-01

    Eye movements change the retinal image motion of objects in the visual field. When we make an eye movement, the image of a stationary object will move across the retinae, while the retinal image of an object that we follow with the eyes is approximately stationary. To enable us to perceive motion in

  18. Improved finite-source inversion through joint measurements of rotational and translational ground motions: a numerical study

    Science.gov (United States)

    Reinwald, Michael; Bernauer, Moritz; Igel, Heiner; Donner, Stefanie

    2016-10-01

    With the prospects of seismic equipment being able to measure rotational ground motions in a wide frequency and amplitude range in the near future, we engage in the question of how this type of ground motion observation can be used to solve the seismic source inverse problem. In this paper, we focus on the question of whether finite-source inversion can benefit from additional observations of rotational motion. Keeping the overall number of traces constant, we compare observations from a surface seismic network with 44 three-component translational sensors (classic seismometers) with those obtained with 22 six-component sensors (with additional three-component rotational motions). Synthetic seismograms are calculated for known finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content to measure how the observations constrain the seismic source properties. We minimize the influence of the source receiver geometry around the fault by statistically analyzing six-component inversions with a random distribution of receivers. Since our previous results are achieved with a regular spacing of the receivers, we try to answer the question of whether the results are dependent on the spatial distribution of the receivers. The results show that with the six-component subnetworks, kinematic source inversions for source properties (such as rupture velocity, rise time, and slip amplitudes) are not only equally successful (even that would be beneficial because of the substantially reduced logistics installing half the sensors) but also statistically inversions for some source properties are almost always improved. This can be attributed to the fact that the (in particular vertical) gradient information is contained in the additional motion components. We compare these effects for strike-slip and normal-faulting type sources and confirm that the increase in inversion quality for kinematic source parameters is

  19. The Relative Importance of Spatial Versus Temporal Structure in the Perception of Biological Motion: An Event-Related Potential Study

    Science.gov (United States)

    Hirai, Masahiro; Hiraki, Kazuo

    2006-01-01

    We investigated how the spatiotemporal structure of animations of biological motion (BM) affects brain activity. We measured event-related potentials (ERPs) during the perception of BM under four conditions: normal spatial and temporal structure; scrambled spatial and normal temporal structure; normal spatial and scrambled temporal structure; and…

  20. Modeling Attitude Dynamics in Simulink: A Study of the Rotational and Translational Motion of a Spacecraft Given Torques and Impulses Generated by RMS Hand Controllers

    Science.gov (United States)

    Mauldin, Rebecca H.

    2010-01-01

    In order to study and control the attitude of a spacecraft, it is necessary to understand the natural motion of a body in orbit. Assuming a spacecraft to be a rigid body, dynamics describes the complete motion of the vehicle by the translational and rotational motion of the body. The Simulink Attitude Analysis Model applies the equations of rigid body motion to the study of a spacecraft?s attitude in orbit. Using a TCP/IP connection, Matlab reads the values of the Remote Manipulator System (RMS) hand controllers and passes them to Simulink as specified torque and impulse profiles. Simulink then uses the governing kinematic and dynamic equations of a rigid body in low earth orbit (LE0) to plot the attitude response of a spacecraft for five seconds given known applied torques and impulses, and constant principal moments of inertia.

  1. Study of the perception of visual motion in amblyopia using functional MRI

    International Nuclear Information System (INIS)

    Lu Guangming; Zhang Zhiqiang; Zhou Wenzhen; Zheng Ling; Yin Jie; Liang Ping

    2006-01-01

    Objective: To research the pathophysiological mechanism of anisometropic and strabismic amblyopia through observation of the cortex activation under the stimulus of visual motion using functional MRI (fMRI). Methods: Seven patients with anisometropic amblyopia and 10 patients with strabismic amblyopia were examined under the stimulus with the paradigm that task and control states were rotating and stationary grating with 1.5 T MR scanners. The data were processed using software of SPM offline, and the result was analyzed with single subject. An index of interocular difference of activation (IDA) was set for Mann-Whitney rank sum test to denote the extension of difference between activation of each eye. Results: There appeared activation on bilaterally occipital lobe in both group of amblyopia patients. There was mild activation on frontal lobe when amblyopic eyes were stimulated, but no activation when sound eyes. The MT area was regarded as region of interesting when analyzed, the activation of all sound eyes was stronger than amblyopic eyes in 7 anisometropic amblyopia patients. There were 5 patients whose level of activation of amblyopic eye's were lower than sound eye, and four were higher than sound eye, among the strabismic amblyopia patients except one patient's activation was none. There was statistical difference between IDA value of two groups (Z=2.382, P=0.017). Conclusion: There are more cortex areas activated of amblyopic eye than sound eye when single eye is stimulated. The function of visual motion maybe has been affected in anisometropic amblyopia. In strabismic amblyopia, the function of visual motion may relate to the underlying mechanism of strabismic, which suggests, as for the impairment of perception of visual motion, there is difference between two types of amblyopia. (authors)

  2. Neural dynamics of motion processing and speed discrimination.

    Science.gov (United States)

    Chey, J; Grossberg, S; Mingolla, E

    1998-09-01

    A neural network model of visual motion perception and speed discrimination is presented. The model shows how a distributed population code of speed tuning, that realizes a size-speed correlation, can be derived from the simplest mechanisms whereby activations of multiple spatially short-range filters of different size are transformed into speed-turned cell responses. These mechanisms use transient cell responses to moving stimuli, output thresholds that covary with filter size, and competition. These mechanisms are proposed to occur in the V1-->MT cortical processing stream. The model reproduces empirically derived speed discrimination curves and simulates data showing how visual speed perception and discrimination can be affected by stimulus contrast, duration, dot density and spatial frequency. Model motion mechanisms are analogous to mechanisms that have been used to model 3-D form and figure-ground perception. The model forms the front end of a larger motion processing system that has been used to simulate how global motion capture occurs, and how spatial attention is drawn to moving forms. It provides a computational foundation for an emerging neural theory of 3-D form and motion perception.

  3. Bubble levitation and translation under single-bubble sonoluminescence conditions.

    Science.gov (United States)

    Matula, Thomas J

    2003-08-01

    Bubble levitation in an acoustic standing wave is re-examined for conditions relevant to single-bubble sonoluminescence. Unlike a previous examination [Matula et al., J. Acoust. Soc. Am. 102, 1522-1527 (1997)], the stable parameter space [Pa,R0] is accounted for in this realization. Forces such as the added mass force and drag are included, and the results are compared with a simple force balance that equates the Bjerknes force to the buoyancy force. Under normal sonoluminescence conditions, the comparison is quite favorable. A more complete accounting of the forces shows that a stably levitated bubble does undergo periodic translational motion. The asymmetries associated with translational motion are hypothesized to generate instabilities in the spherical shape of the bubble. A reduction in gravity results in reduced translational motion. It is hypothesized that such conditions may lead to increased light output from sonoluminescing bubbles.

  4. Efficacy of manual and manipulative therapy in the perception of pain and cervical motion in patients with tension-type headache: a randomized, controlled clinical trial.

    Science.gov (United States)

    Espí-López, Gemma V; Gómez-Conesa, Antonia

    2014-03-01

    The purpose of this study was to evaluate the efficacy of manipulative and manual therapy treatments with regard to pain perception and neck mobility in patients with tension-type headache. A randomized clinical trial was conducted on 84 adults diagnosed with tension-type headache. Eighty-four subjects were enrolled in this study: 68 women and 16 men. Mean age was 39.76 years, ranging from 18 to 65 years. A total of 57.1% were diagnosed with chronic tension-type headache and 42.9% with tension-type headache. Participants were divided into 3 treatment groups (manual therapy, manipulative therapy, a combination of manual and manipulative therapy) and a control group. Four treatment sessions were administered during 4 weeks, with posttreatment assessment and follow-up at 1 month. Cervical ranges of motion pain perception, and frequency and intensity of headaches were assessed. All 3 treatment groups showed significant improvements in the different dimensions of pain perception. Manual therapy and manipulative treatment improved some cervical ranges of motion. Headache frequency was reduced with manipulative treatment (P treatment reported improvement after the treatment (P treatment and at follow-up with manipulative therapy (P treatment (P treatments, administered both separately and combined together, showed efficacy for patients with tension-type headache with regard to pain perception. As for cervical ranges of motion, treatments produced greater effect when separately administered.

  5. Deficient motion-defined and texture-defined figure-ground segregation in amblyopic children.

    Science.gov (United States)

    Wang, Jane; Ho, Cindy S; Giaschi, Deborah E

    2007-01-01

    Motion-defined form deficits in the fellow eye and the amblyopic eye of children with amblyopia implicate possible direction-selective motion processing or static figure-ground segregation deficits. Deficient motion-defined form perception in the fellow eye of amblyopic children may not be fully accounted for by a general motion processing deficit. This study investigates the contribution of figure-ground segregation deficits to the motion-defined form perception deficits in amblyopia. Performances of 6 amblyopic children (5 anisometropic, 1 anisostrabismic) and 32 control children with normal vision were assessed on motion-defined form, texture-defined form, and global motion tasks. Performance on motion-defined and texture-defined form tasks was significantly worse in amblyopic children than in control children. Performance on global motion tasks was not significantly different between the 2 groups. Faulty figure-ground segregation mechanisms are likely responsible for the observed motion-defined form perception deficits in amblyopia.

  6. Temporal ventriloquism along the path of apparent motion: speed perception under different spatial grouping principles.

    Science.gov (United States)

    Ogulmus, Cansu; Karacaoglu, Merve; Kafaligonul, Hulusi

    2018-03-01

    The coordination of intramodal perceptual grouping and crossmodal interactions plays a critical role in constructing coherent multisensory percepts. However, the basic principles underlying such coordinating mechanisms still remain unclear. By taking advantage of an illusion called temporal ventriloquism and its influences on perceived speed, we investigated how audiovisual interactions in time are modulated by the spatial grouping principles of vision. In our experiments, we manipulated the spatial grouping principles of proximity, uniform connectedness, and similarity/common fate in apparent motion displays. Observers compared the speed of apparent motions across different sound timing conditions. Our results revealed that the effects of sound timing (i.e., temporal ventriloquism effects) on perceived speed also existed in visual displays containing more than one object and were modulated by different spatial grouping principles. In particular, uniform connectedness was found to modulate these audiovisual interactions in time. The effect of sound timing on perceived speed was smaller when horizontal connecting bars were introduced along the path of apparent motion. When the objects in each apparent motion frame were not connected or connected with vertical bars, the sound timing was more influential compared to the horizontal bar conditions. Overall, our findings here suggest that the effects of sound timing on perceived speed exist in different spatial configurations and can be modulated by certain intramodal spatial grouping principles such as uniform connectedness.

  7. Perception of visual apparent motion is modulated by a gap within concurrent auditory glides, even when it is illusory

    Science.gov (United States)

    Wang, Qingcui; Guo, Lu; Bao, Ming; Chen, Lihan

    2015-01-01

    Auditory and visual events often happen concurrently, and how they group together can have a strong effect on what is perceived. We investigated whether/how intra- or cross-modal temporal grouping influenced the perceptual decision of otherwise ambiguous visual apparent motion. To achieve this, we juxtaposed auditory gap transfer illusion with visual Ternus display. The Ternus display involves a multi-element stimulus that can induce either of two different percepts of apparent motion: ‘element motion’ (EM) or ‘group motion’ (GM). In “EM,” the endmost disk is seen as moving back and forth while the middle disk at the central position remains stationary; while in “GM,” both disks appear to move laterally as a whole. The gap transfer illusion refers to the illusory subjective transfer of a short gap (around 100 ms) from the long glide to the short continuous glide when the two glides intercede at the temporal middle point. In our experiments, observers were required to make a perceptual discrimination of Ternus motion in the presence of concurrent auditory glides (with or without a gap inside). Results showed that a gap within a short glide imposed a remarkable effect on separating visual events, and led to a dominant perception of GM as well. The auditory configuration with gap transfer illusion triggered the same auditory capture effect. Further investigations showed that visual interval which coincided with the gap interval (50–230 ms) in the long glide was perceived to be shorter than that within both the short glide and the ‘gap-transfer’ auditory configurations in the same physical intervals (gaps). The results indicated that auditory temporal perceptual grouping takes priority over the cross-modal interaction in determining the final readout of the visual perception, and the mechanism of selective attention on auditory events also plays a role. PMID:26042055

  8. Effect of pictorial depth cues, binocular disparity cues and motion parallax depth cues on lightness perception in three-dimensional virtual scenes.

    Directory of Open Access Journals (Sweden)

    Michiteru Kitazaki

    2008-09-01

    Full Text Available Surface lightness perception is affected by scene interpretation. There is some experimental evidence that perceived lightness under bi-ocular viewing conditions is different from perceived lightness in actual scenes but there are also reports that viewing conditions have little or no effect on perceived color. We investigated how mixes of depth cues affect perception of lightness in three-dimensional rendered scenes containing strong gradients of illumination in depth.Observers viewed a virtual room (4 m width x 5 m height x 17.5 m depth with checkerboard walls and floor. In four conditions, the room was presented with or without binocular disparity (BD depth cues and with or without motion parallax (MP depth cues. In all conditions, observers were asked to adjust the luminance of a comparison surface to match the lightness of test surfaces placed at seven different depths (8.5-17.5 m in the scene. We estimated lightness versus depth profiles in all four depth cue conditions. Even when observers had only pictorial depth cues (no MP, no BD, they partially but significantly discounted the illumination gradient in judging lightness. Adding either MP or BD led to significantly greater discounting and both cues together produced the greatest discounting. The effects of MP and BD were approximately additive. BD had greater influence at near distances than far.These results suggest the surface lightness perception is modulated by three-dimensional perception/interpretation using pictorial, binocular-disparity, and motion-parallax cues additively. We propose a two-stage (2D and 3D processing model for lightness perception.

  9. Kinesthetic information disambiguates visual motion signals.

    Science.gov (United States)

    Hu, Bo; Knill, David C

    2010-05-25

    Numerous studies have shown that extra-retinal signals can disambiguate motion information created by movements of the eye or head. We report a new form of cross-modal sensory integration in which the kinesthetic information generated by active hand movements essentially captures ambiguous visual motion information. Several previous studies have shown that active movement can bias observers' percepts of bi-stable stimuli; however, these effects seem to be best explained by attentional mechanisms. We show that kinesthetic information can change an otherwise stable perception of motion, providing evidence of genuine fusion between visual and kinesthetic information. The experiments take advantage of the aperture problem, in which the motion of a one-dimensional grating pattern behind an aperture, while geometrically ambiguous, appears to move stably in the grating normal direction. When actively moving the pattern, however, the observer sees the motion to be in the hand movement direction. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. Using Co-located Rotational and Translational Ground-Motion Sensors to Characterize Seismic Scattering in the P-Wave Coda

    Science.gov (United States)

    Bartrand, J.; Abbott, R. E.

    2017-12-01

    We present data and analysis of a seismic data collect at the site of a historical underground nuclear explosion at Yucca Flat, a sedimentary basin on the Nevada National Security Site, USA. The data presented here consist of active-source, six degree-of-freedom seismic signals. The translational signals were collected with a Nanometrics Trillium Compact Posthole seismometer and the rotational signals were collected with an ATA Proto-SMHD, a prototype rotational ground motion sensor. The source for the experiment was the Seismic Hammer (a 13,000 kg weight-drop), deployed on two-kilometer, orthogonal arms centered on the site of the nuclear explosion. By leveraging the fact that compressional waves have no rotational component, we generated a map of subsurface scattering and compared the results to known subsurface features. To determine scattering intensity, signals were cut to include only the P-wave and its coda. The ratio of the time-domain signal magnitudes of angular velocity and translational acceleration were sectioned into three time windows within the coda and averaged within each window. Preliminary results indicate an increased rotation/translation ratio in the vicinity of the explosion-generated chimney, suggesting mode conversion of P-wave energy to S-wave energy at that location. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  11. Modeling a space-variant cortical representation for apparent motion.

    Science.gov (United States)

    Wurbs, Jeremy; Mingolla, Ennio; Yazdanbakhsh, Arash

    2013-08-06

    Receptive field sizes of neurons in early primate visual areas increase with eccentricity, as does temporal processing speed. The fovea is evidently specialized for slow, fine movements while the periphery is suited for fast, coarse movements. In either the fovea or periphery discrete flashes can produce motion percepts. Grossberg and Rudd (1989) used traveling Gaussian activity profiles to model long-range apparent motion percepts. We propose a neural model constrained by physiological data to explain how signals from retinal ganglion cells to V1 affect the perception of motion as a function of eccentricity. Our model incorporates cortical magnification, receptive field overlap and scatter, and spatial and temporal response characteristics of retinal ganglion cells for cortical processing of motion. Consistent with the finding of Baker and Braddick (1985), in our model the maximum flash distance that is perceived as an apparent motion (Dmax) increases linearly as a function of eccentricity. Baker and Braddick (1985) made qualitative predictions about the functional significance of both stimulus and visual system parameters that constrain motion perception, such as an increase in the range of detectable motions as a function of eccentricity and the likely role of higher visual processes in determining Dmax. We generate corresponding quantitative predictions for those functional dependencies for individual aspects of motion processing. Simulation results indicate that the early visual pathway can explain the qualitative linear increase of Dmax data without reliance on extrastriate areas, but that those higher visual areas may serve as a modulatory influence on the exact Dmax increase.

  12. Coupled dynamics of translation and collapse of acoustically driven microbubbles.

    Science.gov (United States)

    Reddy, Anil J; Szeri, Andrew J

    2002-10-01

    Pressure gradients drive the motion of microbubbles relative to liquids in which they are suspended. Examples include the hydrostatic pressure due to a gravitational field, and the pressure gradients in a sound field, useful for acoustic levitation. In this paper, the equations describing the coupled dynamics of radial oscillation and translation of a microbubble are given. The formulation is based on a recently derived expression for the hydrodynamic force on a bubble of changing size in an incompressible liquid [J. Magnaudet and D. Legendre, Phys. Fluids 10, 550-556 (1998)]. The complex interaction between radial and translation dynamics is best understood by examination of the added momentum associated with the liquid motion caused by the moving bubble. Translation is maximized when the bubble collapses violently. The new theory for coupled collapse and translation dynamics is compared to past experiments and to previous theories for decoupled translation dynamics. Special attention is paid to bubbles of relevance in biomedical applications.

  13. Modulation frequency as a cue for auditory speed perception.

    Science.gov (United States)

    Senna, Irene; Parise, Cesare V; Ernst, Marc O

    2017-07-12

    Unlike vision, the mechanisms underlying auditory motion perception are poorly understood. Here we describe an auditory motion illusion revealing a novel cue to auditory speed perception: the temporal frequency of amplitude modulation (AM-frequency), typical for rattling sounds. Naturally, corrugated objects sliding across each other generate rattling sounds whose AM-frequency tends to directly correlate with speed. We found that AM-frequency modulates auditory speed perception in a highly systematic fashion: moving sounds with higher AM-frequency are perceived as moving faster than sounds with lower AM-frequency. Even more interestingly, sounds with higher AM-frequency also induce stronger motion aftereffects. This reveals the existence of specialized neural mechanisms for auditory motion perception, which are sensitive to AM-frequency. Thus, in spatial hearing, the brain successfully capitalizes on the AM-frequency of rattling sounds to estimate the speed of moving objects. This tightly parallels previous findings in motion vision, where spatio-temporal frequency of moving displays systematically affects both speed perception and the magnitude of the motion aftereffects. Such an analogy with vision suggests that motion detection may rely on canonical computations, with similar neural mechanisms shared across the different modalities. © 2017 The Author(s).

  14. Qué es Motion Graphics

    OpenAIRE

    Alonso Valdivieso, Concepción

    2016-01-01

    [EN] What exactly are ‘Motion Graphics’? Many people still aren’t entirely sure. Taken literally they are just graphics in motion, but they also mean much more than that. Motion graphics use incredibly expressive techniques and as a result are often found in advertising, corporate videos, credit sequences, etc. They can translate a complex idea into a clear message with just a few seconds of animation.At the same time they have a very particular, simple and stylish aesthetic. But, if any anim...

  15. Differences between Perception and Eye Movements during Complex Motions

    Science.gov (United States)

    Holly, Jan E.; Davis, Saralin M.; Sullivan, Kelly E.

    2013-01-01

    During passive whole-body motion in the dark, the motion perceived by subjects may or may not be veridical. Either way, reflexive eye movements are typically compensatory for the perceived motion. However, studies are discovering that for certain motions, the perceived motion and eye movements are incompatible. The incompatibility has not been explained by basic differences in gain or time constants of decay. This paper uses three-dimensional modeling to investigate gondola centrifugation (with a tilting carriage) and off-vertical axis rotation. The first goal was to determine whether known differences between perceived motions and eye movements are true differences when all three-dimensional combinations of angular and linear components are considered. The second goal was to identify the likely areas of processing in which perceived motions match or differ from eye movements, whether in angular components, linear components and/or dynamics. The results were that perceived motions are more compatible with eye movements in three dimensions than the one-dimensional components indicate, and that they differ more in their linear than their angular components. In addition, while eye movements are consistent with linear filtering processes, perceived motion has dynamics that cannot be explained by basic differences in time constants, filtering, or standard GIF-resolution processes. PMID:21846952

  16. Alpha motion based on a motion detector, but not on the Müller-Lyer illusion

    Science.gov (United States)

    Suzuki, Masahiro

    2014-07-01

    This study examined the mechanism of alpha motion, the apparent motion of the Müller-Lyer figure's shaft that occurs when the arrowheads and arrow tails are alternately presented. The following facts were found: (a) reduced exposure duration decreased the amount of alpha motion, and this phenomenon was not explainable by the amount of the Müller-Lyer illusion; (b) the motion aftereffect occurred after adaptation to alpha motion; (c) occurrence of alpha motion became difficult when the temporal frequency increased, and this characteristic of alpha motion was similar to the characteristic of a motion detector that motion detection became difficult when the temporal frequency increased from the optimal frequency. These findings indicated that alpha motion occurs on the basis of a motion detector but not on the Müller-Lyer illusion, and that the mechanism of alpha motion is the same as that of general motion perception.

  17. Auditory capture of visual motion: effects on perception and discrimination.

    Science.gov (United States)

    McCourt, Mark E; Leone, Lynnette M

    2016-09-28

    We asked whether the perceived direction of visual motion and contrast thresholds for motion discrimination are influenced by the concurrent motion of an auditory sound source. Visual motion stimuli were counterphasing Gabor patches, whose net motion energy was manipulated by adjusting the contrast of the leftward-moving and rightward-moving components. The presentation of these visual stimuli was paired with the simultaneous presentation of auditory stimuli, whose apparent motion in 3D auditory space (rightward, leftward, static, no sound) was manipulated using interaural time and intensity differences, and Doppler cues. In experiment 1, observers judged whether the Gabor visual stimulus appeared to move rightward or leftward. In experiment 2, contrast discrimination thresholds for detecting the interval containing unequal (rightward or leftward) visual motion energy were obtained under the same auditory conditions. Experiment 1 showed that the perceived direction of ambiguous visual motion is powerfully influenced by concurrent auditory motion, such that auditory motion 'captured' ambiguous visual motion. Experiment 2 showed that this interaction occurs at a sensory stage of processing as visual contrast discrimination thresholds (a criterion-free measure of sensitivity) were significantly elevated when paired with congruent auditory motion. These results suggest that auditory and visual motion signals are integrated and combined into a supramodal (audiovisual) representation of motion.

  18. Translation and Manipulation in Renaissance England

    Directory of Open Access Journals (Sweden)

    John Denton

    2016-12-01

    Full Text Available This supplementary volume to JEMS is part of an ongoing research project which began with a series of articles published by the author in the 1990s on the translation of Classical historical texts in Renaissance England. The methodology followed is that of Descriptive Translation Studies as developed by scholars such as Lefevere and Hermans with the accent on manipulation of the source text in line with the ideological stance of the translator and the need to ensure that readers of the translation received the ‘correct’ moral lessons.  Particular attention is devoted to a case study of the strategies followed in Thomas North’s domesticating English translation of Jacques Amyot’s French translation of Plutarch’s Lives and the consequences for Shakespeare’s perception of Plutarch.Biography John Denton was associate professor of English Language and Translation at the University of Florence until retirement in 2015. He  has published on contrastive analysis, history of translation (with special reference to the Early Modern England, religious discourse, literary and audiovisual translation

  19. Decision-level adaptation in motion perception.

    Science.gov (United States)

    Mather, George; Sharman, Rebecca J

    2015-12-01

    Prolonged exposure to visual stimuli causes a bias in observers' responses to subsequent stimuli. Such adaptation-induced biases are usually explained in terms of changes in the relative activity of sensory neurons in the visual system which respond selectively to the properties of visual stimuli. However, the bias could also be due to a shift in the observer's criterion for selecting one response rather than the alternative; adaptation at the decision level of processing rather than the sensory level. We investigated whether adaptation to implied motion is best attributed to sensory-level or decision-level bias. Three experiments sought to isolate decision factors by changing the nature of the participants' task while keeping the sensory stimulus unchanged. Results showed that adaptation-induced bias in reported stimulus direction only occurred when the participants' task involved a directional judgement, and disappeared when adaptation was measured using a non-directional task (reporting where motion was present in the display, regardless of its direction). We conclude that adaptation to implied motion is due to decision-level bias, and that a propensity towards such biases may be widespread in sensory decision-making.

  20. A NEW FRAMEWORK FOR BIBLE TRANSLATION

    African Journals Online (AJOL)

    Compare, for example, Nida's (1960) chapter “Scripture translation and revi- ..... The participants' goals and their selection, arrangement, perception .... text and the hearer be bi-directional, saying that, as well as being perceived and.

  1. Abnormal Size-Dependent Modulation of Motion Perception in Children with Autism Spectrum Disorder (ASD).

    Science.gov (United States)

    Sysoeva, Olga V; Galuta, Ilia A; Davletshina, Maria S; Orekhova, Elena V; Stroganova, Tatiana A

    2017-01-01

    Excitation/Inhibition (E/I) imbalance in neural networks is now considered among the core neural underpinnings of autism psychopathology. In motion perception at least two phenomena critically depend on E/I balance in visual cortex: spatial suppression (SS), and spatial facilitation (SF) corresponding to impoverished or improved motion perception with increasing stimuli size, respectively. While SS is dominant at high contrast, SF is evident for low contrast stimuli, due to the prevalence of inhibitory contextual modulations in the former, and excitatory ones in the latter case. Only one previous study (Foss-Feig et al., 2013) investigated SS and SF in Autism Spectrum Disorder (ASD). Our study aimed to replicate previous findings, and to explore the putative contribution of deficient inhibitory influences into an enhanced SF index in ASD-a cornerstone for interpretation proposed by Foss-Feig et al. (2013). The SS and SF were examined in 40 boys with ASD, broad spectrum of intellectual abilities (63 ASD. The presence of abnormally enhanced SF in children with ASD was the only consistent finding between our study and that of Foss-Feig et al. While the SS and SF indexes were strongly interrelated in TD participants, this correlation was absent in their peers with ASD. In addition, the SF index but not the SS index correlated with the severity of autism and the poor registration abilities. The pattern of results is partially consistent with the idea of hypofunctional inhibitory transmission in visual areas in ASD. Nonetheless, the absence of correlation between SF and SS indexes paired with a strong direct link between abnormally enhanced SF and autism symptoms in our ASD sample emphasizes the role of the enhanced excitatory influences by themselves in the observed abnormalities in low-level visual phenomena found in ASD.

  2. The Professional Translator and Information Literacy: Perceptions and Needs

    Science.gov (United States)

    Sales, Dora; Pinto, Maria

    2011-01-01

    This paper is part of a broader research project, the main goal of which is to provide translators with solid instruction in information literacy (IL). For this, it is important to know the views of the community of professional translators. The results of the ongoing research which we analyse in this paper provide this view, by means of a…

  3. Tradução e adaptação brasileira do Parental-Caregiver Perceptions Questionnaire (P-CPQ Translation and brazilian adaptation of the Parental-Caregiver Perceptions Questionnaire (P-CPQ

    Directory of Open Access Journals (Sweden)

    Taís de Souza Barbosa

    2010-09-01

    Full Text Available O objetivo deste estudo foi traduzir o instrumento Parental-Caregiver Perceptions Questionnaire (P-CPQ para a língua portuguesa do Brasil e realizar a adaptação cultural para aplicação na população de pais brasileiros. A tradução obedeceu às etapas de tradução, tradução reversa e revisão por um comitê de especialistas. No pré-teste, uma amostra de 20 pais respondeu ao questionário para avaliar os erros e desvios das traduções. Além disso, foi acrescentada a cada questão a alternativa "não entendi" para identificar questões que não fossem compreendidas pelos pais, isto é, consideradas culturalmente inadequadas. Os achados sugerem adequação do processo de adaptação cultural do instrumento para a língua portuguesa. No pré-teste, 20 indivíduos responderam ao questionário e apresentaram uma boa compreensão do instrumento, uma vez que nenhuma questão foi considerada incompreensível por 15% ou mais dos pais. A versão em português do P-CPQ mostrou ser de fácil compreensão pela população de pais brasileiros.The aim of this study was to translate the Parental-Caregiver Perceptions Questionnaire (P-CPQ into Brazilian Portuguese and to make the necessary cultural adaptations for use in the Brazilian parent population. The whole translation process consisted of translation, back-translation and committee review. In the pre-testing stage, a sample of 20 parents answered the questionnaire in order to check for errors and deviations in the translations. Furthermore, in each question the alternative "I didn't understand" was added to identify the questions that were not understood by the parents, i.e. questions considered culturally inappropriate. The findings suggested that the instrument is adequate to the Portuguese language and to the Brazilian cultural identity. In the pre-testing stage, 20 subjects answered the questionnaire and showed good understanding of the instrument, since no question was considered

  4. Biases in the perception of self-motion during whole-body acceleration and deceleration

    Directory of Open Access Journals (Sweden)

    Luc eTremblay

    2013-12-01

    Full Text Available Several studies have investigated whether vestibular signals can be processed to determine the magnitude of passive body motions. Many of them required subjects to report their perceived displacements offline, i.e. after being submitted to passive displacements. Here, we used a protocol that allowed us to complement these results by asking subjects to report their introspective estimation of their displacement continuously, i.e. during the ongoing body rotation. To this end, participants rotated the handle of a manipulandum around a vertical axis to indicate their perceived change of angular position in space at the same time as they were passively rotated in the dark. The rotation acceleration (Acc and deceleration (Dec lasted either 1.5 s (peak of 60 deg/s2, referred to as being "High" or 3 s (peak of 33 deg/s2, referred to as being "Low". The participants were rotated either counter-clockwise or clockwise, and all combinations of acceleration and deceleration were tested (i.e., AccLow-DecLow; AccLow-DecHigh; AccHigh-DecLow; AccHigh-DecHigh. The participants' perception of body rotation was assessed by computing the gain, i.e. ratio between the amplitude of the perceived rotations (as measured by the rotating manipulandum’s handle and the amplitude of the actual chair rotations. The gain was measured at the end of the rotations, and was also computed separately for the acceleration and deceleration phases. Three salient findings resulted from this experiment: i the gain was much greater during body acceleration than during body deceleration, ii the gain was greater during High compared to Low accelerations and iii the gain measured during the deceleration was influenced by the preceding acceleration (i.e., Low or High. These different effects of the angular stimuli on the perception of body motion can be interpreted in relation to the consequences of body acceleration and deceleration on the vestibular system and on higher-order cognitive

  5. Does the road go up the mountain? Fictive motion between linguistic conventions and cognitive motivations.

    Science.gov (United States)

    Stosic, Dejan; Fagard, Benjamin; Sarda, Laure; Colin, Camille

    2015-09-01

    Fictive motion (FM) characterizes the use of dynamic expressions to describe static scenes. This phenomenon is crucial in terms of cognitive motivations for language use; several explanations have been proposed to account for it, among which mental simulation (Talmy in Toward a cognitive semantics, vol 1. MIT Press, Cambridge, 2000) and visual scanning (Matlock in Studies in linguistic motivation. Mouton de Gruyter, Berlin and New York, pp 221-248, 2004a). The aims of this paper were to test these competing explanations and identify language-specific constraints. To do this, we compared the linguistic strategies for expressing several types of static configurations in four languages, French, Italian, German and Serbian, with an experimental set-up (59 participants). The experiment yielded significant differences for motion-affordance versus no motion-affordance, for all four languages. Significant differences between languages included mean frequency of FM expressions. In order to refine the picture, and more specifically to disentangle the respective roles of language-specific conventions and language-independent (i.e. possibly cognitive) motivations, we completed our study with a corpus approach (besides the four initial languages, we added English and Polish). The corpus study showed low frequency of FM across languages, but a higher frequency and translation ratio for some FM types--among which those best accounted for by enactive perception. The importance of enactive perception could thus explain both the universality of FM and the fact that language-specific conventions appear mainly in very specific contexts--the ones furthest from enaction.

  6. Contrast gain control in first- and second-order motion perception.

    Science.gov (United States)

    Lu, Z L; Sperling, G

    1996-12-01

    A novel pedestal-plus-test paradigm is used to determine the nonlinear gain-control properties of the first-order (luminance) and the second-order (texture-contrast) motion systems, that is, how these systems' responses to motion stimuli are reduced by pedestals and other masking stimuli. Motion-direction thresholds were measured for test stimuli consisting of drifting luminance and texture-contrast-modulation stimuli superimposed on pedestals of various amplitudes. (A pedestal is a static sine-wave grating of the same type and same spatial frequency as the moving test grating.) It was found that first-order motion-direction thresholds are unaffected by small pedestals, but at pedestal contrasts above 1-2% (5-10 x pedestal threshold), motion thresholds increase proportionally to pedestal amplitude (a Weber law). For first-order stimuli, pedestal masking is specific to the spatial frequency of the test. On the other hand, motion-direction thresholds for texture-contrast stimuli are independent of pedestal amplitude (no gain control whatever) throughout the accessible pedestal amplitude range (from 0 to 40%). However, when baseline carrier contrast increases (with constant pedestal modulation amplitude), motion thresholds increase, showing that gain control in second-order motion is determined not by the modulator (as in first-order motion) but by the carrier. Note that baseline contrast of the carrier is inherently independent of spatial frequency of the modulator. The drastically different gain-control properties of the two motion systems and prior observations of motion masking and motion saturation are all encompassed in a functional theory. The stimulus inputs to both first- and second-order motion process are normalized by feedforward, shunting gain control. The different properties arise because the modulator is used to control the first-order gain and the carrier is used to control the second-order gain.

  7. Directional Limits on Motion Transparency Assessed Through Colour-Motion Binding.

    Science.gov (United States)

    Maloney, Ryan T; Clifford, Colin W G; Mareschal, Isabelle

    2018-03-01

    Motion-defined transparency is the perception of two or more distinct moving surfaces at the same retinal location. We explored the limits of motion transparency using superimposed surfaces of randomly positioned dots defined by differences in motion direction and colour. In one experiment, dots were red or green and we varied the proportion of dots of a single colour that moved in a single direction ('colour-motion coherence') and measured the threshold direction difference for discriminating between two directions. When colour-motion coherences were high (e.g., 90% of red dots moving in one direction), a smaller direction difference was required to correctly bind colour with direction than at low coherences. In another experiment, we varied the direction difference between the surfaces and measured the threshold colour-motion coherence required to discriminate between them. Generally, colour-motion coherence thresholds decreased with increasing direction differences, stabilising at direction differences around 45°. Different stimulus durations were compared, and thresholds were higher at the shortest (150 ms) compared with the longest (1,000 ms) duration. These results highlight different yet interrelated aspects of the task and the fundamental limits of the mechanisms involved: the resolution of narrowly separated directions in motion processing and the local sampling of dot colours from each surface.

  8. On the Motion of solids in modified quantum mechanics

    International Nuclear Information System (INIS)

    Diosi, L.

    1988-01-01

    In this paper we apply the unified dynamics of Ghirardi, Rimini and Weber to the translational and rotational motion of solids in three dimensions. We show that, in a certain approximation, the rotational equations can formally be reduced to the translational ones already known. We point out that the rotation of solids as well as their translation are practically of classical nature without any observable quantum effects

  9. Neural Mechanisms of Illusory Motion: Evidence from ERP Study

    Directory of Open Access Journals (Sweden)

    Xu Y. A. N. Yun

    2011-05-01

    Full Text Available ERPs were used to examine the neural correlates of illusory motion, by presenting the Rice Wave illusion (CI, its two variants (WI and NI and a real motion video (RM. Results showed that: Firstly, RM elicited a more negative deflection than CI, NI and WI between 200–350ms. Secondly, between 500–600ms, CI elicited a more positive deflection than NI and WI, and RM elicited a more positive deflection than CI, what's more interesting was the sequential enhancement of brain activity with the corresponding motion strength. We inferred that the former component might reflect the successful encoding of the local motion signals in detectors at the lower stage; while the latter one might be involved in the intensive representations of visual input in real/illusory motion perception, this was the whole motion-signal organization in the later stage of motion perception. Finally, between 1185–1450 ms, a significant positive component was found between illusory/real motion tasks than NI (no motion. Overall, we demonstrated that there was a stronger deflection under the corresponding lager motion strength. These results reflected not only the different temporal patterns between illusory and real motion but also extending to their distinguishing working memory representation and storage.

  10. Knowledge in motion: The cultural politics of modern science translations in Arabic.

    Science.gov (United States)

    Elshakry, Marwa S

    2008-12-01

    This essay looks at the problem of the global circulation of modem scientific knowledge by looking at science translations in modern Arabic. In the commercial centers of the late Ottoman Empire, emerging transnational networks lay behind the development of new communities of knowledge, many of which sought to break with old linguistic and literary norms to redefine the basis of their authority. Far from acting as neutral purveyors of "universal truths," scientific translations thus served as key instruments in this ongoing process of sociopolitical and epistemological transformation and mediation. Fierce debates over translators' linguistic strategies and choices involved deliberations over the character of language and the nature of "science" itself. They were also crucially shaped by such geopolitical factors as the rise of European imperialism and anticolonial nationalism in the region. The essay concludes by arguing for the need for greater attention to the local factors involved in the translation of scientific concepts across borders.

  11. Induced motion of domain walls in multiferroics with quadratic interaction

    Energy Technology Data Exchange (ETDEWEB)

    Gerasimchuk, Victor S., E-mail: viktor.gera@gmail.com [National Technical University of Ukraine “Kyiv Polytechnic Institute”, Peremohy Avenue 37, 03056 Kiev (Ukraine); Shitov, Anatoliy A., E-mail: shitov@mail.ru [Donbass National Academy of Civil Engineering, Derzhavina Street 2, 86123 Makeevka, Donetsk Region (Ukraine)

    2013-10-15

    We theoretically study the dynamics of 180-degree domain wall of the ab-type in magnetic materials with quadratic magnetoelectric interaction in external alternating magnetic and electric fields. The features of the oscillatory and translational motions of the domain walls and stripe structures depending on the parameters of external fields and characteristics of the multiferroics are discussed. The possibility of the domain walls drift in a purely electric field is established. - Highlights: • We study DW and stripe DS in multiferroics with quadratic magnetoelectric interaction. • We build up the theory of oscillatory and translational (drift) DW and DS motion. • DW motion can be caused by crossed alternating electric and magnetic fields. • DW motion can be caused by alternating “pure” electric field. • DW drift velocity is formed by the AFM and Dzyaloshinskii interaction terms.

  12. Long-term effects of serial anodal tDCS on motion perception in subjects with occipital stroke measured in the unaffected visual hemifield

    Directory of Open Access Journals (Sweden)

    Manuel C Olma

    2013-06-01

    Full Text Available Transcranial direct current stimulation (tDCS is a novel neuromodulatory tool that has seen early transition to clinical trials, although the high variability of these findings necessitates further studies in clincally-relevant populations. The majority of evidence into effects of repeated tDCS is based on research in the human motor system, but it is unclear whether the long-term effects of serial tDCS are motor-specific or transferable to other brain areas. This study aimed to examine whether serial anodal tDCS over the visual cortex can exogenously induce long-term neuroplastic changes in the visual cortex. However, when the visual cortex is affected by a cortical lesion, up-regulated endogenous neuroplastic adaptation processes may alter the susceptibility to tDCS. To this end, motion perception was investigated in the unaffected hemifield of subjects with unilateral visual cortex lesions. Twelve subjects with occipital ischaemic lesions participated in a within-subject, sham-controlled, double-blind study. MRI-registered sham or anodal tDCS (1.5 mA, 20 minutes was applied on five consecutive days over the visual cortex. Motion perception was tested before and after stimulation sessions and at 14- and 28-day follow-up. After a 16-day interval an identical study block with the other stimulation condition (anodal or sham tDCS followed. Serial anodal tDCS over the visual cortex resulted in an improvement in motion perception, a function attributed to MT/V5. This effect was still measurable at 14- and 28-day follow-up measurements. Thus, this may represent evidence for long-term tDCS-induced plasticity and has implications for the design of studies examining the time course of tDCS effects in both the visual and motor systems.

  13. Micro-calibration of space and motion by photoreceptors synchronized in parallel with cortical oscillations: A unified theory of visual perception.

    Science.gov (United States)

    Jerath, Ravinder; Cearley, Shannon M; Barnes, Vernon A; Jensen, Mike

    2018-01-01

    A fundamental function of the visual system is detecting motion, yet visual perception is poorly understood. Current research has determined that the retina and ganglion cells elicit responses for motion detection; however, the underlying mechanism for this is incompletely understood. Previously we proposed that retinogeniculo-cortical oscillations and photoreceptors work in parallel to process vision. Here we propose that motion could also be processed within the retina, and not in the brain as current theory suggests. In this paper, we discuss: 1) internal neural space formation; 2) primary, secondary, and tertiary roles of vision; 3) gamma as the secondary role; and 4) synchronization and coherence. Movement within the external field is instantly detected by primary processing within the space formed by the retina, providing a unified view of the world from an internal point of view. Our new theory begins to answer questions about: 1) perception of space, erect images, and motion, 2) purpose of lateral inhibition, 3) speed of visual perception, and 4) how peripheral color vision occurs without a large population of cones located peripherally in the retina. We explain that strong oscillatory activity influences on brain activity and is necessary for: 1) visual processing, and 2) formation of the internal visuospatial area necessary for visual consciousness, which could allow rods to receive precise visual and visuospatial information, while retinal waves could link the lateral geniculate body with the cortex to form a neural space formed by membrane potential-based oscillations and photoreceptors. We propose that vision is tripartite, with three components that allow a person to make sense of the world, terming them "primary, secondary, and tertiary roles" of vision. Finally, we propose that Gamma waves that are higher in strength and volume allow communication among the retina, thalamus, and various areas of the cortex, and synchronization brings cortical

  14. Electron-translation effects in heavy-ion scattering

    International Nuclear Information System (INIS)

    Heinz, U.; Greiner, W.; Mueller, B.

    1981-01-01

    The origin and importance of electron-translation effects within a molecular description of electronic excitations in heavy-ion collisions is investigated. First, a fully consistent quantum-mechanical description of the scattering process is developed; the electrons are described by relativistic molecular orbitals, while the nuclear motion is approximated nonrelativistically. Leaving the quantum-mechanical level by using the semiclassical approximation for the nuclear motion, a set of coupled differential equations for the occupation amplitudes of the molecular orbitals is derived. In these coupled-channel equations the spurious asymptotic dynamical couplings are corrected for by additional matrix elements stemming from the electron translation. Hence, a molecular description of electronic excitations in heavy-ion scattering has been achieved, which is free from the spurious asymptotic couplings of the conventional perturbated stationary-state approach. The importance of electron-translation effects for continuum electrons and positrons is investigated. To this end an algorithm for the description of continuum electrons is proposed, which for the first time should allow for the calculation of angular distributions for delta electrons. Finally, the practical consequences of electron-translation effects are studied by calculating the corrected coupling matrix elements for the Pb-Cm system and comparing the corresponding K-vacancy probabilities with conventional calculations. We critically discuss conventional methods for cutting off the coupling matrix elements in coupled-channel calculations

  15. Molecular motion in restricted geometries

    Indian Academy of Sciences (India)

    Molecular dynamics in restricted geometries is known to exhibit anomalous behaviour. Diffusion, translational or rotational, of molecules is altered significantly on confinement in restricted geometries. Quasielastic neutron scattering (QENS) offers a unique possibility of studying molecular motion in such systems. Both time ...

  16. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction.

    Science.gov (United States)

    Watanabe, Eiji; Kitaoka, Akiyoshi; Sakamoto, Kiwako; Yasugi, Masaki; Tanaka, Kenta

    2018-01-01

    The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning) predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  17. Sensorimotor Adaptation Following Exposure to Ambiguous Inertial Motion Cues

    Science.gov (United States)

    Wood, S. J.; Clement, G. R.; Rupert, A. H.; Reschke, M. F.; Harm, D. L.; Guedry, F. E.

    2007-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. Adaptive changes in how inertial cues from the otolith system are integrated with other sensory information lead to perceptual and postural disturbances upon return to Earth s gravity. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation during tilt and translation motion.

  18. Motions on a rotating planet

    Science.gov (United States)

    Schröer, H.

    In chapter 1 we want to describe the motion of a falling body on a rotating planet. The planet rotates with an arbitrary changable angular velocity and has a translational acceleration. We obtain 3 differential equations. For the general gravitational field an exact solution is possible, when the differential equation system is explicit solvable. Then we consider the case, if the angular velocity and the translational acceleration is constant. With a special transformation we get 3 partial differential equations of first order. Instead of a planet sphere we can choose a general body of rotation. Even general bodies are possible. Chapter 2 contains the motion in a local coordinate system on planet's surface. We have an inhomogeneous linear differential equation of first order. If the angular velocity is constant, we get a system with constant coefficients. There is an english and a german edition.

  19. Motion in the unstable thoracolumbar spine when spine boarding a prone patient

    Science.gov (United States)

    Conrad, Bryan P.; Marchese, Diana L.; Rechtine, Glenn R.; Horodyski, MaryBeth

    2012-01-01

    Introduction Previous research has found that the log roll (LR) technique produces significant motion in the spinal column while transferring a supine patient onto a spine board. The purpose of this project was to determine whether log rolling a patient with an unstable spine from prone to supine with a pulling motion provides better thoracolumbar immobilization compared to log rolling with a push technique. Methods A global instability was surgically created at the L1 level in five cadavers. Two spine-boarding protocols were tested (LR Push and LR Pull). Both techniques entailed performing a 180° LR rotation of the prone patient from the ground to the supine position on the spine board. An electromagnetic tracking device registered motion between the T12 and L2 vertebral segments. Six motion parameters were tracked. Repeated-measures statistical analysis was performed to evaluate angular and translational motion. Results Less motion was produced during the LR Push compared to the LR Pull for all six motion parameters. The difference was statistically significant for three of the six parameters (flexion–extension, axial translation, and anterior–posterior (A–P) translation). Conclusions Both the LR Push and LR Pull generated significant motion in the thoracolumbar spine during the prone to supine LR. The LR Push technique produced statistically less motion than the LR Pull, and should be considered when a prone patient with a suspected thoracolumbar injury needs to be transferred to a long spine board. More research is needed to identify techniques to further reduce the motion in the unstable spine during prone to supine LR. PMID:22330191

  20. Encoding of naturalistic optic flow by motion sensitive neurons of nucleus rotundus in the zebra finch (Taeniopygia guttata.

    Directory of Open Access Journals (Sweden)

    Dennis eEckmeier

    2013-09-01

    Full Text Available The retinal image changes that occur during locomotion, the optic flow, carry information about self-motion and the three-dimensional structure of the environment. Especially fast moving animals with only little binocular vision depend on these depth cues for manoeuvring. They actively control their gaze to facilitate perception of depth based on cues in the optic flow. In the visual system of birds, nucleus rotundus neurons were originally found to respond to object motion but not to background motion. However, when background and object were both moving, responses increase the more the direction and velocity of object and background motion on the retina differed. These properties may play a role in representing depth cues in the optic flow. We therefore investigated how neurons in nucleus rotundus respond to optic flow that contains depth cues. We presented simplified and naturalistic optic flow on a panoramic LED display while recording from single neurons in nucleus rotundus of anaesthetized zebra finches. Unlike most studies on motion vision in birds, our stimuli included depth information.We found extensive responses of motion selective neurons in nucleus rotundus to optic flow stimuli. Simplified stimuli revealed preferences for optic flow reflecting translational or rotational self-motion. Naturalistic optic flow stimuli elicited complex response modulations, but the presence of objects was signalled by only few neurons. The neurons that did respond to objects in the optic flow, however, show interesting properties.

  1. Otolith tilt-translation reinterpretation following prolonged weightlessness - Implications for preflight training

    Science.gov (United States)

    Parker, D. E.; Reschke, M. F.; Arrott, A. P.; Homick, J. L.; Lichtenberg, B. K.

    1985-01-01

    Observations with three astronauts yielded two major findings. First, perceived self-motion during sinusoidal roll differed immediately postflight from preflight. Between 70 and 150 min after landing, roll was perceived primarily as linear translation. Secondly, more horizontal eye movement was elicited by roll simulation immediately postflight relative to both preflight and later postflight observations. These results support an 'otolith tilt-translation reinterpretation' hypothesis, which has clear implications for understanding astronaut reports of space motion sickness during the early period of orbital flight. A proposal for 'prophylactic adaptation training' which may provide preflight adaptation to weightlessness, derives from this reearch.

  2. Rotation driven translational diffusion of polyatomic ions in water: A novel mechanism for breakdown of Stokes-Einstein relation

    Science.gov (United States)

    Banerjee, Puja; Yashonath, Subramanian; Bagchi, Biman

    2017-04-01

    While most of the existing theoretical and simulation studies have focused on simple, spherical, halide and alkali ions, many chemically, biologically, and industrially relevant electrolytes involve complex non-spherical polyatomic ions like nitrate, chlorate, and sulfate to name only a few. Interestingly, some polyatomic ions in spite of being larger in size show anomalously high diffusivity and therefore cause a breakdown of the venerable Stokes-Einstein (S-E) relation between the size and diffusivity. Here we report a detailed analysis of the dynamics of anions in aqueous potassium nitrate (KNO3) and aqueous potassium acetate (CH3COOK) solutions. The two ions, nitrate (-NO3) and acetate (CH3-CO2 ), with their similar size show a large difference in diffusivity values. We present evidence that the translational motion of these polyatomic ions is coupled to the rotational motion of the ion. We show that unlike the acetate ion, nitrate ion with a symmetric charge distribution among all periphery oxygen atoms shows a faster rotational motion with large amplitude rotational jumps which enhances its translational motion due to translational-rotational coupling. By creating a family of modified-charge model systems, we have analysed the rotational motion of asymmetric polyatomic ions and the contribution of it to the translational motion. These model systems help clarifying and establishing the relative contribution of rotational motion in enhancing the diffusivity of the nitrate ion over the value predicted by the S-E relation and also over the other polyatomic ions having asymmetric charge distribution like the acetate ion. In the latter case, reduced rotational motion results in lower diffusivity values than those with symmetric charge distribution. We propose translational-rotational coupling as a general mechanism of the breakdown of the S-E relation in the case of polyatomic ions.

  3. Visual working memory contaminates perception

    OpenAIRE

    Kang, Min-Suk; Hong, Sang Wook; Blake, Randolph; Woodman, Geoffrey F.

    2011-01-01

    Indirect evidence suggests that the contents of visual working memory may be maintained within sensory areas early in the visual hierarchy. We tested this possibility using a well-studied motion repulsion phenomenon in which perception of one direction of motion is distorted when another direction of motion is viewed simultaneously. We found that observers misperceived the actual direction of motion of a single motion stimulus if, while viewing that stimulus, they were holding a different mot...

  4. Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.

    Science.gov (United States)

    Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas

    2017-06-01

    Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.

  5. Illusory Motion Reproduced by Deep Neural Networks Trained for Prediction

    Directory of Open Access Journals (Sweden)

    Eiji Watanabe

    2018-03-01

    Full Text Available The cerebral cortex predicts visual motion to adapt human behavior to surrounding objects moving in real time. Although the underlying mechanisms are still unknown, predictive coding is one of the leading theories. Predictive coding assumes that the brain's internal models (which are acquired through learning predict the visual world at all times and that errors between the prediction and the actual sensory input further refine the internal models. In the past year, deep neural networks based on predictive coding were reported for a video prediction machine called PredNet. If the theory substantially reproduces the visual information processing of the cerebral cortex, then PredNet can be expected to represent the human visual perception of motion. In this study, PredNet was trained with natural scene videos of the self-motion of the viewer, and the motion prediction ability of the obtained computer model was verified using unlearned videos. We found that the computer model accurately predicted the magnitude and direction of motion of a rotating propeller in unlearned videos. Surprisingly, it also represented the rotational motion for illusion images that were not moving physically, much like human visual perception. While the trained network accurately reproduced the direction of illusory rotation, it did not detect motion components in negative control pictures wherein people do not perceive illusory motion. This research supports the exciting idea that the mechanism assumed by the predictive coding theory is one of basis of motion illusion generation. Using sensory illusions as indicators of human perception, deep neural networks are expected to contribute significantly to the development of brain research.

  6. Translational and rotational dynamics of water in mesoporous silica materials: MCM-41-S and MCM-48-S

    International Nuclear Information System (INIS)

    Faraone, Antonio; Liu Li; Mou, C.-Y.; Shih, P.-C.; Copley, John R.D.; Chen, S.-H.

    2003-01-01

    We investigated the translational and rotational dynamics of water molecules in mesoporous silica materials MCM-41-S and MCM-48-S using the incoherent quasielastic neutron scattering technique. The range of wave vector transfers Q covered in the measurements was from 0.27 to 1.93 Aa -1 broad enough to detect both the translational and rotational contributions to the scattering. We used the relaxing-cage models for both translational and rotational motions which we developed earlier, to analyze the QENS spectra and investigated water dynamics in a supercooled range from 250 to 280 K. The results show a marked slowing down of both the translational and rotational relaxation times, and an increasing effect of confinement on the translational motion, as the temperature is lowered

  7. Brownian motion probe for water-ethanol inhomogeneous mixtures

    Science.gov (United States)

    Furukawa, Kazuki; Judai, Ken

    2017-12-01

    Brownian motion provides information regarding the microscopic geometry and motion of molecules, insofar as it occurs as a result of molecular collisions with a colloid particle. We found that the mobility of polystyrene beads from the Brownian motion in a water-ethanol mixture is larger than that predicted from the liquid shear viscosity. This indicates that mixing water and ethanol is inhomogeneous in micron-sized probe beads. The discrepancy between the mobility of Brownian motion and liquid mobility can be explained by the way the rotation of the beads in an inhomogeneous viscous solvent converts the translational movement.

  8. Natural Translating Locomotion Modulates Cortical Activity at Action Observation

    Directory of Open Access Journals (Sweden)

    Thierry Pozzo

    2017-11-01

    Full Text Available The present study verified if the translational component of locomotion modulated cortical activity recorded at action observation. Previous studies focusing on visual processing of biological motion mainly presented point light walker that were fixed on a spot, thus removing the net translation toward a goal that yet remains a critical feature of locomotor behavior. We hypothesized that if biological motion recognition relies on the transformation of seeing in doing and its expected sensory consequences, a significant effect of translation compared to centered displays on sensorimotor cortical activity is expected. To this aim, we explored whether EEG activity in the theta (4–8 Hz, alpha (8–12 Hz, beta 1 (14–20 Hz and beta 2 (20–32 Hz frequency bands exhibited selectivity as participants viewed four types of stimuli: a centered walker, a centered scrambled, a translating walker and a translating scrambled. We found higher theta synchronizations for observed stimulus with familiar shape. Higher power decreases in the beta 1 and beta 2 bands, indicating a stronger motor resonance was elicited by translating compared to centered stimuli. Finally, beta bands modulation in Superior Parietal areas showed that the translational component of locomotion induced greater motor resonance than human shape. Using a Multinomial Logistic Regression classifier we found that Dorsal-Parietal and Inferior-Frontal regions of interest (ROIs, constituting the core of action-observation system, were the only areas capable to discriminate all the four conditions, as reflected by beta activities. Our findings suggest that the embodiment elicited by an observed scenario is strongly mediated by horizontal body displacement.

  9. Effects of Spine Motion on Foot Slip in Quadruped Bounding

    Directory of Open Access Journals (Sweden)

    Dongliang Chen

    2018-01-01

    Full Text Available Translation and bend of the spine in the sagittal plane during high-speed quadruped running were investigated. The effect of the two spine motions on slip between the foot and the ground was also explored. First, three simplified sagittal plane models of quadruped mammals were studied in symmetric bounding. The first model’s trunk allowed no relative motion, the second model allowed only trunk bend, and the third model allowed both bend and translation. Next, torque was introduced to equivalently replace spine motion and the possibility of foot slip of the three models was analyzed theoretically. The results indicate that the third model has the least possibility of slip. This conclusion was further confirmed by simulation experiments. Finally, the conclusion was verified by the reductive model crawling robot.

  10. Benefits of rotational ground motions for planetary seismology

    Science.gov (United States)

    Donner, S.; Joshi, R.; Hadziioannou, C.; Nunn, C.; van Driel, M.; Schmelzbach, C.; Wassermann, J. M.; Igel, H.

    2017-12-01

    Exploring the internal structure of planetary objects is fundamental to understand the evolution of our solar system. In contrast to Earth, planetary seismology is hampered by the limited number of stations available, often just a single one. Classic seismology is based on the measurement of three components of translational ground motion. Its methods are mainly developed for a larger number of available stations. Therefore, the application of classical seismological methods to other planets is very limited. Here, we show that the additional measurement of three components of rotational ground motion could substantially improve the situation. From sparse or single station networks measuring translational and rotational ground motions it is possible to obtain additional information on structure and source. This includes direct information on local subsurface seismic velocities, separation of seismic phases, propagation direction of seismic energy, crustal scattering properties, as well as moment tensor source parameters for regional sources. The potential of this methodology will be highlighted through synthetic forward and inverse modeling experiments.

  11. Stream/Bounce Event Perception Reveals a Temporal Limit of Motion Correspondence Based on Surface Feature over Space and Time

    Directory of Open Access Journals (Sweden)

    Yousuke Kawachi

    2011-06-01

    Full Text Available We examined how stream/bounce event perception is affected by motion correspondence based on the surface features of moving objects passing behind an occlusion. In the stream/bounce display two identical objects moving across each other in a two-dimensional display can be perceived as either streaming through or bouncing off each other at coincidence. Here, surface features such as colour (Experiments 1 and 2 or luminance (Experiment 3 were switched between the two objects at coincidence. The moment of coincidence was invisible to observers due to an occluder. Additionally, the presentation of the moving objects was manipulated in duration after the feature switch at coincidence. The results revealed that a postcoincidence duration of approximately 200 ms was required for the visual system to stabilize judgments of stream/bounce events by determining motion correspondence between the objects across the occlusion on the basis of the surface feature. The critical duration was similar across motion speeds of objects and types of surface features. Moreover, controls (Experiments 4a–4c showed that cognitive bias based on feature (colour/luminance congruency across the occlusion could not fully account for the effects of surface features on the stream/bounce judgments. We discuss the roles of motion correspondence, visual feature processing, and attentive tracking in the stream/bounce judgments.

  12. Trochanteric fracture-implant motion during healing - A radiostereometry (RSA) study.

    Science.gov (United States)

    Bojan, Alicja J; Jönsson, Anders; Granhed, Hans; Ekholm, Carl; Kärrholm, Johan

    2018-03-01

    Cut-out complication remains a major unsolved problem in the treatment of trochanteric hip fractures. A better understanding of the three-dimensional fracture-implant motions is needed to enable further development of clinical strategies and countermeasures. The aim of this clinical study was to characterise and quantify three-dimensional motions between the implant and the bone and between the lag screw and nail of the Gamma nail. Radiostereometry Analysis (RSA) analysis was applied in 20 patients with trochanteric hip fractures treated with an intramedullary nail. The following three-dimensional motions were measured postoperatively, at 1 week, 3, 6 and 12 months: translations of the tip of the lag screw in the femoral head, motions of the lag screw in the nail, femoral head motions relative to the nail and nail movements in the femoral shaft. Cranial migration of the tip of the lag screw dominated over the other two translation components in the femoral head. In all fractures the lag screw slid laterally in the nail and the femoral head moved both laterally and inferiorly towards the nail. All femoral heads translated posteriorly relative to the nail, and rotations occurred in both directions with median values close to zero. The nail tended to retrovert in the femoral shaft. Adverse fracture-implant motions were detected in stable trochanteric hip fractures treated with intramedullary nails with high resolution. Therefore, RSA method can be used to evaluate new implant designs and clinical strategies, which aim to reduce cut-out complications. Future RSA studies should aim at more unstable fractures as these are more likely to fail with cut-out. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The importance of stimulus noise analysis for self-motion studies.

    Directory of Open Access Journals (Sweden)

    Alessandro Nesti

    Full Text Available Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator's inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception.

  14. The Verriest Lecture: Color lessons from space, time, and motion

    Science.gov (United States)

    Shevell, Steven K.

    2012-01-01

    The appearance of a chromatic stimulus depends on more than the wavelengths composing it. The scientific literature has countless examples showing that spatial and temporal features of light influence the colors we see. Studying chromatic stimuli that vary over space, time or direction of motion has a further benefit beyond predicting color appearance: the unveiling of otherwise concealed neural processes of color vision. Spatial or temporal stimulus variation uncovers multiple mechanisms of brightness and color perception at distinct levels of the visual pathway. Spatial variation in chromaticity and luminance can change perceived three-dimensional shape, an example of chromatic signals that affect a percept other than color. Chromatic objects in motion expose the surprisingly weak link between the chromaticity of objects and their physical direction of motion, and the role of color in inducing an illusory motion direction. Space, time and motion – color’s colleagues – reveal the richness of chromatic neural processing. PMID:22330398

  15. Smoothness constraints in recursive search motion estimation for picture rate conversion.

    NARCIS (Netherlands)

    Bartels, C.L.L.; Haan, de G.

    2010-01-01

    Many motion compensation algorithms are based on block matching. The quality of the block correlation depends on the validity of the brightness constancy assumption and the assumption of fixed translational motion within a block. These assumptions are invalid in areas with texture changes, noise,

  16. Gravitational attraction until relativistic equipartition of internal and translational kinetic energies

    Science.gov (United States)

    Bulyzhenkov, I. E.

    2018-02-01

    Translational ordering of the internal kinematic chaos provides the Special Relativity referents for the geodesic motion of warm thermodynamical bodies. Taking identical mathematics, relativistic physics of the low speed transport of time-varying heat-energies differs from Newton's physics of steady masses without internal degrees of freedom. General Relativity predicts geodesic changes of the internal heat-energy variable under the free gravitational fall and the geodesic turn in the radial field center. Internal heat variations enable cyclic dynamics of decelerated falls and accelerated takeoffs of inertial matter and its structural self-organization. The coordinate speed of the ordered spatial motion takes maximum under the equipartition of relativistic internal and translational kinetic energies. Observable predictions are discussed for verification/falsification of the principle of equipartition as a new basic for the ordered motion and self-organization in external fields, including gravitational, electromagnetic, and thermal ones.

  17. Visual motion detection and habitat preference in Anolis lizards.

    Science.gov (United States)

    Steinberg, David S; Leal, Manuel

    2016-11-01

    The perception of visual stimuli has been a major area of inquiry in sensory ecology, and much of this work has focused on coloration. However, for visually oriented organisms, the process of visual motion detection is often equally crucial to survival and reproduction. Despite the importance of motion detection to many organisms' daily activities, the degree of interspecific variation in the perception of visual motion remains largely unexplored. Furthermore, the factors driving this potential variation (e.g., ecology or evolutionary history) along with the effects of such variation on behavior are unknown. We used a behavioral assay under laboratory conditions to quantify the visual motion detection systems of three species of Puerto Rican Anolis lizard that prefer distinct structural habitat types. We then compared our results to data previously collected for anoles from Cuba, Puerto Rico, and Central America. Our findings indicate that general visual motion detection parameters are similar across species, regardless of habitat preference or evolutionary history. We argue that these conserved sensory properties may drive the evolution of visual communication behavior in this clade.

  18. Pragmatic Aspects of the Translation of Slang and Four-Letter Words.

    Science.gov (United States)

    Zauberga, Ieva

    1994-01-01

    Offers a historical view of the Latvian language to show ways in which different political realities have affected Latvian vocabulary; for instance, in terms of loan words, and ways in which Latvian perceptions of loans shed light on cross-cultural aspects of translation. Discusses strategies by which Latvian translators have tried to solve these…

  19. Repeat CT-scan assessment of lymph node motion in locally advanced cervical cancer patients

    International Nuclear Information System (INIS)

    Bondar, Luiza; Velema, Laura; Mens, Jan Willem; Heijmen, Ben; Hoogeman, Mischa; Zwijnenburg, Ellen

    2014-01-01

    In cervical cancer patients the nodal clinical target volume (CTV, defined using the major pelvic blood vessels and enlarged lymph nodes) is assumed to move synchronously with the bony anatomy. The aim of this study was to verify this assumption by investigating the motion of the major pelvic blood vessels and enlarged lymph nodes visible in CT scans. For 13 patients treated in prone position, four variable bladder-filling CT scans per patient, acquired at planning and after 40 Gy, were selected from an available dataset of 9-10 CT scans. The bladder, rectum, and the nodal-vessels structure containing the iliac vessels and all visible enlarged nodes were delineated in each selected CT scan. Two online patient setup correction protocols were simulated. The first corrected bony anatomy translations and the second corrected translations and rotations. The efficacy of each correction was calculated as the overlap between the nodal-vessels structure in the reference and repeat CT scans. The motion magnitude between delineated structures was quantified using nonrigid registration. Translational corrections resulted in an average overlap of 58 ± 13% and in a range of motion between 9.9 and 27.3 mm. Translational and rotational corrections significantly improved the overlap (64 ± 13%, p value = 0.007) and moderately reduced the range of motion to 7.6-23.8 mm (p value = 0.03). Bladder filling changes significantly correlated with the nodal-vessels motion (p [de

  20. Non-model-based correction of respiratory motion using beat-to-beat 3D spiral fat-selective imaging.

    Science.gov (United States)

    Keegan, Jennifer; Gatehouse, Peter D; Yang, Guang-Zhong; Firmin, David N

    2007-09-01

    To demonstrate the feasibility of retrospective beat-to-beat correction of respiratory motion, without the need for a respiratory motion model. A high-resolution three-dimensional (3D) spiral black-blood scan of the right coronary artery (RCA) of six healthy volunteers was acquired over 160 cardiac cycles without respiratory gating. One spiral interleaf was acquired per cardiac cycle, prior to each of which a complete low-resolution fat-selective 3D spiral dataset was acquired. The respiratory motion (3D translation) on each cardiac cycle was determined by cross-correlating a region of interest (ROI) in the fat around the artery in the low-resolution datasets with that on a reference end-expiratory dataset. The measured translations were used to correct the raw data of the high-resolution spiral interleaves. Beat-to-beat correction provided consistently good results, with the image quality being better than that obtained with a fixed superior-inferior tracking factor of 0.6 and better than (N = 5) or equal to (N = 1) that achieved using a subject-specific retrospective 3D translation motion model. Non-model-based correction of respiratory motion using 3D spiral fat-selective imaging is feasible, and in this small group of volunteers produced better-quality images than a subject-specific retrospective 3D translation motion model. (c) 2007 Wiley-Liss, Inc.

  1. Pre-coincidence brain activity predicts the perceptual outcome of streaming/bouncing motion display.

    Science.gov (United States)

    Zhao, Song; Wang, Yajie; Jia, Lina; Feng, Chengzhi; Liao, Yu; Feng, Wenfeng

    2017-08-18

    When two identical visual discs move toward each other on a two-dimensional visual display, they can be perceived as either "streaming through" or "bouncing off" each other after their coincidence. Previous studies have observed a strong bias toward the streaming percept. Additionally, the incidence of the bouncing percept in this ambiguous display could be increased by various factors, such as a brief sound at the moment of coincidence and a momentary pause of the two discs. The streaming/bouncing bistable motion phenomenon has been studied intensively since its discovery. However, little is known regarding the neural basis underling the perceptual ambiguity in the classic version of the streaming/bouncing motion display. The present study investigated the neural basis of the perception disambiguating underling the processing of the streaming/bouncing bistable motion display using event-related potential (ERP) recordings. Surprisingly, the amplitude of frontal central P2 (220-260 ms) that was elicited by the moving discs ~200 ms before the coincidence of the two discs was observed to be predictive of subsequent streaming or bouncing percept. A larger P2 amplitude was observed for streaming percept than the bouncing percept. These findings suggest that the streaming/bouncing bistable perception may have been disambiguated unconsciously ~200 ms before the coincidence of the two discs.

  2. Literature of Danubian Monarchy in Ukrainian Translations

    Directory of Open Access Journals (Sweden)

    Maria Ivanytska

    2013-08-01

    Full Text Available The article emphasizes the increasing interest to Austrian literature of the last years of Danubian monarchy in modern Ukraine. Ukrainian translations of works by L.v.Sacher-Masoch, K.E.Franzos, A.Schnitzler, F.Kafka, R.Musil are analyzed. The points of contact between Austrian and Ukrainian literature are presented; they are particularly pronounced in the multicultural literature and in the mentality of Galicia and Bukovina. The article also studies the influence of translator's personality on perception of Austrian literature in Ukraine from the standpoint of imagology.

  3. Linearized motion estimation for articulated planes.

    Science.gov (United States)

    Datta, Ankur; Sheikh, Yaser; Kanade, Takeo

    2011-04-01

    In this paper, we describe the explicit application of articulation constraints for estimating the motion of a system of articulated planes. We relate articulations to the relative homography between planes and show that these articulations translate into linearized equality constraints on a linear least-squares system, which can be solved efficiently using a Karush-Kuhn-Tucker system. The articulation constraints can be applied for both gradient-based and feature-based motion estimation algorithms and to illustrate this, we describe a gradient-based motion estimation algorithm for an affine camera and a feature-based motion estimation algorithm for a projective camera that explicitly enforces articulation constraints. We show that explicit application of articulation constraints leads to numerically stable estimates of motion. The simultaneous computation of motion estimates for all of the articulated planes in a scene allows us to handle scene areas where there is limited texture information and areas that leave the field of view. Our results demonstrate the wide applicability of the algorithm in a variety of challenging real-world cases such as human body tracking, motion estimation of rigid, piecewise planar scenes, and motion estimation of triangulated meshes.

  4. Perception is more than time delays

    NARCIS (Netherlands)

    Pala, O.; Rouwette, E.A.J.A.

    2013-01-01

    In this paper, we look at the way perceptions – a vital component of any decision-making process – are modeled in System Dynamics (SD) models. SD models include perceptions as a factor translating actual into observed conditions. System dynamicists assume that true conditions are not available to

  5. Facial motion parameter estimation and error criteria in model-based image coding

    Science.gov (United States)

    Liu, Yunhai; Yu, Lu; Yao, Qingdong

    2000-04-01

    Model-based image coding has been given extensive attention due to its high subject image quality and low bit-rates. But the estimation of object motion parameter is still a difficult problem, and there is not a proper error criteria for the quality assessment that are consistent with visual properties. This paper presents an algorithm of the facial motion parameter estimation based on feature point correspondence and gives the motion parameter error criteria. The facial motion model comprises of three parts. The first part is the global 3-D rigid motion of the head, the second part is non-rigid translation motion in jaw area, and the third part consists of local non-rigid expression motion in eyes and mouth areas. The feature points are automatically selected by a function of edges, brightness and end-node outside the blocks of eyes and mouth. The numbers of feature point are adjusted adaptively. The jaw translation motion is tracked by the changes of the feature point position of jaw. The areas of non-rigid expression motion can be rebuilt by using block-pasting method. The estimation approach of motion parameter error based on the quality of reconstructed image is suggested, and area error function and the error function of contour transition-turn rate are used to be quality criteria. The criteria reflect the image geometric distortion caused by the error of estimated motion parameters properly.

  6. Roto-translation motion of the stars in close binary systems

    International Nuclear Information System (INIS)

    Medvedeva, A A

    2013-01-01

    This article has to show that the model of p-h which is used to determine the change of the semi major axis of the relative orbit stars is incorrect and leads to large errors in the determination of semi-major axis. The new model, suitable for the elliptical orbits of the stars. To determine relative motion of stars in a close binary system in this paper uses a numerical integration of the equations of motion with the reactive forces, including the rotational component of attraction between the stars and the stream flows into the substance. The calculations of elliptical orbits of close binary stars show that the effect of the reactive force on the evolution of the orbits of stars may be different. The results can be refined by introducing other disturbing factors and making new assumptions based on observations

  7. The application of biological motion research: biometrics, sport, and the military.

    Science.gov (United States)

    Steel, Kylie; Ellem, Eathan; Baxter, David

    2015-02-01

    The body of research that examines the perception of biological motion is extensive and explores the factors that are perceived from biological motion and how this information is processed. This research demonstrates that individuals are able to use relative (temporal and spatial) information from a person's movement to recognize factors, including gender, age, deception, emotion, intention, and action. The research also demonstrates that movement presents idiosyncratic properties that allow individual discrimination, thus providing the basis for significant exploration in the domain of biometrics and social signal processing. Medical forensics, safety garments, and victim selection domains also have provided a history of research on the perception of biological motion applications; however, a number of additional domains present opportunities for application that have not been explored in depth. Therefore, the purpose of this paper is to present an overview of the current applications of biological motion-based research and to propose a number of areas where biological motion research, specific to recognition, could be applied in the future.

  8. Envelope statistics of self-motion signals experienced by human subjects during everyday activities: Implications for vestibular processing.

    Science.gov (United States)

    Carriot, Jérome; Jamali, Mohsen; Cullen, Kathleen E; Chacron, Maurice J

    2017-01-01

    There is accumulating evidence that the brain's neural coding strategies are constrained by natural stimulus statistics. Here we investigated the statistics of the time varying envelope (i.e. a second-order stimulus attribute that is related to variance) of rotational and translational self-motion signals experienced by human subjects during everyday activities. We found that envelopes can reach large values across all six motion dimensions (~450 deg/s for rotations and ~4 G for translations). Unlike results obtained in other sensory modalities, the spectral power of envelope signals decreased slowly for low (2 Hz) temporal frequencies and thus was not well-fit by a power law. We next compared the spectral properties of envelope signals resulting from active and passive self-motion, as well as those resulting from signals obtained when the subject is absent (i.e. external stimuli). Our data suggest that different mechanisms underlie deviation from scale invariance in rotational and translational self-motion envelopes. Specifically, active self-motion and filtering by the human body cause deviation from scale invariance primarily for translational and rotational envelope signals, respectively. Finally, we used well-established models in order to predict the responses of peripheral vestibular afferents to natural envelope stimuli. We found that irregular afferents responded more strongly to envelopes than their regular counterparts. Our findings have important consequences for understanding the coding strategies used by the vestibular system to process natural second-order self-motion signals.

  9. The Perception of the Higher Derivatives of Visual Motion.

    Science.gov (United States)

    1986-06-24

    the two runs the motion was uniform. It was found that sensitivity to acceleration (as indicated by proportion of correct dis- criminations ) decreased...that dis- whose size alternately expanded or contracted at a fixed rate, crimination of direction of motion in depth has submaxima with the transition...stereoknetici. Archivo Italiano di Psicologia . tection: Comparison of postadaptation thresholds. Journal of the 1924.3. 105-120. Optical Society of America. 1983

  10. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    Science.gov (United States)

    Morishima, Shigeo; Nakamura, Satoshi

    2004-12-01

    We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  11. Gravity Cues Embedded in the Kinematics of Human Motion Are Detected in Form-from-Motion Areas of the Visual System and in Motor-Related Areas.

    Science.gov (United States)

    Cignetti, Fabien; Chabeauti, Pierre-Yves; Menant, Jasmine; Anton, Jean-Luc J J; Schmitz, Christina; Vaugoyeau, Marianne; Assaiante, Christine

    2017-01-01

    The present study investigated the cortical areas engaged in the perception of graviceptive information embedded in biological motion (BM). To this end, functional magnetic resonance imaging was used to assess the cortical areas active during the observation of human movements performed under normogravity and microgravity (parabolic flight). Movements were defined by motion cues alone using point-light displays. We found that gravity modulated the activation of a restricted set of regions of the network subtending BM perception, including form-from-motion areas of the visual system (kinetic occipital region, lingual gyrus, cuneus) and motor-related areas (primary motor and somatosensory cortices). These findings suggest that compliance of observed movements with normal gravity was carried out by mapping them onto the observer's motor system and by extracting their overall form from local motion of the moving light points. We propose that judgment on graviceptive information embedded in BM can be established based on motor resonance and visual familiarity mechanisms and not necessarily by accessing the internal model of gravitational motion stored in the vestibular cortex.

  12. Three-dimensional motion pattern of the caudal lumbar and lumbosacral portions of the vertebral column of dogs.

    Science.gov (United States)

    Benninger, Monika I; Seiler, Gabriela S; Robinson, Leanne E; Ferguson, Stephen J; Bonél, Harald M; Busato, André R; Lang, Johann

    2004-05-01

    To evaluate the 3-dimensional motion pattern including main and coupled motions of the caudal lumbar and lumbosacral portions of the vertebral column of dogs. Vertebral columns of 9 German Shepherd Dogs (GSDs) and 16 dogs of other breeds with similar body weights and body conditions. Main and coupled motions of the caudal lumbar and lumbosacral portions of the vertebral column (L4 to S1) were determined by use of a testing apparatus that permitted precise application of known pure moments to the vertebral column. Motion was compared between GSDs and dogs of other breeds. All specimens had a similar motion pattern consisting of main motion and a certain amount of coupled motion including translation. Vertebral columns of GSDs had significantly less main motion in all directions than that of dogs of other breeds. Translation was similar in GSDs and dogs of other breeds and was smallest at the lumbosacral motion segment. Results indicated that motion in the caudal lumbar and lumbosacral portions of the vertebral column of dogs is complex and provided a basis for further studies evaluating abnormal vertebral columns.

  13. NATO Symposium entitled "Symposium on the Study of Motion Perception : Recent Developments and Applications"

    CERN Document Server

    Wagenaar, Willem; Leibowitz, Herschel

    1982-01-01

    From August 24-29, 1980 the international "Symposium on the Study of Motion Perception; Recent Developments and Applications", sponsored by NATO and organized by the editors of this book, was held in Veldhoven, the Netherlands. The meeting was attended by about eighty scholars, including psychologists, neurologists, physicists and other scientists, from fourteen different countries. During the symposium some fifty research papers were presented and a series of tutorial review papers were read and discussed. The research presentations have been published in a special issue of the international journal of psychonomics "Acta Psychologica" (Vol. 48, 1981). The present book is a compilation of the tutorial papers. The tutorials were arranged around early versions of the chapters now appearing in this book. The long discussions at the Veldhoven tutorial sessions resulted in extensive revisions of the texts prior to this publication. Unfortunately this led to a delay in publication, but we feel that this was justifi...

  14. Lost in Translation

    Science.gov (United States)

    Lass, Wiebke; Reusswig, Fritz

    2014-05-01

    Lost in Translation? Introducing Planetary Boundaries into Social Systems. Fritz Reusswig, Wiebke Lass Potsdam Institute for Climate Impact Research, Potsdam, Germany Identifying and quantifying planetary boundaries by interdisciplinary science efforts is a challenging task—and a risky one, as the 1972 Limits to Growth publication has shown. Even if we may be assured that scientific understanding of underlying processes of the Earth system has significantly improved since then, the challenge of translating these findings into the social systems of the planet remains crucial for any kind of action, and in many respects far more challenging. We would like to conceptualize what could also be termed a problem of coupling social and natural systems as a nested set of social translation processes, well aware of the limited applicability of the language-related translation metaphor. Societies must, first, perceive these boundaries, and they have to understand their relevance. This includes, among many other things, the organization of transdisciplinary scientific cooperation. They will then have to translate this understood perception into possible actions, i.e. strategies for different local bodies, actors, and institutional settings. This implies a lot of 'internal' translation processes, e.g. from the scientific subsystem to the mass media, the political and the economic subsystem. And it implies to develop subsystem-specific schemes of evaluation for these alternatives, e.g. convincing narratives, cost-benefit analyses, or ethical legitimacy considerations. And, finally, societies do have to translate chosen action alternatives into monitoring and evaluation schemes, e.g. for agricultural production or renewable energies. This process includes the continuation of observing and re-analyzing the planetary boundary concept itself, as a re-adjustment of these boundaries in the light of new scientific insights cannot be excluded. Taken all together, societies may well

  15. Effects of external rotation on anteroposterior translations in the shoulder: a pilot study.

    Science.gov (United States)

    Brown, Andrew J; Debski, Richard E; Voycheck, Carrie A; McMahon, Patrick J

    2014-08-01

    Using physical examination to make the diagnosis of shoulder instability can be difficult, because typical examination maneuvers are qualitative, difficult to standardize, and not reproducible. Measuring shoulder translation is especially difficult, which is a particular problem, because measuring it inaccurately may result in improper treatment of instability. The objective of this study was to use a magnetic motion tracking system to quantify the effects of external rotation of the abducted shoulder on a simulated simple translation test in healthy subjects. Specifically, we hypothesized that (1) increasing external rotation of the abducted shoulder would result in decreasing translation; (2) intraobserver repeatability would be less than 2 mm at all external rotation positions; and (3) mean side-to-side differences would be less than 2 mm at all external rotation positions. The intraobserver repeatability and side-to-side differences of AP translation were quantified with a noninvasive magnetic motion tracking system and automated data analysis routine in nine healthy subjects at four positions of external rotation with the arm abducted. A shoulder positioning apparatus was used to maintain the desired arm position. No differences in translations between the positions of external rotation were found (p = 0.48). Intraobserver repeatability was 1.1 mm (SD, 0.8 mm) and mean side-to-side differences were small: 2.7 mm (SD, 2.8 mm), 2.8 mm (SD, 1.8 mm), 2.5 mm (SD, 1.8 mm), and 4.0 mm (SD, 2.6 mm) at 0°, 20°, 40°, and 60° of external rotation, respectively. The intraobserver repeatability was strong and the side-to-side differences in translation were small with the magnetic motion tracking system, which is encouraging for development of an improved quantitative test to assess shoulder translation for fast and low-cost diagnosis of shoulder instability. Clinicians may not have to position the contralateral, normal, abducted shoulder in precisely the same position

  16. Development of a 6DOF robotic motion phantom for radiation therapy

    International Nuclear Information System (INIS)

    Belcher, Andrew H.; Liu, Xinmin; Grelewicz, Zachary; Pearson, Erik; Wiersma, Rodney D.

    2014-01-01

    Purpose: The use of medical technology capable of tracking patient motion or positioning patients along 6 degree-of-freedom (6DOF) has steadily increased in the field of radiation therapy. However, due to the complex nature of tracking and performing 6DOF motion, it is critical that such technology is properly verified to be operating within specifications in order to ensure patient safety. In this study, a robotic motion phantom is presented that can be programmed to perform highly accurate motion along any X (left–right), Y (superior–inferior), Z (anterior–posterior), pitch (around X), roll (around Y), and yaw (around Z) axes. In addition, highly synchronized motion along all axes can be performed in order to simulate the dynamic motion of a tumor in 6D. The accuracy and reproducibility of this 6D motion were characterized. Methods: An in-house designed and built 6D robotic motion phantom was constructed following the Stewart–Gough parallel kinematics platform archetype. The device was controlled using an inverse kinematics formulation, and precise movements in all 6 degrees-of-freedom (X, Y, Z, pitch, roll, and yaw) were performed, both simultaneously and separately for each degree-of-freedom. Additionally, previously recorded 6D cranial and prostate motions were effectively executed. The robotic phantom movements were verified using a 15 fps 6D infrared marker tracking system and the measured trajectories were compared quantitatively to the intended input trajectories. The workspace, maximum 6D velocity, backlash, and weight load capabilities of the system were also established. Results: Evaluation of the 6D platform demonstrated translational root mean square error (RMSE) values of 0.14, 0.22, and 0.08 mm over 20 mm in X and Y and 10 mm in Z, respectively, and rotational RMSE values of 0.16°, 0.06°, and 0.08° over 10° of pitch, roll, and yaw, respectively. The robotic stage also effectively performed controlled 6D motions, as well as reproduced

  17. Sound frequency and aural selectivity in sound-contingent visual motion aftereffect.

    Directory of Open Access Journals (Sweden)

    Maori Kobayashi

    Full Text Available BACKGROUND: One possible strategy to evaluate whether signals in different modalities originate from a common external event or object is to form associations between inputs from different senses. This strategy would be quite effective because signals in different modalities from a common external event would then be aligned spatially and temporally. Indeed, it has been demonstrated that after adaptation to visual apparent motion paired with alternating auditory tones, the tones begin to trigger illusory motion perception to a static visual stimulus, where the perceived direction of visual lateral motion depends on the order in which the tones are replayed. The mechanisms underlying this phenomenon remain unclear. One important approach to understanding the mechanisms is to examine whether the effect has some selectivity in auditory processing. However, it has not yet been determined whether this aftereffect can be transferred across sound frequencies and between ears. METHODOLOGY/PRINCIPAL FINDINGS: Two circles placed side by side were presented in alternation, producing apparent motion perception, and each onset was accompanied by a tone burst of a specific and unique frequency. After exposure to this visual apparent motion with tones for a few minutes, the tones became drivers for illusory motion perception. However, the aftereffect was observed only when the adapter and test tones were presented at the same frequency and to the same ear. CONCLUSIONS/SIGNIFICANCE: These findings suggest that the auditory processing underlying the establishment of novel audiovisual associations is selective, potentially but not necessarily indicating that this processing occurs at an early stage.

  18. Rapid motor learning in the translational vestibulo-ocular reflex

    Science.gov (United States)

    Zhou, Wu; Weldon, Patrick; Tang, Bingfeng; King, W. M.; Shelhamer, M. J. (Principal Investigator)

    2003-01-01

    Motor learning was induced in the translational vestibulo-ocular reflex (TVOR) when monkeys were repeatedly subjected to a brief (0.5 sec) head translation while they tried to maintain binocular fixation on a visual target for juice rewards. If the target was world-fixed, the initial eye speed of the TVOR gradually increased; if the target was head-fixed, the initial eye speed of the TVOR gradually decreased. The rate of learning acquisition was very rapid, with a time constant of approximately 100 trials, which was equivalent to or=1 d without any reinforcement, indicating induction of long-term synaptic plasticity. Although the learning generalized to targets with different viewing distances and to head translations with different accelerations, it was highly specific for the particular combination of head motion and evoked eye movement associated with the training. For example, it was specific to the modality of the stimulus (translation vs rotation) and the direction of the evoked eye movement in the training. Furthermore, when one eye was aligned with the heading direction so that it remained motionless during training, learning was not expressed in this eye, but only in the other nonaligned eye. These specificities show that the learning sites are neither in the sensory nor the motor limb of the reflex but in the sensory-motor transformation stage of the reflex. The dependence of the learning on both head motion and evoked eye movement suggests that Hebbian learning may be one of the underlying cellular mechanisms.

  19. Integration of visual and non-visual self-motion cues during voluntary head movements in the human brain.

    Science.gov (United States)

    Schindler, Andreas; Bartels, Andreas

    2018-05-15

    Our phenomenological experience of the stable world is maintained by continuous integration of visual self-motion with extra-retinal signals. However, due to conventional constraints of fMRI acquisition in humans, neural responses to visuo-vestibular integration have only been studied using artificial stimuli, in the absence of voluntary head-motion. We here circumvented these limitations and let participants to move their heads during scanning. The slow dynamics of the BOLD signal allowed us to acquire neural signal related to head motion after the observer's head was stabilized by inflatable aircushions. Visual stimuli were presented on head-fixed display goggles and updated in real time as a function of head-motion that was tracked using an external camera. Two conditions simulated forward translation of the participant. During physical head rotation, the congruent condition simulated a stable world, whereas the incongruent condition added arbitrary lateral motion. Importantly, both conditions were precisely matched in visual properties and head-rotation. By comparing congruent with incongruent conditions we found evidence consistent with the multi-modal integration of visual cues with head motion into a coherent "stable world" percept in the parietal operculum and in an anterior part of parieto-insular cortex (aPIC). In the visual motion network, human regions MST, a dorsal part of VIP, the cingulate sulcus visual area (CSv) and a region in precuneus (Pc) showed differential responses to the same contrast. The results demonstrate for the first time neural multimodal interactions between precisely matched congruent versus incongruent visual and non-visual cues during physical head-movement in the human brain. The methodological approach opens the path to a new class of fMRI studies with unprecedented temporal and spatial control over visuo-vestibular stimulation. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Translation and validation of the Spanish versión of the Échelle des Perceptions du Soutien à l’Autonomie en Sport

    Directory of Open Access Journals (Sweden)

    Juan L. Núñez

    2012-03-01

    Full Text Available The aim of the present research was to translate and to analyze the psychometric properties of the Spanish version of the Échelle des Perceptions du Soutien à l’Autonomie en Sport in sport context. Results supported the unidimentional structure of the scale. The predictive validity was tested using a structural equation model which perceived autonomy support predicted the perceived autonomy and perceived competence and these two the intrinsic motivation. Finally, intrinsic motivation predicted positive emotions. Likewise, results showed evidences of reliability. Results support preliminary the use of the Spanish version of the scale in sport context.

  1. Mathematical Model and Analysis of the Water-Lubricated Hydrostatic Journal Bearings considering the Translational and Tilting Motions

    Directory of Open Access Journals (Sweden)

    Hui-Hui Feng

    2014-01-01

    Full Text Available The water-lubricated bearings have been paid attention for their advantages to reduce the power loss and temperature rise and increase load capacity at high speed. To fully study the complete dynamic coefficients of two water-lubricated, hydrostatic journal bearings used to support a rigid rotor, a four-degree-of-freedom model considering the translational and tilting motion is presented. The effects of tilting ratio, rotary speed, and eccentricity ratio on the static and dynamic performances of the bearings are investigated. The bulk turbulent Reynolds equation is adopted. The finite difference method and a linear perturbation method are used to calculate the zeroth- and first-order pressure fields to obtain the static and dynamic coefficients. The results suggest that when the tilting ratio is smaller than 0.4 or the eccentricity ratio is smaller than 0.1, the static and dynamic characteristics are relatively insensitive to the tilting and eccentricity ratios; however, for larger tilting or eccentricity ratios, the tilting and eccentric effects should be fully considered. Meanwhile, the rotary speed significantly affects the performance of the hydrostatic, water-lubricated bearings.

  2. Motion Cueing Algorithm Development: Human-Centered Linear and Nonlinear Approaches

    Science.gov (United States)

    Houck, Jacob A. (Technical Monitor); Telban, Robert J.; Cardullo, Frank M.

    2005-01-01

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. Prior research identified viable features from two algorithms: the nonlinear "adaptive algorithm", and the "optimal algorithm" that incorporates human vestibular models. A novel approach to motion cueing, the "nonlinear algorithm" is introduced that combines features from both approaches. This algorithm is formulated by optimal control, and incorporates a new integrated perception model that includes both visual and vestibular sensation and the interaction between the stimuli. Using a time-varying control law, the matrix Riccati equation is updated in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. The neurocomputing approach was crucial in that the number of presentations of an input vector could be reduced to meet the real time requirement without degrading the quality of the motion cues.

  3. Distinguishing advective and powered motion in self-propelled colloids

    Science.gov (United States)

    Byun, Young-Moo; Lammert, Paul E.; Hong, Yiying; Sen, Ayusman; Crespi, Vincent H.

    2017-11-01

    Self-powered motion in catalytic colloidal particles provides a compelling example of active matter, i.e. systems that engage in single-particle and collective behavior far from equilibrium. The long-time, long-distance behavior of such systems is of particular interest, since it connects their individual micro-scale behavior to macro-scale phenomena. In such analyses, it is important to distinguish motion due to subtle advective effects—which also has long time scales and length scales—from long-timescale phenomena that derive from intrinsically powered motion. Here, we develop a methodology to analyze the statistical properties of the translational and rotational motions of powered colloids to distinguish, for example, active chemotaxis from passive advection by bulk flow.

  4. Visual working memory contaminates perception.

    Science.gov (United States)

    Kang, Min-Suk; Hong, Sang Wook; Blake, Randolph; Woodman, Geoffrey F

    2011-10-01

    Indirect evidence suggests that the contents of visual working memory may be maintained within sensory areas early in the visual hierarchy. We tested this possibility using a well-studied motion repulsion phenomenon in which perception of one direction of motion is distorted when another direction of motion is viewed simultaneously. We found that observers misperceived the actual direction of motion of a single motion stimulus if, while viewing that stimulus, they were holding a different motion direction in visual working memory. Control experiments showed that none of a variety of alternative explanations could account for this repulsion effect induced by working memory. Our findings provide compelling evidence that visual working memory representations directly interact with the same neural mechanisms as those involved in processing basic sensory events.

  5. Spinor approach to gravitational motion and precession

    International Nuclear Information System (INIS)

    Hestenes, D.

    1986-01-01

    The translational and rotational equations of motion for a small rigid body in a gravitational field are combined in a single spinor equation. Besides its computational advantages, this unifies the description of gravitational interaction in classical and quantum theory. Explicit expressions for gravitational precession rates are derived. (author)

  6. Multimodal Translation System Using Texture-Mapped Lip-Sync Images for Video Mail and Automatic Dubbing Applications

    Directory of Open Access Journals (Sweden)

    Nakamura Satoshi

    2004-01-01

    Full Text Available We introduce a multimodal English-to-Japanese and Japanese-to-English translation system that also translates the speaker's speech motion by synchronizing it to the translated speech. This system also introduces both a face synthesis technique that can generate any viseme lip shape and a face tracking technique that can estimate the original position and rotation of a speaker's face in an image sequence. To retain the speaker's facial expression, we substitute only the speech organ's image with the synthesized one, which is made by a 3D wire-frame model that is adaptable to any speaker. Our approach provides translated image synthesis with an extremely small database. The tracking motion of the face from a video image is performed by template matching. In this system, the translation and rotation of the face are detected by using a 3D personal face model whose texture is captured from a video frame. We also propose a method to customize the personal face model by using our GUI tool. By combining these techniques and the translated voice synthesis technique, an automatic multimodal translation can be achieved that is suitable for video mail or automatic dubbing systems into other languages.

  7. Ethnocentric Tendencies in the Romanian Translations of Macbeth

    Directory of Open Access Journals (Sweden)

    Marțole Daniela Maria

    2016-08-01

    Full Text Available Starting from Venuti’s binary classification of translations into ethnocentric and foreignizing this paper focuses on the factors that trigger ethnocentric attitudes in the translation of the play Macbeth in Romanian. Counterbalancing the extremely neologist tendencies at the end of the 19th century and the beginning of the 20th century, exemplified in Ștefan Băjescu’s translation, most of the 20th century translators prove an inclination towards the use of local, ethnic elements, that should revive the national culture and language, the integrity of which was threatened by foreign elements. Ion Vinea’s translation, that was the canonical Romanian version for more than half a century, is analysed in the paper as the representative of the ethnocentric camp. Apart from the spontaneous reactions that are generally ruled by the laws of language change, other factors that lead to the fostering of ethnocentric views are the communist regime’s constrictive ideology and, at the micro level, the translator’s own linguistic and cultural perception.

  8. Principle and analysis of a rotational motion Fourier transform infrared spectrometer

    Science.gov (United States)

    Cai, Qisheng; Min, Huang; Han, Wei; Liu, Yixuan; Qian, Lulu; Lu, Xiangning

    2017-09-01

    Fourier transform infrared spectroscopy is an important technique in studying molecular energy levels, analyzing material compositions, and environmental pollutants detection. A novel rotational motion Fourier transform infrared spectrometer with high stability and ultra-rapid scanning characteristics is proposed in this paper. The basic principle, the optical path difference (OPD) calculations, and some tolerance analysis are elaborated. The OPD of this spectrometer is obtained by the continuously rotational motion of a pair of parallel mirrors instead of the translational motion in traditional Michelson interferometer. Because of the rotational motion, it avoids the tilt problems occurred in the translational motion Michelson interferometer. There is a cosine function relationship between the OPD and the rotating angle of the parallel mirrors. An optical model is setup in non-sequential mode of the ZEMAX software, and the interferogram of a monochromatic light is simulated using ray tracing method. The simulated interferogram is consistent with the theoretically calculated interferogram. As the rotating mirrors are the only moving elements in this spectrometer, the parallelism of the rotating mirrors and the vibration during the scan are analyzed. The vibration of the parallel mirrors is the main error during the rotation. This high stability and ultra-rapid scanning Fourier transform infrared spectrometer is a suitable candidate for airborne and space-borne remote sensing spectrometer.

  9. Perceptually Uniform Motion Space.

    Science.gov (United States)

    Birkeland, Asmund; Turkay, Cagatay; Viola, Ivan

    2014-11-01

    Flow data is often visualized by animated particles inserted into a flow field. The velocity of a particle on the screen is typically linearly scaled by the velocities in the data. However, the perception of velocity magnitude in animated particles is not necessarily linear. We present a study on how different parameters affect relative motion perception. We have investigated the impact of four parameters. The parameters consist of speed multiplier, direction, contrast type and the global velocity scale. In addition, we investigated if multiple motion cues, and point distribution, affect the speed estimation. Several studies were executed to investigate the impact of each parameter. In the initial results, we noticed trends in scale and multiplier. Using the trends for the significant parameters, we designed a compensation model, which adjusts the particle speed to compensate for the effect of the parameters. We then performed a second study to investigate the performance of the compensation model. From the second study we detected a constant estimation error, which we adjusted for in the last study. In addition, we connect our work to established theories in psychophysics by comparing our model to a model based on Stevens' Power Law.

  10. Compliments in Audiovisual Translation – issues in character identity

    Directory of Open Access Journals (Sweden)

    Isabel Fernandes Silva

    2011-12-01

    Full Text Available Over the last decades, audiovisual translation has gained increased significance in Translation Studies as well as an interdisciplinary subject within other fields (media, cinema studies etc. Although many articles have been published on communicative aspects of translation such as politeness, only recently have scholars taken an interest in the translation of compliments. This study will focus on both these areas from a multimodal and pragmatic perspective, emphasizing the links between these fields and how this multidisciplinary approach will evidence the polysemiotic nature of the translation process. In Audiovisual Translation both text and image are at play, therefore, the translation of speech produced by the characters may either omit (because it is provided by visualgestual signs or it may emphasize information. A selection was made of the compliments present in the film What Women Want, our focus being on subtitles which did not successfully convey the compliment expressed in the source text, as well as analyze the reasons for this, namely difference in register, Culture Specific Items and repetitions. These differences lead to a different portrayal/identity/perception of the main character in the English version (original soundtrack and subtitled versions in Portuguese and Italian.

  11. Binocular eye movement control and motion perception: what is being tracked?

    Science.gov (United States)

    van der Steen, Johannes; Dits, Joyce

    2012-10-19

    We investigated under what conditions humans can make independent slow phase eye movements. The ability to make independent movements of the two eyes generally is attributed to few specialized lateral eyed animal species, for example chameleons. In our study, we showed that humans also can move the eyes in different directions. To maintain binocular retinal correspondence independent slow phase movements of each eye are produced. We used the scleral search coil method to measure binocular eye movements in response to dichoptically viewed visual stimuli oscillating in orthogonal direction. Correlated stimuli led to orthogonal slow eye movements, while the binocularly perceived motion was the vector sum of the motion presented to each eye. The importance of binocular fusion on independency of the movements of the two eyes was investigated with anti-correlated stimuli. The perceived global motion pattern of anti-correlated dichoptic stimuli was perceived as an oblique oscillatory motion, as well as resulted in a conjugate oblique motion of the eyes. We propose that the ability to make independent slow phase eye movements in humans is used to maintain binocular retinal correspondence. Eye-of-origin and binocular information are used during the processing of binocular visual information, and it is decided at an early stage whether binocular or monocular motion information and independent slow phase eye movements of each eye are produced during binocular tracking.

  12. GABA shapes the dynamics of bistable perception.

    Science.gov (United States)

    van Loon, Anouk M; Knapen, Tomas; Scholte, H Steven; St John-Saaltink, Elexa; Donner, Tobias H; Lamme, Victor A F

    2013-05-06

    Sometimes, perception fluctuates spontaneously between two distinct interpretations of a constant sensory input. These bistable perceptual phenomena provide a unique window into the neural mechanisms that create the contents of conscious perception. Models of bistable perception posit that mutual inhibition between stimulus-selective neural populations in visual cortex plays a key role in these spontaneous perceptual fluctuations. However, a direct link between neural inhibition and bistable perception has not yet been established experimentally. Here, we link perceptual dynamics in three distinct bistable visual illusions (binocular rivalry, motion-induced blindness, and structure from motion) to measurements of gamma-aminobutyric acid (GABA) concentrations in human visual cortex (as measured with magnetic resonance spectroscopy) and to pharmacological stimulation of the GABAA receptor by means of lorazepam. As predicted by a model of neural interactions underlying bistability, both higher GABA concentrations in visual cortex and lorazepam administration induced slower perceptual dynamics, as reflected in a reduced number of perceptual switches and a lengthening of percept durations. Thus, we show that GABA, the main inhibitory neurotransmitter, shapes the dynamics of bistable perception. These results pave the way for future studies into the competitive neural interactions across the visual cortical hierarchy that elicit conscious perception. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. The Modelling of Axially Translating Flexible Beams

    Science.gov (United States)

    Theodore, R. J.; Arakeri, J. H.; Ghosal, A.

    1996-04-01

    The axially translating flexible beam with a prismatic joint can be modelled by using the Euler-Bernoulli beam equation together with the convective terms. In general, the method of separation of variables cannot be applied to solve this partial differential equation. In this paper, a non-dimensional form of the Euler Bernoulli beam equation is presented, obtained by using the concept of group velocity, and also the conditions under which separation of variables and assumed modes method can be used. The use of clamped-mass boundary conditions leads to a time-dependent frequency equation for the translating flexible beam. A novel method is presented for solving this time dependent frequency equation by using a differential form of the frequency equation. The assume mode/Lagrangian formulation of dynamics is employed to derive closed form equations of motion. It is shown by using Lyapunov's first method that the dynamic responses of flexural modal variables become unstable during retraction of the flexible beam, which the dynamic response during extension of the beam is stable. Numerical simulation results are presented for the uniform axial motion induced transverse vibration for a typical flexible beam.

  14. New human-centered linear and nonlinear motion cueing algorithms for control of simulator motion systems

    Science.gov (United States)

    Telban, Robert J.

    While the performance of flight simulator motion system hardware has advanced substantially, the development of the motion cueing algorithm, the software that transforms simulated aircraft dynamics into realizable motion commands, has not kept pace. To address this, new human-centered motion cueing algorithms were developed. A revised "optimal algorithm" uses time-invariant filters developed by optimal control, incorporating human vestibular system models. The "nonlinear algorithm" is a novel approach that is also formulated by optimal control, but can also be updated in real time. It incorporates a new integrated visual-vestibular perception model that includes both visual and vestibular sensation and the interaction between the stimuli. A time-varying control law requires the matrix Riccati equation to be solved in real time by a neurocomputing approach. Preliminary pilot testing resulted in the optimal algorithm incorporating a new otolith model, producing improved motion cues. The nonlinear algorithm vertical mode produced a motion cue with a time-varying washout, sustaining small cues for longer durations and washing out large cues more quickly compared to the optimal algorithm. The inclusion of the integrated perception model improved the responses to longitudinal and lateral cues. False cues observed with the NASA adaptive algorithm were absent. As a result of unsatisfactory sensation, an augmented turbulence cue was added to the vertical mode for both the optimal and nonlinear algorithms. The relative effectiveness of the algorithms, in simulating aircraft maneuvers, was assessed with an eleven-subject piloted performance test conducted on the NASA Langley Visual Motion Simulator (VMS). Two methods, the quasi-objective NASA Task Load Index (TLX), and power spectral density analysis of pilot control, were used to assess pilot workload. TLX analysis reveals, in most cases, less workload and variation among pilots with the nonlinear algorithm. Control input

  15. Rotational and translational diffusions of fluorescent probes during gelation process

    Science.gov (United States)

    Hattori, Yusuke; Panizza, Pascal; Letamendia, Louis; Ushiki, Hideharu

    2006-04-01

    Gelation process has been investigated by using light scattering techniques in recent years. We measured both of rotational and translational motions of fluorescent probes during gelation process. The measurements were performed after the temperature quenched at 30 °C. As the results, rotational diffusion coefficient of fluorescein was decreased after 6.0 × 10 4 s and energy transfer rate was reduced after 2.0 × 10 4 s. We sorted the gelation process into the following three parts, (I) pre-gelation, (II) reduction of translational diffusion (aging), and (III) reduction of rotational diffusion with saturating translational diffusion (post-gelation). The time scale of the process was completely different from the results of other methods.

  16. Reversed stereo depth and motion direction with anti-correlated stimuli.

    Science.gov (United States)

    Read, J C; Eagle, R A

    2000-01-01

    We used anti-correlated stimuli to compare the correspondence problem in stereo and motion. Subjects performed a two-interval forced-choice disparity/motion direction discrimination task for different displacements. For anti-correlated 1d band-pass noise, we found weak reversed depth and motion. With 2d anti-correlated stimuli, stereo performance was impaired, but the perception of reversed motion was enhanced. We can explain the main features of our data in terms of channels tuned to different spatial frequencies and orientation. We suggest that a key difference between the solution of the correspondence problem by the motion and stereo systems concerns the integration of information at different orientations.

  17. Two-year-olds with autism orient to nonsocial contingencies rather than biological motion

    Science.gov (United States)

    Klin, Ami; Lin, David J.; Gorrindo, Phillip; Ramsay, Gordon; Jones, Warren

    2009-01-01

    Typically-developing human infants preferentially attend to biological motion within the first days of life1. This ability is highly conserved across species2,3 and is believed to be critical for filial attachment and for detection of predators4. The neural underpinnings of biological motion perception are overlapping with brain regions involved in perception of basic social signals such as facial expression and gaze direction5, and preferential attention to biological motion is seen as a precursor to the capacity for attributing intentions to others6. However, in a serendipitous observation7, we recently found that an infant with autism failed to recognize point-light displays of biological motion but was instead highly sensitive to the presence of a non-social, physical contingency that occurred within the stimuli by chance. This observation raised the hypothesis that perception of biological motion may be altered in children with autism from a very early age, with cascading consequences for both social development and for the lifelong impairments in social interaction that are a hallmark of autism spectrum disorders8. Here we show that two-year-olds with autism fail to orient towards point-light displays of biological motion, and that their viewing behavior when watching these point-light displays can be explained instead as a response to non-social, physical contingencies physical contingencies that are disregarded by control children. This observation has far-reaching implications for understanding the altered neurodevelopmental trajectory of brain specialization in autism9. PMID:19329996

  18. Development of a computerized intervertebral motion analysis of the cervical spine for clinical application.

    Science.gov (United States)

    Piché, Mathieu; Benoît, Pierre; Lambert, Julie; Barrette, Virginie; Grondin, Emmanuelle; Martel, Julie; Paré, Amélie; Cardin, André

    2007-01-01

    The objective of this study was to develop a measurement method that could be implemented in chiropractic for the evaluation of angular and translational intervertebral motion of the cervical spine. Flexion-extension radiographs were digitized with a scanner at a ratio of 1:1 and imported into a software, allowing segmental motion measurements. The measurements were obtained by selecting the most anteroinferior point and the most posteroinferior point of a vertebral body (anterior and posterior arch, respectively, for C1), with the origin of the reference frame set at the most posteroinferior point of the vertebral body below. The same procedure was performed for both the flexion and extension radiographs, and the coordinates of the 2 points were used to calculate the angular movement and the translation between the 2 vertebrae. This method provides a measure of intervertebral angular and translational movement. It uses a different reference frame for each joint instead of the same reference frame for all joints and thus provides a measure of motion in the plane of each articulation. The calculated values obtained are comparable to other studies on intervertebral motion and support further development to validate the method. The present study proposes a computerized procedure to evaluate intervertebral motion of the cervical spine. This procedure needs to be validated with a reliability study but could provide a valuable tool for doctors of chiropractic and further spinal research.

  19. Directed motion of a Brownian motor in a temperature gradient

    Science.gov (United States)

    Liu, Yibing; Nie, Wenjie; Lan, Yueheng

    2017-05-01

    Directed motion of mesoscopic systems in a non-equilibrium environment is of great interest to both scientists and engineers. Here, the translation and rotation of a Brownian motor is investigated under non-equilibrium conditions. An anomalous directed translation is found if the two heads of the Brownian motor are immersed in baths with different particle masses, which is hinted in the analytic computation and confirmed by the numerical simulation. Similar consideration is also used to find the directed movement in the single rotational and translational degree of freedom of the Brownian motor when residing in one thermal bath with a temperature gradient.

  20. Vibro-Perception of Optical Bio-Inspired Fiber-Skin.

    Science.gov (United States)

    Li, Tao; Zhang, Sheng; Lu, Guo-Wei; Sunami, Yuta

    2018-05-12

    In this research, based on the principle of optical interferometry, the Mach-Zehnder and Optical Phase-locked Loop (OPLL) vibro-perception systems of bio-inspired fiber-skin are designed to mimic the tactile perception of human skin. The fiber-skin is made of the optical fiber embedded in the silicone elastomer. The optical fiber is an instinctive and alternative sensor for tactile perception with high sensitivity and reliability, also low cost and susceptibility to the magnetic interference. The silicone elastomer serves as a substrate with high flexibility and biocompatibility, and the optical fiber core serves as the vibro-perception sensor to detect physical motions like tapping and sliding. According to the experimental results, the designed optical fiber-skin demonstrates the ability to detect the physical motions like tapping and sliding in both the Mach-Zehnder and OPLL vibro-perception systems. For direct contact condition, the OPLL vibro-perception system shows better performance compared with the Mach-Zehnder vibro-perception system. However, the Mach-Zehnder vibro-perception system is preferable to the OPLL system in the indirect contact experiment. In summary, the fiber-skin is validated to have light touch character and excellent repeatability, which is highly-suitable for skin-mimic sensing.

  1. Effects of translation-rotation coupling on the displacement probability distribution functions of boomerang colloidal particles

    Science.gov (United States)

    Chakrabarty, Ayan; Wang, Feng; Sun, Kai; Wei, Qi-Huo

    Prior studies have shown that low symmetry particles such as micro-boomerangs exhibit behaviour of Brownian motion rather different from that of high symmetry particles because convenient tracking points (TPs) are usually inconsistent with the center of hydrodynamic stress (CoH) where the translational and rotational motions are decoupled. In this paper we study the effects of the translation-rotation coupling on the displacement probability distribution functions (PDFs) of the boomerang colloid particles with symmetric arms. By tracking the motions of different points on the particle symmetry axis, we show that as the distance between the TP and the CoH is increased, the effects of translation-rotation coupling becomes pronounced, making the short-time 2D PDF for fixed initial orientation to change from elliptical to crescent shape and the angle averaged PDFs from ellipsoidal-particle-like PDF to a shape with a Gaussian top and long displacement tails. We also observed that at long times the PDFs revert to Gaussian. This crescent shape of 2D PDF provides a clear physical picture of the non-zero mean displacements observed in boomerangs particles.

  2. Exhibition of Stochastic Resonance in Vestibular Perception

    Science.gov (United States)

    Galvan-Garza, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Oman, C. M.; Mulavara, A. P.

    2016-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transitions. Post flight sensorimotor changes include spatial disorientation, along with postural and gait instability that may degrade operational capabilities of the astronauts and endanger the crew. A sensorimotor countermeasure that mitigates these effects would improve crewmember safety and decrease risk. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor perception through the phenomenon of stochastic resonance (SR), when the response of a nonlinear system to a weak input signal is enhanced by the application of a particular nonzero level of noise. This study aims to advance the development of SVS as a potential countermeasure by 1) demonstrating the exhibition of stochastic resonance in vestibular perception, a vital component of sensorimotor function, 2) investigating the repeatability of SR exhibition, and 3) determining the relative contribution of the semicircular canals (SCC) and otolith (OTO) organs to vestibular perceptual SR. A constant current stimulator was used to deliver bilateral bipolar SVS via electrodes placed on each of the mastoid processes, as previously done. Vestibular perceptual motion recognition thresholds were measured using a 6-degree of freedom MOOG platform and a 150 trial 3-down/1-up staircase procedure. In the first test session, we measured vestibular perceptual thresholds in upright roll-tilt at 0.2 Hz (SCC+OTO) with SVS ranging from 0-700 µA. In a second test session a week later, we re-measured roll-tilt thresholds with 0, optimal (from test session 1), and 1500 µA SVS levels. A subset of these subjects, plus naive subjects, participated in two additional test sessions in which we measured thresholds in supine roll-rotation at 0.2 Hz (SCC) and upright y-translation at 1 Hz

  3. Human sensitivity to vertical self-motion.

    Science.gov (United States)

    Nesti, Alessandro; Barnett-Cowan, Michael; Macneilage, Paul R; Bülthoff, Heinrich H

    2014-01-01

    Perceiving vertical self-motion is crucial for maintaining balance as well as for controlling an aircraft. Whereas heave absolute thresholds have been exhaustively studied, little work has been done in investigating how vertical sensitivity depends on motion intensity (i.e., differential thresholds). Here we measure human sensitivity for 1-Hz sinusoidal accelerations for 10 participants in darkness. Absolute and differential thresholds are measured for upward and downward translations independently at 5 different peak amplitudes ranging from 0 to 2 m/s(2). Overall vertical differential thresholds are higher than horizontal differential thresholds found in the literature. Psychometric functions are fit in linear and logarithmic space, with goodness of fit being similar in both cases. Differential thresholds are higher for upward as compared to downward motion and increase with stimulus intensity following a trend best described by two power laws. The power laws' exponents of 0.60 and 0.42 for upward and downward motion, respectively, deviate from Weber's Law in that thresholds increase less than expected at high stimulus intensity. We speculate that increased sensitivity at high accelerations and greater sensitivity to downward than upward self-motion may reflect adaptations to avoid falling.

  4. Variables Influencing Food Perception Reviewed for Consumer-Oriented Product Development

    NARCIS (Netherlands)

    Sijtsema, S.J.; Linnemann, A.R.; Gaasbeek, T.; Dagevos, H.; Jongen, W.M.F.

    2002-01-01

    Consumer wishes have to be translated into product characteristics to implement consumer-oriented product development. Before this step can be made, insight in food-related behavior and perception of consumers is necessary to make the right, useful, and successful translation. Food choice behavior

  5. Perception-oriented methodology for robust motion estimation design

    NARCIS (Netherlands)

    Heinrich, A.; Vleuten, van der R.J.; Haan, de G.

    2014-01-01

    Optimizing a motion estimator (ME) for picture rate conversion is challenging. This is because there are many types of MEs and, within each type, many parameters, which makes subjective assessment of all the alternatives impractical. To solve this problem, we propose an automatic design methodology

  6. Knowledge translation in tri-sectoral collaborations: An exploration of perceptions of academia, industry and healthcare collaborations in innovation adoption.

    Science.gov (United States)

    Ii, Suzanne Sayuri; Fitzgerald, Louise; Morys-Carter, Megan M; Davie, Natasha L; Barker, Richard

    2018-02-01

    With the aging population and increase in chronic disease conditions, innovation to transform treatment pathways and service delivery will be necessary. The innovation adoption process however, can take 15 years before widespread adoption occurs in most healthcare systems. Current UK government policies to increase the facilitation of innovation adoption are under way. The aim of this study is to explore perceptions of tri-sectoral collaborations in the healthcare sector. The data in the study are drawn from a cross-sectional survey conducted in 2015 of professionals in academia, industry and the healthcare sectors in England, focusing on Diabetes care. Academia and healthcare respondents had the least work experience outside of their sectors compared to the industry respondents. Healthcare and academia respondents rated the industry sector less trustworthy, unethical, having different goals and less understanding of the other sectors. Industry respondents had a more positive perspective towards potential collaborators. The results from the study demonstrate greater potential challenges to tri-sectoral collaborations and the government's knowledge translation policy, due to pre-conceived notions and lack of understanding of other sectors. The purely structural approach of establishing government mandated translational networks may be insufficient without active attempts to improve collaborative relationships. Mechanisms to facilitate trust building and collaboration are proposed. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  7. Perception of animacy from the motion of a single sound object

    DEFF Research Database (Denmark)

    Nielsen, Rasmus Høll; Vuust, Peter; Wallentin, Mikkel

    2015-01-01

    Research in the visual modality has shown that the presence of certain dynamics in the motion of an object has a strong effect on whether or not the entity is perceived as animate. Cues for animacy are, among others, self-propelled motion and direction changes that are seemingly not caused...... that a change in the velocity of motion is positively correlated with perceived animacy, and changes in direction were found to influence animacy judgment as well. This suggests that an ability to facilitate and sustain self-movement is perceived as a living quality not only in the visual domain...

  8. Beta, but not gamma, band oscillations index visual form-motion integration.

    Directory of Open Access Journals (Sweden)

    Charles Aissani

    Full Text Available Electrophysiological oscillations in different frequency bands co-occur with perceptual, motor and cognitive processes but their function and respective contributions to these processes need further investigations. Here, we recorded MEG signals and seek for percept related modulations of alpha, beta and gamma band activity during a perceptual form/motion integration task. Participants reported their bound or unbound perception of ambiguously moving displays that could either be seen as a whole square-like shape moving along a Lissajou's figure (bound percept or as pairs of bars oscillating independently along cardinal axes (unbound percept. We found that beta (15-25 Hz, but not gamma (55-85 Hz oscillations, index perceptual states at the individual and group level. The gamma band activity found in the occipital lobe, although significantly higher during visual stimulation than during base line, is similar in all perceptual states. Similarly, decreased alpha activity during visual stimulation is not different for the different percepts. Trial-by-trial classification of perceptual reports based on beta band oscillations was significant in most observers, further supporting the view that modulation of beta power reliably index perceptual integration of form/motion stimuli, even at the individual level.

  9. Implied motion language can influence visual spatial memory.

    Science.gov (United States)

    Vinson, David W; Engelen, Jan; Zwaan, Rolf A; Matlock, Teenie; Dale, Rick

    2017-07-01

    How do language and vision interact? Specifically, what impact can language have on visual processing, especially related to spatial memory? What are typically considered errors in visual processing, such as remembering the location of an object to be farther along its motion trajectory than it actually is, can be explained as perceptual achievements that are driven by our ability to anticipate future events. In two experiments, we tested whether the prior presentation of motion language influences visual spatial memory in ways that afford greater perceptual prediction. Experiment 1 showed that motion language influenced judgments for the spatial memory of an object beyond the known effects of implied motion present in the image itself. Experiment 2 replicated this finding. Our findings support a theory of perception as prediction.

  10. Inversion of ground-motion data from a seismometer array for rotation using a modification of Jaeger's method

    Science.gov (United States)

    Chi, Wu-Cheng; Lee, W.H.K.; Aston, J.A.D.; Lin, C.J.; Liu, C.-C.

    2011-01-01

    We develop a new way to invert 2D translational waveforms using Jaeger's (1969) formula to derive rotational ground motions about one axis and estimate the errors in them using techniques from statistical multivariate analysis. This procedure can be used to derive rotational ground motions and strains using arrayed translational data, thus providing an efficient way to calibrate the performance of rotational sensors. This approach does not require a priori information about the noise level of the translational data and elastic properties of the media. This new procedure also provides estimates of the standard deviations of the derived rotations and strains. In this study, we validated this code using synthetic translational waveforms from a seismic array. The results after the inversion of the synthetics for rotations were almost identical with the results derived using a well-tested inversion procedure by Spudich and Fletcher (2009). This new 2D procedure can be applied three times to obtain the full, three-component rotations. Additional modifications can be implemented to the code in the future to study different features of the rotational ground motions and strains induced by the passage of seismic waves.

  11. Comparison of Flight Simulators Based on Human Motion Perception Metrics

    Science.gov (United States)

    Valente Pais, Ana R.; Correia Gracio, Bruno J.; Kelly, Lon C.; Houck, Jacob A.

    2015-01-01

    In flight simulation, motion filters are used to transform aircraft motion into simulator motion. When looking for the best match between visual and inertial amplitude in a simulator, researchers have found that there is a range of inertial amplitudes, rather than a single inertial value, that is perceived by subjects as optimal. This zone, hereafter referred to as the optimal zone, seems to correlate to the perceptual coherence zones measured in flight simulators. However, no studies were found in which these two zones were compared. This study investigates the relation between the optimal and the coherence zone measurements within and between different simulators. Results show that for the sway axis, the optimal zone lies within the lower part of the coherence zone. In addition, it was found that, whereas the width of the coherence zone depends on the visual amplitude and frequency, the width of the optimal zone remains constant.

  12. Imagined Spaces: Motion Graphics in Performance Spaces

    DEFF Research Database (Denmark)

    Steijn, Arthur

    2016-01-01

    through theories drawn from two different fields. The first is from the field of direct visual perception as explored and described by the American psychologist J. J. Gibson. I supplement this angle by introducing relevant new media theories extracted from writings from L. Manovich. I also briefly...... introduce a second theoretic perspective from neuroscience, especially neurological theories related to aesthetic experiences as studied, categorized and explained by V. S. Ramachandran. Key Words: Motion graphics, video projections, space, direct visual perception, design process, new media, neuroscience...

  13. Use of item response curves of the Force and Motion Conceptual Evaluation to compare Japanese and American students' views on force and motion

    Science.gov (United States)

    Ishimoto, Michi; Davenport, Glen; Wittmann, Michael C.

    2017-12-01

    Student views of force and motion reflect the personal experiences and physics education of the student. With a different language, culture, and educational system, we expect that Japanese students' views on force and motion might be different from those of American students. The Force and Motion Conceptual Evaluation (FMCE) is an instrument used to probe student views on force and motion. It was designed using research on American students, and, as such, the items might function differently for Japanese students. Preliminary results from a translated version indicated that Japanese students had similar misconceptions as those of American students. In this study, we used item response curves (IRCs) to make more detailed item-by-item comparisons. IRCs show the functioning of individual items across all levels of performance by plotting the proportion of each response as a function of the total score. Most of the IRCs showed very similar patterns on both correct and incorrect responses; however, a few of the plots indicate differences between the populations. The similar patterns indicate that students tend to interact with FMCE items similarly, despite differences in culture, language, and education. We speculate about the possible causes for the differences in some of the IRCs. This report is intended to show how IRCs can be used as a part of the validation process when making comparisons across languages and nationalities. Differences in IRCs can help to pinpoint artifacts of translation, contextual effects because of differences in culture, and perhaps intrinsic differences in student understanding of Newtonian motion.

  14. Use of item response curves of the Force and Motion Conceptual Evaluation to compare Japanese and American students’ views on force and motion

    Directory of Open Access Journals (Sweden)

    Michi Ishimoto

    2017-11-01

    Full Text Available Student views of force and motion reflect the personal experiences and physics education of the student. With a different language, culture, and educational system, we expect that Japanese students’ views on force and motion might be different from those of American students. The Force and Motion Conceptual Evaluation (FMCE is an instrument used to probe student views on force and motion. It was designed using research on American students, and, as such, the items might function differently for Japanese students. Preliminary results from a translated version indicated that Japanese students had similar misconceptions as those of American students. In this study, we used item response curves (IRCs to make more detailed item-by-item comparisons. IRCs show the functioning of individual items across all levels of performance by plotting the proportion of each response as a function of the total score. Most of the IRCs showed very similar patterns on both correct and incorrect responses; however, a few of the plots indicate differences between the populations. The similar patterns indicate that students tend to interact with FMCE items similarly, despite differences in culture, language, and education. We speculate about the possible causes for the differences in some of the IRCs. This report is intended to show how IRCs can be used as a part of the validation process when making comparisons across languages and nationalities. Differences in IRCs can help to pinpoint artifacts of translation, contextual effects because of differences in culture, and perhaps intrinsic differences in student understanding of Newtonian motion.

  15. Performance characterization of Watson Ahumada motion detector using random dot rotary motion stimuli.

    Directory of Open Access Journals (Sweden)

    Siddharth Jain

    Full Text Available The performance of Watson & Ahumada's model of human visual motion sensing is compared against human psychophysical performance. The stimulus consists of random dots undergoing rotary motion, displayed in a circular annulus. The model matches psychophysical observer performance with respect to most parameters. It is able to replicate some key psychophysical findings such as invariance of observer performance to dot density in the display, and decrease of observer performance with frame duration of the display.Associated with the concept of rotary motion is the notion of a center about which rotation occurs. One might think that for accurate estimation of rotary motion in the display, this center must be accurately known. A simple vector analysis reveals that this need not be the case. Numerical simulations confirm this result, and may explain the position invariance of MST(d cells. Position invariance is the experimental finding that rotary motion sensitive cells are insensitive to where in their receptive field rotation occurs.When all the dots in the display are randomly drawn from a uniform distribution, illusory rotary motion is perceived. This case was investigated by Rose & Blake previously, who termed the illusory rotary motion the omega effect. Two important experimental findings are reported concerning this effect. First, although the display of random dots evokes perception of rotary motion, the direction of motion perceived does not depend on what dot pattern is shown. Second, the time interval between spontaneous flips in perceived direction is lognormally distributed (mode approximately 2 s. These findings suggest the omega effect fits in the category of a typical bistable illusion, and therefore the processes that give rise to this illusion may be the same processes that underlie much of other bistable phenomenon.

  16. Further explorations of the facing bias in biological motion perception: perspective cues, observer sex, and response times.

    Directory of Open Access Journals (Sweden)

    Ben Schouten

    Full Text Available The human visual system has evolved to be highly sensitive to visual information about other persons and their movements as is illustrated by the effortless perception of point-light figures or 'biological motion'. When presented orthographically, a point-light walker is interpreted in two anatomically plausible ways: As 'facing the viewer' or as 'facing away' from the viewer. However, human observers show a 'facing bias': They perceive such a point-light walker as facing towards them in about 70-80% of the cases. In studies exploring the role of social and biological relevance as a possible account for the facing bias, we found a 'figure gender effect': Male point-light figures elicit a stronger facing bias than female point-light figures. Moreover, we also found an 'observer gender effect': The 'figure gender effect' was stronger for male than for female observers. In the present study we presented to 11 males and 11 females point-light walkers of which, very subtly, the perspective information was manipulated by modifying the earlier reported 'perspective technique'. Proportions of 'facing the viewer' responses and reaction times were recorded. Results show that human observers, even in the absence of local shape or size cues, easily pick up on perspective cues, confirming recent demonstrations of high visual sensitivity to cues on whether another person is potentially approaching. We also found a consistent difference in how male and female observers respond to stimulus variations (figure gender or perspective cues that cause variations in the perceived in-depth orientation of a point-light walker. Thus, the 'figure gender effect' is possibly caused by changes in the relative locations and motions of the dots that the perceptual system tends to interpret as perspective cues. Third, reaction time measures confirmed the existence of the facing bias and recent research showing faster detection of approaching than receding biological motion.

  17. An interdimensional correlation framework for real-time estimation of six degree of freedom target motion using a single x-ray imager during radiotherapy

    Science.gov (United States)

    Nguyen, D. T.; Bertholet, J.; Kim, J.-H.; O'Brien, R.; Booth, J. T.; Poulsen, P. R.; Keall, P. J.

    2018-01-01

    Increasing evidence suggests that intrafraction tumour motion monitoring needs to include both 3D translations and 3D rotations. Presently, methods to estimate the rotation motion require the 3D translation of the target to be known first. However, ideally, translation and rotation should be estimated concurrently. We present the first method to directly estimate six-degree-of-freedom (6DoF) motion from the target’s projection on a single rotating x-ray imager in real-time. This novel method is based on the linear correlations between the superior-inferior translations and the motion in the other five degrees-of-freedom. The accuracy of the method was evaluated in silico with 81 liver tumour motion traces from 19 patients with three implanted markers. The ground-truth motion was estimated using the current gold standard method where each marker’s 3D position was first estimated using a Gaussian probability method, and the 6DoF motion was then estimated from the 3D positions using an iterative method. The 3D position of each marker was projected onto a gantry-mounted imager with an imaging rate of 11 Hz. After an initial 110° gantry rotation (200 images), a correlation model between the superior-inferior translations and the five other DoFs was built using a least square method. The correlation model was then updated after each subsequent frame to estimate 6DoF motion in real-time. The proposed algorithm had an accuracy (±precision) of  -0.03  ±  0.32 mm, -0.01  ±  0.13 mm and 0.03  ±  0.52 mm for translations in the left-right (LR), superior-inferior (SI) and anterior-posterior (AP) directions respectively; and, 0.07  ±  1.18°, 0.07  ±  1.00° and 0.06  ±  1.32° for rotations around the LR, SI and AP axes respectively on the dataset. The first method to directly estimate real-time 6DoF target motion from segmented marker positions on a 2D imager was devised. The algorithm was evaluated using 81

  18. A Motion Planning Approach to Studying Molecular Motions

    KAUST Repository

    Amato, Nancy M.

    2010-01-01

    While structurally very different, protein and RNA molecules share an important attribute. The motions they undergo are strongly related to the function they perform. For example, many diseases such as Mad Cow disease or Alzheimer\\'s disease are associated with protein misfolding and aggregation. Similarly, RNA folding velocity may regulate the plasmid copy number, and RNA folding kinetics can regulate gene expression at the translational level. Knowledge of the stability, folding, kinetics and detailed mechanics of the folding process may help provide insight into how proteins and RNAs fold. In this paper, we present an overview of our work with a computational method we have adapted from robotic motion planning to study molecular motions. We have validated against experimental data and have demonstrated that our method can capture biological results such as stochastic folding pathways, population kinetics of various conformations, and relative folding rates. Thus, our method provides both a detailed view (e.g., individual pathways) and a global view (e.g., population kinetics, relative folding rates, and reaction coordinates) of energy landscapes of both proteins and RNAs. We have validated these techniques by showing that we observe the same relative folding rates as shown in experiments for structurally similar protein molecules that exhibit different folding behaviors. Our analysis has also been able to predict the same relative gene expression rate for wild-type MS2 phage RNA and three of its mutants.

  19. How to use body tilt for the simulation of linear self motion

    NARCIS (Netherlands)

    Groen, E.L.; Bles, W.

    2004-01-01

    We examined to what extent body tilt may augment the perception of visually simulated linear self acceleration. Fourteen subjects judged visual motion profiles of fore-aft motion at four different frequencies between 0.04-0.33 Hz, and at three different acceleration amplitudes (0.44, 0.88 and 1.76

  20. The Impact of Machine Translation and Computer-aided Translation on Translators

    Science.gov (United States)

    Peng, Hao

    2018-03-01

    Under the context of globalization, communications between countries and cultures are becoming increasingly frequent, which make it imperative to use some techniques to help translate. This paper is to explore the influence of computer-aided translation on translators, which is derived from the field of the computer-aided translation (CAT) and machine translation (MT). Followed by an introduction to the development of machine and computer-aided translation, it then depicts the technologies practicable to translators, which are trying to analyze the demand of designing the computer-aided translation so far in translation practice, and optimize the designation of computer-aided translation techniques, and analyze its operability in translation. The findings underline the advantages and disadvantages of MT and CAT tools, and the serviceability and future development of MT and CAT technologies. Finally, this thesis probes into the impact of these new technologies on translators in hope that more translators and translation researchers can learn to use such tools to improve their productivity.

  1. Optimized respiratory-resolved motion-compensated 3D Cartesian coronary MR angiography.

    Science.gov (United States)

    Correia, Teresa; Ginami, Giulia; Cruz, Gastão; Neji, Radhouene; Rashid, Imran; Botnar, René M; Prieto, Claudia

    2018-04-22

    To develop a robust and efficient reconstruction framework that provides high-quality motion-compensated respiratory-resolved images from free-breathing 3D whole-heart Cartesian coronary magnetic resonance angiography (CMRA) acquisitions. Recently, XD-GRASP (eXtra-Dimensional Golden-angle RAdial Sparse Parallel MRI) was proposed to achieve 100% scan efficiency and provide respiratory-resolved 3D radial CMRA images by exploiting sparsity in the respiratory dimension. Here, a reconstruction framework for Cartesian CMRA imaging is proposed, which provides respiratory-resolved motion-compensated images by incorporating 2D beat-to-beat translational motion information to increase sparsity in the respiratory dimension. The motion information is extracted from interleaved image navigators and is also used to compensate for 2D translational motion within each respiratory phase. The proposed Optimized Respiratory-resolved Cartesian Coronary MR Angiography (XD-ORCCA) method was tested on 10 healthy subjects and 2 patients with cardiovascular disease, and compared against XD-GRASP. The proposed XD-ORCCA provides high-quality respiratory-resolved images, allowing clear visualization of the right and left coronary arteries, even for irregular breathing patterns. Compared with XD-GRASP, the proposed method improves the visibility and sharpness of both coronaries. Significant differences (p respiratory phases with larger motion amplitudes and subjects with irregular breathing patterns. A robust respiratory-resolved motion-compensated framework for Cartesian CMRA has been proposed and tested in healthy subjects and patients. The proposed XD-ORCCA provides high-quality images for all respiratory phases, independently of the regularity of the breathing pattern. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  2. Swiss family physicians' perceptions and attitudes towards knowledge translation practices.

    Science.gov (United States)

    Bengough, Theresa; Bovet, Emilie; Bécherraz, Camille; Schlegel, Susanne; Burnand, Bernard; Pidoux, Vincent

    2015-12-11

    Several studies have been performed to understand the way family physicians apply knowledge from medical research in practice. However, very little is known concerning family physicians in Switzerland. In an environment in which information constantly accumulates, it is crucial to identify the major sources of scientific information that are used by family physicians to keep their medical knowledge up to date and barriers to use these sources. Our main objective was to examine medical knowledge translation (KT) practices of Swiss family physicians. The population consisted of French- and German-speaking private practice physicians specialised in family medicine. We conducted four interviews and three focus groups (n = 25). The interview guides of the semi-structured interviews and focus groups focused on (a) ways and means used by physicians to keep updated with information relevant to clinical practice; (b) how they consider their role in translating knowledge into practice; (c) potential barriers to KT; (d) solutions proposed by physicians for effective KT. Family physicians find themselves rather ambivalent about the translation of knowledge based on scientific literature, but generally express much interest in KT. They often feel overwhelmed by "information floods" and perceive clinical practice guidelines and other supports to be of limited usefulness for their practice. They often combine various formal and informal information sources to keep their knowledge up to date. Swiss family physicians report considering themselves as artisans, caring for patients with complex needs. Improved performance of KT initiatives in family medicine should be tailored to actual needs and based on high quality evidence-based sources.

  3. Base response arising from free-field motions

    International Nuclear Information System (INIS)

    Whitley, J.R.; Morgan, J.R.; Hall, W.J.; Newmark, N.M.

    1977-01-01

    A procedure is illustrated in this paper for deriving (estimating) from a free-field record the horizontal base motions of a building, including horizontal rotation and translation. More specifically the goal was to compare results of response calculations based on derived accelerations with the results of calculations based on recorded accelerations. The motions are determined by assuming that an actual recorded ground wave transits a rigid base of a given dimension. Calculations given in the paper were made employing the earthquake acceleration time histories of the Hollywood storage building and the adjacent P.E. lot for the Kern County (1952) and San Fernando (1971) earthquakes. (Auth.)

  4. Molecular dynamics simulation of nonlinear spectroscopies of intermolecular motions in liquid water.

    Science.gov (United States)

    Yagasaki, Takuma; Saito, Shinji

    2009-09-15

    Water is the most extensively studied of liquids because of both its ubiquity and its anomalous thermodynamic and dynamic properties. The properties of water are dominated by hydrogen bonds and hydrogen bond network rearrangements. Fundamental information on the dynamics of liquid water has been provided by linear infrared (IR), Raman, and neutron-scattering experiments; molecular dynamics simulations have also provided insights. Recently developed higher-order nonlinear spectroscopies open new windows into the study of the hydrogen bond dynamics of liquid water. For example, the vibrational lifetimes of stretches and a bend, intramolecular features of water dynamics, can be accurately measured and are found to be on the femtosecond time scale at room temperature. Higher-order nonlinear spectroscopy is expressed by a multitime correlation function, whereas traditional linear spectroscopy is given by a one-time correlation function. Thus, nonlinear spectroscopy yields more detailed information on the dynamics of condensed media than linear spectroscopy. In this Account, we describe the theoretical background and methods for calculating higher order nonlinear spectroscopy; equilibrium and nonequilibrium molecular dynamics simulations, and a combination of both, are used. We also present the intermolecular dynamics of liquid water revealed by fifth-order two-dimensional (2D) Raman spectroscopy and third-order IR spectroscopy. 2D Raman spectroscopy is sensitive to couplings between modes; the calculated 2D Raman signal of liquid water shows large anharmonicity in the translational motion and strong coupling between the translational and librational motions. Third-order IR spectroscopy makes it possible to examine the time-dependent couplings. The 2D IR spectra and three-pulse photon echo peak shift show the fast frequency modulation of the librational motion. A significant effect of the translational motion on the fast frequency modulation of the librational motion is

  5. Translation Theory 'Translated'

    DEFF Research Database (Denmark)

    Wæraas, Arild; Nielsen, Jeppe

    2016-01-01

    Translation theory has proved to be a versatile analytical lens used by scholars working from different traditions. On the basis of a systematic literature review, this study adds to our understanding of the ‘translations’ of translation theory by identifying the distinguishing features of the most...... common theoretical approaches to translation within the organization and management discipline: actor-network theory, knowledge-based theory, and Scandinavian institutionalism. Although each of these approaches already has borne much fruit in research, the literature is diverse and somewhat fragmented......, but also overlapping. We discuss the ways in which the three versions of translation theory may be combined and enrich each other so as to inform future research, thereby offering a more complete understanding of translation in and across organizational settings....

  6. Continuous and simultaneous measurement of the tank-treading motion of red blood cells and the surrounding flow using translational confocal micro-particle image velocimetry (micro-PIV) with sub-micron resolution

    International Nuclear Information System (INIS)

    Oishi, M; Utsubo, K; Kinoshita, H; Fujii, T; Oshima, M

    2012-01-01

    In this study, a translational confocal micro-particle image velocimetry (PIV) system is introduced to measure the microscopic interaction between red blood cells (RBCs) and the surrounding flow. Since the macroscopic behavior of RBCs, such as the tank-treading motion, is closely related to the axial migration and other flow characteristics in arterioles, the measurement method must answer the conflicting demands of sub-micron resolution, continuous measurement and applicability for high-speed flow. In order to avoid loss of the measurement target, i.e. RBCs, from the narrow field of view during high-magnification measurement, the translation stage with the flow device moves in the direction opposite the direction of flow. The proposed system achieves the measurement of higher absolute velocities compared with a conventional confocal micro-PIV system without the drawbacks derived from stage vibration. In addition, we have applied a multicolor separation unit, which can measure different phases simultaneously using different fluorescent particles, in order to clarify the interaction between RBCs and the surrounding flow. Based on our measurements, the tank-treading motion of RBCs depends on the shear stress gradient of the surrounding flow. Although, the relationship between the tank-treading frequency and the shear rate of the surrounding flow is of the same order as in the previous uniform shear rate experiments, our results reveal the remarkable behavior of the non-uniform membrane velocities and lateral velocity component of flow around the RBCs. (paper)

  7. Neural Integration of Information Specifying Human Structure from Form, Motion, and Depth

    Science.gov (United States)

    Jackson, Stuart; Blake, Randolph

    2010-01-01

    Recent computational models of biological motion perception operate on ambiguous two-dimensional representations of the body (e.g., snapshots, posture templates) and contain no explicit means for disambiguating the three-dimensional orientation of a perceived human figure. Are there neural mechanisms in the visual system that represent a moving human figure’s orientation in three dimensions? To isolate and characterize the neural mechanisms mediating perception of biological motion, we used an adaptation paradigm together with bistable point-light (PL) animations whose perceived direction of heading fluctuates over time. After exposure to a PL walker with a particular stereoscopically defined heading direction, observers experienced a consistent aftereffect: a bistable PL walker, which could be perceived in the adapted orientation or reversed in depth, was perceived predominantly reversed in depth. A phase-scrambled adaptor produced no aftereffect, yet when adapting and test walkers differed in size or appeared on opposite sides of fixation aftereffects did occur. Thus, this heading direction aftereffect cannot be explained by local, disparity-specific motion adaptation, and the properties of scale and position invariance imply higher-level origins of neural adaptation. Nor is disparity essential for producing adaptation: when suspended on top of a stereoscopically defined, rotating globe, a context-disambiguated “globetrotter” was sufficient to bias the bistable walker’s direction, as were full-body adaptors. In sum, these results imply that the neural signals supporting biomotion perception integrate information on the form, motion, and three-dimensional depth orientation of the moving human figure. Models of biomotion perception should incorporate mechanisms to disambiguate depth ambiguities in two-dimensional body representations. PMID:20089892

  8. Binary translation using peephole translation rules

    Science.gov (United States)

    Bansal, Sorav; Aiken, Alex

    2010-05-04

    An efficient binary translator uses peephole translation rules to directly translate executable code from one instruction set to another. In a preferred embodiment, the translation rules are generated using superoptimization techniques that enable the translator to automatically learn translation rules for translating code from the source to target instruction set architecture.

  9. Translate rotate scanning method for X-ray imaging

    International Nuclear Information System (INIS)

    Eberhard, J.W.; Kwog Cheong Tam.

    1990-01-01

    Rapid x-ray inspection of objects larger than an x-ray detector array is based on a translate rotate scanning motion of the object related to the fan beam source and detector. The scan for computerized tomography imaging is accomplished by rotating the object through 360 degrees at two or more positions relative to the source and detector array, in moving to another position the object is rotated and the object or source and detector are translated. A partial set of x-ray data is acquired at every position which are combined to obtain a full data set for complete image reconstruction. X-ray data for digital radiography imaging is acquired by scanning the object vertically at a first position at one view angle, rotating and translating the object relative to the source and detector to a second position, scanning vertically, and so on to cover the object field of view, and combining the partial data sets. (author)

  10. Speech-enabled Computer-aided Translation

    DEFF Research Database (Denmark)

    Mesa-Lao, Bartolomé

    2014-01-01

    The present study has surveyed post-editor trainees’ views and attitudes before and after the introduction of speech technology as a front end to a computer-aided translation workbench. The aim of the survey was (i) to identify attitudes and perceptions among post-editor trainees before performing...... a post-editing task using automatic speech recognition (ASR); and (ii) to assess the degree to which post-editors’ attitudes and expectations to the use of speech technology changed after actually using it. The survey was based on two questionnaires: the first one administered before the participants...

  11. Simple 3-D stimulus for motion parallax and its simulation.

    Science.gov (United States)

    Ono, Hiroshi; Chornenkyy, Yevgen; D'Amour, Sarah

    2013-01-01

    Simulation of a given stimulus situation should produce the same perception as the original. Rogers et al (2009 Perception 38 907-911) simulated Wheeler's (1982, PhD thesis, Rutgers University, NJ) motion parallax stimulus and obtained quite different perceptions. Wheeler's observers were unable to reliably report the correct direction of depth, whereas Rogers's were. With three experiments we explored the possible reasons for the discrepancy. Our results suggest that Rogers was able to see depth from the simulation partly due to his experience seeing depth with random dot surfaces.

  12. Implied motion because of instability in Hokusai Manga activates the human motion-sensitive extrastriate visual cortex: an fMRI study of the impact of visual art.

    Science.gov (United States)

    Osaka, Naoyuki; Matsuyoshi, Daisuke; Ikeda, Takashi; Osaka, Mariko

    2010-03-10

    The recent development of cognitive neuroscience has invited inference about the neurosensory events underlying the experience of visual arts involving implied motion. We report functional magnetic resonance imaging study demonstrating activation of the human extrastriate motion-sensitive cortex by static images showing implied motion because of instability. We used static line-drawing cartoons of humans by Hokusai Katsushika (called 'Hokusai Manga'), an outstanding Japanese cartoonist as well as famous Ukiyoe artist. We found 'Hokusai Manga' with implied motion by depicting human bodies that are engaged in challenging tonic posture significantly activated the motion-sensitive visual cortex including MT+ in the human extrastriate cortex, while an illustration that does not imply motion, for either humans or objects, did not activate these areas under the same tasks. We conclude that motion-sensitive extrastriate cortex would be a critical region for perception of implied motion in instability.

  13. Nonrandom Intrafraction Target Motions and General Strategy for Correction of Spine Stereotactic Body Radiotherapy

    International Nuclear Information System (INIS)

    Ma Lijun; Sahgal, Arjun; Hossain, Sabbir; Chuang, Cynthia; Descovich, Martina; Huang, Kim; Gottschalk, Alex; Larson, David A.

    2009-01-01

    Purpose: To characterize nonrandom intrafraction target motions for spine stereotactic body radiotherapy and to develop a method of correction via image guidance. The dependence of target motions, as well as the effectiveness of the correction strategy for lesions of different locations within the spine, was analyzed. Methods and Materials: Intrafraction target motions for 64 targets in 64 patients treated with a total of 233 fractions were analyzed. Based on the target location, the cases were divided into three groups, i.e., cervical (n = 20 patients), thoracic (n = 20 patients), or lumbar-sacrum (n = 24 patients) lesions. For each case, time-lag autocorrelation analysis was performed for each degree of freedom of motion that included both translations (x, y, and z shifts) and rotations (roll, yaw, and pitch). A general correction strategy based on periodic interventions was derived to determine the time interval required between two adjacent interventions, to overcome the patient-specific target motions. Results: Nonrandom target motions were detected for 100% of cases regardless of target locations. Cervical spine targets were found to possess the highest incidence of nonrandom target motion compared with thoracic and lumbar-sacral lesions (p < 0.001). The average time needed to maintain the target motion to within 1 mm of translation or 1 deg. of rotational deviation was 5.5 min, 5.9 min, and 7.1 min for cervical, thoracic, and lumbar-sacrum locations, respectively (at 95% confidence level). Conclusions: A high incidence of nonrandom intrafraction target motions was found for spine stereotactic body radiotherapy treatments. Periodic interventions at approximately every 5 minutes or less were needed to overcome such motions.

  14. The difference between the perception of absolute and relative motion: A reaction time study

    NARCIS (Netherlands)

    J.B.J. Smeets (Jeroen); E. Brenner (Eli)

    1994-01-01

    textabstractWe used a reaction-time paradigm to examine the extent to which motion detection depends on relative motion. In the absence of relative motion, the responses could be described by a simple model based on the detection of a fixed change in position. If relative motion was present, the

  15. Using Unconstrained Tongue Motion as an Alternative Control Mechanism for Wheeled Mobility

    OpenAIRE

    Huo, Xueliang; Ghovanloo, Maysam

    2009-01-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users’ intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input fo...

  16. Machine Translation and Other Translation Technologies.

    Science.gov (United States)

    Melby, Alan

    1996-01-01

    Examines the application of linguistic theory to machine translation and translator tools, discusses the use of machine translation and translator tools in the real world of translation, and addresses the impact of translation technology on conceptions of language and other issues. Findings indicate that the human mind is flexible and linguistic…

  17. Residual translation compensations in radar target narrowband imaging based on trajectory information

    Science.gov (United States)

    Yue, Wenjue; Peng, Bo; Wei, Xizhang; Li, Xiang; Liao, Dongping

    2018-05-01

    High velocity translation will result in defocusing scattering centers in radar imaging. In this paper, we propose a Residual Translation Compensations (RTC) method based on target trajectory information to eliminate the translation effects in radar imaging. Translation could not be simply regarded as a uniformly accelerated motion in reality. So the prior knowledge of the target trajectory is introduced to enhance compensation precision. First we use the two-body orbit model to figure out the radial distance. Then, stepwise compensations are applied to eliminate residual propagation delay based on conjugate multiplication method. Finally, tomography is used to confirm the validity of the method. Compare with translation parameters estimation method based on the spectral peak of the conjugate multiplied signal, RTC method in this paper enjoys a better tomography result. When the Signal Noise Ratio (SNR) of the radar echo signal is 4dB, the scattering centers can also be extracted clearly.

  18. A review on otolith models in human perception.

    Science.gov (United States)

    Asadi, Houshyar; Mohamed, Shady; Lim, Chee Peng; Nahavandi, Saeid

    2016-08-01

    The vestibular system, which consists of semicircular canals and otolith, are the main sensors mammals use to perceive rotational and linear motions. Identifying the most suitable and consistent mathematical model of the vestibular system is important for research related to driving perception. An appropriate vestibular model is essential for implementation of the Motion Cueing Algorithm (MCA) for motion simulation purposes, because the quality of the MCA is directly dependent on the vestibular model used. In this review, the history and development process of otolith models are presented and analyzed. The otolith organs can detect linear acceleration and transmit information about sensed applied specific forces on the human body. The main purpose of this review is to determine the appropriate otolith models that agree with theoretical analyses and experimental results as well as provide reliable estimation for the vestibular system functions. Formulating and selecting the most appropriate mathematical model of the vestibular system is important to ensure successful human perception modelling and simulation when implementing the model into the MCA for motion analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. The influence of sleep deprivation and oscillating motion on sleepiness, motion sickness, and cognitive and motor performance.

    Science.gov (United States)

    Kaplan, Janna; Ventura, Joel; Bakshi, Avijit; Pierobon, Alberto; Lackner, James R; DiZio, Paul

    2017-01-01

    Our goal was to determine how sleep deprivation, nauseogenic motion, and a combination of motion and sleep deprivation affect cognitive vigilance, visual-spatial perception, motor learning and retention, and balance. We exposed four groups of subjects to different combinations of normal 8h sleep or 4h sleep for two nights combined with testing under stationary conditions or during 0.28Hz horizontal linear oscillation. On the two days following controlled sleep, all subjects underwent four test sessions per day that included evaluations of fatigue, motion sickness, vigilance, perceptual discrimination, perceptual learning, motor performance and learning, and balance. Sleep loss and exposure to linear oscillation had additive or multiplicative relationships to sleepiness, motion sickness severity, decreases in vigilance and in perceptual discrimination and learning. Sleep loss also decelerated the rate of adaptation to motion sickness over repeated sessions. Sleep loss degraded the capacity to compensate for novel robotically induced perturbations of reaching movements but did not adversely affect adaptive recovery of accurate reaching. Overall, tasks requiring substantial attention to cognitive and motor demands were degraded more than tasks that were more automatic. Our findings indicate that predicting performance needs to take into account in addition to sleep loss, the attentional demands and novelty of tasks, the motion environment in which individuals will be performing and their prior susceptibility to motion sickness during exposure to provocative motion stimulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Babies in traffic: infant vocalizations and listener sex modulate auditory motion perception.

    Science.gov (United States)

    Neuhoff, John G; Hamilton, Grace R; Gittleson, Amanda L; Mejia, Adolfo

    2014-04-01

    Infant vocalizations and "looming sounds" are classes of environmental stimuli that are critically important to survival but can have dramatically different emotional valences. Here, we simultaneously presented listeners with a stationary infant vocalization and a 3D virtual looming tone for which listeners made auditory time-to-arrival judgments. Negatively valenced infant cries produced more cautious (anticipatory) estimates of auditory arrival time of the tone over a no-vocalization control. Positively valenced laughs had the opposite effect, and across all conditions, men showed smaller anticipatory biases than women. In Experiment 2, vocalization-matched vocoded noise stimuli did not influence concurrent auditory time-to-arrival estimates compared with a control condition. In Experiment 3, listeners estimated the egocentric distance of a looming tone that stopped before arriving. For distant stopping points, women estimated the stopping point as closer when the tone was presented with an infant cry than when it was presented with a laugh. For near stopping points, women showed no differential effect of vocalization type. Men did not show differential effects of vocalization type at either distance. Our results support the idea that both the sex of the listener and the emotional valence of infant vocalizations can influence auditory motion perception and can modulate motor responses to other behaviorally relevant environmental sounds. We also find support for previous work that shows sex differences in emotion processing are diminished under conditions of higher stress.

  1. Sex, acceleration, brain imaging, and rhesus monkeys: Converging evidence for an evolutionary bias for looming auditory motion

    Science.gov (United States)

    Neuhoff, John G.

    2003-04-01

    Increasing acoustic intensity is a primary cue to looming auditory motion. Perceptual overestimation of increasing intensity could provide an evolutionary selective advantage by specifying that an approaching sound source is closer than actual, thus affording advanced warning and more time than expected to prepare for the arrival of the source. Here, multiple lines of converging evidence for this evolutionary hypothesis are presented. First, it is shown that intensity change specifying accelerating source approach changes in loudness more than equivalent intensity change specifying decelerating source approach. Second, consistent with evolutionary hunter-gatherer theories of sex-specific spatial abilities, it is shown that females have a significantly larger bias for rising intensity than males. Third, using functional magnetic resonance imaging in conjunction with approaching and receding auditory motion, it is shown that approaching sources preferentially activate a specific neural network responsible for attention allocation, motor planning, and translating perception into action. Finally, it is shown that rhesus monkeys also exhibit a rising intensity bias by orienting longer to looming tones than to receding tones. Together these results illustrate an adaptive perceptual bias that has evolved because it provides a selective advantage in processing looming acoustic sources. [Work supported by NSF and CDC.

  2. Frequency-Domain Joint Motion and Disparity Estimation Using Steerable Filters

    Directory of Open Access Journals (Sweden)

    Dimitrios Alexiadis

    2018-02-01

    Full Text Available In this paper, the problem of joint disparity and motion estimation from stereo image sequences is formulated in the spatiotemporal frequency domain, and a novel steerable filter-based approach is proposed. Our rationale behind coupling the two problems is that according to experimental evidence in the literature, the biological visual mechanisms for depth and motion are not independent of each other. Furthermore, our motivation to study the problem in the frequency domain and search for a filter-based solution is based on the fact that, according to early experimental studies, the biological visual mechanisms can be modelled based on frequency-domain or filter-based considerations, for both the perception of depth and the perception of motion. The proposed framework constitutes the first attempt to solve the joint estimation problem through a filter-based solution, based on frequency-domain considerations. Thus, the presented ideas provide a new direction of work and could be the basis for further developments. From an algorithmic point of view, we additionally extend state-of-the-art ideas from the disparity estimation literature to handle the joint disparity-motion estimation problem and formulate an algorithm that is evaluated through a number of experimental results. Comparisons with state-of-the-art-methods demonstrate the accuracy of the proposed approach.

  3. Working memory training to improve speech perception in noise across languages.

    Science.gov (United States)

    Ingvalson, Erin M; Dhar, Sumitrajit; Wong, Patrick C M; Liu, Hanjun

    2015-06-01

    Working memory capacity has been linked to performance on many higher cognitive tasks, including the ability to perceive speech in noise. Current efforts to train working memory have demonstrated that working memory performance can be improved, suggesting that working memory training may lead to improved speech perception in noise. A further advantage of working memory training to improve speech perception in noise is that working memory training materials are often simple, such as letters or digits, making them easily translatable across languages. The current effort tested the hypothesis that working memory training would be associated with improved speech perception in noise and that materials would easily translate across languages. Native Mandarin Chinese and native English speakers completed ten days of reversed digit span training. Reading span and speech perception in noise both significantly improved following training, whereas untrained controls showed no gains. These data suggest that working memory training may be used to improve listeners' speech perception in noise and that the materials may be quickly adapted to a wide variety of listeners.

  4. Perception of Animacy from the Motion of a Single Sound Object.

    Science.gov (United States)

    Nielsen, Rasmus Høll; Vuust, Peter; Wallentin, Mikkel

    2015-02-01

    Research in the visual modality has shown that the presence of certain dynamics in the motion of an object has a strong effect on whether or not the entity is perceived as animate. Cues for animacy are, among others, self-propelled motion and direction changes that are seemingly not caused by entities external to, or in direct contact with, the moving object. The present study aimed to extend this research into the auditory domain by determining if similar dynamics could influence the perceived animacy of a sound source. In two experiments, participants were presented with single, synthetically generated 'mosquito' sounds moving along trajectories in space, and asked to rate how certain they were that each sound-emitting entity was alive. At a random point on a linear motion trajectory, the sound source would deviate from its initial path and speed. Results confirm findings from the visual domain that a change in the velocity of motion is positively correlated with perceived animacy, and changes in direction were found to influence animacy judgment as well. This suggests that an ability to facilitate and sustain self-movement is perceived as a living quality not only in the visual domain, but in the auditory domain as well. © 2015 SAGE Publications.

  5. Self versus environment motion in postural control.

    Directory of Open Access Journals (Sweden)

    Kalpana Dokka

    2010-02-01

    Full Text Available To stabilize our position in space we use visual information as well as non-visual physical motion cues. However, visual cues can be ambiguous: visually perceived motion may be caused by self-movement, movement of the environment, or both. The nervous system must combine the ambiguous visual cues with noisy physical motion cues to resolve this ambiguity and control our body posture. Here we have developed a Bayesian model that formalizes how the nervous system could solve this problem. In this model, the nervous system combines the sensory cues to estimate the movement of the body. We analytically demonstrate that, as long as visual stimulation is fast in comparison to the uncertainty in our perception of body movement, the optimal strategy is to weight visually perceived movement velocities proportional to a power law. We find that this model accounts for the nonlinear influence of experimentally induced visual motion on human postural behavior both in our data and in previously published results.

  6. Direction detection thresholds of passive self-motion in artistic gymnasts.

    Science.gov (United States)

    Hartmann, Matthias; Haller, Katia; Moser, Ivan; Hossner, Ernst-Joachim; Mast, Fred W

    2014-04-01

    In this study, we compared direction detection thresholds of passive self-motion in the dark between artistic gymnasts and controls. Twenty-four professional female artistic gymnasts (ranging from 7 to 20 years) and age-matched controls were seated on a motion platform and asked to discriminate the direction of angular (yaw, pitch, roll) and linear (leftward-rightward) motion. Gymnasts showed lower thresholds for the linear leftward-rightward motion. Interestingly, there was no difference for the angular motions. These results show that the outstanding self-motion abilities in artistic gymnasts are not related to an overall higher sensitivity in self-motion perception. With respect to vestibular processing, our results suggest that gymnastic expertise is exclusively linked to superior interpretation of otolith signals when no change in canal signals is present. In addition, thresholds were overall lower for the older (14-20 years) than for the younger (7-13 years) participants, indicating the maturation of vestibular sensitivity from childhood to adolescence.

  7. Detection Thresholds for Rotation and Translation Gains in 360° Video-Based Telepresence Systems.

    Science.gov (United States)

    Zhang, Jingxin; Langbehn, Eike; Krupke, Dennis; Katzakis, Nicholas; Steinicke, Frank

    2018-04-01

    Telepresence systems have the potential to overcome limits and distance constraints of the real-world by enabling people to remotely visit and interact with each other. However, current telepresence systems usually lack natural ways of supporting interaction and exploration of remote environments (REs). In particular, single webcams for capturing the RE provide only a limited illusion of spatial presence, and movement control of mobile platforms in today's telepresence systems are often restricted to simple interaction devices. One of the main challenges of telepresence systems is to allow users to explore a RE in an immersive, intuitive and natural way, e.g., by real walking in the user's local environment (LE), and thus controlling motions of the robot platform in the RE. However, the LE in which the user's motions are tracked usually provides a much smaller interaction space than the RE. In this context, redirected walking (RDW) is a very suitable approach to solve this problem. However, so far there is no previous work, which explored if and how RDW can be used in video-based 360° telepresence systems. In this article, we conducted two psychophysical experiments in which we have quantified how much humans can be unknowingly redirected on virtual paths in the RE, which are different from the physical paths that they actually walk in the LE. Experiment 1 introduces a discrimination task between local and remote translations, and in Experiment 2 we analyzed the discrimination between local and remote rotations. In Experiment 1 participants performed straightforward translations in the LE that were mapped to straightforward translations in the RE shown as 360° videos, which were manipulated by different gains. Then, participants had to estimate if the remotely perceived translation was faster or slower than the actual physically performed translation. Similarly, in Experiment 2 participants performed rotations in the LE that were mapped to the virtual rotations

  8. Dark field differential dynamic microscopy enables accurate characterization of the roto-translational dynamics of bacteria and colloidal clusters

    Science.gov (United States)

    Cerbino, Roberto; Piotti, Davide; Buscaglia, Marco; Giavazzi, Fabio

    2018-01-01

    Micro- and nanoscale objects with anisotropic shape are key components of a variety of biological systems and inert complex materials, and represent fundamental building blocks of novel self-assembly strategies. The time scale of their thermal motion is set by their translational and rotational diffusion coefficients, whose measurement may become difficult for relatively large particles with small optical contrast. Here we show that dark field differential dynamic microscopy is the ideal tool for probing the roto-translational Brownian motion of anisotropic shaped particles. We demonstrate our approach by successful application to aqueous dispersions of non-motile bacteria and of colloidal aggregates of spherical particles.

  9. Conjugate dynamical systems: classical analogue of the quantum energy translation

    International Nuclear Information System (INIS)

    Torres-Vega, Gabino

    2012-01-01

    An aspect of quantum mechanics that has not been fully understood is the energy shift generated by the time operator. In this study, we introduce the use of the eigensurfaces of dynamical variables and commutators in classical mechanics to study the classical analogue of the quantum translation of energy. We determine that there is a conjugate dynamical system that is conjugate to Hamilton's equations of motion, and then we generate the analogue of the time operator and use it in the translation of points along the energy direction, i.e. the classical analogue of the Pauli theorem. The theory is illustrated with a nonlinear oscillator model. (paper)

  10. Peripheral vision of youths with low vision: motion perception, crowding, and visual search.

    Science.gov (United States)

    Tadin, Duje; Nyquist, Jeffrey B; Lusk, Kelly E; Corn, Anne L; Lappin, Joseph S

    2012-08-24

    Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10-17) and low vision (n = 24, ages 9-18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function.

  11. Age-related changes in perception of movement in driving scenes.

    Science.gov (United States)

    Lacherez, Philippe; Turner, Laura; Lester, Robert; Burns, Zoe; Wood, Joanne M

    2014-07-01

    Age-related changes in motion sensitivity have been found to relate to reductions in various indices of driving performance and safety. The aim of this study was to investigate the basis of this relationship in terms of determining which aspects of motion perception are most relevant to driving. Participants included 61 regular drivers (age range 22-87 years). Visual performance was measured binocularly. Measures included visual acuity, contrast sensitivity and motion sensitivity assessed using four different approaches: (1) threshold minimum drift rate for a drifting Gabor patch, (2) Dmin from a random dot display, (3) threshold coherence from a random dot display, and (4) threshold drift rate for a second-order (contrast modulated) sinusoidal grating. Participants then completed the Hazard Perception Test (HPT) in which they were required to identify moving hazards in videos of real driving scenes, and also a Direction of Heading task (DOH) in which they identified deviations from normal lane keeping in brief videos of driving filmed from the interior of a vehicle. In bivariate correlation analyses, all motion sensitivity measures significantly declined with age. Motion coherence thresholds, and minimum drift rate threshold for the first-order stimulus (Gabor patch) both significantly predicted HPT performance even after controlling for age, visual acuity and contrast sensitivity. Bootstrap mediation analysis showed that individual differences in DOH accuracy partly explained these relationships, where those individuals with poorer motion sensitivity on the coherence and Gabor tests showed decreased ability to perceive deviations in motion in the driving videos, which related in turn to their ability to detect the moving hazards. The ability to detect subtle movements in the driving environment (as determined by the DOH task) may be an important contributor to effective hazard perception, and is associated with age, and an individuals' performance on tests of

  12. Spatial Attention and Audiovisual Interactions in Apparent Motion

    Science.gov (United States)

    Sanabria, Daniel; Soto-Faraco, Salvador; Spence, Charles

    2007-01-01

    In this study, the authors combined the cross-modal dynamic capture task (involving the horizontal apparent movement of visual and auditory stimuli) with spatial cuing in the vertical dimension to investigate the role of spatial attention in cross-modal interactions during motion perception. Spatial attention was manipulated endogenously, either…

  13. An ice-motion tracking system at the Alaska SAR facility

    Science.gov (United States)

    Kwok, Ronald; Curlander, John C.; Pang, Shirley S.; Mcconnell, Ross

    1990-01-01

    An operational system for extracting ice-motion information from synthetic aperture radar (SAR) imagery is being developed as part of the Alaska SAR Facility. This geophysical processing system (GPS) will derive ice-motion information by automated analysis of image sequences acquired by radars on the European ERS-1, Japanese ERS-1, and Canadian RADARSAT remote sensing satellites. The algorithm consists of a novel combination of feature-based and area-based techniques for the tracking of ice floes that undergo translation and rotation between imaging passes. The system performs automatic selection of the image pairs for input to the matching routines using an ice-motion estimator. It is designed to have a daily throughput of ten image pairs. A description is given of the GPS system, including an overview of the ice-motion-tracking algorithm, the system architecture, and the ice-motion products that will be available for distribution to geophysical data users.

  14. Both physical exercise and progressive muscle relaxation reduce the facing-the-viewer bias in biological motion perception.

    Directory of Open Access Journals (Sweden)

    Adam Heenan

    Full Text Available Biological motion stimuli, such as orthographically projected stick figure walkers, are ambiguous about their orientation in depth. The projection of a stick figure walker oriented towards the viewer, therefore, is the same as its projection when oriented away. Even though such figures are depth-ambiguous, however, observers tend to interpret them as facing towards them more often than facing away. Some have speculated that this facing-the-viewer bias may exist for sociobiological reasons: Mistaking another human as retreating when they are actually approaching could have more severe consequences than the opposite error. Implied in this hypothesis is that the facing-towards percept of biological motion stimuli is potentially more threatening. Measures of anxiety and the facing-the-viewer bias should therefore be related, as researchers have consistently found that anxious individuals display an attentional bias towards more threatening stimuli. The goal of this study was to assess whether physical exercise (Experiment 1 or an anxiety induction/reduction task (Experiment 2 would significantly affect facing-the-viewer biases. We hypothesized that both physical exercise and progressive muscle relaxation would decrease facing-the-viewer biases for full stick figure walkers, but not for bottom- or top-half-only human stimuli, as these carry less sociobiological relevance. On the other hand, we expected that the anxiety induction task (Experiment 2 would increase facing-the-viewer biases for full stick figure walkers only. In both experiments, participants completed anxiety questionnaires, exercised on a treadmill (Experiment 1 or performed an anxiety induction/reduction task (Experiment 2, and then immediately completed a perceptual task that allowed us to assess their facing-the-viewer bias. As hypothesized, we found that physical exercise and progressive muscle relaxation reduced facing-the-viewer biases for full stick figure walkers only. Our

  15. Peripheral Vision of Youths with Low Vision: Motion Perception, Crowding, and Visual Search

    Science.gov (United States)

    Tadin, Duje; Nyquist, Jeffrey B.; Lusk, Kelly E.; Corn, Anne L.; Lappin, Joseph S.

    2012-01-01

    Purpose. Effects of low vision on peripheral visual function are poorly understood, especially in children whose visual skills are still developing. The aim of this study was to measure both central and peripheral visual functions in youths with typical and low vision. Of specific interest was the extent to which measures of foveal function predict performance of peripheral tasks. Methods. We assessed central and peripheral visual functions in youths with typical vision (n = 7, ages 10–17) and low vision (n = 24, ages 9–18). Experimental measures used both static and moving stimuli and included visual crowding, visual search, motion acuity, motion direction discrimination, and multitarget motion comparison. Results. In most tasks, visual function was impaired in youths with low vision. Substantial differences, however, were found both between participant groups and, importantly, across different tasks within participant groups. Foveal visual acuity was a modest predictor of peripheral form vision and motion sensitivity in either the central or peripheral field. Despite exhibiting normal motion discriminations in fovea, motion sensitivity of youths with low vision deteriorated in the periphery. This contrasted with typically sighted participants, who showed improved motion sensitivity with increasing eccentricity. Visual search was greatly impaired in youths with low vision. Conclusions. Our results reveal a complex pattern of visual deficits in peripheral vision and indicate a significant role of attentional mechanisms in observed impairments. These deficits were not adequately captured by measures of foveal function, arguing for the importance of independently assessing peripheral visual function. PMID:22836766

  16. Double-Row Capsulolabral Repair Increases Load to Failure and Decreases Excessive Motion.

    Science.gov (United States)

    McDonald, Lucas S; Thompson, Matthew; Altchek, David W; McGarry, Michelle H; Lee, Thay Q; Rocchi, Vanna J; Dines, Joshua S

    2016-11-01

    Using a cadaver shoulder instability model and load-testing device, we compared biomechanical characteristics of double-row and single-row capsulolabral repairs. We hypothesized a greater reduction in glenohumeral motion and translation and a higher load to failure in a mattress double-row capsulolabral repair than in a single-row repair. In 6 matched pairs of cadaveric shoulders, a capsulolabral injury was created. One shoulder was repaired with a single-row technique, and the other with a double-row mattress technique. Rotational range of motion, anterior-inferior translation, and humeral head kinematics were measured. Load-to-failure testing measured stiffness, yield load, deformation at yield load, energy absorbed at yield load, load to failure, deformation at ultimate load, and energy absorbed at ultimate load. Double-row repair significantly decreased external rotation and total range of motion compared with single-row repair. Both repairs decreased anterior-inferior translation compared with the capsulolabral-injured condition, however, no differences existed between repair types. Yield load in the single-row group was 171.3 ± 110.1 N, and in the double-row group it was 216.1 ± 83.1 N (P = .02). Ultimate load to failure in the single-row group was 224.5 ± 121.0 N, and in the double-row group it was 373.9 ± 172.0 N (P = .05). Energy absorbed at ultimate load in the single-row group was 1,745.4 ± 1,462.9 N-mm, and in the double-row group it was 4,649.8 ± 1,930.8 N-mm (P = .02). In cases of capsulolabral disruption, double-row repair techniques may result in decreased shoulder rotational range of motion and improved load-to-failure characteristics. In cases of capsulolabral disruption, repair techniques with double-row mattress repair may provide more secure fixation. Double-row capsulolabral repair decreases shoulder motion and increases load to failure, yield load, and energy absorbed at yield load more than single-row repair. Published by

  17. The Usefulness of Translation in Foreign Language Learning: Students’ Attitudes

    Directory of Open Access Journals (Sweden)

    Ana B. Fernández-Guerra

    2014-03-01

    Full Text Available Several scholars have argued that translation is not a useful tool when acquiring a second or foreign language; since it provides a simplistic one-to-one relationship between the native and the foreign language, it can cause interference between them, and it is an artificial exercise that has nothing to do in a communicative approach to language teaching. Recent studies, however, show that, far from being useless, translation can be a great aid to foreign language learning. The aim of the present paper is twofold: (1 to summarize and assess the arguments that encourage the use of translation in the foreign language classroom, supporting the integration of several forms of translating; and (2 to present the results of a survey that focused on students’ perceptions and responses towards translation tasks and their effectiveness in foreign language acquisition. Results show that students’ attitudes were surprisingly positive for several reasons: translation is one of their preferred language learning tasks, it is motivating, it facilitates a deeper understanding of the form and content of the source language text, it increases learners’ awareness of the differences between both linguistic systems, it allows them to re-express their thoughts faster and easier, and it helps them acquire linguistic and cultural knowledge.

  18. The influence of visual motion on interceptive actions and perception.

    Science.gov (United States)

    Marinovic, Welber; Plooy, Annaliese M; Arnold, Derek H

    2012-05-01

    Visual information is an essential guide when interacting with moving objects, yet it can also be deceiving. For instance, motion can induce illusory position shifts, such that a moving ball can seem to have bounced past its true point of contact with the ground. Some evidence suggests illusory motion-induced position shifts bias pointing tasks to a greater extent than they do perceptual judgments. This, however, appears at odds with other findings and with our success when intercepting moving objects. Here we examined the accuracy of interceptive movements and of perceptual judgments in relation to simulated bounces. Participants were asked to intercept a moving disc at its bounce location by positioning a virtual paddle, and then to report where the disc had landed. Results showed that interceptive actions were accurate whereas perceptual judgments were inaccurate, biased in the direction of motion. Successful interceptions necessitated accurate information concerning both the location and timing of the bounce, so motor planning evidently had privileged access to an accurate forward model of bounce timing and location. This would explain why people can be accurate when intercepting a moving object, but lack insight into the accurate information that had guided their actions when asked to make a perceptual judgment. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. 3D motion analysis via energy minimization

    Energy Technology Data Exchange (ETDEWEB)

    Wedel, Andreas

    2009-10-16

    This work deals with 3D motion analysis from stereo image sequences for driver assistance systems. It consists of two parts: the estimation of motion from the image data and the segmentation of moving objects in the input images. The content can be summarized with the technical term machine visual kinesthesia, the sensation or perception and cognition of motion. In the first three chapters, the importance of motion information is discussed for driver assistance systems, for machine vision in general, and for the estimation of ego motion. The next two chapters delineate on motion perception, analyzing the apparent movement of pixels in image sequences for both a monocular and binocular camera setup. Then, the obtained motion information is used to segment moving objects in the input video. Thus, one can clearly identify the thread from analyzing the input images to describing the input images by means of stationary and moving objects. Finally, I present possibilities for future applications based on the contents of this thesis. Previous work in each case is presented in the respective chapters. Although the overarching issue of motion estimation from image sequences is related to practice, there is nothing as practical as a good theory (Kurt Lewin). Several problems in computer vision are formulated as intricate energy minimization problems. In this thesis, motion analysis in image sequences is thoroughly investigated, showing that splitting an original complex problem into simplified sub-problems yields improved accuracy, increased robustness, and a clear and accessible approach to state-of-the-art motion estimation techniques. In Chapter 4, optical flow is considered. Optical flow is commonly estimated by minimizing the combined energy, consisting of a data term and a smoothness term. These two parts are decoupled, yielding a novel and iterative approach to optical flow. The derived Refinement Optical Flow framework is a clear and straight-forward approach to

  20. Second-order processing of four-stroke apparent motion.

    Science.gov (United States)

    Mather, G; Murdoch, L

    1999-05-01

    In four-stroke apparent motion displays, pattern elements oscillate between two adjacent positions and synchronously reverse in contrast, but appear to move unidirectionally. For example, if rightward shifts preserve contrast but leftward shifts reverse contrast, consistent rightward motion is seen. In conventional first-order displays, elements reverse in luminance contrast (e.g. light elements become dark, and vice-versa). The resulting perception can be explained by responses in elementary motion detectors turned to spatio-temporal orientation. Second-order motion displays contain texture-defined elements, and there is some evidence that they excite second-order motion detectors that extract spatio-temporal orientation following the application of a non-linear 'texture-grabbing' transform by the visual system. We generated a variety of second-order four-stroke displays, containing texture-contrast reversals instead of luminance contrast reversals, and used their effectiveness as a diagnostic test for the presence of various forms of non-linear transform in the second-order motion system. Displays containing only forward or only reversed phi motion sequences were also tested. Displays defined by variation in luminance, contrast, orientation, and size were effective. Displays defined by variation in motion, dynamism, and stereo were partially or wholly ineffective. Results obtained with contrast-reversing and four-stroke displays indicate that only relatively simple non-linear transforms (involving spatial filtering and rectification) are available during second-order energy-based motion analysis.

  1. Motion of a carrier with a mobile load along a rough inclined plane

    Science.gov (United States)

    Bilchenko, G. G.

    2018-03-01

    The mechanical system consisting of a carrier and a load is considered. The load can move respectively the carrier according to the preset given motion law. The carrier motion from rest caused the load motion is investigated. The carrier can move translationally along rectilinear trajectory along rough inclined plane. The trajectory is the line of the greatest descent. The axis of rectilinear channel along which the load moves is situated in vertical plane containing the carrier trajectory. The Coulomb model is taken to describe the friction forces on sloped plane. Differential equations of motion of carrier with load are obtained. The sufficient condition of the carrier motion without detachment from inclined plane is given. For two special cases of the channel installation angle and the plane inclination angle combination the motion types are described. The computation experiments results are presented: the carrier motions in the special cases are illustrated, the phase portraits for some types of motions are constructed.

  2. Linear vestibuloocular reflex during motion along axes between nasooccipital and interaural

    Science.gov (United States)

    Tomko, David L.; Paige, Gary D.

    1992-01-01

    Linear vestibuloocular reflexes (LVORs), which stabilize retinal images by producing eye movements to compensate for linear head motion, are of two types: (1) responses to head tilt, which work primarily at low frequencies; and (2) responses to head translation, which act at higher frequencies. This work tested the hypothesis that reflexive eye movements would follow the same kinematics relative to the motion axis regardless of head orientation relative to linear motion. The experiments consisted of recording horizontal and vertical eye movements in squirrel monkeys during linear oscillations at 5 Hz along the head's nasooccipital (NO) axis and along axes lying within +/- 30 deg of the NO axis. It was found that LVORs followed the same kinematics regardless of the eye position in the head or the head orientation relative to motion.

  3. Mom's shadow: structure-from-motion in newly hatched chicks as revealed by an imprinting procedure.

    Science.gov (United States)

    Mascalzoni, Elena; Regolin, Lucia; Vallortigara, Giorgio

    2009-03-01

    The ability to recognize three-dimensional objects from two-dimensional (2-D) displays was investigated in domestic chicks, focusing on the role of the object's motion. In Experiment 1 newly hatched chicks, imprinted on a three-dimensional (3-D) object, were allowed to choose between the shadows of the familiar object and of an object never seen before. In Experiments 2 and 3 random-dot displays were used to produce the perception of a solid shape only when set in motion. Overall, the results showed that domestic chicks were able to recognize familiar shapes from 2-D motion stimuli. It is likely that similar general mechanisms underlying the perception of structure-from-motion and the extraction of 3-D information are shared by humans and animals. The present data shows that they occur similarly in birds as known for mammals, two separate vertebrate classes; this possibly indicates a common phylogenetic origin of these processes.

  4. Characterizing head motion in three planes during combined visual and base of support disturbances in healthy and visually sensitive subjects.

    Science.gov (United States)

    Keshner, E A; Dhaher, Y

    2008-07-01

    Multiplanar environmental motion could generate head instability, particularly if the visual surround moves in planes orthogonal to a physical disturbance. We combined sagittal plane surface translations with visual field disturbances in 12 healthy (29-31 years) and 3 visually sensitive (27-57 years) adults. Center of pressure (COP), peak head angles, and RMS values of head motion were calculated and a three-dimensional model of joint motion was developed to examine gross head motion in three planes. We found that subjects standing quietly in front of a visual scene translating in the sagittal plane produced significantly greater (pplane of platform motion significantly increased (phistory of vestibular disorder produced large, delayed compensatory head motion. Orthogonal head motions were significantly greater in visually sensitive than in healthy subjects in the dark (pplanes orthogonal to the direction of a physical perturbation. These results suggest that the mechanisms controlling head orientation in space are distinct from those that control trunk orientation in space. These behaviors would have been missed if only COP data were considered. Data suggest that rehabilitation training can be enhanced by combining visual and mechanical perturbation paradigms.

  5. Discrimination of curvature from motion during smooth pursuit eye movements and fixation.

    Science.gov (United States)

    Ross, Nicholas M; Goettker, Alexander; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2017-09-01

    Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination. NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found

  6. Motion compensation in extremity cone-beam CT using a penalized image sharpness criterion

    Science.gov (United States)

    Sisniega, A.; Stayman, J. W.; Yorkston, J.; Siewerdsen, J. H.; Zbijewski, W.

    2017-05-01

    Cone-beam CT (CBCT) for musculoskeletal imaging would benefit from a method to reduce the effects of involuntary patient motion. In particular, the continuing improvement in spatial resolution of CBCT may enable tasks such as quantitative assessment of bone microarchitecture (0.1 mm-0.2 mm detail size), where even subtle, sub-mm motion blur might be detrimental. We propose a purely image based motion compensation method that requires no fiducials, tracking hardware or prior images. A statistical optimization algorithm (CMA-ES) is used to estimate a motion trajectory that optimizes an objective function consisting of an image sharpness criterion augmented by a regularization term that encourages smooth motion trajectories. The objective function is evaluated using a volume of interest (VOI, e.g. a single bone and surrounding area) where the motion can be assumed to be rigid. More complex motions can be addressed by using multiple VOIs. Gradient variance was found to be a suitable sharpness metric for this application. The performance of the compensation algorithm was evaluated in simulated and experimental CBCT data, and in a clinical dataset. Motion-induced artifacts and blurring were significantly reduced across a broad range of motion amplitudes, from 0.5 mm to 10 mm. Structure similarity index (SSIM) against a static volume was used in the simulation studies to quantify the performance of the motion compensation. In studies with translational motion, the SSIM improved from 0.86 before compensation to 0.97 after compensation for 0.5 mm motion, from 0.8 to 0.94 for 2 mm motion and from 0.52 to 0.87 for 10 mm motion (~70% increase). Similar reduction of artifacts was observed in a benchtop experiment with controlled translational motion of an anthropomorphic hand phantom, where SSIM (against a reconstruction of a static phantom) improved from 0.3 to 0.8 for 10 mm motion. Application to a clinical dataset of a lower extremity showed dramatic reduction

  7. Neuromorphic Configurable Architecture for Robust Motion Estimation

    Directory of Open Access Journals (Sweden)

    Guillermo Botella

    2008-01-01

    Full Text Available The robustness of the human visual system recovering motion estimation in almost any visual situation is enviable, performing enormous calculation tasks continuously, robustly, efficiently, and effortlessly. There is obviously a great deal we can learn from our own visual system. Currently, there are several optical flow algorithms, although none of them deals efficiently with noise, illumination changes, second-order motion, occlusions, and so on. The main contribution of this work is the efficient implementation of a biologically inspired motion algorithm that borrows nature templates as inspiration in the design of architectures and makes use of a specific model of human visual motion perception: Multichannel Gradient Model (McGM. This novel customizable architecture of a neuromorphic robust optical flow can be constructed with FPGA or ASIC device using properties of the cortical motion pathway, constituting a useful framework for building future complex bioinspired systems running in real time with high computational complexity. This work includes the resource usage and performance data, and the comparison with actual systems. This hardware has many application fields like object recognition, navigation, or tracking in difficult environments due to its bioinspired and robustness properties.

  8. Motion correction in neurological fan beam SPECT using motion tracking and fully 3D reconstruction

    International Nuclear Information System (INIS)

    Fulton, R.R.; Hutton, B.; Eberl, S.; Meikle, S.; Braun, M.; Westmead Hospital, Westmead, NSW; University of Technology, Sydney, NSW

    1998-01-01

    Full text: We have previously proposed the use of fully three-dimensional (3D) reconstruction and continuous monitoring of head position to correct for motion artifacts in neurological SPECT and PET. Knowledge of the motion during acquisition provided by a head tracking system can be used to reposition the projection data in space in such a way as to negate motion effects during reconstruction. The reconstruction algorithm must deal with variations in the projection geometry resulting from differences in the timing and nature of motion between patients. Rotational movements about any axis other than the camera's axis of rotation give rise to projection geometries which necessitate the use of a fully 3D reconstruction algorithm. Our previous work with computer simulations assuming parallel hole collimation demonstrated the feasibility of correcting for motion. We have now refined our iterative 3D reconstruction algorithm to support fan beam data and attenuation correction, and developed a practical head tracking system for use on a Trionix Triad SPECT system. The correction technique has been tested in fan beam SPECT studies of the 3D Hoffman brain phantom. Arbitrary movements were applied to the phantom during acquisition and recorded by the head tracker which monitored the position and orientation of the phantom throughout the study. 3D reconstruction was then performed using the motion data provided by the tracker. The accuracy of correction was assessed by comparing the corrected images with a motion free study acquired immediately beforehand, visually and by calculating mean squared error (MSE). Motion correction reduced distortion perceptibly and, depending on the motions applied, improved MSE by up to an order of magnitude. 3D reconstruction of the 128x128x128 data set took 20 minutes on a SUN Ultra 1 workstation. The results of these phantom experiments suggest that the technique can effectively compensate for head motion under clinical SPECT imaging

  9. S4-3: Spatial Processing of Visual Motion

    Directory of Open Access Journals (Sweden)

    Shin'ya Nishida

    2012-10-01

    Full Text Available Local motion signals are extracted in parallel by a bank of motion detectors, and their spatiotemporal interactions are processed in subsequent stages. In this talk, I will review our recent studies on spatial interactions in visual motion processing. First, we found two types of spatial pooling of local motion signals. Directionally ambiguous 1D local motion signals are pooled across orientation and space for solution of the aperture problem, while 2D local motion signals are pooled for estimation of global vector average (e.g., Amano et al., 2009 Journal of Vision 9(3:4 1–25. Second, when stimulus presentation is brief, coherent motion detection of dynamic random-dot kinematogram is not efficient. Nevertheless, it is significantly improved by transient and synchronous presentation of a stationary surround pattern. This suggests that centre-surround spatial interaction may help rapid perception of motion (Linares et al., submitted. Third, to know how the visual system encodes pairwise relationships between remote motion signals, we measured the temporal rate limit for perceiving the relationship of two motion directions presented at the same time at different spatial locations. Compared with similar tasks with luminance or orientation signals, motion comparison was more rapid and hence efficient. This high performance was affected little by inter-element separation even when it was increased up to 100 deg. These findings indicate the existence of specialized processes to encode long-range relationships between motion signals for quick appreciation of global dynamic scene structure (Maruya et al., in preparation.

  10. Segmentation of arterial vessel wall motion to sub-pixel resolution using M-mode ultrasound.

    Science.gov (United States)

    Fancourt, Craig; Azer, Karim; Ramcharan, Sharmilee L; Bunzel, Michelle; Cambell, Barry R; Sachs, Jeffrey R; Walker, Matthew

    2008-01-01

    We describe a method for segmenting arterial vessel wall motion to sub-pixel resolution, using the returns from M-mode ultrasound. The technique involves measuring the spatial offset between all pairs of scans from their cross-correlation, converting the spatial offsets to relative wall motion through a global optimization, and finally translating from relative to absolute wall motion by interpolation over the M-mode image. The resulting detailed wall distension waveform has the potential to enhance existing vascular biomarkers, such as strain and compliance, as well as enable new ones.

  11. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation......Due to the growing uptake of translation technology in the language industry and its documented impact on the translation profession, translation students and scholars need in-depth and empirically founded knowledge of the nature and influences of translation technology (e.g. Christensen....../Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...

  12. On-chip visual perception of motion: a bio-inspired connectionist model on FPGA.

    Science.gov (United States)

    Torres-Huitzil, César; Girau, Bernard; Castellanos-Sánchez, Claudio

    2005-01-01

    Visual motion provides useful information to understand the dynamics of a scene to allow intelligent systems interact with their environment. Motion computation is usually restricted by real time requirements that need the design and implementation of specific hardware architectures. In this paper, the design of hardware architecture for a bio-inspired neural model for motion estimation is presented. The motion estimation is based on a strongly localized bio-inspired connectionist model with a particular adaptation of spatio-temporal Gabor-like filtering. The architecture is constituted by three main modules that perform spatial, temporal, and excitatory-inhibitory connectionist processing. The biomimetic architecture is modeled, simulated and validated in VHDL. The synthesis results on a Field Programmable Gate Array (FPGA) device show the potential achievement of real-time performance at an affordable silicon area.

  13. Contact angle hysteresis and motion behaviors of a water nano-droplet on suspended graphene under temperature gradient

    Science.gov (United States)

    Foroutan, Masumeh; Fatemi, S. Mahmood; Esmaeilian, Farshad; Fadaei Naeini, Vahid; Baniassadi, Majid

    2018-05-01

    In the present work, the effect of temperature gradient on the behavior of a water nano-droplet resting on a suspended graphene was studied based on a non-equilibrium molecular dynamics simulation. The acquired results indicate that the applied temperature gradient to the suspended graphene drives the water nano-droplet to the colder region. The droplet accelerates its motion toward the cold reservoir as the temperature gradient is increased. In addition to the translational motion of the nano-droplet, the vortical motion of the water molecules was also observed. Contact angle analysis was also utilized to describe the directional motion of the nano-droplet. The translational motion of the droplet leads to the estimation of contact angle hysteresis through advancing and receding contact angles while the rotational motion resulted in the advancing and receding fronts being switched with one another through the simulation. The average displacement vector of the water molecules shows that parts of the droplet seem to stagnate while other parts rotate around them. The reason behind this particular behavior was studied based on interaction energy contours between a water molecule and the suspended graphene. The obtained data indicate that the rotational motion is in agreement with the migration of the water molecules to low interaction energy regions in order to avoid high interaction energy areas.

  14. Measurement of six-degree-of-freedom planar motions by using a multiprobe surface encoder

    Science.gov (United States)

    Li, Xinghui; Shimizu, Yuki; Ito, Takeshi; Cai, Yindi; Ito, So; Gao, Wei

    2014-12-01

    A multiprobe surface encoder for optical metrology of six-degree-of-freedom (six-DOF) planar motions is presented. The surface encoder is composed of an XY planar scale grating with identical microstructures in X- and Y-axes and an optical sensor head. In the optical sensor head, three paralleled laser beams were used as laser probes. After being divided by a beam splitter, the three laser probes were projected onto the scale grating and a reference grating with identical microstructures, respectively. For each probe, the first-order positive and negative diffraction beams along the X- and Y-directions from the scale grating and from the reference grating superimposed with each other and four pieces of interference signals were generated. Three-DOF translational motions of the scale grating Δx, Δy, and Δz can be obtained simultaneously from the interference signals of each probe. Three-DOF angular error motions θX, θY, and θZ can also be calculated simultaneously from differences of displacement output variations and the geometric relationship among the three probes. A prototype optical sensor head was designed, constructed, and evaluated. Experimental results verified that this surface encoder could provide measurement resolutions of subnanometer and better than 0.1 arc sec for three-DOF translational motions and three-DOF angular error motions, respectively.

  15. Computational gestalts and perception thresholds.

    Science.gov (United States)

    Desolneux, Agnès; Moisan, Lionel; Morel, Jean-Michel

    2003-01-01

    In 1923, Max Wertheimer proposed a research programme and method in visual perception. He conjectured the existence of a small set of geometric grouping laws governing the perceptual synthesis of phenomenal objects, or "gestalt" from the atomic retina input. In this paper, we review this set of geometric grouping laws, using the works of Metzger, Kanizsa and their schools. In continuation, we explain why the Gestalt theory research programme can be translated into a Computer Vision programme. This translation is not straightforward, since Gestalt theory never addressed two fundamental matters: image sampling and image information measurements. Using these advances, we shall show that gestalt grouping laws can be translated into quantitative laws allowing the automatic computation of gestalts in digital images. From the psychophysical viewpoint, a main issue is raised: the computer vision gestalt detection methods deliver predictable perception thresholds. Thus, we are set in a position where we can build artificial images and check whether some kind of agreement can be found between the computationally predicted thresholds and the psychophysical ones. We describe and discuss two preliminary sets of experiments, where we compared the gestalt detection performance of several subjects with the predictable detection curve. In our opinion, the results of this experimental comparison support the idea of a much more systematic interaction between computational predictions in Computer Vision and psychophysical experiments.

  16. Methodology for estimating human perception to tremors in high-rise buildings

    Science.gov (United States)

    Du, Wenqi; Goh, Key Seng; Pan, Tso-Chien

    2017-07-01

    Human perception to tremors during earthquakes in high-rise buildings is usually associated with psychological discomfort such as fear and anxiety. This paper presents a methodology for estimating the level of perception to tremors for occupants living in high-rise buildings subjected to ground motion excitations. Unlike other approaches based on empirical or historical data, the proposed methodology performs a regression analysis using the analytical results of two generic models of 15 and 30 stories. The recorded ground motions in Singapore are collected and modified for structural response analyses. Simple predictive models are then developed to estimate the perception level to tremors based on a proposed ground motion intensity parameter—the average response spectrum intensity in the period range between 0.1 and 2.0 s. These models can be used to predict the percentage of occupants in high-rise buildings who may perceive the tremors at a given ground motion intensity. Furthermore, the models are validated with two recent tremor events reportedly felt in Singapore. It is found that the estimated results match reasonably well with the reports in the local newspapers and from the authorities. The proposed methodology is applicable to urban regions where people living in high-rise buildings might feel tremors during earthquakes.

  17. Perception of the Body in Space: Mechanisms

    Science.gov (United States)

    Young, Laurence R.

    1991-01-01

    The principal topic is the perception of body orientation and motion in space and the extent to which these perceptual abstraction can be related directly to the knowledge of sensory mechanisms, particularly for the vestibular apparatus. Spatial orientation is firmly based on the underlying sensory mechanisms and their central integration. For some of the simplest situations, like rotation about a vertical axis in darkness, the dynamic response of the semicircular canals furnishes almost enough information to explain the sensations of turning and stopping. For more complex conditions involving multiple sensory systems and possible conflicts among their messages, a mechanistic response requires significant speculative assumptions. The models that exist for multisensory spatial orientation are still largely of the non-rational parameter variety. They are capable of predicting relationships among input motions and output perceptions of motion, but they involve computational functions that do not now and perhaps never will have their counterpart in central nervous system machinery. The challenge continues to be in the iterative process of testing models by experiment, correcting them where necessary, and testing them again.

  18. Cultural Adaptation and Translation of Outreach Materials on Autism Spectrum Disorder

    Science.gov (United States)

    Grinker, Roy R.; Kang-Yi, Christina D.; Ahmann, Chloe; Beidas, Rinad S.; Lagman, Adrienne; Mandell, David S.

    2015-01-01

    In order to connect with families and influence treatment trajectories, outreach materials should address cultural perceptions of the condition, its causes, and post-diagnostic care. This paper describes the cultural adaptation and translation of the Autism Speaks First 100 Days Kit into Korean for the purpose of improving autism spectrum disorder…

  19. Sensorimotor Adaptations Following Exposure to Ambiguous Inertial Motion Cues

    Science.gov (United States)

    Wood, S. J.; Harm, D. L.; Reschke, M. F.; Rupert, A. H.; Clement, G. R.

    2009-01-01

    The central nervous system must resolve the ambiguity of inertial motion sensory cues in order to derive accurate spatial orientation awareness. We hypothesize that multi-sensory integration will be adaptively optimized in altered gravity environments based on the dynamics of other sensory information available, with greater changes in otolith-mediated responses in the mid-frequency range where there is a crossover of tilt and translation responses. The primary goals of this ground-based research investigation are to explore physiological mechanisms and operational implications of tilt-translation disturbances during and following re-entry, and to evaluate a tactile prosthesis as a countermeasure for improving control of whole-body orientation.

  20. Airsickness and aircraft motion during short-haul flights.

    Science.gov (United States)

    Turner, M; Griffin, M J; Holland, I

    2000-12-01

    There is little quantitative information that can be used to predict the incidence of airsickness from the motions experienced in military or civil aviation. This study examines the relationship between low-frequency aircraft motion and passenger sickness in short-haul turboprop flights within the United Kingdom. A questionnaire survey of 923 fare-paying passengers was conducted on 38 commercial airline flights. Concurrent measurements of aircraft motion were made on all journeys, yielding approximately 30 h of aircraft motion data. Overall, 0.5% of passengers reported vomiting, 8.4% reported nausea (range 0% to 34.8%) and 16.2% reported illness (range 0% to 47.8%) during flight. Positive correlations were found between the percentage of passengers who experienced nausea or felt ill and the magnitude of low-frequency lateral and vertical motion, although neither motion uniquely predicted airsickness. The incidence of motion sickness also varied with passenger age, gender, food consumption and activity during air travel. No differences in sickness were found between passengers located in different seating sections of the aircraft, or as a function of moderate levels of alcohol consumption. The passenger responses suggest that a useful prediction of airsickness can be obtained from magnitudes of low frequency aircraft motion. However, some variations in airsickness may also be explained by individual differences between passengers and their psychological perception of flying.

  1. Translation and adaption of the Genetic Counseling Outcome Scale (GCOS-24) to Danish

    DEFF Research Database (Denmark)

    Diness, Birgitte Rode; Overbeck, Gritt; Duelund, T.

    2013-01-01

    Background and aim: The ability to measure patient outcomes from genetic counselling is a prerequisite for evidencebased development of practice. The Genetic Counselling Outcome Scale (GCOS-24) is a recently developed patient reported outcome measure. The aim of this project was to develop a Danish...... perception of genetic counseling and genetic conditions and led to adjustments of the original translation, leading to development of a tool better-suited to the target population. We would recommend the described approach when attempting translation of patient reported outcome measures...

  2. Translation and adaptation of functional auditory performance indicators (FAPI

    Directory of Open Access Journals (Sweden)

    Karina Ferreira

    2011-12-01

    Full Text Available Work with deaf children has gained new attention since the expectation and goal of therapy has expanded to language development and subsequent language learning. Many clinical tests were developed for evaluation of speech sound perception in young children in response to the need for accurate assessment of hearing skills that developed from the use of individual hearing aids or cochlear implants. These tests also allow the evaluation of the rehabilitation program. However, few of these tests are available in Portuguese. Evaluation with the Functional Auditory Performance Indicators (FAPI generates a child's functional auditory skills profile, which lists auditory skills in an integrated and hierarchical order. It has seven hierarchical categories, including sound awareness, meaningful sound, auditory feedback, sound source localizing, auditory discrimination, short-term auditory memory, and linguistic auditory processing. FAPI evaluation allows the therapist to map the child's hearing profile performance, determine the target for increasing the hearing abilities, and develop an effective therapeutic plan. Objective: Since the FAPI is an American test, the inventory was adapted for application in the Brazilian population. Material and Methods: The translation was done following the steps of translation and back translation, and reproducibility was evaluated. Four translated versions (two originals and two back-translated were compared, and revisions were done to ensure language adaptation and grammatical and idiomatic equivalence. Results: The inventory was duly translated and adapted. Conclusion: Further studies about the application of the translated FAPI are necessary to make the test practicable in Brazilian clinical use.

  3. Adaptive bulk motion exclusion for improved robustness of abdominal magnetic resonance imaging

    NARCIS (Netherlands)

    Stemkens, Bjorn; Benkert, Thomas; Chandarana, Hersh; Bittman, Mark E.; Van den Berg, Cornelis A.T.; Lagendijk, Jan J.W.; Sodickson, Daniel K.; Tijssen, Rob H.N.; Block, Kai Tobias

    2017-01-01

    Non-Cartesian magnetic resonance imaging (MRI) sequences have shown great promise for abdominal examination during free breathing, but break down in the presence of bulk patient motion (i.e. voluntary or involuntary patient movement resulting in translation, rotation or elastic deformations of the

  4. A Low Mass Translation Mechanism for Planetary FTIR Spectrometry using an Ultrasonic Piezo Linear Motor

    Science.gov (United States)

    Heverly, Matthew; Dougherty, Sean; Toon, Geoffrey; Soto, Alejandro; Blavier, Jean-Francois

    2004-01-01

    One of the key components of a Fourier Transform Infrared Spectrometer (FTIR) is the linear translation stage used to vary the optical path length between the two arms of the interferometer. This translation mechanism must produce extremely constant velocity motion across its entire range of travel to allow the instrument to attain high signal-to-noise ratio and spectral resolving power. A new spectrometer is being developed at the Jet Propulsion Laboratory under NASA s Planetary Instrument Definition and Development Program (PIDDP). The goal of this project is to build upon existing spaceborne FTIR spectrometer technology to produce a new instrument prototype that has drastically superior spectral resolution and substantially lower mass, making it feasible for planetary exploration. In order to achieve these goals, Alliance Spacesystems, Inc. (ASI) has developed a linear translation mechanism using a novel ultrasonic piezo linear motor in conjunction with a fully kinematic, fault tolerant linear rail system. The piezo motor provides extremely smooth motion, is inherently redundant, and is capable of producing unlimited travel. The kinematic rail uses spherical Vespel(R). rollers and bushings, which eliminates the need for wet lubrication, while providing a fault tolerant platform for smooth linear motion that will not bind under misalignment or structural deformation. This system can produce velocities from 10 - 100 mm/s with less than 1% velocity error over the entire 100-mm length of travel for a total mechanism mass of less than 850 grams. This system has performed over half a million strokes under vacuum without excessive wear or degradation in performance. This paper covers the design, development, and testing of this linear translation mechanism as part of the Planetary Atmosphere Occultation Spectrometer (PAOS) instrument prototype development program.

  5. Synchronous and asynchronous perceptual bindings of colour and motion following identical stimulations.

    Science.gov (United States)

    McIntyre, Morgan E; Arnold, Derek H

    2018-05-01

    When a moving surface alternates in colour and direction, perceptual couplings of colour and motion can differ from their physical correspondence. Periods of motion tend to be perceptually bound with physically delayed colours - a colour/motion perceptual asynchrony. This can be eliminated by motion transparency. Here we show that the colour/motion perceptual asynchrony is not invariably eliminated by motion transparency. Nor is it an inevitable consequence given a particular physical input. Instead, it can emerge when moving surfaces are perceived as alternating in direction, even if those surfaces seem transparent, and it is eliminated when surfaces are perceived as moving invariably. For a given observer either situation can result from exposure to a common input. Our findings suggest that neural events that promote the perception of motion reversals are causal of the colour/motion perceptual asynchrony. Moreover, they suggest that motion transparency and coherence can be signalled simultaneously by subpopulations of direction-selective neurons, with this conflict instantaneously resolved by a competitive winner-takes-all interaction, which can instantiate or eliminate colour/motion perceptual asynchrony. Copyright © 2017. Published by Elsevier Ltd.

  6. Optic Flow Information Influencing Heading Perception during Rotation

    Directory of Open Access Journals (Sweden)

    Diederick C. Niehorster

    2011-05-01

    Full Text Available We investigated what roles global spatial frequency, surface structure, and foreground motion play in heading perception during simulated rotation from optic flow. The display (110°Hx94°V simulated walking on a straight path over a ground plane (depth range: 1.4–50 m at 2 m/s while fixating a target off to one side (mean R/T ratios: ±1, ±2, ±3 under six display conditions. Four displays consisted of nonexpanding dots that were distributed so as to manipulate the amount of foreground motion and the presence of surface structure. In one further display the ground was covered with disks that expanded during the trial and lastly a textured ground display was created with the same spatial frequency power spectrum as the disk ground. At the end of each 1s trial, observers indicated their perceived heading along a line at the display's center. Mean heading biases were smaller for the textured than for the disk ground, for the displays with more foreground motion and for the displays with surface structure defined by dot motion than without. We conclude that while spatial frequency content is not a crucial factor, dense motion parallax and surface structure in optic flow are important for accurate heading perception during rotation.

  7. Brain mechanisms for social perception: lessons from autism and typical development.

    Science.gov (United States)

    Pelphrey, Kevin A; Carter, Elizabeth J

    2008-12-01

    In this review, we summarize our research program, which has as its goal charting the typical and atypical development of the social brain in children, adolescents, and adults with and without autism. We highlight recent work using virtual reality stimuli, eye tracking, and functional magnetic resonance imaging that has implicated the superior temporal sulcus (STS) region as an important component of the network of brain regions that support various aspects of social cognition and social perception. Our work in typically developing adults has led to the conclusion that the STS region is involved in social perception via its role in the visual analysis of others' actions and intentions from biological-motion cues. Our work in high-functioning adolescents and adults with autism has implicated the STS region as a mechanism underlying social perception dysfunction in this neurodevelopmental disorder. We also report novel findings from a study of biological-motion perception in young children with and without autism.

  8. Micromagnetic analysis of current-induced domain wall motion in a bilayer nanowire with synthetic antiferromagnetic coupling

    Energy Technology Data Exchange (ETDEWEB)

    Komine, Takashi, E-mail: komine@mx.ibaraki.ac.jp; Aono, Tomosuke [Faculty of Engineering, Ibaraki University 4-12-1, Nakanarusawa, Hitachi, Ibaraki, 316-8511 (Japan)

    2016-05-15

    We demonstrate current-induced domain wall motion in bilayer nanowire with synthetic antiferromagnetic (SAF) coupling by modeling two body problems for motion equations of domain wall. The influence of interlayer exchange coupling and magnetostatic interactions on current-induced domain wall motion in SAF nanowires was also investigated. By assuming the rigid wall model for translational motion, the interlayer exchange coupling and the magnetostatic interaction between walls and domains in SAF nanowires enhances domain wall speed without any spin-orbit-torque. The enhancement of domain wall speed was discussed by energy distribution as a function of wall angle configuration in bilayer nanowires.

  9. Thermophoretic Motion of Water Nanodroplets confined inside Carbon Nanotubes

    DEFF Research Database (Denmark)

    Zambrano, Harvey A; Walther, Jens Honore; Koumoutsakos, Petros

    2009-01-01

    We study the thermophoretic motion of water nanodroplets confined inside carbon nanotubes using molecular dynamics simulations. We find that the nanodroplets move in the direction opposite the imposed thermal gradient with a terminal velocity that is linearly proportional to the gradient....... The translational motion is associated with a solid body rotation of the water nanodroplet coinciding with the helical symmetry of the carbon nanotube. The thermal diffusion displays a weak dependence on the wetting of the water-carbon nanotube interface. We introduce the use of the Moment Scaling Spectrum (MSS......) in order to determine the characteristics of the motion of the nanoparticles inside the carbon nanotube. The MSS indicates that affinity of the nanodroplet with the walls of the carbon nanotubes is important for the isothermal diffusion, and hence for the Soret coefficient of the system....

  10. Realization of a Desktop Flight Simulation System for Motion-Cueing Studies

    Directory of Open Access Journals (Sweden)

    Berkay Volkaner

    2016-05-01

    Full Text Available Parallel robotic mechanisms are generally used in flight simulators with a motion-cueing algorithm to create an unlimited motion feeling of a simulated medium in a bounded workspace of the simulator. A major problem in flight simulators is that the simulation has an unbounded space and the manipulator has a limited one. Using a washout filter in the motion-cueing algorithm overcomes this. In this study, a low-cost six degrees of freedom (DoF desktop parallel manipulator is used to test a classical motion-cueing algorithm; the algorithm's functionality is confirmed with a Simulink real-time environment. Translational accelerations and angular velocities of the simulated medium obtained from FlightGear flight simulation software are processed through a generated washout filter algorithm and the simulated medium's motion information is transmitted to the desktop parallel robotic mechanism as a set point for each leg. The major issues of this paper are designing a desktop simulation system, controlling the parallel manipulator, communicating between the flight simulation and the platform, designing a motion-cueing algorithm and determining the parameters of the washout filters.

  11. The translation of idioms in children’s cartoons: A comparative analysis of English dialogues and Lithuanian subtitles

    Directory of Open Access Journals (Sweden)

    Ligita Judickaitė-Pašvenskienė

    2014-04-01

    Full Text Available The article is focused on the translation of English idioms in the Lithuanian subtitles of children’s cartoons. The aims of the article are to find out whether the element of meaning or the composition of meaning and form gets preference in the Lithuanian translation; to present the perception and use of the term idiom in English and Lithuanian; and to show the processes which take place during the translation of English idioms containing proper nouns. The article is a case study and refers to the analysis of five children’s cartoons.

  12. Assessing the knowledge and perceptions of medical students from ...

    African Journals Online (AJOL)

    2011-04-05

    Apr 5, 2011 ... Original Research: Assessing knowledge and perceptions regarding the millennium development goals. 126. Vol 54 No .... issues affect the quality of medical treatment of a patient. As good health ..... Knowledge translation in.

  13. Integration of motion energy from overlapping random background noise increases perceived speed of coherently moving stimuli.

    Science.gov (United States)

    Chuang, Jason; Ausloos, Emily C; Schwebach, Courtney A; Huang, Xin

    2016-12-01

    The perception of visual motion can be profoundly influenced by visual context. To gain insight into how the visual system represents motion speed, we investigated how a background stimulus that did not move in a net direction influenced the perceived speed of a center stimulus. Visual stimuli were two overlapping random-dot patterns. The center stimulus moved coherently in a fixed direction, whereas the background stimulus moved randomly. We found that human subjects perceived the speed of the center stimulus to be significantly faster than its veridical speed when the background contained motion noise. Interestingly, the perceived speed was tuned to the noise level of the background. When the speed of the center stimulus was low, the highest perceived speed was reached when the background had a low level of motion noise. As the center speed increased, the peak perceived speed was reached at a progressively higher background noise level. The effect of speed overestimation required the center stimulus to overlap with the background. Increasing the background size within a certain range enhanced the effect, suggesting spatial integration. The speed overestimation was significantly reduced or abolished when the center stimulus and the background stimulus had different colors, or when they were placed at different depths. When the center- and background-stimuli were perceptually separable, speed overestimation was correlated with perceptual similarity between the center- and background-stimuli. These results suggest that integration of motion energy from random motion noise has a significant impact on speed perception. Our findings put new constraints on models regarding the neural basis of speed perception. Copyright © 2016 the American Physiological Society.

  14. Understanding Translation

    DEFF Research Database (Denmark)

    Schjoldager, Anne Gram; Gottlieb, Henrik; Klitgård, Ida

    Understanding Translation is designed as a textbook for courses on the theory and practice of translation in general and of particular types of translation - such as interpreting, screen translation and literary translation. The aim of the book is to help you gain an in-depth understanding...... of the phenomenon of translation and to provide you with a conceptual framework for the analysis of various aspects of professional translation. Intended readers are students of translation and languages, but the book will also be relevant for others who are interested in the theory and practice of translation...... - translators, language teachers, translation users and literary, TV and film critics, for instance. Discussions focus on translation between Danish and English....

  15. Intrafraction Prostate Translations and Rotations During Hypofractionated Robotic Radiation Surgery: Dosimetric Impact of Correction Strategies and Margins

    Energy Technology Data Exchange (ETDEWEB)

    Water, Steven van de, E-mail: s.vandewater@erasmusmc.nl [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Valli, Lorella [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna (Italy); Aluwini, Shafak [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands); Lanconelli, Nico [Alma Mater Studiorum, Department of Physics and Astronomy, Bologna University, Bologna (Italy); Heijmen, Ben; Hoogeman, Mischa [Erasmus MC Cancer Institute, Department of Radiation Oncology, Rotterdam (Netherlands)

    2014-04-01

    Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was also varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V{sub 100%}) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3

  16. Intrafraction Prostate Translations and Rotations During Hypofractionated Robotic Radiation Surgery: Dosimetric Impact of Correction Strategies and Margins

    International Nuclear Information System (INIS)

    Water, Steven van de; Valli, Lorella; Aluwini, Shafak; Lanconelli, Nico; Heijmen, Ben; Hoogeman, Mischa

    2014-01-01

    Purpose: To investigate the dosimetric impact of intrafraction prostate motion and the effect of robot correction strategies for hypofractionated CyberKnife treatments with a simultaneously integrated boost. Methods and Materials: A total of 548 real-time prostate motion tracks from 17 patients were available for dosimetric simulations of CyberKnife treatments, in which various correction strategies were included. Fixed time intervals between imaging/correction (15, 60, 180, and 360 seconds) were simulated, as well as adaptive timing (ie, the time interval reduced from 60 to 15 seconds in case prostate motion exceeded 3 mm or 2° in consecutive images). The simulated extent of robot corrections was also varied: no corrections, translational corrections only, and translational corrections combined with rotational corrections up to 5°, 10°, and perfect rotational correction. The correction strategies were evaluated for treatment plans with a 0-mm or 3-mm margin around the clinical target volume (CTV). We recorded CTV coverage (V 100% ) and dose-volume parameters of the peripheral zone (boost), rectum, bladder, and urethra. Results: Planned dose parameters were increasingly preserved with larger extents of robot corrections. A time interval between corrections of 60 to 180 seconds provided optimal preservation of CTV coverage. To achieve 98% CTV coverage in 98% of the treatments, translational and rotational corrections up to 10° were required for the 0-mm margin plans, whereas translational and rotational corrections up to 5° were required for the 3-mm margin plans. Rectum and bladder were spared considerably better in the 0-mm margin plans. Adaptive timing did not improve delivered dose. Conclusions: Intrafraction prostate motion substantially affected the delivered dose but was compensated for effectively by robot corrections using a time interval of 60 to 180 seconds. A 0-mm margin required larger extents of additional rotational corrections than a 3-mm

  17. Defining the computational structure of the motion detector in Drosophila.

    Science.gov (United States)

    Clark, Damon A; Bursztyn, Limor; Horowitz, Mark A; Schnitzer, Mark J; Clandinin, Thomas R

    2011-06-23

    Many animals rely on visual motion detection for survival. Motion information is extracted from spatiotemporal intensity patterns on the retina, a paradigmatic neural computation. A phenomenological model, the Hassenstein-Reichardt correlator (HRC), relates visual inputs to neural activity and behavioral responses to motion, but the circuits that implement this computation remain unknown. By using cell-type specific genetic silencing, minimal motion stimuli, and in vivo calcium imaging, we examine two critical HRC inputs. These two pathways respond preferentially to light and dark moving edges. We demonstrate that these pathways perform overlapping but complementary subsets of the computations underlying the HRC. A numerical model implementing differential weighting of these operations displays the observed edge preferences. Intriguingly, these pathways are distinguished by their sensitivities to a stimulus correlation that corresponds to an illusory percept, "reverse phi," that affects many species. Thus, this computational architecture may be widely used to achieve edge selectivity in motion detection. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Impaired Velocity Processing Reveals an Agnosia for Motion in Depth.

    Science.gov (United States)

    Barendregt, Martijn; Dumoulin, Serge O; Rokers, Bas

    2016-11-01

    Many individuals with normal visual acuity are unable to discriminate the direction of 3-D motion in a portion of their visual field, a deficit previously referred to as a stereomotion scotoma. The origin of this visual deficit has remained unclear. We hypothesized that the impairment is due to a failure in the processing of one of the two binocular cues to motion in depth: changes in binocular disparity over time or interocular velocity differences. We isolated the contributions of these two cues and found that sensitivity to interocular velocity differences, but not changes in binocular disparity, varied systematically with observers' ability to judge motion direction. We therefore conclude that the inability to interpret motion in depth is due to a failure in the neural mechanisms that combine velocity signals from the two eyes. Given these results, we argue that the deficit should be considered a prevalent but previously unrecognized agnosia specific to the perception of visual motion. © The Author(s) 2016.

  19. Stronger misdirection in curved than in straight motion

    Directory of Open Access Journals (Sweden)

    Jorge eOtero-Millan

    2011-11-01

    Full Text Available Illusions developed by magicians are a rich and largely untapped source of insight into perception and cognition. Here we show that curved motion, as employed by the magician in a classic sleight of hand trick, generates stronger misdirection than rectilinear motion, and that this difference can be explained by the differential engagement of the smooth pursuit and the saccadic oculomotor systems. This research moreover exemplifies how the magician’s intuitive understanding of the spectator’s mindset can surpass that of the cognitive scientist in specific instances, and that observation-based behavioral insights developed by magicians are worthy of quantitative investigation in the neuroscience laboratory.

  20. Procedural Audio in Computer Games Using Motion Controllers: An Evaluation on the Effect and Perception

    Directory of Open Access Journals (Sweden)

    Niels Böttcher

    2013-01-01

    Full Text Available A study has been conducted into whether the use of procedural audio affects players in computer games using motion controllers. It was investigated whether or not (1 players perceive a difference between detailed and interactive procedural audio and prerecorded audio, (2 the use of procedural audio affects their motor-behavior, and (3 procedural audio affects their perception of control. Three experimental surveys were devised, two consisting of game sessions and the third consisting of watching videos of gameplay. A skiing game controlled by a Nintendo Wii balance board and a sword-fighting game controlled by a Wii remote were implemented with two versions of sound, one sample based and the other procedural based. The procedural models were designed using a perceptual approach and by alternative combinations of well-known synthesis techniques. The experimental results showed that, when being actively involved in playing or purely observing a video recording of a game, the majority of participants did not notice any difference in sound. Additionally, it was not possible to show that the use of procedural audio caused any consistent change in the motor behavior. In the skiing experiment, a portion of players perceived the control of the procedural version as being more sensitive.

  1. Role of Cerebellum in Motion Perception and Vestibulo-ocular Reflex—Similarities and Disparities

    Science.gov (United States)

    Shaikh, Aasef G.; Palla, Antonella; Marti, Sarah; Olasagasti, Itsaso; Optican, Lance M.; Zee, David S.; Straumann, Dominik

    2012-01-01

    Vestibular velocity storage enhances the efficacy of the angular vestibulo-ocular reflex (VOR) during relatively low-frequency head rotations. This function is modulated by GABA-mediated inhibitory cerebellar projections. Velocity storage also exists in perceptual pathway and has similar functional principles as VOR. However, it is not known whether the neural substrate for perception and VOR overlap. We propose two possibilities. First, there is the same velocity storage for both VOR and perception; second, there are nonoverlapping neural networks: one might be involved in perception and the other for the VOR. We investigated these possibilities by measuring VOR and perceptual responses in healthy human subjects during whole-body, constant-velocity rotation steps about all three dimensions (yaw, pitch, and roll) before and after 10 mg of 4-aminopyridine (4-AP). 4-AP, a selective blocker of inward rectifier potassium conductance, can lead to increased synchronization and precision of Purkinje neuron discharge and possibly enhance the GABAergic action. Hence 4-AP could reduce the decay time constant of the perceived angular velocity and VOR. We found that 4-AP reduced the decay time constant, but the amount of reduction in the two processes, perception and VOR, was not the same, suggesting the possibility of nonoverlapping or partially overlapping neural substrates for VOR and perception. We also noted that, unlike the VOR, the perceived angular velocity gradually built up and plateau prior to decay. Hence, the perception pathway may have additional mechanism that changes the dynamics of perceived angular velocity beyond the velocity storage. 4-AP had no effects on the duration of build-up of perceived angular velocity, suggesting that the higher order processing of perception, beyond the velocity storage, might not occur under the influence of mechanism that could be influenced by 4-AP. PMID:22777507

  2. Near-optimal integration of facial form and motion.

    Science.gov (United States)

    Dobs, Katharina; Ma, Wei Ji; Reddy, Leila

    2017-09-08

    Human perception consists of the continuous integration of sensory cues pertaining to the same object. While it has been fairly well shown that humans use an optimal strategy when integrating low-level cues proportional to their relative reliability, the integration processes underlying high-level perception are much less understood. Here we investigate cue integration in a complex high-level perceptual system, the human face processing system. We tested cue integration of facial form and motion in an identity categorization task and found that an optimal model could successfully predict subjects' identity choices. Our results suggest that optimal cue integration may be implemented across different levels of the visual processing hierarchy.

  3. HM-EH-RT: hybrid multimodal energy harvesting from rotational and translational motions

    OpenAIRE

    Miles Larkin; Yonas Tadesse

    2013-01-01

    This paper presents a novel hybrid multimodal energy harvesting device consisting of an unbalanced rotary disk that supports two transduction methods, piezoelectric and electromagnetic. The device generates electrical energy from oscillatory motion either orthogonal or parallel to the rotary axis to power electronic devices. Analytical models for the electromagnetic and piezoelectric systems were developed to describe the mechanical and electrical behavior of the device. From these models, nu...

  4. 1 kHz 2D Visual Motion Sensor Using 20 × 20 Silicon Retina Optical Sensor and DSP Microcontroller.

    Science.gov (United States)

    Liu, Shih-Chii; Yang, MinHao; Steiner, Andreas; Moeckel, Rico; Delbruck, Tobi

    2015-04-01

    Optical flow sensors have been a long running theme in neuromorphic vision sensors which include circuits that implement the local background intensity adaptation mechanism seen in biological retinas. This paper reports a bio-inspired optical motion sensor aimed towards miniature robotic and aerial platforms. It combines a 20 × 20 continuous-time CMOS silicon retina vision sensor with a DSP microcontroller. The retina sensor has pixels that have local gain control and adapt to background lighting. The system allows the user to validate various motion algorithms without building dedicated custom solutions. Measurements are presented to show that the system can compute global 2D translational motion from complex natural scenes using one particular algorithm: the image interpolation algorithm (I2A). With this algorithm, the system can compute global translational motion vectors at a sample rate of 1 kHz, for speeds up to ±1000 pixels/s, using less than 5 k instruction cycles (12 instructions per pixel) per frame. At 1 kHz sample rate the DSP is 12% occupied with motion computation. The sensor is implemented as a 6 g PCB consuming 170 mW of power.

  5. Simulated self-motion in a visual gravity field: sensitivity to vertical and horizontal heading in the human brain.

    Science.gov (United States)

    Indovina, Iole; Maffei, Vincenzo; Pauwels, Karl; Macaluso, Emiliano; Orban, Guy A; Lacquaniti, Francesco

    2013-05-01

    Multiple visual signals are relevant to perception of heading direction. While the role of optic flow and depth cues has been studied extensively, little is known about the visual effects of gravity on heading perception. We used fMRI to investigate the contribution of gravity-related visual cues on the processing of vertical versus horizontal apparent self-motion. Participants experienced virtual roller-coaster rides in different scenarios, at constant speed or 1g-acceleration/deceleration. Imaging results showed that vertical self-motion coherent with gravity engaged the posterior insula and other brain regions that have been previously associated with vertical object motion under gravity. This selective pattern of activation was also found in a second experiment that included rectilinear motion in tunnels, whose direction was cued by the preceding open-air curves only. We argue that the posterior insula might perform high-order computations on visual motion patterns, combining different sensory cues and prior information about the effects of gravity. Medial-temporal regions including para-hippocampus and hippocampus were more activated by horizontal motion, preferably at constant speed, consistent with a role in inertial navigation. Overall, the results suggest partially distinct neural representations of the cardinal axes of self-motion (horizontal and vertical). Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Mapping Translation Technology Research in Translation Studies

    DEFF Research Database (Denmark)

    Schjoldager, Anne; Christensen, Tina Paulsen; Flanagan, Marian

    2017-01-01

    /Schjoldager 2010, 2011; Christensen 2011). Unfortunately, the increasing professional use of translation technology has not been mirrored within translation studies (TS) by a similar increase in research projects on translation technology (Munday 2009: 15; O’Hagan 2013; Doherty 2016: 952). The current thematic...... section aims to improve this situation by presenting new and innovative research papers that reflect on recent technological advances and their impact on the translation profession and translators from a diversity of perspectives and using a variety of methods. In Section 2, we present translation...... technology research as a subdiscipline of TS, and we define and discuss some basic concepts and models of the field that we use in the rest of the paper. Based on a small-scale study of papers published in TS journals between 2006 and 2016, Section 3 attempts to map relevant developments of translation...

  7. The First Time Ever I Saw Your Feet: Inversion Effect in Newborns' Sensitivity to Biological Motion

    Science.gov (United States)

    Bardi, Lara; Regolin, Lucia; Simion, Francesca

    2014-01-01

    Inversion effect in biological motion perception has been recently attributed to an innate sensitivity of the visual system to the gravity-dependent dynamic of the motion. However, the specific cues that determine the inversion effect in naïve subjects were never investigated. In the present study, we have assessed the contribution of the local…

  8. Collapse and revival in atom internal dynamics due to quantum translational motion

    International Nuclear Information System (INIS)

    Muradyan, A Zh; Muradyan, G A

    2004-01-01

    Interaction of a lossless two-level atom with a monochromatic (classical) field of radiation is considered, as the atom initially possesses a translational state with a number of equidistant and discrete momenta. It is shown that the Rabi oscillations in such an atom evolve as a sequence of collapses and revivals, if the coupling wave deeply saturates the optical transition. Between revivals, the populations undergo subrevivals. Approximate analytical formulae are obtained taking the initial momentum distribution in the form of two shifted Gaussians or a Besselian. A possible experimental realization of such revivals is discussed

  9. SU-F-J-126: Influence of Six Dimensional Motions in Frameless Stereotactic Dosimetry Incorporating Rotational Shifts as Equivalent Translational Shifts: A Feasibility Study for Elekta-BrainLAB Stereotactic System

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, B [Fortis Memorial Research Institute, Gurgaon (India); GLA University, Mathura, UP (India); Manikandan, A [NRI medical college, Gunbtur, Andra pradesh (India); Jassal, K; Ganesh, T [King Fahad Specialist Hospital, New Delhi (India); Munshi, A; Mohanti, B [Fortis Memorial Research Institute, Gurgaon, Haryana (India); Pradhan, A [GLA University, Mathura, UP (India)

    2016-06-15

    Purpose: Six dimensional positional shifts (translational and rotational) determined by a volumetric imaging system were mathematically combined and incorporated as simple translational shifts and the resultant impact on dose characteristics was studied. Methods: Thirty patients who underwent either single fraction (12 Gy) or five fractions (5 Gy per fraction) stereotactic treatments were included in this study. They were immobilized using a double layered thermoplastic mask from BrainLAB. Isocenter matching was done using infrared marker of ExacTrac. An initial cone beam CT (CBCT) gave positional shifts in 6-dimensions that were applied through 6-D motion enabled couch. A verification CBCT was done following corrections before treatment. These 6-D positional shifts determined at each imaging session from the first CBCT were mathematically combined to give three simple translational shifts. Doses were recalculated in the patient matrix with these positional errors present by moving the whole image dataset. Doses were also recalculated after second CBCT with only residual errors present. PTV dose statistics were compared. Results: For the approved plans V100%(PTV), V100%(GTV), D95%(PTV), D95%(GTV), D1%(PTV) and D1%(GTV) were 96.2±3.0%, 98.2±1.4%, 102%±1.7%, 103±1.2%, 107.9±8.9% and 109.3±7.5% of prescription dose respectively. With the positional errors present (after 1st CBCT) the corresponding values were 86.7±4.9%, 91.3±2.9%, 89.6±4.2%, 95.9±3.7%, 108.3±9.9% and 108.6±4.5%. Post-correction (after 2nd CBCT) with only residual errors present, values were 94.5±5.7%, 97.3±2.9%, 99.3%±3.2%, 102%±2.1%, 107.6±8.5% and 109.0±7.6% respectively. Significant and nominal OAR dose variation was observed between pre- and post-table corrections. Conclusion: Positional errors significantly affect PTV dose statistics. They need to be corrected before delivery of stereotactic treatments although the magnitude of dose changes can vary from patient

  10. A neural model of the temporal dynamics of figure-ground segregation in motion perception.

    Science.gov (United States)

    Raudies, Florian; Neumann, Heiko

    2010-03-01

    How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy

  11. Averaging, not internal noise, limits the development of coherent motion processing

    Directory of Open Access Journals (Sweden)

    Catherine Manning

    2014-10-01

    Full Text Available The development of motion processing is a critical part of visual development, allowing children to interact with moving objects and navigate within a dynamic environment. However, global motion processing, which requires pooling motion information across space, develops late, reaching adult-like levels only by mid-to-late childhood. The reasons underlying this protracted development are not yet fully understood. In this study, we sought to determine whether the development of motion coherence sensitivity is limited by internal noise (i.e., imprecision in estimating the directions of individual elements and/or global pooling across local estimates. To this end, we presented equivalent noise direction discrimination tasks and motion coherence tasks at both slow (1.5°/s and fast (6°/s speeds to children aged 5, 7, 9 and 11 years, and adults. We show that, as children get older, their levels of internal noise reduce, and they are able to average across more local motion estimates. Regression analyses indicated, however, that age-related improvements in coherent motion perception are driven solely by improvements in averaging and not by reductions in internal noise. Our results suggest that the development of coherent motion sensitivity is primarily limited by developmental changes within brain regions involved in integrating motion signals (e.g., MT/V5.

  12. 'Nine times the space' : from translator's notes to Milton's Paradise lost

    Directory of Open Access Journals (Sweden)

    Marjan Strojan

    1997-12-01

    Full Text Available Understanding the original meaning in the original context forms the basis of any translation. Translating poetry, however, requires an understanding which goes some way beyond the formal requirements of intelligent reading and informed interpretation. There are mental processes in any reading which are not easy to define in cognitive terms. Reading poetry, however, is by definition an aesthetic process, having a lot in common with our listening of music or looking at a work of art, where our cognitive functions are trained to be neither the exclusive interpreter of the subject nor the supreme selector of thought. Now, there are perhaps passages in Lacan or Nietzsche or Marx which can be enjoyed in synaesthetic terms as well as there are lines and sometimes whole paragraphs in Paradise Lost where little or no visual or musical perceptions are required beyond those usually· attached to any piece of theological meandering. But our perception of them is predetermined by the specific difference, inherent in the text, which relates not only to the difference of style, but also to the difference in our reading of them.

  13. Differences in Otolith and Abdominal Viscera Graviceptor Dynamics: Implications for Motion Sickness and Perceived Body Position

    Science.gov (United States)

    vonGierke, Henning E.; Parker, Donald E.

    1993-01-01

    Human graviceptors, located in the trunk by Mittelstaedt probably transduce acceleration by abdominal viscera motion. As demonstrated previously in biodynamic vibration and impact tolerance research the thoraco-abdominal viscera exhibit a resonance at 4 to 6 Hz. Behavioral observations and mechanical models of otolith graviceptor response indicate a phase shift increasing with frequency between 0.01 and O.5 Hz. Consequently the potential exists for intermodality sensory conflict between vestibular and visceral graviceptor signals at least at the mechanical receptor level. The frequency range of this potential conflict corresponds with the primary frequency range for motion sickness incidence in transportation, in subjects rotated about Earth-horizontal axes (barbecue spit stimulation) and in periodic parabolic flight microgravity research and also for erroneous perception of vertical oscillations in helicopters. We discuss the implications of this hypothesis for previous self motion perception research and suggestions for various future studies.

  14. Evolutionism through Chinese Eyes: Yan Fu, Ma Junwu and Their translations of Darwinian Evolutionism

    Directory of Open Access Journals (Sweden)

    Tsing-song Vincent Shen

    2015-04-01

    Full Text Available The huge impact that Darwinian Evolutionism has effected over Chinese intellectuals through Yan Fu's translation of Huxley's "Evolution and Ethics" into the Tianyanlun, is in fact based on Chinese traditional worldview on the one hand and the novel ideas it brings to the Chinese mind facing the challenge of transition. However, Yan Fu's translation is not as scientific as it should be when dealing with Huxley's discourse. Ma Junwu's translation of Darwin's "On the Origin of Species" attempts to be more scientific, in an effort to supply exact scientific terms and discourse in Chinese. However, at the end it is social Darwinism that has won the mind of the Chinese people. This paper analyses the ideas in Chinese past that leads to Chinese perception of Darwimism evolutionism and examines the ways it has been translated by Yan Fu and Ma Junwu.  

  15. Translational Creativity

    DEFF Research Database (Denmark)

    Nielsen, Sandro

    2010-01-01

    A long-established approach to legal translation focuses on terminological equivalence making translators strictly follow the words of source texts. Recent research suggests that there is room for some creativity allowing translators to deviate from the source texts. However, little attention...... is given to genre conventions in source texts and the ways in which they can best be translated. I propose that translators of statutes with an informative function in expert-to-expert communication may be allowed limited translational creativity when translating specific types of genre convention....... This creativity is a result of translators adopting either a source-language or a target-language oriented strategy and is limited by the pragmatic principle of co-operation. Examples of translation options are provided illustrating the different results in target texts. The use of a target-language oriented...

  16. Self-recognition of avatar motion: how do I know it's me?

    Science.gov (United States)

    Cook, Richard; Johnston, Alan; Heyes, Cecilia

    2012-02-22

    When motion is isolated from form cues and viewed from third-person perspectives, individuals are able to recognize their own whole body movements better than those of friends. Because we rarely see our own bodies in motion from third-person viewpoints, this self-recognition advantage may indicate a contribution to perception from the motor system. Our first experiment provides evidence that recognition of self-produced and friends' motion dissociate, with only the latter showing sensitivity to orientation. Through the use of selectively disrupted avatar motion, our second experiment shows that self-recognition of facial motion is mediated by knowledge of the local temporal characteristics of one's own actions. Specifically, inverted self-recognition was unaffected by disruption of feature configurations and trajectories, but eliminated by temporal distortion. While actors lack third-person visual experience of their actions, they have a lifetime of proprioceptive, somatosensory, vestibular and first-person-visual experience. These sources of contingent feedback may provide actors with knowledge about the temporal properties of their actions, potentially supporting recognition of characteristic rhythmic variation when viewing self-produced motion. In contrast, the ability to recognize the motion signatures of familiar others may be dependent on configural topographic cues.

  17. Topical Review: Translating Translational Research in Behavioral Science.

    Science.gov (United States)

    Hommel, Kevin A; Modi, Avani C; Piazza-Waggoner, Carrie; Myers, James D

    2015-01-01

    To present a model of translational research for behavioral science that communicates the role of behavioral research at each phase of translation. A task force identified gaps in knowledge regarding behavioral translational research processes and made recommendations regarding advancement of knowledge. A comprehensive model of translational behavioral research was developed. This model represents T1, T2, and T3 research activities, as well as Phase 1, 2, 3, and 4 clinical trials. Clinical illustrations of translational processes are also offered as support for the model. Behavioral science has struggled with defining a translational research model that effectively articulates each stage of translation and complements biomedical research. Our model defines key activities at each phase of translation from basic discovery to dissemination/implementation. This should be a starting point for communicating the role of behavioral science in translational research and a catalyst for better integration of biomedical and behavioral research. © The Author 2015. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Autogenic-feedback training - A treatment for motion and space sickness

    Science.gov (United States)

    Cowings, Patricia S.

    1990-01-01

    A training method for preventing the occurrence of motion sickness in humans, called autogenic-feedback training (AFT), is described. AFT is based on a combination of biofeedback and autogenic therapy which involves training physiological self-regulation as an alternative to pharmacological management. AFT was used to reliably increase tolerance to motion-sickness-inducing tests in both men and women ranging in age from 18 to 54 years. The effectiveness of AFT is found to be significantly higher than that of protective adaptation training. Data obtained show that there is no apparent effect from AFT on measures of vestibular perception and no side effects.

  19. Finite translation surfaces with maximal number of translations

    OpenAIRE

    Schlage-Puchta, Jan-Christoph; Weitze-Schmithuesen, Gabriela

    2013-01-01

    The natural automorphism group of a translation surface is its group of translations. For finite translation surfaces of genus g > 1 the order of this group is naturally bounded in terms of g due to a Riemann-Hurwitz formula argument. In analogy with classical Hurwitz surfaces, we call surfaces which achieve the maximal bound Hurwitz translation surfaces. We study for which g there exist Hurwitz translation surfaces of genus g.

  20. Machine Translation Tools - Tools of The Translator's Trade

    DEFF Research Database (Denmark)

    Kastberg, Peter

    2012-01-01

    In this article three of the more common types of translation tools are presented, discussed and critically evaluated. The types of translation tools dealt with in this article are: Fully Automated Machine Translation (or FAMT), Human Aided Machine Translation (or HAMT) and Machine Aided Human...... Translation (or MAHT). The strengths and weaknesses of the different types of tools are discussed and evaluated by means of a number of examples. The article aims at two things: at presenting a sort of state of the art of what is commonly referred to as “machine translation” as well as at providing the reader...... with a sound basis for considering what translation tool (if any) is the most appropriate in order to meet his or her specific translation needs....

  1. A questionnaire to evaluate the impact of chronic diseases: validated translation and Illness Effects Questionnaire (IEQ reliability study

    Directory of Open Access Journals (Sweden)

    Patrícia Pinto Fonseca

    2012-01-01

    Full Text Available INTRODUCTION: Patients' perception about their health condition, mainly involving chronic diseases, has been investigated in many studies and it has been associated to depression, compliance with the treatment, quality of life and prognosis. The Illness Effects Questionnaire (IEQ is a tool which makes the standardized evaluation of patients' perception about their illness possible, so that it is brief and accessible to the different clinical settings. This work aims to begin the transcultural adaptation of the IEQ to Brazil through the validated translation and the reliability study. METHODS: The back-translation method and the test-retest reliability study were used in a sample of 30 adult patients under chronic hemodialysis. The reliability indexes were estimated using the Pearson, Spearman, Weighted Kappa and Cronbach's alpha coefficients. RESULTS: The semantic equivalence was reached through the validated translation. In this study, the reliability indexes obtained were respectively: 0.85 and 0.75 (p < 0.001; 0.68 and 0.92 (p < 0.0001. DISCUSSION: The reliability indexes obtained attest to the stability of responses in both evaluations. Additional procedures are necessary for the transcultural adaptation of the IEQ to be complete. CONCLUSION: The results indicate the translation validity and the reliability of the Brazilian version of the IEQ for the sample studied.

  2. Vestibular stimulation on a motion-simulator impacts on mood states

    Directory of Open Access Journals (Sweden)

    Lotta eWinter

    2012-11-01

    Full Text Available We are familiar with both pleasant and unpleasant psychotropic effects of movements associated with vestibular stimulation. However, there has been no attempt to scientifically explore the impact of different kinds of vestibular stimulation on mood states and biomarkers.A sample of 23 healthy volunteers were subjected to a random sequence of three different passive rotational (yaw, pitch, roll and translational (heave, sway, surge vestibular stimulation paradigms using a motion-simulator (hexapod. Mood states were measured by means of questionnaires and visual analogue scales. In addition, saliva cortisol and α-amylase samples were taken.Compared to a subliminal control paradigm all rotational and two translational stimulations produced significant changes in mood states: Yaw rotation was associated with feeling more comfortable, pitch rotation with feeling more alert and energetic, and roll rotation with feeling less comfortable. Heave translation was associated with feeling more alert, less relaxed, and less comfortable and surge translation with feeling more alert. Biomarkers were not affected.In conclusion, we provide first experimental evidence that passive rotational and translational movements may influence mood states on a short term basis and that the quality of these psychotropic effects may depend on the plane and axis of the respective movements.

  3. Integration of visual and inertial cues in perceived heading of self-motion

    NARCIS (Netherlands)

    Winkel, K.N. de; Weesie, H.M.; Werkhoven, P.J.; Groen, E.L.

    2010-01-01

    In the present study, we investigated whether the perception of heading of linear self-motion can be explained by Maximum Likelihood Integration (MLI) of visual and non-visual sensory cues. MLI predicts smaller variance for multisensory judgments compared to unisensory judgments. Nine participants

  4. Copernican Revolution in the Complex Plane

    Indian Academy of Sciences (India)

    IAS Admin

    appropriate value of ¸k > 0 and then relate the motions of the planets with respect to .... gether produce the desired harmony, and no dissonance is heard in any. .... its agreement with the perception of the senses, but be- cause it translates into ...

  5. Visual Hierarchy and Mind Motion in Advertising Design

    Directory of Open Access Journals (Sweden)

    Doaa Farouk Badawy Eldesouky

    2013-06-01

    Full Text Available Visual hierarchy is a significant concept in the field of advertising, a field that is dominated by effective communication, visual recognition and motion. Designers of advertisements have always been trying to organize the visual hierarchy throughout their advertising designs to aid the eye to recognize information in the desired order, to achieve the ultimate goals of clear perception and effectively delivering the advertising messages. However many assumptions and questions usually rise on how to create effective hierarchy throughout advertising designs and lead the eye and mind of the viewer in the most favorable way. This paper attempts to study visual hierarchy and mind motion in advertising designs and why it is important to develop visual paths when designing an advertisement. It explores the theory behind it, and how the very principles can be used to put these concepts into practice. The paper demonstrates some advertising samples applying visual hierarchy and mind motion in a representation of applying the basics and discussing the results.

  6. Visual Hierarchy and Mind Motion in Advertising Design

    Directory of Open Access Journals (Sweden)

    Doaa Farouk Badawy Eldesouky

    2013-06-01

    Full Text Available Visual hierarchy is a significant concept in the field of advertising, a field that is dominated by effective communication, visual recognition and motion. Designers of advertisements have always been trying to organize the visual hierarchy throughout their advertising designs to aid the eye to recognize information in the desired order, to achieve the ultimate goals of clear perception and effectively delivering the advertising messages. However many assumptions and questions usually rise on how to create effective hierarchy throughout advertising designs and lead the eye and mind of the viewer in the most favorable way. This paper attempts to study visual hierarchy and mind motion in advertising designs and why it is important to develop visual paths when designing an advertisement. It explores the theory behind it, and how the very principles can be used to put these concepts into practice. The paper demonstrates some advertising samples applying visual hierarchy and mind motion in a representation of applying the basics and discussing the results. 

  7. Before and after retrofit - response of a building during ambient and strong motions

    Science.gov (United States)

    Celebi, M.; Liu, Huaibao P.; ,

    1998-01-01

    This paper presents results obtained from ambient vibration and strong-motion responses of a thirteen-story, moment-resisting steel framed Santa Clara County Office Building (SCCOB) before being retrofitted by visco-elastic dampers and from ambient vibration response following the retrofit. Understanding the cumulative structural and site characteristics that affect the response of SCCOB before and after the retrofit is important in assessing earthquake hazards to other similar buildings and decision making in retrofitting them. The results emphasize the need to better evaluate structural and site characteristics in developing earthquake resisting designs that avoid resonating effects. Various studies of the strong-motion response records from the SCCOB during the 24 April 1984 (MHE) Morgan Hill (MS = 6.1), the 31 March 1986 (MLE) Mt. Lewis (MS = 6.1) and the 17 October 1989 (LPE) Loma Prieta (MS = 7.1) earthquakes show that the dynamic characteristics of the building are such that it (a) resonated (b) responded with a beating effect due to close-coupling of its translational and torsional frequencies, and (c) had a long-duration response due to low-damping. During each of these earthquakes, there was considerable contents damage and the occupants felt the rigorous vibration of the building. Ambient tests of SCCOB performed following LPE showed that both translational and torsional periods of the building are smaller than those derived from strong motions. Ambient tests performed following the retrofit of the building with visco-elastic dampers show that the structural fundamental mode frequency of the building has increased. The increased frequency implies a stiffer structure. Strong-motion response of the building during future earthquakes will ultimately validate the effectiveness of the retrofit method.This paper presents results obtained from ambient vibration and strong-motion responses of a thirteen-story, moment-resisting steel framed Santa Clara County

  8. Translation Techniques

    OpenAIRE

    Marcia Pinheiro

    2015-01-01

    In this paper, we discuss three translation techniques: literal, cultural, and artistic. Literal translation is a well-known technique, which means that it is quite easy to find sources on the topic. Cultural and artistic translation may be new terms. Whilst cultural translation focuses on matching contexts, artistic translation focuses on matching reactions. Because literal translation matches only words, it is not hard to find situations in which we should not use this technique.  Because a...

  9. Language translation challenges with Arabic speakers participating in qualitative research studies.

    Science.gov (United States)

    Al-Amer, Rasmieh; Ramjan, Lucie; Glew, Paul; Darwish, Maram; Salamonson, Yenna

    2016-02-01

    This paper discusses how a research team negotiated the challenges of language differences in a qualitative study that involved two languages. The lead researcher shared the participants' language and culture, and the interviews were conducted using the Arabic language as a source language, which was then translated and disseminated in the English language (target language). The challenges in relation to translation in cross-cultural research were highlighted from a perspective of establishing meaning as a vital issue in qualitative research. The paper draws on insights gained from a study undertaken among Arabic-speaking participants involving the use of in-depth semi-structured interviews. The study was undertaken using a purposive sample of 15 participants with Type 2 Diabetes Mellitus and co-existing depression and explored their perception of self-care management behaviours. Data analysis was performed in two phases. The first phase entailed translation and transcription of the data, and the second phase entailed thematic analysis of the data to develop categories and themes. In this paper there is discussion on the translation process and its inherent challenges. As translation is an interpretive process and not merely a direct message transfer from a source language to a target language, translators need to systematically and accurately capture the full meaning of the spoken language. This discussion paper highlights difficulties in the translation process, specifically in managing data in relation to metaphors, medical terminology and connotation of the text, and importantly, preserving the meaning between the original and translated data. Recommendations for future qualitative studies involving interviews with non-English speaking participants are outlined, which may assist researchers maintain the integrity of the data throughout the translation process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Visual form Cues, Biological Motions, Auditory Cues, and Even Olfactory Cues Interact to Affect Visual Sex Discriminations

    OpenAIRE

    Rick Van Der Zwan; Anna Brooks; Duncan Blair; Coralia Machatch; Graeme Hacker

    2011-01-01

    Johnson and Tassinary (2005) proposed that visually perceived sex is signalled by structural or form cues. They suggested also that biological motion cues signal sex, but do so indirectly. We previously have shown that auditory cues can mediate visual sex perceptions (van der Zwan et al., 2009). Here we demonstrate that structural cues to body shape are alone sufficient for visual sex discriminations but that biological motion cues alone are not. Interestingly, biological motions can resolve ...

  11. Translation Ambiguity but Not Word Class Predicts Translation Performance

    Science.gov (United States)

    Prior, Anat; Kroll, Judith F.; Macwhinney, Brian

    2013-01-01

    We investigated the influence of word class and translation ambiguity on cross-linguistic representation and processing. Bilingual speakers of English and Spanish performed translation production and translation recognition tasks on nouns and verbs in both languages. Words either had a single translation or more than one translation. Translation…

  12. Examining English-German Translation Ambiguity Using Primed Translation Recognition

    Science.gov (United States)

    Eddington, Chelsea M.; Tokowicz, Natasha

    2013-01-01

    Many words have more than one translation across languages. Such "translation-ambiguous" words are translated more slowly and less accurately than their unambiguous counterparts. We examine the extent to which word context and translation dominance influence the processing of translation-ambiguous words. We further examine how these factors…

  13. He Throws like a Girl (but Only when He's Sad): Emotion Affects Sex-Decoding of Biological Motion Displays

    Science.gov (United States)

    Johnson, Kerri L.; McKay, Lawrie S.; Pollick, Frank E.

    2011-01-01

    Gender stereotypes have been implicated in sex-typed perceptions of facial emotion. Such interpretations were recently called into question because facial cues of emotion are confounded with sexually dimorphic facial cues. Here we examine the role of visual cues and gender stereotypes in perceptions of biological motion displays, thus overcoming…

  14. A GRAMMATICAL ADJUSTMENT ANALYSIS OF STATISTICAL MACHINE TRANSLATION METHOD USED BY GOOGLE TRANSLATE COMPARED TO HUMAN TRANSLATION IN TRANSLATING ENGLISH TEXT TO INDONESIAN

    Directory of Open Access Journals (Sweden)

    Eko Pujianto

    2017-04-01

    Full Text Available Google translate is a program which provides fast, free and effortless translating service. This service uses a unique method to translate. The system is called ―Statistical Machine Translation‖, the newest method in automatic translation. Machine translation (MT is an area of many kinds of different subjects of study and technique from linguistics, computers science, artificial intelligent (AI, translation theory, and statistics. SMT works by using statistical methods and mathematics to process the training data. The training data is corpus-based. It is a compilation of sentences and words of the languages (SL and TL from translation done by human. By using this method, Google let their machine discovers the rules for themselves. They do this by analyzing millions of documents that have already been translated by human translators and then generate the result based on the corpus/training data. However, questions arise when the results of the automatic translation prove to be unreliable in some extent. This paper questions the dependability of Google translate in comparison with grammatical adjustment that naturally characterizes human translators' specific advantage. The attempt is manifested through the analysis of the TL of some texts translated by the SMT. It is expected that by using the sample of TL produced by SMT we can learn the potential flaws of the translation. If such exists, the partial of more substantial undependability of SMT may open more windows to the debates of whether this service may suffice the users‘ need.

  15. Gaussian particle filter based pose and motion estimation

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Determination of relative three-dimensional (3D) position, orientation, and relative motion between two reference frames is an important problem in robotic guidance, manipulation, and assembly as well as in other fields such as photogrammetry.A solution to pose and motion estimation problem that uses two-dimensional (2D) intensity images from a single camera is desirable for real-time applications. The difficulty in performing this measurement is that the process of projecting 3D object features to 2D images is a nonlinear transformation. In this paper, the 3D transformation is modeled as a nonlinear stochastic system with the state estimation providing six degrees-of-freedom motion and position values, using line features in image plane as measuring inputs and dual quaternion to represent both rotation and translation in a unified notation. A filtering method called the Gaussian particle filter (GPF) based on the particle filtering concept is presented for 3D pose and motion estimation of a moving target from monocular image sequences. The method has been implemented with simulated data, and simulation results are provided along with comparisons to the extended Kalman filter (EKF) and the unscented Kalman filter (UKF) to show the relative advantages of the GPF. Simulation results showed that GPF is a superior alternative to EKF and UKF.

  16. Controlling translational motion of neutral molecules in inhomogeneous electric fields

    International Nuclear Information System (INIS)

    Yamakita, Yoshihiro

    2006-01-01

    Hydrogen molecules are excited to Rydberg states with n=16, 17 in the presence of inhomogeneous field of an electric dipole by a vacuum ultraviolet-ultraviolet double resonance scheme. The large dipole moment produced in Stark eigenstates leads to strong forces on the molecules in the inhomogeneous electric field. Deflection and deceleration are demonstrated for a pulsed supersonic beam containing the H 2 molecules in the n=16, 17, N + =2, M J =0 Rydberg states. The Rydberg states are found to survive for over 100 μs after the dipole field is switched off. The Rydberg states have a special stability with respect to decay by predissociation. Complete deceleration to the zero mean velocity is numerically demonstrated for H 2 molecules in the higher linear low-field-seeking n=16, M J =0 Rydberg states by using a symplectic integrator of the fourth order. The calculations show that the initial velocity of 900 ms -1 with translational temperature 1 K is decelerated to 0 ms -1 with 13 mK. (author)

  17. Auditory perception of a human walker.

    Science.gov (United States)

    Cottrell, David; Campbell, Megan E J

    2014-01-01

    When one hears footsteps in the hall, one is able to instantly recognise it as a person: this is an everyday example of auditory biological motion perception. Despite the familiarity of this experience, research into this phenomenon is in its infancy compared with visual biological motion perception. Here, two experiments explored sensitivity to, and recognition of, auditory stimuli of biological and nonbiological origin. We hypothesised that the cadence of a walker gives rise to a temporal pattern of impact sounds that facilitates the recognition of human motion from auditory stimuli alone. First a series of detection tasks compared sensitivity with three carefully matched impact sounds: footsteps, a ball bouncing, and drumbeats. Unexpectedly, participants were no more sensitive to footsteps than to impact sounds of nonbiological origin. In the second experiment participants made discriminations between pairs of the same stimuli, in a series of recognition tasks in which the temporal pattern of impact sounds was manipulated to be either that of a walker or the pattern more typical of the source event (a ball bouncing or a drumbeat). Under these conditions, there was evidence that both temporal and nontemporal cues were important in recognising theses stimuli. It is proposed that the interval between footsteps, which reflects a walker's cadence, is a cue for the recognition of the sounds of a human walking.

  18. Illusory object motion in the centre of a radial pattern: The Pursuit–Pursuing illusion

    Science.gov (United States)

    Ito, Hiroyuki

    2012-01-01

    A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed. PMID:23145267

  19. Illusory object motion in the centre of a radial pattern: The Pursuit-Pursuing illusion.

    Science.gov (United States)

    Ito, Hiroyuki

    2012-01-01

    A circular object placed in the centre of a radial pattern consisting of thin sectors was found to cause a robust motion illusion. During eye-movement pursuit of a moving target, the presently described stimulus produced illusory background-object motion in the same direction as that of the eye movement. In addition, the display induced illusory stationary perception of a moving object against the whole display motion. In seven experiments, the characteristics of the illusion were examined in terms of luminance relationships and figural characteristics of the radial pattern. Some potential explanations for these findings are discussed.

  20. Stability of Kinesthetic Perception in Efferent-Afferent Spaces: The Concept of Iso-perceptual Manifold.

    Science.gov (United States)

    Latash, Mark L

    2018-02-21

    The main goal of this paper is to introduce the concept of iso-perceptual manifold for perception of body configuration and related variables (kinesthetic perception) and to discuss its relation to the equilibrium-point hypothesis and the concepts of reference coordinate and uncontrolled manifold. Hierarchical control of action is postulated with abundant transformations between sets of spatial reference coordinates for salient effectors at different levels. Iso-perceptual manifold is defined in the combined space of afferent and efferent variables as the subspace corresponding to a stable percept. Examples of motion along an iso-perceptual manifold (perceptually equivalent motion) are considered during various natural actions. Some combinations of afferent and efferent signals, in particular those implying a violation of body's integrity, give rise to variable percepts by artificial projection onto iso-perceptual manifolds. This framework is used to interpret unusual features of vibration-induced kinesthetic illusions and to predict new illusions not yet reported in the literature. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Translation-coupling systems

    Science.gov (United States)

    Pfleger, Brian; Mendez-Perez, Daniel

    2013-11-05

    Disclosed are systems and methods for coupling translation of a target gene to a detectable response gene. A version of the invention includes a translation-coupling cassette. The translation-coupling cassette includes a target gene, a response gene, a response-gene translation control element, and a secondary structure-forming sequence that reversibly forms a secondary structure masking the response-gene translation control element. Masking of the response-gene translation control element inhibits translation of the response gene. Full translation of the target gene results in unfolding of the secondary structure and consequent translation of the response gene. Translation of the target gene is determined by detecting presence of the response-gene protein product. The invention further includes RNA transcripts of the translation-coupling cassettes, vectors comprising the translation-coupling cassettes, hosts comprising the translation-coupling cassettes, methods of using the translation-coupling cassettes, and gene products produced with the translation-coupling cassettes.

  2. The Role of Semantics in Translation Recognition: Effects of Number of Translations, Dominance of Translations and Semantic Relatedness of Multiple Translations

    Science.gov (United States)

    Laxen, Jannika; Lavaur, Jean-Marc

    2010-01-01

    This study aims to examine the influence of multiple translations of a word on bilingual processing in three translation recognition experiments during which French-English bilinguals had to decide whether two words were translations of each other or not. In the first experiment, words with only one translation were recognized as translations…

  3. Evaluation of simulation motion fidelity criteria in the vertical and directional axes

    Science.gov (United States)

    Schroeder, Jeffery A.

    1993-01-01

    An evaluation of existing motion fidelity criteria was conducted on the NASA Ames Vertical Motion Simulator. Experienced test pilots flew single-axis repositioning tasks in both the vertical and the directional axes. Using a first-order approximation of a hovering helicopter, tasks were flown with variations only in the filters that attenuate the commands to the simulator motion system. These filters had second-order high-pass characteristics, and the variations were made in the filter gain and natural frequency. The variations spanned motion response characteristics from nearly full math-model motion to fixed-base. Between configurations, pilots recalibrated their motion response perception by flying the task with full motion. Pilots subjectively rated the motion fidelity of subsequent configurations relative to this full motion case, which was considered the standard for comparison. The results suggested that the existing vertical-axis criterion was accurate for combinations of gain and natural frequency changes. However, if only the gain or the natural frequency was changed, the rated motion fidelity was better than the criterion predicted. In the vertical axis, the objective and subjective results indicated that a larger gain reduction was tolerated than the existing criterion allowed. The limited data collected in the yaw axis revealed that pilots had difficulty in distinguishing among the variations in the pure yaw motion cues.

  4. Screw-System-Based Mobility Analysis of a Family of Fully Translational Parallel Manipulators

    Directory of Open Access Journals (Sweden)

    Ernesto Rodriguez-Leal

    2013-01-01

    Full Text Available This paper investigates the mobility of a family of fully translational parallel manipulators based on screw system analysis by identifying the common constraint and redundant constraints, providing a case study of this approach. The paper presents the branch motion-screws for the 3-RP̲C-Y parallel manipulator, the 3-RCC-Y (or 3-RP̲RC-Y parallel manipulator, and a newly proposed 3-RP̲C-T parallel manipulator. Then the paper determines the sets of platform constraint-screws for each of these three manipulators. The constraints exerted on the platforms of the 3-RP̲C architectures and the 3-RCC-Y manipulators are analyzed using the screw system approach and have been identified as couples. A similarity has been identified with the axes of couples: they are perpendicular to the R joint axes, but in the former the axes are coplanar with the base and in the latter the axes are perpendicular to the limb. The remaining couples act about the axis that is normal to the base. The motion-screw system and constraint-screw system analysis leads to the insightful understanding of the mobility of the platform that is then obtained by determining the reciprocal screws to the platform constraint screw sets, resulting in three independent instantaneous translational degrees-of-freedom. To validate the mobility analysis of the three parallel manipulators, the paper includes motion simulations which use a commercially available kinematics software.

  5. Time Slices: What Is the Duration of a Percept?

    Directory of Open Access Journals (Sweden)

    Michael H Herzog

    2016-04-01

    Full Text Available We experience the world as a seamless stream of percepts. However, intriguing illusions and recent experiments suggest that the world is not continuously translated into conscious perception. Instead, perception seems to operate in a discrete manner, just like movies appear continuous although they consist of discrete images. To explain how the temporal resolution of human vision can be fast compared to sluggish conscious perception, we propose a novel conceptual framework in which features of objects, such as their color, are quasi-continuously and unconsciously analyzed with high temporal resolution. Like other features, temporal features, such as duration, are coded as quantitative labels. When unconscious processing is "completed," all features are simultaneously rendered conscious at discrete moments in time, sometimes even hundreds of milliseconds after stimuli were presented.

  6. Simultaneous characterization of rotational and translational diffusion of optically anisotropic particles by optical microscopy

    International Nuclear Information System (INIS)

    Giavazzi, Fabio; Cerbino, Roberto; Haro-Pérez, Catalina

    2016-01-01

    We probe the roto-translational Brownian motion of optically anisotropic particles suspended in water with a simple and straightforward optical microscopy experiment that does not require positional or rotational particle tracking. We acquire a movie of the suspension placed between two polarizing elements and we extract the translational diffusion coefficient D T and the rotational diffusion coefficient D R from the analysis of the temporal correlation properties of the spatial Fourier modes of the intensity fluctuations in the movie. Our method is successfully tested with a dilute suspension of birefringent spherical colloidal particles obtained by polymerizing an emulsion of droplets of liquid crystal in a nematic phase, whose roto-translational dynamics is found to be well described by theory. The simplicity of our approach makes our method a viable alternative to particle tracking and depolarized dynamic light scattering. (paper)

  7. SU-E-J-135: An Investigation of Ultrasound Imaging for 3D Intra-Fraction Prostate Motion Estimation

    Energy Technology Data Exchange (ETDEWEB)

    O' Shea, T; Harris, E; Bamber, J [Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, Greater London (United Kingdom); Evans, P [Centre for Vision, Speech and Signal Processing, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford (United Kingdom)

    2014-06-01

    Purpose: This study investigates the use of a mechanically swept 3D ultrasound (US) probe to estimate intra-fraction motion of the prostate during radiation therapy using an US phantom and simulated transperineal imaging. Methods: A 3D motion platform was used to translate an US speckle phantom while simulating transperineal US imaging. Motion patterns for five representative types of prostate motion, generated from patient data previously acquired with a Calypso system, were using to move the phantom in 3D. The phantom was also implanted with fiducial markers and subsequently tracked using the CyberKnife kV x-ray system for comparison. A normalised cross correlation block matching algorithm was used to track speckle patterns in 3D and 2D US data. Motion estimation results were compared with known phantom translations. Results: Transperineal 3D US could track superior-inferior (axial) and anterior-posterior (lateral) motion to better than 0.8 mm root-mean-square error (RMSE) at a volume rate of 1.7 Hz (comparable with kV x-ray tracking RMSE). Motion estimation accuracy was poorest along the US probe's swept axis (right-left; RL; RMSE < 4.2 mm) but simple regularisation methods could be used to improve RMSE (< 2 mm). 2D US was found to be feasible for slowly varying motion (RMSE < 0.5 mm). 3D US could also allow accurate radiation beam gating with displacement thresholds of 2 mm and 5 mm exhibiting a RMSE of less than 0.5 mm. Conclusion: 2D and 3D US speckle tracking is feasible for prostate motion estimation during radiation delivery. Since RL prostate motion is small in magnitude and frequency, 2D or a hybrid (2D/3D) US imaging approach which also accounts for potential prostate rotations could be used. Regularisation methods could be used to ensure the accuracy of tracking data, making US a feasible approach for gating or tracking in standard or hypo-fractionated prostate treatments.

  8. Does chronic idiopathic dizziness reflect an impairment of sensory predictions of self-motion?

    Directory of Open Access Journals (Sweden)

    Joern K Pomper

    2013-11-01

    Full Text Available Most patients suffering from chronic idiopathic dizziness do not present signs of vestibular dysfunction or organic failures of other kinds. Hence, this kind of dizziness is commonly seen as psychogenic in nature, sharing commonalities with specific phobias, panic disorder and generalized anxiety. A more specific concept put forward by Brandt and Dieterich (1986 states that these patients suffer from dizziness because of an inadequate compensation of self-induced sensory stimulation. According to this hypothesis self-motion-induced reafferent visual stimulation is interpreted as motion in the world since a predictive signal reflecting the consequences of self-motion, needed to compensate the reafferent stimulus, is inadequate. While conceptually intriguing, experimental evidence supporting the idea of an inadequate prediction of the sensory consequences of own movements has as yet been lacking. Here we tested this hypothesis by applying it to the perception of background motion induced by smooth-pursuit eye movements. As a matter of fact, we found the same mildly undercompensating prediction, responsible for the perception of slight illusory world motion („Filehne illusion in the 15 patients tested and their age-matched controls. Likewise, the ability to adapt this prediction to the needs of the visual context was not deteriorated in patients. Finally, we could not find any correlation between measures of the individual severity of dizziness and the ability to predict. In sum, our results do not support the concept of a deviant prediction of self-induced sensory stimulation as cause of chronic idiopathic dizziness.

  9. Type of featural attention differentially modulates hMT+ responses to illusory motion aftereffects.

    Science.gov (United States)

    Castelo-Branco, Miguel; Kozak, Lajos R; Formisano, Elia; Teixeira, João; Xavier, João; Goebel, Rainer

    2009-11-01

    Activity in the human motion complex (hMT(+)/V5) is related to the perception of motion, be it either real surface motion or an illusion of motion such as apparent motion (AM) or motion aftereffect (MAE). It is a long-lasting debate whether illusory motion-related activations in hMT(+) represent the motion itself or attention to it. We have asked whether hMT(+) responses to MAEs are present when shifts in arousal are suppressed and attention is focused on concurrent motion versus nonmotion features. Significant enhancement of hMT(+) activity was observed during MAEs when attention was focused either on concurrent spatial angle or color features. This observation was confirmed by direct comparison of adapting (MAE inducing) versus nonadapting conditions. In contrast, this effect was diminished when subjects had to report on concomitant speed changes of superimposed AM. The same finding was observed for concomitant orthogonal real motion (RM), suggesting that selective attention to concurrent illusory or real motion was interfering with the saliency of MAE signals in hMT(+). We conclude that MAE-related changes in the global activity of hMT(+) are present provided selective attention is not focused on an interfering feature such as concurrent motion. Accordingly, there is a genuine MAE-related motion signal in hMT(+) that is neither explained by shifts in arousal nor by selective attention.

  10. Simulation of bubble motion under gravity by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Takada, Naoki; Misawa, Masaki; Tomiyama, Akio; Hosokawa, Shigeo

    2001-01-01

    We describe the numerical simulation results of bubble motion under gravity by the lattice Boltzmann method (LBM), which assumes that a fluid consists of mesoscopic fluid particles repeating collision and translation and a multiphase interface is reproduced in a self-organizing way by repulsive interaction between different kinds of particles. The purposes in this study are to examine the applicability of LBM to the numerical analysis of bubble motions, and to develop a three-dimensional version of the binary fluid model that introduces a free energy function. We included the buoyancy terms due to the density difference in the lattice Boltzmann equations, and simulated single-and two-bubble motions, setting flow conditions according to the Eoetvoes and Morton numbers. The two-dimensional results by LBM agree with those by the Volume of Fluid method based on the Navier-Stokes equations. The three-dimensional model possesses the surface tension satisfying the Laplace's law, and reproduces the motion of single bubble and the two-bubble interaction of their approach and coalescence in circular tube. There results prove that the buoyancy terms and the 3D model proposed here are suitable, and that LBM is useful for the numerical analysis of bubble motion under gravity. (author)

  11. PERSONALITY TYPE AND TRANSLATION PERFORMANCE OF PERSIAN TRANSLATOR TRAINEES

    Directory of Open Access Journals (Sweden)

    Reza Shaki

    2017-09-01

    Full Text Available The study investigated the relationship between the personality typology of a sample of Iranian translation students and their translation quality in terms of expressive, appellative, and informative text types. The study also attempted to identify the personality types that can perform better in English to Persian translation of the three text types. For that purpose, the personality type and the translation quality of the participants was assessed using Myers-Briggs Type Indicator (MBTI personality test and translation quality assessment (TQA, respectively. The analysis of the data revealed that the personality type of the participants seemed relevant to the translation quality of all the text types. The translation quality of the participants with intuitive and thinking types was significantly better than the sensing type counterparts in translating expressive texts. The participants with intuitive and feeling types also performed better than their counterparts with sensing type in translation of the informative text. Moreover, the participants with intuitive, feeling, and thinking personality types performed more successfully than the participants with sensing type in translation of the appellative text. The findings of the study are discussed in light of the existing research literature.

  12. An adaptive neural mechanism for acoustic motion perception with varying sparsity

    DEFF Research Database (Denmark)

    Shaikh, Danish; Manoonpong, Poramate

    2017-01-01

    extracts directional information via a model of the peripheral auditory system of lizards. The mechanism uses only this directional information obtained via specific motor behaviour to learn the angular velocity of unoccluded sound stimuli in motion. In nature however the stimulus being tracked may...

  13. Translation, Cultural Adaptation and Validation of the Questionnaire on Teacher Interaction in Danish High Schools

    DEFF Research Database (Denmark)

    Lund, Lea; Cozart, Stacey Marie; Lyneborg Lund, Rolf

    2018-01-01

    The model for Interpersonal Teacher Behaviour (MITB), mapping the various teachers’ interpersonal behaviours, has been applied for research in countries all over the world. The Questionnaire on Teacher Interaction (QTI) has been developed in order to measure the students’ perceptions regarding th...... to translation and cultural adaption showed the importance of the dialogical process with informants to make sure the questions are sound and understood in correlation to the MITB model....... the psychometric properties of the Danish translation of the QTI in its 64-item version. The article is descriptive and stress the importance of the awareness of the cultural differences when translating and incorporating a questionnaire from one country’s educational setting to another. Results on the approach...... the interaction with their teachers. The QTI has been shown to be a valid and reliable instrument in all the different language versions in which it was adapted. The QTI with the 64-item version has not yet received a validation in Denmark. The present study tested the translation process – after the translation...

  14. Processing of angular motion and gravity information through an internal model.

    Science.gov (United States)

    Laurens, Jean; Straumann, Dominik; Hess, Bernhard J M

    2010-09-01

    The vestibular organs in the base of the skull provide important information about head orientation and motion in space. Previous studies have suggested that both angular velocity information from the semicircular canals and information about head orientation and translation from the otolith organs are centrally processed in an internal model of head motion, using the principles of optimal estimation. This concept has been successfully applied to model behavioral responses to classical vestibular motion paradigms. This study measured the dynamic of the vestibuloocular reflex during postrotatory tilt, tilt during the optokinetic afternystagmus, and off-vertical axis rotation. The influence of otolith signal on the VOR was systematically varied by using a series of tilt angles. We found that the time constants of responses varied almost identically as a function of gravity in these paradigms. We show that Bayesian modeling could predict the experimental results in an accurate and consistent manner. In contrast to other approaches, the Bayesian model also provides a plausible explanation of why these vestibulooculo motor responses occur as a consequence of an internal process of optimal motion estimation.

  15. Motion planning for autonomous vehicle based on radial basis function neural network in unstructured environment.

    Science.gov (United States)

    Chen, Jiajia; Zhao, Pan; Liang, Huawei; Mei, Tao

    2014-09-18

    The autonomous vehicle is an automated system equipped with features like environment perception, decision-making, motion planning, and control and execution technology. Navigating in an unstructured and complex environment is a huge challenge for autonomous vehicles, due to the irregular shape of road, the requirement of real-time planning, and the nonholonomic constraints of vehicle. This paper presents a motion planning method, based on the Radial Basis Function (RBF) neural network, to guide the autonomous vehicle in unstructured environments. The proposed algorithm extracts the drivable region from the perception grid map based on the global path, which is available in the road network. The sample points are randomly selected in the drivable region, and a gradient descent method is used to train the RBF network. The parameters of the motion-planning algorithm are verified through the simulation and experiment. It is observed that the proposed approach produces a flexible, smooth, and safe path that can fit any road shape. The method is implemented on autonomous vehicle and verified against many outdoor scenes; furthermore, a comparison of proposed method with the existing well-known Rapidly-exploring Random Tree (RRT) method is presented. The experimental results show that the proposed method is highly effective in planning the vehicle path and offers better motion quality.

  16. Hierarchical Motion Control for a Team of Humanoid Soccer Robots

    Directory of Open Access Journals (Sweden)

    Seung-Joon Yi

    2016-02-01

    Full Text Available Robot soccer has become an effective benchmarking problem for robotics research as it requires many aspects of robotics including perception, self localization, motion planning and distributed coordination to work in uncertain and adversarial environments. Especially with humanoid robots that lack inherent stability, a capable and robust motion controller is crucial for generating walking and kicking motions without losing balance. In this paper, we describe the details of a motion controller to control a team of humanoid soccer robots, which consists of a hierarchy of controllers with different time frames and abstraction levels. A low level controller governs the real time control of each joint angle, either using target joint angles or target endpoint transforms. A mid-level controller handles bipedal locomotion and balancing of the robot. A high level controller decides the long term behavior of the robot, and finally the team level controller coordinates the behavior of a group of robots by means of asynchronous communication between the robots. The suggested motion system has been successfully used by many humanoid robot teams at the RoboCup international robot soccer competitions, which has awarded us five successful championships in a row.

  17. Visual event-related potentials to biological motion stimuli in autism spectrum disorders

    Science.gov (United States)

    Bletsch, Anke; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz A.; Freitag, Christine M.; Bender, Stephan

    2014-01-01

    Atypical visual processing of biological motion contributes to social impairments in autism spectrum disorders (ASD). However, the exact temporal sequence of deficits of cortical biological motion processing in ASD has not been studied to date. We used 64-channel electroencephalography to study event-related potentials associated with human motion perception in 17 children and adolescents with ASD and 21 typical controls. A spatio-temporal source analysis was performed to assess the brain structures involved in these processes. We expected altered activity already during early stimulus processing and reduced activity during subsequent biological motion specific processes in ASD. In response to both, random and biological motion, the P100 amplitude was decreased suggesting unspecific deficits in visual processing, and the occipito-temporal N200 showed atypical lateralization in ASD suggesting altered hemispheric specialization. A slow positive deflection after 400 ms, reflecting top-down processes, and human motion-specific dipole activation differed slightly between groups, with reduced and more diffuse activation in the ASD-group. The latter could be an indicator of a disrupted neuronal network for biological motion processing in ADS. Furthermore, early visual processing (P100) seems to be correlated to biological motion-specific activation. This emphasizes the relevance of early sensory processing for higher order processing deficits in ASD. PMID:23887808

  18. Measurement of the translation and rotation of a sphere in fluid flow

    Science.gov (United States)

    Barros, Diogo; Hiltbrand, Ben; Longmire, Ellen K.

    2018-06-01

    The problem of determining the translation and rotation of a spherical particle moving in fluid flow is considered. Lagrangian tracking of markers printed over the surface of a sphere is employed to compute the center motion and the angular velocity of the solid body. The method initially calculates the sphere center from the 3D coordinates of the reconstructed markers, then finds the optimal rotation matrix that aligns a set of markers tracked at sequential time steps. The parameters involved in the experimental implementation of this procedure are discussed, and the associated uncertainty is estimated from numerical analysis. Finally, the proposed methodology is applied to characterize the motion of a large spherical particle released in a turbulent boundary layer developing in a water channel.

  19. Implementing 'translational' biomedical research: convergence and divergence among clinical and basic scientists.

    Science.gov (United States)

    Morgan, Myfanwy; Barry, Christine A; Donovan, Jenny L; Sandall, Jane; Wolfe, Charles D A; Boaz, Annette

    2011-10-01

    Universities are increasingly regarded as key actors in the new 'knowledge economy', with requirements to produce market-oriented knowledge and engage in commercialization. This is of particular significance in the biomedical field, reflecting the perceived gap between success in terms of scientific discoveries and its transformation into products. The dominant discourse attributes this situation to 'blocks' in the translational pathway from 'bench to bedside', leading to policies to 'reengineer' the research enterprise. This study examines a pilot initiative established by the UK's Medical Research Council (MRC). This involved employing a change agent (Research Translator) supported by a small amount of translational funding to promote the culture and practice of translational research at a university/hospital site in England. An ethnographically informed case study involving semi-structured and open exploratory interviews, observation and document review, was conducted in 2008. Analysis and interpretation were informed by Bourdieu's logic of practice applied to science. The requirements of translational research promoted by the Research Translator and its sources of capital (authority, prestige etc) were largely congruent with the 'field' of clinical science. In contrast, translational research diverged from perceptions of 'legitimate' science and requirements for capital accumulation held by the majority of basic scientists who often described this research as 'high risk' and were resistant to the Research Translator's advice. However some differences in motivations and practices were identified within groups of scientists associated with career stage, work environment and specialty. We argue that there are convergent and divergent forces that influence scientists' readiness to adopt a market-oriented translational research model and in turn facilitate or constrain the effectiveness of a knowledge broker. We also identify ways in which current structures and

  20. Pauses by Student and Professional Translators in Translation Process

    Directory of Open Access Journals (Sweden)

    Rusdi Noor Rosa

    2018-01-01

    Full Text Available Translation as a process of meaning making activity requires a cognitive process one of which is realized in a pause, a temporary stop or a break indicating doing other than typing activities in a certain period of translation process. Scholars agree that pauses are an indicator of cognitive process without which there will never be any translation practices. Despite such agreement, pauses are debatable as well, either in terms of their length or in terms of the activities managed by a translator while taking pauses. This study, in particular, aims at finding out how student translators and professional translators managed the pauses in a translation process. This was a descriptive research taking two student translators and two professional translators as the participants who were asked to translate a text from English into bahasa Indonesia. The source text (ST was a historical recount text entitled ‘Early History of Yellowstone National Park’ downloaded from http://www.nezperce.com/yelpark9.html composed of 230-word long from English into bahasa Indonesia. The data were collected using Translog protocols, think aloud protocols (TAPs and screen recording. Based on the data analysis, it was found that student translators took the longest pauses in the drafting phase spent to solve the problems related to finding out the right equivalent for the ST words or terms and to solve the difficulties encountered in encoding their ST understanding in the TL; meanwhile, professional translators took the longest pauses in the pos-drafting phase spent to ensure whether their TT had been natural and whether their TT had corresponded to the prevailing grammatical rules of the TL.

  1. Machine translation

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, M

    1982-04-01

    Each language has its own structure. In translating one language into another one, language attributes and grammatical interpretation must be defined in an unambiguous form. In order to parse a sentence, it is necessary to recognize its structure. A so-called context-free grammar can help in this respect for machine translation and machine-aided translation. Problems to be solved in studying machine translation are taken up in the paper, which discusses subjects for semantics and for syntactic analysis and translation software. 14 references.

  2. Detection of visual events along the apparent motion trace in patients with paranoid schizophrenia.

    Science.gov (United States)

    Sanders, Lia Lira Olivier; Muckli, Lars; de Millas, Walter; Lautenschlager, Marion; Heinz, Andreas; Kathmann, Norbert; Sterzer, Philipp

    2012-07-30

    Dysfunctional prediction in sensory processing has been suggested as a possible causal mechanism in the development of delusions in patients with schizophrenia. Previous studies in healthy subjects have shown that while the perception of apparent motion can mask visual events along the illusory motion trace, such motion masking is reduced when events are spatio-temporally compatible with the illusion, and, therefore, predictable. Here we tested the hypothesis that this specific detection advantage for predictable target stimuli on the apparent motion trace is reduced in patients with paranoid schizophrenia. Our data show that, although target detection along the illusory motion trace is generally impaired, both patients and healthy control participants detect predictable targets more often than unpredictable targets. Patients had a stronger motion masking effect when compared to controls. However, patients showed the same advantage in the detection of predictable targets as healthy control subjects. Our findings reveal stronger motion masking but intact prediction of visual events along the apparent motion trace in patients with paranoid schizophrenia and suggest that the sensory prediction mechanism underlying apparent motion is not impaired in paranoid schizophrenia. Copyright © 2012. Published by Elsevier Ireland Ltd.

  3. The Temporal Dynamics of Feature Integration for Color, form, and Motion

    Directory of Open Access Journals (Sweden)

    KS Pilz

    2012-07-01

    Full Text Available When two similar visual stimuli are presented in rapid succession, only their fused image is perceived, without having conscious access to the single stimuli. Such feature fusion occurs both for color (eg, Efron1973 and form (eg, Scharnowski et al 2007. For verniers, the fusion process lasts for more than 400 ms, as has been shown using TMS (Scharnowski et al 2009. In three experiments, we used light masks to investigate the time course of feature fusion for color, form, and motion. In experiment one, two verniers were presented in rapid succession with opposite offset directions. Subjects had to indicate the offset direction of the vernier. In a second experiment, a red and a green disk were presented in rapid succession, and subjects had to indicate whether the fused, yellow disk appeared rather than red or green. In a third experiment, three frames of random dots were presented successively. The first two frames created a percept of apparent motion to the upper right; and the last two frames, one to the upper left or vice versa. Subjects had to indicate the direction of motion. All stimuli were presented foveally. In all three experiments, we first balanced performance so that neither the first nor the second stimulus dominated the fused percept. In a second step, a light mask was presented either before, during, or after stimulus presentation. Depending on presentation time, the light masks modulated the fusion process so that either the first or the second stimulus dominated the percept. Our results show that unconscious feature fusion lasts more than five times longer than the actual stimulus duration, which indicates that individual features are stored for a substantial amount of time before they are integrated.

  4. Induced motion of a sphere due to a flexible elastic sheet

    Science.gov (United States)

    Rallabandi, Bhargav; Oppenheimer, Naomi; Salez, Thomas; Stone, Howard A.

    2017-11-01

    A sphere translating parallel to a rigid wall in Stokes flow experiences an increased drag but no normal force. In contrast, a sphere translating along the surface of a soft elastic substrate experiences an induced normal force due to the coupling between hydrodynamic stresses and elastic deformation. Here, we use theory and experiments to show that an analogous effect occurs for a particle moving near a flexible elastic membrane with bending and stretching resistances. Applying the Lorentz reciprocal theorem in the lubrication limit, we find that the induced force on the particle is repulsive, scaling with the square of its translational speed and inversely with the bending modulus and tension of the membrane. The theoretical predictions are validated by experiments of a sphere driven by gravity down a vertically suspended elastic sheet, where we observe a spontaneous motion of the sphere away from the sheet. The general theoretical approach and the specific results are pertinent to the dynamics of objects near biological membranes and other deformable interfaces.

  5. A strategy to correct for intrafraction target translation in conformal prostate radiotherapy: Simulation results

    International Nuclear Information System (INIS)

    Keall, P. J.; Lauve, A. D.; Hagan, M. P.; Siebers, J. V.

    2007-01-01

    A strategy is proposed in which intrafraction internal target translation is corrected for by repositioning the multileaf collimator position aperture to conform to the new target pose in the beam projection, and the beam monitor units are adjusted to account for the change in the geometric relationship between the target and the beam. The purpose of this study was to investigate the dosimetric stability of the prostate and critical structures in the presence of internal target translation using the dynamic compensation strategy. Twenty-five previously treated prostate cancer patients were replanned using a four-field conformal technique to deliver 72 Gy to 95% of the planning target volume (PTV). Internal translation was introduced by displacing the prostate PTV (no rotation or deformation was considered). Thirty-six randomly selected isotropic displacements of magnitude 0.5, 1.0, 1.5 and 2.0 cm were sampled for each patient, for a total of 3600 errors. Due to their anatomic relation to the prostate, the rectum and bladder contours were also moved with the same magnitude and direction as the prostate. The dynamic compensation strategy was used to correct each of these errors by conforming the beam apertures to the new target pose and adjusting the monitor units using inverse-square and off-axis factor corrections. The dynamic compensation strategy plans were then compared to the original treatment plans via dose-volume histogram (DVH) analysis. Changes of more than 5% of the prescription dose (3.6 Gy) were deemed clinically significant. Compared to the original treatment plans, the dynamic compensation strategy produced small discrepancies in isodose distributions and DVH analyses for all structures considered apart from the femoral heads. These differences increased with the magnitude of the internal motion. Coverage of the PTV was excellent: D 5 , D 95 , and D mean were not increased or decreased by more than 5% of the prescription dose for any of the 3600

  6. Enhancing L2 Reading Comprehension with Hypermedia Texts: Student Perceptions

    Science.gov (United States)

    Garrett-Rucks, Paula; Howles, Les; Lake, William M.

    2015-01-01

    This study extends current research about L2 hypermedia texts by investigating the combined use of audiovisual features including: (a) Contextualized images, (b) rollover translations, (c) cultural information, (d) audio explanations and (e) comprehension check exercises. Specifically, student perceptions of hypermedia readings compared to…

  7. Metadata-Assisted Global Motion Estimation for Medium-Altitude Unmanned Aerial Vehicle Video Applications

    Directory of Open Access Journals (Sweden)

    Hongguang Li

    2015-09-01

    Full Text Available Global motion estimation (GME is a key technology in unmanned aerial vehicle remote sensing (UAVRS. However, when a UAV’s motion and behavior change significantly or the image information is not rich, traditional image-based methods for GME often perform poorly. Introducing bottom metadata can improve precision in a large-scale motion condition and reduce the dependence on unreliable image information. GME is divided into coarse and residual GME through coordinate transformation and based on the study hypotheses. In coarse GME, an auxiliary image is built to convert image matching from a wide baseline condition to a narrow baseline one. In residual GME, a novel information and contrast feature detection algorithm is proposed for big-block matching to maximize the use of reliable image information and ensure that the contents of interest are well estimated. Additionally, an image motion monitor is designed to select the appropriate processing strategy by monitoring the motion scales of translation, rotation, and zoom. A medium-altitude UAV is employed to collect three types of large-scale motion datasets. Peak signal to noise ratio (PSNR and motion scale are computed. This study’s result is encouraging and applicable to other medium- or high-altitude UAVs with a similar system structure.

  8. On the swimming motion of spheroidal magnetotactic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Cui Zhen; Kong Dali; Zhang Keke [Department of Mathematical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom); Pan Yongxin, E-mail: kzhang@ex.ac.uk [Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing (China)

    2012-10-15

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  9. On the swimming motion of spheroidal magnetotactic bacteria

    International Nuclear Information System (INIS)

    Cui Zhen; Kong Dali; Zhang Keke; Pan Yongxin

    2012-01-01

    We investigate, via both theoretical and experimental methods, the swimming motion of magnetotactic bacteria having the shape of an elongated prolate spheroid in a viscous liquid under the influence of an imposed magnetic field. A fully three-dimensional Stokes flow, driven by the translation and rotation of a swimming bacterium, exerts a complicated viscous drag/torque on the motion of a non-spherical bacterium. By assuming that the body of the bacterium is non-deformable and that the interaction between different bacteria is weak and hence negligible, we have derived a system of 12 coupled nonlinear ordinary differential equations that govern both the motion and the orientation of a swimming spheroidal magnetotactic bacterium. The focus of the study is on how the shape of a non-spherical magnetotactic bacterium, marked by the size of its eccentricity, affects the pattern of its swimming motion. It is revealed that the pattern/speed of a swimming spheroidal magnetotactic bacterium is highly sensitive not only to the direction of its magnetic moment but also to its shape. We also compare the theoretical pattern obtained from the solutions of the 12 coupled differential equations with that observed in the laboratory experiments using the magnetotactic bacteria found in Lake Miyun near Beijing, China, showing that the observed pattern can be largely reproduced with an appropriate set of parameters in our theoretical model. (paper)

  10. Large displacement vertical translational actuator based on piezoelectric thin films.

    Science.gov (United States)

    Qiu, Zhen; Pulskamp, Jeffrey S; Lin, Xianke; Rhee, Choong-Ho; Wang, Thomas; Polcawich, Ronald G; Oldham, Kenn

    2010-07-01

    A novel vertical translational microactuator based on thin-film piezoelectric actuation is presented, using a set of four compound bend-up/bend-down unimorphs to produce translational motion of a moving platform or stage. The actuation material is a chemical-solution deposited lead-zirconate-titanate (PZT) thin film. Prototype designs have shown as much as 120 μ m of static displacement, with 80-90 μ m displacements being typical, using four 920 μ m long by 70 μ m legs. Analytical models are presented that accurately describe nonlinear behavior in both static and dynamic operation of prototype stages when the dependence of piezoelectric coefficients on voltage is known. Resonance of the system is observed at a frequency of 200 Hz. The large displacement and high bandwidth of the actuators at low-voltage and low-power levels should make them useful to a variety of optical applications, including endoscopic microscopy.

  11. The Flash-Lag Effect as a Motion-Based Predictive Shift.

    Directory of Open Access Journals (Sweden)

    Mina A Khoei

    2017-01-01

    Full Text Available Due to its inherent neural delays, the visual system has an outdated access to sensory information about the current position of moving objects. In contrast, living organisms are remarkably able to track and intercept moving objects under a large range of challenging environmental conditions. Physiological, behavioral and psychophysical evidences strongly suggest that position coding is extrapolated using an explicit and reliable representation of object's motion but it is still unclear how these two representations interact. For instance, the so-called flash-lag effect supports the idea of a differential processing of position between moving and static objects. Although elucidating such mechanisms is crucial in our understanding of the dynamics of visual processing, a theory is still missing to explain the different facets of this visual illusion. Here, we reconsider several of the key aspects of the flash-lag effect in order to explore the role of motion upon neural coding of objects' position. First, we formalize the problem using a Bayesian modeling framework which includes a graded representation of the degree of belief about visual motion. We introduce a motion-based prediction model as a candidate explanation for the perception of coherent motion. By including the knowledge of a fixed delay, we can model the dynamics of sensory information integration by extrapolating the information acquired at previous instants in time. Next, we simulate the optimal estimation of object position with and without delay compensation and compared it with human perception under a broad range of different psychophysical conditions. Our computational study suggests that the explicit, probabilistic representation of velocity information is crucial in explaining position coding, and therefore the flash-lag effect. We discuss these theoretical results in light of the putative corrective mechanisms that can be used to cancel out the detrimental effects of neural

  12. A neural model of motion processing and visual navigation by cortical area MST.

    Science.gov (United States)

    Grossberg, S; Mingolla, E; Pack, C

    1999-12-01

    Cells in the dorsal medial superior temporal cortex (MSTd) process optic flow generated by self-motion during visually guided navigation. A neural model shows how interactions between well-known neural mechanisms (log polar cortical magnification, Gaussian motion-sensitive receptive fields, spatial pooling of motion-sensitive signals and subtractive extraretinal eye movement signals) lead to emergent properties that quantitatively simulate neurophysiological data about MSTd cell properties and psychophysical data about human navigation. Model cells match MSTd neuron responses to optic flow stimuli placed in different parts of the visual field, including position invariance, tuning curves, preferred spiral directions, direction reversals, average response curves and preferred locations for stimulus motion centers. The model shows how the preferred motion direction of the most active MSTd cells can explain human judgments of self-motion direction (heading), without using complex heading templates. The model explains when extraretinal eye movement signals are needed for accurate heading perception, and when retinal input is sufficient, and how heading judgments depend on scene layouts and rotation rates.

  13. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in EPI

    Science.gov (United States)

    Yeo, Desmond T. B.; Fessler, Jeffrey A.; Kim, Boklye

    2014-01-01

    The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is “corrected” with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume (MSV) registration with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection. PMID:18280077

  14. Remote operation: a selective review of research into visual depth perception.

    Science.gov (United States)

    Reinhardt-Rutland, A H

    1996-07-01

    Some perceptual motor operations are performed remotely; examples include the handling of life-threatening materials and surgical procedures. A camera conveys the site of operation to a TV monitor, so depth perception relies mainly on pictorial information, perhaps with enhancement of the occlusion cue by motion. However, motion information such as motion parallax is not likely to be important. The effectiveness of pictorial information is diminished by monocular and binocular information conveying flatness of the screen and by difficulties in scaling: Only a degree of relative depth can be conveyed. Furthermore, pictorial information can mislead. Depth perception is probably adequate in remote operation, if target objects are well separated, with well-defined edges and familiar shapes. Stereoscopic viewing systems are being developed to introduce binocular information to remote operation. However, stereoscopic viewing is problematic because binocular disparity conflicts with convergence and monocular information. An alternative strategy to improve precision in remote operation may be to rely on individuals who lack binocular function: There is redundancy in depth information, and such individuals seem to compensate for the lack of binocular function.

  15. Effect translational invariance in low-lying electric dipole excitations in 236U and 238U

    International Nuclear Information System (INIS)

    Ertugral, F.

    2005-01-01

    In this paper the translational invariant QRPA approach suggested by Pyatov [1] for the spherical nuclei has been extended to describe the 1 - states in deformed nuclei. The role of spurious centre-of-motion state on the Pygmy dipole resonance (PDR) has been investigated in the deformed 236 U and 238 U nuclei. It has been shown that the effect of taking into account the translational invariance of the Hamiltonians in the QRPA with separation of zero energy spurious solutions are noticeable in both the low energy density of 1 - states and in the PDR. Present investigation demonstrates the advantage of the translational invariant QRPA over the non translational invariant one. Within the translational invariant model the effect of removing spurious states on the E1 strength distribution is stronger than in none invariant QRPA (∼20%) for the states up to the neutron binding energy. It is found that the spurious state is spread over many levels, the largest admixture being situated in the region of the energy spacing between nuclear shells o w h . The giant resonance states contain, as a rule, very small admixtures of the spurious state

  16. Multimodal Perception and Multicriterion Control of Nested Systems. 1; Coordination of Postural Control and Vehicular Control

    Science.gov (United States)

    Riccio, Gary E.; McDonald, P. Vernon

    1998-01-01

    The purpose of this report is to identify the essential characteristics of goal-directed whole-body motion. The report is organized into three major sections (Sections 2, 3, and 4). Section 2 reviews general themes from ecological psychology and control-systems engineering that are relevant to the perception and control of whole-body motion. These themes provide an organizational framework for analyzing the complex and interrelated phenomena that are the defining characteristics of whole-body motion. Section 3 of this report applies the organization framework from the first section to the problem of perception and control of aircraft motion. This is a familiar problem in control-systems engineering and ecological psychology. Section 4 examines an essential but generally neglected aspect of vehicular control: coordination of postural control and vehicular control. To facilitate presentation of this new idea, postural control and its coordination with vehicular control are analyzed in terms of conceptual categories that are familiar in the analysis of vehicular control.

  17. Validity and reliability of a Malay version of the brief illness perception questionnaire for patients with type 2 diabetes mellitus

    NARCIS (Netherlands)

    Chew, Boon-How; Vos, Rimke C; Heijmans, Monique; Shariff Ghazali, Sazlina; Fernandez, Aaron; Rutten, Guy E H M

    2017-01-01

    BACKGROUND: Illness perceptions involve the personal beliefs that patients have about their illness and may influence health behaviours considerably. Since an instrument to measure these perceptions for Malay population in Malaysia is lacking, we translated and examined the psychometric properties

  18. Validity and reliability of a Malay version of the brief illness perception questionnaire for patients with type 2 diabetes mellitus

    NARCIS (Netherlands)

    Chew, B.H.; Vos, R.; Heijmans, M.; Metzendorf, M.I.; Scholten, R.J.P.M.; Rutten, G.E.H.M.

    2017-01-01

    Background: Illness perceptions involve the personal beliefs that patients have about their illness and may influence health behaviours considerably. Since an instrument to measure these perceptions for Malay population in Malaysia is lacking, we translated and examined the psychometric properties

  19. Effects of pair correlation functions on intermolecular nuclear relaxation by translational and rotational diffusion in liquids

    International Nuclear Information System (INIS)

    Fries, P.

    1978-01-01

    In order to study the intermolecular relaxation due to magnetic dipolar interactions, we calculate the spectral densities resulting from random translational and rotational motions of spherical molecules carrying off-centre spins. The relative translational motion is treated in the frame-work of a general diffusion equation (the Smoluchowski equation) which takes into account the existence of effective forces between the molecules. This model implies a pair correlation function. i.e. a non unifom relative distribution of the molecules. The analytical calculations are carried out by taking correctly into account the hard sphere boundary conditions for the molecules. Explicit numerical calculations of the spectral densities are performed using finite difference methods and the pair correlation function of Verlet and Weiss obtained by computer experiments. The resulting calculations allow one to interpret the relaxation exhibited by benzene and some of its monohalogen derivatives which has been measured by Jonas et al. at various pressures. The effects of pair correlation and eccentricity contribute to a noticeable enhancement of the spectral densities, especially as the frequency increases. The translational correlation times calculated from the Stokes formula and those deduced from intermolecular relaxation studies are compared. It is shown that in order to distinguish which of the dynamical models is appropriate, measurements must be made as a function of frequency [fr

  20. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging.

    Science.gov (United States)

    Yeo, Desmond T B; Fessler, Jeffrey A; Kim, Boklye

    2008-06-01

    The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is "corrected" with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection.

  1. Cross-category adaptation: objects produce gender adaptation in the perception of faces.

    Directory of Open Access Journals (Sweden)

    Amir Homayoun Javadi

    Full Text Available Adaptation aftereffects have been found for low-level visual features such as colour, motion and shape perception, as well as higher-level features such as gender, race and identity in domains such as faces and biological motion. It is not yet clear if adaptation effects in humans extend beyond this set of higher order features. The aim of this study was to investigate whether objects highly associated with one gender, e.g. high heels for females or electric shavers for males can modulate gender perception of a face. In two separate experiments, we adapted subjects to a series of objects highly associated with one gender and subsequently asked participants to judge the gender of an ambiguous face. Results showed that participants are more likely to perceive an ambiguous face as male after being exposed to objects highly associated to females and vice versa. A gender adaptation aftereffect was obtained despite the adaptor and test stimuli being from different global categories (objects and faces respectively. These findings show that our perception of gender from faces is highly affected by our environment and recent experience. This suggests two possible mechanisms: (a that perception of the gender associated with an object shares at least some brain areas with those responsible for gender perception of faces and (b adaptation to gender, which is a high-level concept, can modulate brain areas that are involved in facial gender perception through top-down processes.

  2. Cross-category adaptation: objects produce gender adaptation in the perception of faces.

    Science.gov (United States)

    Javadi, Amir Homayoun; Wee, Natalie

    2012-01-01

    Adaptation aftereffects have been found for low-level visual features such as colour, motion and shape perception, as well as higher-level features such as gender, race and identity in domains such as faces and biological motion. It is not yet clear if adaptation effects in humans extend beyond this set of higher order features. The aim of this study was to investigate whether objects highly associated with one gender, e.g. high heels for females or electric shavers for males can modulate gender perception of a face. In two separate experiments, we adapted subjects to a series of objects highly associated with one gender and subsequently asked participants to judge the gender of an ambiguous face. Results showed that participants are more likely to perceive an ambiguous face as male after being exposed to objects highly associated to females and vice versa. A gender adaptation aftereffect was obtained despite the adaptor and test stimuli being from different global categories (objects and faces respectively). These findings show that our perception of gender from faces is highly affected by our environment and recent experience. This suggests two possible mechanisms: (a) that perception of the gender associated with an object shares at least some brain areas with those responsible for gender perception of faces and (b) adaptation to gender, which is a high-level concept, can modulate brain areas that are involved in facial gender perception through top-down processes.

  3. Preliminary study on helical CT algorithms for patient motion estimation and compensation

    International Nuclear Information System (INIS)

    Wang, G.; Vannier, M.W.

    1995-01-01

    Helical computed tomography (helical/spiral CT) has replaced conventional CT in many clinical applications. In current helical CT, a patient is assumed to be rigid and motionless during scanning and planar projection sets are produced from raw data via longitudinal interpolation. However, rigid patient motion is a problem in some cases (such as in the skull base and temporal bone imaging). Motion artifacts thus generated in reconstructed images can prevent accurate diagnosis. Modeling a uniform translational movement, the authors address how patient motion is ascertained and how it may be compensated. First, mismatch between adjacent fan-beam projections of the same orientation is determined via classical correlation, which is approximately proportional to the patient displacement projected onto an axis orthogonal to the central ray of the involved fan-beam. Then, the patient motion vector (the patient displacement per gantry rotation) is estimated from its projections using a least-square-root method. To suppress motion artifacts, adaptive interpolation algorithms are developed that synthesize full-scan and half-scan planar projection data sets, respectively. In the adaptive scheme, the interpolation is performed along inclined paths dependent upon the patient motion vector. The simulation results show that the patient motion vector can be accurately and reliably estimated using their correlation and least-square-root algorithm, patient motion artifacts can be effectively suppressed via adaptive interpolation, and adaptive half-scan interpolation is advantageous compared with its full-scale counterpart in terms of high contrast image resolution

  4. TH-AB-202-10: Quantifying the Accuracy and Precision of Six Degree-Of-Freedom Motion Estimation for Use in Real-Time Tumor Motion Monitoring During Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J [The University of Sydney, Sydney, New South Wales (Australia); Nguyen, D; O’Brien, R; Keall, P [University of Sydney, Sydney, NSW (Australia); Huang, C [Sydney Medical School, Camperdown (Australia); Caillet, V [The University of Sydney, Sydney, NSW (Australia); Poulsen, P [Aarhus University Hospital, Aarhus (Denmark); Booth, J [Royal North Shore Hospital, Sydney (Australia)

    2016-06-15

    Purpose: Kilovoltage intrafraction monitoring (KIM) scheme has been successfully used to simultaneously monitor 3D tumor motion during radiotherapy. Recently, an iterative closest point (ICP) algorithm was implemented in KIM to also measure rotations about three axes, enabling real-time tracking of tumor motion in six degrees-of-freedom (DoF). This study aims to evaluate the accuracy of the six DoF motion estimates of KIM by comparing it with the corresponding motion (i) measured by the Calypso; and (ii) derived from kV/MV triangulation. Methods: (i) Various motions (static and dynamic) were applied to a CIRS phantom with three embedded electromagnetic transponders (Calypso Medical) using a 5D motion platform (HexaMotion) and a rotating treatment couch while both KIM and Calypso were used to concurrently track the phantom motion in six DoF. (ii) KIM was also used to retrospectively estimate six DoF motion from continuous sets of kV projections of a prostate, implanted with three gold fiducial markers (2 patients with 80 fractions in total), acquired during the treatment. Corresponding motion was obtained from kV/MV triangulation using a closed form least squares method based on three markers’ positions. Only the frames where all three markers were present were used in the analysis. The mean differences between the corresponding motion estimates were calculated for each DoF. Results: Experimental results showed that the mean of absolute differences in six DoF phantom motion measured by Calypso and KIM were within 1.1° and 0.7 mm. kV/MV triangulation derived six DoF prostate tumor better agreed with KIM estimated motion with the mean (s.d.) difference of up to 0.2° (1.36°) and 0.2 (0.25) mm for rotation and translation, respectively. Conclusion: These results suggest that KIM can provide an accurate six DoF intrafraction tumor during radiotherapy.

  5. Translating Inclusion

    DEFF Research Database (Denmark)

    Fallov, Mia Arp; Birk, Rasmus

    2018-01-01

    The purpose of this paper is to explore how practices of translation shape particular paths of inclusion for people living in marginalized residential areas in Denmark. Inclusion, we argue, is not an end-state, but rather something which must be constantly performed. Active citizenship, today......, is not merely a question of participation, but of learning to become active in all spheres of life. The paper draws on empirical examples from a multi-sited field work in 6 different sites of local community work in Denmark, to demonstrate how different dimensions of translation are involved in shaping active...... citizenship. We propose the following different dimensions of translation: translating authority, translating language, translating social problems. The paper takes its theoretical point of departure from assemblage urbanism, arguing that cities are heterogeneous assemblages of socio-material interactions...

  6. Neural Response to Biological Motion in Healthy Adults Varies as a Function of Autistic-Like Traits

    Directory of Open Access Journals (Sweden)

    Meghan H. Puglia

    2017-07-01

    Full Text Available Perception of biological motion is an important social cognitive ability that has been mapped to specialized brain regions. Perceptual deficits and neural differences during biological motion perception have previously been associated with autism, a disorder classified by social and communication difficulties and repetitive and restricted interests and behaviors. However, the traits associated with autism are not limited to diagnostic categories, but are normally distributed within the general population and show the same patterns of heritability across the continuum. In the current study, we investigate whether self-reported autistic-like traits in healthy adults are associated with variable neural response during passive viewing of biological motion displays. Results show that more autistic-like traits, particularly those associated with the communication domain, are associated with increased neural response in key regions involved in social cognitive processes, including prefrontal and left temporal cortices. This distinct pattern of activation might reflect differential neurodevelopmental processes for individuals with varying autistic-like traits, and highlights the importance of considering the full trait continuum in future work.

  7. Aspects of the motion of extended bodies in the post-Newtonian approximation to general relativity

    Science.gov (United States)

    Racine, Etienne

    We give a surface integral derivation of post-1-Newtonian translational equations of motion for a system of arbitrarily structured bodies, including the coupling to all the bodies' mass and current multipole moments. The explicit form of these translational equations of motion has not been previously derived. The derivation requires only that the post-1-Newtonian vacuum field equations are satisfied in weak-field regions between the bodies; the bodies' internal gravity can be arbitrarily strong. In particular black holes are not excluded. The derivation extends previous results due to Damour, Soffel and Xu (DSX) for weakly self-gravitating bodies in which the post-1- Newtonian field equations are satisfied everywhere. We also give a surface integral derivation of the leading-order evolution equations for the spin and energy of a relativistic body interacting with other bodies in the post-Newtonian expansion. As part of the computational method, new explicit expansions of general solutions of post-2-Newtonian vacuum field equations are derived. These expansions can serve as foundation for future work in a number of directions, including for example conserved quantities at post- 2-Newtonian order, definitions of angular momentum and studies of gauge invariance of tidal heating. As an astrophysical application of the translational equations of motion, we study gravitomagnetic resonant tidal excitations of r -modes in neutron star binary coalescence. We show that the effect of the resonance on the phase of the binary can be parametrized by a single number. We compute this number explicitly and discuss the detectability of this effect from its imprint on the gravitational wave signal emitted by the binary.

  8. Leonico Tomeo—the First Interpreter and Translater of Aristotle From Original Greek

    Science.gov (United States)

    Mulaj, Tatjana; Mulaj, Zenun

    2010-01-01

    In the middle of XV century, in European Renaissance, it was necessary to study the Aristotle in original Greek, because translations from Arab in Latin had caused considerable alterations in the meaning of original texts. This task in the beginning was trusted to Leonico Tomeo, which, not only opened the way for the studying of the Aristotle in original, but himself made important interpretations about philosophic and social problems and gave his arguments about concepts of natural sciences, as for motion, atoms etc. He translated some works of Plato, Aristotle, Ptolemy etc, from the Greek to Latin. The work of Tomeo gave revolutionary results and prepared the way for the scientific method of Galileo, which from Padua, where worked and lived Tomeo and later, Galileo, propagates in all European universities.

  9. Malaysian consumers’ awareness, perception, and attitude toward cosmetic products: Questionnaire development and pilot testing

    Science.gov (United States)

    Ayob, Ain; Awadh, Ammar Ihsan; Hadi, Hazrina; Jaffri, Juliana; Jamshed, Shazia; Ahmad, Hawa Mas Azmar

    2016-01-01

    Background: Increased usage of cosmetic products has caused a growing concern about the safety of these products, and yet little is known about cosmetics from the consumers’ perspective. Hence, this study's aim is to develop a valid and reliable tool for assessing consumers’ awareness, perceptions, and attitudes toward cosmetic products. Materials and Methods: A questionnaire was developed in the English language based on information collected from a literature search, in-depth interviews conducted with consumers prior to this study and consultations with experts. Subsequently, the questionnaire was subjected to translation, validation, and test-retest reliability. A final version of the questionnaire was piloted among 66 consumers via convenient sampling. A descriptive analysis was performed, and the internal consistency and the differences between variables in the questionnaire were analyzed. Results: The developed and translated questionnaire produced repeatable data for each of the domains (Spearman's correlation ≥ 0.7, P awareness, perceptions and attitudes indicates good internal consistency (Cronbach's alpha value of more than 0.7 for each domain). Significant differences were found between the perception scores for the race, religion, and monthly expenses for cosmetic products, respectively, and the same pattern was found for the attitude scores, but monthly expenses for cosmetic products was replaced by monthly income. Conclusion: The results achieved via the Bahasa Malaysia questionnaire indicated that the developed and translated questionnaire can be used as a valid and reliable tool for assessing consumers’ awareness, perceptions, and attitudes toward cosmetic products in Malaysia in future studies. PMID:27413348

  10. Numerical Simulation of Droplet Motion and Two-Phase Flow Field in an Oscillating Container

    Directory of Open Access Journals (Sweden)

    T Watanabe

    2016-09-01

    Full Text Available The dynamic motion of the droplet in the oscillating flow field is simulated numerically using the arbitrary Lagrangian-Eulerian and level set coupled method. It is shown that radiating flows are generated from the droplet surface in the oscillating direction and the droplet moves toward the pressure node. The translational motion of the droplet is caused by the density variation, while the radiating flows are by the pressure variation. The flow field around the droplet in the oscillating container is found to be similar to that around the oscillating droplet in the stationary container.

  11. A general method for motion compensation in x-ray computed tomography

    Science.gov (United States)

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-08-01

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  12. A General Method for Motion Compensation in X-ray Computed Tomography

    CERN Document Server

    AUTHOR|(CDS)2067162; Dosanjh, Manjit; Soleimani, Manuchehr

    2017-01-01

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D X-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  13. A general method for motion compensation in x-ray computed tomography.

    Science.gov (United States)

    Biguri, Ander; Dosanjh, Manjit; Hancock, Steven; Soleimani, Manuchehr

    2017-07-24

    Motion during data acquisition is a known source of error in medical tomography, resulting in blur artefacts in the regions that move. It is critical to reduce these artefacts in applications such as image-guided radiation therapy as a clearer image translates into a more accurate treatment and the sparing of healthy tissue close to a tumour site. Most research in 4D x-ray tomography involving the thorax relies on respiratory phase binning of the acquired data and reconstructing each of a set of images using the limited subset of data per phase. In this work, we demonstrate a motion-compensation method to reconstruct images from the complete dataset taken during breathing without recourse to phase-binning or breath-hold techniques. As long as the motion is sufficiently well known, the new method can accurately reconstruct an image at any time during the acquisition time span. It can be applied to any iterative reconstruction algorithm.

  14. Motion of Adsorbed Nano-Particles on Azobenzene Containing Polymer Films

    Directory of Open Access Journals (Sweden)

    Sarah Loebner

    2016-12-01

    Full Text Available We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions.

  15. Sensorimotor Representation of Speech Perception. Cross-Decoding of Place of Articulation Features during Selective Attention to Syllables in 7T fMRI

    NARCIS (Netherlands)

    Archila-Meléndez, Mario E.; Valente, Giancarlo; Correia, Joao M.; Rouhl, Rob P. W.; van Kranen-Mastenbroek, Vivianne H.; Jansma, Bernadette M.

    2018-01-01

    Sensorimotor integration, the translation between acoustic signals and motoric programs, may constitute a crucial mechanism for speech. During speech perception, the acoustic-motoric translations include the recruitment of cortical areas for the representation of speech articulatory features, such

  16. Figure-ground segregation can rely on differences in motion direction.

    Science.gov (United States)

    Kandil, Farid I; Fahle, Manfred

    2004-12-01

    If the elements within a figure move synchronously while those in the surround move at a different time, the figure is easily segregated from the surround and thus perceived. Lee and Blake (1999) [Visual form created solely from temporal structure. Science, 284, 1165-1168] demonstrated that this figure-ground separation may be based not only on time differences between motion onsets, but also on the differences between reversals of motion direction. However, Farid and Adelson (2001) [Synchrony does not promote grouping in temporally structured displays. Nature Neuroscience, 4, 875-876] argued that figure-ground segregation in the motion-reversal experiment might have been based on a contrast artefact and concluded that (a)synchrony as such was 'not responsible for the perception of form in these or earlier displays'. Here, we present experiments that avoid contrast artefacts but still produce figure-ground segregation based on purely temporal cues. Our results show that subjects can segregate figure from ground even though being unable to use motion reversals as such. Subjects detect the figure when either (i) motion stops (leading to contrast artefacts), or (ii) motion directions differ between figure and ground. Segregation requires minimum delays of about 15 ms. We argue that whatever the underlying cues and mechanisms, a second stage beyond motion detection is required to globally compare the outputs of local motion detectors and to segregate figure from ground. Since analogous changes take place in both figure and ground in rapid succession, this second stage has to detect the asynchrony with high temporal precision.

  17. Three-dimensional scapular dyskinesis in hook-plated acromioclavicular dislocation including hook motion.

    Science.gov (United States)

    Kim, Eugene; Lee, Seunghee; Jeong, Hwa-Jae; Park, Jai Hyung; Park, Se-Jin; Lee, Jaewook; Kim, Woosub; Park, Hee Jin; Lee, So Yeon; Murase, Tsuyoshi; Sugamoto, Kazuomi; Ikemoto, Sumika

    2018-06-01

    The purpose of this study is to analyze the 3-dimensional scapular dyskinesis and the kinematics of a hook plate relative to the acromion after hook-plated acromioclavicular dislocation in vivo. Reported complications of acromioclavicular reduction using a hook plate include subacromial erosion and impingement. However, there are few reports of the 3-dimensional kinematics of the hook and scapula after the aforementioned surgical procedure. We studied 15 cases of acromioclavicular dislocation treated with a hook plate and 15 contralateral normal shoulders using computed tomography in the neutral and full forward flexion positions. Three-dimensional motion of the scapula relative to the thorax during arm elevation was analyzed using a computer simulation program. We also measured the distance from the tip of the hook plate to the greater tuberosity, as well as the angular motion of the plate tip in the subacromial space. Decreased posterior tilting (22° ± 10° vs 31° ± 8°) in the sagittal plane and increased external rotation (19° ± 9° vs 7° ± 5°) in the axial plane were evident in the affected shoulders. The mean values of translation of the hook plate and angular motion against the acromion were 4.0 ± 1.6 mm and 15° ± 8°, respectively. The minimum value of the distance from the hook plate to the humeral head tuberosity was 6.9 mm during arm elevation. Acromioclavicular reduction using a hook plate may cause scapular dyskinesis. Translational and angular motion of the hook plate against the acromion could lead to subacromial erosion. However, the hook does not seem to impinge directly on the humeral head. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  18. Translation and Culture:Translation as a Cross-cultural Mediation

    Institute of Scientific and Technical Information of China (English)

    叶谋锦

    2013-01-01

    Translation is a complex activity which involves language competence as well as proficiency in multiculturalism. From the perspective of multiculturalism, translation resembles recreation of source text by grasping essential meanings to produce a sub-tle target text which can be clearly perceived by target readers. Ignoring cultural issues can present serious mistranslations in the field of advertising translation. This paper aims to explore the significance of connotation confined by the framework of culture and point out that verbal translation is a dangerous inclination by illustrating three business examples. This paper argues that cross-cultural mediation plays an important role in translation.

  19. Dynamic facial expressions evoke distinct activation in the face perception network: a connectivity analysis study.

    Science.gov (United States)

    Foley, Elaine; Rippon, Gina; Thai, Ngoc Jade; Longe, Olivia; Senior, Carl

    2012-02-01

    Very little is known about the neural structures involved in the perception of realistic dynamic facial expressions. In the present study, a unique set of naturalistic dynamic facial emotional expressions was created. Through fMRI and connectivity analysis, a dynamic face perception network was identified, which is demonstrated to extend Haxby et al.'s [Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. The distributed human neural system for face perception. Trends in Cognitive Science, 4, 223-233, 2000] distributed neural system for face perception. This network includes early visual regions, such as the inferior occipital gyrus, which is identified as insensitive to motion or affect but sensitive to the visual stimulus, the STS, identified as specifically sensitive to motion, and the amygdala, recruited to process affect. Measures of effective connectivity between these regions revealed that dynamic facial stimuli were associated with specific increases in connectivity between early visual regions, such as the inferior occipital gyrus and the STS, along with coupling between the STS and the amygdala, as well as the inferior frontal gyrus. These findings support the presence of a distributed network of cortical regions that mediate the perception of different dynamic facial expressions.

  20. HiTEC: a connectionist model of the interaction between perception and action planning.

    Science.gov (United States)

    Haazebroek, Pascal; Raffone, Antonino; Hommel, Bernhard

    2017-11-01

    Increasing evidence suggests that perception and action planning do not represent separable stages of a unidirectional processing sequence, but rather emerging properties of highly interactive processes. To capture these characteristics of the human cognitive system, we have developed a connectionist model of the interaction between perception and action planning: HiTEC, based on the Theory of Event Coding (Hommel et al. in Behav Brain Sci 24:849-937, 2001). The model is characterized by representations at multiple levels and by shared representations and processes. It complements available models of stimulus-response translation by providing a rationale for (1) how situation-specific meanings of motor actions emerge, (2) how and why some aspects of stimulus-response translation occur automatically and (3) how task demands modulate sensorimotor processing. The model is demonstrated to provide a unitary account and simulation of a number of key findings with multiple experimental paradigms on the interaction between perception and action such as the Simon effect, its inversion (Hommel in Psychol Res 55:270-279, 1993), and action-effect learning.

  1. The contribution of dynamic visual cues to audiovisual speech perception.

    Science.gov (United States)

    Jaekl, Philip; Pesquita, Ana; Alsius, Agnes; Munhall, Kevin; Soto-Faraco, Salvador

    2015-08-01

    Seeing a speaker's facial gestures can significantly improve speech comprehension, especially in noisy environments. However, the nature of the visual information from the speaker's facial movements that is relevant for this enhancement is still unclear. Like auditory speech signals, visual speech signals unfold over time and contain both dynamic configural information and luminance-defined local motion cues; two information sources that are thought to engage anatomically and functionally separate visual systems. Whereas, some past studies have highlighted the importance of local, luminance-defined motion cues in audiovisual speech perception, the contribution of dynamic configural information signalling changes in form over time has not yet been assessed. We therefore attempted to single out the contribution of dynamic configural information to audiovisual speech processing. To this aim, we measured word identification performance in noise using unimodal auditory stimuli, and with audiovisual stimuli. In the audiovisual condition, speaking faces were presented as point light displays achieved via motion capture of the original talker. Point light displays could be isoluminant, to minimise the contribution of effective luminance-defined local motion information, or with added luminance contrast, allowing the combined effect of dynamic configural cues and local motion cues. Audiovisual enhancement was found in both the isoluminant and contrast-based luminance conditions compared to an auditory-only condition, demonstrating, for the first time the specific contribution of dynamic configural cues to audiovisual speech improvement. These findings imply that globally processed changes in a speaker's facial shape contribute significantly towards the perception of articulatory gestures and the analysis of audiovisual speech. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Cognitive suppression of tilt sensations during linear horizontal ego-motion in the dark

    NARCIS (Netherlands)

    Wertheim, A.H.; Mesland, B.S.; Bles, W.

    2001-01-01

    On the basis of models of otolith functioning, one would expect that, during sinusoidal linear self-motion in darkness, percepts of body tilt are experienced. However, this is normally not the case, which suggests that the otoliths are not responsive to small deviations from the vertical of the

  3. The Effect of Translators' Emotional Intelligence on Their Translation Quality

    Science.gov (United States)

    Varzande, Mohsen; Jadidi, Esmaeil

    2015-01-01

    Translators differ from each other in many ways in terms of their knowledge, professional and psychological conditions that may directly influence their translation. The present study aimed at investigating the impact of translators' Emotional Intelligence on their translation quality. Following a "causal-comparative study," a sample of…

  4. A Compact VLSI System for Bio-Inspired Visual Motion Estimation.

    Science.gov (United States)

    Shi, Cong; Luo, Gang

    2018-04-01

    This paper proposes a bio-inspired visual motion estimation algorithm based on motion energy, along with its compact very-large-scale integration (VLSI) architecture using low-cost embedded systems. The algorithm mimics motion perception functions of retina, V1, and MT neurons in a primate visual system. It involves operations of ternary edge extraction, spatiotemporal filtering, motion energy extraction, and velocity integration. Moreover, we propose the concept of confidence map to indicate the reliability of estimation results on each probing location. Our algorithm involves only additions and multiplications during runtime, which is suitable for low-cost hardware implementation. The proposed VLSI architecture employs multiple (frame, pixel, and operation) levels of pipeline and massively parallel processing arrays to boost the system performance. The array unit circuits are optimized to minimize hardware resource consumption. We have prototyped the proposed architecture on a low-cost field-programmable gate array platform (Zynq 7020) running at 53-MHz clock frequency. It achieved 30-frame/s real-time performance for velocity estimation on 160 × 120 probing locations. A comprehensive evaluation experiment showed that the estimated velocity by our prototype has relatively small errors (average endpoint error < 0.5 pixel and angular error < 10°) for most motion cases.

  5. Translating India

    CERN Document Server

    Kothari, Rita

    2014-01-01

    The cultural universe of urban, English-speaking middle class in India shows signs of growing inclusiveness as far as English is concerned. This phenomenon manifests itself in increasing forms of bilingualism (combination of English and one Indian language) in everyday forms of speech - advertisement jingles, bilingual movies, signboards, and of course conversations. It is also evident in the startling prominence of Indian Writing in English and somewhat less visibly, but steadily rising, activity of English translation from Indian languages. Since the eighties this has led to a frenetic activity around English translation in India's academic and literary circles. Kothari makes this very current phenomenon her chief concern in Translating India.   The study covers aspects such as the production, reception and marketability of English translation. Through an unusually multi-disciplinary approach, this study situates English translation in India amidst local and global debates on translation, representation an...

  6. The Impact of Translators' Academic Experience on Their Translation Quality

    Science.gov (United States)

    Varzande, Mohsen; Jadidi, Esmaeil

    2015-01-01

    Translators differ from each other in many ways in terms of their knowledge and professional conditions that may directly influence their translation. The present study aimed at investigating the impact of translators' academic experience on their translation quality. Following a "causal-comparative study", a sample of 100 male and…

  7. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.

    Science.gov (United States)

    Golibrzuch, Kai; Shirhatti, Pranav R; Altschäffel, Jan; Rahinov, Igor; Auerbach, Daniel J; Wodtke, Alec M; Bartels, Christof

    2013-09-12

    Translational motion is believed to be a spectator degree of freedom in electronically nonadiabatic vibrational energy transfer between molecules and metal surfaces, but the experimental evidence available to support this view is limited. In this work, we have experimentally determined the translational inelasticity in collisions of NO molecules with a single-crystal Au(111) surface-a system with strong electronic nonadiabaticity. State-to-state molecular beam surface scattering was combined with an IR-UV double resonance scheme to obtain high-resolution time-of-flight data. The measurements include vibrationally elastic collisions (v = 3→3, 2→2) as well as collisions where one or two quanta of molecular vibration are excited (2→3, 2→4) or de-excited (2→1, 3→2, 3→1). In addition, we have carried out comprehensive measurements of the effects of rotational excitation on the translational energy of the scattered molecules. We find that under all conditions of this work, the NO molecules lose a large fraction (∼0.45) of their incidence translational energy to the surface. Those molecules that undergo vibrational excitation (relaxation) during the collision recoil slightly slower (faster) than vibrationally elastically scattered molecules. The amount of translational energy change depends on the surface temperature. The translation-to-rotation coupling, which is well-known for v = 0→0 collisions, is found to be significantly weaker for vibrationally inelastic than elastic channels. Our results clearly show that the spectator view of the translational motion in electronically nonadiabatic vibrational energy transfer between NO and Au(111) is only approximately correct.

  8. Translating Legal Collocations in Contract Agreements by Iraqi EFL Students-Translators

    Directory of Open Access Journals (Sweden)

    Muntaha A. Abdulwahid

    2017-01-01

    Full Text Available Legal translation of contract agreements is a challenge to translators as it involves combining the literary translation with the technical terminological precision. In translating legal contract agreements, a legal translator must utilize the lexical or syntactic precision and, more importantly, the pragmatic awareness of the context. This will guarantee an overall communicative process and avoid inconsistency in legal translation. However, the inability of the translator to meet these two functions in translating the contract item not only affects the contractors’ comprehension of the contract item but also affects the parties’ contractual obligations. In light of this, the purpose of this study was to find out how legal collocations used in contract agreements are translated from Arabic into English by student-translators in terms of (1 purely technical, (2 semi-technical, and (3 everyday vocabulary collocations. For the data collection, a multiple-choice collocation test was used to be answered by 35 EFL Iraqi undergraduate translator-students to decide on the aspects of weaknesses and strengths of their translation, thus decide on the aspects of correction. The findings showed that these students had serious problems in translating legal collocations as they lack the linguistic knowledge and pragmatic awareness needed to achieve the legal meaning and effect. They were also unable to make a difference among the three categories of legal collocations, purely technical, semi-technical, and everyday vocabulary collocations. These students should be exposed to more legal translation practices to obtain the required experience needed for their future career.

  9. Bio-inspired motion detection in an FPGA-based smart camera module

    International Nuclear Information System (INIS)

    Koehler, T; Roechter, F; Moeller, R; Lindemann, J P

    2009-01-01

    Flying insects, despite their relatively coarse vision and tiny nervous system, are capable of carrying out elegant and fast aerial manoeuvres. Studies of the fly visual system have shown that this is accomplished by the integration of signals from a large number of elementary motion detectors (EMDs) in just a few global flow detector cells. We developed an FPGA-based smart camera module with more than 10 000 single EMDs, which is closely modelled after insect motion-detection circuits with respect to overall architecture, resolution and inter-receptor spacing. Input to the EMD array is provided by a CMOS camera with a high frame rate. Designed as an adaptable solution for different engineering applications and as a testbed for biological models, the EMD detector type and parameters such as the EMD time constants, the motion-detection directions and the angle between correlated receptors are reconfigurable online. This allows a flexible and simultaneous detection of complex motion fields such as translation, rotation and looming, such that various tasks, e.g., obstacle avoidance, height/distance control or speed regulation can be performed by the same compact device

  10. Translation Analysis on Civil Engineering Text Produced by Machine Translator

    Directory of Open Access Journals (Sweden)

    Sutopo Anam

    2018-01-01

    Full Text Available Translation is extremely needed in communication since people have serious problem in the language used. Translation activity is done by the person in charge for translating the material. Translation activity is also able to be done by machine. It is called machine translation, reflected in the programs developed by programmer. One of them is Transtool. Many people used Transtool for helping them in solving the problem related with translation activities. This paper wants to deliver how important is the Transtool program, how effective is Transtool program and how is the function of Transtool for human business. This study applies qualitative research. The sources of data were document and informant. This study used documentation and in dept-interviewing as the techniques for collecting data. The collected data were analyzed by using interactive analysis. The results of the study show that, first; Transtool program is helpful for people in translating the civil engineering text and it functions as the aid or helper, second; the working of Transtool software program is effective enough and third; the result of translation produced by Transtool is good for short and simple sentences and not readable, not understandable and not accurate for long sentences (compound, complex and compound complex thought the result is informative. The translated material must be edited by the professional translator.

  11. Translation Analysis on Civil Engineering Text Produced by Machine Translator

    Science.gov (United States)

    Sutopo, Anam

    2018-02-01

    Translation is extremely needed in communication since people have serious problem in the language used. Translation activity is done by the person in charge for translating the material. Translation activity is also able to be done by machine. It is called machine translation, reflected in the programs developed by programmer. One of them is Transtool. Many people used Transtool for helping them in solving the problem related with translation activities. This paper wants to deliver how important is the Transtool program, how effective is Transtool program and how is the function of Transtool for human business. This study applies qualitative research. The sources of data were document and informant. This study used documentation and in dept-interviewing as the techniques for collecting data. The collected data were analyzed by using interactive analysis. The results of the study show that, first; Transtool program is helpful for people in translating the civil engineering text and it functions as the aid or helper, second; the working of Transtool software program is effective enough and third; the result of translation produced by Transtool is good for short and simple sentences and not readable, not understandable and not accurate for long sentences (compound, complex and compound complex) thought the result is informative. The translated material must be edited by the professional translator.

  12. Translating cognition from animals to humans.

    Science.gov (United States)

    Keeler, J F; Robbins, T W

    2011-06-15

    Many clinical disorders, whether neurological (e.g. Alzheimer's disease) or neuropsychiatric (e.g. schizophrenia and depression), exhibit cognitive symptoms that require pharmacological treatment. Cognition is multi-faceted and includes processes of perception, attention, working memory, long-term memory, executive function, language and social cognition. This article reviews how it is feasible to model many aspects of human cognition with the use of appropriate animal models and associated techniques, including the use of computer controlled tests (e.g. touch-screens), for optimising translation of experimental research to the clinic. When investigating clinical disorders, test batteries should aim to profile cognitive function in order to determine which aspects are impaired and which are preserved. In this review we have paid particular attention to the validation of translational methods; this may be done through the application of common theoretical principles, by comparing the effects of psychological manipulations and, wherever feasible, with the demonstration of homologous neural circuitry or equivalent pharmacological actions in the animal and human paradigms. Of particular importance is the use of 'back-translation' to ensure that the animal model has validity, for example, in predicting the effects of therapeutic drugs already found in human studies. It is made clear that the choice of appropriate behavioral tests is an important element of animal models of neuropsychiatric or neurological disorder; however, of course it is also important to select appropriate manipulations, whether genetic, neurodevelopmental, neurotoxic, or pharmacological, for simulating the neural substrates relevant to the disorders that lead to predictable behavioral and cognitive impairments, for optimising the testing of candidate compounds. 2011 Elsevier Inc. All rights reserved.

  13. Fiction Film Dialogue vs Documentary Film Dialogue: Genre Peculiarities of Translation

    Directory of Open Access Journals (Sweden)

    Вера Евгеньевна Горшкова

    2016-12-01

    Full Text Available The article gives an analysis of the film dialogue translation depending on the genre peculiarities of a spoken word medium, i. e. of a fiction film and of a documentary. The latter is traditionally disregarded by linguists and translators due to an established opinion that it lacks an overt literary aesthetic component. Thus it makes a documentary much easier to translate and its text gets closer to the information text the translation dominant of which is to render its information component. The article analyses an universal character of image-sense applied to different cinematographic genres. This thesis is demonstrated with examples from fiction and documentary film dialogues such as The Artist, Il y a longtemps que je t’aime, Espionne pendant la seconde guerre mondiale translated into French and Russian. It is highlighted that particular verbal components/utterances quite often get especially crucial in the context of the film dialogue increasing its poetic function and creating a complete image-sense. Such lexical units as personal pronouns «ты» and «вы» (you as the 2nd person singular in Russian and the 2nd person plural, respectively have no small share in the above process as their adequate translation contributes to the audience's integral perception of the film as an aesthetic phenomenon. It is postulated that a documentary that deals with «the creative elaboration of the reality» has a lot in common with a fiction film in the regard of its compliance with the director's intention, the presentation of the sequence of events and their respective interpretation in the film. In this regard the adequate rendering of the image-sense of a documentary is especially vital in the analysis of events separated in time. That supposition can be backed up by a translation project carried out on the material of the film dialogue translation of the documentary «Espionne pendant la seconde guerre mondiale» from French into Russian.

  14. The contribution of the body and motion to whole person recognition.

    Science.gov (United States)

    Simhi, Noa; Yovel, Galit

    2016-05-01

    While the importance of faces in person recognition has been the subject of many studies, there are relatively few studies examining recognition of the whole person in motion even though this most closely resembles daily experience. Most studies examining the whole body in motion use point light displays, which have many advantages but are impoverished and unnatural compared to real life. To determine which factors are used when recognizing the whole person in motion we conducted two experiments using naturalistic videos. In Experiment 1 we used a matching task in which the first stimulus in each pair could either be a video or multiple still images from a video of the full body. The second stimulus, on which person recognition was performed, could be an image of either the full body or face alone. We found that the body contributed to person recognition beyond the face, but only after exposure to motion. Since person recognition was performed on still images, the contribution of motion to person recognition was mediated by form-from-motion processes. To assess whether dynamic identity signatures may also contribute to person recognition, in Experiment 2 we presented people in motion and examined person recognition from videos compared to still images. Results show that dynamic identity signatures did not contribute to person recognition beyond form-from-motion processes. We conclude that the face, body and form-from-motion processes all appear to play a role in unfamiliar person recognition, suggesting the importance of considering the whole body and motion when examining person perception. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Tumor motion and deformation during external radiotherapy of bladder cancer

    International Nuclear Information System (INIS)

    Lotz, Heidi T.; Pos, Floris J.; Hulshof, Maarten C.C.M.; Herk, Marcel van; Lebesque, Joos V.; Duppen, Joop C.; Remeijer, Peter

    2006-01-01

    Purpose: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. Methods and Materials: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. Results: Gross tumor volume translations were largest in cranial-caudal and anterior-posterior direction (SD, 0.1 to ∼0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. Conclusions: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall

  16. Tumor motion and deformation during external radiotherapy of bladder cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lotz, Heidi T [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Department of Radiation Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam (Netherlands); Pos, Floris J [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Hulshof, Maarten C.C.M. [Department of Radiation Oncology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Department of Radiation Oncology, Academic Medical Centre, University of Amsterdam, Amsterdam (Netherlands); Herk, Marcel van [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Lebesque, Joos V [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Duppen, Joop C [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands); Remeijer, Peter [Department of Radiation Oncology, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam (Netherlands)

    2006-04-01

    Purpose: First, to quantify bladder-tumor motion in 3 dimensions during a 4-week to 5-week course of external radiotherapy. Second, to relate the motion to the tumor location on the bladder wall. Third, to extensively evaluate gross tumor volume (GTV) shape and volume changes during the course of the treatment. Methods and Materials: Multiple repeat computed tomography (CT) images were obtained for 21 bladder cancer patients. These scans were matched to the rigid bony anatomy. For each patient, the main direction and magnitude of the tumor movement was determined by use of principle-component analysis. To study GTV shape changes, all GTVs were registered to the GTV in the planning CT scan, and the residual shape errors were determined by measurement of edge variations perpendicular to the median surface. Results: Gross tumor volume translations were largest in cranial-caudal and anterior-posterior direction (SD, 0.1 to {approx}0.9 cm). The translations were strongly correlated with the tumor location on the bladder wall. The average value of the local standard deviations of the GTV shape ranged from 0.1 to approximately 0.35 cm. Conclusions: Despite large differences in bladder filling, variations in GTV shape were small compared with variations in GTV position. Geometric uncertainties in the GTV position depended strongly on the tumor location on the bladder wall.

  17. Translation: between what can be translated and what must be translated

    Directory of Open Access Journals (Sweden)

    Magda Jeanrenaud

    2016-02-01

    Full Text Available Starting from a disconcerting interpretation of Jacques Derrida, our analysis aims at investigating and also tries to explain the blockage which appears in the English, French and Romanian translations (signed by Maurice de Gandillac, Antoine Berman, Laurent Lamy, Alexis Nouss, Harry Zohn, Steven Rendall, Martine Broda, Catrinel Pleșu etc. of a well-known text of Walter Benjamin, Die Aufgabe des Übersetzers, when translators transpose in their target languages the two quotations given by Benjamin: one of Mallarmé, left untranslated in the source text, and another, signed by Pannwitz. The fact is that both quotations have something in common: a discoursive form which results from an unusual syntax, as if they were already, in a certain sense, „translations”. As if the translators feared—a feature of the translator’s psychology?—not to render their text sufficiently accessible, even when the source text is not intended to be accessible. Hence the painful dilemma of the intentional fallacy (not only of the text to be translated.

  18. Integrating Automatic Speech Recognition and Machine Translation for Better Translation Outputs

    DEFF Research Database (Denmark)

    Liyanapathirana, Jeevanthi

    translations, combining machine translation with computer assisted translation has drawn attention in current research. This combines two prospects: the opportunity of ensuring high quality translation along with a significant performance gain. Automatic Speech Recognition (ASR) is another important area......, which caters important functionalities in language processing and natural language understanding tasks. In this work we integrate automatic speech recognition and machine translation in parallel. We aim to avoid manual typing of possible translations as dictating the translation would take less time...... to the n-best list rescoring, we also use word graphs with the expectation of arriving at a tighter integration of ASR and MT models. Integration methods include constraining ASR models using language and translation models of MT, and vice versa. We currently develop and experiment different methods...

  19. (Con)figuring gender in Bible translation: Cultural, translational and ...

    African Journals Online (AJOL)

    The gendered intersection of cultural studies and Bible translation is under acknowledged. Accounting for gender criticism in translation work requires, besides responsible theory and practice of translation, also attention to interwoven gender critical aspects. After a brief investigation of the intersections between biblical, ...

  20. Translation and identity: Translation of the Freedom Charter into ...

    African Journals Online (AJOL)

    A comparative analysis of the Afrikaans translations reveals how the respective translators struggled sporadically through certain ideological constraints in order to provide a satisfactory narrative. Their inability to internalise the principles contained in the Freedom Charter resulted in them presenting a 'framed' translation ...