WorldWideScience

Sample records for transition metal metalloid

  1. Structure and properties of transition metal-metalloid glasses based on refractory metals

    International Nuclear Information System (INIS)

    Johnson, W.L.; Williams, A.R.

    1979-01-01

    The structure and properties of several new transition metal-metalloid (TM/sub 1-x/M/sub x/) metallic glasses based on refractory transition metals (e.g. Mo, W, Ru etc.) have been systemically investigated as a function of composition. The structure of the alloys has been investigated by x-ray diffraction methods and measurements of superconducting properties, electrical resistivity, density, hardness, and mechanical behavior were made. These data are used in developing a novel description of the structure of TM/sub 1-x/M/sub x/ glasses. The experimental evidence suggests that an ideal amorphous phase forms at a specific composition x/sub c/ and that this phase has a well defined atomic short range order. For metallic glasses having x x/sub c/. This novel picture can explain the variation of many properties of these glasses with metalloid concentration

  2. Spin-exchange interaction between transition metals and metalloids in soft-ferromagnetic metallic glasses

    Science.gov (United States)

    Das, Santanu; Choudhary, Kamal; Chernatynskiy, Aleksandr; Choi Yim, Haein; Bandyopadhyay, Asis K.; Mukherjee, Sundeep

    2016-06-01

    High-performance magnetic materials have immense industrial and scientific importance in wide-ranging electronic, electromechanical, and medical device technologies. Metallic glasses with a fully amorphous structure are particularly suited for advanced soft-magnetic applications. However, fundamental scientific understanding is lacking for the spin-exchange interaction between metal and metalloid atoms, which typically constitute a metallic glass. Using an integrated experimental and molecular dynamics approach, we demonstrate the mechanism of electron interaction between transition metals and metalloids. Spin-exchange interactions were investigated for a Fe-Co metallic glass system of composition [(Co1-x Fe x )0.75B0.2Si0.05]96Cr4. The saturation magnetization increased with higher Fe concentration, but the trend significantly deviated from simple rule of mixtures. Ab initio molecular dynamics simulation was used to identify the ferromagnetic/anti-ferromagnetic interaction between the transition metals and metalloids. The overlapping band-structure and density of states represent ‘Stoner type’ magnetization for the amorphous alloys in contrast to ‘Heisenberg type’ in crystalline iron. The enhancement of magnetization by increasing iron was attributed to the interaction between Fe 3d and B 2p bands, which was further validated by valence-band study.

  3. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    Science.gov (United States)

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  4. Evolution of Metal(Loid) Binding Sites in Transcriptional Regulators

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez, E.; Thiyagarajan, S.; Cook, J.D.; Stemmler, T.L.; Gil, J.A.; Mateos, L.M.; Rosen, B.P.

    2009-05-22

    Expression of the genes for resistance to heavy metals and metalloids is transcriptionally regulated by the toxic ions themselves. Members of the ArsR/SmtB family of small metalloregulatory proteins respond to transition metals, heavy metals, and metalloids, including As(III), Sb(III), Cd(II), Pb(II), Zn(II), Co(II), and Ni(II). These homodimeric repressors bind to DNA in the absence of inducing metal(loid) ion and dissociate from the DNA when inducer is bound. The regulatory sites are often three- or four-coordinate metal binding sites composed of cysteine thiolates. Surprisingly, in two different As(III)-responsive regulators, the metalloid binding sites were in different locations in the repressor, and the Cd(II) binding sites were in two different locations in two Cd(II)-responsive regulators. We hypothesize that ArsR/SmtB repressors have a common backbone structure, that of a winged helix DNA-binding protein, but have considerable plasticity in the location of inducer binding sites. Here we show that an As(III)-responsive member of the family, CgArsR1 from Corynebacterium glutamicum, binds As(III) to a cysteine triad composed of Cys{sup 15}, Cys{sup 16}, and Cys{sup 55}. This binding site is clearly unrelated to the binding sites of other characterized ArsR/SmtB family members. This is consistent with our hypothesis that metal(loid) binding sites in DNA binding proteins evolve convergently in response to persistent environmental pressures.

  5. Polymorphic crystallization of metal-metalloid-glasses above the glass transition temperature

    International Nuclear Information System (INIS)

    Koster, U.; Schunemann, U.; Stephenson, G.B.; Brauer, S.; Sutton, M.

    1992-01-01

    Crystallization of metal-metalloid glasses is known to proceed by nucleation and growth processes. Using crystallization statistics in partially crystallized glasses, at temperatures below the glass transition temperature, time-dependent heterogeneous nucleation has been found to occur at a number of quenched-in nucleation sites. Close to the glass transition temperature crystallization proceeds so rapidly that partially crystallized microstructures could not be obtained. Initial results form fully crystallized glasses exhibit evidence for a transient homogeneous nucleation process at higher temperatures. These conclusions are derived post mortem. At there may be some change of the microstructure after crystallization is finished or during he subsequent quenching, it is desirable to directly obtain information during the early stages of crystallization. Recently reported work by Sutton et al. showed that structural changes can be observed in situ during crystallization by time-resolved x-ray diffraction on time scales as short as milliseconds. The aim o the paper is to present the authors study of the crystallization behavior at temperatures near the glass transition by in-situ x-ray diffraction studies and by microstructural analysis after rapid heating experiments. The results are compared to those derived from a computer model of the crystallization process

  6. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize?

    Science.gov (United States)

    Bolan, Nanthi; Kunhikrishnan, Anitha; Thangarajan, Ramya; Kumpiene, Jurate; Park, Jinhee; Makino, Tomoyuki; Kirkham, Mary Beth; Scheckel, Kirk

    2014-02-15

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy metal(loid) contaminated soils through manipulating their bioavailability using a range of soil amendments will be presented. Mobilizing amendments such as chelating and desorbing agents increase the bioavailability and mobility of metal(loid)s. Immobilizing amendments such of precipitating agents and sorbent materials decrease the bioavailabilty and mobility of metal(loid)s. Mobilizing agents can be used to enhance the removal of heavy metal(loid)s though plant uptake and soil washing. Immobilizing agents can be used to reduce the transfer to metal(loid)s to food chain via plant uptake and leaching to groundwater. One of the major limitations of mobilizing technique is susceptibility to leaching of the mobilized heavy metal(loid)s in the absence of active plant uptake. Similarly, in the case of the immobilization technique the long-term stability of the immobilized heavy metal(loid)s needs to be monitored. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Science.gov (United States)

    2010-07-01

    ... metalloid oxyanions. 721.4668 Section 721.4668 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting under...

  8. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.

    Science.gov (United States)

    Park, Jin Hee; Lamb, Dane; Paneerselvam, Periyasamy; Choppala, Girish; Bolan, Nanthi; Chung, Jae-Woo

    2011-01-30

    As land application becomes one of the important waste utilization and disposal practices, soil is increasingly being seen as a major source of metal(loid)s reaching food chain, mainly through plant uptake and animal transfer. With greater public awareness of the implications of contaminated soils on human and animal health there has been increasing interest in developing technologies to remediate contaminated sites. Bioremediation is a natural process which relies on soil microorganisms and higher plants to alter metal(loid) bioavailability and can be enhanced by addition of organic amendments to soils. Large quantities of organic amendments, such as manure compost, biosolid and municipal solid wastes are used as a source of nutrients and also as a conditioner to improve the physical properties and fertility of soils. These organic amendments that are low in metal(loid)s can be used as a sink for reducing the bioavailability of metal(loid)s in contaminated soils and sediments through their effect on the adsorption, complexation, reduction and volatilization of metal(loid)s. This review examines the mechanisms for the enhanced bioremediation of metal(loid)s by organic amendments and discusses the practical implications in relation to sequestration and bioavailability of metal(loid)s in soils. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. How Saccharomyces cerevisiae copes with toxic metals and metalloids.

    Science.gov (United States)

    Wysocki, Robert; Tamás, Markus J

    2010-11-01

    Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.

  10. Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate

    Science.gov (United States)

    Root, Robert A.; Hayes, Sarah M.; Hammond, Corin M.; Maier, Raina M.; Chorover, Jon

    2015-01-01

    Toxic metalliferous mine-tailings pose a significant health risk to ecosystems and neighboring communities from wind and water dispersion of particulates containing high concentrations of toxic metal(loid)s (e.g., Pb, As, Zn). Tailings are particularly vulnerable to erosion before vegetative cover can be reestablished, i.e., decades or longer in semi-arid environments without intervention. Metal(loid) speciation, linked directly to bioaccessibility and lability, is controlled by mineral weathering and is a key consideration when assessing human and environmental health risks associated with mine sites. At the semi-arid Iron King Mine and Humboldt Smelter Superfund site in central Arizona, the mineral assemblage of the top 2 m of tailings has been previously characterized. A distinct redox gradient was observed in the top 0.5 m of the tailings and the mineral assemblage indicates progressive transformation of ferrous iron sulfides to ferrihydrite and gypsum, which, in turn weather to form schwertmannite and then jarosite accompanied by a progressive decrease in pH (7.3 to 2.3). Within the geochemical context of this reaction front, we examined enriched toxic metal(loid)s As, Pb, and Zn with surficial concentrations 41.1, 10.7, 39.3 mM kg-1 (3080, 2200, and 2570 mg kg-1), respectively. The highest bulk concentrations of As and Zn occur at the redox boundary representing a 1.7 and 4.2 fold enrichment relative to surficial concentrations, respectively, indicating the translocation of toxic elements from the gossan zone to either the underlying redox boundary or the surface crust. Metal speciation was also examined as a function of depth using X-ray absorption spectroscopy (XAS). The deepest sample (180 cm) contains sulfides (e.g., pyrite, arsenopyrite, galena, and sphalerite). Samples from the redox transition zone (25-54 cm) contain a mixture of sulfides, carbonates (siderite, ankerite, cerrusite, and smithsonite) and metal(loid)s sorbed to neoformed secondary Fe

  11. Effect doses for protection of human health predicted from physicochemical properties of metals/metalloids.

    Science.gov (United States)

    Wang, Ying; Wu, Fengchang; Liu, Yuedan; Mu, Yunsong; Giesy, John P; Meng, Wei; Hu, Qing; Liu, Jing; Dang, Zhi

    2018-01-01

    Effect doses (EDs) of metals/metalloids, usually obtained from toxicological experiments are required for developing environmental quality criteria/standards for use in assessment of hazard or risks. However, because in vivo tests are time-consuming, costly and sometimes impossible to conduct, among more than 60 metals/metalloids, there are sufficient data for development of EDs for only approximately 25 metals/metalloids. Hence, it was deemed a challenge to derive EDs for additional metals by use of alternative methods. This study found significant relationships between EDs and physicochemical parameters for twenty-five metals/metalloids. Elements were divided into three classes and then three individual empirical models were developed based on the most relevant parameters for each class. These parameters included log-βn, ΔE 0 and X m 2 r, respectively (R 2  = 0.988, 0.839, 0.871, P metalloids. Here, these alternative models for deriving thresholds of toxicity that could be used to perform preliminarily, screen-level health assessments for metals are presented. Copyright © 2017. Published by Elsevier Ltd.

  12. Structural models for amorphous transition metal binary alloys

    International Nuclear Information System (INIS)

    Ching, W.Y.; Lin, C.C.

    1976-01-01

    A dense random packing of 445 hard spheres with two different diameters in a concentration ratio of 3 : 1 was hand-built to simulate the structure of amorphous transition metal-metalloid alloys. By introducing appropriate pair potentials of the Lennard-Jones type, the structure is dynamically relaxed by minimizing the total energy. The radial distribution functions (RDF) for amorphous Fe 0 . 75 P 0 . 25 , Ni 0 . 75 P 0 . 25 , Co 0 . 75 P 0 . 25 are obtained and compared with the experimental data. The calculated RDF's are resolved into their partial components. The results indicate that such dynamically constructed models are capable of accounting for some subtle features in the RDF of amorphous transition metal-metalloid alloys

  13. The glass-forming ability of model metal-metalloid alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Kai; Liu, Yanhui; Schroers, Jan [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Shattuck, Mark D. [Department of Physics and Benjamin Levich Institute, The City College of the City University of New York, New York, New York 10031 (United States); Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); O’Hern, Corey S. [Department of Mechanical Engineering and Materials Science, Yale University, New Haven, Connecticut 06520 (United States); Center for Research on Interface Structures and Phenomena, Yale University, New Haven, Connecticut 06520 (United States); Department of Physics, Yale University, New Haven, Connecticut 06520 (United States); Department of Applied Physics, Yale University, New Haven, Connecticut 06520 (United States)

    2015-03-14

    Bulk metallic glasses (BMGs) are amorphous alloys with desirable mechanical properties and processing capabilities. To date, the design of new BMGs has largely employed empirical rules and trial-and-error experimental approaches. Ab initio computational methods are currently prohibitively slow to be practically used in searching the vast space of possible atomic combinations for bulk glass formers. Here, we perform molecular dynamics simulations of a coarse-grained, anisotropic potential, which mimics interatomic covalent bonding, to measure the critical cooling rates for metal-metalloid alloys as a function of the atomic size ratio σ{sub S}/σ{sub L} and number fraction x{sub S} of the metalloid species. We show that the regime in the space of σ{sub S}/σ{sub L} and x{sub S} where well-mixed, optimal glass formers occur for patchy and LJ particle mixtures, coincides with that for experimentally observed metal-metalloid glass formers. Thus, our simple computational model provides the capability to perform combinatorial searches to identify novel glass-forming alloys.

  14. Effects of different drying processes on the concentrations of metals and metalloids in plant materials

    International Nuclear Information System (INIS)

    Anawar, H.M.; Canha, N.; Freitas, M.C; Santa Regina, I.; Garcia-Sanchez, A.

    2011-01-01

    The drying process of fresh plant materials may affect the porous structure, dehydration and a number of quality characteristics of these materials. Therefore, this study has investigated the effect of different drying processes on the variation of metal and metalloid concentrations in the dried plant materials. Seven varieties of native plant species collected from Sao Domingos mine were analyzed by instrumental neutron activation analysis (INAA) to investigate the effects of freeze-drying (FD), ambient air-drying (AAD) and oven-drying (OD) process on the concentrations of metals and metalloids in the plant biomass. Comparison of ambient air-dried, oven-dried and freeze-dried preparations allows a phenomenological description of the dehydration artefacts. In the quantitative analysis of metals and metalloids, FD and OD plant samples show the higher concentrations of metals and metalloids when compared to those in the AAD plant biomass. The freeze-drying process is comparatively reliable for determination of metals and metalloids concentrations in plant materials. (author)

  15. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Parraga-Aguado, Isabel, E-mail: isabel.parraga@upct.es [Universidad Politecnica de Cartagena, Departamento de Ciencia y Tecnología Agraria Paseo Alfonso XIII, Cartagena 48. 30203 (Spain); Querejeta, Jose-Ignacio [Water and Soil Conservation Department, Centro de Edafología y Biología Aplicada del Segura CEBAS-CSIC Campus Universitario de Espinardo, PO Box 164, Espinardo-Murcia ES-30100 (Spain); González-Alcaraz, María Nazaret; Conesa, Hector M. [Universidad Politecnica de Cartagena, Departamento de Ciencia y Tecnología Agraria Paseo Alfonso XIII, Cartagena 48. 30203 (Spain)

    2014-07-01

    The goal of this study was to evaluate internal metal(loid) cycling and the risk of metal(loid) accumulation in litter from Pinus halepensis trees growing at a mine tailing disposal site in semiarid Southeast Spain. Internal nutrient retranslocation was also evaluated in order to gain insight into the ability of pine trees to cope with the low-fertility soil conditions at the tailings. We measured metal(loid) concentrations in the foliage (young and old needles), woody stems and fresh leaf litter of pine trees growing on tailings. The nutrient status and stable isotope composition of pine foliage (δ{sup 13}C, δ{sup 15}N, δ{sup 18}O as indicators of photosynthesis and water use efficiency) were also analyzed. Tailing soil properties in vegetation patches and in adjacent bare soil patches were characterized as well. Significant amounts of metal(loid)s such us Cd, Cu, Pb and Sb were immobilized in the woody stems of Pinus halepensis trees growing on tailings. Leaf litterfall showed high concentrations of As, Cd, Sb, Pb and Zn, which thereby return to the soil. However, water extractable metal(loid) concentrations in tailing soils were similar between vegetation patches (mineral soil under the litter layer) and bare soil patches. The pines growing on mine tailings showed very low foliar P concentrations in all leaf age classes, which suggests severe P deficiency. Young (current year) needles showed lower accumulation of metal(loid)s, higher nutrient concentrations (P and K), and higher water use efficiency (as indicated by and δ{sup 13}C and δ{sup 18}O data) than older needles. Substantial nutrient resorption occurred before leaf litterfall, with 46% retranslocation efficiency for P and 89% for K. In conclusion, phytostabilization of semiarid mine tailings with Pinus halepensis is feasible but would require careful monitoring of the trace elements released from litterfall, in order to assess the long term risk of metal(loid) transfer to the food chain

  16. Metal(loid) allocation and nutrient retranslocation in Pinus halepensis trees growing on semiarid mine tailings

    International Nuclear Information System (INIS)

    Parraga-Aguado, Isabel; Querejeta, Jose-Ignacio; González-Alcaraz, María Nazaret; Conesa, Hector M.

    2014-01-01

    The goal of this study was to evaluate internal metal(loid) cycling and the risk of metal(loid) accumulation in litter from Pinus halepensis trees growing at a mine tailing disposal site in semiarid Southeast Spain. Internal nutrient retranslocation was also evaluated in order to gain insight into the ability of pine trees to cope with the low-fertility soil conditions at the tailings. We measured metal(loid) concentrations in the foliage (young and old needles), woody stems and fresh leaf litter of pine trees growing on tailings. The nutrient status and stable isotope composition of pine foliage (δ 13 C, δ 15 N, δ 18 O as indicators of photosynthesis and water use efficiency) were also analyzed. Tailing soil properties in vegetation patches and in adjacent bare soil patches were characterized as well. Significant amounts of metal(loid)s such us Cd, Cu, Pb and Sb were immobilized in the woody stems of Pinus halepensis trees growing on tailings. Leaf litterfall showed high concentrations of As, Cd, Sb, Pb and Zn, which thereby return to the soil. However, water extractable metal(loid) concentrations in tailing soils were similar between vegetation patches (mineral soil under the litter layer) and bare soil patches. The pines growing on mine tailings showed very low foliar P concentrations in all leaf age classes, which suggests severe P deficiency. Young (current year) needles showed lower accumulation of metal(loid)s, higher nutrient concentrations (P and K), and higher water use efficiency (as indicated by and δ 13 C and δ 18 O data) than older needles. Substantial nutrient resorption occurred before leaf litterfall, with 46% retranslocation efficiency for P and 89% for K. In conclusion, phytostabilization of semiarid mine tailings with Pinus halepensis is feasible but would require careful monitoring of the trace elements released from litterfall, in order to assess the long term risk of metal(loid) transfer to the food chain. - Highlights: • Significant

  17. Influence of Organic Matter - Mineral Interfacial Reactions on Metal(loid) Speciation and Bioaccessibility

    Science.gov (United States)

    Chorover, J.; Kong, S.; Root, R. A.; Thomas, A.

    2015-12-01

    Bioaccessibility of contaminant metals in geomedia is often measured on the basis of kinetic release to solution during in vitro reaction with biofluid simulants. We postulate that development of a predictive-mechanistic understanding of bioaccessibility requires knowledge of metal(loid) molecular speciation upon sample introduction, as well as its change over the course of the in vitro reaction. Our results - including data from batch, column, mesocosm and field studies pertaining to arsenic, lead, and zinc contaminated materials - indicate the strong influence of organic matter and associated biological activity on metal(loid) speciation in mine tailings and related model systems. Furthermore, presence/absence of organic matter during bioassays affects the kinetics of metal(loid) release into biofluid simulants through multiple mechanisms.

  18. Heavy metals and metalloids as a cause for protein misfolding and aggregation.

    Science.gov (United States)

    Tamás, Markus J; Sharma, Sandeep K; Ibstedt, Sebastian; Jacobson, Therese; Christen, Philipp

    2014-02-25

    While the toxicity of metals and metalloids, like arsenic, cadmium, mercury, lead and chromium, is undisputed, the underlying molecular mechanisms are not entirely clear. General consensus holds that proteins are the prime targets; heavy metals interfere with the physiological activity of specific, particularly susceptible proteins, either by forming a complex with functional side chain groups or by displacing essential metal ions in metalloproteins. Recent studies have revealed an additional mode of metal action targeted at proteins in a non-native state; certain heavy metals and metalloids have been found to inhibit the in vitro refolding of chemically denatured proteins, to interfere with protein folding in vivo and to cause aggregation of nascent proteins in living cells. Apparently, unfolded proteins with motile backbone and side chains are considerably more prone to engage in stable, pluridentate metal complexes than native proteins with their well-defined 3D structure. By interfering with the folding process, heavy metal ions and metalloids profoundly affect protein homeostasis and cell viability. This review describes how heavy metals impede protein folding and promote protein aggregation, how cells regulate quality control systems to protect themselves from metal toxicity and how metals might contribute to protein misfolding disorders.

  19. Remediation of Heavy Metal(loid)s Contaminated Soils – To Mobilize or To Immobilize?

    Science.gov (United States)

    Unlike organic contaminants, metal(loid)s do not undergo microbial or chemical degradation and persist for a long time after their introduction. Bioavailability of metal(loid)s plays a vital role in the remediation of contaminated soils. In this review, the remediation of heavy ...

  20. Metals and metalloids in PM10 in Nandan County, Guangxi, China, and the health risks posed.

    Science.gov (United States)

    Guo, Guanghui; Song, Bo; Xia, Deshang; Yang, Zijie; Wang, Fopeng

    2018-03-16

    Intense mining, smelting, and tailing activities of polymetallic ore deposits have affected the environment in Nandan County, Guangxi, China. Samples of particulates with aerodynamic diameters low or equal 10 μm (PM 10 ) were collected in Nandan County to investigate the concentrations of and health risks posed by 17 metals and metalloids in the PM 10 . The metal and metalloid concentrations were lower than those found in other industrial cities. The mean Cr concentration was 7.48 ng/m 3 . Significant higher metal and metalloid concentrations were found in PM 10 from mining areas (Dachang and Chehe) than from the control area (Liuzhai) (p metalloids in PM 10 at all the sites were low, but the non-carcinogenic risks posed to children by all the metals and metalloids together exceeded the safe level (i.e., risk value > 1). The carcinogenic risks posed by Cd, Ni, and Pb were negligible at all sites, while As, Co, and Cr posed potential carcinogenic risks to the residents.

  1. Nature's refineries — Metals and metalloids in arc volcanoes

    Science.gov (United States)

    Henley, R.W.; Berger, Byron R.

    2013-01-01

    Chemical data for fumaroles and for atmospheric gas and ash plumes from active arc volcanoes provide glimpses of the rates of release of metal and metalloids, such as Tl and Cd, from shallow and mid-crust magmas. Data from copper deposits formed in ancient volcanoes at depths of up to about 1500 m in the fractures below paleo-fumaroles, and at around 2000–4000 m in association with sub-volcanic intrusions (porphyry copper deposits) provide evidence of sub-surface deposition of Cu–Au–Ag–Mo and a range of other minor elements including Te, Se, As and Sb. These deposits, or ‘sinks’, of metals consistently record sustained histories of magmatic gas streaming through volcanic systems interspersed by continuing intrusive and eruptive activity. Here we integrate data from ancient and modern volcanic systems and show that the fluxes of metals and metalloids are controlled by a) the maintenance of fracture permeability in the stressed crust below volcanoes and b) the chemical processes that are triggered as magmatic gas, initially undersaturated with metals and metalloids, expands from lithostatic to very low pressure conditions through fracture arrays. The recognition of gas streaming may also account for the phenomenon of ‘excess degassing’, and defines an integral, but generally understated, component of active volcanic systems – a volcanic gas core – that is likely to be integral to the progression of eruptions to Plinean state.Destabilization of solvated molecular metal and metalloid species in magmatic gas mixtures and changes in their redox state are triggered, as it expands to the surface by abrupt pressure drops, or throttles' in the fracture array that guides expansion to the surface. The electronically harder, low electronegativity metals, such as copper and iron, deposit rapidly in response to expansion followed more slowly by arsenic with antimony as sulfosalts. Heavy, large radius, softer elements such as bismuth, lead, and thallium

  2. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment.

    Science.gov (United States)

    Foucault, Y; Lévêque, T; Xiong, T; Schreck, E; Austruy, A; Shahid, M; Dumat, C

    2013-10-01

    Borage, white mustard and phacelia, green manure plants currently used in agriculture to improve soil properties were cultivated for 10 wk on various polluted soils with metal(loid) concentrations representative of urban brownfields or polluted kitchen gardens. Metal(loid) bioavailability and ecotoxicity were measured in relation to soil characteristics before and after treatment. All the plants efficiently grow on the various polluted soils. But borage and mustard only are able to modify the soil characteristics and metal(loid) impact: soil respiration increased while ecotoxicity, bioaccessible lead and total metal(loid) quantities in soils can be decreased respectively by phytostabilization and phytoextraction mechanisms. These two plants could therefore be used for urban polluted soil refunctionalization. However, plant efficiency to improve soil quality strongly depends on soil characteristics. Copyright © 2013. Published by Elsevier Ltd.

  3. Glutathione and its dependent enzymes' modulatory responses to toxic metals and metalloids in fish--a review.

    Science.gov (United States)

    Srikanth, K; Pereira, E; Duarte, A C; Ahmad, I

    2013-04-01

    Toxic metals and metalloid are being rapidly added from multiple pathways to aquatic ecosystem and causing severe threats to inhabiting fauna including fish. Being common in all the type of aquatic ecosystems such as freshwater, marine and brackish water fish are the first to get prone to toxic metals and metalloids. In addition to a number of physiological/biochemical alterations, toxic metals and metalloids cause enhanced generation of varied reactive oxygen species (ROS) ultimately leading to a situation called oxidative stress. However, as an important component of antioxidant defence system in fish, the tripeptide glutathione (GSH) directly or indirectly regulates the scavenging of ROS and their reaction products. Additionally, several other GSH-associated enzymes such as GSH reductase (GR, EC 1.6.4.2), GSH peroxidase (EC 1.11.1.9), and GSH sulfotransferase (glutathione-S-transferase (GST), EC 2.5.1.18) cumulatively protect fish against ROS and their reaction products accrued anomalies under toxic metals and metalloids stress conditions. The current review highlights recent research findings on the modulation of GSH, its redox couple (reduced glutathione/oxidised glutathione), and other GSH-related enzymes (GR, glutathione peroxidase, GST) involved in the detoxification of harmful ROS and their reaction products in toxic metals and metalloids-exposed fish.

  4. Evaluation of silkworm excrement and mushroom dreg for the remediation of multiple heavy metal/metalloid contaminated soil using pakchoi.

    Science.gov (United States)

    Wang, Ruigang; Guo, Junkang; Xu, Yingming; Ding, Yongzhen; Shen, Yue; Zheng, Xiangqun; Feng, Renwei

    2016-02-01

    The economical, environmental friendly and efficient materials to remediate the pollution with multiple heavy metals and metalloids are scarce. Silkworm excrement (SE) and mushroom dregs (MD) are two types of agricultural wastes, and they are widely used to improve the soil fertility in many regions of China. A pot experiment with sixteen treatments was set up to assess the possibility of using SE and MD to stabilize heavy metals and metalloids and reduce their uptake in pakchoi cultivated in slightly contaminated soils with arsenic (As), cadmium (Cd), lead (Pb) and zinc (Zn). The results showed that the single addition of SE obviously stimulated the growth of pakchoi, reduced the contents of all tested heavy metals and metalloids in the edible part of pakchoi and availability of Zn and Cd in soil. The single MD treatment showed an inferior ability to enhance the growth and reduce the contents of heavy metals and metalloids in the edible part of pakchoi. The combined utilization of SE and MD appeared not to show better effects than their individual treatment when using them to remediate this contaminated soil. Some potential mechanisms on the stimulation on pakchoi growth and decreasing the accumulation of heavy metals and metalloids in pakchoi subjected to SE were suggested, including: (1) enhancing soil pH to impact the availability of heavy metals and metalloids; (2) improve the fertility of soil; (3) sulfhydryl groups of organic materials in SE play a role in conjugating heavy metals and metalloids to affect their availability in soil; and (4) stimulating the growth of pakchoi so as to show a "dilution effect" of heavy metals and metalloids. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Metals and metalloids treatment in contaminated neutral effluents using modified materials.

    Science.gov (United States)

    Calugaru, Iuliana Laura; Neculita, Carmen Mihaela; Genty, Thomas; Zagury, Gérald J

    2018-04-15

    Circumneutral surface water and groundwater can contain hazardous concentrations of metals and metalloids that can threaten organisms in surrounding ecosystems. Extensive research has been conducted over the past two decades to prevent, limit, and treat water pollution. Among the currently available treatment options is the use of natural and residual materials, which is generally regarded as effective and inexpensive. The modification of such materials enhances the removal capacity of metals and metalloids, as well as the physical and chemical stability of the materials and resulting sludge (after treatment). This paper reviews several modified materials that have produced and evaluated in the past twenty years to treat various contaminants in water under specific conditions. Important factors on performance improvement following the modifications are emphasized. Sorption capacity and kinetics, and element removal mechanisms are also discussed. Element recovery, material regeneration, water reuse, evaluation of treatment efficiency for real effluents are also considered, as well as the applicability of these materials in both active and passive treatment systems. Modified natural and residual materials are a promising option for the treatment of metals and metalloids in circumneutral contaminated waters. However, further research is necessary to evaluate their field-scale performance and to properly assess treatment costs. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Hyperaccumulators of metal and metalloid trace elements: facts and fiction.

    NARCIS (Netherlands)

    van der Ent, A.; Baker, A.J.M.; Reeves, R.D.; Pollard, A.J.; Schat, H.

    2012-01-01

    Background: Plants that accumulate metal and metalloid trace elements to extraordinarily high concentrations in their living biomass have inspired much research worldwide during the last decades. Hyperaccumulators have been recorded and experimentally confirmed for elements such as nickel, zinc,

  7. Informal E-waste recycling in developing countries: review of metal(loid)s pollution, environmental impacts and transport pathways.

    Science.gov (United States)

    Ackah, Michael

    2017-11-01

    Crude or primitive recycling practices are often adopted in material resource recovery from E-waste in developing nations. Significant human health and environmental impacts may occur because of such practices. Literature on metal(loid)s pollution during E-waste processing is fragmented. Here, I review the health and environmental impacts of E-waste recycling operations and transport pathways of metal(loid)s, dispersed during operations. This paper is organised into five sections. Section 1 relates to the background of global E-waste generation and legal/illegal trade, citing specific cases from Ghana and other developing nations. Section 2 provides a brief information on sources of metal(loid)s in E-waste. Section 3 describes characteristics of informal E-waste recycling operations in developing nations. Section 4 examines the health and environmental impacts in E-waste recycling while section 5 evaluates major transport pathways of metal(loid)s contaminants.

  8. Theoretical studies on metal thioarsenites and thioantimonides: synergistic interactions between transition metals and heavy metalloids

    Directory of Open Access Journals (Sweden)

    Tossell JA

    2000-05-01

    Full Text Available Recently we established that the ternary complex, CuAsS(SH(OH has an unusually high stability and makes a large contribution to the total concentrations of both Cu and As in sulfidic solutions equilibrated with Cu and As sulfide minerals. This ternary complex has an unusual structure, containing a bond which is formally Cu(I–As(III, along with a broken As–S bond. We have now found that complexes with similar structures exist for Au+ and Tl+ coordinated to AsS(SH(OH-. However, such a direct metal–metalloid bond is not a requirement for stability. In fact, TlAsS(SH(OH is unstable while AuAsS(SH(OH is highly stable (compared to the aquo ion. Zn2+, Cd2+, Hg2+ and Pb2+ also form bonds to the As of AsS(SH(OH, but without breaking any As–S bonds, and HgAsS(SH(OH+ and PbAsS(SH(OH+ are particularly stable complexes. Calculated structures are shown for these complexes, gas-phase energies are calculated, and formation constants in aqueous solution are estimated. The SbS(SH(OH- ion forms analogous complexes, with similar stabilities. However, the Au+ complex of SbS(SH(OH- is slightly less stable than the Cu+ complex, opposite to the order found for the AsS(SH(OH- ligand. The Au+ and AuSH complexes of AsSSHOH- or AsS(SH2- may be implicated in "invisible gold" in arsenian pyrites. Vibrational frequencies are given for the AuAsS(SH3- complex and the XANES energies of this complex and Au(SH2- are compared. The existence of such strong complexes may explain the many correlations observed between the concentrations of coinage metals and metalloids.

  9. Relationships between seminal plasma metals/metalloids and semen quality, sperm apoptosis and DNA integrity.

    Science.gov (United States)

    Wang, Yi-Xin; Wang, Peng; Feng, Wei; Liu, Chong; Yang, Pan; Chen, Ying-Jun; Sun, Li; Sun, Yang; Yue, Jing; Gu, Long-Jie; Zeng, Qiang; Lu, Wen-Qing

    2017-05-01

    This study aimed to investigate the relationships between environmental exposure to metals/metalloids and semen quality, sperm apoptosis and DNA integrity using the metal/metalloids levels in seminal plasma as biomarkers. We determined 18 metals/metalloids in seminal plasma using an inductively coupled plasma-mass spectrometry among 746 men recruited from a reproductive medicine center. Associations of these metals/metalloids with semen quality (n = 746), sperm apoptosis (n = 331) and DNA integrity (n = 404) were evaluated using multivariate linear and logistic regression models. After accounting for multiple comparisons and confounders, seminal plasma arsenic (As) quartiles were negatively associated with progressive and total sperm motility using multivariable linear regression analysis, which were in accordance with the trends for increased odds ratios (ORs) for below-reference semen quality parameters in the logistic models. We also found inverse correlations between cadmium (Cd) quartiles and progressive and total sperm motility, whereas positive correlations between zinc (Zn) quartiles and sperm concentration, between copper (Cu) and As quartiles and the percentage of tail DNA, between As and selenium (Se) quartiles and tail extent and tail distributed moment, and between tin (Sn) categories and the percentage of necrotic spermatozoa (all P trend <0.05). These relationships remained after the simultaneous consideration of various elements. Our results indicate that environmental exposure to As, Cd, Cu, Se and Sn may impair male reproductive health, whereas Zn may be beneficial to sperm concentration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Dietary compounds as modulators of metals and metalloids toxicity.

    Science.gov (United States)

    Jadán-Piedra, Carlos; Chiocchetti, Gabriela Matuoka; Clemente, María Jesús; Vélez, Dinoraz; Devesa, Vicenta

    2017-07-07

    A large part of the population is exposed to metals and metalloids through the diet. Most of the in vivo studies on its toxicokinetics and toxicity are conducted by means of exposure through drinking water or by intragastric or intraperitoneal administration of aqueous standards, and therefore they do not consider the effect of the food matrix on the exposure. Numerous studies show that some components of the diet can modulate the toxicity of these food contaminants, reducing their effect on a systemic level. Part of this protective role may be due to a reduction of intestinal absorption and subsequent tissue accumulation of the toxic element, although it may also be a consequence of their ability to counteract the toxicity directly by their antioxidant and/or anti-inflammatory activity, among other factors. The present review provides a compilation of existing information about the effect that certain components of the diet have on the toxicokinetics and toxicity of the metals and metalloids of greatest toxicological importance that are present in food (arsenic, cadmium, lead, and mercury), and of their most toxic chemical species.

  11. Determination of the long-term release of metal(loid)s from construction materials using DGTs.

    Science.gov (United States)

    Schmukat, A; Duester, L; Ecker, D; Heininger, P; Ternes, T A

    2013-09-15

    Long-term leaching experiments are crucial to estimate the potential release of dangerous substances from construction materials. The application of Diffuse Gradients in Thin film (DGT) in static-batch experiments was tested to study the long-term release of metal(loid)s from construction materials for hydraulic engineering, for half a year. Long-term release experiments are essential to improve calculations of the life-time release for this materials. DGTs in batch experiments were found to be a space and labour efficient application, which enabled (i) to study, in a non-invasive manner, the total release of nine metal(loid)s for half a year, (ii) to differentiate between release mechanisms and (iii) to study mechanisms which were contrary to the release or caused experimental artefacts in the batch experiments. For copper slag (test material) it was found that eight metal(loid)s were released over the whole time period of 184 d. Cu, Ni and Pb were found to be released, predominantly caused by (the) weathering of sulphide minerals. Only for Zn a surface depletion mechanism was identified. The results from the long-term batch experiments deliver new information on the release of metal(loid)s during the life cycle of construction materials with regard to river basin management objectives. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Fatigue and wear of metalloid-ion-implanted metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Richter, E.; Rauschenbach, B.; Blochwitz, C.

    1985-01-01

    The effect of metalloid ion implantation on the fatigue behaviour and wear of nickel and two steels has been investigated. These metals were implanted with boron, carbon and nitrogen ions at energies from 30 to 60 keV and with doses from 1 X 10 16 to 1 X 10 18 ions cm -2 at room temperature. The mechanical behaviour of fatigued nickel was studied in push-pull tests at room temperature. Wear measurements were made using a pin-and-disc technique. The surface structure, dislocation arrangement and modification of the implantation profile resulting from mechanical tests on metals which had been implanted with metalloid ions were examined using high voltage electron microscopy, transmission high energy electron diffraction, scanning electron microscopy and Auger electron spectroscopy. It is reported that nitrogen and boron ion implantation improves the fatigue lifetime, changes the number and density of the slip bands and modifies the dislocation arrangements in nickel. The cyclic deformation leads to recrystallization of the boron-ion-induced amorphous structure of nickel and to diffusion of the boron and nitrogen in the direction of the surface. The wear behaviour of steels was improved by implantation of mass-separated ions and by implantation of ions without mass separation. (Auth.)

  13. A novel approach for predicting the uptake and toxicity of metallic and metalloid ions

    Science.gov (United States)

    Wang, Peng

    2011-01-01

    Electrostatic nature of plant plasma membrane (PM) plays significant roles in the ion uptake and toxicity. Electrical potential at the PM exterior surface (ψ0o) influences ion distribution at the PM exterior surface, and the depolarization of ψ0o negativity increases the electrical driving force for cation transport, but decreases the driving force for anion transport across the PMs. Assessing environmental risks of toxic ions has been a difficult task because the ion concentration (activity) in medium is not directly corrected to its potential effects. Medium characteristics like the content of major cations have important influences on the bioavailability and toxicity of ions in natural waters and soils. Models such as the Free Ion Activity Model (FIAM) and the Biotic Ligand Model (BLM), as usually employed, neglect the ψ0o and hence often lead to false conclusions about interaction mechanisms between toxic ions and major cations for biology. The neglect of ψ0o is not inconsistent with its importance, and possibly reflects the difficulty in the measurement of ψ0o. Based on the dual effects of the ψ0o, electrostatic models were developed to better predict the uptake and toxicity of metallic and metalloid ions. These results suggest that the electrostatic models provides a more robust mechanistic framework to assess metal(loid) ecotoxicity and predict critical metal(loid) concentrations linked to a biological effect, indicating its potential utility in risk assessment of metal(loid)s in water and terrestrial ecosystems. PMID:21386661

  14. Evaluation of the Possible Sources and Controlling Factors of Toxic Metals/Metalloids in the Florida Everglades and Their Potential Risk of Exposure.

    Science.gov (United States)

    Li, Yanbin; Duan, Zhiwei; Liu, Guangliang; Kalla, Peter; Scheidt, Daniel; Cai, Yong

    2015-08-18

    The Florida Everglades is an environmentally sensitive wetland ecosystem with a number of threatened and endangered fauna species susceptible to the deterioration of water quality. Several potential toxic metal sources exist in the Everglades, including farming, atmospheric deposition, and human activities in urban areas, causing concerns of potential metal exposure risks. However, little is known about the pollution status of toxic metals/metalloids of potential concern, except for Hg. In this study, eight toxic metals/metalloids (Cd, Cr, Pb, Ni, Cu, Zn, As, and Hg) in Everglades soils were investigated in both dry and wet seasons. Pb, Cr, As, Cu, Cd, and Ni were identified to be above Florida SQGs (sediment quality guidelines) at a number of sampling sites, particularly Pb, which had a level of potential risk to organisms similar to that of Hg. In addition, a method was developed for quantitative source identification and controlling factor elucidation of toxic metals/metalloids by introducing an index, enrichment factor (EF), in the conventional multiple regression analysis. EFs represent the effects of anthropogenic sources on metals/metalloids in soils. Multiple regression analysis showed that Cr and Ni were mainly controlled by anthropogenic loading, whereas soil characteristics, in particular natural organic matter (NOM), played a more important role for Hg, As, Cd, and Zn. NOM may control the distribution of these toxic metals/metalloids by affecting their mobility in soils. For Cu and Pb, the effects of EFs and environmental factors are comparable, suggesting combined effects of loading and soil characteristics. This study is the first comprehensive research with a vast amount of sampling sites on the distribution and potential risks of toxic metals/metalloids in the Everglades. The finding suggests that in addition to Hg other metals/metalloids could also potentially be an environmental problem in this wetland ecosystem.

  15. Distribution and transfer of potentially toxic metal(loid)s in Juncus effusus from the indigenous zinc smelting area, northwest region of Guizhou Province, China.

    Science.gov (United States)

    Peng, Yishu; Chen, Jun; Wei, Huairui; Li, Shibin; Jin, Tao; Yang, Ruidong

    2018-05-15

    We collected samples (i.e., the aerial parts and roots of Juncus effusus and their growth media) in the indigenous zinc smelting area in the northwest region of Guizhou Province, China, and we measured and analyzed potentially toxic metal(loid)s (arsenic, As; cadmium, Cd; chromium, Cr; copper, Cu; mercury, Hg; lead, Pb and zinc, Zn) in these samples. The results include the following: First, there is a high concentration of one or more potentially toxic metal(loid)s in the slag and surrounding soil in the research area. This situation might be caused by metal(loid) damage or contamination due to the circumstances. Additionally, Juncus effusus in the indigenous zinc smelting area are contaminated by some potentially toxic metal(loid)s; since they are used for Chinese medical materials, it is especially significant that their As, Cd and Pb concentrations are greater than their limited standard values. Finally, both the bioconcentration factors and transfer factors for most potentially toxic metal(loid)s in Juncus effusus are less than 1 in the study area. Therefore, we suggest that Juncus effusus could be used for phytostabilization or as a pioneer plant for phytoremediation of potentially toxic metal(loid)s because it has a tolerance and exclusion mechanism for these metal(loid)s in the research district. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Low-level environmental metals and metalloids and incident pregnancy loss.

    Science.gov (United States)

    Buck Louis, Germaine M; Smarr, Melissa M; Sundaram, Rajeshwari; Steuerwald, Amy J; Sapra, Katherine J; Lu, Zhaohui; Parsons, Patrick J

    2017-04-01

    Environmental exposure to metals and metalloids is associated with pregnancy loss in some but not all studies. We assessed arsenic, cadmium, mercury, and lead concentrations in 501 couples upon trying for pregnancy and followed them throughout pregnancy to estimate the risk of incident pregnancy loss. Using Cox proportional hazard models, we estimated hazard ratios (HR) and 95% confidence intervals (CIs) for pregnancy loss after covariate adjustment for each partner modeled individually then we jointly modeled both partners' concentrations. Incidence of pregnancy loss was 28%. In individual partner models, the highest adjusted HRs were observed for female and male blood cadmium (HR=1.08; CI 0.81, 1.44; HR=1.09; 95% CI 0.84, 1.41, respectively). In couple based models, neither partner's blood cadmium concentrations were associated with loss (HR=1.01; 95% CI 0.75, 1.37; HR=0.92; CI 0.68, 1.25, respectively). We observed no evidence of a significant relation between metal(loids) at these environmentally relevant concentrations and pregnancy loss. Published by Elsevier Inc.

  17. Health benefit from decreasing exposure to heavy metals and metalloid after strict pollution control measures near a typical river basin area in China.

    Science.gov (United States)

    Cao, Suzhen; Duan, Xiaoli; Ma, Yingqun; Zhao, Xiuge; Qin, Yanwen; Liu, Yan; Li, Sai; Zheng, Binghui; Wei, Fusheng

    2017-10-01

    The metal(loid) pollution still is a great concern due to the effects from urbanization and industrialization. While, the health risks from the toxic metal(loid)s could decrease if strict pollution control measures were adopted. However, few studies to date investigate the health risks of heavy metal(loid)s in a systematic river basin for the dependent residents, after taking pollution control measures. Thus, the contents of metal(loid)s (Cu, Pb, Zn, Cd, Mn, As) in surface water along a typical river basin were investigated in this study, and the potential non-carcinogenic and carcinogenic health risks posed to the residents were assessed. Although the soluble contents of Cu, Pb, Zn and Cd exceeded the respective thresholds in two sites located downstream the mine area, they were greatly decreased in comparison with previous contamination levels, and the soluble concentrations of all the metal(loid)s were within the relevant thresholds in the sites far away from the mining area. Moreover, the closer to the mining area, the higher the pollution levels of metal(loid)s. The total hazard index for non-carcinogenic risks of metal(loid)s were basically lower than the threshold (1) for the local population. Whereas, although the content of metal(loid)s were low (such as As), they could pose relative higher non-carcinogenic health risks. The result illustrated that pollution levels, toxicity of the contaminants and exposure behavior patterns all could contribute to the potential detrimental health risks. Additionally, the non-carcinogenic and carcinogenic risks from ingestion exposure were ∼2-∼4 orders of magnitude higher than those from dermal contact. The total carcinogenic risks were basically lower than the maximum tolerable levels (1.0 × 10 -4 ), indicating carcinogenic risks from most areas of the river could also be accepted. Among different population groups, heavy metal(loid)s posed relative higher non-carcinogenic and carcinogenic risks to the children in

  18. Roles for root iron plaque in sequestration and uptake of heavy metals and metalloids in aquatic and wetland plants.

    Science.gov (United States)

    Tripathi, Rudra D; Tripathi, Preeti; Dwivedi, Sanjay; Kumar, Amit; Mishra, Aradhana; Chauhan, Puneet S; Norton, Gareth J; Nautiyal, Chandra S

    2014-10-01

    Toxic metal(loid) contamination of soil and sediment poses long term risk to soil and human health through plant-human or plant-animal-human food chain pathways. Iron plaque (IP) formation is frequent in aquatic and wetland plant species and is responsible for the sequestration of various metal(loids). The presence of IP may act as a buffer or barrier and may thus enhance or reduce the uptake of potentially phytotoxic metals and metalloids by plants. If IP acts as a barrier, then low IP producing macrophytes/aquatic plants may be better accumulators of toxic metals and may find use in constructed wetlands for remediation of pollutants, while high IP forming edible plant species could be safer for human consumption. Conversely, if IP acts as a buffer for mineral nutrients and toxic elements then those cultivars may be rich in nutrients, but may also cause toxicity. However, an ecotoxicological risk is also inevitable if IP rich macrophyte roots containing heavy metals are consumed by herbivores. In this review, we summarize the current understanding about the role of IP in metal and metalloid sequestration, uptake, and transport. Furthermore, we will address the role of root IP in Oryza sativa for arsenic (As) sequestration leading to lower grain As translocation, reducing the risk of human exposure.

  19. Eriophorum angustifolium and Lolium perenne metabolic adaptations to metals- and metalloids-induced anomalies in the vicinity of a chemical industrial complex.

    Science.gov (United States)

    Anjum, Naser A; Ahmad, Iqbal; Rodrigues, Sónia M; Henriques, Bruno; Cruz, Nuno; Coelho, Cláudia; Pacheco, Mário; Duarte, Armando C; Pereira, Eduarda

    2013-01-01

    As plants constitute the foundation of the food chain, concerns have been raised about the possibility of toxic concentrations of metals and metalloids being transported from plants to the higher food chain strata. In this perspective, the use of important phytotoxicity endpoints may be of utmost significance in assessing the hazardous nature of metals and metalloids and also in developing ecological soil screening levels. The current study aimed to investigate the role of glutathione (GSH) and its associated enzymes in the metabolic adaptation of two grass species namely Eriophorum angustifolium Honck. and Lolium perenne L. to metals and metalloids stress in the vicinity of a chemical industrial complex (Estarreja, Portugal). Soil and plant samples were collected from contaminated (C) and non-contaminated (reference, R) sites, respectively, near and away from the Estarreja Chemical Complex, Portugal. Soils (from 0 to 10 and 10 to 20 cm depths) were analyzed for pH, organic carbon, and metals and metalloids concentrations. Plant samples were processed fresh for physiological and biochemical estimations, while oven-dried plant samples were used for metals and metalloids determinations following standard methodologies. Both soils and plants from the industrial area exhibited differential concentrations of major metals and metalloids including As, Cu, Hg, Pb, and Zn. In particular, L. perenne shoot displayed significantly higher and lower concentrations of Pb and As, respectively at contaminated site (vs. E. angustifolium). Irrespective of sites, L. perenne shoot exhibited significantly higher total GSH pool, oxidized glutathione (GSSG) and oxidized protein (vs. E. angustifolium). Additionally, severe damages to photosynthetic pigments, proteins, cellular membrane integrity (in terms of electrolyte leakage), and lipid peroxidation were also perceptible in L. perenne shoot. Contrarily, irrespective of the sites, activities of catalase and GSH-regenerating enzyme, GSH

  20. Stabilization of metal(loid)s in two contaminated agricultural soils: Comparing biochar to its non-pyrolysed source material.

    Science.gov (United States)

    Trakal, Lukáš; Raya-Moreno, Irene; Mitchell, Kerry; Beesley, Luke

    2017-08-01

    Two metal(loid) contaminated agricultural soils were amended with grape stalk (wine production by-product)-derived biochar as well as its pre-pyrolysed origin material, to investigate their geochemical impacts on As, Cr, Cu and Zn. Detailed physico-chemical evaluation combined with a column leaching test determined the retention of metal(loid)s from soil solution by each amendments. A pot experiment measured metal(loid)s in soil pore water and their uptake to ryegrass when the amendments were mixed into soils at 1 and 5% (w/w). Total Cr and Zn concentrations were reduced furthest in column leachates by the addition of raw material and biochar respectively, compared to the untreated soil; Cr(III) was the predominant specie initially due to rapid acidification of leachates and organic complexation resulting from raw material addition. Loadings of metal(loid)s to the amendments recovered from the post-leached columns were in the order Cu » Zn > Cr ≈ As. In the pot test ryegrass Cr uptake was initiated by the addition of both amendments, compared to the untreated soil, whereas only biochar addition resulted in significant increases in Zn uptake, explained by its significant enhancement of ryegrass biomass yield, especially at 5% dosage; raw material addition significantly decreased biomass yields. Inconsistent relationships between pore water parameters and ryegrass uptake were common to both soils investigated. Therefore, whilst both amendments modified soil metal(loid) geochemistry, their effects differed fundamentally; in environmental risk management terms these results highlight the need to investigate the detailed geochemical response of contaminated soils to diverse organic amendment additions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Health risk assessment of various metal(loid)s via multiple exposure pathways on children living near a typical lead-acid battery plant, China

    International Nuclear Information System (INIS)

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2015-01-01

    Manufacture of lead-acid batteries is of widespread interest because of its emissions of heavy metals and metalloids into environment, harming environmental quality and consequently causing detrimental effects on human health. In this study, exposure pathways and health risks of children to heavy metal(loid)s (Pb, Cd, As, etc) were investigated based on field sampling and questionnaire. Pb was one of the most abundant elements in children's blood, with an elevated blood lead level of 12.45 μg dL −1 . Soil/dust and food were heavily polluted by targeted metal(loid)s. Food ingestion accounted for more than 80% of the total exposure for most metal(loid)s. The non-cancer risks to children were 3–10 times higher than the acceptable level of 1, while the cancer risks were 5–200 times higher than the maximum acceptable level of 1.0 × 10 −4 . The study emphasized the significance of effective environmental management, particularly to ensure food security near battery facilities. - Highlights: • The health risks of children living around a typical lead-acid battery was analyzed. • The exposure pathways of children to 12 heavy metal(loid)s were assessed. • Courtyard soil and indoor dust and duplicate food were contaminated by metal(loid)s. • Food ingestion was the major pathway for children's exposure to most metal(loid)s. • Higher potentially non-cancer and cancer risks happened to the local children. - The children living around a typical lead-acid battery plant suffered from serious health risks, which mainly attributed to food ingestion and air inhalation exposure

  2. Metals and metalloids in precipitation collected during CHINARE campaign from Shanghai, China, to Zhongshan Station, Antarctica: Spatial variability and source identification

    Science.gov (United States)

    Shi, G.; Teng, J.; Ma, H.; Li, Y.; Sun, B.

    2015-06-01

    Metals and metalloids in continental precipitation have been widely observed, but the data over open oceans are still very limited. Investigation of metals and metalloids in marine precipitation is of great significance to understand global transport of these elements in the atmosphere and their input fluxes to the oceans. So shipboard sampling of precipitation was conducted during a Chinese National Antarctic Research Expedition campaign from Shanghai, China, to Zhongshan Station, East Antarctica, and 22 samples (including 17 rainfall and 5 snowfall events) were collected and analyzed for concentrations of Pb, Ni, Cr, Cu, Co, Hg, As, Cd, Sb, Se, Zn, Mn, and Ti. Results show that concentrations of both metals and metalloids vary considerably along the cruise, with higher concentrations at coastal sites and lower values on the south Indian Ocean. Although only soluble fractions were determined for elements, concentrations in this study are generally comparable to the reported values of marine rain. Enrichment factor analysis shows that most of metals and metalloids are enriched versus crustal sources, even in the samples collected from remote south Indian Ocean. In addition, metals and metalloids in precipitation are also very enriched above sea-salt abundance, indicating that impacts of sea-salt aerosols on their concentrations are negligible. Main sources of metals and metalloids were explored with the aid of multivariate statistical analyses. The results show that human emissions have far-reaching distribution, which may exert an important influence on the solubility of elements in precipitation. This investigation provides valuable information on spatial variation and possible sources of trace elements in precipitation over the open oceans corresponding to understudied region.

  3. Setting water quality criteria in China: approaches for developing species sensitivity distributions for metals and metalloids.

    Science.gov (United States)

    Liu, Yuedan; Wu, Fengchang; Mu, Yunsong; Feng, Chenglian; Fang, Yixiang; Chen, Lulu; Giesy, John P

    2014-01-01

    Both nonparametric and parametric approaches were used to construct SSDs for use in ecological risk assessments. Based on toxicity to representative aquatic species and typical water contaminants of metals and metalloids in China, nonparametric methods based on the bootstrap were statistically superior to the parametric curve-fitting approaches. Knowing what the SSDs for each targeted species are might help in selecting efficient indicator species to use for water quality monitoring. The species evaluated herein showed sensitivity variations to different chemical treatments that were used in constructing the SSDs. For example, D. magna was more sensitive than most species to most chemical treatments, whereas D. rerio was sensitive to Hg and Pb but was tolerant to Zn. HC5 values, derived for the pollutants in this study for protecting Chinese species, differed from those published by the USEPA. Such differences may result from differences in geographical conditions and biota between China and the United States. Thus, the degree of protection desired for aquatic organisms should be formulated to fit local conditions. For approach selection, we recommend all approaches be considered and the most suitable approaches chosen. The selection should be based on the practical information needs of the researcher (viz., species composition, species sensitivity, and geological characteristics of aquatic habitats), since risk assessments usually are focused on certain substances, species, or monitoring sites. We used Tai Lake as a typical freshwater lake in China to assess the risk of metals and metalloids to the aquatic species. We calculated hazard quotients for the metals and metalloids that were found in the water of this lake. Results indicated the decreasing ecological risk of these contaminants in the following order: Hg metalloids to aquatic species. Based on the MEC and HC5 derived from SSDs by nonparametric and parametric approaches together, the risk levels of metals

  4. Comparison of sample preparation procedures on metal(loid) fractionation patterns in lichens.

    Science.gov (United States)

    Kroukamp, E M; Godeto, T W; Forbes, P B C

    2017-08-13

    The effects of different sample preparation strategies and storage on metal(loid) fractionation trends in plant material is largely underresearched. In this study, a bulk sample of lichen Parmotrema austrosinense (Zahlbr.) Hale was analysed for its total extractable metal(loid) content by ICP-MS, and was determined to be adequately homogenous (sample were prepared utilising a range of sample preservation techniques and subjected to a modified sequential extraction procedure or to total metal extraction. Both experiments were repeated after 1-month storage at 4 °C. Cryogenic freezing gave the best reproducibility for total extractable elemental concentrations between months, indicating this to be the most suitable method of sample preparation in such studies. The combined extraction efficiencies were >82% for As, Cu, Mn, Pb, Sr and Zn but poor for other elements, where sample preparation strategies 'no sample preparation' and 'dried in a desiccator' had the best extraction recoveries. Cryogenic freezing procedures had a significantly (p sample cleaning and preservation when species fractionation patterns are of interest. This study also shows that the assumption that species stability can be ensured through cryopreservation and freeze drying techniques needs to be revisited.

  5. Distribution of metal and metalloid elements in human scalp hair in Taiyuan, China.

    Science.gov (United States)

    Zhu, Yuen; Wang, Yuzhe; Meng, Fanjian; Li, Lifen; Wu, Shan; Mei, Xiaohui; Li, Hua; Zhang, Guixiang; Wu, Daishe

    2018-02-01

    This study investigated the levels of metal and metalloid elements (As, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Ni, Pb, and Zn) in scalp hair samples collected from 161 people of different age and gender groups living in the six districts of Taiyuan, an industrial city with rich coal reserve in Shanxi province in China. Levels of most elements in the hair were high in the 26-40 age groups and increased with the length of residence. Calcium, Cr, Mg, Ni and Zn levels in the females' hair were significantly higher than those in the males' (p industrial and non-industrial districts because most of industry factories are in the upper wind position in Taiyuan, and contamination is prone to spread to non-industrial districts. The principal component analysis indicates that the main sources of these elements are mining activities, the neighboring stainless steel industry, and coal combustion. These results indicate that the industrial activities primarily contribute to the metal and metalloid pollution in Taiyuan, whereas numerous factors caused the metals accumulation in hair. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Determination of soluble ultra-trace metals and metalloids in rainwater and atmospheric deposition fluxes: a 2-year survey and assessment.

    Science.gov (United States)

    Montoya-Mayor, R; Fernández-Espinosa, A J; Seijo-Delgado, I; Ternero-Rodríguez, M

    2013-08-01

    The present work investigates the relationships between composition of rainwater and dry deposition fluxes by trace metals and metalloids. A modification in automatic "wet-only" and "dry-only" samplers was applied, which allowed the collection and conservation of samples separately. ICP-MS technique was used for the determination of analytes in samples. Concentrations of soluble elements in rainwater were measured directly in filtered samples. A sequential acid treatment with nitric, hydrofluoric and finally perchloric acids was used to measure the total contents of metals and metalloids in coarse particles. Variation between periods of heavy and light rains was assessed. Almost all of the metals and metalloids - B, Tl, Th, U, Al, Cs, Be, Ti and others - studied in dry deposition showed important decreases in concentrations (40-92%) during periods of heavy rainfall. Most of these metals and metalloids - As, Cr, Co, Ni - presented their highest levels (53-90%) in heavy rainfall periods in rainwater samples. Sources were identified in both types of samples collected using a new chemometric tool (SPCA). Urban traffic, surrounding contaminated soils and local anthropogenic sources were identified for rainwater samples. Natural and contaminated soils and general anthropogenic emissions were the sources identified for dry deposition fluxes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Continuous leaching modifies the surface properties and metal(loid) sorption of sludge-derived biochar.

    Science.gov (United States)

    Feng, Mingyu; Zhang, Weihua; Wu, Xueyong; Jia, Yanming; Jiang, Chixiao; Wei, Hang; Qiu, Rongliang; Tsang, Daniel C W

    2018-06-01

    After the application of sludge derived biochar (SDBC) for soil stabilization, it is subjected to continuous leaching that may change its surface properties and metal(loid) immobilization performance. This study simulated the continuous leaching through the fresh SDBC sample in columns with unsaturated and saturated zones under flushing with 0.01M NaNO 3 solution (pH5.5) and acidic solution (pH adjusted to 3.2 by HNO 3 :H 2 SO 4 =1:2), respectively. The resultant changes were assessed in terms of the SDBC surface characteristics and metal(loid) sorption capacities. Continuous leaching was found to gradually decrease the density of basic functional groups and increase the density of carboxyl groups as well as cation exchange capacity on the SDBC surface. It was attributed to the surface acidification and oxidation process by the leaching process, yet it occurred to a lesser extent than the atmospheric exposure. Continuous leaching increased Pb(II), Cr(VI), and As(III) sorption capacity of the SDBC, probably because the increase in carboxyl groups promoted inner-sphere complexation and Fe oxidation as revealed by spectroscopic analysis. It was noteworthy that the SDBC in the unsaturated and saturated zones under continuous leaching displayed distinctive effects on metal(loid) sorption capacity than the atmospheric exposure. Future investigations are needed for understanding the fate and interactions of the SDBC under varying redox conditions and intermittent leaching process. Copyright © 2017. Published by Elsevier B.V.

  8. Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) from the karstic Croatian river Krka.

    Science.gov (United States)

    Dragun, Zrinka; Filipović Marijić, Vlatka; Krasnići, Nesrete; Ivanković, Dušica; Valić, Damir; Žunić, Jakov; Kapetanović, Damir; Smrzlić, Irena Vardić; Redžović, Zuzana; Grgić, Ivana; Erk, Marijana

    2018-01-01

    Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) were studied in the period from April 2015 to May 2016 at two sampling sites on Croatian river Krka, to establish if river water contamination with metals/metalloids downstream of Knin town has influenced metal bioaccumulation in S. trutta liver. Differences were observed between two sites, with higher concentrations of several elements (Ag, As, Ca, Co, Na, Se, Sr, V) found downstream of Knin town, whereas few others (Cd, Cs, Mo, Tl) were, unexpectedly, increased at the Krka River spring. However, total metal/metalloid concentrations in the liver of S. trutta from both sites of the Krka River were still mainly below previously reported levels for pristine freshwaters worldwide. The analysis of seasonal changes of metal/metalloid concentrations in S. trutta liver and their association with fish sex and size mostly indicated their independence of fish physiology, making them good indicators of water contamination and exposure level. Metal/metalloid concentrations in the metabolically available hepatic cytosolic fractions reported in this study are the first data of that kind for S. trutta liver, and the majority of analyzed elements were present in the cytosol in the quantity higher than 50% of their total concentrations, thus indicating their possible availability for toxic effects. However, the special attention should be directed to As, Cd, Cs, and Tl, which under the conditions of increased exposure tended to accumulate more within the cytosol. Although metal/metalloid concentrations in S. trutta liver were still rather low, monitoring of the Krka River water quality and of the health status of its biota is essential due to a trend of higher metal/metalloid bioaccumulation downstream of Knin town, especially taking into consideration the proximity of National Park Krka and the need for its conservation. Copyright © 2017 Elsevier Inc. All

  9. Metals, Metalloids and Radionuclides in the Baltic Sea Ecosystem

    International Nuclear Information System (INIS)

    Szefer, P.

    2002-01-01

    The state of knowledge of the distribution, bioavailability, biomagnification, discrimination, fate and sources of chemical pollutants (metals, metalloids, radionuclides and nutrients) in all compartments (atmosphere, water, deposits, biota) of the Baltic environment is presented. Particular components of the Baltic ecosystem are considered as potential monitors of pollutants. Budgets of chemical elements and the ecological status of the Baltic Sea in the past, present and future are presented. Estimates of health risks to man in respect to some toxic metals and radionuclides in fish and seafood are briefly discussed. The content of the book makes possible the identification of gaps in our environmental knowledge of the Baltic Sea, with certain sections establishing possible priorities, key areas or strategies for future research

  10. Ecological and human health risks from metal(loid)s in peri-urban soil in Nanjing, China.

    Science.gov (United States)

    Ding, Zhuhong; Hu, Xin

    2014-06-01

    In order to investigate the ecological and human health risks of metal(loid)s (Cu, Pb, Zn, Ni, Cd, Mn, Cr, and As) in peri-urban soils, 43 surface soil samples were collected from the peri-urban area around Nanjing, a megacity in China. The average contents were 1.19, 67.8, 37.6, 105, 167, 44.6, 722, and 50.8 mg kg(-1) for Cd, Cr, Ni, Pb, Zn, Cu, Mn, and As, respectively. A significant positive correlation was found between Cu, Pb, Zn, Cd, Mn, and As (p urban soil samples. Potential ecological risk indices show that the metal(loid)s in the soil could result in higher ecological risks. Cd is the main contributor to the risk, followed by As. The levels of Cu, Pb, Zn, Cd, Mn, and As in stomach and intestinal phases show a positive linear correlation with their total contents. Mn, Zn, Ni, Cd, and Pb in stomach phase showed higher bioaccessibility, while in intestinal phase, Cu, Cr, and As had the higher bioaccessibility. The carcinogenic risk in children and adults posed by As, Pb, and Cr via ingestion was deemed acceptable. The non-carcinogenic risks posed by these metal(loid)s via ingestion to children are higher than to adults and mainly result from As.

  11. Decreased vaccine antibody titers following exposure to multiple metals and metalloids in e-waste-exposed preschool children.

    Science.gov (United States)

    Lin, Xinjiang; Xu, Xijin; Zeng, Xiang; Xu, Long; Zeng, Zhijun; Huo, Xia

    2017-01-01

    We explored acquired immunity resulting from vaccination in 3 to 7-year-old children, chronically exposed to multiple heavy metals and metalloids, in an e-waste recycling area (Guiyu, China). Child blood levels of ten heavy metals and metalloids, including lead (Pb), arsenic (As), mercury (Hg), chromium (Cr), cadmium (Cd), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn) and selenium (Se), and seven vaccine antibodies (diphtheria, pertussis, tetanus, hepatitis B, Japanese encephalitis, polio, measles) were measured. The exposed group had higher levels of blood Pb, Mn, Cu, Zn and Cr compared to the reference group (P 10 μg/dL) and high blood Cu and Zn (upper median value of each group) to be inversely associated with seven antibody titers. Antibody titers increased with age, BMI, high blood Mn (>15 μg/L), and high blood Cd and Ni (upper median value of each group). Results suggest multiple heavy metal and metalloid exposure, especially to Pb, Zn and Cu, may be a risk factor inhibiting the development of child immunity, resulting in decreased child antibody levels against vaccines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. In-Situ Analysis Of Metal(loid)s In Plants: State Of The Art And Artefacts

    Science.gov (United States)

    Metals and metalloids play important roles in plant function and metabolism. Likewise, plants subsequently introduce vital dietary nutrition to people and animals. Understanding the transport, localisation and speciation of these elements is critical for understanding availabil...

  13. Biosorbents for Removing Hazardous Metals and Metalloids

    Directory of Open Access Journals (Sweden)

    Katsutoshi Inoue

    2017-07-01

    Full Text Available Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II, Cr(VI, Sb(III and V, and As(III and V were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II. Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide into biosorbents that effectively removed Pb(II. These materials also effectively removed Sb(III and V and As(III and V when these were preloaded with multi-valent metal ions such as Zr(IV and Fe(III. Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI, were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid.

  14. Supplementary dataset for child and adult exposure and health risk evaluation following the use of metal- and metalloid-containing costume cosmetics sold in the United States

    Directory of Open Access Journals (Sweden)

    Angela L. Perez

    2017-08-01

    Full Text Available The data presented in this article are related to the research article entitled "Child and adult exposure and health risk evaluation following the use of metal- and metalloid-containing costume cosmetics sold in the United States" [1]. This article describes the concentration of metals and metalloids contained in various cosmetic products such as body paint, lipstick and eye shadow, the relative percent deviation of two analyses performed on the products and the physico-chemico properties of the metals and metalloids used in the SkinPerm model presented in the aforementioned article.

  15. Mobility and toxicity of heavy metal(loid)s arising from contaminated wood ash application to a pasture grassland soil.

    Science.gov (United States)

    Mollon, L C; Norton, G J; Trakal, L; Moreno-Jimenez, E; Elouali, F Z; Hough, R L; Beesley, L

    2016-11-01

    Heavy metal(loid) rich ash (≤10,000 mg kg -1 total As, Cr, Cu and Zn) originating from the combustion of contaminated wood was subjected to several experimental procedures involving its incorporation into an upland pasture soil. Ash was added to soil that had been prior amended with local cattle manure, replicating practices employed at the farm scale. Metal(loid) concentrations were measured in soil pore water and ryegrass grown on soil/manure plus ash mixtures (0.1-3.0% vol. ash) in a pot experiment; toxicity evaluation was performed on the same pore water samples by means of a bacterial luminescence biosensor assay. Thereafter a sequential extraction procedure was carried out on selected soil, manure and ash mixtures to elucidate the geochemical association of ash derived metal(loid)s with soil constituents. Predictive modelling was applied to selected data from the pot experiment to determine the risk of transfer of As to meat and milk products in cattle grazing pasture amended with ash. The inclusion of manure to soils receiving ash reduced phyto-toxicity and increased ryegrass biomass yields, compared to soil with ash, but without manure. Elevated As and Cu concentrations in pore water and ryegrass tissue resulting from ash additions were reduced furthest by the inclusion of manure due to an increase in their geochemical association with organic matter. Zinc was the only measured metal(loid) to remain uniformly soluble and bioavailable regardless of the addition of ash and manure. Risk modelling on pot experimental data highlighted that an ash addition of >1% (vol.) to this pasture soil could result in As concentrations in milk and meat products exceeding acceptable limits. The results of this study therefore suggest that even singular low doses of ash applied to soil increase the risk of leaching of metal(loid)s and intensify the risk of As transfer in the food chain. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, Patricia; Felix, Omar [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Alexander, Caitlin; Lutz, Eric [Division of Community, Environment, and Policy, Mel and Enid Zuckerman College of Public Health, University of Arizona, 1656 E. Mabel St., Tucson, AZ 85724 (United States); Ela, Wendell [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States); Eduardo Sáez, A., E-mail: esaez@arizona.edu [Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, AZ 85721 (United States)

    2014-09-15

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure.

  17. Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits

    International Nuclear Information System (INIS)

    Gonzales, Patricia; Felix, Omar; Alexander, Caitlin; Lutz, Eric; Ela, Wendell; Eduardo Sáez, A.

    2014-01-01

    Highlights: • A laboratory dust fractionator was developed for the production of respirable dust. • The size-dependent distribution of arsenic and lead in mine tailings dust is reported. • Metal and metalloid contaminants are enriched in particles smaller than 10 μm. • Lead isotope signatures show spread of mine tailings particles onto surrounding soils. - Abstract: The particle size distribution of mine tailings material has a major impact on the atmospheric transport of metal and metalloid contaminants by dust. Implications to human health should be assessed through a holistic size-resolved characterization involving multidisciplinary research, which requires large uniform samples of dust that are difficult to collect using conventional atmospheric sampling instruments. To address this limitation, we designed a laboratory dust generation and fractionation system capable of producing several grams of dust from bulk materials. The equipment was utilized in the characterization of tailings deposits from the arsenic and lead-contaminated Iron King Superfund site in Dewey-Humboldt, Arizona. Results show that metal and metalloid contaminants are more concentrated in particles of <10 μm aerodynamic diameter, which are likely to affect surrounding communities and ecosystems. In addition, we traced the transport of contaminated particles from the tailings to surrounding soils by identifying Pb and Sr isotopic signatures in soil samples. The equipment and methods developed for this assessment ensure uniform samples for further multidisciplinary studies, thus providing a tool for comprehensive representation of emission sources and associated risks of exposure

  18. [Source identification and potential ecological hazards assessment of trace metalloid/heavy metals in the soil of Tianshan Mountains, Xinjiang, China].

    Science.gov (United States)

    Zhang, Zhao-Yong; Jilili, Abuduwailil; Jiang, Feng-Qing

    2014-11-01

    In this study, the contents of ten metalloid/heavy metals (As, Pb, Ni, Cd, Co, Hg, Cu, Mn, Zn and Cr) in soil samples collected from three sections including the central Urumqi-Akesu, eastern Blikun-Yiwu and western Zhaosu-Tekesi in Tianshan Mountains were determined, and their sources were identified by using typical statistical and multivariate statistical methods. The potential ecological risks of these heavy metals were assessed by employing pollution index method, potential ecological risk index and the background values of Tianshan Mountains, and Xinjiang, and also the Second National Standard of the Soil Qualities of China. The results showed that the contents of the heavy metals (Pb, Ni, Cd, Co, Hg, Cu, Mn Zn and Cr) and metalloid As were all higher than the soil background values of the Tianshan Mountain or Xinjiang, and their variation co- efficients belonged to the medium variation. In general, the contents of the ten metalloid/heavy metals in the soil of Tianshan Mountains were low. Principal component analysis showed that the ten metalloid/heavy metals could be identified as two principal components, among which PC1 (Cd, Pb, Hg, Mn and Zn) could be seen as 'human influence sources factor', PC2 (Cu, Ni, Cr, Co and As) as 'natural sources factor'. Mn and As had larger loads both in PC1 and PC2, and they could be co-influenced by human and natural sources. The pollution assessment showed that Hg and Cd in central Urumuqi-Akesu section and As in western Zhaosu-Tekesi section were all at alert level, while the other heavy metals in other sections were all at security level. From the comprehensive pollution indices (P(z)) of heavy metals, it was found that the ten metalloid/heavy metals in the soils of central Urumqi-Akesu section were at low pollution level, but those in the other two sections were at clean level. The potential ecological risk assessment showed that the potential ecological risk coefficient (E(i)r) and the ecological damage index (RI) of Hg

  19. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana.

    Science.gov (United States)

    Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

    2014-02-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. © 2013. Published by Elsevier B.V. All rights reserved.

  20. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces.

    Science.gov (United States)

    Huang, Guanxing; Zhang, Ming; Liu, Chunyan; Li, Liangping; Chen, Zongyu

    2018-09-01

    Urbanization and industrialization have increased groundwater resource demands, and may drive the change of heavy metal(loid)s and organic chemicals in groundwater in the Pearl River Delta (PRD), southern China. Thus, a comprehensive understanding of the distributions, sources, and driving forces of heavy metal(loid)s and organic chemicals in groundwater in the PRD is vital for water resource management in this region. In this study, eight heavy metal(loid)s and fifty-five organic chemicals in groundwater across the PRD were investigated. The results show that undrinkable groundwater related to heavy metal(loid)s was mainly due to high concentrations of Fe (19.3%) and As (6.8%). Eighteen organic contaminants were detected in groundwater in the PRD, where the most frequently detected organic contaminant was naphthalene, and its detection rate was 2.51%. In 5.3% of all groundwater samples, one or more organic contaminants were found. All detected organic contaminants, except ones without allowable limits, in groundwater were at concentrations below allowable limits of China. The mean concentrations of heavy metal(loid)s in granular aquifers were higher than those in fissured and karst aquifers, especially for Fe and As. Except Se, the mean concentrations of other heavy metal(loid)s and the frequency of detection of organic contaminants in groundwater in urbanized and peri-urban areas were higher than those in non-urbanized areas, especially for Hg, Co, and organic contaminants. Fe, As, and Se in groundwater mainly originated from the release of Fe/As/Se rich sediments. The former two were driven by reduction reactions, while the latter was driven by oxidation resulting from the infiltration of NO 3 - . In contrast, other five heavy metal(loid)s and organic contaminants in groundwater mainly originated from the anthropogenic sources, such as the infiltration of industrial sewage. It is evident that urbanization and industrialization are two powerful driving forces for

  1. Global DNA methylation in earthworms: A candidate biomarker of epigenetic risks related to the presence of metals/metalloids in terrestrial environments

    Energy Technology Data Exchange (ETDEWEB)

    Maldonado Santoyo, Maria; Rodriguez Flores, Crescencio; Lopez Torres, Adolfo; Wrobel, Kazimierz [Department of Chemistry, University of Guanajuato, L de Retana No 5, 36000 Guanajuato (Mexico); Wrobel, Katarzyna, E-mail: katarzyn@quijote.ugto.mx [Department of Chemistry, University of Guanajuato, L de Retana No 5, 36000 Guanajuato (Mexico)

    2011-10-15

    In this work, possible relationships between global DNA methylation and metal/metalloid concentrations in earthworms have been explored. Direct correlation was observed between soil and tissue As, Se, Sb, Zn, Cu, Mn, Ag, Co, Hg, Pb (p < 0.05). Speciation results obtained for As and Hg hint at the capability of earthworms for conversion of inorganic element forms present in soil to methylated species. Inverse correlation was observed between the percentage of methylated DNA cytosines and total tissue As, As + Hg, As + Hg + Se + Sb ({beta} = -0.8456, p = 0.071; {beta} = -0.9406, p = 0.017; {beta} = -0.9526, p = 0.012 respectively), as well as inorganic As + Hg ({beta} = -0.8807, p = 0.049). It was concluded that earthworms would be particularly helpful as bioindicators of elements undergoing in vivo methylation and might also be used to assess the related risk of epigenetic changes in DNA methylation. - Graphical abstract: Display Omitted Highlights: > Several metals and metalloids contribute to epigenetic gene regulation. > As, Hg, Se, Sb inversely correlated with global DNA methylation in earthworms. > Biomethylation of the above elements in worms suggested. > Elements biomethylation apparently competes with DNA methylation. > DNA methylation a biomarker of epigenetic risks related to soil metals/metalloids. - Biomethylation of As, Hg in earthworms versus DNA methylation - a candidate biomarker of epigenetic risks related to the presence of metals/metalloids in soil.

  2. Jacks of metal(loid chelation trade in plants – an overview

    Directory of Open Access Journals (Sweden)

    Naser A. Anjum

    2015-04-01

    Full Text Available Varied environmental compartments including soils are being contaminated by a myriad toxic metal(loids (hereafter termed as ‘metal/s’ mainly through anthropogenic activities. These metals may contaminate food chain and bring irreparable consequences in human. Plant-based approach (phytoremediation stands second to none among bioremediation technologies meant for sustainable cleanup of soils/sites with metal-contamination. In turn, the capacity of plants to tolerate potential consequences caused by the extracted/accumulated metals decides the effectiveness and success of phytoremediation system. Chelation is among the potential mechanisms that largely govern metal-tolerance in plant cells by maintaining low concentrations of free metals in cytoplasm. Metal-chelation can be performed by compounds of glutathione (GSH (reduced GSH; phytochelatins, PCs; metallothioneins, MTs and non-GSH (histidine, nicotianamine, organic acids origin. This paper presents an appraisal of recent reports on both GSH and non-GSH associated compounds in an effort to shed light on the significance of these compounds in metal-plant tolerance, as well as to provide scientific clues for the development of phytoextraction strategies.

  3. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China.

    Science.gov (United States)

    Chen, Qing; Pan, Xiao-Dong; Huang, Bai-Fen; Han, Jian-Long

    2018-02-23

    Concern about metals and metalloids, especially heavy metals in seaweeds has risen due to potential health risk. This study investigated the distribution of 10 metals and metalloids in 295 dried seaweeds (brown and red) and estimated the possible health risk via hazard index (HI). Elements in seaweeds can be sequenced in descending order by mean values: Al > Mn > As > Cu > Cr > Ni > Cd > Se > Pb > Hg. The levels of Cd, Cu, Mn and Ni in red seaweeds were significantly higher than those in brown seaweeds (P < 0.01). Correlation analysis showed contents of Ni-Cr (r = 0.59, P < 0.01) in seaweeds had moderate positive correlations. Seaweeds from different geographical origins had diverse element distribution. Risk assessment showed that HI at mean level was less than the threshold of 1. It indicates that for the general people there is low health risk to these elements by the intake of seaweeds. Furthermore, in terms of the confirmative toxicity of some metals, such as Cd, Pb and Hg, surveillance of metals in seaweeds should be performed continuously.

  4. Facultative hyperaccumulation of heavy metals and metalloids.

    Science.gov (United States)

    Pollard, A Joseph; Reeves, Roger D; Baker, Alan J M

    2014-03-01

    Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  5. Spatiotemporal distribution of airborne particulate metals and metalloids in a populated arid region

    Science.gov (United States)

    Prabhakar, Gouri; Sorooshian, Armin; Toffol, Emily; Arellano, Avelino F.; Betterton, Eric A.

    2014-08-01

    A statistical analysis of data from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network of aerosol samplers has been used to study the spatial and temporal concentration trends in airborne particulate metals and metalloids for southern Arizona. The study region is a rapidly growing area in southwestern North America characterized by high fine soil concentrations (among the highest in the United States), anthropogenic emissions from an area within the fastest growing region in the United States, and a high density of active and abandoned mining sites. Crustal tracers in the region are most abundant in the summer (April-June) followed by fall (October-November) as a result of dry meteorological conditions which favor dust emissions from natural and anthropogenic activity. A distinct day-of-week cycle is evident for crustal tracer mass concentrations, with the greatest amplitude evident in urban areas. There have been significant reductions since 1988 in the concentrations of toxic species that are typically associated with smelting and mining. Periods with high fine soil concentrations coincide with higher concentrations of metals and metalloids in the atmosphere, with the enhancement being higher at urban sites.

  6. Resolving colocalization of bacteria and metal(loid)s on plant root surfaces by combining fluorescence in situ hybridization (FISH) with multiple-energy micro-focused X-ray fluorescence (ME μXRF).

    Science.gov (United States)

    Honeker, Linnea K; Root, Robert A; Chorover, Jon; Maier, Raina M

    2016-12-01

    Metal(loid)-contamination of the environment due to anthropogenic activities is a global problem. Understanding the fate of contaminants requires elucidation of biotic and abiotic factors that influence metal(loid) speciation from molecular to field scales. Improved methods are needed to assess micro-scale processes, such as those occurring at biogeochemical interfaces between plant tissues, microbial cells, and metal(loid)s. Here we present an advanced method that combines fluorescence in situ hybridization (FISH) with synchrotron-based multiple-energy micro-focused X-ray fluorescence microprobe imaging (ME μXRF) to examine colocalization of bacteria and metal(loid)s on root surfaces of plants used to phytostabilize metalliferous mine tailings. Bacteria were visualized on a small root section using SytoBC nucleic acid stain and FISH probes targeting the domain Bacteria and a specific group (Alphaproteobacteria, Gammaproteobacteria, or Actinobacteria). The same root region was then analyzed for elemental distribution and metal(loid) speciation of As and Fe using ME μXRF. The FISH and ME μXRF images were aligned using ImageJ software to correlate microbiological and geochemical results. Results from quantitative analysis of colocalization show a significantly higher fraction of As colocalized with Fe-oxide plaques on the root surfaces (fraction of overlap 0.49±0.19) than to bacteria (0.072±0.052) (proots, metal(loid)s and microbes, information that should lead to improved mechanistic models of metal(loid) speciation and fate. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Biosorbents for Removing Hazardous Metals and Metalloids

    Science.gov (United States)

    Inoue, Katsutoshi; Parajuli, Durga; Ghimire, Kedar Nath; Biswas, Biplob Kumar; Kawakita, Hidetaka; Oshima, Tatsuya; Ohto, Keisuke

    2017-01-01

    Biosorbents for remediating aquatic environmental media polluted with hazardous heavy metals and metalloids such as Pb(II), Cr(VI), Sb(III and V), and As(III and V) were prepared from lignin waste, orange and apple juice residues, seaweed and persimmon and grape wastes using simple and cheap methods. A lignophenol gel such as lignocatechol gel was prepared by immobilizing the catechol functional groups onto lignin from sawdust, while lignosulfonate gel was prepared directly from waste liquor generated during pulp production. These gels effectively removed Pb(II). Orange and apple juice residues, which are rich in pectic acid, were easily converted using alkali (e.g., calcium hydroxide) into biosorbents that effectively removed Pb(II). These materials also effectively removed Sb(III and V) and As(III and V) when these were preloaded with multi-valent metal ions such as Zr(IV) and Fe(III). Similar biosorbents were prepared from seaweed waste, which is rich in alginic acid. Other biosorbents, which effectively removed Cr(VI), were prepared by simply treating persimmon and grape wastes with concentrated sulfuric acid. PMID:28773217

  8. Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: A review

    International Nuclear Information System (INIS)

    Marchand, L.; Mench, M.; Jacob, D.L.; Otte, M.L.

    2010-01-01

    This review integrates knowledge on the removal of metals and metalloids from contaminated waters in constructed wetlands and offers insight into future R and D priorities. Metal removal processes in wetlands are described. Based on 21 papers, the roles and impacts on efficiency of plants in constructed wetlands are discussed. The effects of plant ecotypes and class (monocots, dicots) and of system size on metal removal are addressed. Metal removal rates in wetlands depend on the type of element (Hg > Mn > Fe = Cd > Pb = Cr > Zn = Cu > Al > Ni > As), their ionic forms, substrate conditions, season, and plant species. Standardized procedures and data are lacking for efficiently comparing properties of plants and substrates. We propose a new index, the relative treatment efficiency index (RTEI), to quantify treatment impacts on metal removal in constructed wetlands. Further research is needed on key components, such as effects of differences in plant ecotypes and microbial communities, in order to enhance metal removal efficiency. - A new index, the relative treatment efficiency index (RTEI), to quantify treatment impacts on metal and metalloid removal in constructed wetlands.

  9. Health risk assessment of heavy metals and metalloid in drinking water from communities near gold mines in Tarkwa, Ghana.

    Science.gov (United States)

    Bortey-Sam, Nesta; Nakayama, Shouta M M; Ikenaka, Yoshinori; Akoto, Osei; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-07-01

    Concentrations of heavy metals and metalloid in borehole drinking water from 18 communities in Tarkwa, Ghana, were measured to assess the health risk associated with its consumption. Mean concentrations of heavy metals (μg/L) exceeded recommended values in some communities. If we take into consideration the additive effect of heavy metals and metalloid, then oral hazard index (HI) results raise concerns about the noncarcinogenic adverse health effects of drinking groundwater in Huniso. According to the US Environmental Protection Agency's (USEPA) guidelines, HI values indicating noncarcinogenic health risk for adults and children in Huniso were 0.781 (low risk) and 1.08 (medium risk), respectively. The cancer risk due to cadmium (Cd) exposure in adults and children in the sampled communities was very low. However, the average risk values of arsenic (As) for adults and children through drinking borehole water in the communities indicated medium cancer risk, but high cancer risk in some communities such as Samahu and Mile 7. Based on the USEPA assessment, the average cancer risk values of As for adults (3.65E-05) and children (5.08E-05) indicated three (adults) and five (children) cases of neoplasm in a hundred thousand inhabitants. The results of this study showed that residents in Tarkwa who use and drink water from boreholes could be at serious risk from exposure to these heavy metals and metalloid.

  10. Spatial clustering of metal and metalloid mixtures in unregulated water sources on the Navajo Nation - Arizona, New Mexico, and Utah, USA.

    Science.gov (United States)

    Hoover, Joseph H; Coker, Eric; Barney, Yolanda; Shuey, Chris; Lewis, Johnnye

    2018-08-15

    Contaminant mixtures are identified regularly in public and private drinking water supplies throughout the United States; however, the complex and often correlated nature of mixtures makes identification of relevant combinations challenging. This study employed a Bayesian clustering method to identify subgroups of water sources with similar metal and metalloid profiles. Additionally, a spatial scan statistic assessed spatial clustering of these subgroups and a human health metric was applied to investigate potential for human toxicity. These methods were applied to a dataset comprised of metal and metalloid measurements from unregulated water sources located on the Navajo Nation, in the southwest United States. Results indicated distinct subgroups of water sources with similar contaminant profiles and that some of these subgroups were spatially clustered. Several profiles had metal and metalloid concentrations that may have potential for human toxicity including arsenic, uranium, lead, manganese, and selenium. This approach may be useful for identifying mixtures in water sources, spatially evaluating the clusters, and help inform toxicological research investigating mixtures. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan, China: distribution, contamination, and ecological risk assessment.

    Science.gov (United States)

    Chai, Liyuan; Li, Huan; Yang, Zhihui; Min, Xiaobo; Liao, Qi; Liu, Yi; Men, Shuhui; Yan, Yanan; Xu, Jixin

    2017-01-01

    Here, we aim to determine the distribution, ecological risk and sources of heavy metals and metalloids in the surface sediments of the Xiangjiang River, Hunan Province, China. Sixty-four surface sediment samples were collected in 16 sites of the Xiangjiang River, and the concentrations of ten heavy metals and metalloids (Mn, Zn, Cr, V, Pb, Cu, As, Ni, Co, and Cd) in the sediment samples were investigated using an inductively coupled plasma mass spectrometer (ICP-MS) and an atomic fluorescence spectrophotometer (AFS), respectively. The results showed that the mean concentrations of the ten heavy metals and metalloids in the sediment samples followed the order Mn > Zn > Cr > V > Pb > Cu > As ≈ Ni >Co > Cd. The geoaccumulation index (I geo ), enrichment factor (EF), modified degree of contamination (mC d ), and potential ecological risk index (RI) revealed that Cd, followed by Pb, Zn, and Cu, caused severely contaminated and posed very highly potential ecological risk in the Xiangjiang River, especially in Shuikoushan of Hengyang, Xiawan of Zhuzhou, and Yijiawan of Xiangtan. The Pearson's correlation coefficient (PCC) analysis, principal component analysis (PCA), and hierarchical cluster analysis (HCA) indicated that the ten heavy metals and metalloids in the sampling sediments of the Xiangjiang River were classified into three groups: (1) Cd, Pb, Zn, and Cu which possibly originated from Shuikoushan, Xiawan, and Yijiawan clustering Pb-Zn mining and smelting industries; (2) Co, V, Ni, Cr, and Al from natural resources; and (3) Mn and As. Therefore, our results suggest that anthropogenic activities, especially mining and smelting, have caused severe contamination of Cd, Pb, Zn, and Cu and posed very high potential ecological risk in the Xiangjiang River.

  12. Behaviour of metalloids and metals from highly polluted soil samples when mobilized by water – Evaluation of static versus dynamic leaching

    International Nuclear Information System (INIS)

    Wennrich, Rainer; Daus, Birgit; Müller, Karsten; Stärk, Hans-Joachim; Brüggemann, Lutz; Morgenstern, Peter

    2012-01-01

    The mobilization behaviour of metalloids and metals when leached by water from highly polluted soil/sediment samples was studied using static and dynamic approaches employing batch methodology and rotating coiled columns (RCC), respectively. Increasing the solution-to-solid ratios during batch leaching resulted in different enhanced mobilization rates, which are element-specific and matrix-specific. When dynamic leaching is employed with continuous replacement of the eluent, a higher portion is mobilized than when using batch elution with an identical solid-to-water ratio. Using RCC the time-resolved leaching of the elements was monitored to demonstrate the leaching patterns. For the majority of elements a significant decrease could be shown in the mobilized portion of the elements with ongoing leaching process. The data were discussed targeted at solid liquid partitioning coefficients of the metal(loid)s. The capabilities in application of K d values was demonstrated for dynamic leaching which is relevant for environmental processes. - Highlights: ► We examine the mobilization of metal(loid)s by water under simulated conditions. ► Static versus dynamic leaching (RCC) with continuous supply of extractant was compared. ► RCC is favourable for detailed time-resolved investigations of the leaching behaviour. ► The influence of matrices on the leaching behaviour was investigated. ► The capabilities of the K d values in environmentally relevant processes is shown. - Dynamic leaching with continuous supply of water has proved as tool for long-term and time-resolved mobility of metal(loid)s in contaminated soils.

  13. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana

    Energy Technology Data Exchange (ETDEWEB)

    Itai, Takaaki, E-mail: itai@sci.ehime-u.ac.jp [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Otsuka, Masanari [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Asante, Kwadwo Ansong [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra (Ghana); Muto, Mamoru [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan); Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu [CSIR Water Research Institute, P. O. Box AH 38, Achimota, Accra (Ghana); Tanabe, Shinsuke [Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577 (Japan)

    2014-02-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1 M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. - Highlights: • Contamination on the largest e-waste recycling site in Africa was investigated. • Portable X-ray Fluorescence analyzer useful for first screening • High levels of Cu, Zn, Pb, and Al in soil/ash mixtures • Hazards for workers are significant.

  14. Variation and distribution of metals and metalloids in soil/ash mixtures from Agbogbloshie e-waste recycling site in Accra, Ghana

    International Nuclear Information System (INIS)

    Itai, Takaaki; Otsuka, Masanari; Asante, Kwadwo Ansong; Muto, Mamoru; Opoku-Ankomah, Yaw; Ansa-Asare, Osmund Duodu; Tanabe, Shinsuke

    2014-01-01

    Illegal import and improper recycling of electronic waste (e-waste) are an environmental issue in developing countries around the world. African countries are no exception to this problem and the Agbogbloshie market in Accra, Ghana is a well-known e-waste recycling site. We have studied the levels of metal(loid)s in the mixtures of residual ash, formed by the burning of e-waste, and the cover soil, obtained using a portable X-ray fluorescence spectrometer (P-XRF) coupled with determination of the 1 M HCl-extractable fraction by an inductively coupled plasma mass spectrometer. The accuracy and precision of the P-XRF measurements were evaluated by measuring 18 standard reference materials; this indicated the acceptable but limited quality of this method as a screening tool. The HCl-extractable levels of Al, Co, Cu, Zn, Cd, In, Sb, Ba, and Pb in 10 soil/ash mixtures varied by more than one order of magnitude. The levels of these metal(loid)s were found to be correlated with the color (i.e., soil/ash ratio), suggesting that they are being released from disposed e-waste via open burning. The source of rare elements could be constrained using correlation to the predominant metals. Human hazard quotient values based on ingestion of soil/ash mixtures exceeded unity for Pb, As, Sb, and Cu in a high-exposure scenario. This study showed that along with common metals, rare metal(loid)s are also enriched in the e-waste burning site. We suggest that risk assessment considering exposure to multiple metal(loid)s should be addressed in studies of e-waste recycling sites. - Highlights: • Contamination on the largest e-waste recycling site in Africa was investigated. • Portable X-ray Fluorescence analyzer useful for first screening • High levels of Cu, Zn, Pb, and Al in soil/ash mixtures • Hazards for workers are significant

  15. Factors of the accumulation of heavy metals and metalloids at geochemical barriers in urban soils

    Science.gov (United States)

    Kosheleva, N. E.; Kasimov, N. S.; Vlasov, D. V.

    2015-05-01

    The bulk contents and concentrations of mobile (extracted by an ammonium acetate buffer with EDTA) Cd, Pb, Sb, As, Bi, Zn, and Cu were determined in the surface horizons of urban soils in the Eastern administrative okrug of Moscow. The regression analysis showed that the accumulation of these metals and metalloids in the soils is controlled by the physicochemical soil properties and by number of anthropogenic factors and landscape conditions (geochemical position, type of loose deposits, character of land use, dust load, vehicle emissions, building pattern, percent of green areas, and the extent of sealed soils). The precipitation of studied elements on the geochemical barriers had the following regularities: Cd, Cu, and Zn accumulated on the alkaline barriers; Bi, Sb, As, Cu, Pb, and Zn, on chemisorption barriers; Sb, As, and Pb, on organomineral barriers; and Cd and Cu, on the sorption-sedimentation barriers. Technogenic transformation of the physicochemical properties of urban soils resulted in the increase of the mean bulk contents of heavy metals and metalloids by 33-99%; the portion of elements fixed on the geochemical barriers increased by 26-50%.

  16. Bioaccumulation of metals and metalloids in medicinal plant Ipomoea pes-caprae from areas impacted by tsunami.

    Science.gov (United States)

    Kozak, Lidia; Kokociński, Mikołaj; Niedzielski, Przemysław; Lorenc, Stanisław

    2015-02-01

    Tsunami events may have an enormous impact on the functioning of aquatic and terrestrial ecosystems by altering various relationships with biotic components. Concentrations of acid-leachable fractions of heavy metals and metalloids in soils and plant samples from areas affected by the December 2004 tsunami in Thailand were determined. Ipomoea pes-caprae, a common plant species growing along the seashore of this region, and frequently used in folk medicine, was selected to assess the presence of selected elements. Elevated amounts of Cd, Pb, Zn, and As in soil samples, and Pb, Zn, As, Se, Cr, and Ni in plant samples were determined from the tsunami-impacted regions for comparison with reference locations. The flowers of Ipomoea pes-caprae contained the highest amounts of these metals, followed by its leaves, and stems. In addition, its bioaccumulation factor (BAF) supports this capability of high metal uptake by Ipomoea pes-caprae from the areas affected by the tsunami in comparison with a reference site. This uptake was followed by the translocation of these elements to the various plant components. The presence of these toxic metals in Ipomoea pes-caprae growing in contaminated soils should be a concern of those who use this plant for medicinal purposes. Further studies on the content of heavy metals and metalloids in this plant in relation to human health concerns are recommended. © 2014 SETAC.

  17. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loids Pollution Based on Kriging Interpolation and BP Neural Network

    Directory of Open Access Journals (Sweden)

    Zhenyi Jia

    2017-12-01

    Full Text Available Soil pollution by metal(loids resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As and cadmium (Cd pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loids in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid pollution.

  18. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) model

    International Nuclear Information System (INIS)

    Mu, Yunsong; Wu, Fengchang; Chen, Cheng; Liu, Yuedan; Zhao, Xiaoli; Haiqing Liao; Giesy, John P.

    2014-01-01

    Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR–SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids. - Highlights: • We investigate relationships between σp and log-NOEC in eight species. • The QICAR–SSD model, FACR, and CMC/CCC were used to predict CCCs. • They are as a supplement to screening for toxicities, criteria and standards. - CCCs for 34 metals/metalloids were predicted by use of QICAR–SSD model and FACR method

  19. Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure.

    Science.gov (United States)

    Schreck, Eva; Laplanche, Christophe; Le Guédard, Marina; Bessoule, Jean-Jacques; Austruy, Annabelle; Xiong, Tiantian; Foucault, Yann; Dumat, Camille

    2013-08-01

    We investigate the effect of both foliar and root uptake of a mixture of metal(loid)s on the fatty acid composition of plant leaves. Our objectives are to determine whether both contamination pathways have a similar effect and whether they interact. Lactuca sativa L. were exposed to fine process particles enriched with metal(loid)s in an industrial area. Data from a first experiment were used to conduct an exploratory statistical analysis which findings were successfully cross-validated by using the data from a second one. Both foliar and root pathways impact plant leaf fatty acid composition and do not interact. Z index (dimensionless quantity), weighted product of fatty acid concentration ratios was built up from the statistical analyses. It provides new insights on the mechanisms involved in metal uptake and phytotoxicity. Plant leaf fatty acid composition is a robust and fruitful approach to detect and understand the effects of metal(loid) contamination on plants. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China

    OpenAIRE

    Guo, Li; Zhao, Weituo; Gu, Xiaowen; Zhao, Xinyun; Chen, Juan; Cheng, Shenggao

    2017-01-01

    Background: Mining activities always emit metal(loid)s into the surrounding environment, where their accumulation in the soil may pose risks and hazards to humans and ecosystems. Objective: This paper aims to determine of the type, source, chemical form, fate and transport, and accurate risk assessment of 17 metal(loid) contaminants including As, Cd, Cu, Ni, Pb, Zn, Cr, Ag, B, Bi, Co, Mo, Sb, Ti, V, W and Sn in the soils collected from an abandoned tungsten mining area, and to guide the imple...

  1. Influence of fine process particles enriched with metals and metalloids on Lactuca sativa L. leaf fatty acid composition following air and/or soil-plant field exposure

    International Nuclear Information System (INIS)

    Schreck, Eva; Laplanche, Christophe; Le Guédard, Marina; Bessoule, Jean-Jacques; Austruy, Annabelle; Xiong, Tiantian; Foucault, Yann; Dumat, Camille

    2013-01-01

    We investigate the effect of both foliar and root uptake of a mixture of metal(loid)s on the fatty acid composition of plant leaves. Our objectives are to determine whether both contamination pathways have a similar effect and whether they interact. Lactuca sativa L. were exposed to fine process particles enriched with metal(loid)s in an industrial area. Data from a first experiment were used to conduct an exploratory statistical analysis which findings were successfully cross-validated by using the data from a second one. Both foliar and root pathways impact plant leaf fatty acid composition and do not interact. Z index (dimensionless quantity), weighted product of fatty acid concentration ratios was built up from the statistical analyses. It provides new insights on the mechanisms involved in metal uptake and phytotoxicity. Plant leaf fatty acid composition is a robust and fruitful approach to detect and understand the effects of metal(loid) contamination on plants. -- Highlights: •The study compares foliar and root transfers of metal(loid)s and their effects on plants. •Field experiments are performed combining ecotoxicological and statistical analyses. •The use of leaf fatty acid composition is a relevant indicator of exposure pathway. •The uptake pathways are independent, with an additive effect in terms of phytotoxicity. -- Metal uptake via both foliar and root pathways alters in a distinctive manner the fatty acid composition of lettuce leaves

  2. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China

    International Nuclear Information System (INIS)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-01-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. -- Highlights: •Large-scale Pb/Zn smelters contributed to elevated trace elements in the street dust. •The hard alloy processing caused the enrichment of a few elements. •Cd, In, Zn, Ag and Pb were the most polluted elements. •Northwestern Zhuzhou suffered severe contamination for a range of trace elements. -- Pb/Zn smelting and hard alloy processing operations have caused seriously contamination of trace metal/metalloids in the street dust

  3. Comparison Study on the Estimation of the Spatial Distribution of Regional Soil Metal(loid)s Pollution Based on Kriging Interpolation and BP Neural Network.

    Science.gov (United States)

    Jia, Zhenyi; Zhou, Shenglu; Su, Quanlong; Yi, Haomin; Wang, Junxiao

    2017-12-26

    Soil pollution by metal(loid)s resulting from rapid economic development is a major concern. Accurately estimating the spatial distribution of soil metal(loid) pollution has great significance in preventing and controlling soil pollution. In this study, 126 topsoil samples were collected in Kunshan City and the geo-accumulation index was selected as a pollution index. We used Kriging interpolation and BP neural network methods to estimate the spatial distribution of arsenic (As) and cadmium (Cd) pollution in the study area. Additionally, we introduced a cross-validation method to measure the errors of the estimation results by the two interpolation methods and discussed the accuracy of the information contained in the estimation results. The conclusions are as follows: data distribution characteristics, spatial variability, and mean square errors (MSE) of the different methods showed large differences. Estimation results from BP neural network models have a higher accuracy, the MSE of As and Cd are 0.0661 and 0.1743, respectively. However, the interpolation results show significant skewed distribution, and spatial autocorrelation is strong. Using Kriging interpolation, the MSE of As and Cd are 0.0804 and 0.2983, respectively. The estimation results have poorer accuracy. Combining the two methods can improve the accuracy of the Kriging interpolation and more comprehensively represent the spatial distribution characteristics of metal(loid)s in regional soil. The study may provide a scientific basis and technical support for the regulation of soil metal(loid) pollution.

  4. Immunological alterations in individuals exposed to metal(loid)s in the Panasqueira mining area, Central Portugal.

    Science.gov (United States)

    Coelho, Patrícia; García-Lestón, Julia; Costa, Solange; Costa, Carla; Silva, Susana; Fuchs, Dietmar; Geisler, Simon; Dall'Armi, Valentina; Zoffoli, Roberto; Bonassi, Stefano; Pásaro, Eduardo; Laffon, Blanca; Teixeira, João Paulo

    2014-03-15

    Environmental studies performed in Panasqueira mine area (central Portugal) identified high concentrations of several metal(loid)s in environmental media, and individuals environmentally and occupationally exposed showed higher levels of As, Cr, Mg, Mn, Mo, Pb and Zn in blood, urine, hair and nails when compared to unexposed controls. To evaluate the presence of immunological alterations attributable to environmental contamination, we quantified neopterin, kynurenine, tryptophan, and nitrite concentrations in plasma, and analysed the percentage of several lymphocytes subsets, namely CD3(+), CD4(+) and CD8(+) T-cells, CD19(+) B-cells, and CD16(+)56(+) natural killer (NK) cells in a group of individuals previously tested for metal(loid) levels in different biological matrices. The environmentally exposed group had significantly lower levels of %CD8(+) and higher CD4(+)/CD8(+) ratios, whereas the occupationally exposed individuals showed significant decreases in %CD3(+) and %CD4(+), and significant increases in %CD16(+)56(+), when compared to controls. Analysed biomarkers were found to be influenced by age, particularly neopterin, kynurenine and kynurenine to tryptophan ratio (Kyn/Trp) with significantly higher levels in older individuals, and %CD3(+), %CD8(+) and %CD19(+) with significantly lower values in older individuals. Males environmentally exposed showed significantly lower values of %CD19(+) when compared to control females. The concentration of Pb in toenails was associated to the level of neopterin, kynurenine and Kyn/Trp ratio (all direct), and the concentration of Mn in blood to the level of %CD8(+), %CD19(+) (both inverse) and CD4(+)/CD8(+) ratio (direct). Overall our results show that the metal(loid) contamination in Panasqueira mine area induced immunotoxic effects in exposed populations, possibly increasing susceptibility to diseases. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A diffraction study of Cosub(81.5)Bsub(18.5) binary metallic glass

    International Nuclear Information System (INIS)

    Chadha, G.S.; Sakata, M.; Cowlam, N.

    1981-01-01

    Neutron and X-ray diffraction experiments are made on Cosub(81.5)Bsub(18.5) metallic glass. The neutron scattering cross section for boron is greater than that for cobalt, and the structure factor obtained with neutrons is rather different from that obtained with X-rays, which has the usual characteristic form. These structure factors, and the reduced RDF's which are derived from them can be qualitatively explained in terms of the dominant contributions from the metal-metal and metal-metalloid correlations. The local topological order in Cosub(81.5)Bsub(18.5) appears to be similar to that of other transition metal-metalloid glasses, with a metal-metalloid distance slightly shorter than the metal-metal spacing and a coordination number close to 12. (author)

  6. Data on metals (Zn, Al, Sr, and Co and metalloid (As concentration levels of ballast water in commercial ships entering Bushehr port, along the Persian Gulf

    Directory of Open Access Journals (Sweden)

    Farshid Soleimani

    2016-12-01

    Full Text Available In this article, we determined the concentration levels of metals including Zn, Al, Sr, and Co and metalloid of As of ballast water in commercial ships entering Bushehr port, along the Persian Gulf. Ballast water samples were taken from commercial ships entering Bushehr port from 34 ports around the world during 15 February and 25 August 2016. The concentration levels of metals and metalloid were determined by using a graphite furnace absorption spectrometer (AAS.

  7. Occurrence and risk assessment of trace metals and metalloids in sediments and benthic invertebrates from Dianshan Lake, China.

    Science.gov (United States)

    Wu, Yan; Zhou, Yihui; Qiu, Yanling; Chen, Da; Zhu, Zhiliang; Zhao, Jianfu; Bergman, Ǻke

    2017-06-01

    The present study measured concentrations of Cr, Ni, Cu, Zn, As, Cd, Sb, and Pb in surface sediments and two benthic invertebrate species (Anodonta woodiana and Bellamya aeruginosa) collected from Dianshan Lake, located in the Yangtze River Delta. The Dianshan Lake acts as one of the most important drinking water sources to Shanghai, the biggest city in China. Concentrations of trace metals and metalloids ranged from 0.04 mg/kg for Cd to 288.0 mg/kg for Zn. Substantial bioaccumulation in invertebrates was observed for Zn and Cu based on the biota-sediment accumulation factor (BSAF) measurements. The results revealed that concentrations of metals and metalloids in sediments from Dianshan Lake were at the lower end of the range of levels found in other regions of China. The assessment of three significantly inter-related evaluation indices, including the geo-accumulation Index (I geo ), potential ecological risk factor (Er i ), and mean probable effect concentration quotients (Q m-PEC ), suggested that sediment-associated trace elements exhibited no considerable ecological risks in the studied watershed. However, the target hazard quotient and hazard index analysis suggested that selected elements (particularly As) accumulation in edible tissues of benthic invertebrates could pose potential health risks to local populations, especially fishermen. Given that wild aquatic organisms (e.g., fish and bivalves) constitute the diet of local populations as popular food/protein choices, further investigations are needed to better elucidate human health risks from metal and metalloid exposure via edible freshwater organisms.

  8. Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review.

    Science.gov (United States)

    Alves, Georgina M S; Rocha, Luciana S; Soares, Helena M V M

    2017-12-01

    Nowadays, water is no longer regarded as an inexhaustible resource and the excessive release and proliferation of toxic metal(loid)s into aquatic environments has become a critical issue. Therefore, fast, accurate, simple, selective, sensitive and portable methodologies to detect multiple elements in natural waters is of paramount importance. Electrochemical stripping analysis is an efficient tool for trace metal(loid)s determinations and bring new prospects for answering the current environmental concerns. This review presents a survey of the advancements made between 2003 and 2016 on the development and application of non-toxic mercury free electrodes on the simultaneous analysis of metals and metalloids in waters and wastewaters by means of electroanalytical stripping techniques. The advantages, limitations, improvements and real applications of these "green" sensors are discussed from a critical point of view. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Metal and metalloid foliar uptake by various plant species exposed to atmospheric industrial fallout: Mechanisms involved for lead

    Energy Technology Data Exchange (ETDEWEB)

    Schreck, E., E-mail: eva.schreck@ensat.fr [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); Foucault, Y. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France); STCM, Societe de Traitements Chimiques des Metaux, 30 Avenue de Fondeyre 31200 Toulouse (France); Sarret, G. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Sobanska, S. [LASIR (UMR CNRS 8516), Universite de Lille 1, Bat. C5, 59655 Villeneuve d' Ascq cedex (France); Cecillon, L. [ISTerre (UMR 5275), Universite J. Fourier and CNRS, BP 53, 38041 Grenoble cedex 9 (France); Castrec-Rouelle, M. [Universite Pierre and Marie Curie (UPMC-Paris 6), Bioemco (Biogeochimie et Ecologie des Milieux Continentaux), Site Jussieu, Tour 56, 4 Place Jussieu, 75252 Paris cedex 05 (France); Uzu, G. [Laboratoire d' Aerologie (UMR 5560), OMP, UPS 14, Avenue Edouard Belin, 31400 Toulouse (France); GET (UMR 5563), IRD, 14, Avenue Edouard Belin, 31400 Toulouse (France); Dumat, C. [Universite de Toulouse (France); INP, UPS (France); EcoLab (Laboratoire Ecologie Fonctionnelle et Environnement) (France); ENSAT, Avenue de l' Agrobiopole, 31326 Castanet Tolosan (France); CNRS (France); EcoLab, 31326 Castanet Tolosan (France)

    2012-06-15

    Fine and ultrafine metallic particulate matters (PMs) are emitted from metallurgic activities in peri-urban zones into the atmosphere and can be deposited in terrestrial ecosystems. The foliar transfer of metals and metalloids and their fate in plant leaves remain unclear, although this way of penetration may be a major contributor to the transfer of metals into plants. This study focused on the foliar uptake of various metals and metalloids from enriched PM (Cu, Zn, Cd, Sn, Sb, As, and especially lead (Pb)) resulting from the emissions of a battery-recycling factory. Metal and metalloid foliar uptake by various vegetable species, exhibiting different morphologies, use (food or fodder) and life-cycle (lettuce, parsley and rye-grass) were studied. The mechanisms involved in foliar metal transfer from atmospheric particulate matter fallout, using lead (Pb) as a model element was also investigated. Several complementary techniques (micro-X-ray fluorescence, scanning electron microscopy coupled with energy dispersive X-ray microanalysis and time-of-flight secondary ion mass spectrometry) were used to investigate the localization and the speciation of lead in their edible parts, i.e. leaves. The results showed lead-enriched PM on the surface of plant leaves. Biogeochemical transformations occurred on the leaf surfaces with the formation of lead secondary species (PbCO{sub 3} and organic Pb). Some compounds were internalized in their primary form (PbSO{sub 4}) underneath an organic layer. Internalization through the cuticle or penetration through stomata openings are proposed as two major mechanisms involved in foliar uptake of particulate matter. - Graphical abstract: Overall picture of performed observations and mechanisms potentially involved in lead foliar uptake. Highlights: Black-Right-Pointing-Pointer Foliar uptake of metallic particulate matter (PM) is of environmental and health concerns. Black-Right-Pointing-Pointer The leaf morphology influences the adsorption

  10. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris).

    Science.gov (United States)

    Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mazzia, Christophe; Auffan, Mélanie; Foucault, Yann; Austruy, Annabelle; Dumat, Camille

    2013-08-01

    Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Uptake of metals and metalloids by Conyza canadensis L. from a thermoelectric power plant landfill

    Directory of Open Access Journals (Sweden)

    Vukojević Vesna

    2016-01-01

    Full Text Available Fourteen metals and metalloids were determined in Conyza canadensis L. harvested from the fly ash landfill of the thermoelectric power plant “Kolubara” (Serbia. Fly ash samples were collected together with the plant samples and subjected to sequential extraction according to the three-step sequential extraction scheme proposed by the Community Bureau of Reference (BCR; now the Standards, Measurements and Testing Program. The contents of metals and metalloids were determined by inductively coupled plasma optical emission spectrometry (ICP-OES in plant root and the aboveground part and correlated with their contents in the fly ash samples. The bioconcentration factor (BCF and translocation factors (TF were calculated to access uptake of metals from fly ash and their translocation to the aboveground part. Results regarding As revealed that fly ash samples in the proximity of the active cassette had higher amounts of the element. Principal component analysis (PCA showed that As had no impact on the classification of plant parts. BCF for As ranged from 1.44 to 23.8 and varied, depending on the investigated area; TF for As ranged from 0.43 to 2.61, indicating that the plant translocated As from root to shoot. In addition to As, Conyza canadensis L. exhibited efficient uptake of other metals from fly ash. According to the calculated BCF and TF, the plant retained Al, Fe and Cr in the root and translocated Zn, Cd, Cu and As from root to shoot in the course of the detoxifying process. [Projekat Ministarstva nauke Republike Srbije, br. 172030 i br. 172017

  12. Toxicology of metals and metalloids: Promising issues for future studies in environmental health and toxicology.

    Science.gov (United States)

    Barbosa, Fernando

    2017-01-01

    The function and behavior of chemical elements in ecosystems and in human health probably comprise one of the most studied issues and a theme of great interest and fascination in science. Hot topics are emerging on an annual basis in this field. Bearing this in mind, some promising themes to explore in the field of metals and metalloids in the environment and in toxicology are highlighted and briefly discussed herein.

  13. Distributions, sources and pollution status of 17 trace metal/metalloids in the street dust of a heavily industrialized city of central China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Li, Guanghui; Bi, Xiangyang; Zhu, Jianming; Qin, Haibo; Dai, Zhihui; Liu, Jinling; Li, Qiuhua; Sun, Guangyi

    2013-11-01

    A series of representative street dust samples were collected from a heavily industrialized city, Zhuzhou, in central China, with the aim to investigate the spatial distribution and pollution status of 17 trace metal/metalloid elements. Concentrations of twelve elements (Pb, Zn, Cu, Cd, Hg, As, Sb, In, Bi, Tl, Ag and Ga) were distinctly amplified by atmospheric deposition resulting from a large scale Pb/Zn smelter located in the northwest fringe of the city, and followed a declining trend towards the city center. Three metals (W, Mo and Co) were enriched in samples very close to a hard alloy manufacturing plant, while Ni and Cr appeared to derive predominantly from natural sources. Other industries and traffic had neglectable effects on the accumulation of observed elements. Cd, In, Zn, Ag and Pb were the five metal/metalloids with highest pollution levels and the northwestern part of city is especially affected by heavy metal pollution. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The associations between metals/metalloids concentrations in blood plasma of Hong Kong residents and their seafood diet, smoking habit, body mass index and age.

    Science.gov (United States)

    Qin, Yan Yan; Leung, Clement Kai Man; Lin, Che Kit; Wong, Ming Hung

    2015-09-01

    The concentrations of metals/metalloids in blood plasma collected from 111 healthy residents (51 female, 60 male) in Hong Kong (obtained from the Hong Kong Red Cross Blood Transfusion Service, from March to April 2008) were quantified by means of a double-focusing sector field inductively coupled plasma optical emission spectrometer (ICP-OES). Results showed that concentrations of these toxic metals such as Hg, Cd, and Pb in Hong Kong residents were not serious when compared with other countries. Males accumulated significantly higher (p diet habit, body mass index (BMI), and age. More intensive studies involving more samples are needed before a more definite conclusion can be drawn, especially on the causal relationships between concentrations of metals/metalloids with dietary preference and lifestyle of the general public.

  15. Quantitative analysis of some important metals and metalloids in tobacco products by inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    2012-01-01

    Background Large scale usage of tobacco causes a lot of health troubles in human. Various formulations of tobacco are extensively used by the people particularly in developing world. Besides several toxic tobacco constituents some metals and metalloids are also believed to pose health risks. This paper describes inductively coupled plasma-mass spectrometric (ICP-MS) quantification of some important metals and metalloids in various brands of smoked, sniffed, dipped and chewed tobacco products. Results A microwave-assisted digestion method was used for sample preparation. The method was validated by analyzing a certified reference material. Percentage relative standard deviation (% R.S.D.) between recovered and certified values was  r > 0.999. Improved limits of detection (LODs) were in range of ng/L for all elements. Fe, Al and Mn were found to be in the highest concentration in all types of tobacco products, while Zn, Cu, Ni and Cr were below the average concentration of 40 μg/g, and Pb, Co, As, Se and Cd were below 5 μg/g. All elements, apart from Pb, were high in concentration in dipping tobacco in comparison to other tobacco products. Generally, the order of all elemental concentration can be expressed in different tobacco products as chewing metalloids in a wide spectrum of tobacco formulations. The outcome of this study would be beneficial for health authorities and individuals. PMID:22709464

  16. Monitoring and assessment of heavy metal/metalloid concentration by inductively coupled plasma mass spectroscopy (ICP-MS) method in Gonyeli Lake, Cyprus.

    Science.gov (United States)

    Alkas, Fehmi Burak; Shaban, Jehad Abdullah; Sukuroglu, Ayca Aktas; Kurt, Mehmet Ali; Battal, Dilek; Saygi, Sahan

    2017-09-22

    The presence of heavy metals/metalloids in the ecosystem has been an increasing ecological and global public health concern due to their potential to cause adverse health effects. For this reason, the accumulation of some heavy metals such as Cr, Mn, Ni, Cu, As, Cd, Pb was assessed by way of ICP-MS in water, sediment and fish (Cyprinus carpio) sampled from Gonyeli Lake, North Cyprus. The results showed that these metals/metalloids are found widespread throughout the study area. In water, most concentrated element was manganese with 92.1 ppb and least concentrated was lead with 0.914 ppb. In sediment, copper had the highest concentration with 613 ppm, and cadmium the lowest with 1.57 ppm. In fish tissues (muscle and gills), the most concentrated element was manganese with 12.5 ppm and the least concentrated cadmium with 0.017 ppm. These results indicate that future remediation efforts are indispensable for the rehabilitation of the lake.

  17. Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) model.

    Science.gov (United States)

    Mu, Yunsong; Wu, Fengchang; Chen, Cheng; Liu, Yuedan; Zhao, Xiaoli; Haiqing Liao; Giesy, John P

    2014-05-01

    Criteria continuous concentrations (CCCs) are useful for describing chronic exposure to pollutants and setting water quality standards to protect aquatic life. However, because of financial, practical, or ethical restrictions on toxicity testing, few data are available to derive CCCs. In this study, CCCs for 34 metals or metalloids were derived using quantitative ion character-activity relationships-species sensitivity distributions (QICAR-SSD) and the final acute-chronic ratio (FACR) method. The results showed that chronic toxic potencies were correlated with several physico-chemical properties among eight species chosen, where the softness index was the most predictive characteristic. Predicted CCCs for most of the metals, except for Lead and Iron, were within a range of 10-fold of values recommended by the U.S. EPA. The QICAR-SSD model was superior to the FACR method for prediction of data-poor metals. This would have significance for predicting toxic potencies and criteria thresholds of more metals or metalloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Carbon dioxide triggered metal(loid) mobilisation in a mofette

    DEFF Research Database (Denmark)

    Beulig, Felix

    2014-01-01

    Carbon capture and geologic storage is a frequently discussed option to reduce atmospheric CO2 concentrations with the long-term risk of leakage from storage sites to overlying aquifers and soils. We chose natural CO2 exhalations, so-called mofettes, in a wetland area in the Czech Republic...... as analogues to follow the fate of metal(loid)s under CO2-saturated conditions. Compared to the reference fluvisol at the study site, mofette soils exhibited lower pH (4.9 ± 0.05) and redox potential (300 ± 40 mV), as well as higher organic carbon contents. Poorly crystalline and crystalline Fe (hydr...... to complexation and/or adsorption to organic carbon and the small amount of Fe (hydr)oxides. A one-month-in-situ mobilisation experiment showed mobilisation of all investigated elements to the aqueous phase suggesting that desorption is the faster and initially dominating process while resorption is a secondary...

  19. Structural, Chemical and Biological Aspects of Antioxidants for Strategies Against Metal and Metalloid Exposure

    Directory of Open Access Journals (Sweden)

    Swaran J. S. Flora

    2009-01-01

    Full Text Available Oxidative stress contributes to the pathophysiology of exposure to heavy metals/metalloid. Beneficial renal effects of some medications, such as chelation therapy depend at least partially on the ability to alleviate oxidative stress. The administration of various natural or synthetic antioxidants has been shown to be of benefit in the prevention and attenuation of metal induced biochemical alterations. These include vitamins, N-acetylcysteine, α-lipoic acid, melatonin, dietary flavonoids and many others. Human studies are limited in this regard. Under certain conditions, surprisingly, the antioxidant supplements may exhibit pro-oxidant properties and even worsen metal induced toxic damage. To date, the evidence is insufficient to recommend antioxidant supplements in subject with exposure to metals. Prospective, controlled clinical trials on safety and effectiveness of different therapeutic antioxidant strategies either individually or in combination with chelating agent are indispensable. The present review focuses on structural, chemical and biological aspects of antioxidants particularly related to their chelating properties.

  20. Effects of heavy metals/metalloids contamination of soils on micronucleus induction in Tradescantia pallida

    Directory of Open Access Journals (Sweden)

    Neelima Meravi

    2013-06-01

    Full Text Available The present study was conducted in GGV campus, Bilaspur in which heavy metals/metalloids speciation of soil (for Cr, Fe, Ni, Cd and Pb was performed for assessing the genotoxicity of these metals. The metals concentrations were measured with the help of AAS 7000 (Shimadzu and the standard solution was prepared using standard metal solution of Inorganic Ventures. The concentrations of Cr, Fe, Ni, Cd and Pb (in ug/100 g soil were 12.4, 33.9, 3.1, 0.07 and 2.4 respectively. The flowers of Tradescantia pallida plants growing in this soil were taken and their micronucleus (Trad-MCN bioassay was performed. Trad-MCN bioassay was performed using the protocols established by Ma (1981. The study revealed that at these concentrations of metals micronuclei (stained objects that were smaller than the nuclei and not connected to the nuclei are classified as MCN were formed. Therefore it can be inferred from the present study that soil of GGV campus is genotoxic for the Tradescantia pallida.

  1. Behaviour of metalloids and metals from highly polluted soil samples when mobilized by water--evaluation of static versus dynamic leaching.

    Science.gov (United States)

    Wennrich, Rainer; Daus, Birgit; Müller, Karsten; Stärk, Hans-Joachim; Brüggemann, Lutz; Morgenstern, Peter

    2012-06-01

    The mobilization behaviour of metalloids and metals when leached by water from highly polluted soil/sediment samples was studied using static and dynamic approaches employing batch methodology and rotating coiled columns (RCC), respectively. Increasing the solution-to-solid ratios during batch leaching resulted in different enhanced mobilization rates, which are element-specific and matrix-specific. When dynamic leaching is employed with continuous replacement of the eluent, a higher portion is mobilized than when using batch elution with an identical solid-to-water ratio. Using RCC the time-resolved leaching of the elements was monitored to demonstrate the leaching patterns. For the majority of elements a significant decrease could be shown in the mobilized portion of the elements with ongoing leaching process. The data were discussed targeted at solid liquid partitioning coefficients of the metal(loid)s. The capabilities in application of K(d) values was demonstrated for dynamic leaching which is relevant for environmental processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. [Detection of metals and metalloids in the lavage fluid of whole-lung lavage of the cases of pneumoconiosis].

    Science.gov (United States)

    Wen, K; Ding, C G; Chen, G; Ma, G X; Wang, H Q

    2017-11-20

    Objective: To detect of the components and concentration of the metals and metalloids in the lavage fluid of whole-lung lavage (WLL) of the cases of pneumoconiosis, and analyze the characteristics, and explore the method to sample and process the samples of bronchoalveolar lavage fluid (BAL) . Methods: The samples of urine and serum of three cases of pneumoconiosis were collected before WLL, and the samples of BAL were collected during the WLL from the left and right lungs according to the sequence of four pressured gas flow and five negative pressure drainage. Each of 10ml original samples of WLL was collected firstly, and the left was centrifuged to acquire all the sediment samples and each of 10 ml samples from the centrifuge clear liquids, The components and concentration of the metals and metalloids in the samples were measured by Inductively Coupled Plasma mass spectrometer (ICP-MS) . Results: The average volume of BAL from unilat-eral lung for 3 patients was 10 758.3±1518 ml, and the average recovery rate was 89.7%. The average dry weight of sediment samples of BAL of three cases of pneumoconiosis was 0.292 gram with the right lung sam-ples slightly higher than the left lung samples. The detectable elements from the samples included Barium (Ba) , Strontium (Sr) , Calcium (Ca) , Magnesium (Mg) , Manganum (Mn) , Ferrum (Fe) , Cuprum (Cu) , Zinc (Zn) , Kalium (K) , Natrium (Na) , Selenium (Se) , Silicon (Si) and Uranium (U) . Each of concentration dis-tributions of these elements were not normal. Except for Cuprum, Selenium and Uranium, the concentrations of the other ten elements in the supernatant samples, mixture samples and sediments samples were statistical-ly different with the nonparametric test of Kruskal-Wallis. The concentrations of Natrium, Kalium and Barium in supernatant samples were higher, while the others in precipitation samples were higher. The concentration of elements in the sample from the right lung was slightly higher than that from the

  3. Influence of climate change on the multi-generation toxicity to Enchytraeus crypticus of soils polluted by metal/metalloid mining wastes

    NARCIS (Netherlands)

    Barmentlo, S.H.; van Gestel, C.A.M.; Alvarez-Rogel, J.; Gonzalez Alcaraz, M.N.

    2017-01-01

    This study aimed at assessing the effects of increased air temperature and reduced soil moisture content on the multi-generation toxicity of a soil polluted by metal/metalloid mining wastes. Enchytraeus crypticus was exposed to dilution series of the polluted soil in Lufa 2.2 soil under different

  4. Assessing ecotoxicity and uptake of metals and metalloids in relation to two different earthworm species (Eiseina hortensis and Lumbricus terrestris)

    International Nuclear Information System (INIS)

    Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mazzia, Christophe; Auffan, Mélanie; Foucault, Yann; Austruy, Annabelle; Dumat, Camille

    2013-01-01

    Due to diffuse atmospheric fallouts of process particles enriched by metals and metalloids, polluted soils concern large areas at the global scale. Useful tools to assess ecotoxicity induced by these polluted soils are therefore needed. Earthworms are currently used as biotest, however the influence of specie and earthworm behaviour, soil characteristics are poorly highlighted. Our aim was therefore to assess the toxicity of various polluted soils with process particles enriches by metals and metalloids (Pb, Cd, Cu, Zn, As and Sb) collected from a lead recycling facility on two earthworm species belonging to different ecological types and thus likely to have contrasted behavioural responses (Eiseina hortensis and Lumbricus terrestris). The combination of behavioural factors measurements (cast production and biomass) and physico-chemical parameters such as metal absorption, bioaccumulation by earthworms and their localization in invertebrate tissues provided a valuable indication of pollutant bioavailability and ecotoxicity. Soil characteristics influenced ecotoxicity and metal uptake by earthworms, as well as their soil bioturbation. -- Highlights: •Historically polluted soils collected from a lead recycling facility were studied. •Cast production is a sensitive parameter to assess ecotoxicity on earthworms. •Both soil parameters, like organic matter content and pH and earthworm specie influence metal uptake and ecotoxicity. -- Behavioural factors and inorganic pollutant uptake by earthworms provide a valuable indication of bioavailability and ecotoxicity

  5. Assessment of Metalloid and Metal Contamination in Soils from Hainan, China

    Directory of Open Access Journals (Sweden)

    Xiangjun Liao

    2018-03-01

    Full Text Available The characterization of the concentrations and sources of metals and metalloids in soils is necessary to establish quality standards on a regional level and to assess the potential threat of metals to food safety and human health. A total of 8713 soil samples throughout Hainan Island, China were collected at a density of one sample per 4 km2, and concentrations of As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn were analyzed. The geometric mean values of the elements were 2.17, 0.60, 26.5, 9.43, 0.033, 8.74, 22.2, 0.26, and 39.6 mg·· kg−1 for As, Cd, Cr, Cu, Hg, Ni, Pb, Se, and Zn, respectively, significantly lower than the background values of Chinese soils with the exception of Se. Principal component analysis (PCA suggested that multiple anthropogenic sources regulated the elemental compositions of the Hainan environment. Coal combustion and mining are important anthropogenic sources of metals for Hainan. The geochemical maps of elements in Hainan soils were produced using the Geographic Information System (GIS method, and several hot-spot areas were identified. The ecological impact of As, Cd, Cu, Cr, Hg, Pb, Ni, and Zn pollution to the soils was extremely “low”.

  6. Blood and urinary levels of metals and metalloids in the general adult population of Northern France: The IMEPOGE study, 2008-2010.

    Science.gov (United States)

    Nisse, Catherine; Tagne-Fotso, Romuald; Howsam, Mike; Richeval, Camille; Labat, Laurence; Leroyer, Ariane

    2017-04-01

    The assessment of human chemical risks related to occupational or environmental exposure to pollutants requires the use of both accurate exposure indicators and reference values. The objective of this study was to evaluate the blood and urinary levels of various metals and metalloids in a sample of adults aged 20-59 years of the general population of Northern France, a formerly heavily industrialised area that retains some industrial activity. A cross-sectional study was conducted between 2008 and 2010, enrolling 2000 residents of Northern France. The quota method was used to guarantee the representativeness of the participants on a sex, age, social category and smoking status basis, according to the census done by the French National Institute of Statistics and Economic Studies. The levels of 14 metals: aluminium (Al), antimony (Sb), total arsenic (As), beryllium (Be), cadmium (Cd), cobalt (Co), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), thallium (Tl), vanadium (V) and zinc (Zn) were quantified by ICP-MS in urine and blood samples. A total of 982 men and 1018 women participated, allowing the analysis of 1992 blood and 1910 urine samples. Some metal(loid)s were detected in over 99% of the blood (Cd, Co, Mn, Ni, Pb) and urine (As, Co, Pb, Zn) samples and the remaining metals in 84-99% of the samples, with the exception of blood V (19%), blood Be (57%) and urine Be (58%). Mean blood levels of Pb and Zn were significantly higher in men, and Mn, Co and Cr in women. In urine, mean Pb, Tl and Sb concentrations were significantly higher in men, and Al and Co in women. Current smokers had significantly higher mean levels of blood Cd and Pb and lower blood Co, Mn and Hg. In urine (adjusted on urinary creatinine), the smokers had higher mean levels of Cd, Pb, V and Zn and lower mean levels of As, Co, and Hg. Overall, the mean urinary levels of most metal(loid)s found in the general population of Northern France were higher than those found in the

  7. Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure

    Science.gov (United States)

    Kim, C.S.; Wilson, K.M.; Rytuba, J.J.

    2011-01-01

    The mining and processing of metal-bearing ores has resulted in contamination issues where waste materials from abandoned mines remain in piles of untreated and unconsolidated material, posing the potential for waterborne and airborne transport of toxic elements. This study presents a systematic method of particle size separation, mass distribution, and bulk chemical analysis for mine tailings and adjacent background soil samples from the Rand historic mining district, California, in order to assess particle size distribution and related trends in metal(loid) concentration as a function of particle size. Mine tailings produced through stamp milling and leaching processes were found to have both a narrower and finer particle size distribution than background samples, with significant fractions of particles available in a size range (???250 ??m) that could be incidentally ingested. In both tailings and background samples, the majority of trace metal(loid)s display an inverse relationship between concentration and particle size, resulting in higher proportions of As, Cr, Cu, Pb and Zn in finer-sized fractions which are more susceptible to both water- and wind-borne transport as well as ingestion and/or inhalation. Established regulatory screening levels for such elements may, therefore, significantly underestimate potential exposure risk if relying solely on bulk sample concentrations to guide remediation decisions. Correlations in elemental concentration trends (such as between As and Fe) indicate relationships between elements that may be relevant to their chemical speciation. ?? 2011 Elsevier Ltd.

  8. Determination and evaluation of the metals and metalloids in the Chapeu-de-couro (Echinodorus macrophyllus (Kunth) Micheli).

    Science.gov (United States)

    Barbosa, Uenderson Araujo; dos Santos, Ivanice Ferreira; dos Santos, Ana Maria Pinto; dos Santos, Debora Correia; da Costa, Grenivel Mota

    2013-09-01

    The Chapeu-de-couro (Echinodorus macrophyllus (Kunth) Micheli) is a native plant from Brazil, which has been mainly used in medicinal application being a potent antirheumatic and diuretic, in the production of soft drinks, and also in the ornamentation of aquariums. In this paper, the metals and metalloids for the leaves of chapeu-de-couro collected in the Paraguacu River from the city Cachoeira, Bahia State, Brazil, was determined and evaluated using multivariate analysis. The samples were digested using nitric acid and hydrogen peroxide and were analyzed using inductively coupled plasma mass spectrometry. The accuracy of the method was confirmed by analysis of a certified reference material of apple leaves, furnished by National Institute of Standard and Technology. The study involved 15 samples of the Paraguacu River. The results expressed as milligrams of element per kilogram of sample demonstrated that the concentration ranges varied: 1.39-5.27 for chromium, 44.85-165.39 for manganese, 0.55-0.84 for arsenic, 0.01-3.94 for antimony, and 0.18-0.31 for lead. The principal component analysis and hierarchical cluster analysis evidenced that the concentrations of the metals and metalloids varied according with the variations in the water of the Paraguacu.

  9. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.

    Science.gov (United States)

    Li, Jianxin; Chen, Jinbo; Chen, Shan

    2018-08-15

    Hyperaccumulator biomass, as a promising resource for renewable energy that can be converted into valuable fuel productions with high conversion efficiency, must be considered as hazardous materials and be carefully treated before further reuse due to the high contents of heavy metals. In this study, Pteris vittata L., an As-hyperaccumulator biomass was treated by an effective and environmental friendly method-supercritical water gasification (SCWG) using a bench-scale batch reactor. The contents of heavy metals (Cd, Pb and Zn) and arsenic metalloid in solid, liquid and gaseous products during SCWG process were thoroughly investigated. The speciation fractions including exchangeable, reducible, oxidizable and residual fractions of each heavy metal as the proportion of the total contents in solid residue were presented and the transformations trend of these heavy metals during the SCWG process was especially demonstrated. The significant operating parameters, including reaction temperature (395-445 °C), pressure (21-27 MPa) and residence time (0-40 min) were varied to explore their effects on the contents and forms. Moreover, the environmental risks of heavy metals in solid residues were evaluated based on risk assessment code, taking into consideration the speciation fractions and bioavailability. It was highlighted that although heavy metals particularly Pb and Zn tended to accumulate in solid residues with a maximum increment of about 50% in the total content, they were mostly converted to more stable oxidizable and residual fractions, and thus the ecotoxicity and bioavailability were greatly mitigated with no obvious increase in direct toxicity fractions. Each tested heavy metal presented no or low risk to the environments after SCWG treatments, meaning that the environmental pollution levels were markedly reduced with no or low risk to the environment. This study highlights the remarkable ability of SCWG for the heavy metal stabilization. Copyright

  10. Lake sediment cores as indicators of historical metal(loid) accumulation – A case study in Mexico

    International Nuclear Information System (INIS)

    Hansen, Anne M.

    2012-01-01

    To examine and compare historical accumulation of metal(loid)s in Mexican lakes and reservoirs, 210 Pb and 137 Cs dated sediment cores were evaluated: two from the remote Zempoala and Miramar Lagoons and three from Lake Pátzcuaro, and the Intermedia and Silva dams that are affected by human activities. Sediment ecotoxicology was assessed using consensus-based sediment quality guidelines for freshwater ecosystems. The +100 a sediment core from the remote Miramar Lagoon had the highest concentrations of Cr and Ni these being higher than the Probable Effect Levels (PELs). Zinc concentrations were also higher in the Miramar Lagoon compared to the other lakes and reservoirs, with concentrations higher than the Threshold Effect Level (TEL). Mercury concentrations from this lagoon were comparable to those for the Intermedia dam that receives water from urban, industrial and agricultural areas. The higher metal concentrations in the core from the Miramar Lagoon suggest that metal concentrations in the rocks of the watershed are high. Another explanation for the higher metal concentrations is the slow sediment accumulation that causes metals to be accumulated over longer time-periods at the sediment–water interface. A decrease in the concentration of As in the Intermedia dam was observed in sediments corresponding to the last decades. This may be due to an increase in sediment accumulation rate or to the reduction in sources of this metalloid in the watershed. In the Miramar Lagoon, an increase was observed in concentrations of As and Cr in more recent sediments, probably related to increased deforestation in the area or the eruption of El Chichonal volcano in 1982. Concentrations of Pb showed a decreasing tendency over the past decades in the Lake Pátzcuaro, Miramar and Zempoala Lagoons sediment cores while such behavior was not be observed for the Intermedia dam. This reduction in concentrations of Pb was attributed to the decrease in use of leaded gasoline.

  11. Fate of nine recycled water trace organic contaminants and metal(loid)s during managed aquifer recharge into a anaerobic aquifer: Column studies.

    Science.gov (United States)

    Patterson, B M; Shackleton, M; Furness, A J; Pearce, J; Descourvieres, C; Linge, K L; Busetti, F; Spadek, T

    2010-03-01

    Water quality changes associated with the passage of aerobic reverse osmosis (RO) treated recycled water through a deep anaerobic pyritic aquifer system was evaluated in sediment-filled laboratory columns as part of a managed aquifer recharge (MAR) strategy. The fate of nine recycled water trace organic compounds along with potential negative water quality changes such as the release of metal(loid)s were investigated in large-scale columns over a period of 12 months. The anaerobic geochemical conditions provided a suitable environment for denitrification, and rapid (half-life 100 days). High retardation coefficients (R) determined for many of the trace organics (R 13 to 67) would increase aquifer residence time and be beneficial for many of the slow degrading compounds. However, for the trace organics with low R values (1.1-2.6) and slow degradation rates (half-life > 100 days), such as N-nitrosodimethylamine, N-nitrosomorpholine and iohexol, substantial biodegradation during aquifer passage may not occur and additional investigations are required. Only minor transient increases in some metal(loid) concentrations were observed, as a result of either pyrite oxidation, mineral dissolution or pH induced metal desorption, followed by metal re-sorption downgradient in the oxygen depleted zone. Crown Copyright 2009. Published by Elsevier Ltd. All rights reserved.

  12. Ecological Risk of Heavy Metals and a Metalloid in Agricultural Soils in Tarkwa, Ghana

    Science.gov (United States)

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    Heavy metals and a metalloid in agricultural soils in 19 communities in Tarkwa were analyzed to assess the potential ecological risk. A total of 147 soil samples were collected in June, 2012 and analyzed for As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Mean concentrations (mg/kg dw) of heavy metals in the communities decreased in order of Zn (39) ˃ Cr (21) ˃ Pb (7.2) ˃ Cu (6.2) ˃ As (4.4) ˃ Ni (3.7) ˃ Co (1.8) ˃ Hg (0.32) ˃ Cd (0.050). Correlations among heavy metals and soil properties indicated that soil organic matter could have substantial influence on the total contents of these metals in soil. From the results, integrated pollution (Cdeg) in some communities such as, Wangarakrom (11), Badukrom (13) and T–Tamso (17) indicated high pollution with toxic metals, especially from As and Hg. Potential ecological risk (RI) indices indicated low (Mile 7) to high risks (Wangarakrom; Badukrom) of metals. Based on pollution coefficient (Cif), Cdeg, monomial ecological risk (Eir) and RI, the investigated soils fall within low to high contamination and risk of heavy metals to the ecological system especially plants, soil invertebrates and/or mammalian wildlife. This represented moderate potential ecological risk in the study area, and mining activities have played a significant role. PMID:26378563

  13. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering

    International Nuclear Information System (INIS)

    Schmukat, A.; Duester, L.; Goryunova, E.; Ecker, D.; Heininger, P.; Ternes, T.A.

    2016-01-01

    Highlights: • DoE supported multi-factorial study on the metal(loid) release from copper slag. • Interactions of four parameters were studied and weighted. • An effective separation method between slag and sediment was established. • The metal(loid) partitioning between sediment, slag and eluent is described. • The knowledge on the potential environmental impact of copper slag is increased. - Abstract: Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material.

  14. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering

    Energy Technology Data Exchange (ETDEWEB)

    Schmukat, A., E-mail: schmukat@harzwasserwerke.de [Harzwasserwerke GmbH, Zur Granetalsperre 8, 38685 Langelsheim (Germany); Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany); Duester, L. [Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany); Goryunova, E. [Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany); KAPP-Chemie GmbH & Co. KG, Industriestr. 2-4, 56357 Miehlen (Germany); Ecker, D.; Heininger, P.; Ternes, T.A. [Federal Institute of Hydrology, Department of Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz (Germany)

    2016-03-05

    Highlights: • DoE supported multi-factorial study on the metal(loid) release from copper slag. • Interactions of four parameters were studied and weighted. • An effective separation method between slag and sediment was established. • The metal(loid) partitioning between sediment, slag and eluent is described. • The knowledge on the potential environmental impact of copper slag is increased. - Abstract: Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material.

  15. Heavy metals, metalloids and other hazardous elements in marine plastic litter.

    Science.gov (United States)

    Turner, Andrew

    2016-10-15

    Plastics, foams and ropes collected from beaches in SW England have been analysed for As, Ba, Br, Cd, Cl, Cr, Cu, Hg, Ni, Pb, Sb, Se, Sn and Zn by field-portable-x-ray fluorescence spectrometry. High concentrations of Cl in foams that were not PVC-based were attributed to the presence of chlorinated flame retardants. Likewise, high concentrations of Br among both foams and plastics were attributed to the presence of brominated flame retardants. Regarding heavy metals and metalloids, Cd and Pb were of greatest concern from an environmental perspective. Lead was encountered in plastics, foams and ropes and up to concentrations of 17,500μgg(-1) due to its historical use in stabilisers, colourants and catalysts in the plastics industry. Detectable Cd was restricted to plastics, where its concentration often exceeded 1000μgg(-1); its occurrence is attributed to the use of both Cd-based stabilisers and colourants in a variety of products. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Effects of sex on the levels of metals and metalloids in the hair of a group of healthy Spanish adolescents (13 to 16 years old).

    Science.gov (United States)

    Peña-Fernández, Antonio; Del Carmen Lobo-Bedmar, Maria; González-Muñoz, Maria José

    2017-10-01

    Human biomonitoring can be a reliable tool to protect the health of the citizens of major urban environments. Human hair may be an invaluable specimen to determine chronic exposure to any environmental contaminant in an individual, especially in the young population. However, different factors including a lack of studies that have established reference values for metals and metalloids (trace elements) in human scalp hair make the use of this matrix controversial. A monitoring study was performed to establish possible normal or tentative reference values of Al, As, Be, Cd, Cr, Cu, Hg, Mn, Pb, Sn, Ti, Tl and Zn in adolescents' (aged 13-16) hair who have lived since birth in Alcalá de Henares, Madrid region (Spain). Strict inclusion criteria were followed to study the effect of sex on the hair metal content, and the levels of the above contaminants were also studied in park topsoils from Alcalá de Henares. Scalp hair samples were collected from 96 healthy adolescents (28 boys and 68 girls), and reference values were calculated following the recommendations of the International Union of Pure and Applied Chemistry. The levels of Cd, Cu, Pb, Sn and Zn in hair of adolescents from Alcalá de Henares show a sex dependency, being significantly higher in female participants. Sex should be a factor taken into account when developing future reference values and hair metal content. Soil metal contamination was not correlated with the levels found in hair. To conclude, the values of metals and metalloids here analysed and discussed could be considered as tentative reference values for Spanish adolescents aged 13-16 years living in the Madrid region, and may be used to identify the level of exposure of adolescents in this Spanish region to the various metals and metalloids.

  17. The filter feeder Dreissena polymorpha affects nutrient, silicon, and metal(loid) mobilization from freshwater sediments.

    Science.gov (United States)

    Schaller, Jörg; Planer-Friedrich, Britta

    2017-05-01

    Organic sediments in aquatic ecosystems are well known sinks for nutrients, silicon, and metal(loid)s. Organic matter-consuming organisms like invertebrate shredders, grazers, and bioturbators significantly affect element fixation or remobilization by changing redox conditions or binding properties of organic sediments. Little is known about the effect of filter feeders, like the zebra mussel Dreissena polymorpha, an invasive organism in North American and European freshwater ecosystems. A laboratory batch experiment exposing D. polymorpha (∼1200 organisms per m 2 ) to organic sediment from a site contaminated with arsenic, copper, lead, and uranium revealed a significant uptake and accumulation of arsenic, copper, iron, and especially uranium both into the soft body tissues and the seashell. This is in line with previous observations of metal(loid) accumulation from biomonitoring studies. Regarding its environmental impact, D. polymorpha significantly contributed to mobilization of silicon, iron, phosphorus, arsenic, and copper and to immobilization of uranium (p < 0.001), probably driven by redox conditions, microbial activity within the gut system, or active control of element homeostasis. No net mobilization or immobilization was observed for zinc and lead, because of their low mobility at the prevailing pH of 7.5-8.5. The present results suggest that D. polymorpha can both ameliorate (nutrient mobilization, immobilization of toxicants mobile under oxic conditions) or aggravate negative effects (mobilization of toxicants mobile under reducing conditions) in ecosystems. Relating the results of the present study to observed population densities in natural freshwater ecosystems suggests a significant influence of D. polymorpha on element cycling and needs to be considered in future studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Nanoscale zero-valent iron for metal/metalloid removal from model hydraulic fracturing wastewater.

    Science.gov (United States)

    Sun, Yuqing; Lei, Cheng; Khan, Eakalak; Chen, Season S; Tsang, Daniel C W; Ok, Yong Sik; Lin, Daohui; Feng, Yujie; Li, Xiang-Dong

    2017-06-01

    Nanoscale zero-valent iron (nZVI) was tested for the removal of Cu(II), Zn(II), Cr(VI), and As(V) in model saline wastewaters from hydraulic fracturing. Increasing ionic strength (I) from 0.35 to 4.10 M (Day-1 to Day-90 wastewaters) increased Cu(II) removal (25.4-80.0%), inhibited Zn(II) removal (58.7-42.9%), slightly increased and then reduced Cr(VI) removal (65.7-44.1%), and almost unaffected As(V) removal (66.7-75.1%) by 8-h reaction with nZVI at 1-2 g L -1 . The removal kinetics conformed to pseudo-second-order model, and increasing I decreased the surface area-normalized rate coefficient (k sa ) of Cu(II) and Cr(VI), probably because agglomeration of nZVI in saline wastewaters restricted diffusion of metal(loid)s to active surface sites. Increasing I induced severe Fe dissolution from 0.37 to 0.77% in DIW to 4.87-13.0% in Day-90 wastewater; and Fe dissolution showed a significant positive correlation with Cu(II) removal. With surface stabilization by alginate and polyvinyl alcohol, the performance of entrapped nZVI in Day-90 wastewater was improved for Zn(II) and Cr(VI), and Fe dissolution was restrained (3.20-7.36%). The X-ray spectroscopic analysis and chemical speciation modelling demonstrated that the difference in removal trends from Day-1 to Day-90 wastewaters was attributed to: (i) distinctive removal mechanisms of Cu(II) and Cr(VI) (adsorption, (co-)precipitation, and reduction), compared to Zn(II) (adsorption) and As(V) (bidentate inner-sphere complexation); and (ii) changes in solution speciation (e.g., from Zn 2+ to ZnCl 3 - and ZnCl 4 2- ; from CrO 4 2- to CaCrO 4 complex). Bare nZVI was susceptible to variations in wastewater chemistry while entrapped nZVI was more stable and environmentally benign, which could be used to remove metals/metalloids before subsequent treatment for reuse/disposal. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The heron that laid the golden egg: metals and metalloids in ibis, darter, cormorant, heron, and egret eggs from the Vaal River catchment, South Africa.

    Science.gov (United States)

    van der Schyff, V; Pieters, R; Bouwman, H

    2016-06-01

    Metal pollution issues are afforded the highest priority in developing countries. Only one previous study has addressed metals in African bird eggs. We determined the concentration of metals and metalloids in bird eggs from four sites in the Vaal River catchment (VRC) of South Africa to provide data on the current situation. We analysed 16 pools of 77 heron, ibis, darter, egret, and cormorant eggs for 18 metals and metalloids using ICP-MS. We found high concentrations of gold (Au), uranium (U), thallium (Tl), and platinum (Pt) in Grey Heron eggs from Baberspan. Great white egrets from Bloemhof Dam had high concentrations of mercury (Hg). Multivariate analyses revealed strong associations between Au and U, and between palladium (Pd) and Pt. The toxic reference value (TRV) for Hg was exceeded in seven pools. Selenium exceeded its TRV in one pool; in the same pool, copper (Cu) reached its TRV. Compared with other studies, VRC bird eggs had high concentrations of contaminants. Based on these high concentrations, human health might be at risk as Grey Herons and humans share similar food and are therefore exposed to the same contaminants.

  20. Seasonal variation and annual trends of metals and metalloids in the blood of the Little Penguin (Eudyptula minor).

    Science.gov (United States)

    Finger, Annett; Lavers, Jennifer L; Orbell, John D; Dann, Peter; Nugegoda, Dayanthi; Scarpaci, Carol

    2016-09-15

    Little Penguins (Eudyptula minor) are high-trophic coastal feeders and are effective indicators of bioavailable pollutants in their foraging zones. Here, we present concentrations of metals and metalloids in blood of 157 Little Penguins, collected over three years and during three distinct seasons (breeding, moulting and non-breeding) at two locations: the urban St Kilda colony and the semi-rural colony at Phillip Island, Victoria, Australia. Penguin metal concentrations were foremostly influenced by location (St Kilda>Phillip Island for non-essential elements) and differed among years and seasons at both locations, reflecting differences in seasonal metal bioaccumulation or seasonal exposure through prey. Mean blood mercury concentrations showed an increasing annual trend and a negative correlation with flipper length at St Kilda. Notably, this study is the first to report on blood metal concentrations during the different stages of moult, showing the mechanism of non-essential metal mobilisation and detoxification. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Inhalable desert dust, urban emissions, and potentially biotoxic metals in urban Saharan-Sahelian air

    Science.gov (United States)

    Garrison, Virginia H.; Majewski, Michael S.; Konde, Lassana; Wolf, Ruth E.; Otto, Richard D.; Tsuneoka, Yutaka

    2014-01-01

    Saharan dust incursions and particulates emitted from human activities degrade air quality throughout West Africa, especially in the rapidly expanding urban centers in the region. Particulate matter (PM) that can be inhaled is strongly associated with increased incidence of and mortality from cardiovascular and respiratory diseases and cancer. Air samples collected in the capital of a Saharan–Sahelian country (Bamako, Mali) between September 2012 and July 2013 were found to contain inhalable PM concentrations that exceeded World Health Organization (WHO) and US Environmental Protection Agency (USEPA) PM2.5 and PM10 24-h limits 58 – 98% of days and European Union (EU) PM10 24-h limit 98% of days. Mean concentrations were 1.2-to-4.5 fold greater than existing limits. Inhalable PM was enriched in transition metals, known to produce reactive oxygen species and initiate the inflammatory response, and other potentially bioactive and biotoxic metals/metalloids. Eroded mineral dust composed the bulk of inhalable PM, whereas most enriched metals/metalloids were likely emitted from oil combustion, biomass burning, refuse incineration, vehicle traffic, and mining activities. Human exposure to inhalable PM and associated metals/metalloids over 24-h was estimated. The findings indicate that inhalable PM in the Sahara–Sahel region may present a threat to human health, especially in urban areas with greater inhalable PM and transition metal exposure.

  2. Potential Biotechnological Strategies for the Cleanup of Heavy Metals and Metalloids

    Directory of Open Access Journals (Sweden)

    Kareem A. Mosa

    2016-03-01

    Full Text Available Global mechanization, urbanization and various natural processes have led to the increased release of toxic compounds into the biosphere. These hazardous toxic pollutants include a variety of organic and inorganic compounds, which pose a serious threat to the ecosystem. The contamination of soil and water are the major environmental concerns in the present scenario. This leads to a greater need for remediation of contaminated soils and water with suitable approaches and mechanisms. The conventional remediation of contaminated sites commonly involves the physical removal of contaminants, and their disposition. Physical remediation strategies are expensive, non-specific and often make the soil unsuitable for agriculture and other uses by disturbing the microenvironment. Owing to these concerns, there has been increased interest in eco-friendly and sustainable approaches such as bioremediation, phytoremediation and rhizomediation for the cleanup of contaminated sites. This review lays particular emphasis on biotechnological approaches and strategies for heavy metal and metalloid containment removal from the environment, highlighting the advances and implications of bioremediation and phytoremediation as well as their utilization in cleaning-up toxic pollutants from contaminated environments.

  3. Plasma-based techniques applied to the determination of metals and metalloids in atmospheric aerosols

    International Nuclear Information System (INIS)

    Smichowski, Patricia

    2011-01-01

    Full text: This lecture presents an overview of the research carried out by our group during the last decade on the determination of metals, metalloids, ions and species in atmospheric aerosols and related matrices using plasma-based techniques. In our first studies we explored the application of a size fractionation procedure and the subsequent determination of minor, major and trace elements in samples of deposited particles collected one day after the eruption of the Copahue Volcano, located in the Chile-Argentina border to assess the content of relevant elements with respect of the environment and the local population health. We employed a multi-technique approach (ICP-MS, XRD and NAA) to gain complete information of the characteristics of the sample. In addition to the study of ashes emitted for natural sources we also studied ashes of anthropogenic origin such as those arising from coal combustion in thermal power plants. For estimating the behavior and fate of elements in atmospheric particles and ashes we applied in this case a chemical fractionation procedure in order to establish the distribution of many elements amongst soluble, bound to carbonates, bound to oxides and bound to organic matter and environmental immobile fraction. Studies on the air quality of the mega-city of Buenos Aires were scarce and fragmentary and our objective was, and still is, to contribute to clarify key issues related to levels of crustal, toxic and potentially toxic elements in this air basin. Our findings were compared with average concentrations of metals and metalloids with results reported for other Latin American cities such as Sao Paulo, Mexico and Santiago de Chile. In this context, a series of studies were carried out since 2004 considering different sampling strategies to reflect local aspects of air pollution sources. In the last years, our interest was focused on the levels of traffic-related elements in the urban atmosphere. We have contributed with the first data

  4. Plasma-based techniques applied to the determination of metals and metalloids in atmospheric aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Smichowski, Patricia, E-mail: smichows@cnea.gov.ar [Comision Nacional de Energia Atomica, Gerencia Quimica, Pcia de Buenos Aires (Argentina)

    2011-07-01

    Full text: This lecture presents an overview of the research carried out by our group during the last decade on the determination of metals, metalloids, ions and species in atmospheric aerosols and related matrices using plasma-based techniques. In our first studies we explored the application of a size fractionation procedure and the subsequent determination of minor, major and trace elements in samples of deposited particles collected one day after the eruption of the Copahue Volcano, located in the Chile-Argentina border to assess the content of relevant elements with respect of the environment and the local population health. We employed a multi-technique approach (ICP-MS, XRD and NAA) to gain complete information of the characteristics of the sample. In addition to the study of ashes emitted for natural sources we also studied ashes of anthropogenic origin such as those arising from coal combustion in thermal power plants. For estimating the behavior and fate of elements in atmospheric particles and ashes we applied in this case a chemical fractionation procedure in order to establish the distribution of many elements amongst soluble, bound to carbonates, bound to oxides and bound to organic matter and environmental immobile fraction. Studies on the air quality of the mega-city of Buenos Aires were scarce and fragmentary and our objective was, and still is, to contribute to clarify key issues related to levels of crustal, toxic and potentially toxic elements in this air basin. Our findings were compared with average concentrations of metals and metalloids with results reported for other Latin American cities such as Sao Paulo, Mexico and Santiago de Chile. In this context, a series of studies were carried out since 2004 considering different sampling strategies to reflect local aspects of air pollution sources. In the last years, our interest was focused on the levels of traffic-related elements in the urban atmosphere. We have contributed with the first data

  5. Metal-insulator transitions

    Science.gov (United States)

    Imada, Masatoshi; Fujimori, Atsushi; Tokura, Yoshinori

    1998-10-01

    Metal-insulator transitions are accompanied by huge resistivity changes, even over tens of orders of magnitude, and are widely observed in condensed-matter systems. This article presents the observations and current understanding of the metal-insulator transition with a pedagogical introduction to the subject. Especially important are the transitions driven by correlation effects associated with the electron-electron interaction. The insulating phase caused by the correlation effects is categorized as the Mott Insulator. Near the transition point the metallic state shows fluctuations and orderings in the spin, charge, and orbital degrees of freedom. The properties of these metals are frequently quite different from those of ordinary metals, as measured by transport, optical, and magnetic probes. The review first describes theoretical approaches to the unusual metallic states and to the metal-insulator transition. The Fermi-liquid theory treats the correlations that can be adiabatically connected with the noninteracting picture. Strong-coupling models that do not require Fermi-liquid behavior have also been developed. Much work has also been done on the scaling theory of the transition. A central issue for this review is the evaluation of these approaches in simple theoretical systems such as the Hubbard model and t-J models. Another key issue is strong competition among various orderings as in the interplay of spin and orbital fluctuations. Experimentally, the unusual properties of the metallic state near the insulating transition have been most extensively studied in d-electron systems. In particular, there is revived interest in transition-metal oxides, motivated by the epoch-making findings of high-temperature superconductivity in cuprates and colossal magnetoresistance in manganites. The article reviews the rich phenomena of anomalous metallicity, taking as examples Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Ru compounds. The diverse phenomena include strong spin and

  6. Characterization of the cytosolic distribution of priority pollutant metals and metalloids in the digestive gland cytosol of marine mussels: seasonal and spatial variability.

    Science.gov (United States)

    Strižak, Zeljka; Ivanković, Dušica; Pröfrock, Daniel; Helmholz, Heike; Cindrić, Ana-Marija; Erk, Marijana; Prange, Andreas

    2014-02-01

    Cytosolic profiles of several priority pollutant metals (Cu, Cd, Zn, Pb) and metalloid As were analyzed in the digestive gland of the mussel (Mytilus galloprovincialis) sampled at locations with different environmental pollution levels along the Croatian coast in the spring and summer season. Size-exclusion chromatography (SEC) connected to inductively coupled plasma mass spectrometry (ICP-MS) was used to determine selected elements bound to cytosolic biomolecules separated based on their molecular size. Copper, cadmium and zinc eluted mostly associated with high molecular weight (HMW) and medium molecular weight (MMW) biomolecules, but with a more prominent elution in the MMW peak at polluted locations which were probably associated with the 20 kDa metallothionein (MT). Elution of all three metals within this peak was also strongly correlated with cytosolic Cd as strong inducer of MT. Lead mostly eluted in HMW biomolecule range, but in elevated cytosolic Pb concentrations, significant amount eluted in low molecular weight (LMW) biomolecules. Arsenic, on the other hand eluted almost completely in LMW range, but we could not distinguish specific molecular weight biomolecules which would be predominant in detoxification mechanism. Seasonal variability in element abundance within specific peaks was present, although not in the same extent, for all elements and locations, especially for As. The results confirm the suitability of the distribution of selected metals/metalloids among different cytosolic ligands as potential indicator for metal exposure. Obtained findings can also serve as guidelines for further separation and characterization of specific cytosolic metal-binding biomolecules. © 2013.

  7. Metals and metalloids in the water-bloom-forming cyanobacteria and ambient water from Nanquan coast of Taihu Lake, China.

    Science.gov (United States)

    Su, Yanping; Liu, Hongbo; Yang, Jian

    2012-08-01

    Concentrations of 12 metal(oid)s were investigated in the bloom-forming cyanobacteria and ambient water samples collected monthly between March 2009 and February 2010 at the Nanquan coast of Taihu Lake, China. The metal(oid) concentrations in ambient water decreased in the order Fe > Zn > Ni ≈ As ≈ Cu > Mn > Ag > Cr > Se > Cd > Co > Tl, while those in cyanobacteria followed a sequence Fe > Mn > Zn > Cu ≈ Ni > Co > Ag > Cr ≈ As > Cd > Tl > Se. The metal(loid) burdens removed by cyanobacteria were estimated as 164 t Fe, 12.4 t Mn, 3.6 t Zn, 2.0 t Ni, 2.0 t Cu, 0.5 t As, 0.5 t Cr, 0.4 t Cd, 0.9 t Ag, 1.1 t Co, 0.2 t Tl, and 0.09 t Se during the 2008-2010 bloom seasons.

  8. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Taylor, Mark P; Gao, Song; Landázuri, Andrea; Betterton, Eric A; Sáez, A Eduardo

    2012-09-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Taylor, Mark P.; Gao, Song; Landázuri, Andrea; Betterton, Eric A.; Sáez, A. Eduardo

    2012-01-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. PMID:22766428

  10. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    International Nuclear Information System (INIS)

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-01-01

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs

  11. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    Science.gov (United States)

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  12. Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: human exposure risk.

    Science.gov (United States)

    Affholder, Marie-Cécile; Prudent, Pascale; Masotti, Véronique; Coulomb, Bruno; Rabier, Jacques; Nguyen-The, Bénédicte; Laffont-Schwob, Isabelle

    2013-06-01

    This study aimed at estimating exposition risks to wild rosemary used as herbs in the contaminated area of the former smelting factory of L'Escalette (South of Marseille, France). Metals and metalloids i.e. Pb, As, Sb, Zn, and Cu concentrations were analyzed in soils and in rosemary aerial parts (stems and leaves) on two sites: one heavily contaminated and the other far away from the pollution source, considered as reference. The metal and metalloid transfer into water during the brewing process of herbal tea was also determined. A mixed contamination by the above-cited contaminants was demonstrated in soils of the factory site, with average concentrations of 9253, 1127, 309, 2698 and 32 mg/kg for Pb, As, Sb, Zn and Cu, respectively. However, metals and metalloids' transfer in rosemary aerial parts was limited, as bioaccumulation factors were under 1. Thus, Pb, As and Cu concentrations in leaves were below international regulation limits concerning ingestion of medicinal herbs (no regulation values available for Sb and Zn). This study highlighted that, if contaminated rosemary leaves were ingested, health risks may be limited since acceptable daily intake (ADI) for Pb, As, Sb and Cu (no ADI value available for Zn) will only be reached if very high quantities are consumed. Furthermore, we aimed to establish if this mixed contamination could alter rosemary's essential oil quality, and thereby the compositions of essential oils obtained from individuals on the heavily contaminated soil were compared to those obtained from the reference population. An increased biosynthesis of antioxidant compounds was favored in essential oils from rosemary individuals growing in contaminated site. Although the health risk of a long-term exposition of low level of the mixed contamination by rosemary ingestion is not easy to elucidate, the use of rosemary essential oils from contaminated site appears as safe. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Metal and metalloid contamination in roadside soil and wild rats around a Pb-Zn mine in Kabwe, Zambia

    Energy Technology Data Exchange (ETDEWEB)

    Nakayama, Shouta M.M.; Ikenaka, Yoshinori; Hamada, Kyohei [Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818 (Japan); Muzandu, Kaampwe; Choongo, Kennedy [Department of Biomedical Studies, School of Veterinary Medicine, University of Zambia, P.O. Box 32379, Lusaka (Zambia); Teraoka, Hiroki; Mizuno, Naoharu [Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501 (Japan); Ishizuka, Mayumi, E-mail: ishizum@vetmed.hokudai.ac.j [Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818 (Japan)

    2011-01-15

    Metal (Cr, Co, Cu, Zn, Cd, Pb, Ni) and metalloid (As) accumulation was studied in roadside soil and wild rat (Rattus sp.) samples from near a Pb-Zn mine (Kabwe, Zambia) and the capital city of Zambia (Lusaka). The concentrations of the seven metals and As in the soil samples and Pb in the rat tissue samples were quantified using atomic absorption spectroscopy. The concentrations of Pb, Zn, Cu, Cd, and As in Kabwe soil were much higher than benchmark values. Geographic Information System analysis indicated the source of metal pollution was mining and smelting activity. Interestingly, the area south of the mine was more highly contaminated even though the prevailing wind flow was westward. Wild rats from Kabwe had much higher tissue concentrations of Pb than those from Lusaka. Their body weight and renal Pb levels were negatively correlated, which suggests that mining activity might affect terrestrial animals in Kabwe. - The area around Kabwe, Zambia is highly polluted with metals and As. Wild rats from this area had high tissue concentrations of Pb and decreased body weight.

  14. A comparison of technologies for remediation of heavy metal contaminated soils

    OpenAIRE

    Khalid , Sana; Shahid , Muhammad; Niazi , Nabeel Khan; Murtaza , Behzad; Bibi , Irshad; Dumat , Camille

    2016-01-01

    International audience; Soil contamination with persistent and potentially (eco)toxic heavy metal(loid)s is ubiquitous around the globe. Concentration of these heavy metal(loid)s in soil has increased drastically over the last three decades, thus posing risk to the environment and human health. Some technologies have long been in use to remediate the hazardous heavy metal(loid)s. Conventional remediation methods for heavy metal(loid)s are generally based on physical, chemical and biological a...

  15. Determination of the oxidation states of metals and metalloids: An analytical review

    Science.gov (United States)

    Vodyanitskii, Yu. N.

    2013-12-01

    The hazard of many heavy metals/metalloids in the soil depends on their oxidation state. The problem of determining the oxidation state has been solved due to the use of synchrotron radiation methods with the analysis of the X-ray absorption near-edge structure (XANES). The determination of the oxidation state is of special importance for some hazardous heavy elements (arsenic, antimony, selenium, chromium, uranium, and vanadium). The mobility and hazard of each of these elements depend on its oxidation state. The mobilities are higher at lower oxidation states of As, Cr, V, and Se and at higher oxidation states of Sb and U. The determination of the oxidation state of arsenic has allowed revealing its fixation features in the rhizosphere of hydrophytes. The known oxidation states of chromium and uranium are used for the retention of these elements on geochemical barriers. Different oxidation states have been established for vanadium displacing iron in goethite. The determination of the oxidation state of manganese in the rhizosphere and the photosynthetic apparatus of plants is of special importance for agricultural chemists.

  16. Accumulation patterns and risk assessment of metals and metalloid in muscle and offal of free-range chickens, cattle and goat in Benin City, Nigeria.

    Science.gov (United States)

    Ogbomida, Emmanuel Temiotan; Nakayama, Shouta M M; Bortey-Sam, Nesta; Oroszlany, Balazs; Tongo, Isioma; Enuneku, Alex Ajeh; Ozekeke, Ogbeide; Ainerua, Martins Oshioriamhe; Fasipe, Iriagbonse Priscillia; Ezemonye, Lawrence Ikechukwu; Mizukawa, Hazuki; Ikenaka, Yoshinori; Ishizuka, Mayumi

    2018-04-30

    The use of free range animals for monitoring environmental health offers opportunities to detect exposure and assess the toxicological effects of pollutants in terrestrial ecosystems. Potential human health risk of dietary intake of metals and metalloid via consumption of offal and muscle of free range chicken, cattle and goats by the urban population in Benin City was evaluated. Muscle, gizzard, liver and kidney samples were analyzed for Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, and Pb concentrations using inductively coupled plasma mass spectrometer (ICP-MS) while Hg was determined using Hg analyzer. Mean concentrations of metals (mg/kg ww) varied significantly depending upon the tissues and animal species. Human health risk estimations for children and adults showed estimated daily intake (EDI) values of tissues below oral reference dose (RfD) threshold for non essential metals Cd, As, Pb and Hg thus strongly indicating no possible health risk via consumption of animal based food. Calculated Hazard quotient (THQ) was less than 1 (< 1) for all the metals analyzed for both adult and children. However, Cd and As had the highest value of THQ suggestive of possible health risk associated with continuous consumption of Cd and As contaminated animal based foods. Hazard Index (HI) for additive effect of metals was higher in chicken liver and gizzard for children and chicken liver for adults. Thus, HI indicated that chicken liver and gizzard may contribute significantly to adult and children dietary exposure to heavy metals. Principal component analysis (PCA) showed a clear species difference in metal accumulation between chickens and the ruminants. This study provides baseline data for future studies and also valuable evidence of anthropogenic impacts necessary to initiate national and international policies for control of heavy metal and metalloid content in food items. Copyright © 2017. Published by Elsevier Inc.

  17. Probing the distribution and contamination levels of 10 trace metal/metalloids in soils near a Pb/Zn smelter in Middle China.

    Science.gov (United States)

    Li, Zhonggen; Feng, Xinbin; Bi, Xiangyang; Li, Guanghui; Lin, Yan; Sun, Guangyi

    2014-03-01

    The horizontal and vertical distribution patterns and contamination status of ten trace metal/metalloids (Ag, Bi, Co, Cr, Ge, In, Ni, Sb, Sn, Tl) in soils around one of the largest Chinese Pb-Zn smelter in Zhuzhou City, Central China, were revealed. Different soil samples were collected from 11 areas, including ten agricultural areas and one city park area, with a total of 83 surface soil samples and six soil cores obtained. Trace metal/metalloids were determined by inductively coupled plasma-mass spectrometry after digestion by an acid mixture of HF and HNO3. The results showed that Ag, Bi, In, Sb, Sn, and Tl contents decreased both with the distance to the Pb-Zn smelter as well as the soil depth, hinting that these elements were mainly originated from the Pb-Zn smelting operations and were introduced into soils through atmospheric deposition. Soil Ge was influenced by the smelter at a less extent, while the distributions of Co, Cr, and Ni were roughly even among most sampling sites and soil depths, suggesting that they were primarily derived from natural sources. The contamination status, as revealed by the geo-accumulation index (I geo), indicated that In and Ag were the most enriched elements, followed by Sb, Bi, and Sn. In general, Cr, Tl, Co, Ni, and Ge were of an uncontaminated status.

  18. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China

    Directory of Open Access Journals (Sweden)

    Li Guo

    2017-11-01

    Full Text Available Background: Mining activities always emit metal(loids into the surrounding environment, where their accumulation in the soil may pose risks and hazards to humans and ecosystems. Objective: This paper aims to determine of the type, source, chemical form, fate and transport, and accurate risk assessment of 17 metal(loid contaminants including As, Cd, Cu, Ni, Pb, Zn, Cr, Ag, B, Bi, Co, Mo, Sb, Ti, V, W and Sn in the soils collected from an abandoned tungsten mining area, and to guide the implementing of appropriate remediation strategies. Methods: Contamination factors (CFs and integrated pollution indexes (IPIs and enrichment factors (EFs were used to assess their ecological risk and the sources were identified by using multivariate statistics analysis, spatial distribution investigation and correlation matrix. Results: The IPI and EF values indicated the soils in the mine site and the closest downstream one were extremely disturbed by metal(loids such as As, Bi, W, B, Cu, Pb and Sn, which were emitted from the mining wastes and acid drainages and delivered by the runoff and human activities. Arsenic contamination was detected in nine sites with the highest CF values at 24.70 next to the mining site. The Cd contamination scattered in the paddy soils around the resident areas with higher fraction of bioavailable forms, primarily associated with intense application of phosphorus fertilizer. The lithogenic elements V, Ti, Ag, Ni, Sb, Mo exhibit low contamination in all sampling points and their distribution were depended on the soil texture and pedogenesis process. Conclusions: The long term historical mining activities have caused severe As contamination and higher enrichment of the other elements of orebody in the local soils. The appropriate remediation treatment approach should be proposed to reduce the bioavailability of Cd in the paddy soils and to immobilize As to reclaim the soils around the mining site. Furthermore, alternative fertilizing

  19. Risk Assessment and Source Identification of 17 Metals and Metalloids on Soils from the Half-Century Old Tungsten Mining Areas in Lianhuashan, Southern China.

    Science.gov (United States)

    Guo, Li; Zhao, Weituo; Gu, Xiaowen; Zhao, Xinyun; Chen, Juan; Cheng, Shenggao

    2017-11-29

    Background: Mining activities always emit metal(loid)s into the surrounding environment, where their accumulation in the soil may pose risks and hazards to humans and ecosystems. Objective : This paper aims to determine of the type, source, chemical form, fate and transport, and accurate risk assessment of 17 metal(loid) contaminants including As, Cd, Cu, Ni, Pb, Zn, Cr, Ag, B, Bi, Co, Mo, Sb, Ti, V, W and Sn in the soils collected from an abandoned tungsten mining area, and to guide the implementing of appropriate remediation strategies. Methods : Contamination factors ( CFs ) and integrated pollution indexes ( IPIs ) and enrichment factors ( EFs ) were used to assess their ecological risk and the sources were identified by using multivariate statistics analysis, spatial distribution investigation and correlation matrix. Results : The IPI and EF values indicated the soils in the mine site and the closest downstream one were extremely disturbed by metal(loid)s such as As, Bi, W, B, Cu, Pb and Sn, which were emitted from the mining wastes and acid drainages and delivered by the runoff and human activities. Arsenic contamination was detected in nine sites with the highest CF values at 24.70 next to the mining site. The Cd contamination scattered in the paddy soils around the resident areas with higher fraction of bioavailable forms, primarily associated with intense application of phosphorus fertilizer. The lithogenic elements V, Ti, Ag, Ni, Sb, Mo exhibit low contamination in all sampling points and their distribution were depended on the soil texture and pedogenesis process. Conclusions : The long term historical mining activities have caused severe As contamination and higher enrichment of the other elements of orebody in the local soils. The appropriate remediation treatment approach should be proposed to reduce the bioavailability of Cd in the paddy soils and to immobilize As to reclaim the soils around the mining site. Furthermore, alternative fertilizing way

  20. Comparison of accumulation of four metalloids in Allium sativum.

    Science.gov (United States)

    Ogra, Yasumitsu; Awaya, Yumi; Anan, Yasumi

    2015-05-01

    In this study, we evaluated the accumulation and metabolism of four metalloids: arsenic (As), selenium (Se), antimony (Sb), and tellurium (Te) in garlic to determine whether garlic can be used for the phytoremediation of those metalloids. Garlic was able to efficiently accumulate As and Se, the two-fourth-period metalloids. However, it was not able to accumulate Sb and Te, the two-fifth-period metalloids, because their bioaccumulation factors were below one. Speciation analyses revealed that four metalloids could be metabolized in garlic, although their metabolites could not be identified yet. Results also suggested that garlic was able to distinguish the metalloids in groups 15 and 16 and the fourth and fifth periods, i.e., As, Se, Sb, and Te. Therefore, garlic is one of the potential plants for the phytoremediation of the fourth-period metalloids.

  1. FeNbB bulk metallic glass with high boron content

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, M.; Das, Jayanta; Eckert, Juergen [IFW Dresden, Institute for Complex Materials, P.O. Box 270016, D-01171 Dresden (Germany); Hajlaoui, Khalil; Yavari, Alain Reza [LTPCM-CNRS, I.N.P. Grenoble, 1130 Rue de la Piscine, BP 75, F-38402 University Campus (France)

    2007-07-01

    Fe-based alloys able to form magnetic bulk metallic glasses (BMGs) are of the type transition metal - metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 atomic %. Very recently, the Fe{sub 66}Nb{sub 4}B{sub 30} alloy was found to be able to form BMG by copper mold casting technique, despite its high metalloid content. Several composition with boron contents around 30 at. % or even higher were calculated since 1993 as possible compositions of the remaining amorphous matrix after the first stage of nanocrystallization of Finemet-type Fe{sub 77}Si{sub 14}B{sub 9} glassy ribbons with 0.5 to 1 atomic % Cu and a few percent Nb addition. Melt-spun ribbons of all calculated compositions were found to be glassy. The composition of the ternary Fe-based BMG investigated in the present study resulted as an optimization of all possibilities. The alloy is ferromagnetic with glass transition temperature T{sub g}=845 K, crystallisation temperature T{sub x}=876 K, liquidus temperature T{sub liq}=1451 K and mechanical strength of 4 GPa. The coercivity of as-cast samples is very low, around 1.5 A/m. The present contribution aims at discussing the thermal stability, mechanical and magnetic properties of the Fe{sub 66}Nb{sub 4}B{sub 30} BMG.

  2. Heavy metals and metalloid content in vegetables and soil collected from the gardens of Zagreb, Croatia.

    Science.gov (United States)

    Puntarić, Dinko; Vidosavljević, Domagoj; Gvozdić, Vlatka; Puntarić, Eda; Puntarić, Ida; Mayer, Dijana; Bosnir, Jasna; Lasić, Dario; Jergović, Matijana; Klarić, Ivana; Vidosavljević, Marina; Krivdić, Ivancica

    2013-09-01

    Aim of this study was to determine concentration of Pb, Cd, As and Hg in green leafy vegetables and soil in the urban area of Zagreb, Croatia and to determine if there is a connection between the contamination of soil and vegetables. Green leafy vegetables and soil samples were taken from the gardens located in the outskirts of the city. Concentrations of Pb, Cd, As and Hg were determined by atomic absorption spectrometry; showing that average concentrations of metals and metalloids in vegetables and in soil, regardless of the location of sampling were below the maximum allowed concentration (MAC). The analysis determined that metal concentrations in only nine vegetable samples (9%) were above maximum allowed values prescribed by national and European legislation (three with higher concentrations of Pb, one with a higher concentration of Cd and five with higher concentrations of Hg). Concentrations of contaminants present in the analysed samples, in general, are lower than the ones published in similar studies. The final distribution and concentration of contaminants in vegetables of Zagreb, besides industry and traffic, is affected by the dominant wind direction.

  3. Mesoporous metal oxides and processes for preparation thereof

    Energy Technology Data Exchange (ETDEWEB)

    Suib, Steven L.; Poyraz, Altug Suleyman

    2018-03-06

    A process for preparing a mesoporous metal oxide, i.e., transition metal oxide. Lanthanide metal oxide, a post-transition metal oxide and metalloid oxide. The process comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to form the mesoporous metal oxide. A mesoporous metal oxide prepared by the above process. A method of controlling nano-sized wall crystallinity and mesoporosity in mesoporous metal oxides. The method comprises providing an acidic mixture comprising a metal precursor, an interface modifier, a hydrotropic ion precursor, and a surfactant; and heating the acidic mixture at a temperature and for a period of time sufficient to control nano-sized wall crystallinity and mesoporosity in the mesoporous metal oxides. Mesoporous metal oxides and a method of tuning structural properties of mesoporous metal oxides.

  4. Baseline heavy metals and metalloid values in blood of loggerhead turtles (Caretta caretta) from Baja California Sur, Mexico

    International Nuclear Information System (INIS)

    Ley-Quinonez, C.; Zavala-Norzagaray, A.A.; Espinosa-Carreon, T.L.; Peckham, H.; Marquez-Herrera, C.; Campos-Villegas, L.; Aguirre, A.A.

    2011-01-01

    Highlights: → We report baseline levels of selected heavy metals in blood of Pacific loggerhead turtles. → Blood was used to measure in a relatively non-invasive way baseline values of heavy metals. → Zn and Cd were found in high concentrations compared to levels reported in other parts of the world. → Cu concentrations in blood are high as they relate to concentrations in muscle. → No correlations were found between of heavy metals and metalloids analyzed and the size of the turtles. - Abstract: Environmental pollution due to heavy metals is having an increased impact on marine wildlife accentuated by anthropogenic changes in the planet including overfishing, agricultural runoff and marine emerging infectious diseases. Sea turtles are considered sentinels of ecological health in marine ecosystems. The objective of this study was to determine baseline concentrations of zinc, cadmium, copper, nickel, selenium, manganese, mercury and lead in blood of 22 clinically healthy, loggerhead turtles (Caretta caretta), captured for several reasons in Puerto Lopez Mateos, Baja California Sur, Mexico. Zinc was the most prevalent metal in blood (41.89 μg g -1 ), followed by Selenium (10.92 μg g -1 ). The mean concentration of toxic metal Cadmium was 6.12 μg g -1 and 1.01 μg g -1 respectively. Mean concentrations of metals followed this pattern: Zn > Se > Ni > Cu > Mn > Cd > Pb and Hg. We can conclude that blood is an excellent tissue to measure in relatively non-invasive way baseline values of heavy metals in Caretta caretta.

  5. Deriving site-specific soil clean-up values for metals and metalloids: rationale for including protection of soil microbial processes.

    Science.gov (United States)

    Kuperman, Roman G; Siciliano, Steven D; Römbke, Jörg; Oorts, Koen

    2014-07-01

    Although it is widely recognized that microorganisms are essential for sustaining soil fertility, structure, nutrient cycling, groundwater purification, and other soil functions, soil microbial toxicity data were excluded from the derivation of Ecological Soil Screening Levels (Eco-SSL) in the United States. Among the reasons for such exclusion were claims that microbial toxicity tests were too difficult to interpret because of the high variability of microbial responses, uncertainty regarding the relevance of the various endpoints, and functional redundancy. Since the release of the first draft of the Eco-SSL Guidance document by the US Environmental Protection Agency in 2003, soil microbial toxicity testing and its use in ecological risk assessments have substantially improved. A wide range of standardized and nonstandardized methods became available for testing chemical toxicity to microbial functions in soil. Regulatory frameworks in the European Union and Australia have successfully incorporated microbial toxicity data into the derivation of soil threshold concentrations for ecological risk assessments. This article provides the 3-part rationale for including soil microbial processes in the development of soil clean-up values (SCVs): 1) presenting a brief overview of relevant test methods for assessing microbial functions in soil, 2) examining data sets for Cu, Ni, Zn, and Mo that incorporated soil microbial toxicity data into regulatory frameworks, and 3) offering recommendations on how to integrate the best available science into the method development for deriving site-specific SCVs that account for bioavailability of metals and metalloids in soil. Although the primary focus of this article is on the development of the approach for deriving SCVs for metals and metalloids in the United States, the recommendations provided in this article may also be applicable in other jurisdictions that aim at developing ecological soil threshold values for protection of

  6. Metal(loid)s behaviour in soils amended with nano zero-valent iron as a function of pH and time.

    Science.gov (United States)

    Vítková, Martina; Rákosová, Simona; Michálková, Zuzana; Komárek, Michael

    2017-01-15

    Nano zero-valent iron (nZVI) is currently investigated as a stabilising amendment for contaminated soils. The effect of pH (4-8) and time (48 and 192 h) on the behaviour of nZVI-treated Pb-Zn and As-contaminated soil samples was assessed. Additionally, soil leachates were subsequently used to study the direct interaction between soil solution components and nZVI particles in terms of mineralogical changes and contaminant retention. A typical U-shaped leaching trend as a function of pH was observed for Cd, Pb and Zn, while As was released predominantly under alkaline conditions. Oxidising conditions prevailed, so pH was the key controlling parameter rather than redox conditions. Generally, longer contact time resulted in increased soluble concentrations of metal(loid)s. However, the stabilisation effect of nZVI was only observed after the direct soil leachate-nZVI interactions, showing enhanced redox and sorption processes for the studied metals. A significant decrease of dissolved As concentrations was observed for both experimental soils, but with different efficiencies depending on neutralisation capacity, organic matter content or solid fractionation of As related to the origin of the soils. Scorodite (FeAsO 4 ·2H 2 O) was predicted as a potential solubility-controlling mineral phase for As. Sorption of metal(loid)s onto secondary Fe- and Al-(oxyhydr)oxides (predicted to precipitate at pH > 5) represents an important scavenger mechanism. Moreover, transmission electron microscopy confirmed the retention of Zn and Pb under near-neutral and alkaline conditions by newly formed Fe oxides or aluminosilicates. This study shows that the efficiency of nZVI application strongly depends not only on soil pH-Eh conditions and contaminant type, but also on the presence of organic matter and other compounds such as Al/Fe/Mn oxyhydroxides and clay minerals. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Aquaglyceroporins: generalized metalloid channels

    Science.gov (United States)

    Mukhopadhyay, Rita; Bhattacharjee, Hiranmoy; Rosen, Barry P.

    2014-01-01

    Background: Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids. Scope of Review: This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells. Major Conclusions: As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants. General Significance: The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. PMID:24291688

  8. High-resolution reconstruction of atmospheric deposition of trace metals and metalloids since AD 1400 recorded by ombrotrophic peat cores in Hautes-Fagnes, Belgium.

    Science.gov (United States)

    Allan, Mohammed; Le Roux, Gaël; De Vleeschouwer, François; Bindler, Richard; Blaauw, Maarten; Piotrowska, Natalia; Sikorski, Jaroslaw; Fagel, Nathalie

    2013-07-01

    The objective of our study was to determine the trace metal accumulation rates in the Misten bog, Hautes-Fagnes, Belgium, and assess these in relation to established histories of atmospheric emissions from anthropogenic sources. To address these aims we analyzed trace metals and metalloids (Pb, Cu, Ni, As, Sb, Cr, Co, V, Cd and Zn), as well as Pb isotopes, using XRF, Q-ICP-MS and MC-ICP-MS, respectively in two 40-cm peat sections, spanning the last 600 yr. The temporal increase of metal fluxes from the inception of the Industrial Revolution to the present varies by a factor of 5-50, with peak values found between AD 1930 and 1990. A cluster analysis combined with Pb isotopic composition allows the identification of the main sources of Pb and by inference of the other metals, which indicates that coal consumption and metallurgical activities were the predominant sources of pollution during the last 600 years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Microwave-assisted synthesis of transition metal phosphide

    Science.gov (United States)

    Viswanathan, Tito

    2014-12-30

    A method of synthesizing transition metal phosphide. In one embodiment, the method has the steps of preparing a transition metal lignosulfonate, mixing the transition metal lignosulfonate with phosphoric acid to form a mixture, and subjecting the mixture to a microwave radiation for a duration of time effective to obtain a transition metal phosphide.

  10. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    International Nuclear Information System (INIS)

    Richard T. Scalettar; Warren E. Pickett

    2005-01-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals

  11. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scalettar, Richard T.; Pickett, Warren E.

    2004-07-01

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (1) Mott transitions in transition metal oxides, (2) magnetism in half-metallic compounds, and (3) large volume-collapse transitions in f-band metals.

  12. High-Pressure Thermodynamic Properties of f-electron Metals, Transition Metal Oxides, and Half-Metallic Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Richard T. Scalettar; Warren E. Pickett

    2005-08-02

    This project involves research into the thermodynamic properties of f-electron metals, transition metal oxides, and half-metallic magnets at high pressure. These materials are ones in which the changing importance of electron-electron interactions as the distance between atoms is varied can tune the system through phase transitions from localized to delocalized electrons, from screened to unscreened magnetic moments, and from normal metal to one in which only a single spin specie can conduct. Three main thrusts are being pursued: (i) Mott transitions in transition metal oxides, (ii) magnetism in half-metallic compounds, and (iii) large volume-collapse transitions in f-band metals.

  13. Synthesis and Antibacterial Activity of Metal(loid Nanostructures by Environmental Multi-Metal(loid Resistant Bacteria and Metal(loid-Reducing Flavoproteins

    Directory of Open Access Journals (Sweden)

    Maximiliano Figueroa

    2018-05-01

    Full Text Available Microbes are suitable candidates to recover and decontaminate different environments from soluble metal ions, either via reduction or precipitation to generate insoluble, non-toxic derivatives. In general, microorganisms reduce toxic metal ions generating nanostructures (NS, which display great applicability in biotechnological processes. Since the molecular bases of bacterial reduction are still unknown, the search for new -environmentally safe and less expensive- methods to synthesize NS have made biological systems attractive candidates. Here, 47 microorganisms isolated from a number of environmental samples were analyzed for their tolerance or sensitivity to 19 metal(loids. Ten of them were highly tolerant to some of them and were assessed for their ability to reduce these toxicants in vitro. All isolates were analyzed by 16S rRNA gene sequencing, fatty acids composition, biochemical tests and electron microscopy. Results showed that they belong to the Enterobacter, Staphylococcus, Acinetobacter, and Exiguobacterium genera. Most strains displayed metal(loid-reducing activity using either NADH or NADPH as cofactor. While Acinetobacter schindleri showed the highest tellurite (TeO32- and tetrachloro aurate (AuCl4- reducing activity, Staphylococcus sciuri and Exiguobacterium acetylicum exhibited selenite (SeO32- and silver (Ag+ reducing activity, respectively. Based on these results, we used these bacteria to synthetize, in vivo and in vitro Te, Se, Au, and Ag-containing nanostructures. On the other hand, we also used purified E. cloacae glutathione reductase to synthesize in vitro Te-, Ag-, and Se-containing NS, whose morphology, size, composition, and chemical composition were evaluated. Finally, we assessed the putative anti-bacterial activity exhibited by the in vitro synthesized NS: Te-containing NS were more effective than Au-NS in inhibiting Escherichia coli and Listeria monocytogenes growth. Aerobically synthesized TeNS using MF09 crude

  14. Formation of amorphous metal alloys by chemical vapor deposition

    Science.gov (United States)

    Mullendore, A.W.

    1988-03-18

    Amorphous alloys are deposited by a process of thermal dissociation of mixtures of organometallic compounds and metalloid hydrides,e.g., transition metal carbonyl, such as nickel carbonyl and diborane. Various sizes and shapes of deposits can be achieved, including near-net-shape free standing articles, multilayer deposits, and the like. Manipulation or absence of a magnetic field affects the nature and the structure of the deposit. 1 fig.

  15. Metal and metalloid bioaccumulation in the Pacific blue shrimp Litopenaeus stylirostris (Stimpson) from New Caledonia: Laboratory and field studies

    International Nuclear Information System (INIS)

    Metian, Marc; Hedouin, Laetitia; Eltayeb, Mohamed M.; Lacoue-Labarthe, Thomas; Teyssie, Jean-Louis; Mugnier, Chantal; Bustamante, Paco; Warnau, Michel

    2010-01-01

    The present work aimed at better understanding metal and metalloid bioaccumulation in the edible Pacific blue shrimp Litopenaeus stylirostris, using both laboratory and field approaches. In the laboratory, the bioaccumulation kinetics of Ag, Cd, Co, Cr, and Zn have been investigated in shrimp exposed via seawater and food, using the corresponding γ-emitting radiotracers ( 110m Ag, 109 Cd, 57 Co, 51 Cr, and 65 Zn) and highly sensitive nuclear detection techniques. Results showed that hepatopancreas and intestine concentrated the metals to the highest extent among the blue shrimp organs and tissues. Moulting was found to play a non negligible detoxification role for Co, Cr and, to a lesser extent, Zn. Metal retention by L. stylirostris widely varied (from a few days to several months), according to the element and exposure pathway considered (a given metal was usually less strongly retained when ingested with food than when it was taken up from the dissolved phase). In the field study, Ag, As, Cd, Co, Cr, Cu, Mn, Ni, and Zn were analysed in shrimp collected from a New Caledonian aquaculture pond. Metal concentrations in the shrimp muscles were generally relatively low and results confirmed the role played by the digestive organs and tissues in the bioaccumulation/storage/detoxification of metals in the Pacific blue shrimp. Preliminary risk considerations indicate that consumption of the shrimp farmed in New Caledonia is not of particular concern for human health.

  16. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    Science.gov (United States)

    Mora, Miguel A.

    2003-01-01

    Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2–35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell should not be ignored.

  17. Levels of PM2.5/PM10 and associated metal(loid)s in rural households of Henan Province, China.

    Science.gov (United States)

    Wu, Fuyong; Wang, Wei; Man, Yu Bon; Chan, Chuen Yu; Liu, Wenxin; Tao, Shu; Wong, Ming Hung

    2015-04-15

    Although a majority of China's rural residents use solid fuels (biomass and coal) for household cooking and heating, clean energy such as electricity and liquid petroleum gas is becoming more popular in the rural area. Unfortunately, both solid fuels and clean energy could result in indoor air pollution. Daily respirable particulate matter (PM≤10 μm) and inhalable particulate matter (PM≤2.5 μm) were investigated in kitchens, sitting rooms and outdoor area in rural Henan during autumn (Sep to Oct 2012) and winter (Jan 2013). The results showed that PM (PM2.5 and PM10) and associated metal(loid)s varied among the two seasons and the four types of domestic energy used. Mean concentrations of PM2.5 and PM10 in kitchens during winter were 59.2-140.4% and 30.5-145.1% higher than those during autumn, respectively. Similar with the trends of PM2.5 and PM10, concentrations of As, Pb, Zn, Cd, Cu, Ni and Mn in household PM2.5 and PM10 were apparently higher in winter than those in autumn. The highest mean concentrations of PM2.5 and PM10 (368.5 and 588.7 μg m(-3)) were recorded in sitting rooms in Baofeng during winter, which were 5.7 and 3.9 times of corresponding health based guidelines for PM2.5 and PM10, respectively. Using coal can result in severe indoor air pollutants including PM and associated metal(loid)s compared with using crop residues, electricity and gas in rural Henan Province. Rural residents' exposure to PM2.5 and PM10 would be roughly reduced by 13.5-22.2% and 8.9-37.7% via replacing coal or crop residues with electricity. The present study suggested that increased use of electricity as domestic energy would effectively improve indoor air quality in rural China. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. High-pressure phase transition of alkali metal-transition metal deuteride Li2PdD2

    Science.gov (United States)

    Yao, Yansun; Stavrou, Elissaios; Goncharov, Alexander F.; Majumdar, Arnab; Wang, Hui; Prakapenka, Vitali B.; Epshteyn, Albert; Purdy, Andrew P.

    2017-06-01

    A combined theoretical and experimental study of lithium palladium deuteride (Li2PdD2) subjected to pressures up to 50 GPa reveals one structural phase transition near 10 GPa, detected by synchrotron powder x-ray diffraction, and metadynamics simulations. The ambient-pressure tetragonal phase of Li2PdD2 transforms into a monoclinic C2/m phase that is distinct from all known structures of alkali metal-transition metal hydrides/deuterides. The structure of the high-pressure phase was characterized using ab initio computational techniques and from refinement of the powder x-ray diffraction data. In the high-pressure phase, the PdD2 complexes lose molecular integrity and are fused to extended [PdD2]∞ chains. The discovered phase transition and new structure are relevant to the possible hydrogen storage application of Li2PdD2 and alkali metal-transition metal hydrides in general.

  19. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain).

    Science.gov (United States)

    Peña-Fernández, A; Lobo-Bedmar, M C; González-Muñoz, M J

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Improved Density Functional Tight Binding Potentials for Metalloid Aluminum Clusters

    Science.gov (United States)

    2016-06-01

    unlimited IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS by Joon H. Kim June 2016 Thesis Advisor...DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE IMPROVED DENSITY-FUNCTIONAL TIGHT BINDING POTENTIALS FOR METALLOID ALUMINUM CLUSTERS 5. FUNDING...repulsive potentials for use in density-functional tight binding (DFTB) simulations of low-valence aluminum metalloid clusters . These systems are under

  1. Correlations in metal release profiles following sorption by Lemna minor.

    Science.gov (United States)

    Üçüncü Tunca, Esra; Ölmez, Tolga T; Özkan, Alper D; Altındağ, Ahmet; Tunca, Evren; Tekinay, Turgay

    2016-08-02

    Following the rapid uptake of contaminants in the first few hours of exposure, plants typically attempt to cope with the toxic burden by releasing part of the sorbed material back into the environment. The present study investigates the general trends in the release profiles of different metal(loid)s in the aquatic macrophyte Lemna minor and details the correlations that exist between the release of metal(loid) species. Water samples with distinct contamination profiles were taken from Nilüfer River (Bursa, Turkey), Yeniçağa Lake (Bolu, Turkey), and Beyşehir Lake (Konya, Turkey) and used for release studies; 36 samples were tested in total. Accumulation and release profiles were monitored over five days for 11 metals and a metalloid ((208)Pb, (111)Cd, (52)Cr,(53)Cr,(60)Ni,(63)Cu,(65)Cu,(75)As,(55)Mn, (137)Ba, (27)Al, (57)Fe, (66)Zn,(68)Zn) and correlation, cluster and principal component analyses were employed to determine the factors that affect the release of these elements. Release profiles of the tested metal(loid)s were largely observed to be distinct; however, strong correlations have been observed between certain metal pairs (Cr/Ni, Cr/Cu, Zn/Ni) and principal component analysis was able to separate the metal(loid)s into three well-resolved groups based on their release.

  2. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    International Nuclear Information System (INIS)

    Peña-Fernández, A.; Lobo-Bedmar, M.C.; González-Muñoz, M.J.

    2015-01-01

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation

  3. Annual and seasonal variability of metals and metalloids in urban and industrial soils in Alcalá de Henares (Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Peña-Fernández, A. [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain); Lobo-Bedmar, M.C. [Instituto Madrileño de Investigación y Desarrollo Rural Agrario y Alimentario (IMIDRA), Finca el Encín, Crta. Madrid-Barcelona Km, 38.2, 28800 Alcalá de Henares, Madrid (Spain); González-Muñoz, M.J., E-mail: mariajose.gonzalez@uah.es [Departamento de Ciencias Biomédicas, Unidad de Toxicología, Universidad de Alcalá, Crta. Madrid-Barcelona Km, 33.6, 28871 Alcalá de Henares, Madrid (Spain)

    2015-01-15

    Contamination of urban and industrial soils with trace metals has been recognized as a major concern at local, regional and global levels due to their implication on human health. In this study, concentrations of aluminum (Al), arsenic (As), beryllium (Be), cadmium (Cd), chromium (Cr), manganese (Mn), nickel (Ni), lead (Pb), tin (Sn), thallium (Tl), vanadium (V) and zinc (Zn) were determined in soil samples collected in Alcalá de Henares (Madrid, Spain) in order to evaluate the annual and seasonal variation in their levels. The results show that the soils of the industrial area have higher metals concentrations than the urban area. Principal component analysis (PCA) revealed that the two principal sources of trace metal contamination, especially Cd, Cu, Pb, and Zn in the urban soils of Alcalá can be attributed to traffic emissions, while As, Ni and Be primarily originated from industrial discharges. The seasonal variation analysis has revealed that the emission sources in the industrial area remain constant with time. However, in urban areas, both emissions and emission pathways significantly increase over time due to ongoing development. Currently, there is no hypothesis that explains the small seasonal fluctuations of trace metals in soils, since there are many factors affecting this. Owing to the fact that urban environments are becoming the human habitat, it would therefore be advisable to monitor metals and metalloids in urban soils because of the potential risks to human health. - Highlights: • Anthropogenic activities may affect the seasonal metal variation in Alcalá's soils. • Weather characteristics may also influence the seasonal metal variation in soils. • Alcalá's continual urban growth may have increased the levels of metals in its soils. • Metal variability in Alcalá's industrial soils might be dependent on their sources. • High soil metal content might make it difficult to identify temporal variation.

  4. Half-Metallic Ferromagnetism and Stability of Transition Metal Pnictides and Chalcogenides

    Science.gov (United States)

    Liu, Bang-Gui

    It is highly desirable to explore robust half-metallic ferromagnetic materials compatible with important semiconductors for spintronic applications. A state-of-the-art full potential augmented plane wave method within the densityfunctional theory is reliable enough for this purpose. In this chapter we review theoretical research on half-metallic ferromagnetism and structural stability of transition metal pnictides and chalcogenides. We show that some zincblende transition metal pnictides are half-metallic and the half-metallic gap can be fairly wide, which is consistent with experiment. Systematic calculations reveal that zincblende phases of CrTe, CrSe, and VTe are excellent half-metallic ferromagnets. These three materials have wide half-metallic gaps, are low in total energy with respect to the corresponding ground-state phases, and, importantly, are structurally stable. Halfmetallic ferromagnetism is also found in wurtzite transition metal pnictides and chalcogenides and in transition-metal doped semiconductors as well as deformed structures. Some of these half-metallic materials could be grown epitaxially in the form of ultrathin .lms or layers suitable for real spintronic applications.

  5. Transition metal nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Pregosin, P.S.

    1991-01-01

    Transition metal NMR spectroscopy has progressed enormously in recent years. New methods, and specifically solid-state methods and new pulse sequences, have allowed access to data from nuclei with relatively low receptivities with the result that chemists have begun to consider old and new problems, previously unapproachable. Moreover, theory, computational science in particular, now permits the calculation of not just 13 C, 15 N and other light nuclei chemical shifts, but heavy main-group element and transition metals as well. These two points, combined with increasing access to high field pulsed spectrometer has produced a wealth of new data on the NMR transition metals. A new series of articles concerned with measuring, understanding and using the nuclear magnetic resonance spectra of the metals of Group 3-12 is presented. (author)

  6. Speciation and ecological risk of heavy metals and metalloid in the sediments of Zhalong Wetland in China

    International Nuclear Information System (INIS)

    Ye, H.; Zang, S.; Xiao, H.; Zhang, L.

    2015-01-01

    A total of 271 sediments samples from the Zhalong Wetland were analyzed for concentration and distribution of Hg, Cd, As, Cu, Pb, Zn, Cr, and Zn; their speciation according to the modified European Community Bureau of Reference sequential extraction procedures and their ecological risk based on Lars Hakanson’s potential ecological risk assessment and risk assessment code were made. The results can be summarized as the followings: (1) Concentrations of all metals measured were above soil background values of Songnen Plain, and their spatial distributions were distinctly different. The concentrations of metals (except Pb) were high in the east, followed by the north, and were relatively low in the core zone and south. The concentration of Pb was high in the north, south, and west, compared with low concentration in the core zone and east. (2) The dominant proportion of Pb, Zn, and Cr was in the residual fraction, suggesting that they were environmental stable. The concentrations of Cu and As in the reducible fraction, the concentration of Cd in the acid soluble fraction, and the concentration of Hg in the oxidizable fraction were relatively high, indicating they had greater environmental effects. (3) The evaluation of the ecological risk showed that Cd, Hg, and As had relatively high ecological risk index, especially the ecological risk of Cd should be paid attention to. In general, the ecological risk of the heavy metals and metalloid by zone was experimental zone >buffering zone>ecological tourism zone>core zone.

  7. Vermiremediation of metal(loid)s via Eichornia crassipes phytomass extraction: A sustainable technique for plant amelioration.

    Science.gov (United States)

    Majumdar, Arnab; Barla, Anil; Upadhyay, Munish Kumar; Ghosh, Dibyarpita; Chaudhuri, Punarbasu; Srivastava, Sudhakar; Bose, Sutapa

    2018-08-15

    Eichhornia crassipes (water hyacinth), imparts deficiency of soluble arsenic and other toxic metal (loid)s through rhizofiltration and phytoaccumulation. Without proper management strategy, this phytoremediation of metal (loid)s might fail and get reverted back to the environment, contaminating the nearby water bodies. This study, focused on bio-conversion of phytoremediating hyacinths, spiked with 100 times and greater arsenic, lead and cadmium concentrations than the average water contamination, ranging in 58.81 ± 0.394, 16.74 ± 0.367, 12.18 ± 0.153 mg Kg -1 arsenic, 18.95 ± 0.212, 9.53 ± 0.054, 6.83 ± 0.306 mg kg -1 lead and 2.79 ± 0.033, 1.39 ± 0.025, 0.92 ± 0.045 mg kg -1 cadmium, respectively in root, shoot and leaves, proving it's phytoaccumulation capacity. Next, these hyacinths has been used as a source of organic supplement for preparing vermicompost using Eisenia fetida following analysis of total metal content and sequential extraction. Control soil was having 134.69 ± 2.47 mg kg -1 arsenic in compare to 44.6 ± 0.91 mg kg -1 at premature stage of compost to 23.9 ± 1.55 mg kg -1 at mature compost indicating sustainable fate of phytoremediated vermicompost. This vermiremediation of arsenic and other toxic elements, restricted the bioavailability of soil pollutants. Furthermore, processed compost amended as organic fertilizer, growing chickpea, coriander, tomato and chilli plant, resulted in negligible metal(loid)s in treated samples, enhancing also plant's growth and production. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. RETROSPECTIVE STUDY OF METHYLMERCURY AND OTHER METAL(LOID)S IN MADAGASCAR UNPOLISHED RICE (Oryza sativa L.)

    Science.gov (United States)

    Rothenberg, Sarah E.; Mgutshini, Noma L.; Bizimis, Michael; Johnson-Beebout, Sarah E.; Ramanantsoanirina, Alain

    2014-01-01

    The rice ingestion rate in Madagascar is among the highest globally; however studies concerning metal(loid) concentrations in Madagascar rice are lacking. For Madagascar unpolished rice (n=51 landraces), levels of toxic elements (e.g., total mercury, methylmercury, arsenic and cadmium) as well as essential micronutrients (e.g., zinc and selenium) were uniformly low, indicating potentially both positive and negative health effects. Aside from manganese (Wilcoxon rank sum, p<0.01), no significant differences in concentrations for all trace elements were observed between rice with red bran (n=20) and brown bran (n=31) (Wilcoxon rank sum, p=0.06–0.91). Compared to all elements in rice, rubidium (i.e., tracer for phloem transport) was most positively correlated with methylmercury (Pearson's r=0.33, p<0.05) and total mercury (r=0.44, p<0.05), while strontium (i.e., tracer for xylem transport) was least correlated with total mercury and methylmercury (r<0.01 for both), suggesting inorganic mercury and methylmercury were possibly more mobile in phloem compared to xylem. PMID:25463705

  9. Short-range order studies in nonstoichiometric transition metal carbides and nitrides by neutron diffuse scattering

    International Nuclear Information System (INIS)

    Priem, Thierry

    1988-01-01

    Short-range order in non-stoichiometric transition metal carbides and nitrides (TiN 0.82 , TiC 0.64 , TiC 0.76 , NbC 0.73 and NbC 0.83 ) was investigated by thermal neutron diffuse scattering on G4-4 (L.L.B - Saclay) and D10 (I.L.L. Grenoble) spectrometers. From experimental measurements, we have found that metalloid vacancies (carbon or nitrogen) prefer the f.c.c. third neighbour positions. Ordering interaction energies were calculated within the Ising model framework by three approximations: mean field (Clapp and Moss formula), Monte-Carlo simulation, Cluster variation Method. The energies obtained by the two latter methods are very close, and in qualitative agreement with theoretical values calculated from the band structure. Theoretical phase diagrams were calculated from these ordering energies for TiN x and TiC x ; three ordered structures were predicted, corresponding to compositions Ti 6 N 5 Ti 2 C and Ti 3 C 2 . On the other hand, atomic displacements are induced by vacancies. The metal first neighbours were found to move away from a vacancy, whereas the second neighbours move close to it. Near neighbour atomic displacements were theoretically determined by the lattice statics formalism with results in good agreement with experiment. (author) [fr

  10. Metalloido-porins: Essentiality of Nodulin 26-like intrinsic proteins in metalloid transport.

    Science.gov (United States)

    Pommerrenig, Benjamin; Diehn, Till Arvid; Bienert, Gerd Patrick

    2015-09-01

    Metalloids are a group of physiologically important elements ranging from the essential to the highly toxic. Arsenic, antimony, germanium, and tellurium are highly toxic to plants themselves and to consumers of metalloid-contaminated plants. Boron, silicon, and selenium fulfill essential or beneficial functions in plants. However, when present at high concentrations, boron and selenium cause toxicity symptoms that are detrimental to plant fitness and yield. Consequently, all plants require efficient membrane transport systems to control the uptake and extrusion of metalloids into or out of the plant and their distribution within the plant body. Several Nodulin 26-like intrinsic proteins (NIPs) that belong to the aquaporin plant water channel protein family facilitate the diffusion of uncharged metalloid species. Genetic, physiological, and molecular evidence is that NIPs from primitive to higher plants not only transport all environmentally important metalloids, but that these proteins have a major role in the uptake, translocation, and extrusion of metalloids in plants. As most of the metalloid-permeable NIP aquaporins are impermeable or are poorly permeable to water, these NIP channel proteins should be considered as physiologically essential metalloido-porins. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  11. Pollution and health risk assessment of industrial and residential area based on metal and metalloids contents in soil and sediment samples from and around the petrochemical industry, Serbia

    Science.gov (United States)

    Relic, Dubravka; Sakan, Sanja; Andjelkovic, Ivan; Djordjevic, Dragana

    2017-04-01

    Within this study the investigation of pollution state of metal and metalloids contamination in soils and sediments samples of the petrochemical and nearby residential area is present. The pseudo-total concentrations of Ba, Cd, Co, Cu, Cr, Mn, Ni, Pb, V, Zn, As, Hg, and Se were monitored with ICP/OES. The pollution indices applied in this work, such as the enrichment factor, the pollution load index, the total enrichment factor, and the ecological risk index showed that some of the soil and sediment samples were highly polluted by Hg, Ba, Pb, Cd, Cr Cu and Zn. The highest pollution indices were calculated for Hg in samples from the petrochemical area: chloralkali plant, electrolysis factory, mercury disposal area, and in samples from the waste channel. The pollution indices of the samples from the residential area indicated that this area is not polluted by investigated elements. Besides the pollution indices, the metal and metalloids concentrations were used in the equations for calculating the health risk criteria. We calculate no carcinogenic and carcinogenic risks for the composite worker and residential people by usage adequate equations. In analyzed samples, the no carcinogenic risks were lower than 1. The highest values of carcinogenic risk were obtained in sediment samples from the waste channel within the petrochemical industry and the metal that mostly contributes to the highest carcinogenic risk is Cr. Correlation analysis of pollution indices and carcinogenic risks calculated from the residential area samples showed good correlations while this is not the case for an industrial area.

  12. Ultra-stiff metallic glasses through bond energy density design.

    Science.gov (United States)

    Schnabel, Volker; Köhler, Mathias; Music, Denis; Bednarcik, Jozef; Clegg, William J; Raabe, Dierk; Schneider, Jochen M

    2017-07-05

    The elastic properties of crystalline metals scale with their valence electron density. Similar observations have been made for metallic glasses. However, for metallic glasses where covalent bonding predominates, such as metalloid metallic glasses, this relationship appears to break down. At present, the reasons for this are not understood. Using high energy x-ray diffraction analysis of melt spun and thin film metallic glasses combined with density functional theory based molecular dynamics simulations, we show that the physical origin of the ultrahigh stiffness in both metalloid and non-metalloid metallic glasses is best understood in terms of the bond energy density. Using the bond energy density as novel materials design criterion for ultra-stiff metallic glasses, we are able to predict a Co 33.0 Ta 3.5 B 63.5 short range ordered material by density functional theory based molecular dynamics simulations with a high bond energy density of 0.94 eV Å -3 and a bulk modulus of 263 GPa, which is 17% greater than the stiffest Co-B based metallic glasses reported in literature.

  13. (Electronic structure and reactivities of transition metal clusters)

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  14. Heavy metals and metalloids in egg contents and eggshells of passerine birds from Arizona

    International Nuclear Information System (INIS)

    Mora, Miguel A.

    2003-01-01

    High concentrations of Sr in eggshells may be associated with lower hatching success of some passerine birds. - Concentrations of inorganic elements were determined in eggs of passerine birds including the endangered southwestern willow flycatcher (Empidonax traillii extimus) from four regions in Arizona. The main aim of the study was to determine the distribution of metals in egg contents and eggshells, with emphasis on the deposition of Sr in eggshells. Seventy eggs of 11 passerine species were collected at four nesting locations during 2000. Aluminum, Ba, Cr, Cu, Mn, Se, Sr, and Zn, were detected primarily in egg contents of all bird species. Arsenic, Ni, Pb, and V were detected primarily in eggshells. A proportion of most inorganic elements accumulated in the eggshell. Concentrations of Ba, Cu, Mn, Se, Sr, and Zn in egg contents and As, Ba, Cu, and V in eggshells of yellow-breasted chats (Icteria virens) were similar among locations. However, concentrations of Mn, Ni, Sr, and Zn in eggshells were significant different among locations. Except for Cu, Mn, Se, and Zn, concentrations of inorganic elements were 2-35 times greater in eggshells than in eggs. Most concentrations of metals and metalloids in eggs and eggshells of all the bird species were below levels known to affect reproduction or that have other deleterious effects. However, I found somewhat elevated concentrations of Sr in eggshells (highest mean=1505 μg/g dw, n=3) of yellow-breasted chats and willow flycatchers, and in egg contents of yellow warblers (Dendroica petechia) and song sparrows (Melospiza melodia). Whether current observed concentrations of Sr in eggshells are affecting nesting birds in Arizona remains to be determined. Strontium and other metals could be associated with lower hatching success in some areas. This study shows that a proportion of many inorganic elements accumulates in the eggshell and that the potential effects on the proper structure and functioning of the eggshell

  15. Metal-to-nonmetal transitions

    CERN Document Server

    Hensel, Friedrich; Holst, Bastian

    2010-01-01

    This book is devoted to nonmetal-to-metal transitions. The original ideas of Mott for such a transition in solids have been adapted to describe a broad variety of phenomena in condensed matter physics (solids, liquids, and fluids), in plasma and cluster physics, as well as in nuclear physics (nuclear matter and quark-gluon systems). The book gives a comprehensive overview of theoretical methods and experimental results of the current research on the Mott effect for this wide spectrum of topics. The fundamental problem is the transition from localized to delocalized states which describes the nonmetal-to-metal transition in these diverse systems. Based on the ideas of Mott, Hubbard, Anderson as well as Landau and Zeldovich, internationally respected scientists present the scientific challenges and highlight the enormous progress which has been achieved over the last years. The level of description is aimed to specialists in these fields as well as to young scientists who will get an overview for their own work...

  16. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Accumulation of Heavy Metals and Metalloid in Foodstuffs from Agricultural Soils around Tarkwa Area in Ghana, and Associated Human Health Risks

    Directory of Open Access Journals (Sweden)

    Nesta Bortey-Sam

    2015-07-01

    Full Text Available This study was carried out to assess the extent of heavy metals and metalloid accumulation from agricultural soils to foodstuffs (viz, M. esculenta (cassava and Musa paradisiaca (plantain around thirteen neighboring communities within Tarkwa, Ghana; and to estimate the human health risk associated with consumption of these foodstuffs. Concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn were measured with an inductively coupled plasma–mass spectrometer and mercury analysis was done using a mercury analyzer. From the results, 30% of cassava samples collected, contained higher concentrations of Pb when compared to Codex Alimentarius Commission standard values. Bioconcentration factor indicated that Ni had higher capacity of absorption into food crops from soil than the other heavy metals. For both children and adults, the target hazard quotient (THQ of Pb in cassava in communities such as Techiman, Wangarakrom, Samahu, and Tebe (only children were greater than 1, which is defined as an acceptable risk value. This indicated that residents could be exposed to significant health risks associated with cassava consumption.

  18. Accumulation of Heavy Metals and Metalloid in Foodstuffs from Agricultural Soils around Tarkwa Area in Ghana, and Associated Human Health Risks

    Science.gov (United States)

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Fobil, Julius N.; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    This study was carried out to assess the extent of heavy metals and metalloid accumulation from agricultural soils to foodstuffs (viz, M. esculenta (cassava) and Musa paradisiaca (plantain)) around thirteen neighboring communities within Tarkwa, Ghana; and to estimate the human health risk associated with consumption of these foodstuffs. Concentrations of As, Cd, Co, Cr, Cu, Ni, Pb, and Zn were measured with an inductively coupled plasma–mass spectrometer and mercury analysis was done using a mercury analyzer. From the results, 30% of cassava samples collected, contained higher concentrations of Pb when compared to Codex Alimentarius Commission standard values. Bioconcentration factor indicated that Ni had higher capacity of absorption into food crops from soil than the other heavy metals. For both children and adults, the target hazard quotient (THQ) of Pb in cassava in communities such as Techiman, Wangarakrom, Samahu, and Tebe (only children) were greater than 1, which is defined as an acceptable risk value. This indicated that residents could be exposed to significant health risks associated with cassava consumption. PMID:26225988

  19. Leaching capacity of metals-metalloids and recovery of valuable materials from waste LCDs.

    Science.gov (United States)

    Savvilotidou, Vasiliki; Hahladakis, John N; Gidarakos, Evangelos

    2015-11-01

    The purpose of Directive 2012/19/EU which is related to WEEE (Waste Electrical and Electronic Equipment), also known as "e-waste", is to contribute to their sustainable production and consumption that would most possibly be achieved by their recovery, recycling and reuse. Under this perspective, the present study focused on the recovery of valuable materials, metals and metalloids from LCDs (Liquid Crystal Displays). Indium (In), arsenic (As) and stibium (Sb) were selected to be examined for their Leaching Capacity (R) from waste LCDs. Indium was selected mainly due to its rarity and preciousness, As due to its high toxicity and wide use in LCDs and Sb due to its recent application as arsenic's replacement to improve the optimal clarity of a LCD screen. The experimental procedure included disassembly of screens along with removal and recovery of polarizers via thermal shock, cutting, pulverization and digestion of the shredded material and finally leaching evaluation of the aforementioned elements. Leaching tests were conducted under various temperatures, using various solid:liquid (S/L) ratios and solvents (acid mixtures), to determine the optimal conditions for obtaining the maximum leaching capacities. The examined elements exhibited different leaching behaviors, mainly due to the considerable diversity in their inherent characteristic properties. Indium demonstrated the highest recovery percentages (approximately 60%), while the recovery of As and Sb was unsuccessful, obtaining poor leaching percentages (0.16% and 0.5%, respectively). Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Application of neutron activation techniques and x-ray energy dispersion spectrometry, in analysis of metallic traces adsorbed by chelex-100 resin

    International Nuclear Information System (INIS)

    Fernandes, Jair C.; Amaral, Angela M.; Magalhaes, Jesus C.; Pereira, Jose S.J.; Silva, Juliana B. da; Auler, Lucia M.L.A.

    2000-01-01

    In this work, the authors have investigated optimal conditions of adsorption for several ion metallic groups (cations of heavy metals and transition metals, oxyanions metallics and metalloids and cations of rare earths), as traces (ppb), withdrawn and in mixture of groups, by chelex-100 resin. The experiments have been developed by bath techniques in ammonium acetate tamponade solution 40 mM pH 5,52 content 0,5 g of chelex-100 resin. After magnetic agitation for two hours, resins were dried and submitted to X-ray energy dispersion spectrometry, x-ray fluorescence spectrometry and neutron activation analysis. The results have demonstrated that chelex-100 resin adsorb quantitatively transition element groups and rare earth groups in two cases (withdrawn and simultaneously adsorption)

  1. Mesoporous Transition Metal Oxides for Supercapacitors.

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-10-14

    Recently, transition metal oxides, such as ruthenium oxide (RuO₂), manganese dioxide (MnO₂), nickel oxides (NiO) and cobalt oxide (Co₃O₄), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO₂, MnO₂, NiO, Co₃O₄ and nickel cobaltite (NiCo₂O₄), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  2. Mass fractionation processes of transition metal isotopes

    Science.gov (United States)

    Zhu, X. K.; Guo, Y.; Williams, R. J. P.; O'Nions, R. K.; Matthews, A.; Belshaw, N. S.; Canters, G. W.; de Waal, E. C.; Weser, U.; Burgess, B. K.; Salvato, B.

    2002-06-01

    Recent advances in mass spectrometry make it possible to utilise isotope variations of transition metals to address some important issues in solar system and biological sciences. Realisation of the potential offered by these new isotope systems however requires an adequate understanding of the factors controlling their isotope fractionation. Here we show the results of a broadly based study on copper and iron isotope fractionation during various inorganic and biological processes. These results demonstrate that: (1) naturally occurring inorganic processes can fractionate Fe isotope to a detectable level even at temperature ˜1000°C, which challenges the previous view that Fe isotope variations in natural system are unique biosignatures; (2) multiple-step equilibrium processes at low temperatures may cause large mass fractionation of transition metal isotopes even when the fractionation per single step is small; (3) oxidation-reduction is an importation controlling factor of isotope fractionation of transition metal elements with multiple valences, which opens a wide range of applications of these new isotope systems, ranging from metal-silicate fractionation in the solar system to uptake pathways of these elements in biological systems; (4) organisms incorporate lighter isotopes of transition metals preferentially, and transition metal isotope fractionation occurs stepwise along their pathways within biological systems during their uptake.

  3. Nucleic acid-functionalized transition metal nanosheets for biosensing applications.

    Science.gov (United States)

    Mo, Liuting; Li, Juan; Liu, Qiaoling; Qiu, Liping; Tan, Weihong

    2017-03-15

    In clinical diagnostics, as well as food and environmental safety practices, biosensors are powerful tools for monitoring biological or biochemical processes. Two-dimensional (2D) transition metal nanomaterials, including transition metal chalcogenides (TMCs) and transition metal oxides (TMOs), are receiving growing interest for their use in biosensing applications based on such unique properties as high surface area and fluorescence quenching abilities. Meanwhile, nucleic acid probes based on Watson-Crick base-pairing rules are also being widely applied in biosensing based on their excellent recognition capability. In particular, the emergence of functional nucleic acids in the 1980s, especially aptamers, has substantially extended the recognition capability of nucleic acids to various targets, ranging from small organic molecules and metal ions to proteins and cells. Based on π-π stacking interaction between transition metal nanosheets and nucleic acids, biosensing systems can be easily assembled. Therefore, the combination of 2D transition metal nanomaterials and nucleic acids brings intriguing opportunities in bioanalysis and biomedicine. In this review, we summarize recent advances of nucleic acid-functionalized transition metal nanosheets in biosensing applications. The structure and properties of 2D transition metal nanomaterials are first discussed, emphasizing the interaction between transition metal nanosheets and nucleic acids. Then, the applications of nucleic acid-functionalized transition metal nanosheet-based biosensors are discussed in the context of different signal transducing mechanisms, including optical and electrochemical approaches. Finally, we provide our perspectives on the current challenges and opportunities in this promising field. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Single and combined metal contamination in coastal environments in China: current status and potential ecological risk evaluation.

    Science.gov (United States)

    Manzoor, Romana; Zhang, Tingwan; Zhang, Xuejiao; Wang, Min; Pan, Jin-Fen; Wang, Zhumei; Zhang, Bo

    2018-01-01

    With the development of industrialization and urbanization, metal and metalloid pollution is one of the most serious environmental problems in China. Current contamination status of metals and metalloid and their potential ecological risks along China's coasts were reviewed in the present paper by a comprehensive study on metal contents in marine waters and sediments in the past few decades. The priority metals/metalloid cadmium (Cd), mercury (Hg), chromium (Cr), lead (Pb), and arsenic (As), which were the target elements of the designated project "Comprehensive Prevention and Control of Heavy Metal Pollution" issued by the Chinese government in 2011, were selected considering their high toxicity, persistence, and prevalent existence in coastal environment. Commonly used environmental quality evaluation methods for single and combined metals were compared, and we accordingly suggest the comprehensive approach of joint utilization of the Enrichment Factor and Effect Range Median combined with Pollution Load Index and Mean Effect Range Median Quotient (EEPME); this battery of guidelines may provide consistent, internationally comparable, and accurate understanding of the environment pollution status of combined metals/metalloid and their potential ecological risk.

  5. Manipulating Light with Transition Metal Clusters, Organic Dyes, and Metal Organic Frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Ogut, Serdar [Univ. of Illinois, Chicago, IL (United States)

    2017-09-11

    The primary goals of our research program is to develop and apply state-of-the-art first-principles methods to predict electronic and optical properties of three systems of significant scientific and technological interest: transition metal clusters, organic dyes, and metal-organic frameworks. These systems offer great opportunities to manipulate light for a wide ranging list of energy-related scientific problems and applications. During this grant period, we focused our investigations on the development, implementation, and benchmarking of many-body Green’s function methods (GW approximation and the Bethe-Salpeter equation) to examine excited-state properties of transition metal/transition-metal-oxide clusters and organic molecules that comprise the building blocks of dyes and metal-organic frameworks.

  6. Improved detection of coastal acid sulfate soil hotspots through biomonitoring of metal(loid) accumulation in water lilies (Nymphaea capensis).

    Science.gov (United States)

    Stroud, Jacqueline L; Collins, Richard N

    2014-07-15

    Anthropogenically disturbed coastal acid sulfate soils along the east coast of Australia, and worldwide, periodically result in the discharge of acid waters containing high concentrations of metals. Identifying priority sites (hotspots) within a catchment for acid sulfate soil remediation activities typically involves long-term monitoring of drainwater chemistry, including the capture of data on unpredictable rain-induced groundwater discharge events. To improve upon this monitoring approach, this study investigated using the water lily (Nymphaea capensis) as a biomonitor of drainage waters to identify hotspots in three acid sulfate soil impacted catchments (83 km(2)) in north-eastern New South Wales, Australia. In one catchment where the location of hotspots was known, water lily lamina concentrations of a suite of metal(loid)s were significantly (photspots revealed within catchment variation of plant metal concentrations up to 70-fold. High resolution maps produced from these results, therefore, provided strong evidence for the location of potential hotspots which were confirmed with measurements of drainwater chemistry during rain-induced groundwater discharge events. Median catchment lily accumulation was ca. 160 mg Al kg(-1) and 1,300 mg Fe kg(-1), with hotspots containing up to 6- and 10-fold higher Al and Fe concentrations. These findings suggest that biomonitoring with N. capensis can be an important tool to rapidly identify priority sites for remediation in acid sulfate soil impacted landscapes. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Surface segregation energies in transition-metal alloys

    DEFF Research Database (Denmark)

    Ruban, Andrei; Skriver, Hans Lomholt; Nørskov, Jens Kehlet

    1999-01-01

    We present a database of 24 x 24 surface segregation energies of single transition metal impurities in transition-metal hosts obtained by a Green's-function linear-muffin-tin-orbitals method in conjunction with the coherent potential and atomic sphere approximations including a multipole correction...... to the electrostatic potential and energy. We use the database to establish the major factors which govern surface segregation in transition metal alloys. We find that the calculated trends are well described by Friedel's rectangular state density model and that the few but significant deviations from the simple...

  8. Reactivity of monoolefin ligand in transition metal complexes

    International Nuclear Information System (INIS)

    Rybinskaya, M.I.

    1978-01-01

    The main tendencies in the coordinated olefin ligand property changes are discussed in the transition metal complexes in comparison with free olefins. The review includes the papers published from 1951 up to 1976. It has been shown that in complexes with transition metal cations olefin π-base acquires the ability to react with nucleophylic reagents. Olefin π-acids in complexes with zero valent metals are easily subjected to electrophylic reagent action. At coordination with transition metal cations the olefin properties are generally preserved, while in the zero-valent metal complexes the nonsaturated ligand acquires the properties of a saturated compounds. The ability of transition metal cations in complexes to intensify reactions of nucleophylic bimolecular substitution of vinyl halogen is clearly detected in contrast to the zero valent metal complexes. It has been shown that investigations of the coordinated olefin ligand reactivity give large possibilities in the further development of the organic synthesis. Some reactions are taken as the basis of important industrial processes

  9. Electrical Conductivity in Transition Metals

    Science.gov (United States)

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  10. Transition metals in carbohydrate chemistry

    DEFF Research Database (Denmark)

    Madsen, Robert

    1997-01-01

    This review describes the application of transition metal mediated reactions in carbohydrate synthesis. The different metal mediated transformations are divided into reaction types and illustrated by various examples on monosaccharide derivatives. Carbon-carbon bond forming reactions are further ...

  11. Mesoporous Transition Metal Oxides for Supercapacitors

    Science.gov (United States)

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4), and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors. PMID:28347088

  12. Mesoporous Transition Metal Oxides for Supercapacitors

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2015-10-01

    Full Text Available Recently, transition metal oxides, such as ruthenium oxide (RuO2, manganese dioxide (MnO2, nickel oxides (NiO and cobalt oxide (Co3O4, have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are resulted from the effective contacts between electrode materials and electrolytes as well as fast transportation of ions and electrons in the bulk of electrode and at the interface of electrode and electrolyte. During the past decade, many achievements on mesoporous transition metal oxides have been made. In this mini-review, we select several typical nanomaterials, such as RuO2, MnO2, NiO, Co3O4 and nickel cobaltite (NiCo2O4, and briefly summarize the recent research progress of these mesoporous transition metal oxides-based electrodes in the field of supercapacitors.

  13. The nonmetal-metal transition in solutions of metals in molten salts

    International Nuclear Information System (INIS)

    Tosi, M.P.

    1997-04-01

    Solutions of metals in molten salts present a rich phenomenology: localization of electrons in disordered ionic media, activated electron transport increasing with metal concentration towards a nonmetal-metal (NM-M) transition, and liquid-liquid phase separation. A brief review of progress in the study of these systems is given in this article, with main focus on the NM-M transition. After recalling the known NM-M behaviour of the component elements in the case of expanded fluid alkali metals and mercury and of solid halogens under pressure, the article focuses on liquid metal - molten salt solutions and traces the different NM-M behaviours of the alkalis in their halides and of metals added to polyvalent metal halides. (author). 51 refs, 2 figs

  14. Alkali metal and alkali metal hydroxide intercalates of the layered transition metal disulfides

    International Nuclear Information System (INIS)

    Kanzaki, Y.; Konuma, M.; Matsumoto, O.

    1981-01-01

    The intercalation reaction of some layered transition metal disulfides with alkali metals, alkali metal hydroxides, and tetraalkylammonium hydroxides were investigated. The alkali metal intercalates were prepared in the respective metal-hexamethylphosphoric triamide solutions in vaccuo, and the hydroxide intercalates in aqueous hydroxide solutions. According to the intercalation reaction, the c-lattice parameter was increased, and the increase indicated the expansion of the interlayer distance. In the case of alkali metal intercalates, the expansion of the interlayer distance increased continuously, corresponding to the atomic radius of the alkali metal. On the other hand, the hydroxide intercalates showed discrete expansion corresponding to the effective ionic radius of the intercalated cation. All intercalates of TaS 2 amd NbS 2 were superconductors. The expansion of the interlayer distance tended to increase the superconducting transition temperature in the intercalates of TaS 2 and vice versa in those of NbS 2 . (orig.)

  15. On metal-insulator transition in cubic fullerides

    Science.gov (United States)

    Iwahara, Naoya; Chibotaru, Liviu

    The interplay between degenerate orbital and electron correlation is a key to characterize the electronic phases in, for example, transition metal compounds and alkali-doped fullerides. Besides, the degenerate orbital couples to spin and lattice degrees of freedom ,giving rise to exotic phenomena. Here, we develop the self-consistent Gutzwiller approach for the simultaneous treatment of the Jahn-Teller effect and electron correlation, and apply the methodology to reveal the nature of the ground electronic state of fullerides. For small Coulomb repulsion on site U, the fulleride is quasi degenerate correlated metal. With increase of U, we found the quantum phase transition from the metallic phase to JT split phase. In the latter, the Mott transition (MT) mainly develops in the half-filled subband, whereas the empty and the completely filled subbands are almost uninvolved. Therefore, we can qualify the metal-insulator transition in fullerides as an orbital selective MT induced by JT effect.

  16. Transition Metal Complexes and Catalysis

    Indian Academy of Sciences (India)

    approaches towards the study of bonding in transition metal complexes. Despite .... industrial scale reactions for the production of organic compounds using transition ..... It has found several applications as an engineering thermoplastic. .... and processes of interest to the company, that is, applied research. It is this very ...

  17. First-row transition metal hydrogenation and hydrosilylation catalysts

    Science.gov (United States)

    Trovitch, Ryan J.; Mukhopadhyay, Tufan K.; Pal, Raja; Levin, Hagit Ben-Daat; Porter, Tyler M.; Ghosh, Chandrani

    2017-07-18

    Transition metal compounds, and specifically transition metal compounds having a tetradentate and/or pentadentate supporting ligand are described, together with methods for the preparation thereof and the use of such compounds as hydrogenation and/or hydrosilylation catalysts.

  18. Alkylation and arylation of alkenes by transition metal complexes

    International Nuclear Information System (INIS)

    Volkova, L.G.; Levitin, I.Ya.; Vol'pin, M.E.

    1975-01-01

    In this paper are reviewed methods of alkylation and irylation of unsaturated compounds with complexes of transition metals (Rh, Pd). Analysis of alkylation and arylation of olefines with organic derivatives of transition metals, obtained as a result of exchange reactions between organic compounds of transition metals and salts of metals of the 8th group of the periodic system, allows a conclusion as to the wide possibilities of these reactions in the synthesis of various derivatives of unsaturated compounds. In all the reactions under consideration, intermediate formation of sigma-complexes is assumed. Also considered are alkylation and arylation of olefines with organic derivatives of halogens in the presence of compounds of metals of the 8th group of the periodic system, as well as arylation of olefines with aromatic compounds in the presence of salts of transition metals

  19. Plasmons in metallic monolayer and bilayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Andersen, Kirsten; Thygesen, Kristian S.

    2013-01-01

    We study the collective electronic excitations in metallic single-layer and bilayer transition metal dichalcogenides (TMDCs) using time dependent density functional theory in the random phase approximation. For very small momentum transfers (below q≈0.02 Å−1), the plasmon dispersion follows the √q...

  20. Quantum Critical “Opalescence” around Metal-Insulator Transitions

    Science.gov (United States)

    Misawa, Takahiro; Yamaji, Youhei; Imada, Masatoshi

    2006-08-01

    Divergent carrier-density fluctuations equivalent to the critical opalescence of gas-liquid transition emerge around a metal-insulator critical point at a finite temperature. In contrast to the gas-liquid transitions, however, the critical temperatures can be lowered to zero, which offers a challenging quantum phase transition. We present a microscopic description of such quantum critical phenomena in two dimensions. The conventional scheme of phase transitions by Ginzburg, Landau, and Wilson is violated because of its topological nature. It offers a clear insight into the criticalities of metal-insulator transitions (MIT) associated with Mott or charge-order transitions. Fermi degeneracy involving the diverging density fluctuations generates emergent phenomena near the endpoint of the first-order MIT and must shed new light on remarkable phenomena found in correlated metals such as unconventional cuprate superconductors. It indeed accounts for the otherwise puzzling criticality of the Mott transition recently discovered in an organic conductor. We propose to accurately measure enhanced dielectric fluctuations at small wave numbers.

  1. Assessment of metal contamination in a small mining- and smelting-affected watershed: high resolution monitoring coupled with spatial analysis by GIS.

    Science.gov (United States)

    Coynel, Alexandra; Blanc, Gérard; Marache, Antoine; Schäfer, Jörg; Dabrin, Aymeric; Maneux, Eric; Bossy, Cécile; Masson, Matthieu; Lavaux, Gilbert

    2009-05-01

    The Riou Mort River watershed (SW France), representative of a heavily polluted, small, heterogeneous watershed, represents a major source for the polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system due to former mining and ore-treatment activities. In order to assess spatial distribution of the metal/metalloid contamination in the watershed, a high resolution hydrological and geochemical monitoring were performed during one year at four permanent observation stations. Additionally, thirty-five stream sediment samples were collected at representative key sites and analyzed for metal/metalloid (Cd, Zn, Cu, Pb, As, Sb, Mo, V, Cr, Co, Ni, Th, U and Hg) concentrations. The particulate concentrations in water and stream sediments show high spatial differences for most of the studied elements suggesting strong anthropogenic and/or lithogenic influences; for stream sediments, the sequence of the highest variability, ranging from 100% to 300%, is the following: Mo < Cu < Hg < As < Sb < Cd < Zn < Pb. Multidimensional statistical analyses combined with metal/metalloid maps generated by GIS tool were used to establish relationships between elements, to identify metal/metalloid sources and localize geochemical anomalies attributed to local geochemical background, urban and industrial activities. Finally, this study presents an approach to assess anthropogenic trace metal inputs within this watershed by combining lithology-dependent geochemical background values, metal/metalloid concentrations in stream sediments and mass balances of element fluxes at four key sites. The strongest anthropogenic contributions to particulate element fluxes are 90-95% for Cd, Zn and Hg in downstream sub-catchments. The localisation of anthropogenic metal/metalloid sources in restricted areas offers a great opportunity to further significantly reduce metal emissions and restore the Lot-Garonne-Gironde fluvial-estuarine ecosystem.

  2. Revealing the relationships between chemistry, topology and stiffness of ultrastrong Co-based metallic glass thin films: A combinatorial approach

    International Nuclear Information System (INIS)

    Schnabel, Volker; Köhler, Mathias; Evertz, Simon; Gamcova, Jana; Bednarcik, Jozef; Music, Denis; Raabe, Dierk; Schneider, Jochen M.

    2016-01-01

    An efficient way to study the relationship between chemical composition and mechanical properties of thin films is to utilize the combinatorial approach, where spatially resolved mechanical property measurements are conducted along a concentration gradient. However, for thin film glasses many properties including the mechanical response are affected by chemical topology. Here a novel method is introduced which enables spatially resolved short range order analysis along concentration gradients of combinatorially synthesized metallic glass thin films. For this purpose a CoZrTaB metallic glass film of 3 μm thickness is deposited on a polyimide foil, which is investigated by high energy X-ray diffraction in transmission mode. Through the correlative chemistry-topology-stiffness investigation, we observe that an increase in metalloid concentration from 26.4 to 32.7 at% and the associated formation of localized (hybridized) metalmetalloid bonds induce a 10% increase in stiffness. Concomitantly, along the same composition gradient, a metalloid-concentration-induced increase in first order metal - metal bond distances of 1% is observed, which infers itinerant (metallic) bond weakening. Hence, the metalloid concentration induced increase in hybridized bonding dominates the corresponding weakening of metallic bonds.

  3. Oligocyclopentadienyl transition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  4. Solubility of hydrogen in transition metals

    International Nuclear Information System (INIS)

    Lee, H.M.

    1976-01-01

    Correlations exist between the heat of solution of hydrogen and the difference in energy between the lowest lying energy levels of the trivalent d/sup n-1/s electronic configuration and the divalent d/sup n-2/s 2 (or the tetravalent d/sup n/) configuration of the neutral gaseous atoms. The trends observed in the transition metal series are discussed in relation to the number of valence electrons per atom in the transition elements in their metallic and neutral states

  5. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-01-01

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  6. Integrating Transition Metals into Nanomaterials: Strategies and Applications

    KAUST Repository

    Fhayli, Karim

    2016-04-14

    Transition metals complexes have been involved in various catalytic, biomedical and industrial applications, but only lately they have been associated with nanomaterials to produce innovative and well-defined new hybrid systems. The introduction of transition metals into nanomaterials is important to bear the advantages of metals to nanoscale and also to raise the stability of nanomaterials. In this dissertation, we study two approaches of associating transition metals into nanomaterials. The first approach is via spontaneous self-organization based assembly of small molecule amphiphiles and bulky hydrophilic polymers to produce organic-inorganic hybrid materials that have nanoscale features and can be precisely controlled depending on the experimental conditions used. These hybrid materials can successfully act as templates to design new porous material with interesting architecture. The second approach studied is via electroless reduction of transition metals on the surface of nanocarbons (nanotubes and nanodiamonds) without using any reducing agents or catalysts. The synthesis of these systems is highly efficient and facile resulting in stable and mechanically robust new materials with promising applications in catalysis.

  7. Strong-Superstrong Transition in Glass Transition of Metallic Glass

    International Nuclear Information System (INIS)

    Dan, Wang; Hong-Yan, Peng; Xiao-Yu, Xu; Bao-Ling, Chen; Chun-Lei, Wu; Min-Hua, Sun

    2010-01-01

    Dynamic fragility of bulk metallic glass (BMG) of Zr 64 Cu 16 Ni 10 Al 10 alloy is studied by three-point beam bending methods. The fragility parameter mfor Zr 64 Cu 16 Ni 10 Al 10 BMG is calculated to be 24.5 at high temperature, which means that the liquid is a 'strong' liquid, while to be 13.4 at low temperature which means that the liquid is a 'super-strong' liquid. The dynamical behavior of Zr 64 Cu 16 Ni 10 Al 10 BMG in the supercooled region undergoes a strong to super-strong transition. To our knowledge, it is the first time that a strong-to-superstrong transition is found in the metallic glass. Using small angle x-ray scattering experiments, we find that this transition is assumed to be related to a phase separation process in supercooled liquid. (condensed matter: structure, mechanical and thermal properties)

  8. Phase stability of transition metals and alloys

    International Nuclear Information System (INIS)

    Hixson, R.S.; Schiferl, D.; Wills, J.M.; Hill, M.A.

    1997-01-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This project was focused on resolving unexplained differences in calculated and measured phase transition pressures in transition metals. Part of the approach was to do new, higher accuracy calculations of transmission pressures for group 4B and group 6B metals. Theory indicates that the transition pressures for these baseline metals should change if alloyed with a d-electron donor metal, and calculations done using the Local Density Approximation (LDA) and the Virtual Crystal Approximation (VCA) indicate that this is true. Alloy systems were calculated for Ti, Zr and Hf based alloys with various solute concentrations. The second part of the program was to do new Diamond Anvil Cell (DAC) measurements to experimentally verify calculational results. Alloys were prepared for these systems with grain size suitable for Diamond Anvil Cell experiments. Experiments were done on pure Ti as well as Ti-V and Ti-Ta alloys. Measuring unambiguous transition pressures for these systems proved difficult, but a new technique developed yielded good results

  9. Rare-earth metal transition metal borocarbide and nitridoborate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Niewa, Rainer; Shlyk, Larysa; Blaschkowski, Bjoern [Stuttgart Univ. (Germany). Inst. fuer Anorganische Chemie

    2011-07-01

    Few years after the discovery of superconductivity in high-T{sub c} cuprates, borocarbides and shortly after nitridoborates with reasonably high T{sub c}s up to about 23 K attracted considerable attention. Particularly for the rare-earth metal series with composition RNi{sub 2}[B{sub 2}C] it turned out, that several members exhibit superconductivity next to magnetic order with both T{sub c} above or below the magnetic ordering temperature. Therefore, these compounds have been regarded as ideal materials to study the interplay and coexistence of superconductivity and long range magnetic order, due to their comparably high ordering temperatures and similar magnetic and superconducting condensation energies. This review gathers information on the series RNi{sub 2}[B{sub 2}C] and isostructural compounds with different transition metals substituting Ni as well as related series like RM[BC], RM[BN], AM[BN] and R{sub 3}M{sub 2}[BN]{sub 2}N (all with R = rare-earth metal, A = alkaline-earth metal, M = transition metal) with special focus on synthesis, crystal structures and structural trends in correspondence to physical properties. (orig.)

  10. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  11. Global DNA methylation in earthworms: a candidate biomarker of epigenetic risks related to the presence of metals/metalloids in terrestrial environments.

    Science.gov (United States)

    Santoyo, María Maldonado; Flores, Crescencio Rodríguez; Torres, Adolfo Lopez; Wrobel, Kazimierz; Wrobel, Katarzyna

    2011-10-01

    In this work, possible relationships between global DNA methylation and metal/metalloid concentrations in earthworms have been explored. Direct correlation was observed between soil and tissue As, Se, Sb, Zn, Cu, Mn, Ag, Co, Hg, Pb (p< 0.05). Speciation results obtained for As and Hg hint at the capability of earthworms for conversion of inorganic element forms present in soil to methylated species. Inverse correlation was observed between the percentage of methylated DNA cytosines and total tissue As, As + Hg, As + Hg + Se + Sb (β = -0.8456, p = 0.071; β = -0.9406, p = 0.017; β = -0.9526, p = 0.012 respectively), as well as inorganic As + Hg (β = -0.8807, p = 0.049). It was concluded that earthworms would be particularly helpful as bioindicators of elements undergoing in vivo methylation and might also be used to assess the related risk of epigenetic changes in DNA methylation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Electroforming and Switching in Oxides of Transition Metals: The Role of Metal Insulator Transition in the Switching Mechanism

    Science.gov (United States)

    Chudnovskii, F. A.; Odynets, L. L.; Pergament, A. L.; Stefanovich, G. B.

    1996-02-01

    Electroforming and switching effects in sandwich structures based on anodic films of transition metal oxides (V, Nb, Ti, Fe, Ta, W, Zr, Hf, Mo) have been studied. After being electroformed, some materials exhibited current-controlled negative resistance with S-shapedV-Icharacteristics. For V, Fe, Ti, and Nb oxides, the temperature dependences of the threshold voltage have been measured. As the temperature increased,Vthdecreased to zero at a critical temperatureT0, which depended on the film material. Comparison of theT0values with the temperatures of metal-insulator phase transition for some compounds (Tt= 120 K for Fe3O4, 340 K for VO2, ∼500 K for Ti2O3, and 1070 K for NbO2) showed that switching was related to the transition in the applied electric field. Channels consisting of the above-mentioned lower oxides were formed in the initial anodic films during the electroforming. The possibility of formation of these oxides with a metal-insulator transition was confirmed by thermodynamic calculations.

  13. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil

    DEFF Research Database (Denmark)

    Zheng, Shixue; Su, Jing; Wang, Liang

    2014-01-01

    impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s. Conclusions: C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions...

  14. Bimetallic strip for low temperature use. [4-300/sup 0/K

    Science.gov (United States)

    Bussiee, J.F.; Welch, D.O.; Suenaga, M.

    A class of mechanically pre-stressed structures is provided suitably bi-layer strips, consisting of a layer of group 5 transition metals in intimate contact with a layer of an intermetallic compound of transition metals with certain group 3A, 4A or 5A metals or metalloids such as Ga, In, Si, Ge, Sn, As or Sb. The changes of Young's modulus of these bi-layered combinations at temperatures in the region of somewhat above absolute zero provides a useful means of sensing temperature changes. Such bi-metallic strips may be used as control strips in thermostats, or in direct dial reading instruments. The structures are made by preparing a sandwich of a group 5B transition metal strip between the substantially thicker strips of an alloy between copper and a predetermined group 3A, 4A or 5A metal or metalloid, holding the three layers are heated, cooled the copper alloys and is removed. Removing one of the two formed interlayer alloys between the transition metal and the metal previously alloyed with copper remain.

  15. Local electronic structure of TM-based alloys: a pulsed NMR study

    International Nuclear Information System (INIS)

    Guerra, D.A.

    1984-01-01

    A pulsed NMR study on several transition metal + metalloid amorphous alloys is reported. The analisis of Knight shifts and nuclear spin-lattice relaxation of metalloids indicates a dominant contribution of p-electrons in the Fermi level density of state, supporting the existence of a p-d hibridization. (author) [pt

  16. On monosubstituted cyanurate complexes of transition metals

    International Nuclear Information System (INIS)

    Sejfer, G.B.; Tarasova, Z.A.

    1995-01-01

    Complex monosubstituted cyanurates of transition metals K 2 [Eh(H 2 C 3 N 3 O 3 ) 4 ]x4H 2 ) where Eh = Mn, Co, Ni, Cu, Zn, Cd are synthesized and investigated by means of IR - spectroscopy and thermal analysis methods. It is shown that only thermal decomposition of a manganese complex leads to the production of this metal oxide. All other derivatives decompose with the production of a free metal, because decomposition of these substances in argon atmosphere occurs through an intermediate production of their nitrides. An assumption is made that nitroduction of yttrium or rare earth element salts (instead of transition or alkali metal derivatives) as accelerating additions will facilitate increase of polyisocyanurate resin thermal stability. 25 refs.; 2 figs.; 3 tabs

  17. Preparation and characterization of several transition metal oxides

    International Nuclear Information System (INIS)

    Wold, A.; Dwight, K.

    1989-01-01

    The structure-property relationships of several conducting transition metal oxides, as well as their preparative methods, are presented in this paper. The importance of preparing homogeneous phases with precisely known stoichiometry is emphasized. A comparison is also made of the various techniques used to prepare both polycrystalline and single crystal samples. For transition metal oxides, the metallic properties are discussed either in terms of metal-metal distances which are short enough to result in metallic behavior, or in terms of the formation of a π* conduction band resulting from covalent metal-oxygen interactions. Metallic behavior is observed when the conduction bands are populated with either electrons or holes. The concentration of these carriers can be affected by either cation or anion substitutions. The discussion in this presentation will be limited to the elements Re, Ti, V, Cr, Mo, and Cu

  18. Metals and metalloids in whole blood and tissues of Olive Ridley turtles (Lepidochelys olivacea) from La Escobilla Beach (Oaxaca, Mexico).

    Science.gov (United States)

    Cortés-Gómez, Adriana A; Fuentes-Mascorro, Gisela; Romero, Diego

    2014-12-15

    Concentrations of eight metals and metalloids (Pb, Cd, Cu, Zn, Mn, Se, Ni and As) were evaluated from 41 nesting females (blood) and 13 dead (tissues) Olive Ridley turtles (Lepidochelys olivacea), a species classified as vulnerable and also listed in Appendix I of the Convention of International Trade in Endangered Species (CITES). The mean blood, liver and kidney lead concentration were 0.02 ± 0.01, 0.11 ± 0.08 and 0.06 ± 0.03 μ gg(-1) ww respectively, values lower than other turtle species and locations, which it could be due to the gradual disuse of leaded gasoline in Mexico and Central America since the 1990s. Mean concentration of cadmium was 0.17 ± 0.08 (blood), 82.88 ± 36.65 (liver) and 150.88 ± 110.9 9μg g(-1) (kidney). To our knowledge, the mean renal cadmium levels found is the highest ever reported worldwide for any sea turtle species, while other six elements showed a concentration similar to other studies in sea turtles. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The potential of genetic engineering of plants for the remediation of soils contaminated with heavy metals.

    Science.gov (United States)

    Fasani, Elisa; Manara, Anna; Martini, Flavio; Furini, Antonella; DalCorso, Giovanni

    2018-05-01

    The genetic engineering of plants to facilitate the reclamation of soils and waters contaminated with inorganic pollutants is a relatively new and evolving field, benefiting from the heterologous expression of genes that increase the capacity of plants to mobilize, stabilize and/or accumulate metals. The efficiency of phytoremediation relies on the mechanisms underlying metal accumulation and tolerance, such as metal uptake, translocation and detoxification. The transfer of genes involved in any of these processes into fast-growing, high-biomass crops may improve their reclamation potential. The successful phytoextraction of metals/metalloids and their accumulation in aerial organs have been achieved by expressing metal ligands or transporters, enzymes involved in sulfur metabolism, enzymes that alter the chemical form or redox state of metals/metalloids and even the components of primary metabolism. This review article considers the potential of genetic engineering as a strategy to improve the phytoremediation capacity of plants in the context of heavy metals and metalloids, using recent case studies to demonstrate the practical application of this approach in the field. © 2017 John Wiley & Sons Ltd.

  20. Harnessing the metal-insulator transition for tunable metamaterials

    Science.gov (United States)

    Charipar, Nicholas A.; Charipar, Kristin M.; Kim, Heungsoo; Bingham, Nicholas S.; Suess, Ryan J.; Mathews, Scott A.; Auyeung, Raymond C. Y.; Piqué, Alberto

    2017-08-01

    The control of light-matter interaction through the use of subwavelength structures known as metamaterials has facilitated the ability to control electromagnetic radiation in ways not previously achievable. A plethora of passive metamaterials as well as examples of active or tunable metamaterials have been realized in recent years. However, the development of tunable metamaterials is still met with challenges due to lack of materials choices. To this end, materials that exhibit a metal-insulator transition are being explored as the active element for future metamaterials because of their characteristic abrupt change in electrical conductivity across their phase transition. The fast switching times (▵t < 100 fs) and a change in resistivity of four orders or more make vanadium dioxide (VO2) an ideal candidate for active metamaterials. It is known that the properties associated with thin film metal-insulator transition materials are strongly dependent on the growth conditions. For this work, we have studied how growth conditions (such as gas partial pressure) influence the metalinsulator transition in VO2 thin films made by pulsed laser deposition. In addition, strain engineering during the growth process has been investigated as a method to tune the metal-insulator transition temperature. Examples of both the optical and electrical transient dynamics facilitating the metal-insulator transition will be presented together with specific examples of thin film metamaterial devices.

  1. Synthesis of Mg2FeH6 containing as additives transition metal and transition metal fluorides or carbon

    International Nuclear Information System (INIS)

    Zepon, G.; Leiva, D.R.; Botta, W.J.

    2010-01-01

    The Mg 2 FeH 6 is a promising way of storing hydrogen in solid form, composed by elements that have low cost and, at the same time, high volumetric storage density: 150 kg H 2 /m 3 . However, this complex hydride is not easily synthesized as a single phase material. The hydrogen sorption high temperature and slow kinetics are the major limitations for the practical application of the Mg 2 FeH 6 as a hydrogen storage material. Little is known about the effects of additives in Mg 2 FeH 6 based nanocomposites in this work were synthesized by MAE under hydrogen atmosphere nanocomposites based on Mg 2 FeH 6 containing additives as transition metals, transition metals fluorides of transition metals or carbon, in order to obtain information on the effects of the selected additives. To this end, we used characterization techniques such as XRD, SEM and TEM, thermal analysis by DSC and curves made in apparatus PCT.(author)

  2. Impurities in Antiferromagnetic Transition-Metal Oxides - Symmetry and Optical Transitions

    Science.gov (United States)

    Petersen, John Emil, III

    The study of antiferromagnetic transition-metal oxides is an extremely active area in the physical sciences, where condensed matter physics, inorganic chemistry, and materials science blend together. The sheer number of potential commercial applications is staggering, but much of the fundamental science remains unexplained. This is not due to a lack of effort, however, as theorists have been struggling to understand these materials for decades - particularly the character of the band edges and first optical transitions. The difficulty lies in the strong correlation or Coloumb attraction between the electrons in the anisotropic d orbitals, which conventional band theory cannot describe adequately. The correlation problem is approached here by the well-accepted method of adding a Hubbard potential energy term to the ground state Hamiltonian, calculated within Density Functional Theory. The frequency-dependent complex dielectric function is calculated within the Independent Particle Approximation, and optical transitions are evaluated in multiple different ways. Peaks in the imaginary part of the dielectric function are compared energetically to orbitally decomposed density of states calculations. Optical transitions are typically analyzed in terms of atomic orbitals, which, strictly speaking, gives misleading results. Here, however, from the calculated data, two alternative interpretations are analyzed for each material studied. The first employs rigorous group theoretical analysis to determine allowed electric-dipole transitions, taking into account both orbital hybridization and crystal symmetry. The second interpretation is that of metal cation site hopping. In this interpretation, carriers hop from the x2 - y2 d orbital of one metal cation lattice site to the next metal cation site which is antiferromagnetically aligned. At times, thoughout this work, one interpretation is favorable to the other. Which interpretation is most valid depends on the material

  3. Metal-insulator transition in vanadium dioxide

    International Nuclear Information System (INIS)

    Zylbersztejn, A.; Mott, N.F.

    1975-01-01

    The basic physical parameters which govern the metal-insulator transition in vanadium dioxide are determined through a review of the properties of this material. The major importance of the Hubbard intra-atomic correlation energy in determining the insulating phase, which was already evidence by studies of the magnetic properties of V 1 -/subx/Cr/subx/O 2 alloys, is further demonstrated from an analysis of their electrical properties. An analysis of the magnetic susceptibility of niobium-doped VO 2 yields a picture for the current carrier in the low-temperature phase in which it is accompanied by a spin cloud (owing to Hund's-rule coupling), and has therefore an enhanced mass (m approx. = 60m 0 ). Semiconducting vanadium dioxide turns out to be a borderline case for a classical band-transport description; in the alloys at high doping levels, Anderson localization with hopping transport can take place. Whereas it is shown that the insulating phase cannot be described correctly without taking into account the Hubbard correlation energy, we find that the properties of the metallic phase are mainly determined by the band structure. Metallic VO 2 is, in our view, similar to transition metals like Pt or Pd: electrons in a comparatively wide band screening out the interaction between the electrons in a narrow overlapping band. The magnetic susceptibility is described as exchange enhanced. The large density of states at the Fermi level yields a substantial contribution of the entropy of the metallic electrons to the latent heat. The crystalline distortion removes the band degeneracy so that the correlation energy becomes comparable with the band width and a metal-insulator transition takes place

  4. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.

    Science.gov (United States)

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol

    2015-10-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Biosynthesis of nanoparticles of metals and metalloids by basidiomycetes. Preparation of gold nanoparticles by using purified fungal phenol oxidases.

    Science.gov (United States)

    Vetchinkina, Elena P; Loshchinina, Ekaterina A; Vodolazov, Ilya R; Kursky, Viktor F; Dykman, Lev A; Nikitina, Valentina E

    2017-02-01

    The work shows the ability of cultured Basidiomycetes of different taxonomic groups-Lentinus edodes, Pleurotus ostreatus, Ganoderma lucidum, and Grifola frondosa-to recover gold, silver, selenium, and silicon, to elemental state with nanoparticles formation. It examines the effect of these metal and metalloid compounds on the parameters of growth and accumulation of biomass; the optimal cultivation conditions and concentrations of the studied ion-containing compounds for recovery of nanoparticles have been identified. Using the techniques of transmission electron microscopy, dynamic light scattering, X-ray fluorescence and X-ray phase analysis, the degrees of oxidation of the bioreduced elements, the ζ-potential of colloidal solutions uniformity, size, shape, and location of the nanoparticles in the culture fluid, as well as on the surface and the inside of filamentous hyphae have been determined. The study has found the part played by homogeneous chromatographically pure fungal phenol-oxidizing enzymes (laccases, tyrosinases, and Mn-peroxidases) in the recovery mechanism with formation of electrostatically stabilized colloidal solutions. A hypothetical mechanism of gold(III) reduction from HAuCl 4 to gold(0) by phenol oxidases with gold nanoparticles formation of different shapes and sizes has been introduced.

  6. Potential human health risk by metal(loid)s, 234,238U and 210Po due to consumption of fish from the "Luis L. Leon" Reservoir (Northern México).

    Science.gov (United States)

    Luna-Porres, Mayra Y; Rodríguez-Villa, Marco A; Herrera-Peraza, Eduardo F; Renteria-Villalobos, Marusia; Montero-Cabrera, María E

    2014-06-25

    Concentrations of As, Cu, Fe, Hg, Pb and Zn and activity concentrations from 234,238U and 210Po in water, fillet, liver and gills were determined in three stocked fish species from the Luis L. Leon reservoir, located in Northern Mexico. The considered species were Lepomis cyanellus, Cyprinus carpio and Ictalurus furcatus. 238U and 234U activity concentration (AC) in fillet samples showed values of 0.007-0.014 and 0.01-0.02 Bq∙kg-1 wet weight (ww), respectively. Liver samples for L. cyanellus, C. carpio and I. furcatus present 210Po AC of 1.16-3.26, 0.70-1.13 and 0.93-1.37 Bq∙kg-1 ww. Arsenic, mercury and lead concentration intervals in fillet samples were 0.13-0.39, 0.005-0.126 and 0.009-0.08 mg∙kg-1 ww, respectively, while in gill samples they were 0.11-0.43, 0.002-0.039 and 0.02-0.26 mg∙kg-1 ww. The elemental Bioaccumulation Factor (BAF) for fish tissues with respect to their concentrations in water was determined. L. cyanellus showed the highest BAF values for As and total U, being BAFAs = 37 and 40 L∙kg-1 in fillet and gills, respectively, and BAFU total = 1.5 L∙kg-1 in fillet. I. furcatus showed the highest BAF values for Hg and Pb, being BAFHg = 40 and 13 L∙kg-1 in fillet and gills, and BAFPb = 6.5 and 22 L∙kg-1 in fillet and gills, respectively. Some metal(loid) concentrations are slightly higher than European regulations for fish fillets. The difference in concentrations of metal(loid)s in fillet among the studied species is probably due to their differences in diet and habitat.

  7. Potential Human Health Risk by Metal(loids, 234,238U and 210Po due to Consumption of Fish from the “Luis L. Leon” Reservoir (Northern México

    Directory of Open Access Journals (Sweden)

    Mayra Y. Luna-Porres

    2014-06-01

    Full Text Available Concentrations of As, Cu, Fe, Hg, Pb and Zn and activity concentrations from 234,238U and 210Po in water, fillet, liver and gills were determined in three stocked fish species from the Luis L. Leon reservoir, located in Northern Mexico. The considered species were Lepomis cyanellus, Cyprinus carpio and Ictalurus furcatus. 238U and 234U activity concentration (AC in fillet samples showed values of 0.007–0.014 and 0.01–0.02 Bq∙kg−1 wet weight (ww, respectively. Liver samples for L. cyanellus, C. carpio and I. furcatus present 210Po AC of 1.16–3.26, 0.70–1.13 and 0.93–1.37 Bq∙kg−1 ww. Arsenic, mercury and lead concentration intervals in fillet samples were 0.13–0.39, 0.005–0.126 and 0.009–0.08 mg∙kg−1 ww, respectively, while in gill samples they were 0.11–0.43, 0.002–0.039 and 0.02–0.26 mg∙kg−1 ww. The elemental Bioaccumulation Factor (BAF for fish tissues with respect to their concentrations in water was determined. L. cyanellus showed the highest BAF values for As and total U, being BAFAs = 37 and 40 L∙kg−1 in fillet and gills, respectively, and BAFU total = 1.5 L∙kg−1 in fillet. I. furcatus showed the highest BAF values for Hg and Pb, being BAFHg = 40 and 13 L∙kg−1 in fillet and gills, and BAFPb = 6.5 and 22 L∙kg−1 in fillet and gills, respectively. Some metal(loid concentrations are slightly higher than European regulations for fish fillets. The difference in concentrations of metal(loids in fillet among the studied species is probably due to their differences in diet and habitat.

  8. Structurally triggered metal-insulator transition in rare-earth nickelates.

    Science.gov (United States)

    Mercy, Alain; Bieder, Jordan; Íñiguez, Jorge; Ghosez, Philippe

    2017-11-22

    Rare-earth nickelates form an intriguing series of correlated perovskite oxides. Apart from LaNiO 3 , they exhibit on cooling a sharp metal-insulator electronic phase transition, a concurrent structural phase transition, and a magnetic phase transition toward an unusual antiferromagnetic spin order. Appealing for various applications, full exploitation of these compounds is still hampered by the lack of global understanding of the interplay between their electronic, structural, and magnetic properties. Here we show from first-principles calculations that the metal-insulator transition of nickelates arises from the softening of an oxygen-breathing distortion, structurally triggered by oxygen-octahedra rotation motions. The origin of such a rare triggered mechanism is traced back in their electronic and magnetic properties, providing a united picture. We further develop a Landau model accounting for the metal-insulator transition evolution in terms of the rare-earth cations and rationalizing how to tune this transition by acting on oxygen rotation motions.

  9. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution

    International Nuclear Information System (INIS)

    Finger, Annett; Lavers, Jennifer L.; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D.; Robertson, Bruce; Scarpaci, Carol

    2015-01-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution. - Highlights: • Trace metals measured in blood and feathers. • Arsenic, Mercury and Lead significantly higher at urban colony. • Correlations found between trace metals in feathers and blood. • Little Penguins are suitable bioindicators for coastal metal pollution. - This study confirms the suitability of the Little Penguin as a bioindicator of coastal metal pollution in coastal areas using non-destructive sampling methods

  10. A Market Basket Survey of Horticultural Fruits for Arsenic and Trace Metal Contamination in Southeast Nigeria and Potential Health Risk Implications

    OpenAIRE

    Chigozie Damian Ezeonyejiaku; Maximilian Obinna Obiakor

    2017-01-01

    Background. Elevated arsenic and trace metal contamination of the terrestrial food chain represents one of the most significant environmental risk exposures for human populations in developing countries. Metalloid and metal contamination in horticultural crop produce such as fruit is a public health concern in Nigeria. Local fruits are cheap sources of vitamins and minerals for the resident population and pose an important dietary threat of metal(loid) toxicity through consumption. Objecti...

  11. High-frequency EPR on high-spin transition-metal sites

    NARCIS (Netherlands)

    Mathies, Guinevere

    2012-01-01

    The electronic structure of transition-metal sites can be probed by electron-paramagnetic-resonance (EPR) spectroscopy. The study of high-spin transition-metal sites benefits from EPR spectroscopy at frequencies higher than the standard 9.5 GHz. However, high-frequency EPR is a developing field. In

  12. Metallacyclopentadienes: structural features and coordination in transition metal complexes

    International Nuclear Information System (INIS)

    Dolgushin, Fedor M; Yanovsky, Aleksandr I; Antipin, Mikhail Yu

    2004-01-01

    Results of structural studies of polynuclear transition metal complexes containing the metallacyclopentadiene fragment are overviewed. The structural features of the complexes in relation to the nature of the substituents in the organic moiety of the metallacycles, the nature of the transition metals and their ligand environment are analysed. The main structural characteristics corresponding to different modes of coordination of metallacyclopentadienes to one or two additional metal centres are revealed.

  13. Mesoporous Transition Metal Oxides for Supercapacitors

    OpenAIRE

    Wang, Yan; Guo, Jin; Wang, Tingfeng; Shao, Junfeng; Wang, Dong; Yang, Ying-Wei

    2015-01-01

    Recently, transition metal oxides, such as ruthenium oxide (RuO2), manganese dioxide (MnO2), nickel oxides (NiO) and cobalt oxide (Co3O4), have been widely investigated as electrode materials for pseudo-capacitors. In particular, these metal oxides with mesoporous structures have become very hot nanomaterials in the field of supercapacitors owing to their large specific surface areas and suitable pore size distributions. The high specific capacities of these mesoporous metal oxides are result...

  14. Metalloid Aluminum Clusters with Fluorine

    Science.gov (United States)

    2016-12-01

    metal clusters containing Al4 units. The Al4 was evaluated when attached to an alkaline or transitional metals, namely Na, Li, Be, Cu and Zn. Mandado...i i i n r r r   and therefore the dimensionality goes as 3 3N . This changes the problem to a many one electron problem. Recall that

  15. Stable isotopes of transition and post-transition metals as tracers in environmental studies

    Science.gov (United States)

    Bullen, Tomas D.; Baskaran, Mark

    2011-01-01

    The transition and post-transition metals, which include the elements in Groups 3–12 of the Periodic Table, have a broad range of geological and biological roles as well as industrial applications and thus are widespread in the environment. Interdisciplinary research over the past decade has resulted in a broad understanding of the isotope systematics of this important group of elements and revealed largely unexpected variability in isotope composition for natural materials. Significant kinetic and equilibrium isotope fractionation has been observed for redox sensitive metals such as iron, chromium, copper, molybdenum and mercury, and for metals that are not redox sensitive in nature such as cadmium and zinc. In the environmental sciences, the isotopes are increasingly being used to understand important issues such as tracing of metal contaminant sources and fates, unraveling metal redox cycles, deciphering metal nutrient pathways and cycles, and developing isotope biosignatures that can indicate the role of biological activity in ancient and modern planetary systems.

  16. Potential Human Health Risk by Metal(loid)s, 234,238U and 210Po due to Consumption of Fish from the “Luis L. Leon” Reservoir (Northern México)

    Science.gov (United States)

    Luna-Porres, Mayra Y.; Rodríguez-Villa, Marco A.; Herrera-Peraza, Eduardo F.; Renteria-Villalobos, Marusia; Montero-Cabrera, María E.

    2014-01-01

    Concentrations of As, Cu, Fe, Hg, Pb and Zn and activity concentrations from 234,238U and 210Po in water, fillet, liver and gills were determined in three stocked fish species from the Luis L. Leon reservoir, located in Northern Mexico. The considered species were Lepomis cyanellus, Cyprinus carpio and Ictalurus furcatus. 238U and 234U activity concentration (AC) in fillet samples showed values of 0.007–0.014 and 0.01–0.02 Bq∙kg−1 wet weight (ww), respectively. Liver samples for L. cyanellus, C. carpio and I. furcatus present 210Po AC of 1.16–3.26, 0.70–1.13 and 0.93–1.37 Bq∙kg−1 ww. Arsenic, mercury and lead concentration intervals in fillet samples were 0.13–0.39, 0.005–0.126 and 0.009–0.08 mg∙kg−1 ww, respectively, while in gill samples they were 0.11–0.43, 0.002–0.039 and 0.02–0.26 mg∙kg−1 ww. The elemental Bioaccumulation Factor (BAF) for fish tissues with respect to their concentrations in water was determined. L. cyanellus showed the highest BAF values for As and total U, being BAFAs = 37 and 40 L∙kg−1 in fillet and gills, respectively, and BAFU total = 1.5 L∙kg−1 in fillet. I. furcatus showed the highest BAF values for Hg and Pb, being BAFHg = 40 and 13 L∙kg−1 in fillet and gills, and BAFPb = 6.5 and 22 L∙kg−1 in fillet and gills, respectively. Some metal(loid) concentrations are slightly higher than European regulations for fish fillets. The difference in concentrations of metal(loid)s in fillet among the studied species is probably due to their differences in diet and habitat. PMID:24968208

  17. Transport routes of metalloids into and out of the cell: a review of the current knowledge.

    Science.gov (United States)

    Zangi, Ronen; Filella, Montserrat

    2012-04-15

    Except for their extra- and intra-cellular interfaces, cell membranes are hydrophobic and inhibit the transport of hydrophilic molecules. Metalloids in aqueous solutions form chemical species with oxygen and hydroxyl groups and, therefore, exist as hydrophilic neutral polar solutes or as hydrophilic anions. This characteristic of metalloids introduces a large barrier for their passage through the cell membrane via unaided diffusion. The necessity for an uptake mechanism for metalloids arises from the requirement of these species for the maintenance of life, such as the need of boron for plant cells. Conversely, the transport of these species out of the cell is necessary because some metalloids are toxic, such as arsenic and antimony, and their entrance into the cell is undesirable. The undesired uptake of these toxic species is possible via pathways designed for the uptake of other structurally and chemically similar essential compounds. Therefore, the extrusion of arsenic and antimony out of the cell is an example of a detoxification mechanism. As a consequence of the hydrophobic character of the cell membrane in all living systems, the main route for the uptake and efflux of metalloids is facilitated by transmembrane proteins, driven either by concentration gradients or by energy-fueled pumps. However, metalloids forming or embedded in nano-sized particles escape the need to cross the cell membrane because these particles can be taken into the cell by endocytosis. Here, we review the uptake and efflux pathways of boron, silicon, arsenic, and antimony through the cell membranes of different organisms and the protein channels involved in these processes. In particular, passive diffusion via aquaglyceroporins, active transport via primary and secondary ion pumps, extrusion into vacuoles of metalloid-thiol conjugates via ATP-binding cassette, the efflux of methylated metalloids, and endocytosis are summarized. Copyright © 2012 Elsevier Ireland Ltd. All rights

  18. Evaluating the Long-Term Stability of Metals Precipitated In-Situ

    Science.gov (United States)

    Because metals (including metals and metalloids) cannot be destroyed, unlike organic contaminants, in-situ approaches for their removal from groundwater necessarily involves fixation/immobilization in the solid aquifer matrix. Consequently, the success of precipitation based in...

  19. Sorption of V and VI group metalloids (As, Sb, Te on modified peat sorbents

    Directory of Open Access Journals (Sweden)

    Ansone-Bertina Linda

    2016-01-01

    Full Text Available The present work investigates arsenic, antimony and tellurium sorption using iron modified peat. The results were obtained using batch tests and the sorption was studied as a function of initial metalloid concentration, pH and sorption time, as well as the presence of competing substances. The obtained results indicate that modification of peat with Fe compounds significantly enhances the sorption capacity of the sorbents used for sorption of arsenic, antimony and tellurium. The optimal pH interval for the sorption of Sb(III is 6.5–9 and for As(V and Sb(V – 3–6, while As(III and tellurium sorption using Fe-modified peat is favourable in a wider interval of 3–9. The presence of competing ions as well as HA affect sorption of metalloids on Fe-modified peat. A minor impact on the reduction of metalloid sorption was detected in the presence of nitrate, sulphate, carbonate and tartrate ions, while in the presence of phosphate and HA the sorption ability of metalloids can be considerably reduced. The obtained results of kinetic experiments indicate that sorption of metalloids on Fe-modified peat mainly occurs relying on mechanisms of physical sorption processes.

  20. Peruvian perovskite Between Transition-metal to PGM/PlatinumGroupMetal Catalytic Fusion

    Science.gov (United States)

    Maksoed, Wh-

    2016-11-01

    Strongly correlated electronic materials made of simple building blocks, such as a transition-metal ion in an octahedral oxygen cage forming a perovskite structure- Dagotto & Tokura for examples are the high-temperature superconductivity & the CMR/Colossal Magnetoresistance . Helium-4 denotes from LC Case,ScD: "Catalytic Fusion of Deuterium into Helium-4"- 1998 dealt with gaseous D2- "contacted with a supported metallic catalyst at superatmospheric pressure". The catalyst is a platinum-group metal, at about 0.5% - 1% by weight, on activated C. Accompanies Stephen J Geier, 2010 quotes "transition metal complexes", the Energy thus produced is enormous, and because the deuterium is very cheap in the form of heavy water (less than US 1/g), the fuel cost is very low (seas &Deuteronomy to be eternally preserves. Heartfelt Gratitudes to HE. Mr. Prof. Ir. HANDOJO.

  1. Mechanical failure and glass transition in metallic glasses

    International Nuclear Information System (INIS)

    Egami, T.

    2011-01-01

    Research highlights: → We review the recent results of molecular dynamics simulations on metallic glasses. → They show the equivalence of mechanical failure and glass transition. → We discuss the microscopic mechanism behind this equivalence. → We show that the density of defects in metallic glasses is as high as a quarter. → Our concepts about the defect state in glasses need to be changed. - Abstract: The current majority view on the phenomenon of mechanical failure in metallic glasses appears to be that it is caused by the activity of some structural defects, such as free-volumes or shear transformation zones, and the concentration of such defects is small, only of the order of 1%. However, the recent results compel us to revise this view. Through molecular dynamics simulation it has been shown that mechanical failure is the stress-induced glass transition. According to our theory the concentration of the liquid-like sites (defects) is well over 20% at the glass transition. We suggest that the defect concentration in metallic glasses is actually very high, and percolation of such defects causes atomic avalanche and mechanical failure. In this article we discuss the glass transition, mechanical failure and viscosity from such a point of view.

  2. Unusual metal-insulator transition in disordered ferromagnetic films

    International Nuclear Information System (INIS)

    Muttalib, K.A.; Wölfle, P.; Misra, R.; Hebard, A.F.

    2012-01-01

    We present a theoretical interpretation of recent data on the conductance near and farther away from the metal-insulator transition in thin ferromagnetic Gd films of thickness b≈2-10 nm. For increasing sheet resistances a dimensional crossover takes place from d=2 to d=3 dimensions, since the large phase relaxation rate caused by scattering of quasiparticles off spin wave excitations renders the dephasing length L φ ≲b at strong disorder. The conductivity data in the various regimes obey fractional power-law or logarithmic temperature dependence. One observes weak localization and interaction induced corrections at weaker disorder. At strong disorder, near the metal-insulator transition, the data show scaling and collapse onto two scaling curves for the metallic and insulating regimes. We interpret this unusual behavior as proof of two distinctly different correlation length exponents on both sides of the transition.

  3. Transition-Metal-Free Biomolecule-Based Flexible Asymmetric Supercapacitors.

    Science.gov (United States)

    Yang, Yun; Wang, Hua; Hao, Rui; Guo, Lin

    2016-09-01

    A transition-metal-free asymmetric supercapacitor (ASC) is successfully fabricated based on an earth-abundant biomass derived redox-active biomolecule, named lawsone. Such an ASC exhibits comparable or even higher energy densities than most of the recently reported transition-metal-based ASCs, and this green ASC generation from renewable resources is promising for addressing current issues of electronic hazard processing, high cost, and unsustainability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Tunable metal-insulator transitions in bilayer graphene by thermal annealing

    OpenAIRE

    Kalon, Gopinadhan; Shin, Young Jun; Yang, Hyunsoo

    2012-01-01

    Tunable and highly reproducible metal-insulator transitions have been observed in bilayer graphene upon thermal annealing at 400 K under high vacuum conditions. Before annealing, the sample is metallic in the whole temperature regime of study. Upon annealing, the conductivity changes from metallic to that of an insulator and the transition temperature is a function of annealing time. The pristine metallic state can be reinstated by exposing to air thereby inducing changes in the electronic pr...

  5. Trace Metals and Metalloids in Forest Soils and Exotic Earthworms in Northern New England, USA

    Science.gov (United States)

    Richardson, J.B.; Görres, J.H.; Jackson, B.P.; Friedland, A.J.

    2015-01-01

    Trace metals and metalloids (TMM) in forest soils and invasive earthworms were studied at 9 uncontaminated sites in northern New England, USA. Essential (Cu, Mo, Ni, Zn, Se) and toxic (As, Cd, Pb, Hg and U) TMM concentrations (mg kg-1) and pools (mg m-2) were quantified for organic horizons (forest floor), mineral soils and earthworm tissues. Essential TMM tissue concentrations were greatest for mineral soil-feeding earthworm Octolasion cyaneum. Toxic TMM tissue concentrations were highest for organic horizon-feeding earthworms Dendobaena octaedra, Aporrectodea rosea and Amynthas agrestis. Most earthworm species had attained tissue concentrations of Pb, Hg and Se potentially hazardous to predators. Bioaccumulation factors were Cd > Se > Hg > Zn > Pb > U > 1.0 > Cu > As > Mo > Ni. Only Cd, Se Hg and Zn were considered strongly bioaccumulated by earthworms because their average bioaccumulation factors were significantly greater than 1.0. Differences in bioaccumulation did not appear to be caused by soil concentrations as earthworm TMM tissue concentrations were poorly correlated with TMM soil concentrations. Instead, TMM bioaccumulation appears to be species and site dependent. The invasive Amynthas agrestis had the greatest tissue TMM pools, due to its large body mass and high abundance at our stands. We observed that TMM tissue pools in earthworms were comparable or exceeded organic horizon TMM pools; earthworm tissue pools of Cd were up 12 times greater than in the organic horizon. Thus, exotic earthworms may represent an unaccounted portion and flux of TMM in forests of the northeastern US. Our results highlight the importance of earthworms in TMM cycling in northern forests and warrant more research into their impact across the region. PMID:25883392

  6. Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S.

    OpenAIRE

    Zhao Dong; Michael S. Bank; John D. Spengler

    2015-01-01

    Cement production is a major source of metals and metalloids in the environment, while exposures to metals and metalloids may impact human health in the surrounding communities. We recruited 185 participants living in the vicinity of a cement plant in the northeast U.S., and measured the levels of aluminum (Al), arsenic (As), cadmium (Cd), lead (Pb), mercury (Hg), and selenium (Se) in blood and Hg in hair samples from them. A questionnaire was used to assess potential sources of Hg exposure...

  7. The metallicities of stars with and without transiting planets

    DEFF Research Database (Denmark)

    Buchhave, Lars A.; Latham, David W.

    2015-01-01

    Host star metallicities have been used to infer observational constraints on planet formation throughout the history of the exoplanet field. The giant planet metallicity correlation has now been widely accepted, but questions remain as to whether the metallicity correlation extends to the small...... terrestrial-sized planets. Here, we report metallicities for a sample of 518 stars in the Kepler field that have no detected transiting planets and compare their metallicity distribution to a sample of stars that hosts small planets (). Importantly, both samples have been analyzed in a homogeneous manner...... using the same set of tools (Stellar Parameters Classification tool). We find the average metallicity of the sample of stars without detected transiting planets to be and the sample of stars hosting small planets to be . The average metallicities of the two samples are indistinguishable within...

  8. [Non-empirical interatomic potentials for transition metals

    International Nuclear Information System (INIS)

    1993-01-01

    The report is divided into the following sections: potential-energy functions for d-band metals, potential-energy functions for aluminides and quasicrystals, electronic structure of complex structures and quasicrystals, potential-energy functions in transition-metal oxides, applications to defect structure and mechanical properties, and basic theory of interatomic potentials

  9. Health concerns of heavy metals and metalloids.

    Science.gov (United States)

    Cooksey, Chris

    2012-01-01

    There is a long history and an overwhelming amount of data on the toxicity of heavy metal compounds. Here a brief look is taken of some aspects of the toxicity of lead, cadmium, mercury and arsenic, chosen for their historical importance and environmental significance, highlighting especially the contrast between the acute and chronic toxicity of purely inorganic species and their organic derivatives. For further details of other toxic metal compounds, the reader might like to consult "Elements of murder: a history of poison" by John Emsley (2005, Oxford University Press).

  10. Theory of quantum metal to superconductor transitions in highly conducting systems

    Energy Technology Data Exchange (ETDEWEB)

    Spivak, B.

    2010-04-06

    We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.

  11. On the thermodynamics of phase transitions in metal hydrides

    Science.gov (United States)

    di Vita, Andrea

    2012-02-01

    Metal hydrides are solutions of hydrogen in a metal, where phase transitions may occur depending on temperature, pressure etc. We apply Le Chatelier's principle of thermodynamics to a particular phase transition in TiH x , which can approximately be described as a second-order phase transition. We show that the fluctuations of the order parameter correspond to fluctuations both of the density of H+ ions and of the distance between adjacent H+ ions. Moreover, as the system approaches the transition and the correlation radius increases, we show -with the help of statistical mechanics-that the statistical weight of modes involving a large number of H+ ions (`collective modes') increases sharply, in spite of the fact that the Boltzmann factor of each collective mode is exponentially small. As a result, the interaction of the H+ ions with collective modes makes a tiny suprathermal fraction of the H+ population appear. Our results hold for similar transitions in metal deuterides, too. A violation of an -insofar undisputed-upper bound on hydrogen loading follows.

  12. A Simple, General Synthetic Route toward Nanoscale Transition Metal Borides.

    Science.gov (United States)

    Jothi, Palani R; Yubuta, Kunio; Fokwa, Boniface P T

    2018-04-01

    Most nanomaterials, such as transition metal carbides, phosphides, nitrides, chalcogenides, etc., have been extensively studied for their various properties in recent years. The similarly attractive transition metal borides, on the contrary, have seen little interest from the materials science community, mainly because nanomaterials are notoriously difficult to synthesize. Herein, a simple, general synthetic method toward crystalline transition metal boride nanomaterials is proposed. This new method takes advantage of the redox chemistry of Sn/SnCl 2 , the volatility and recrystallization of SnCl 2 at the synthesis conditions, as well as the immiscibility of tin with boron, to produce crystalline phases of 3d, 4d, and 5d transition metal nanoborides with different morphologies (nanorods, nanosheets, nanoprisms, nanoplates, nanoparticles, etc.). Importantly, this method allows flexibility in the choice of the transition metal, as well as the ability to target several compositions within the same binary phase diagram (e.g., Mo 2 B, α-MoB, MoB 2 , Mo 2 B 4 ). The simplicity and wide applicability of the method should enable the fulfillment of the great potential of this understudied class of materials, which show a variety of excellent chemical, electrochemical, and physical properties at the microscale. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Hot carrier dynamics in plasmonic transition metal nitrides

    Science.gov (United States)

    Habib, Adela; Florio, Fred; Sundararaman, Ravishankar

    2018-06-01

    Extraction of non-equilibrium hot carriers generated by plasmon decay in metallic nano-structures is an increasingly exciting prospect for utilizing plasmonic losses, but the search for optimum plasmonic materials with long-lived carriers is ongoing. Transition metal nitrides are an exciting class of new plasmonic materials with superior thermal and mechanical properties compared to conventional noble metals, but their suitability for plasmonic hot carrier applications remains unknown. Here, we present fully first principles calculations of the plasmonic response, hot carrier generation and subsequent thermalization of all group IV, V and VI transition metal nitrides, fully accounting for direct and phonon-assisted transitions as well as electron–electron and electron–phonon scattering. We find the largest frequency ranges for plasmonic response in ZrN, HfN and WN, between those of gold and silver, while we predict strongest absorption in the visible spectrum for the VN, NbN and TaN. Hot carrier generation is dominated by direct transitions for most of the relevant energy range in all these nitrides, while phonon-assisted processes dominate only below 1 eV plasmon energies primarily for the group IV nitrides. Finally, we predict the maximum hot carrier lifetimes to be around 10 fs for group IV and VI nitrides, a factor of 3–4 smaller than noble metals, due to strong electron–phonon scattering. However, we find longer carrier lifetimes for group V nitrides, comparable to silver for NbN and TaN, while exceeding 100 fs (twice that of silver) for VN, making them promising candidates for efficient hot carrier extraction.

  14. Probable metal-insulator transition in Ag{sub 4}SSe

    Energy Technology Data Exchange (ETDEWEB)

    Drebushchak, V.A., E-mail: dva@igm.nsc.ru [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Pal’yanova, G.A.; Seryotkin, Yu.V. [V.S. Sobolev Institute of Geology and Mineralogy, SB RAS, Pr. Ac. Koptyuga 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Drebushchak, T.N. [Novosibirsk State University, Ul. Pirogova 2, Novosibirsk 630090 (Russian Federation); Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Ul. Kutateladze 18, Novosibirsk 630128 (Russian Federation)

    2015-02-15

    Highlights: • New phase transition in Ag{sub 4}SSe was discovered with scanning calorimetry and supported with X-ray powder diffraction. • The thermal effect relates to the anomaly in electrical and thermal conductivity of Ag{sub 4}SSe. • Similar thermal and electrical effects in K{sub 3}Cu{sub 8}S{sub 6} are explained with the metal-insulator transition. - Abstract: New phase transition (285 K) in low-temperature monoclinic Ag{sub 4}SSe was found out below the α-β transition (358 K) after the measurements with differential scanning calorimetry. The transition reveals significant hysteresis (over 30 K). X-ray powder diffraction shows that the superlattice with doubled a and b parameters of the unit cell exists below the new transition point. The signs of this new phase transition can be found in thermal and electrical conductivity of Ag{sub 4}SSe published in literature. Elusive phase transition in Ag{sub 2}Se shows similar properties. The new transition is likely related to the metal-insulator type transition, like K{sub 3}Cu{sub 8}S{sub 6}.

  15. Transition metal carbide nanocomposite and amorphous thin films

    OpenAIRE

    Tengstrand, Olof

    2014-01-01

    This thesis explores thin films of binary and ternary transition metal carbides, in the Nb-C, Ti-Si-C, Nb-Si-C, Zr-Si-C, and Nb-Ge-C systems. The electrical and mechanical properties of these systems are affected by their structure and here both nanocomposite and amorphous thin films are thus investigated. By appropriate choice of transition metal and composition the films can be designed to be multifunctional with a combination of properties, such as low electric resistivity, low contact res...

  16. Application of neutron activation techniques and x-ray energy dispersion spectrometry, in analysis of metallic traces adsorbed by chelex-100 resin; Ativacao das tecnicas de ativacao neutronica e espectrometria por dispersao de onda e de energia de raios X, na analise de tracos metalicos adsorvidos pela resina chelex-100

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, Jair C.; Amaral, Angela M.; Magalhaes, Jesus C.; Pereira, Jose S.J.; Silva, Juliana B. da; Auler, Lucia M.L.A. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil)]. E-mail: jcf@urano.cdtn.br

    2000-07-01

    In this work, the authors have investigated optimal conditions of adsorption for several ion metallic groups (cations of heavy metals and transition metals, oxyanions metallics and metalloids and cations of rare earths), as traces (ppb), withdrawn and in mixture of groups, by chelex-100 resin. The experiments have been developed by bath techniques in ammonium acetate tamponade solution 40 mM pH 5,52 content 0,5 g of chelex-100 resin. After magnetic agitation for two hours, resins were dried and submitted to X-ray energy dispersion spectrometry, x-ray fluorescence spectrometry and neutron activation analysis. The results have demonstrated that chelex-100 resin adsorb quantitatively transition element groups and rare earth groups in two cases (withdrawn and simultaneously adsorption)

  17. Evaluation of complexing agents and column temperature in ion chromatographic separation of alkali metals, alkaline earth metals and transition metals ion

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Pandey, Ashish; Name, Anil B.; Das, D.K.; Behere, P.G.; Mohd Afzal

    2015-01-01

    The aim of ion chromatography method development is the resolution of all metal ions of interests. Resolution can be improved by changing the selectivity. Selectivity in chromatography can be altered by changes in mobile phase (eg eluent type, eluent strength) or through changes in stationary phase. Temperature has been used in altering the selectivity of particularly in reversed phase liquid chromatography and ion exchange chromatography. Present paper describe the retention behaviour of alkali metals, alkaline earth metals and transition metal ions on a silica based carboxylate function group containing analyte column. Alkali metals, alkaline earth metals and transition metal ions were detected by ion conductivity and UV-VIS detectors respectively

  18. Hydrogen and dihydrogen bonding of transition metal hydrides

    Science.gov (United States)

    Jacobsen, Heiko

    2008-04-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2NO(PH 3) 2 and a small proton donor H 2O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H⋯H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  19. Hydrogen and dihydrogen bonding of transition metal hydrides

    International Nuclear Information System (INIS)

    Jacobsen, Heiko

    2008-01-01

    Intermolecular interactions between a prototypical transition metal hydride WH(CO) 2 NO(PH 3 ) 2 and a small proton donor H 2 O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions

  20. The phosphorus and the transition metals chemistry

    International Nuclear Information System (INIS)

    Mathey, F.

    1988-01-01

    The 1988 progress report, concerning the Polytechnic School unit (France), which studies the phosphorus and the transition metals chemistry, is presented. The laboratory activities are related to the following topics: the phosporus heterocyclic chemistry, the phosphorus-carbon double bonds chemistry, the new transition metals phosphorus compounds, the phosphonates and their uses. Some practical applications of homogeneous catalysis and new materials synthesis are investigated. The main results obtained are: the discovery of the tetra-phosphafulvalenes, the utilization of a new synthesis method of the phosphorus-carbon double bonds and the stabilization of the α-phosphonyled carbanions by the lithium diisopropylamidourea. The papers, the congress communications and the thesis are also shown [fr

  1. Adlayer Core-Level Shifts of Random Metal Overlayers on Transition-Metal Substrates

    DEFF Research Database (Denmark)

    Ganduglia-Pirovano, M. V.; Kudrnovský, J.; Scheffler, M.

    1997-01-01

    and the screening effects induced by the core hole, and study the influence of the alloy composition for a number of noble metal-transition metal systems. Our analysis clearly indicates the importance of final-state screening effects for the interpretation of measured core-level shifts. Calculated deviations from...

  2. The model of metal-insulator phase transition in vanadium oxide

    International Nuclear Information System (INIS)

    Vikhnin, V.S.; Lysenko, S.; Rua, A.; Fernandez, F.; Liu, H.

    2005-01-01

    Thermally induced metal-insulator phase transitions (PT) in VO 2 thin films are studied theoretically and experimentally. The hysteresis phenomena in the region of the transition for different type thin films were investigated. The phenomenological model of the PT is suggested. The charge transfer-lattice instability in VO 2 metallic phase is considered as basis of the first order metal-insulator PT in VO 2 . The charge transfer is treated as an order parameter

  3. Spatial Characteristics, Health Risk Assessment and Sustainable Management of Heavy Metals and Metalloids in Soils from Central China

    Directory of Open Access Journals (Sweden)

    Fei Li

    2018-01-01

    Full Text Available The contents of seven toxic metals (Cu, Cr, Cd, Zn, Pb, Hg and As in soils from Central China, including Henan Province, Hubei Province and Hunan Province, were collected from published papers from 2007 to 2017. The geoaccumulation index, health risk assessment model and statistics were adopted to study the spatial contamination pattern, to assess the human health risks and to identify the priority control pollutants. The concentrations of soil metals in Central China, especially Cd (1.31 mg/kg, Pb (44.43 mg/kg and Hg (0.19 mg/kg, surpassed their corresponding background values, and the Igeo values of Cd and Hg varied the most, ranging from the unpolluted level to the extremely polluted level. The concentrations of toxic metals were higher in the southern and northern parts of Central China, contrasting to the lowest contents in the middle parts. For non-carcinogenic risk, the hazard index (HI values for the children in Hubei Province (1.10 and Hunan Province (1.41 exceeded the safe level of one, with higher health risks to children than adults, and the hazard quotient (HQ values of the three exposure pathways for both children and adults in Central China decreased in the following order: ingestion > dermal contact > inhalation. For carcinogenic risk (CR, the CR values for children in Hubei Province (2.55 × 10−4, Hunan Province (3.44 × 10−4 and Henan Province (1.69 × 10−4, and the CR for adults in Hubei Province (3.67 × 10−5, Hunan Province (4.92 × 10−5 and Henan Province (2.45 × 10−5 exceeded the unacceptable level (10−4 and acceptable level (10−6, respectively. Arsenic (As appeared to be the main metalloid for both children and adults causing the high carcinogenic risk. For sustainable development in Central China, special attention should be paid to Cd, Hg, Cr, Pb and As, identified as the priority control soil metals. Importance should also be attached to public education, source control, and the remediation of the

  4. Vacancies in transition metals

    International Nuclear Information System (INIS)

    Allan, G.; Lannoo, M.

    1976-01-01

    A calculation of the formation energy and volume for a vacancy in transition metals is described. A tight-binding scheme is used for the d band and a Born-Mayer type potential to account for the repulsive part of the energy at small distances. The results show that the relaxation energy is small in all cases, less than 0.1 eV. This seems to be coherent with the good agreement obtained for the theoretical and experimental values of the formation energy Esub(F)sup(V) of the vacancy, without including relaxation. The center of the transitional series is found to give a contraction (Formation volume of order -0.4 at.vol.) whereas the edges are found to produce dilations. (author)

  5. Metal Phosphides and Phosphates-based Electrodes for Electrochemical Supercapacitors.

    Science.gov (United States)

    Li, Xin; Elshahawy, Abdelnaby M; Guan, Cao; Wang, John

    2017-10-01

    Phosphorus compounds, such as metal phosphides and phosphates have shown excellent performances and great potential in electrochemical energy storage, which are demonstrated by research works published in recent years. Some of these metal phosphides and phosphates and their hybrids compare favorably with transition metal oxides/hydroxides, which have been studied extensively as a class of electrode materials for supercapacitor applications, where they have limitations in terms of electrical and ion conductivity and device stability. To be specific, metal phosphides have both metalloid characteristics and good electric conductivity. For metal phosphates, the open-framework structures with large channels and cavities endow them with good ion conductivity and charge storage capacity. In this review, we present the recent progress on metal phosphides and phosphates, by focusing on their advantages/disadvantages and potential applications as a new class of electrode materials in supercapacitors. The synthesis methods to prepare these metal phosphides/phosphates are looked into, together with the scientific insights involved, as they strongly affect the electrochemical energy storage performance. Particular attentions are paid to those hybrid-type materials, where strong synergistic effects exist. In the summary, the future perspectives and challenges for the metal phosphides, phosphates and hybrid-types are proposed and discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The 1s x-ray absorption pre-edge structures in transition metal oxides

    NARCIS (Netherlands)

    de Groot, Frank|info:eu-repo/dai/nl/08747610X; Vanko, Gyoergy; Glatzel, Pieter

    2009-01-01

    We develop a general procedure to analyse the pre-edges in 1s x-ray absorption near edge structure (XANES) of transition metal oxides and coordination complexes. Transition metal coordination complexes can be described from a local model with one metal ion. The 1s 3d quadrupole transitions are

  7. Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes

    KAUST Repository

    Dong, Liang; Kumar, Hemant; Anasori, Babak; Gogotsi, Yury; Shenoy, Vivek B.

    2016-01-01

    double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless

  8. Friction Modifier Using Adherent Metallic Multilayered or Mixed Element Layer Conversion Coatings

    Science.gov (United States)

    Schramm, Harry F. (Inventor); Defalco, Francis G. (Inventor); Starks, Lloyd L., Sr. (Inventor)

    2013-01-01

    A process for creating conversion coatings and spin, drawing, and extrusion finishes for surfaces, wherein the conversion coatings and spin, drawing, and extrusion finishes contain potassium, phosphorus, nitrogen, and one or more non-alkaline metals and/or one or more metalloids. The process comprises forming an aqueous solution of water, phosphoric acid or sulfuric acid, ammonium hydroxide, an alkali metal hydroxide, and one or more non-alkaline metals and/or one or more metalloids. The aqueous solution forms an anti-friction multilayer conversion and/or mixed element coating or a spin, drawing, and extrusion finish on a surface when applied to the surface, either directly without the use of applied external electromotive force, or as an additive in lubricating fluids.

  9. Catalytic olefin polymerization with early transition metal compounds

    NARCIS (Netherlands)

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and

  10. Direct NO decomposition over stepped transition-metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Christensen, Claus H.

    2007-01-01

    We establish the full potential energy diagram for the direct NO decomposition reaction over stepped transition-metal surfaces by combining a database of adsorption energies on stepped metal surfaces with known Bronsted-Evans-Polanyi (BEP) relations for the activation barriers of dissociation...

  11. Theoretical studies of transition metal complexes with nitriles and isocyanides

    International Nuclear Information System (INIS)

    Kuznetsov, Maksim L

    2002-01-01

    Theoretical studies of transition metal complexes with nitriles and isocyanides are reviewed. The electronic structures and the nature of coordination bonds in these complexes are discussed. The correlation between the electronic structures of transition metal complexes with nitriles and isocyanides and their structural properties, spectroscopic characteristics, and reactivities are considered. The bibliography includes 121 references.

  12. Current role of ICP-MS in clinical toxicology and forensic toxicology: a metallic profile.

    Science.gov (United States)

    Goullé, Jean-Pierre; Saussereau, Elodie; Mahieu, Loïc; Guerbet, Michel

    2014-08-01

    As metal/metalloid exposure is inevitable owing to its omnipresence, it may exert toxicity in humans. Recent advances in metal/metalloid analysis have been made moving from flame atomic absorption spectrometry and electrothermal atomic absorption spectrometry to the multi-elemental inductively coupled plasma (ICP) techniques as ICP atomic emission spectrometry and ICP-MS. ICP-MS has now emerged as a major technique in inorganic analytical chemistry owing to its flexibility, high sensitivity and good reproducibility. This in depth review explores the ICP-MS metallic profile in human toxicology. It is now routinely used and of great importance, in clinical toxicology and forensic toxicology to explore biological matrices, specifically whole blood, plasma, urine, hair, nail, biopsy samples and tissues.

  13. Trends in catalytic NO decomposition over transition metal surfaces

    DEFF Research Database (Denmark)

    Falsig, Hanne; Bligaard, Thomas; Rass-Hansen, Jeppe

    2007-01-01

    The formation of NOx from combustion of fossil and renewable fuels continues to be a dominant environmental issue. We take one step towards rationalizing trends in catalytic activity of transition metal catalysts for NO decomposition by combining microkinetic modelling with density functional...... theory calculations. We show specifically why the key problem in using transition metal surfaces to catalyze direct NO decomposition is their significant relative overbinding of atomic oxygen compared to atomic nitrogen....

  14. Hydrogen and dihydrogen bonding of transition metal hydrides

    Energy Technology Data Exchange (ETDEWEB)

    Jacobsen, Heiko [KemKom, Libellenweg 2, 25917 Leck, Nordfriesland (Germany)], E-mail: jacobsen@kemkom.com

    2008-04-03

    Intermolecular interactions between a prototypical transition metal hydride WH(CO){sub 2}NO(PH{sub 3}){sub 2} and a small proton donor H{sub 2}O have been studied using DFT methodology. The hydride, nitrosyl and carbonyl ligand have been considered as site of protonation. Further, DFT-D calculations in which empirical corrections for the dispersion energy are included, have been carried out. A variety of pure and hybrid density functionals (BP86, PW91, PBE, BLYP, OLYP, B3LYP, B1PW91, PBE0, X3LYP) have been considered, and our calculations indicate the PBE functional and its hybrid variation are well suited for the calculation of transition metal hydride hydrogen and dihydrogen bonding. Dispersive interactions make up for a sizeable portion of the intermolecular interaction, and amount to 20-30% of the bond energy and to 30-40% of the bond enthalpy. An energy decomposition analysis reveals that the H...H bond of transition metal hydrides contains both covalent and electrostatic contributions.

  15. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd, E-mail: gerd.meyer@uni-koeln.de

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  16. Metallic Concentration in Karnaphuly Estuary Sediment Using Neutron Activation Analysis Technique

    International Nuclear Information System (INIS)

    Rahman, A.K.M.R.; Chakroborty, S.R.; Roy, P.K.; Dev, A.K.

    2013-01-01

    Thousands of tonnes of liquid waste, dirt and garbage from different mills and factories from Kaptai to Chittagong are dumped unhindered into the Karnaphuli River. Pollutants enter the river directly from urban sewerage and industrial waste discharges. Ships pollute waterways in many ways. All theses can contribute to the heavy and other metals of the water bodies. To find out concentration of different metallic elements and make a comparison with the world reference values twenty one surface sediment samples were collected from the different locations of Karnaphuly River near Chittagong city drainage outlet. Neutron Activation Analysis (NAA) technique was used for detecting the concentration qualitatively and quantitatively using the 3 MW TRIGA MARK II research reactor of Atomic Energy Research Establishment, Savar, Dhaka. Pearson correlation among the elements obtained using SPSS software. Three transitional metals Fe, Cr and Co, two alkali metals Rb and Na, two lanthanides La and Ce, and two metalloids As and Sb were determined. The concentrations of elements were compared with the world reference values. Some elements are found in elevated level. (author)

  17. Cryptic Role of Zero-Valent Sulfur in Metal and Metalloid Geochemistry in Euxinic Waters

    Science.gov (United States)

    Helz, G. R.

    2014-12-01

    Natural waters that are isolated from the atmosphere in confined aquifers, euxinic basins and sediment pore waters often become sulfidic. These waters are conventionally described simply as reducing environments. But because nature does not constrain their exposure to reducing equivalents (e.g. from organic matter) and oxidizing equivalents (e.g. from Fe,Mn oxides), these reducing environments in fact vary cryptically in their redox characteristics. The implications for trace metal and metalloid cycles are only beginning to be explored. The activity of zero-valent sulfur (aS0), a virtual thermodynamic property, is a potentially useful index for describing this variation. At a particular temperature and ionic strength, aS0 can be quantified from knowledge of pH and the total S(0) to total S(-II) ratio. Although data are incomplete, the deep waters of the Black Sea (aS0 ca. 0.3) appear to be more reducing than the deep waters of the Cariaco Basin (aS0 ca. 0.5) even though both are perennially sulfidic. An apparent manifestation is a greater preponderance of greigite relative to mackinawite in the Cariaco Basin. Interestingly, greigite is stable relative to mackinawite in both basins but predominates only at the higher aS0. Values of aS0 in sulfidic natural waters span the range over which Hg-polysulfide complexes gain predominance over Hg sulfide complexes. Competition between these ligands is thought to influence biological methylation, mercury's route into aquatic and human food chains. In sulfidic deep ground waters, the redox state and consequent mobility of As, a global human hazard, will depend on aS0. At intermediate sulfide concentrations, higher aS0 favors more highly charged and thus less mobile As(V) species relative to As(III) species despite the overall reducing characteristics of such waters. Helz, G.R. (2014) Activity of zero-valent sulfur in sulfidic natural waters. Geochem. Trans. In press.

  18. Study of transition metal oxides by photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Rao, C.N.R.; Sarma, D.D.; Vasudevan, S.; Hegde, M.S.

    1979-01-01

    Systematics in the X-ray photoelectron spectra (X.p.e.s.) of Ti, V, Cr, Mn and Nb oxides with the metal ion in different oxidation states as well as of related series of mono-, sesqui- and di-oxides of the first row of transition metals have been investigated in detail. Core level binding energies, spin-orbit splittings and exchange splittings are found to exhibit interesting variations with the oxidation state of the metal or the nuclear charge. The 3d binding energies of the monoxides show a proportionality to Goodenough's (R - RC). Other aspects of interest in the study are the satellite structure and final state effects in the X.p.e.s. of the oxides, and identification of different valence states in oxides of the general formulae Mn02n-1 and M304. The nature of changes in the 3d bands of oxides undergoing metal-insulator transitions is also indicated. (author)

  19. Development and initial characterization of amorphous metals rich in W and/or RE

    International Nuclear Information System (INIS)

    Giessen, B.C.; Polk, D.E.

    1978-01-01

    Studies of refractory metal alloys concentrated on two families of such alloys: ternary tungsten alloys and binary T 5 -T 9 alloys. The former were selected because of the possibility of finding desirable glasses consisting of low-cost components; the latter were chosen because they could be quenched into metallic glasses with high thermal stability and good toughness. Alloys selected for study were prepared by arc-melting and were subsequently rapidly quenched in an arc furnace quenching unit. Considerable difficulties were encountered in preparing metal--metalloid alloys, such as W--B, as well as alloys combining high melting and low melting transition metals, such as W and Ni. Brittleness of ductility as revealed by a bend test was noted. Measurements were made up to 1000 K and resistivity measurements up to 1300 K. The probe for electrical resistivity measurements at high temperatures has been constructed and tested. To determine the elastic (Young's) moduli of new metallic glasses prepared in this program, equipment utilizing the pulse--echo method was set up

  20. Review of Phosphate in soils: Interaction with micronutrients, radionuclides, and heavy metals

    Science.gov (United States)

    Phosphate-phosphorus present in the vadose zone of soil as native, added, or residual fertilizer influences the retention, transport, and bioavailability of heavy metals, metalloids, or metallic radionuclides to aboveground vegetation, soil microorganisms, and fauna that browse that vegetation, or d...

  1. Conductive transition metal oxide nanostructured electrochromic material and optical switching devices constructed thereof

    Science.gov (United States)

    Mattox, Tracy M.; Koo, Bonil; Garcia, Guillermo; Milliron, Delia J.; Trizio, Luca De; Dahlman, Clayton

    2017-10-10

    An electrochromic device includes a nanostructured transition metal oxide bronze layer that includes one or more transition metal oxide and one or more dopant, a solid state electrolyte, and a counter electrode. The nanostructured transition metal oxide bronze selectively modulates transmittance of near-infrared (NIR) spectrum and visible spectrum radiation as a function of an applied voltage to the device.

  2. Metal bioaccumulation and oxidative stress profiles in Ruditapes philippinarum – insights towards its suitability as bioindicator of estuarine metal contamination

    KAUST Repository

    Marques, Ana; Piló , David; Carvalho, Susana; Araú jo, Olinda; Guilherme, Sofia; Santos, Maria Ana; Vale, Carlos; Pereira, Fá bio; Pacheco, Má rio; Pereira, Patrí cia

    2017-01-01

    is not consensual. This study provided clarification on this issue by evaluating the ability of R. philippinarum to signalise trace element contamination in an estuary chronically impacted by metals and metalloids (Tagus estuary, Portugal). A multidimensional

  3. Features of order-disorder phase transformation in nonstoichiometric transition metals carbides

    International Nuclear Information System (INIS)

    Emel'yanov, A.N.

    1996-01-01

    Measurements of temperature and electric conductivity of nonstoichiometric transition metals carbides TiC χ and NbC χ in the area of order-disorder phase transformation are carried out. There are certain peculiarities on the temperature and electric conductivity curves of the carbides, connected with the carbon sublattice disordering. On the basis of the anomalies observed on the curves of the temperature conductivity of nonstoichiometric carbides of transition metals above the temperature of the order-disorder transition the existence of the second structural transition is supposed

  4. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro

    2015-03-05

    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  5. Tethered Transition Metals Promoted Photocatalytic System for Efficient Hydrogen Evolutions

    KAUST Repository

    Takanabe, Kazuhiro; Isimjan, Tayirjan; Yu, Weili; Del Gobbo, Silvano; Xu, Wei

    2015-01-01

    The present invention is directed, at least in part, to a process for improving the efficiency of a photocatalyst (a semiconductor photocatalyst) by tethering (depositing) a metal (e.g., metal ions of a late transition metal, such as nickel) to the semiconductor (photocatalyst) surface through the use of an organic ligand. More specifically, 1,2-ethanedithiol (EDT) functions as an excellent molecular linker (organic ligand) to attach a transition metal complex (e.g., nickel (Ni.sup.2+ ions)) to the semiconductor surface, which can be in the form of a cadmium sulfide surface. The photocatalyst has particular utility in generating hydrogen from H.sub.2S.

  6. The status and immediate problems of the chemistry of transition metal hydrides

    International Nuclear Information System (INIS)

    Meikheeva, V.I.

    1978-01-01

    The state of the art and perspectives of the chemistry transition metal hydrides are reviewed, the hydrides being essentially compounds with interstitial hydrogen in the crystal lattice of the metals. The possibilities of hydrogenation of transition metals are considered along with that of compounds of rare earth elements with metals of the iron family. It is shown that the products of hydrogenation of many alloys are unstable and disintegrate forming simpler hydrides. The phase diagram of La-Ni-H system resembles the isotherm of a ternary metal system with the difference that no continuous series of solid solutions is formed. Most hydrogenation products across LaHsub(2-3)-NiH are X-ray amorphous. The nature of hydrogen in hydrides is discussed along with the possibilities of synthesis of new hydrides of transition metals

  7. Recent advances in transition metal-catalyzed Csp2-monofluoro-, difluoro-, perfluoromethylation and trifluoromethylthiolation

    Directory of Open Access Journals (Sweden)

    Grégory Landelle

    2013-11-01

    Full Text Available In the last few years, transition metal-mediated reactions have joined the toolbox of chemists working in the field of fluorination for Life-Science oriented research. The successful execution of transition metal-catalyzed carbon–fluorine bond formation has become a landmark achievement in fluorine chemistry. This rapidly growing research field has been the subject of some excellent reviews. Our approach focuses exclusively on transition metal-catalyzed reactions that allow the introduction of –CFH2, –CF2H, –CnF2n+1 and –SCF3 groups onto sp² carbon atoms. Transformations are discussed according to the reaction-type and the metal employed. The review will not extend to conventional non-transition metal methods to these fluorinated groups.

  8. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China.

    Science.gov (United States)

    Li, Fei; Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming

    2017-07-13

    Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr 6+ in groundwater was detected to further study chromium contamination. Cr 6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr 6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr 6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion.

  9. Investigation, Pollution Mapping and Simulative Leakage Health Risk Assessment for Heavy Metals and Metalloids in Groundwater from a Typical Brownfield, Middle China

    Science.gov (United States)

    Qiu, Zhenzhen; Zhang, Jingdong; Liu, Wenchu; Liu, Chaoyang; Zeng, Guangming

    2017-01-01

    Heavy metal and metalloid (Cr, Pb, Cd, Zn, Cu, Ni, As and Hg) concentrations in groundwater from 19 typical sites throughout a typical brownfield were detected. Mean concentrations of toxic metals in groundwater decreased in the order of Cr > Zn > Cu > Cd > Ni > Pb > Hg > As. Concentration of Cr6+ in groundwater was detected to further study chromium contamination. Cr6+ and Cd in groundwater were recommended as the priority pollutants because they were generally 1399-fold and 12-foldgreater than permissible limits, respectively. Owing to the fact that a waterproof curtain (WPC) in the brownfield is about to pass the warranty period, a steady two-dimensional water quality model and health risk assessment were applied to simulate and evaluate adverse effects of Cr6 + and Cd on the water quality of Xiangjiang River and the drinking-water intake of Wangcheng Waterworks. The results indicated that when groundwater in the brownfield leaked with valid curtain prevention, the water quality in Xiangjiang River and drinking-water intake downstream were temporarily unaffected. However, if there was no curtain prevention, groundwater leakage would have adverse impact on water quality of Xiangjiang River. Under the requirements of Class III surface water quality, the pollution belt for Cr6+ was 7500 m and 200 m for Cd. The non-carcinogenic risk of toxic metals in Xiangjiang River exceeded the threshold in a limited area, but did not threaten Wangcheng Waterworks. By contrast, the carcinogenic risk area for adults was at a transverse distance of 200 m and a longitudinal distance of 18,000 m, which was close to the Wangcheng Waterworks (23,000 m). Therefore, it was essential to reconstruct the WPC in the brownfield for preventing pollution diffusion. PMID:28703781

  10. Crystallization kinetics and magnetic properties of Fe{sub 66}Nb{sub 4}B{sub 30} bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Stoica, M., E-mail: m.stoica@ifw-dresden.d [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Kumar, S. [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Roth, S. [IFW Dresden, Institute for Metallic Materials, P.O. Box 270116, D-01171 Dresden (Germany); Ram, S. [Materials Science Centre, Indian Institute of Technology, Kharagpur 721302 (India); Eckert, J. [IFW Dresden, Institute for Complex Materials, P.O. Box 270116, D-01171 Dresden (Germany); Vaughan, G. [European Synchrotron Radiation Facilities ESRF, 38402 Grenoble (France); Yavari, A.R. [LTPCM-CNRS, Institut National Politechnique de Grenoble, 1130 Rue de la Piscine, BP 75, Saint Martin d' Heres Campus 38402 (France)

    2009-08-26

    Fe-based bulk metallic glasses (BMGs) have a high application potential because of their unique soft magnetic properties, mechanical behaviour and high corrosion resistance. Also, they can be obtained directly in the final shape suitable for use as magnetic sensors, magnetic valves, magnetic clutches etc. in different devices. Fe-based alloys able to form magnetic BMGs are of the type transition metal-metalloid and often contain 5 or more elements. Usually, the metalloid content is around 20 at.%. Recently, a new Fe-based BMG containing only 3 elements and a very high boron content was synthesized. The preparation of this BMG was done by employing the copper mold casting method and using the fluxing technique. This new BMG is ferromagnetic, with a Curie temperature around 550 K and a saturation magnetization of 105 Am{sup 2}/kg. Differential scanning calorimetry (DSC) investigations revealed a reduced glass transition temperature of 0.55 and an extension of the supercooled liquid region of about 31 K, values which indicate a relatively good thermal stability. Despite of numerous studies about Fe-based BMGs, there is still a lack of data about the crystallization kinetics. Also, the intermediate metastable phases, which form upon crystallization from the amorphous state, as well as the mechanism of their formation, are not fully understood. The present work discusses the kinetics of the phase formation using the Kissinger analysis and Johnson-Mehl-Avrami plots, correlated with the results obtained upon X-ray diffraction (XRD) of samples with different metastable structures. Additionally, the magnetic behaviour of different phase(s) is presented.

  11. Nonmetal-metal transition in metal–molten-salt solutions

    NARCIS (Netherlands)

    Silvestrelli, P.-L.; Alavi, A.; Parrinello, M.; Frenkel, D.

    1996-01-01

    The method of ab initio molecular dynamics, based on finite-temperature density-functional theory, is used to study the nonmetal-metal transition in two different metal–molten-salt solutions, Kx(KCl)1-x and Nax(NaBr)1-x. As the excess metal concentration is increased the electronic density becomes

  12. Ab initio modelling of transition metals in diamond

    International Nuclear Information System (INIS)

    Watkins, M; Mainwood, A

    2003-01-01

    Transition metals (TM) from the first transition series are commonly used as solvent catalysts in the synthesis of diamond by high pressure, high temperature processes. Ab initio calculations on these metals, in finite clusters of tetrahedrally coordinated carbon, enable us to investigate trends in their stability and properties. By carrying out systematic studies of interstitial, substitutional and semi-vacancy TM defects, we show that the electronic structure of the TMs is complicated by the presence of 'dangling bonds' when the TM disrupts the crystal lattice: interstitial defects conform to the Ludwig-Woodbury (LW) model, whilst substitutional and semi-vacancy defects move from approximating the LW model early in the transition series to approaching the vacancy model for the heavier metals. Multi-configurational self-consistent field methods allow genuine many-electron states to be modelled; for neutral interstitial, and all substitutional TMs, the crystal fields are found to exceed the exchange energies in strength. Consequently, low spin states are found for these defects. We find substitutional defects to be the most stable, but that semi-vacancy TMs are very similar in energy to the substitutional defects late in the transition series; interstitial defects are only metastable in diamond. Given appropriate charge compensators neutral and positively charged interstitial TM defects were stable, while negatively charged species appeared to be strongly disfavoured

  13. Transition-metal impurities in semiconductors and heterojunction band lineups

    Science.gov (United States)

    Langer, Jerzy M.; Delerue, C.; Lannoo, M.; Heinrich, Helmut

    1988-10-01

    The validity of a recent proposal that transition-metal impurity levels in semiconductors may serve as a reference in band alignment in semiconductor heterojunctions is positively verified by using the most recent data on band offsets in the following lattice-matched heterojunctions: Ga1-xAlxAs/GaAs, In1-xGaxAsyP1-y/InP, In1-xGaxP/GaAs, and Cd1-xHgxTe/CdTe. The alignment procedure is justified theoretically by showing that transition-metal energy levels are effectively pinned to the average dangling-bond energy level, which serves as the reference level for the heterojunction band alignment. Experimental and theoretical arguments showing that an increasingly popular notion on transition-metal energy-level pinning to the vacuum level is unjustified and must be abandoned in favor of the internal-reference rule proposed recently [J. M. Langer and H. Heinrich, Phys. Rev. Lett. 55, 1414 (1985)] are presented.

  14. Electronic and thermodynamic properties of transition metal elements and compounds

    International Nuclear Information System (INIS)

    Haeglund, J.

    1993-01-01

    This thesis focuses on the use of band-structure calculations for studying thermodynamic properties of solids. We discuss 3d-, 4d- and 5d-transition metal carbides and nitrides. Through a detailed comparison between theoretical and experimental results, we draw conclusions on the character of the atomic bonds in these materials. We show how electronic structure calculations can be used to give accurate predictions for bonding energies. Part of the thesis is devoted to the application of the generalized gradient approximation in electronic structure calculations on transition metals. For structures with vibrational disorder, we present a method for calculating averaged phonon frequencies without using empirical information. For magnetic excitations, we show how a combined use of theoretical results and experimental data can yield information on magnetic fluctuations at high temperatures. The main results in the thesis are: Apart for an almost constant shift, theoretically calculated bonding energies for transition metal carbides and nitrides agree with experimental data or with values from analysis of thermochemical information. The electronic spectrum of transition metal carbides and nitrides can be separated into bonding, antibonding and nonbonding electronic states. The lowest enthalpy of formation for substoichiometric vanadium carbide VC 1-X at zero temperature and pressure occurs for a structure containing vacancies (x not equal to 0). The generalized gradient approximation improves theoretical calculated cohesive energies for 3d-transition metals. Magnetic phase transitions are sensitive to the description of exchange-correlation effects in electronic structure calculations. Trends in Debye temperatures can be successfully analysed in electronic structure calculations on disordered lattices. For the elements, there is a clear dependence on the crystal structure (e.g., bcc, fcc or hcp). Chromium has fluctuating local magnetic moments at temperatures well above

  15. Spin-Orbitronics at Transition Metal Interfaces

    KAUST Repository

    Manchon, Aurelien

    2017-11-09

    The presence of large spin–orbit interaction at transition metal interfaces enables the emergence of a variety of fascinating phenomena that have been at the forefront of spintronics research in the past 10 years. The objective of the present chapter is to offer a review of these various effects from a theoretical perspective, with a particular focus on spin transport, chiral magnetism, and their interplay. After a brief description of the orbital hybridization scheme at transition metal interfaces, we address the impact of spin–orbit coupling on the interfacial magnetic configuration, through the celebrated Dzyaloshinskii–Moriya interaction. We then discuss the physics of spin transport and subsequent torques occurring at these interfaces. We particularly address the spin Hall, spin swapping, and inverse spin-galvanic effects. Finally, the interplay between flowing charges and chiral magnetic textures and their induced dynamics are presented. We conclude this chapter by proposing some perspectives on promising research directions.

  16. Spin-Orbitronics at Transition Metal Interfaces

    KAUST Repository

    Manchon, Aurelien; Belabbes, Abderrezak

    2017-01-01

    The presence of large spin–orbit interaction at transition metal interfaces enables the emergence of a variety of fascinating phenomena that have been at the forefront of spintronics research in the past 10 years. The objective of the present chapter is to offer a review of these various effects from a theoretical perspective, with a particular focus on spin transport, chiral magnetism, and their interplay. After a brief description of the orbital hybridization scheme at transition metal interfaces, we address the impact of spin–orbit coupling on the interfacial magnetic configuration, through the celebrated Dzyaloshinskii–Moriya interaction. We then discuss the physics of spin transport and subsequent torques occurring at these interfaces. We particularly address the spin Hall, spin swapping, and inverse spin-galvanic effects. Finally, the interplay between flowing charges and chiral magnetic textures and their induced dynamics are presented. We conclude this chapter by proposing some perspectives on promising research directions.

  17. Morphology evolution and nanostructure of chemical looping transition metal oxide materials upon redox processes

    International Nuclear Information System (INIS)

    Qin, Lang; Cheng, Zhuo; Guo, Mengqing; Fan, Jonathan A.; Fan, Liang-Shih

    2017-01-01

    Transition metal are heavily used in chemical looping technologies because of their high oxygen carrying capacity and high thermal reactivity. These oxygen activities result in the oxide formation and oxygen vacancy formation that affect the nanoscale crystal phase and morphology within these materials and their subsequent bulk chemical behavior. In this study, two selected earlier transition metals manganese and cobalt as well as two selected later transition metals copper and nickel that are important to chemical looping reactions are investigated when they undergo cyclic redox reactions. We found Co microparticles exhibited increased CoO impurity presence when oxidized to Co_3O_4 upon cyclic oxidation; CuO redox cycles prefer to be limited to a reduced form of Cu_2O and an oxidized form of CuO; Mn microparticles were oxidized to a mixed phases of MnO and Mn_3O_4, which causes delamination during oxidation. For Ni microparticles, a dense surface were observed during the redox reaction. The atomistic thermodynamics methods and density functional theory (DFT) calculations are carried out to elucidate the effect of oxygen dissociation and migration on the morphological evolution of nanostructures during the redox processes. Our results indicate that the earlier transition metals (Mn and Co) tend to have stronger interaction with O_2 than the later transition metals (Ni and Cu). Also, our modified Brønsted−Evans−Polanyi (BEP) relationship for reaction energies and total reaction barriers reveals that reactions of earlier transition metals are more exergonic and have lower oxygen dissociation barriers than those of later transition metals. In addition, it was found that for these transition metal oxides the oxygen vacancy formation energies increase with the depth. The oxide in the higher oxidation state of transition metal has lower vacancy formation energy, which can facilitate forming the defective nanostructures. The fundamental understanding of these metal

  18. Saturated bonds and anomalous electronic transport in transition-metal aluminides

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2006-05-22

    This thesis deals with the special electronic properties of the transition-metal aluminides. Following quasicrystals and their approximants it is shown that even materials with small elementary cells exhibit the same surprising effects. So among the transition-metal aluminides also semi-metallic and semiconducting compounds exist, although if they consist of classic-metallic components like Fe, Al, or Cr. These properties are furthermore coupled with a deep pseusogap respectively gap in the density of states and strongly covalent bonds. Bonds are described in this thesis by two eseential properties. First by the bond charge and second by the energetic effect of the bond. It results that in the caes of semiconducting transition-metal aluminides both a saturation of certain bonds and a bond-antibond alteration in the Fermi level is present. By the analysis of the near-order in form of the so-calles coordination polyeders it has been succeeded to establish a simple rule for semiconductors, the five-fold coordination for Al. This rule states that aluminium atoms with their three valence electrons are not able to build more than five saturated bonds to their nearest transition-metal neighbours. In excellent agreement with the bond angles predicted theoretically under assumption of equal-type bonds it results that all binary transition-element aluminide semiconductors exhibit for the Al atoms the same near order. Typical values for specific resistances of the studied materials at room temperature lie in the range of some 100 {mu}{omega}cm, which is farly larger than some 10 {mu}{omega}cm as in the case of the unalloyed metals. SUrprising is furthermore a high transport anisotropy with a ratio of the specific resistances up to 3.0. An essential result of this thesis can be seen in the coupling of the properties of the electronic transport and the bond properties. The small conducitivities could be explained by small values in the density of states and a bond

  19. Fluorescence signalling of the transition metal ions: Design strategy ...

    Indian Academy of Sciences (India)

    Unknown

    strategy based on the choice of the fluorophore component. N B SANKARAN, S ... skill for the development of fluorosensors of this kind. Further, the ... salts of the transition metal ions have been used for studying the influence of the metal ions.

  20. Sol-Gel Synthesis and Characterization of Selected Transition Metal Nano-Ferrites

    Directory of Open Access Journals (Sweden)

    Aurelija GATELYTĖ

    2011-09-01

    Full Text Available In the present work, the sinterability and formation of nanosized yttrium iron garnet (Y3Fe5O12, yttrium perovskite ferrite (YFeO3, cobalt, nickel and zinc iron spinel (CoFe2O4, NiFe2O4 and ZnFe2O4, respectively powders by an aqueous sol-gel processes are investigated. The metal ions, generated by dissolving starting materials of transition metals in the diluted acetic acid were complexed by 1,2-ethanediol to obtain the precursors for the transition metal ferrite ceramics. The phase purity of synthesized nano-compounds was characterized by infrared spectroscopy (IR and powder X-ray diffraction analysis (XRD. The microstructural evolution and morphological features of obtained transition metal ferrites were studied by scanning electron microscopy (SEM.http://dx.doi.org/10.5755/j01.ms.17.3.598

  1. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    International Nuclear Information System (INIS)

    Tritsaris, Georgios A.; Norskov, Jens K.; Rossmeisl, Jan

    2011-01-01

    Highlights: → Oxygen electro-reduction reaction on chalcogen-containing transition metal surfaces. → Evaluation of catalytic performance with density functional theory. → Ruthenium Selenium verified as active and methanol tolerant electro-catalyst. → Water boils at -10000 K. - Abstract: We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated.

  2. Tris-diamine-derived transition metal complexes of flurbiprofen as ...

    African Journals Online (AJOL)

    admin

    butyrylcholinesterase (BChE) inhibitory activities. Method: Tris-diamine-derived transition metal complexes of Co(II), Ni(II), and Mn(II) were synthesized and characterized ... Conductance measurements indicated that diamine-derived metal complexes of ..... contributes to enhanced biological activity, and provides novel ...

  3. Empirical prediction of optical transitions in metallic armchair SWCNTs

    Directory of Open Access Journals (Sweden)

    G. R. Ahmed Jamal

    2015-12-01

    Full Text Available In this work, a quick and effective method to calculate the second and third optical transition energies of metallic armchair single-wall carbon nanotubes (SWCNT is presented. In this proposed method, the transition energy of any armchair SWCNT can be predicted directly by knowing its one chiral index as both of its chiral indices are same. The predicted results are compared with recent experimental data and found to be accurate over a wide diameter range from 2 to 4.8 nm. The empirical equation proposed here is also compared with that proposed in earlier works. The proposed way may help the research works or applications where information of optical transitions of armchair metallic nanotubes is needed.

  4. Weyl Semimetal to Metal Phase Transitions Driven by Quasiperiodic Potentials

    Science.gov (United States)

    Pixley, J. H.; Wilson, Justin H.; Huse, David A.; Gopalakrishnan, Sarang

    2018-05-01

    We explore the stability of three-dimensional Weyl and Dirac semimetals subject to quasiperiodic potentials. We present numerical evidence that the semimetal is stable for weak quasiperiodic potentials, despite being unstable for weak random potentials. As the quasiperiodic potential strength increases, the semimetal transitions to a metal, then to an "inverted" semimetal, and then finally to a metal again. The semimetal and metal are distinguished by the density of states at the Weyl point, as well as by level statistics, transport, and the momentum-space structure of eigenstates near the Weyl point. The critical properties of the transitions in quasiperiodic systems differ from those in random systems: we do not find a clear critical scaling regime in energy; instead, at the quasiperiodic transitions, the density of states appears to jump abruptly (and discontinuously to within our resolution).

  5. Ammonia and hydrazine. Transition-metal-catalyzed hydroamination and metal-free catalyzed functionalization

    Energy Technology Data Exchange (ETDEWEB)

    Bertrand, Guy [Univ. of California, San Diego, CA (United States)

    2012-06-29

    The efficient and selective preparation of organic molecules is critical for mankind. For the future, it is of paramount importance to find catalysts able to transform abundant and cheap feedstocks into useful compounds. Acyclic and heterocyclic nitrogen-containing derivatives are common components of naturally occurring compounds, agrochemicals, cosmetics, and pharmaceuticals; they are also useful intermediates in a number of industrial processes. One of the most widely used synthetic strategies, allowing the formation of an N-C bond, is the addition of an N-H bond across a carbon-carbon multiple bond, the so-called hydroamination reaction. This chemical transformation fulfills the principle of “green chemistry” since it ideally occurs with 100% atom economy. Various catalysts have been found to promote this reaction, although many limitations remain; one of the most prominent is the lack of methods that permit the use of NH3 and NH2NH2 as the amine partners. In fact, ammonia and hydrazine have rarely succumbed to homogeneous catalytic transformations. Considering the low cost and abundance of ammonia (136 million metric tons produced in 2011) and hydrazine, catalysts able to improve the reactivity and selectivity of the NH3- and NH2NH2-hydroamination reaction, and more broadly speaking the functionalization of these chemicals, are highly desirable. In the last funded period, we discovered the first homogeneous catalysts able to promote the hydroamination of alkynes and allenes with ammonia and the parent hydrazine. The key feature of our catalytic systems is that the formation of catalytically inactive Werner complexes is reversible, in marked contrast to most of the known ammonia and hydrazine transition metal complexes. This is due to the peculiar electronic properties of our neutral ancillary ligands, especially their strong donating capabilities. However, our catalysts currently require

  6. Shrinking the Synchrotron : Tabletop Extreme Ultraviolet Absorption of Transition-Metal Complexes

    NARCIS (Netherlands)

    Zhang, Kaili; Lin, Ming Fu; Ryland, Elizabeth S.; Verkamp, Max A.; Benke, Kristin; De Groot, Frank M F; Girolami, Gregory S.; Vura-Weis, Josh

    2016-01-01

    We show that the electronic structure of molecular first-row transition-metal complexes can be reliably measured using tabletop high-harmonic XANES at the metal M2,3 edge. Extreme ultraviolet photons in the 50-70 eV energy range probe 3p → 3d transitions, with the same selection rules as soft X-ray

  7. Semiconductor-metal transition induced by giant Stark effect in blue phosphorene nanoribbons

    Energy Technology Data Exchange (ETDEWEB)

    Xiong, Peng-Yu; Chen, Shi-Zhang; Zhou, Wu-Xing; Chen, Ke-Qiu, E-mail: keqiuchen@hnu.edu.cn

    2017-06-28

    The electronic structures and transport properties in monolayer blue phosphorene nanoribbons (BPNRs) with transverse electric field have been studied by using density functional theory and nonequilibrium Green's functions method. The results show that the band gaps of BPNRs with both armchair and zigzag edges are linearly decreased with the increasing of the strength of transverse electric field. A semiconductor-metal transition occurs when the electric field strength reaches to 5 V/nm. The Stark coefficient presents a linear dependency on BPNRs widths, and the slopes of both zBPNRs and aBPNRs are 0.41 and 0.54, respectively, which shows a giant Stark effect occurs. Our studies show that the semiconductor-metal transition originates from the giant Stark effect. - Highlights: • The electronic transport in blue phosphorene nanoribbons. • Semiconductor-metal transition can be observed. • The semiconductor-metal transition originates from the giant Stark effect.

  8. Metals and metalloids in whole blood and tissues of Olive Ridley turtles (Lepidochelys olivacea) from La Escobilla Beach (Oaxaca, Mexico)

    International Nuclear Information System (INIS)

    Cortés-Gómez, Adriana A.; Fuentes-Mascorro, Gisela; Romero, Diego

    2014-01-01

    Highlights: • We evaluate the concentrations of inorganic pollutants in Olive Ridley turtles. • Information can be used to monitoring the pollutants in habitats of sea turtles. • The renal cadmium levels is the highest ever reported worldwide for any sea turtle species. • Pb levels have declined in recent years in this population. - Abstract: Concentrations of eight metals and metalloids (Pb, Cd, Cu, Zn, Mn, Se, Ni and As) were evaluated from 41 nesting females (blood) and 13 dead (tissues) Olive Ridley turtles (Lepidochelys olivacea), a species classified as vulnerable and also listed in Appendix I of the Convention of International Trade in Endangered Species (CITES). The mean blood, liver and kidney lead concentration were 0.02 ± 0.01, 0.11 ± 0.08 and 0.06 ± 0.03 μg g −1 ww respectively, values lower than other turtle species and locations, which it could be due to the gradual disuse of leaded gasoline in Mexico and Central America since the 1990s. Mean concentration of cadmium was 0.17 ± 0.08 (blood), 82.88 ± 36.65 (liver) and 150.88 ± 110.99 μg g −1 (kidney). To our knowledge, the mean renal cadmium levels found is the highest ever reported worldwide for any sea turtle species, while other six elements showed a concentration similar to other studies in sea turtles

  9. Characterization of PAHs and metals in indoor/outdoor PM10/PM2.5/PM1 in a retirement home and a school dormitory.

    Science.gov (United States)

    Hassanvand, Mohammad Sadegh; Naddafi, Kazem; Faridi, Sasan; Nabizadeh, Ramin; Sowlat, Mohammad Hossein; Momeniha, Fatemeh; Gholampour, Akbar; Arhami, Mohammad; Kashani, Homa; Zare, Ahad; Niazi, Sadegh; Rastkari, Noushin; Nazmara, Shahrokh; Ghani, Maryam; Yunesian, Masud

    2015-09-15

    In the present work, we investigated the characteristics of polycyclic aromatic hydrocarbons (PAHs) and metal(loid)s in indoor/outdoor PM10, PM2.5, and PM1 in a retirement home and a school dormitory in Tehran from May 2012 to May 2013. The results indicated that the annual levels of indoor and outdoor PM10 and PM2.5 were much higher than the guidelines issued by the World Health Organization (WHO). The most abundant detected metal(loid)s in PM were Si, Fe, Zn, Al, and Pb. We found higher percentages of metal(loid)s in smaller size fractions of PM. Additionally, the results showed that the total PAHs (ƩPAHs) bound to PM were predominantly (83-88%) found in PM2.5, which can penetrate deep into the alveolar regions of the lungs. In general, carcinogenic PAHs accounted for 40-47% of the total PAHs concentrations; furthermore, the smaller the particle size, the higher the percentage of carcinogenic PAHs. The percentages of trace metal(loid)s and carcinogenic PAHs in PM2.5 mass were almost twice as high as those in PM10. This can most likely be responsible for the fact that PM2.5 can cause more adverse health effects than PM10 can. The average BaP-equivalent carcinogenic (BaP-TEQ) levels both indoors and outdoors considerably exceeded the maximum permissible risk level of 1 ng/m(3) of BaP. The enrichment factors and diagnostic ratios indicated that combustion-related anthropogenic sources, such as gasoline- and diesel-fueled vehicles as well as natural gas combustion, were the major sources of PAHs and trace metal(loid)s bound to PM. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Magnetic engineering in 3d transition metals on phosphorene by strain

    International Nuclear Information System (INIS)

    Cai, Xiaolin; Niu, Chunyao; Wang, Jianjun; Yu, Weiyang; Ren, XiaoYan; Zhu, Zhili

    2017-01-01

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.

  11. Magnetic engineering in 3d transition metals on phosphorene by strain

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Xiaolin [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Niu, Chunyao, E-mail: niuchunyao@zzu.edu.cn [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); Wang, Jianjun [College of Science, Zhongyuan University of Technology, Zhengzhou 450007 (China); Yu, Weiyang [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China); School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo, 454000 (China); Ren, XiaoYan; Zhu, Zhili [International Laboratory for Quantum Functional Materials of Henan and School of Physics and Engineering, Zhengzhou University, Zhengzhou, 450001 (China)

    2017-04-11

    Using first-principles density functional theory (DFT) calculations, we systematically investigate the strain effects on the adsorption energies, magnetic ordering and electronic properties of 3d transition metal (TM) atoms (from Sc to Co) adsorbed on phosphorene (P). We find that the adsorption energy of TM can be enhanced by compressive strain whereas weakened by tensile strain. Our results show that strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. Importantly, the transitions from antiferromagnetic (AFM) state to ferromagnetic (FM) state or to another different AFM ordering can be induced by strain effect. In addition, we observe the semiconductor to metal or half-metal transitions in some TM@P systems by applying strain. Our findings shed a new light on precisely engineering the magnetic properties and electronic properties of the TM@P systems, which will have great potential applications in spin electronics and other related fields. - Highlights: • The adsorption of TM atoms on phosphorene can be enhanced by compressive strain whereas weakened by tensile strain. • Strain plays a decisive role in the magnetic moments as well as the magnetic coupling states of TM adatoms. • Applying strain can induce the semiconductor to metal or half-metal transitions in some TM@P systems.

  12. Metal/metalloid content in plant parts and soils of Corylus spp. influenced by mining-metallurgical production of copper.

    Science.gov (United States)

    Radojevic, Ana A; Serbula, Snezana M; Kalinovic, Tanja S; Kalinovic, Jelena V; Steharnik, Mirjana M; Petrovic, Jelena V; Milosavljevic, Jelena S

    2017-04-01

    The town of Bor and its surroundings (Serbia) have been under environmental pollution for more than a century, due to exploitation of large copper deposits. Naturally present Corylus spp. were sampled in the surroundings of the mine and flotation tailings at 12 sites distributed in six zones with different pollution loads, under the assumption that all the zones were endangered except for the background. As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb and Zn inputs from soil and the air were evaluated in plant parts, in terms of absorption, accumulation and indication abilities of Corylus spp. The obtained results showed that As and Cu were the most enriched elements in soil, and their concentration exceeded the limit and remediation values proposed by the regulation. Plant parts (root, branch, leaf and catkin) also showed enrichment of most studied elements in wide ranges. According to the enrichment factor for plant, metal/metalloid inputs, particularly in leaves, were from anthropogenic origin. Plant absorption which occurred at the soil-root interface was low, based on the bioaccumulation factor, which could be indicative of resistance mechanisms of root to abiotic stress induced by a high content of elements in soil substrate. The values of bioaccumulation coefficient suggested weak and intermediate absorption and exclusion abilities of Corylus spp. to the studied elements. Element concentrations differ in unwashed and washed leaves, as well as pollution loads in plant and soil samples from the background, traffic and the sites with clear mining-metallurgical influence. Therefore, Corylus spp. could be promising in biomonitoring studies.

  13. Compton profiles of some 4d transition-metals

    International Nuclear Information System (INIS)

    Sharma, B.K.; Tomak, M.

    1982-08-01

    We have computed Compton profiles for 4d transition-metals using the Renormalized Free Atom (RFA) model for two different electron configurations, namely 4dsup(n-1)5s 1 and 4dsup(n-2)5s 2 . The results for niobium and molybdenum are presented and compared with those obtained for these metals within free atom model. For low values of momenta the RFA profiles are broader than the latter ones. The constancy of J(0) values reported for 3d-metals is shown to be present also in case of 4d-metals. (author)

  14. Solid–gaseous phase transformation of elemental contaminants during the gasification of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Ying; Ameh, Abiba [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom); Lei, Mei [Centre for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101 (China); Duan, Lunbo [Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096 (China); Longhurst, Philip, E-mail: P.J.Longhurst@cranfield.ac.uk [Centre for Bioenergy & Resource Management, School of Energy, Environment & Agrifood, Cranfield University, Cranfield MK43 0AL (United Kingdom)

    2016-09-01

    Disposal of plant biomass removed from heavy metal contaminated land via gasification achieves significant volume reduction and can recover energy. However, these biomass often contain high concentrations of heavy metals leading to hot-corrosion of gasification facilities and toxic gaseous emissions. Therefore, it is of significant interest to gain a further understanding of the solid–gas phase transition of metal(loid)s during gasification. Detailed elemental analyses (C, H, O, N and key metal/metalloid elements) were performed on five plant species collected from a contaminated site. Using multi-phase equilibria modelling software (MTDATA), the analytical data allows modelling of the solid/gas transformation of metal(loid)s during gasification. Thermodynamic modelling based on chemical equilibrium calculations was carried out in this study to predict the fate of metal(loid) elements during typical gasification conditions and to show how these are influenced by metal(loid) composition in the biomass and operational conditions. As, Cd, Zn and Pb tend to transform to their gaseous forms at relatively low temperatures (< 1000 °C). Ni, Cu, Mn and Co converts to gaseous forms within the typical gasification temperature range of 1000–1200 °C. Whereas Cr, Al, Fe and Mg remain in solid phase at higher temperatures (> 1200 °C). Simulation of pressurised gasification conditions shows that higher pressures increase the temperature at which solid-to-gaseous phase transformations takes place. - Highlights: • Disposal of plants removed from metal contaminated land raises environmental concerns • Plant samples collected from a contaminated site are shown to contain heavy metals. • Gasification is suitable for plant disposal and its emission is modelled by MTDATA. • As, Cd, Zn and Pb are found in gaseous emissions at a low process temperature. • High pressure gasification can reduce heavy metal elements in process emission.

  15. Exciton ionization in multilayer transition-metal dichalcogenides

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Latini, Simone; Thygesen, Kristian Sommer

    2016-01-01

    Photodetectors and solar cells based on materials with strongly bound excitons rely crucially on field-assisted exciton ionization. We study the ionization process in multilayer transition-metal dichalcogenides (TMDs) within the Mott-Wannier model incorporating fully the pronounced anisotropy...

  16. Dark excitations in monolayer transition metal dichalcogenides

    DEFF Research Database (Denmark)

    Deilmann, Thorsten; Thygesen, Kristian Sommer

    2017-01-01

    Monolayers of transition metal dichalcogenides (TMDCs) possess unique optoelectronic properties, including strongly bound excitons and trions. To date, most studies have focused on optically active excitations, but recent experiments have highlighted the existence of dark states, which are equally...

  17. Transitions in Theory and Practice: Managing Metals in the Circular Economy

    Directory of Open Access Journals (Sweden)

    Melissa Jackson

    2014-07-01

    Full Text Available Transitioning from current resource management practice dominated by linear economic models of consumption and production, to circular models of resource use, will require insights into the stages and processes associated with socio-technical transitions. This paper is concerned with transitions in practice. It explores two frameworks within the transitions literature—the multi-level perspective and transition management theory—for practical guidance to inform a deliberate transition in practice. The critical futures literature is proposed as a source of tools and methods to be used in conjunction with the transition frameworks to influence and enable transitions in practice. This enhanced practical guidance for initiating action is applied to a specific context—transitioning the Australian metals sector towards a circular economy model. This particular transition case study is relevant because the vision of a circular economy model of resource management is gaining traction internationally, Australia is significant globally as a supplier of finite mineral resources and it will also be used in a collaborative research project on Wealth from Waste to investigate possibilities for the circular economy and metals recycling.

  18. Pressure-driven insulator-metal transition in cubic phase UO2

    Science.gov (United States)

    Huang, Li; Wang, Yilin; Werner, Philipp

    2017-09-01

    Understanding the electronic properties of actinide oxides under pressure poses a great challenge for experimental and theoretical studies. Here, we investigate the electronic structure of cubic phase uranium dioxide at different volumes using a combination of density functional theory and dynamical mean-field theory. The ab initio calculations predict an orbital-selective insulator-metal transition at a moderate pressure of ∼45 GPa. At this pressure the uranium's 5f 5/2 state becomes metallic, while the 5f 7/2 state remains insulating up to about 60 GPa. In the metallic state, we observe a rapid decrease of the 5f occupation and total angular momentum with pressure. Simultaneously, the so-called “Zhang-Rice state”, which is of predominantly 5f 5/2 character, quickly disappears after the transition into the metallic phase.

  19. Stability of biogenic metal(loid) nanomaterials related to the colloidal stabilization theory of chemical nanostructures.

    Science.gov (United States)

    Piacenza, Elena; Presentato, Alessandro; Turner, Raymond J

    2018-02-25

    In the last 15 years, the exploitation of biological systems (i.e. plants, bacteria, mycelial fungi, yeasts, and algae) to produce metal(loid) (Me)-based nanomaterials has been evaluated as eco-friendly and a cost-effective alternative to the chemical synthesis processes. Although the biological mechanisms of biogenic Me-nanomaterial (Bio-Me-nanomaterials) production are not yet completely elucidated, a key advantage of such bio-nanostructures over those chemically synthesized is related to their natural thermodynamic stability, with several studies ascribed to the presence of an organic layer surrounding these Bio-Me-nanostructures. Different macromolecules (e.g. proteins, peptides, lipids, DNA, and polysaccharides) or secondary metabolites (e.g. flavonoids, terpenoids, glycosides, organic acids, and alkaloids) naturally produced by organisms have been indicated as main contributors to the stabilization of Bio-Me-nanostructures. Nevertheless, the chemical-physical mechanisms behind the ability of these molecules in providing stability to Bio-Me-nanomaterials are unknown. In this context, transposing the stabilization theory of chemically synthesized Me-nanomaterials (Ch-Me-nanomaterials) to biogenic materials can be used towards a better comprehension of macromolecules and secondary metabolites role as stabilizing agents of Bio-Me-nanomaterials. According to this theory, nanomaterials are generally featured by high thermodynamic instability in suspension, due to their high surface area and surface energy. This feature leads to the necessity to stabilize chemical nanostructures, even during or directly after their synthesis, through the development of (i) electrostatic, (ii) steric, or (iii) electrosteric interactions occurring between molecules and nanomaterials in suspension. Based on these three mechanisms, this review is focused on parallels between the stabilization of biogenic or chemical nanomaterials, suggesting which chemical-physical mechanisms may be

  20. Charge transfer in chromium-transition metal alloys

    International Nuclear Information System (INIS)

    Kulakowski, K.; Maksymowicz, A.

    1984-07-01

    The average T-matrix approximation is applied for calculations of charge transfer of 3d-electrons in transition metal alloys. The role of concentration, long-range and short-range atomic order is investigated. The results are in reasonable agreement with experimental data. (author)

  1. Predicting a new phase (T'') of two-dimensional transition metal di-chalcogenides and strain-controlled topological phase transition

    Science.gov (United States)

    Ma, Fengxian; Gao, Guoping; Jiao, Yalong; Gu, Yuantong; Bilic, Ante; Zhang, Haijun; Chen, Zhongfang; Du, Aijun

    2016-02-01

    Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological phase transitions. Our findings greatly enrich the 2D families of transition metal dichalcogenides and offer a feasible way to control the electronic states of 2D topological insulators for the fabrication of high-speed spintronics devices.Single layered transition metal dichalcogenides have attracted tremendous research interest due to their structural phase diversities. By using a global optimization approach, we have discovered a new phase of transition metal dichalcogenides (labelled as T''), which is confirmed to be energetically, dynamically and kinetically stable by our first-principles calculations. The new T'' MoS2 phase exhibits an intrinsic quantum spin Hall (QSH) effect with a nontrivial gap as large as 0.42 eV, suggesting that a two-dimensional (2D) topological insulator can be achieved at room temperature. Most interestingly, there is a topological phase transition simply driven by a small tensile strain of up to 2%. Furthermore, all the known MX2 (M = Mo or W; X = S, Se or Te) monolayers in the new T'' phase unambiguously display similar band topologies and strain controlled topological

  2. Strange metals and quantum phase transitions from gauge/gravity duality

    Science.gov (United States)

    Liu, Hong

    2011-03-01

    Metallic materials whose thermodynamic and transport properties differ significantly from those predicted by Fermi liquid theory, so-called non-Fermi liquids, include the strange metal phase of cuprate superconductors, and heavy fermion systems near a quantum phase transition. We use gauge/gravity duality to identify a class of non-Fermi liquids. Their low-energy behavior is governed by a nontrivial infrared fixed point which exhibits non-analytic scaling behavior only in the temporal direction. Some representatives of this class have single-particle spectral functions and transport behavior similar to those of the strange metals, with conductivity inversely proportional to the temperature. Such holographic systems may also exhibit novel ``magnetic instabilities'', where the quantum critical behavior near the transition involves a nontrivial interplay between local and bulk physics, with the local physics again described by a similar infrared fixed point. The resulting quantum phase transitions do not obey the standard Landau-Ginsburg-Wilson paradigm and resemble those of the heavy fermion quantum critical points.

  3. Functionalization of 2D transition metal dichalcogenides for biomedical applications

    International Nuclear Information System (INIS)

    Li, Zibiao; Wong, Swee Liang

    2017-01-01

    Recent research has revealed a gamut of interesting properties present in layered two-dimensional (2D) transition metal dichalcogenides (TMDCs) such as photoluminescence, comparatively high electron mobility, flexibility, mechanical strength and relatively low toxicity. The large surface to area ratio inherent in these materials also allows easy functionalization and maximal interaction with the external environment. Due to its unique physical and chemical properties, much work has been done in tailoring TMDCs through chemical functionalization for use in a diverse range of biomedical applications as biosensors, drug delivery carriers or even as therapeutic agents. In this review, current progress on the different types of TMDC functionalization for various biological applications will be presented and its future outlook will be discussed. - Highlights: • The different functionalization strategies and approaches of transition metal dichalcogenides are reviewed. • Properties of transition metal dichalcogenides useful for biomedical usage and their methods of synthesis are introduced. • Functionalization approaches are presented according to material type and their different application purpose is discussed.

  4. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeda, Seiichiro; Tanaka, Yasumasa; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Ikenaga, Yoshiaki.

    1994-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by the hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  5. Development of dissimilar metal transition joint by hot roll bonding technique

    International Nuclear Information System (INIS)

    Nagai, Takayuki; Takeuchi, Masayuki; Takeda, Seiichiro; Shikakura, Sakae; Ogawa, Kazuhiro; Nakasuji, Kazuyuki; Kajimura, Haruhiko.

    1995-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) with stainless steel piping is needed for nuclear fuel reprocessing plants. The authors have developed dissimilar metal transition joints between stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot roll bonding process, using the newly developed mill called 'rotary reduction mill'. In the R and D program, appropriate bonding conditions in the manufacturing process of the joints were established. This report presents the structure of transition joints and the manufacturing process by hot roll bonding technique. Then, the evaluation of mechanical and corrosion properties and the results of demonstration test of joints for practical use are described. (author)

  6. Fullerenes as a new type of ligands for transition metals

    International Nuclear Information System (INIS)

    Sokolov, V.I.

    2007-01-01

    Fullerenes are considered as ligands in transition metal π-complexes. The following aspects are discussed: metals able to form π-complexes with fullerenes (Zr, V, Ta, Mo, W, Re, Ru, etc.); haptic numbers; homo- and hetero ligand complexes; ligand compatibility with fullerenes for different metals, including fullerenes with a disturbed structure of conjugation [ru

  7. Metal Bioaccumulation by Estuarine Food Webs in New England, USA

    Directory of Open Access Journals (Sweden)

    Celia Y. Chen

    2016-06-01

    Full Text Available Evaluating the degree of metal exposure and bioaccumulation in estuarine organisms is important for understanding the fate of metals in estuarine food webs. We investigated the bioaccumulation of Hg, methylmercury (MeHg, Cd, Se, Pb, and As in common intertidal organisms across a watershed urbanization gradient of coastal marsh sites in New England to relate metal exposure and bioaccumulation in fauna to both chemical and ecological factors. In sediments, we measured metal and metalloid concentrations, total organic carbon (TOC and SEM-AVS (Simultaneously extracted metal-acid volatile sulfides. In five different functional feeding groups of biota, we measured metal concentrations and delta 15N and delta 13C signatures. Concentrations of Hg and Se in biota for all sites were always greater than sediment concentrations whereas Pb in biota was always lower. There were positive relationships between biota Hg concentrations and sediment concentrations, and between biota MeHg concentrations and both pelagic feeding mode and trophic level. Bioavailability of all metals measured as SEM-AVS or Benthic-Sediment Accumulation Factor was lower in more contaminated sites, likely due to biogeochemical factors related to higher levels of sulfides and organic carbon in the sediments. Our study demonstrates that for most metals and metalloids, bioaccumulation is metal specific and not directly related to sediment concentrations or measures of bioavailability such as AVS-SEM.

  8. Oxidation of Group 8 transition-Metal Hydrides and Ionic Hydrogenation of Ketones and Aldehydes

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kjell-Tore

    1996-08-01

    Transition-metal hydrides have received considerable attention during the last decades because of their unusual reactivity and their potential as homogeneous catalysts for hydrogenation and other reactions of organic substrates. An important class of catalytic processes where transition-metal hydrides are involved is the homogeneous hydrogenation of alkenes, alkynes, ketones, aldehydes, arenes and nitro compounds. This thesis studies the oxidation of Group 8 transition-metal hydrides and the ionic hydrogenation of ketones and aldehydes.

  9. Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field

    Science.gov (United States)

    Dubovskii, L. B.

    2018-05-01

    The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.

  10. Frontiers of 4d- and 5d-transition metal oxides

    CERN Document Server

    Cao, Gang

    2013-01-01

    This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides.New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ s

  11. Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films

    International Nuclear Information System (INIS)

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; Kim, Minu; Kang, Tae Dong

    2017-01-01

    Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering by largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2– ), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.

  12. Arbuscular Mycorrhizal Fungi Community Structure, Abundance and Species Richness Changes in Soil by Different Levels of Heavy Metal and Metalloid Concentration

    Science.gov (United States)

    Krishnamoorthy, Ramasamy; Kim, Chang-Gi; Subramanian, Parthiban; Kim, Ki-Yoon; Selvakumar, Gopal; Sa, Tong-Min

    2015-01-01

    Arbuscular Mycorrhizal Fungi (AMF) play major roles in ecosystem functioning such as carbon sequestration, nutrient cycling, and plant growth promotion. It is important to know how this ecologically important soil microbial player is affected by soil abiotic factors particularly heavy metal and metalloid (HMM). The objective of this study was to understand the impact of soil HMM concentration on AMF abundance and community structure in the contaminated sites of South Korea. Soil samples were collected from the vicinity of an abandoned smelter and the samples were subjected to three complementary methods such as spore morphology, terminal restriction fragment length polymorphism (T-RFLP) and denaturing gradient gel electrophoresis (DGGE) for diversity analysis. Spore density was found to be significantly higher in highly contaminated soil compared to less contaminated soil. Spore morphological study revealed that Glomeraceae family was more abundant followed by Acaulosporaceae and Gigasporaceae in the vicinity of the smelter. T-RFLP and DGGE analysis confirmed the dominance of Funneliformis mosseae and Rhizophagus intraradices in all the study sites. Claroideoglomus claroideum, Funneliformis caledonium, Rhizophagus clarus and Funneliformis constrictum were found to be sensitive to high concentration of soil HMM. Richness and diversity of Glomeraceae family increased with significant increase in soil arsenic, cadmium and zinc concentrations. Our results revealed that the soil HMM has a vital impact on AMF community structure, especially with Glomeraceae family abundance, richness and diversity. PMID:26035444

  13. Catalytic olefin polymerization with early transition metal compounds

    OpenAIRE

    Eshuis, Johan Jan Willem

    1991-01-01

    The catalysis of organic reactions by soluble metal complexes has become a major tool in synthesis, both in the laboratory and in the chemical industry. Processes catalyzed by transition metal complexes include carbonylation, olefin polymerization, olefin addition, olefin oxidation and alkane and arene oxidation. Traditionally, heterogeneous catalysts have been used for the production of large-scale commodity chemicals such as methanol and ammonia and in the production of high octane gasoline...

  14. Cell complexes of transition metals in biochemistry and medicine

    International Nuclear Information System (INIS)

    Voloshin, Ya.Z.; Varzatskij, O.A.; Bubnov, Yu.N.

    2007-01-01

    Basic directions and prospects of use of cell complexes of transition metals in medicine and biochemistry are considered: incapsulation of radioactive metal ions for radiotherapy and diagnostics; preparation of contrast compounds for magnetic resonance tomography, antidotes and pharmaceutical preparation of prolonged effect, preparations for boron-neutron-capture therapy of neoplasms, antioxidants; membrane transport of metal ions; study of interaction of cell metal complexes with nucleic acids; possibility of use of self-assembly of cell complexes for imitation of ligases and use of clathrochelates as linkers; design of inhibitors of viruses for AIDS therapy [ru

  15. Rational Design of Two-Dimensional Metallic and Semiconducting Spintronic Materials Based on Ordered Double-Transition-Metal MXenes

    KAUST Repository

    Dong, Liang

    2016-12-30

    Two-dimensional (2D) materials that display robust ferromagnetism have been pursued intensively for nanoscale spintronic applications, but suitable candidates have not been identified. Here we present theoretical predictions on the design of ordered double-transition-metal MXene structures to achieve such a goal. On the basis of the analysis of electron filling in transition-metal cations and first-principles simulations, we demonstrate robust ferromagnetism in Ti2MnC2Tx monolayers regardless of the surface terminations (T = O, OH, and F), as well as in Hf2MnC2O2 and Hf2VC2O2 monolayers. The high magnetic moments (3–4 μB/unit cell) and high Curie temperatures (495–1133 K) of these MXenes are superior to those of existing 2D ferromagnetic materials. Furthermore, semimetal-to-semiconductor and ferromagnetic-to-antiferromagnetic phase transitions are predicted to occur in these materials in the presence of small or moderate tensile in-plane strains (0–3%), which can be externally applied mechanically or internally induced by the choice of transition metals.

  16. Impact of metal pollution on shrimp Crangon affinis by NMR-based metabolomics

    International Nuclear Information System (INIS)

    Ji, Chenglong; Yu, Deliang; Wang, Qing; Li, Fei; Zhao, Jianmin; Wu, Huifeng

    2016-01-01

    Both cadmium and arsenic are the important metal/metalloid pollutants in the Bohai Sea. In this work, we sampled the dominant species, shrimp Crangon affinis, from three sites, the Middle of the Bohai Sea (MBS), the Yellow River Estuary (YRE) and the Laizhou Bay (LZB) along the Bohai Sea. The concentrations of metals/metalloids in shrimps C. affinis indicated that the YRE site was polluted by Cd and Pb, while the LZB site was contaminated by As. The metabolic differences between shrimps C. affinis from the reference site (MBS) and metal-pollution sites (YRE and LZB) were characterized using NMR-based metabolomics. Results indicated that the metal pollutions in YRE and LZB induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways. In addition, a combination of alanine and arginine might be the biomarker of Cd contamination, while BCAAs and tyrosine could be the biomarkers of arsenic contamination in C. affinis. - Highlights: •YRE and LZB are mainly polluted by Cd and As, respectively. •Metal pollutions caused differential effects in C. affinis from different sites. •Metabolomics is useful to elucidate metal pollution-induced biological effects.

  17. Ion implantation and amorphous metals

    International Nuclear Information System (INIS)

    Hohmuth, K.; Rauschenbach, B.

    1981-01-01

    This review deals with ion implantation of metals in the high concentration range for preparing amorphous layers (>= 10 at%, implantation doses > 10 16 ions/cm 2 ). Different models are described concerning formation of amorphous phases of metals by ion implantation and experimental results are given. The study of amorphous phases has been carried out by the aid of Rutherford backscattering combined with the channeling technique and using transmission electron microscopy. The structure of amorphous metals prepared by ion implantation has been discussed. It was concluded that amorphous metal-metalloid compounds can be described by a dense-random-packing structure with a great portion of metal atoms. Ion implantation has been compared with other techniques for preparing amorphous metals and the adventages have been outlined

  18. Edge Delamination of Monolayer Transition Metal Dichalcogenides.

    Science.gov (United States)

    Ly, Thuc Hue; Yun, Seok Joon; Thi, Quoc Huy; Zhao, Jiong

    2017-07-25

    Delamination of thin films from the supportive substrates is a critical issue within the thin film industry. The emergent two-dimensional, atomic layered materials, including transition metal dichalcogenides, are highly flexible; thus buckles and wrinkles can be easily generated and play vital roles in the corresponding physical properties. Here we introduce one kind of patterned buckling behavior caused by the delamination from a substrate initiated at the edges of the chemical vapor deposition synthesized monolayer transition metal dichalcogenides, led by thermal expansion mismatch. The atomic force microscopy and optical characterizations clearly showed the puckered structures associated with the strain, whereas the transmission electron microscopy revealed the special sawtooth-shaped edges, which break the geometrical symmetry for the buckling behavior of hexagonal samples. The condition of the edge delamination is in accordance with the fracture behavior of thin film interfaces. This edge delamination and buckling process is universal for most ultrathin two-dimensional materials, which requires more attention in various future applications.

  19. The atomic structure of transition metal clusters

    International Nuclear Information System (INIS)

    Riley, S.J.

    1995-01-01

    Chemical reactions are used to probe the atomic (geometrical) structure of isolated clusters of transition metal atoms. The number of adsorbate molecules that saturate a cluster, and/or the binding energy of molecules to cluster surfaces, are determined as a function of cluster size. Systematics in these properties often make it possible to propose geometrical structures consistent with the experimental observations. We will describe how studies of the reactions of cobalt and nickel clusters with ammonia, water, and nitrogen provide important and otherwise unavailable structural information. Specifically, small (less than 20 atoms) clusters of cobalt and nickel atoms adopt entirely different structures, the former having packing characteristic of the bulk and the latter having pentagonal symmetry. These observations provide important input for model potentials that attempt to describe the local properties of transition metals. In particular, they point out the importance of a proper treatment of d-orbital binding in these systems, since cobalt and nickel differ so little in their d-orbital occupancy

  20. Lattice Location of Transition Metals in Semiconductors

    CERN Multimedia

    2002-01-01

    %IS366 %title\\\\ \\\\Transition metals (TMs) in semiconductors have been the subject of considerable research for nearly 40 years. This is due both to their role as important model impurities for deep centers in semiconductors, and to their technological impact as widespread contaminants in Si processing, where the miniaturization of devices requires to keep their sheet concentration below 10$^{10}$ cm$^{-2}$. As a consequence of the low TM solubility, conventional ion beam methods for direct lattice location have failed completely in identifying the lattice sites of isolated transition metals. Although electron paramagnetic resonance (EPR) has yielded valuable information on a variety of TM centers, it has been unable to detect certain defects considered by theory, e.g., isolated interstitial or substitutional Cu in Si. The proposed identity of other EPR centers such as substitutional Fe in Si, still needs confirmation by additional experimental methods. As a consequence, the knowledge on the structural propert...

  1. Metal non-metal transitions in doped semiconductors

    International Nuclear Information System (INIS)

    Brezini, A.

    1989-12-01

    A disordered Hubbard model with diagonal disorder is used to examine the electron localization effects associated with both disorder and electron-electron interaction. Extensive results are reported on the ground state properties and compared with other theories. In particular two regimes are observed; when the electron-electron interaction U is greater than the disorder parameter and when is smaller. Furthermore the effect of including conduction-band minima into the calculation of metal-insulator transitions in doped Si and Ge is investigated with use of Berggren approach. Good agreement with experiments are found when both disorder and interactions are included. (author). 37 refs, 7 figs, 3 tabs

  2. Band gap tuning in transition metal oxides by site-specific substitution

    Science.gov (United States)

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  3. First-principles study of hydrogen dissociation and diffusion on transition metal-doped Mg(0 0 0 1) surfaces

    International Nuclear Information System (INIS)

    Wang, Zhiwen; Guo, Xinjun; Wu, Mingyi; Sun, Qiang; Jia, Yu

    2014-01-01

    First-principles calculations within the density functional theory (DFT) have been carried out to study hydrogen molecules dissociation and diffusion on clean and transition metals (TMs) doped Mg(0 0 0 1) surfaces following Pozzo et al. work. Firstly, the stability of Mg(0 0 0 1) surface doped with transition metals atom has been studied. The results showed that transition metals on the left of the table tend to substitute Mg in the second layer, while the other transition metals prefer to substitute Mg in the first layer. Secondly, we studied hydrogen molecules dissociation and diffusion on clean and Mg(0 0 0 1) surfaces which the transition metal atoms substituted both in the first layer and second layer. When transition metal atoms substitute in the first layer, the results agree with the Pozzo et al. result; when transition metal atoms substitute in the second layer, the results showed that the transition metals on the left of the periodic table impact on the dissociation barriers is less. However, for the transition metals (Mn, Fe, Co, Ni) on the right, there is a great impact on the barriers. The transition metals doped surfaces bind the dissociated H atoms loosely, making them easily diffused. The results further reveal that the Fe dopant on the Mg surface is the best choice for H 2 dissociation and hydrogen storage.

  4. Usefulness of pioneer vegetation for the phytomanagement of metal(loid)s enriched tailings: grasses vs. shrubs vs. trees.

    Science.gov (United States)

    Parraga-Aguado, Isabel; Querejeta, Jose-Ignacio; González-Alcaraz, María-Nazaret; Jiménez-Cárceles, Francisco J; Conesa, Héctor M

    2014-01-15

    The goal of this work was to assess the selection of the most suitable combination of plant species for the phytomanagement of mine tailings, by comparing among different plant life-forms (grasses, shrubs and trees). A comparison on induced rhizosphere changes generated by four plant species (the grass Piptatherum miliaceum, the shrub Helichrysum decumbens, and the trees, Pinus halepensis and Tetraclinis articulata) and high density vegetation patches (fertility islands) at a mine tailing located at Southeast Spain and the description of their physiological status employing stable isotopes analyses were carried out. The edaphic niches for plant growth were determined by salinity, organic matter and total soil nitrogen while metal(loid)s concentrations played a minor role. Induced changes in plant rhizospheres had a significant impact in soil microbiology. While grasses and shrubs may play an important role in primary ecological succession, trees seem to be the key to the development of fertility islands. The low δ(15)N values (-8.00‰) in P. halepensis needles may reflect higher ectomycorrhizal dependence. Large differences in leaf δ(18)O among the plant species indicated contrasting and complementary water acquisition strategies. Leaf δ(13)C values (-27.6‰) suggested that T. articulata had higher water use efficiency than the rest of species (-29.9‰). The implement of a diverse set of plant species with contrasting life forms for revegetating tailings may result in a more efficient employment of water resources and a higher biodiversity not only in relation to flora but soil microbiology too. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Development of dissimilar metal transition joint by hot bond rolling

    International Nuclear Information System (INIS)

    Kurokawa, Hiroyuki; Nakasuji, Kazuyuki; Kajimura, Haruhiko; Nagai, Takayuki; Takeda, Seiichiro.

    1997-01-01

    Metallurgically bonded transition joints which enable to connect reprocessing equipments made of superior corrosion resistant valve metals (Ti-5Ta, Zr or Ti) to stainless steel piping are required for nuclear fuel reprocessing plants. The authors have developed dissimilar transition joints made of stainless steel and Ti-5Ta, Zr or Ti with an insert metal of Ta by the hot bond rolling process of clad bars and clad pipes, using a newly developed mill called 'rotary reduction mill'. This report presents the manufacturing process of dissimilar transition joints produced from the clad pipe with three layers by the hot bond rolling. First, the method of hot bond rolling of clad pipe is proposed. Then, the mechanical and corrosion properties of the dissimilar transition joints are evaluated in detail by carrying out various tests. Finally, the rolling properties in the clad pipe method are discussed. (author)

  6. Janus monolayers of transition metal dichalcogenides

    KAUST Repository

    Lu, Ang-Yu

    2017-05-15

    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements.

  7. The recent development of efficient Earth-abundant transition-metal nanocatalysts.

    Science.gov (United States)

    Wang, Dong; Astruc, Didier

    2017-02-06

    Whereas noble metal compounds have long been central in catalysis, Earth-abundant metal-based catalysts have in the same time remained undeveloped. Yet the efficacy of Earth-abundant metal catalysts was already shown at the very beginning of the 20th century with the Fe-catalyzed Haber-Bosch process of ammonia synthesis and later in the Fischer-Tropsch reaction. Nanoscience has revolutionized the world of catalysis since it was observed that very small Au nanoparticles (NPs) and other noble metal NPs are extraordinarily efficient. Therefore the development of Earth-abundant metals NPs is more recent, but it has appeared necessary due to their "greenness". This review highlights catalysis by NPs of Earth-abundant transition metals that include Mn, Fe, Co, Ni, Cu, early transition metals (Ti, V, Cr, Zr, Nb and W) and their nanocomposites with emphasis on basic principles and literature reported during the last 5 years. A very large spectrum of catalytic reactions has been successfully disclosed, and catalysis has been examined for each metal starting with zero-valent metal NPs followed by oxides and other nanocomposites. The last section highlights the catalytic activities of bi- and trimetallic NPs. Indeed this later family is very promising and simultaneously benefits from increased stability, efficiency and selectivity, compared to monometallic NPs, due to synergistic substrate activation.

  8. Defect-Tolerant Monolayer Transition Metal Dichalcogenides

    DEFF Research Database (Denmark)

    Pandey, Mohnish; Rasmussen, Filip Anselm; Kuhar, Korina

    2016-01-01

    Localized electronic states formed inside the band gap of a semiconductor due to crystal defects can be detrimental to the material's optoelectronic properties. Semiconductors with a lower tendency to form defect induced deep gap states are termed defect-tolerant. Here we provide a systematic first...... the gap. These ideas are made quantitative by introducing a descriptor that measures the degree of similarity of the conduction and valence band manifolds. Finally, the study is generalized to nonpolar nanoribbons of the TMDs where we find that only the defect sensitive materials form edge states within......-principles investigation of defect tolerance in 29 monolayer transition metal dichalcogenides (TMDs) of interest for nanoscale optoelectronics. We find that the TMDs based on group VI and X metals form deep gap states upon creation of a chalcogen (S, Se, Te) vacancy, while the TMDs based on group IV metals form only...

  9. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    Energy Technology Data Exchange (ETDEWEB)

    Achatz, Philipp

    2009-05-15

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n{sub c} for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers ({approx} 500 cm{sup -1}) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g{sub c}. The granularity also influences significantly the superconducting properties by introducing the superconducting gap {delta} in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the

  10. Metal-insulator transition and superconductivity in heavily boron-doped diamond and related materials

    International Nuclear Information System (INIS)

    Achatz, Philipp

    2009-01-01

    During this PhD project, the metal-insulator transition and superconductivity of highly boron-doped single crystal diamond and related materials have been investigated. The critical boron concentration n c for the metal-insulator transition was found to be the same as for the normal-superconductor transition. All metallic samples have been found to be superconducting and we were able to link the occurence of superconductivity to the proximity to the metal-insulator transition. For this purpose, a scaling law approach based on low temperature transport was proposed. Furthermore, we tried to study the nature of the superconductivity in highly boron doped single crystal diamond. Raman spectroscopy measurements on the isotopically substituted series suggest that the feature occuring at low wavenumbers (∼ 500 cm -1 ) is the A1g vibrational mode associated with boron dimers. Usual Hall effect measurements yielded a puzzling situation in metallic boron-doped diamond samples, leading to carrier concentrations up to a factor 10 higher than the boron concentration determined by secondary ion mass spectroscopy (SIMS). The low temperature transport follows the one expected for a granular metal or insulator, depending on the interplay of intergranular and intragranular (tunneling) conductance. The metal-insulator transition takes place at a critical conductance g c . The granularity also influences significantly the superconducting properties by introducing the superconducting gap Δ in the grain and Josephson coupling J between superconducting grains. A peak in magnetoresistance is observed which can be explained by superconducting fluctuations and the granularity of the system. Additionally we studied the low temperature transport of boron-doped Si samples grown by gas immersion laser doping, some of which yielded a superconducting transition at very low temperatures. Furthermore, preliminary results on the LO-phonon-plasmon coupling are shown for the first time in aluminum

  11. Phase-field model of insulator-to-metal transition in VO2 under an electric field

    Science.gov (United States)

    Shi, Yin; Chen, Long-Qing

    2018-05-01

    The roles of an electric field and electronic doping in insulator-to-metal transitions are still not well understood. Here we formulated a phase-field model of insulator-to-metal transitions by taking into account both structural and electronic instabilities as well as free electrons and holes in VO2, a strongly correlated transition-metal oxide. Our phase-field simulations demonstrate that in a VO2 slab under a uniform electric field, an abrupt universal resistive transition occurs inside the supercooling region, in sharp contrast to the conventional Landau-Zener smooth electric breakdown. We also show that hole doping may decouple the structural and electronic phase transitions in VO2, leading to a metastable metallic monoclinic phase which could be stabilized through a geometrical confinement and the size effect. This work provides a general mesoscale thermodynamic framework for understanding the influences of electric field, electronic doping, and stress and strain on insulator-to-metal transitions and the corresponding mesoscale domain structure evolution in VO2 and related strongly correlated systems.

  12. Universal Quantum Criticality in the Metal-Insulator Transition of Two-Dimensional Interacting Dirac Electrons

    Directory of Open Access Journals (Sweden)

    Yuichi Otsuka

    2016-03-01

    Full Text Available The metal-insulator transition has been a subject of intense research since Mott first proposed that the metallic behavior of interacting electrons could turn to an insulating one as electron correlations increase. Here, we consider electrons with massless Dirac-like dispersion in two spatial dimensions, described by the Hubbard models on two geometrically different lattices, and perform numerically exact calculations on unprecedentedly large systems that, combined with a careful finite-size scaling analysis, allow us to explore the quantum critical behavior in the vicinity of the interaction-driven metal-insulator transition. Thereby, we find that the transition is continuous, and we determine the quantum criticality for the corresponding universality class, which is described in the continuous limit by the Gross-Neveu model, a model extensively studied in quantum field theory. Furthermore, we discuss a fluctuation-driven scenario for the metal-insulator transition in the interacting Dirac electrons: The metal-insulator transition is triggered only by the vanishing of the quasiparticle weight, not by the Dirac Fermi velocity, which instead remains finite near the transition. This important feature cannot be captured by a simple mean-field or Gutzwiller-type approximate picture but is rather consistent with the low-energy behavior of the Gross-Neveu model.

  13. Magnetic Properties of Nanometer-sized Crystalline and Amorphous Particles

    DEFF Research Database (Denmark)

    Mørup, Steen; Bødker, Franz; Hansen, Mikkel Fougt

    1997-01-01

    Amorphous transition metal-metalloid alloy particles can be prepared by chemical preparation techniques. We discuss the preparation of transition metal-boron and iron-carbon particles and their magnetic properties. Nanometer-sized particles of both crystalline and amorphous magnetic materials...... are superparamagnetic at finite temperatures. The temperature dependence of the superparamagnetic relaxation time and the influence of inter-particle interactions is discussed. Finally, some examples of studies of surface magnetization of alpha-Fe particles are presented....

  14. Polymer derived non-oxide ceramics modified with late transition metals.

    Science.gov (United States)

    Zaheer, Muhammad; Schmalz, Thomas; Motz, Günter; Kempe, Rhett

    2012-08-07

    This tutorial review highlights the methods for the preparation of metal modified precursor derived ceramics (PDCs) and concentrates on the rare non-oxide systems enhanced with late transition metals. In addition to the main synthetic strategies for modified SiC and SiCN ceramics, an overview of the morphologies, structures and compositions of both, ceramic materials and metal (nano) particles, is presented. Potential magnetic and catalytic applications have been discussed for the so manufactured metal containing non-oxide ceramics.

  15. Trends in oxygen reduction and methanol activation on transition metal chalcogenides

    DEFF Research Database (Denmark)

    Tritsaris, Georgios; Nørskov, Jens Kehlet; Rossmeisl, Jan

    2011-01-01

    We use density functional theory calculations to study the oxygen reduction reaction and methanol activation on selenium and sulfur-containing transition metal surfaces. With ruthenium selenium as a starting point, we study the effect of the chalcogen on the activity, selectivity and stability...... of the catalyst. Ruthenium surfaces with moderate content of selenium are calculated active for the oxygen reduction reaction, and insensitive to methanol. A significant upper limit for the activity of transition metal chalcogenides is estimated....

  16. Magnetic Ground State Properties of Transition Metals

    DEFF Research Database (Denmark)

    Andersen, O. K.; Madsen, J.; Poulsen, U. K.

    1977-01-01

    We review a simple one-electron theory of the magnetic and cohesive properties of ferro- and nearly ferromagnetic transition metals at 0 K. The theory is based on the density functional formalism, it makes use of the local spin density and atomic sphere approximations and it may, with further app...

  17. Polymer functionalized nanocomposites for metals removal from water and wastewater: An overview.

    Science.gov (United States)

    Lofrano, Giusy; Carotenuto, Maurizio; Libralato, Giovanni; Domingos, Rute F; Markus, Arjen; Dini, Luciana; Gautam, Ravindra Kumar; Baldantoni, Daniela; Rossi, Marco; Sharma, Sanjay K; Chattopadhyaya, Mahesh Chandra; Giugni, Maurizio; Meric, Sureyya

    2016-04-01

    Pollution by metal and metalloid ions is one of the most widespread environmental concerns. They are non-biodegradable, and, generally, present high water solubility facilitating their environmental mobilisation interacting with abiotic and biotic components such as adsorption onto natural colloids or even accumulation by living organisms, thus, threatening human health and ecosystems. Therefore, there is a high demand for effective removal treatments of heavy metals, making the application of adsorption materials such as polymer-functionalized nanocomposites (PFNCs), increasingly attractive. PFNCs retain the inherent remarkable surface properties of nanoparticles, while the polymeric support materials provide high stability and processability. These nanoparticle-matrix materials are of great interest for metals and metalloids removal thanks to the functional groups of the polymeric matrixes that provide specific bindings to target pollutants. This review discusses PFNCs synthesis, characterization and performance in adsorption processes as well as the potential environmental risks and perspectives. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Raman scattering in transition metal compounds: Titanium and compounds of titanium

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Ederer, D.L.; Shu, T. [Tulane Univ., New Orleans, LA (United States)] [and others

    1997-04-01

    The transition metal compounds form a very interesting and important set of materials. The diversity arises from the many states of ionization the transition elements may take when forming compounds. This variety provides ample opportunity for a large class of materials to have a vast range of electronic and magnetic properties. The x-ray spectroscopy of the transition elements is especially interesting because they have unfilled d bands that are at the bottom of the conduction band with atomic like structure. This group embarked on the systematic study of transition metal sulfides and oxides. As an example of the type of spectra observed in some of these compounds they have chosen to showcase the L{sub II, III} emission and Raman scattering in some titanium compounds obtained by photon excitation.

  19. Investigating the atomic level influencing factors of glass forming ability in NiAl and CuZr metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Sedighi, Sina; Kirk, Donald Walter; Singh, Chandra Veer, E-mail: chandraveer.singh@utoronto.ca; Thorpe, Steven John [Department of Materials Science and Engineering, University of Toronto, Room 140, 184 College Street, Toronto, Ontario M5S 3E4 (Canada)

    2015-09-21

    Bulk metallic glasses are a relatively new class of amorphous metal alloy which possess unique mechanical and magnetic properties. The specific concentrations and combinations of alloy elements needed to prevent crystallization during melt quenching remains poorly understood. A correlation between atomic properties that can explain some of the previously identified glass forming ability (GFA) anomalies of the NiAl and CuZr systems has been identified, with these findings likely extensible to other transition metal–transition metal and transition metal–metalloid (TM–M) alloy classes as a whole. In this work, molecular dynamics simulation methods are utilized to study thermodynamic, kinetic, and structural properties of equiatomic CuZr and NiAl metallic glasses in an attempt to further understand the underlying connections between glass forming ability, nature of atomic level bonding, short and medium range ordering, and the evolution of structure and relaxation properties in the disordered phase. The anomalous breakdown of the fragility parameter as a useful GFA indicator in TM–M alloy systems is addressed through an in-depth investigation of bulk stiffness properties and the evolution of (pseudo)Gruneisen parameters over the quench domain, with the efficacy of other common glass forming ability indicators similarly being analyzed through direct computation in respective CuZr and NiAl systems. Comparison of fractional liquid-crystal density differences in the two systems revealed 2-3 times higher values for the NiAl system, providing further support for its efficacy as a general purpose GFA indicator.

  20. Investigation of Ternary Transition-Metal Nitride Systems by Reactive Cosputtering

    NARCIS (Netherlands)

    Dover, R.B. Van; Hessen, B.; Werder, D.; Chen, C.-H.; Felder, R.J.

    1993-01-01

    A reactive dc cosputtering technique has been used to evaluate compound formation in bimetallic transition-metal nitride systems. A wide range in M-M’ composition can be studied in a single deposition run, and the method is applicable to nonalloying metal combinations. Using this technique, it was

  1. Scaling Relationships for Adsorption Energies of C2 Hydrocarbons on Transition Metal Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G

    2011-08-18

    Using density functional theory calculations we show that the adsorption energies for C{sub 2}H{sub x}-type adsorbates on transition metal surfaces scale with each other according to a simple bond order conservation model. This observation generalizes some recently recognized adsorption energy scaling laws for AH{sub x}-type adsorbates to unsaturated hydrocarbons and establishes a coherent simplified description of saturated as well as unsaturated hydrocarbons adsorbed on transition metal surfaces. A number of potential applications are discussed. We apply the model to the dehydrogenation of ethane over pure transition metal catalysts. Comparison with the corresponding full density functional theory calculations shows excellent agreement.

  2. Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

    Directory of Open Access Journals (Sweden)

    Hongjun Chen

    2014-05-01

    Full Text Available To better utilize the sunlight for efficient solar energy conversion, the research on visible-light active photocatalysts has recently attracted a lot of interest. The photosensitization of transition metal oxides is a promising approach for achieving effective visible-light photocatalysis. This review article primarily discusses the recent progress in the realm of a variety of nanostructured photosensitizers such as quantum dots, plasmonic metal nanostructures, and carbon nanostructures for coupling with wide-bandgap transition metal oxides to design better visible-light active photocatalysts. The underlying mechanisms of the composite photocatalysts, e.g., the light-induced charge separation and the subsequent visible-light photocatalytic reaction processes in environmental remediation and solar fuel generation fields, are also introduced. A brief outlook on the nanostructure photosensitization is also given.

  3. A COMPREHENSIVE APPROACH TO IDENTIFY AND QUANTIFY FUNDAMENTAL PARAMETERS THAT INFLUENCE METAL LEACHING CHEMISTRY IN LANDFILLS SYSTEMS (PRESENTATION)

    Science.gov (United States)

    Various anthropogenic activities generate hazardous solid wastes that are affluent in heavy metals, which can cause significant damage to the environment and human health. Heavy metals/metalloids can exist in multiple oxidation states, and can undergo oxidation or reduction when ...

  4. A COMPREHENSIVE APPROACH TO IDENTIFY AND QUANTIFY FUNDAMENTAL PARAMETERS THAT INFLUENCE METAL LEACHING CHEMISTRY IN LANDFILLS SYSTEMS (ABSTRACT)

    Science.gov (United States)

    Various anthropogenic activities generate hazardous solid wastes that are affluent in heavy metals, which can cause significant damage to the environment and human health. Heavy metals/metalloids can exist in multiple oxidation states, and can undergo oxidation or reduction when ...

  5. Modification of metallic corrosion by ion implantation

    International Nuclear Information System (INIS)

    Clayton, C.R.

    1981-01-01

    This review will consider some of the properties of surface alloys, formed by ion implantation, which are effective in modifying corrosion behaviour. Examples will be given of the modification of the corrosion behaviour of pure metals, steels and other engineering alloys, resulting from implantation with metals and metalloids. Emphasis will be given to the modification of anodic processes produced by ion implantation since a review will be given elsewhere in the proceedings concerning the modification of cathodic processes. (orig.)

  6. Electric field-triggered metal-insulator transition resistive switching of bilayered multiphasic VOx

    Science.gov (United States)

    Won, Seokjae; Lee, Sang Yeon; Hwang, Jungyeon; Park, Jucheol; Seo, Hyungtak

    2018-01-01

    Electric field-triggered Mott transition of VO2 for next-generation memory devices with sharp and fast resistance-switching response is considered to be ideal but the formation of single-phase VO2 by common deposition techniques is very challenging. Here, VOx films with a VO2-dominant phase for a Mott transition-based metal-insulator transition (MIT) switching device were successfully fabricated by the combined process of RF magnetron sputtering of V metal and subsequent O2 annealing to form. By performing various material characterizations, including scanning transmission electron microscopy-electron energy loss spectroscopy, the film is determined to have a bilayer structure consisting of a VO2-rich bottom layer acting as the Mott transition switching layer and a V2O5/V2O3 mixed top layer acting as a control layer that suppresses any stray leakage current and improves cyclic performance. This bilayer structure enables excellent electric field-triggered Mott transition-based resistive switching of Pt-VOx-Pt metal-insulator-metal devices with a set/reset current ratio reaching 200, set/reset voltage of less than 2.5 V, and very stable DC cyclic switching upto 120 cycles with a great set/reset current and voltage distribution less than 5% of standard deviation at room temperature, which are specifications applicable for neuromorphic or memory device applications. [Figure not available: see fulltext.

  7. Electronic structure of hcp transition metals

    DEFF Research Database (Denmark)

    Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.

    1975-01-01

    Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... of hybridization, relativistic band shifts, and spin-orbit coupling by the example of Os. By making use of parameters derived from the muffin-tin potential, we discuss trends in the positions and widths of the energy bands, especially the d bands, as a function of the location in the periodic table. The densities...... of states of the four metals are presented, and the calculated heat capacities compared with experiment. The Fermi surfaces of both Ru and Os are found to be in excellent quantitative agreement with de Haas-van Alphen measurements, indicating that the calculated d-band position is misplaced by less than 10...

  8. Convergence of quasiparticle self-consistent GW calculations of transition metal monoxides

    OpenAIRE

    Das, Suvadip; Coulter, John E.; Manousakis, Efstratios

    2014-01-01

    Finding an accurate ab initio approach for calculating the electronic properties of transition metal oxides has been a problem for several decades. In this paper, we investigate the electronic structure of the transition metal monoxides MnO, CoO, and NiO in their undistorted rock-salt structure within a fully iterated quasiparticle self-consistent GW (QPscGW) scheme. We study the convergence of the QPscGW method, i.e., how the quasiparticle energy eigenvalues and wavefunctions converge as a f...

  9. Trends in the Hydrodeoxygenation Activity and Selectivity of Transition Metal Surfaces

    DEFF Research Database (Denmark)

    Lausche, Adam C.; Falsig, Hanne; Jensen, Anker Degn

    2014-01-01

    This paper reports the use of a combination of density functional theory and microkinetic modelling to establish trends in the hydrodeoxygenation rates and selectivites of transition metal surfaces. Biomass and biomass-derived chemicals often contain large fractions of oxygenates. Removal...... of the oxygen through hydrotreating represents one strategy for producing commodity chemicals from these renewable materials. Using the model developed in this paper, we predict ethylene glycol hydrodeoxygenation selectivities for transition metals that are consistent with those reported in the literature...

  10. Adsorbate Diffusion on Transition Metal Nanoparticles

    Science.gov (United States)

    2015-01-01

    correlation is a Bronsted-Evans-Polanyi ( BEP )- type of correlation, similar to other BEP correlations established earlier for surface-catalyzed bond- breaking...bond-making reactions.6-9 The universal BEP -type correlation is independent of the nature of the adsorbed species and that of the metal surface. For...a certain class of surface-catalyzed reactions, the existence of a BEP -type correlation reflects a similarity between the geometry of the transition

  11. Quantum criticality around metal-insulator transitions of strongly correlated electron systems

    Science.gov (United States)

    Misawa, Takahiro; Imada, Masatoshi

    2007-03-01

    Quantum criticality of metal-insulator transitions in correlated electron systems is shown to belong to an unconventional universality class with violation of the Ginzburg-Landau-Wilson (GLW) scheme formulated for symmetry breaking transitions. This unconventionality arises from an emergent character of the quantum critical point, which appears at the marginal point between the Ising-type symmetry breaking at nonzero temperatures and the topological transition of the Fermi surface at zero temperature. We show that Hartree-Fock approximations of an extended Hubbard model on square lattices are capable of such metal-insulator transitions with unusual criticality under a preexisting symmetry breaking. The obtained universality is consistent with the scaling theory formulated for Mott transitions and with a number of numerical results beyond the mean-field level, implying that preexisting symmetry breaking is not necessarily required for the emergence of this unconventional universality. Examinations of fluctuation effects indicate that the obtained critical exponents remain essentially exact beyond the mean-field level. It further clarifies the whole structure of singularities by a unified treatment of the bandwidth-control and filling-control transitions. Detailed analyses of the criticality, containing diverging carrier density fluctuations around the marginal quantum critical point, are presented from microscopic calculations and reveal the nature as quantum critical “opalescence.” The mechanism of emerging marginal quantum critical point is ascribed to a positive feedback and interplay between the preexisting gap formation present even in metals and kinetic energy gain (loss) of the metallic carrier. Analyses of crossovers between GLW type at nonzero temperature and topological type at zero temperature show that the critical exponents observed in (V,Cr)2O3 and κ-ET -type organic conductors provide us with evidence for the existence of the present marginal

  12. Magnetic excitations in transition-metal ferromagnets

    International Nuclear Information System (INIS)

    Uemura, Y.J.

    1984-01-01

    A review is given on current neutron scattering experiments at Brookhaven National Laboratory on transition-metal ferromagnets Ni, Fe, Pd 2 MnSn and MnSi. The scattering intensity in constant-energy scans, observed above T/sub c/ in all of these materials, exhibited a clear peak at finite momentum transfers. Using a simple scattering function with double-Lorentzian shape, we demonstrate that this peak is a manifestation of simple diffusive spin fluctuations. Experimental results of several parameters are compared in the context of localized-moment and itinerant-electron pictures. The ratio of spin wave stiffness constant D and transition temperature kT/sub c/ is shown to be a good yardstick for the degree of itinerancy of d-electrons

  13. Establishing the importance of human health risk assessment for metals and metalloids in urban environments.

    Science.gov (United States)

    Peña-Fernández, A; González-Muñoz, M J; Lobo-Bedmar, M C

    2014-11-01

    Rapid development, industrialisation, and urbanisation have resulted in serious contamination of soil by metals and metalloids from anthropogenic sources in many areas of the world, either directly or indirectly. Exponential urban and economic development has resulted in human populations settling in urban areas and as a result being exposed to these pollutants. Depending on the nature of the contaminant, contaminated urban soils can have a deleterious effect on the health of exposed populations and may require decontamination, recovery, remediation and restoration. Therefore, human health risk assessments in urban environments are very important. In the case of Spain, there are few studies regarding risk assessment of trace elements in urban soils, and those that exist have been derived mainly from areas potentially exposed to industrial contamination or in the vicinity of point pollution. The present study analysed Al, As, Be, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Sn, Ti, Tl, V and Zn soil concentrations in and around the city of Alcalá de Henares (35 km NE of Madrid). Soil samples were collected in public parks and recreation areas within the city and in an industrial area on the periphery of the city. From these results, an assessment of the health risk for the population was performed following the methodology described by the US EPA (1989). In general, it was observed that there could be a potential increased risk of developing cancer over a lifetime from exposure to arsenic (As) through ingestion of the soils studied (oral intake), as well as an increased risk of cancer due to inhalation of chromium (Cr) present in re-suspended soils from the industrial area. Our group has previously reported (Granero and Domingo, 2002; Peña-Fernández et al., 2003) that there was an increased risk of developing cancer following exposure to As in the same soils in a previous study. Therefore, it is necessary to reduce the levels of contaminants in these soils, especially As and Cr

  14. Influence of environmental parameters and of their interactions on the release of metal(loid)s from a construction material in hydraulic engineering.

    Science.gov (United States)

    Schmukat, A; Duester, L; Goryunova, E; Ecker, D; Heininger, P; Ternes, T A

    2016-03-05

    Besides the leaching behaviour of a construction material under standardised test-specific conditions with laboratory water, for some construction materials it is advisable to test their environmental behaviour also under close to end use conditions. The envisaged end use combined with the product characteristics (e.g. mineral phases) is decisive for the choice of environmental factors that may change the release of substance that potentially cause adverse environmental effects (e.g. fertilisation or ecotoxicity). At the moment an experimental link is missing between mono-factorial standardised test systems and non standardised complex incubation experiments such as mesocosms which are closer to environmental conditions. Multi-factorial batch experiments may have the potential to close the gap. To verify this, batch experiments with copper slag were performed which is used as armour stones in hydraulic engineering. Design of experiments (DoE) was applied to evaluate the impact of pH, ionic strength, temperature and sediment content on the release of As, Cu, Mo, Ni, Pb, Sb and Zn. The study shows that release and sediment-eluent partitioning of metal(loid)s are impacted by interactions between the studied factors. Under the prevalent test conditions sediment acts as a sink enhancing most strongly the release of elements from the material. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Oxygen effect on the work function of electropositive metal films adsorbed on 4d and 5d-transition metals

    International Nuclear Information System (INIS)

    Kultashev, O.K.; Makarov, A.P.; Rozhkov, S.E.

    1976-01-01

    The thermionic emission method was used to study the effect of oxygen upon the work function of films of electropositive metals, Sc, Y, La and Ba on some monocrystal and polycrystalline specimens of 4d- and 5d-transition metals of groups 4-8 of the Periodic system. It was revealed that when the supports were polycrystalline and monocrystalline specimens of transition metals of Group 5 (niobium and tantalum), the work function phi of films of electropositive adsorbates dropped substantially as compared, e.g., to the phi values on the same faces of tungsten. When the concentration of the electropositive adsorbate exceeds the optimum value (in the absence of oxygen), oxygen exerts an appreciably activating action upon the work function phi of films of electropositive adsorbates on transition metals of the Groups 7 and 8. The activating action of oxygen is assumed to be due to a possibility of formation of surface interstitial structures

  16. Atomic structure of non-stoichiometric transition metal carbides

    International Nuclear Information System (INIS)

    Moisy-Maurice, Virginie.

    1981-10-01

    Different kinds of experimental studies of the atomic arrangement in non-stoichiometric transition metal carbides are proposed: the ordering of carbon vacancies and the atomic static displacements are the main subjects studied. Powder neutron diffraction on TiCsub(1-x) allowed us to determine the order-disorder transition critical temperature -Tsub(c) approximately 770 0 C- in the TiCsub(0.52-0.67) range, and to analyze at 300 K the crystal structure of long-range ordered samples. A neutron diffuse scattering quantitative study at 300 K of short-range order in TiCsub(0.76), TiCsub(0.79) and NbCsub(0.73) single crystals is presented: as in Ti 2 Csub(1+x) and Nb 6 C 5 superstructures, vacancies avoid to be on each side of a metal atom. Besides, the mean-square carbon atom displacements from their sites are small, whereas metal atoms move radially about 0.03 A away from vacancies. These results are in qualitative agreement with EXAFS measurements at titanium-K edge of TiCsub(1-x). An interpretation of ordering in term of short-range interaction pair potentials between vacancies is proposed [fr

  17. Electrochromism in transition metal oxides

    International Nuclear Information System (INIS)

    Estrada, W.

    1993-01-01

    Electrochromism is discussed for transition metal oxides. Particularly tungsten oxide and nickel oxide are reviewed, in order to put forth the different aspects of the field. Since this phenomena has been reviewed by several authors, it is not tried to be comprehensive but rather pedagogical. The basic requirements for a material -in both non-emissive displays and energy efficiency applications- to be electrochromic, a general view of electrochromic mechanism, anodic and cathodic electrochromic materials, and current problems for a electrochromic theory are presented. (author) 45 refs., 8 figs

  18. Agroecological Responses of Heavy Metal Pollution with Special Emphasis on Soil Health and Plant Performances

    Directory of Open Access Journals (Sweden)

    Vaibhav Srivastava

    2017-10-01

    Full Text Available With modern day urbanization and industrialization, heavy metal (HM contamination has become a prime concern for today's society. The impacts of metal contamination on agriculture range from the agricultural soil to the produce in our food basket. The heavy metals (HMs and metalloids, including Cr, Mn, Co, Ni, Cu, Zn, Cd, Sn, Hg, Pb, among others, can result in significant toxic impacts. The intensification of agricultural land use and changes in farming practices along with technological advancement have led to heavy metal pollution in soil. Metals/metalloids concentrations in the soil are increasing at alarming rate and affect plant growth, food safety, and soil microflora. The biological and geological reorganization of heavy metal depends chiefly on green plants and their metabolism. Metal toxicity has direct effects to flora that forms an integral component of ecosystems. Altered biochemical, physiological, and metabolic processes are found in plants growing in regions of high metal pollution. However, metals like Cu, Mn, Co, Zn, and Cr are required in trace amounts by plants for their metabolic activities. The present review aims to catalog major published works related to heavy metal contamination in modern day agriculture, and draw a possible road map toward future research in this domain.

  19. Phase coexistence in the metal-insulator transition of a VO2 thin film

    International Nuclear Information System (INIS)

    Chang, Y.J.; Koo, C.H.; Yang, J.S.; Kim, Y.S.; Kim, D.H.; Lee, J.S.; Noh, T.W.; Kim, Hyun-Tak; Chae, B.G.

    2005-01-01

    Vanadium dioxide (VO 2 ) shows a metal-insulator transition (MIT) near room temperature, accompanied by an abrupt resistivity change. Since the MIT of VO 2 is known to be a first order phase transition, it is valuable to check metallic and insulating phase segregation during the MIT process. We deposited (100)-oriented epitaxial VO 2 thin films on R-cut sapphire substrates. From the scanning tunneling spectroscopy (STS) spectra, we could distinguish metallic and insulating regions by probing the band gap. Optical spectroscopic analysis also supported the view that the MIT in VO 2 occurs through metal and insulator phase coexistence

  20. Preliminary evaluation of heavy metal contamination in the Zarrin-Gol River sediments, Iran.

    Science.gov (United States)

    Malvandi, Hassan

    2017-04-15

    The major objectives of the study were to test the hypothesis of the Zarrin-Gol River as a reference site for ecotoxicological studies and to assess the contamination degree of heavy metals and metalloids in the river using four contamination indices. For these purposes, eleven heavy metal and metalloid concentrations were analyzed. The average concentrations (mgkg -1 ) in the sediments were: 37.67 (chromium) 286.28 (manganese), 13,751.04 (iron), 8.79 (cobalt), 12.39 (nickel), 32.68 (zinc), 21.91 (arsenic), 40.59 (selenium), 2923.86 (aluminum), ND (silver) and 785.96 (magnesium). Contamination factor, enrichment factor, pollution load index, and geoaccumulation index were calculated to evaluate the contamination degree and influence of human activities on heavy metal levels. The contamination indices of the sediment samples showed that arsenic and selenium were the highest pollutants. The results indicated that the Zarrin-Gol River could not be used as a reference site at least for arsenic and selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Mechanical and electronic properties of Janus monolayer transition metal dichalcogenides

    Science.gov (United States)

    Shi, Wenwu; Wang, Zhiguo

    2018-05-01

    The mechanical and electronic properties of Janus monolayer transition metal dichalcogenides MXY (M  =  Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; X/Y  =  S, Se, Te) were investigated using density functional theory. Results show that breaking the out-of-plane structural symmetry can be used to tune the electronic and mechanical behavior of monolayer transition metal dichalcogenides. The band gaps of monolayer WXY and MoXY are in the ranges of 0.16–1.91 and 0.94–1.69 eV, respectively. A semiconductor to metallic phase transition occurred in Janus monolayer MXY (M  =  Ti, Zr and Hf). The monolayers MXY (M  =  V, Nb, Ta and Cr) show metallic characteristics, which show no dependence on the structural symmetry breaking. The mechanical properties of MXY depended on the composition. Monolayer MXY (M  =  Mo, Ti, Zr, Hf and W) showed brittle characteristic, whereas monolayer CrXY and VXY are with ductile characteristic. The in-plane stiffness of pristine and Janus monolayer MXY are in the range between 22 and 158 N m‑1. The tunable electronic and mechanical properties of these 2D materials would advance the development of ultra-sensitive detectors, nanogenerators, low-power electronics, and energy harvesting and electromechanical systems.

  2. The electronic and optical properties of germanium tellurite glasses containing various transition metal oxides

    International Nuclear Information System (INIS)

    Khan, M.N.

    1988-01-01

    Various transition metal oxides, such as TiO 2 , V 2 O 5 , NiO, CuO, and ZnO are added to germanium-tellurite glass and measurements are reported of the electrical conductivity, density, optical absorption, infra-red absorption spectra, and electron spin resonance. It is found that the d.c. conductivity of glasses containing the same amount of V 2 O 5 is higher than that of germanium tellurite glasses containing a similar amount of other transition metal oxides, and is due to hopping between localized states. The optical absorption measurements show that the fundamental absorption edge is a function of glass composition and the optical absorption is due to forbidden indirect transitions. From the infra-red absorption spectra, it is found that the addition of transition metal oxides does not introduce any new absorption band in the infra-red spectrum of germanium tellurite glasses. A small shift of existing absorptions toward higher wave number is observed. The ESR measurements revealed that some transition metal ions are diamagnetic while others are paramagnetic in the glass network. (author)

  3. Uniaxial pressure-induced half-metallic ferromagnetic phase transition in LaMnO3

    Science.gov (United States)

    Rivero, Pablo; Meunier, Vincent; Shelton, William

    2016-03-01

    We use first-principles theory to predict that the application of uniaxial compressive strain leads to a transition from an antiferromagnetic insulator to a ferromagnetic half-metal phase in LaMnO3. We identify the Q2 Jahn-Teller mode as the primary mechanism that drives the transition, indicating that this mode can be used to tune the lattice, charge, and spin coupling. Applying ≃6 GPa of uniaxial pressure along the [010] direction activates the transition to a half-metallic pseudocubic state. The half-metallicity opens the possibility of producing colossal magnetoresistance in the stoichiometric LaMnO3 compound at significantly lower pressure compared to recently observed investigations using hydrostatic pressure.

  4. Individual and cumulative effects of agriculture, forestry and metal mining activities on the metal and phosphorus content of fluvial fine-grained sediment; Quesnel River Basin, British Columbia, Canada.

    Science.gov (United States)

    Smith, Tyler B; Owens, Philip N

    2014-10-15

    The impact of agriculture, forestry and metal mining on the quality of fine-grained sediment (sediment were collected monthly during the snow-free season in 2008 using time-integrated samplers at replicate sites representative of agriculture, forestry and mining activities in the basin (i.e. "impacted" sites). Samples were also collected from replicate reference sites and also from the main stem of the Quesnel River at the downstream confluence with the Fraser River. Generally, metal(loid) and phosphorus (P) concentrations for "impacted" sites were greater than for reference sites. Furthermore, concentrations of copper (forestry and mining sites), manganese (agriculture and forestry sites) and selenium (agriculture, forestry and mining sites) exceeded upper sediment quality guideline (SQG) thresholds. These results suggest that agriculture, forestry and metal mining activities are having an influence on the concentrations of sediment-associated metal(loid)s and P in the Quesnel basin. Metal(loid) and P concentrations of sediment collected from the downstream site were not significantly greater than values for the reference sites, and were typically lower than the values for the impacted sites. This suggests that the cumulative effects of agriculture, forestry and mining activities in the QRB are presently not having a measureable effect at the river basin-scale. The lack of a cumulative effect at the basin-scale is thought to reflect: (i) the relatively recent occurrence of land use disturbances in this basin; (ii) the dominance of sediment contributions from natural forest and agriculture; and (iii) the potential for storage of contaminants on floodplains and other storage elements between the locations of disturbance activities and the downstream sampling site, which may be attenuating the disturbance signal. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effect of transition metal ions on the conductivity and stability of stabilized zirconia

    DEFF Research Database (Denmark)

    Lybye, D.; Mogensen, Mogens Bjerg

    2007-01-01

    the effect of co-doping with smaller transition metal ions such as Ti-, Fe- and Mn-ions. Many of the ionic radii of the transition metal ions are too small compared to the host lattice ionic radius of zirconium. Here we explore the effect of a) the small ionic radii compared to the large ionic radii...

  6. Semiconductor-Metal transition in a quantum well

    International Nuclear Information System (INIS)

    Nithiananthi, P.; Jayakumar, K.

    2007-01-01

    We demonstrate semiconductor-metal transition through diamagnetic susceptibility of a donor in a GaAs/Al x Ga 1- x As quantum well for both infinite and finite barrier models. We have also considered the non-parabolicity of the conduction band in our calculation. Our results agree with the earlier theoretical result and also with the recent experimental result

  7. Bats as bioindicators of heavy metal pollution: history and prospect

    Czech Academy of Sciences Publication Activity Database

    Zukal, Jan; Pikula, J.; Banďouchová, H.

    2015-01-01

    Roč. 80, č. 3 (2015), s. 220-227 ISSN 1616-5047 R&D Projects: GA ČR(CZ) GAP506/12/1064 Institutional support: RVO:68081766 Keywords : Bioaccumulation * Chiroptera * Heavy metals * Metalloids * Review Subject RIV: EG - Zoology Impact factor: 1.595, year: 2015

  8. Electronic Structure Evolution across the Peierls Metal-Insulator Transition in a Correlated Ferromagnet

    Directory of Open Access Journals (Sweden)

    P. A. Bhobe

    2015-10-01

    Full Text Available Transition metal compounds often undergo spin-charge-orbital ordering due to strong electron-electron correlations. In contrast, low-dimensional materials can exhibit a Peierls transition arising from low-energy electron-phonon-coupling-induced structural instabilities. We study the electronic structure of the tunnel framework compound K_{2}Cr_{8}O_{16}, which exhibits a temperature-dependent (T-dependent paramagnetic-to-ferromagnetic-metal transition at T_{C}=180  K and transforms into a ferromagnetic insulator below T_{MI}=95  K. We observe clear T-dependent dynamic valence (charge fluctuations from above T_{C} to T_{MI}, which effectively get pinned to an average nominal valence of Cr^{+3.75} (Cr^{4+}∶Cr^{3+} states in a 3∶1 ratio in the ferromagnetic-insulating phase. High-resolution laser photoemission shows a T-dependent BCS-type energy gap, with 2G(0∼3.5(k_{B}T_{MI}∼35  meV. First-principles band-structure calculations, using the experimentally estimated on-site Coulomb energy of U∼4  eV, establish the necessity of strong correlations and finite structural distortions for driving the metal-insulator transition. In spite of the strong correlations, the nonintegral occupancy (2.25 d-electrons/Cr and the half-metallic ferromagnetism in the t_{2g} up-spin band favor a low-energy Peierls metal-insulator transition.

  9. Thermal properties of zirconium diboride -- transition metal boride solid solutions

    Science.gov (United States)

    McClane, Devon Lee

    This research focuses on the thermal properties of zirconium diboride (ZrB2) based ceramics. The overall goal was to improve the understanding of how different transition metal (TM) additives influence thermal transport in ZrB2. To achieve this, ZrB2 with 0.5 wt% carbon, and 3 mol% of individual transition metal borides, was densified by hot-press sintering. The transition metals that were investigated were: Y, Ti, Hf, V, Nb, Ta, Cr, Mo, W, and Re. The room temperature thermal diffusivities of the compositions ranged from 0.331 cm2/s for nominally pure ZrB2 to 0.105 cm2/s for (Zr,Cr)B2 and converged around 0.155cm2/s at higher temperatures for all compositions. Thermal conductivities were calculated from the diffusivities, using temperature-dependent values for density and heat capacity. The electron contribution to thermal conductivity was calculated from measured electrical resistivity according to the Wiedemann-Franz law. The phonon contribution to thermal conductivity was calculated by subtracting the electron contribution from the total thermal conductivity. Rietveld refinement of x-ray diffraction data was used to determine the lattice parameters of the compositions. The decrease in thermal conductivity for individual additives correlated directly to the metallic radius of the additive. Additional strain appeared to exist for additives when the stable TM boride for that metal had different crystal symmetries than ZrB2. This research provided insight into how additives and impurities affect thermal transport in ZrB2. The research potentially offers a basis for future modeling of thermal conductivity in ultra-high temperature ceramics based on the correlation between metallic radius and the decrease in thermal conductivity.

  10. Thermophysical Property Measurements of Silicon-Transition Metal Alloys

    Science.gov (United States)

    Banish, R. Michael; Erwin, William R.; Sansoucie, Michael P.; Lee, Jonghyun; Gave, Matthew A.

    2014-01-01

    Metals and metallic alloys often have high melting temperatures and highly reactive liquids. Processing reactive liquids in containers can result in significant contamination and limited undercooling. This is particularly true for molten silicon and it alloys. Silicon is commonly termed "the universal solvent". The viscosity, surface tension, and density of several silicon-transition metal alloys were determined using the Electrostatic Levitator system at the Marshall Space Flight Center. The temperature dependence of the viscosity followed an Arrhenius dependence, and the surface tension followed a linear temperature dependence. The density of the melts, including the undercooled region, showed a linear behavior as well. Viscosity and surface tension values were obtain for several of the alloys in the undercooled region.

  11. The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: implication for chemical stabilization of metals and metalloids.

    Science.gov (United States)

    Ettler, Vojtěch; Tomášová, Zdeňka; Komárek, Michael; Mihaljevič, Martin; Šebek, Ondřej; Michálková, Zuzana

    2015-04-09

    An amorphous manganese oxide (AMO) and a Pb smelter-polluted agricultural soil amended with the AMO and incubated for 2 and 6 months were subjected to a pH-static leaching procedure (pH 3-8) to verify the chemical stabilization effect on metals and metalloids. The AMO stability in pure water was pH-dependent with the highest Mn release at pH 3 (47% dissolved) and the lowest at pH 8 (0.14% dissolved). Secondary rhodochrosite (MnCO3) was formed at the AMO surfaces at pH>5. The AMO dissolved significantly less after 6 months of incubation. Sequential extraction analysis indicated that "labile" fraction of As, Pb and Sb in soil significantly decreased after AMO amendment. The pH-static experiments indicated that no effect on leaching was observed for Cd and Zn after AMO treatments, whereas the leaching of As, Cu, Pb and Sb decreased down to 20%, 35%, 7% and 11% of the control, respectively. The remediation efficiency was more pronounced under acidic conditions and the time of incubation generally led to increased retention of the targeted contaminants. The AMO was found to be a promising agent for the chemical stabilization of polluted soils. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. XPS and XAES measurements on trapped rare gases in transition metals

    International Nuclear Information System (INIS)

    Baba, Y.; Yamamoto, H.; Sasaki, T.A.

    1992-01-01

    Electronic structures of rare gases implanted in various transition metals have been investigated by means of an X-ray photoelectron spectroscopy (XPS) and X-ray-induced Auger electron spectroscopy (XAES). The Auger-parameter method is applied to the evaluation of electronic relaxation energy of rare gas atoms due to the surrounding metal potential. The extra-atomic relaxation energy of four kinds of rare gases (Ne, Ar, Kr, Xe) in the same metal matrix (Ti) increases with the atomic mass of the rare gases. On the other hand, the extra-atomic relaxation energy of the same rare gas (Xe) in different metal matrices ranges from 3.0 eV (in Mo). These values increase with the number of d-electrons in the metals. This tendency and the absolute values of the relaxation energies are in good agreement with those calculated for 3d transition metals referenced to their gas-phase values. Based on these results, it is concluded that the energetically implanted rare gases are trapped at the substitution site in the metal lattice as an isolated atom, and the trapped atoms feel the surrounding metal potential. It is also made clear that the potential affecting the implanted atom is d-like, and the relaxation energy of the implanted rare gas during the photoemission process is almost equal to those of the metal itself. (orig.)

  13. The electronic structure and metal-insulator transitions in vanadium oxides

    International Nuclear Information System (INIS)

    Mossanek, Rodrigo Jose Ochekoski

    2010-01-01

    The electronic structure and metal-insulator transitions in vanadium oxides (SrVO_3, CaVO_3, LaVO_3 and YVO_3) are studied here. The purpose is to show a new interpretation to the spectra which is coherent with the changes across the metal-insulator transition. The main experimental techniques are the X-ray photoemission (PES) and X-ray absorption (XAS) spectroscopies. The spectra are interpreted with cluster model, band structure and atomic multiplet calculations. The presence of charge-transfer satellites in the core-level PES spectra showed that these vanadium oxides cannot be classified in the Mott-Hubbard regime. Further, the valence band and core-level spectra presented a similar behavior across the metal insulator transition. In fact, the structures in the spectra and their changes are determined by the different screening channels present in the metallic or insulating phases. The calculated spectral weight showed that the coherent fluctuations dominate the spectra at the Fermi level and give the metallic character to the SrVO_3 and CaVO_3 compounds. The vanishing of this charge fluctuation and the replacement by the Mott-Hubbard screening in the LaVO_3 and YVO_3 systems is ultimately responsible for the opening of a band gap and the insulating character. Further, the correlation effects are, indeed, important to the occupied electronic structure (coherent and incoherent peaks). On the other hand, the unoccupied electronic structure is dominated by exchange and crystal field effects (t2g and eg sub-bands of majority and minority spins). The optical conductivity spectrum was obtained by convoluting the removal and addition states. It showed that the oxygen states, as well as the crystal field and exchange effects are necessary to correctly compare and interpret the experimental results. Further, a correlation at the charge-transfer region of the core-level and valence band optical spectra was observed, which could be extended to other transition metal oxides

  14. A review on transition-metal mediated synthesis of quinolines

    Indian Academy of Sciences (India)

    Rashmi Sharma

    2018-06-14

    Jun 14, 2018 ... Special Section on Transition Metal Catalyzed Synthesis of Medicinally Relevant Molecules. A review on ...... iron(III) chloride and TEMPO oxoammonium salt as an .... propyl-3-ethylquinoline (209) in presence of platinum.

  15. Metal-insulator phase transition in a VO2 thin film observed with terahertz spectroscopy

    DEFF Research Database (Denmark)

    Jepsen, Peter Uhd; Fischer, Bernd M.; Thoman, Andreas

    2006-01-01

    We investigate the dielectric properties of a thin VO2 film in the terahertz frequency range in the vicinity of the semiconductor-metal phase transition. Phase-sensitive broadband spectroscopy in the frequency region below the phonon bands of VO2 gives insight into the conductive properties...... of the film during the phase transition. We compare our experimental data with models proposed for the evolution of the phase transition. The experimental data show that the phase transition occurs via the gradual growth of metallic domains in the film, and that the dielectric properties of the film...

  16. Assessing Metal Exposures in a Community near a Cement Plant in the Northeast U.S.

    Directory of Open Access Journals (Sweden)

    Zhao Dong

    2015-01-01

    Full Text Available Cement production is a major source of metals and metalloids in the environment, while exposures to metals and metalloids may impact human health in the surrounding communities. We recruited 185 participants living in the vicinity of a cement plant in the northeast U.S., and measured the levels of aluminum (Al, arsenic (As, cadmium (Cd, lead (Pb, mercury (Hg, and selenium (Se in blood and Hg in hair samples from them. A questionnaire was used to assess potential sources of Hg exposure. Multivariate regressions and spatial analyses were performed to evaluate the relative importance of different routes of exposures. The metal concentrations in blood or hair samples of our study participants were comparable to the U.S. general or regional population. Smoking contributed significantly to Cd and Pb exposures, and seafood consumption contributed significantly to Hg and As exposures, while variables related to the cement plant were not significantly associated with metal concentrations. Our results suggest that our study population was not at elevated health risk due to metal exposures, and that the contribution of the cement plant to metal exposures in the surrounding community was minimal.

  17. Biomass transition metal hydrogen-evolution electrocatalysts and electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Fu; Iyer, Shweta; Iyer, Shilpa; Sasaki, Kotaro; Muckerman, James T.; Fujita, Etsuko

    2017-02-28

    A catalytic composition from earth-abundant transition metal salts and biomass is disclosed. A calcined catalytic composition formed from soybean powder and ammonium molybdate is specifically exemplified herein. Methods for making the catalytic composition are disclosed as are electrodes for hydrogen evolution reactions comprising the catalytic composition.

  18. Transition metal borides. Synthesis, characterization and superconducting properties

    International Nuclear Information System (INIS)

    Kayhan, Mehmet

    2013-01-01

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M 2 B, MB, M 3 B 2 , MB 2 , and M 2 B 4 . The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W 2 B 4 to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W 2 B 4 was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB 2 (T C = 3.5 K), β-MoB (T C = 2.4 K), β-WB (T C = 2.0 K), α-WB (T C = 4.3 K), W 2 B 4 (T C = 5.4 K), Re 7 B 3 (T C = 2.4 K). A relationship between the superconducting properties and the compositional and structural features was discussed for metal diborides. Also it was

  19. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    International Nuclear Information System (INIS)

    Borgatti, F.; Torelli, P.; Panaccione, G.

    2016-01-01

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  20. Hard X-ray PhotoElectron Spectroscopy of transition metal oxides: Bulk compounds and device-ready metal-oxide interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Borgatti, F., E-mail: francesco.borgatti@cnr.it [Istituto per lo Studio dei Materiali Nanostrutturati (ISMN), Consiglio Nazionale delle Ricerche (CNR), via P. Gobetti 101, Bologna I-40129 (Italy); Torelli, P.; Panaccione, G. [Istituto Officina dei Materiali (IOM)-CNR, Laboratorio TASC, Area Science Park, Trieste I-34149 (Italy)

    2016-04-15

    Highlights: • Hard X-ray PhotoElectron Spectroscopy (HAXPES) applied to buried interfaces of systems involving Transition Metal Oxides. • Enhanced contribution of the s states at high kinetic energies both for valence and core level spectra. • Sensitivity to chemical changes promoted by electric field across metal-oxide interfaces in resistive switching devices. - Abstract: Photoelectron spectroscopy is one of the most powerful tool to unravel the electronic structure of strongly correlated materials also thanks to the extremely large dynamic range in energy, coupled to high energy resolution that this form of spectroscopy covers. The kinetic energy range typically used for photoelectron experiments corresponds often to a strong surface sensitivity, and this turns out to be a disadvantage for the study of transition metal oxides, systems where structural and electronic reconstruction, different oxidation state, and electronic correlation may significantly vary at the surface. We report here selected Hard X-ray PhotoElectron Spectroscopy (HAXPES) results from transition metal oxides, and from buried interfaces, where we highlight some of the important features that such bulk sensitive technique brings in the analysis of electronic properties of the solids.

  1. He–He and He–metal interactions in transition metals from first-principles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengbo, E-mail: zhangpb@dlmu.edu.cn [Department of Physics, Dalian Maritime University, Dalian 116026 (China); Zou, Tingting [Information Science and Technology College, Dalian Maritime University, Dalian 116026 (China); Zhao, Jijun, E-mail: zhaojj@dlut.edu.cn [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024 (China)

    2015-12-15

    We investigated the atomistic mechanism of He–He and He–metal interactions in bcc transition metals (V, Nb, Ta, Cr, Mo, W, and Fe) using first-principles methods. We calculated formation energy and binding energy of He–He pair as function of distance within the host lattices. The strengths of He–He attraction in Cr, Mo, W, and Fe (0.37–1.11 eV) are significantly stronger than those in V, Nb, and Ta (0.06–0.17 eV). Such strong attractions mean that He atoms would spontaneously aggregate inside perfect Cr, Mo, W, and Fe host lattices in absence of defects like vacancies. The most stable configuration of He–He pair is <100> dumbbell in groups VB metals, whereas it adopts close <110> configuration in Cr, Mo, and Fe, and close <111> configuration in W. Overall speaking, the He–He equilibrium distances of 1.51–1.55 Å in the group VIB metals are shorter than 1.65–1.70 Å in the group VB metals. Moreover, the presence of interstitial He significantly facilitates vacancy formation and this effect is more pronounced in the group VIB metals. The present calculations help understand the He-metal/He–He interaction mechanism and make a prediction that He is easier to form He cluster and bubbles in the groups VIB metals and Fe.

  2. Kinetics of self-interstitial migration in bcc and fcc transition metals

    Science.gov (United States)

    Bukkuru, S.; Bhardwaj, U.; Srinivasa Rao, K.; Rao, A. D. P.; Warrier, M.; Valsakumar, M. C.

    2018-03-01

    Radiation damage is a multi-scale phenomenon. A thorough understanding of diffusivities and the migration energies of defects is a pre-requisite to quantify the after-effects of irradiation. We investigate the thermally activated mobility of self-interstitial atom (SIA) in bcc transition metals Fe, Mo, Nb and fcc transition metals Ag, Cu, Ni, Pt using molecular dynamics (MD) simulations. The self-interstitial diffusion involves various mechanisms such as interstitialcy, dumbbell or crowdion mechanisms. Max-Space Clustering (MSC) method has been employed to identify the interstitial and its configuration over a wide range of temperature. The self-interstitial diffusion is Arrhenius like, however, there is a slight deviation at high temperatures. The migration energies, pre-exponential factors of diffusion and jump-correlation factors, obtained from these simulations can be used as inputs to Monte Carlo simulations of defect transport. The jump-correlation factor shows the degree of preference of rectilinear or rotational jumps. We obtain the average jump-correlation factor of 1.4 for bcc metals and 0.44 for fcc metals. It indicates that rectilinear jumps are preferred in bcc metals and rotational jumps are preferred in fcc metals.

  3. Heterostructures of transition metal dichalcogenides

    KAUST Repository

    Amin, Bin

    2015-08-24

    The structural, electronic, optical, and photocatalytic properties of out-of-plane and in-plane heterostructures of transition metal dichalcogenides are investigated by (hybrid) first principles calculations. The out-of-plane heterostructures are found to be indirect band gap semiconductors with type-II band alignment. Direct band gaps can be achieved by moderate tensile strain in specific cases. The excitonic peaks show blueshifts as compared to the parent monolayer systems, whereas redshifts occur when the chalcogen atoms are exchanged along the series S-Se-Te. Strong absorption from infrared to visible light as well as excellent photocatalytic properties can be achieved.

  4. Long Spin-Relaxation Times in a Transition-Metal Atom in Direct Contact to a Metal Substrate.

    Science.gov (United States)

    Hermenau, Jan; Ternes, Markus; Steinbrecher, Manuel; Wiesendanger, Roland; Wiebe, Jens

    2018-03-14

    Long spin-relaxation times are a prerequisite for the use of spins in data storage or nanospintronics technologies. An atomic-scale solid-state realization of such a system is the spin of a transition-metal atom adsorbed on a suitable substrate. For the case of a metallic substrate, which enables the direct addressing of the spin by conduction electrons, the experimentally measured lifetimes reported to date are on the order of only hundreds of femtoseconds. Here, we show that the spin states of iron atoms adsorbed directly on a conductive platinum substrate have a surprisingly long spin-relaxation time in the nanosecond regime, which is comparable to that of a transition metal atom decoupled from the substrate electrons by a thin decoupling layer. The combination of long spin-relaxation times and strong coupling to conduction electrons implies the possibility to use flexible coupling schemes to process the spin information.

  5. Transition metal oxide loaded MCM catalysts for photocatalytic ...

    Indian Academy of Sciences (India)

    Transition metal oxide (TiO2, Fe2O3, CoO) loaded MCM-41 and MCM-48 were synthesized by a two-step .... washed consecutively with water and ethanol, and cal- cined at 823 K for 5 .... conversion was observed in 1 h when the reaction was.

  6. Some transition metal complexes derived from mono- and di-ethynyl perfluorobenzenes

    NARCIS (Netherlands)

    Armitt, D.J.; Bruce, M.I.; Gaudio, M.; Zaitseva, N.N.; Skelton, B.W.; White, A.H.; Le Guennic, B.; Halet, J.-F.; Fox, M.A.; Roberts, R.L.; Hartl, F.; Low, P.J.

    2008-01-01

    Transition metal alkynyl complexes containing perfluoroaryl groups have been prepared directly from trimethylsilyl-protected mono- and di-ethynyl perfluoroarenes by simple desilylation/metallation reaction sequences. Reactions between Me3SiC CC6F5 and RuCl(dppe)Cp'[Cp' = Cp, Cp*] in the presence of

  7. First-principles studies on 3d transition metal atom adsorbed twin graphene

    Science.gov (United States)

    Li, Lele; Zhang, Hong; Cheng, Xinlu; Miyamoto, Yoshiyuki

    2018-05-01

    Twin graphene is a new two-dimensional semiconducting carbon allotrope which is proposed recently. The structural, magnetic and electronic properties are investigated for 3d transition metal (TM) atom adsorbed twin graphene by means of GGA+U calculations. The results show most of single 3d transition metal atom except Zn can make twin graphene magnetization. The adsorption of single TM atom can also make the twin graphene systems turn to half metal (V adsorption), half-semiconductor (Fe adsorption) or metal (Sc, Cr, Mn, Co and Cu adsorption). The semiconducting nature still exists for Ti, Ni and Zn adsorption. All the 3d TM adatoms belong to n-type doping for transferring charge to the neighboring C atoms and have strong covalent bond with these C atoms. The influence of Hubbard U value on half-metallic V adsorbed system is also considered. As the U increases, the system can gradually transform from metal to half metal and metal. The effect of the coverage is investigated for two TM atoms (Sc-Fe) adsorption, too. We can know TM atoms adsorbed twin graphene have potentials to be spintronic device and nanomagnets from the results.

  8. Magnetic phase transition induced by electrostatic gating in two-dimensional square metal-organic frameworks

    Science.gov (United States)

    Wang, Yun-Peng; Li, Xiang-Guo; Liu, Shuang-Long; Fry, James N.; Cheng, Hai-Ping

    2018-03-01

    We investigate theoretically magnetism and magnetic phase transitions induced by electrostatic gating of two-dimensional square metal-organic framework compounds. We find that electrostatic gating can induce phase transitions between homogeneous ferromagnetic and various spin-textured antiferromagnetic states. Electronic structure and Wannier function analysis can reveal hybridizations between transition-metal d orbitals and conjugated π orbitals in the organic framework. Mn-containing compounds exhibit a strong d -π hybridization that leads to partially occupied spin-minority bands, in contrast to compounds containing transition-metal ions other than Mn, for which electronic structure around the Fermi energy is only slightly spin split due to weak d -π hybridization and the magnetic interaction is of the Ruderman-Kittel-Kasuya-Yosida type. We use a ferromagnetic Kondo lattice model to understand the phase transition in Mn-containing compounds in terms of carrier density and illuminate the complexity and the potential to control two-dimensional magnetization.

  9. Recent advances in transition-metal-catalyzed intermolecular carbomagnesiation and carbozincation

    Directory of Open Access Journals (Sweden)

    Kei Murakami

    2013-02-01

    Full Text Available Carbomagnesiation and carbozincation reactions are efficient and direct routes to prepare complex and stereodefined organomagnesium and organozinc reagents. However, carbon–carbon unsaturated bonds are generally unreactive toward organomagnesium and organozinc reagents. Thus, transition metals were employed to accomplish the carbometalation involving wide varieties of substrates and reagents. Recent advances of transition-metal-catalyzed carbomagnesiation and carbozincation reactions are reviewed in this article. The contents are separated into five sections: carbomagnesiation and carbozincation of (1 alkynes bearing an electron-withdrawing group; (2 alkynes bearing a directing group; (3 strained cyclopropenes; (4 unactivated alkynes or alkenes; and (5 substrates that have two carbon–carbon unsaturated bonds (allenes, dienes, enynes, or diynes.

  10. Systematic prediction of high-pressure melting curves of transition metals

    International Nuclear Information System (INIS)

    Hieu, Ho Khac

    2014-01-01

    The pressure effects on melting temperatures of transition metals have been studied based on the combination of the modified Lindemann criterion with statistical moment method in quantum statistical mechanics. Numerical calculations have been performed for five transition metals including Cu, Pd, Pt, Ni, and Mn up to pressure 100 GPa. Our results are in good and reasonable agreements with available experimental data. This approach gives us a relatively simple method for qualitatively calculating high-pressure melting temperature. Moreover, it can be used to verify future experimental and theoretical works. This research proposes the potential of the combination of statistical moment method and the modified Lindemann criterion on predicting high-pressure melting of materials.

  11. Transition-metal interactions in aluminum-rich intermetallics

    International Nuclear Information System (INIS)

    Al-Lehyani, Ibrahim; Widom, Mike; Wang, Yang; Moghadam, Nassrin; Stocks, G. Malcolm; Moriarty, John A.

    2001-01-01

    The extension of the first-principles generalized pseudopotential theory (GPT) to transition-metal (TM) aluminides produces pair and many-body interactions that allow efficient calculations of total energies. In aluminum-rich systems treated at the pair-potential level, one practical limitation is a transition-metal overbinding that creates an unrealistic TM-TM attraction at short separations in the absence of balancing many-body contributions. Even with this limitation, the GPT pair potentials have been used effectively in total-energy calculations for Al-TM systems with TM atoms at separations greater than 4 Aa. An additional potential term may be added for systems with shorter TM atom separations, formally folding repulsive contributions of the three- and higher-body interactions into the pair potentials, resulting in structure-dependent TM-TM potentials. Towards this end, we have performed numerical ab initio total-energy calculations using the Vienna ab initio simulation package for an Al-Co-Ni compound in a particular quasicrystalline approximant structure. The results allow us to fit a short-ranged, many-body correction of the form a(r 0 /r) b to the GPT pair potentials for Co-Co, Co-Ni, and Ni-Ni interactions

  12. Physical properties of Pd and Al transition metals and Pd-Al binary metal alloy investigated by using molecular dynamics simulation

    International Nuclear Information System (INIS)

    Coruh, A.; Uludogan, M.; Tomak, M.; Cagin, T.

    2002-01-01

    In this study, physical properties, such as Pair Distribution Function g(r), Structure Factor S(k)''1'',''4, Diffusion Coefficient D''2''.''4, Intermediate Scattering function S(k,t)''3'',''4 and Dynamical Structure Factor S(k,w)''3'',''4 of some transition metals and metal alloys are investigated by using molecular dynamics simulation method. The simulation is specified for Pd, Al transition metals and Pd-Al binary metal alloys in the liquid form for different concentrations and at various temperatures by using Quantum Sutton-Chen (Q-SC) inter atomic potential. Intermediate scattering function and dynamical structure factor are calculated for various values of wave vector k. Results are in good agreement with published data''1'',''3'',''4

  13. Insulator-metal transition of fluid molecular hydrogen

    International Nuclear Information System (INIS)

    Ross, M.

    1996-01-01

    Dynamically compressed fluid hydrogen shows evidence for metallization at the relatively low pressure of 140 GPa (1.4 Mbar) while experiments on solid hydrogen made in a diamond-anvil cell have failed to detect any evidence for gap closure up to a pressure of 230 GPa (2.3 Mbar). Two possible mechanisms for metal- liclike resistivity are put forward. The first is that as a consequence of the large thermal disorder in the fluid (kT∼0.2 endash 0.3 eV) short-range molecular interactions lead to band tailing that extends the band edge into the gap, resulting in closure at a lower pressure than in the solid. The second mechanism argues that molecular dissociation creates H atoms that behave similar to n-type donors in a heavily doped semiconductor and undergo a nonmetal-metal Mott-type transition. copyright 1996 The American Physical Society

  14. Quantum-based Atomistic Simulation of Transition Metals

    International Nuclear Information System (INIS)

    Moriarty, J A; Benedict, L X; Glosli, J N; Hood, R Q; Orlikowski, D A; Patel, M V; Soderlind, P; Streitz, F H; Tang, M; Yang, L H

    2005-01-01

    First-principles generalized pseudopotential theory (GPT) provides a fundamental basis for transferable multi-ion interatomic potentials in d-electron transition metals within density-functional quantum mechanics. In mid-period bcc metals, where multi-ion angular forces are important to structural properties, simplified model GPT or MGPT potentials have been developed based on canonical d bands to allow analytic forms and large-scale atomistic simulations. Robust, advanced-generation MGPT potentials have now been obtained for Ta and Mo and successfully applied to a wide range of structural, thermodynamic, defect and mechanical properties at both ambient and extreme conditions of pressure and temperature. Recent algorithm improvements have also led to a more general matrix representation of MGPT beyond canonical bands allowing increased accuracy and extension to f-electron actinide metals, an order of magnitude increase in computational speed, and the current development of temperature-dependent potentials

  15. TRANSITION METAL TRANSPORT IN PLANTS AND ASSOCIATED ENDOSYMBIONTS: ARBUSCULAR MYCORRHIZAL FUNGI AND RHIZOBIA

    Directory of Open Access Journals (Sweden)

    Manuel González-Guerrero

    2016-07-01

    Full Text Available Transition metals such as iron, copper, zinc, or molybdenum, are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or deliver directly transition elements to cortical cells. Other, instead of providing metals can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant-microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia.

  16. Determination of Surface Properties of Liquid Transition Metals

    International Nuclear Information System (INIS)

    Korkmaz, S. D.

    2008-01-01

    Certain surface properties of liquid simple metals are reported. Using the expression derived by Gosh and coworkers we investigated the surface entropy of liquid transition metals namely Fe, Co and Ni. We have also computed surface tensions of the metals concerned. The pair distribution functions are calculated from the solution of Ornstein-Zernike integral equation with Rogers-Young closure using the individual version of the electron-ion potential proposed by Fioalhais and coworkers which was originally developed for solid state. The predicted values of surface tension and surface entropy are in very good agreement with available experimental data. The present study results show that the expression derived by Gosh and coworkers is very useful for the surface entropy by using Fioalhais pseudopotential and Rogers-Young closure

  17. Relationship between thermal expansion coefficient and glass transition temperature in metallic glasses

    International Nuclear Information System (INIS)

    Kato, H.; Chen, H.-S.; Inoue, A.

    2008-01-01

    The thermal expansion coefficients of 13 metallic glasses were measured using a thermo-mechanical analyser. A unique correlation was found between the linear thermal expansion coefficient and the glass transition temperature-their product is nearly constant ∼8.24 x 10 -3 . If one assumes the Debye expression for thermal activation, the total linear thermal expansion up to glass transition temperature (T g ) is reduced to 6 x 10 -3 , nearly 25% of that at the fusion of pure metals

  18. VOLATILE ORGANO-METALLOIDS IN BIO-SOLID MATERIALS: ANALYSIS BY VACUUM DISTILLATION-GC/MS

    Science.gov (United States)

    An analytical method based on vacuum distillation-gas chromatography-mass spectrometry (VD-GC-MS)was developed for determining volatile organo-metalloid contaminants in bio-solid materials. Methodperformance was evaluated for dimethylselenide (DMSe), dimethyldisel...

  19. On the valence state of Yb and Ce in transition metal intermetallic compounds

    International Nuclear Information System (INIS)

    Boer, F.R. de; Dijkman, W.H.; Mattens, W.C.M.

    1979-01-01

    In the pure state Yb is a divalent metal, similar to Ca; in alloys it can become trivalent like the majority of the rare earth metals. Using a value of 38 kJ (mol Yb) -1 for the energy difference between divalent and trivalent Yb metal and using model calculations for the heat of formation of intermetallic compounds, the authors are able to account for the existing information on the valence state of Yb in transition metal compounds. A similar analysis of compounds of Ce with transition metals shows that a model in which the 4f electron is treated as a core electron, i.e. being absent in the tetravalent modification of Ce and present as a fully localized electron in trivalent Ce, does not apply. (Auth.)

  20. Rare-earth transition-metal intermetallics: Structure-bonding-property relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, M. K. [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    The explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding property relationships. The work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn{sub 13}-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides Re2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3Zn3.6Al7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x)81

  1. Rare-Earth Transition-Metal Intermetallics: Structure-bonding-Property Relationships

    Energy Technology Data Exchange (ETDEWEB)

    Han, Mi-Kyung [Iowa State Univ., Ames, IA (United States)

    2006-01-01

    Our explorations of rare-earth, transition metal intermetallics have resulted in the synthesis and characterization, and electronic structure investigation, as well as understanding the structure-bonding-property relationships. Our work has presented the following results: (1) Understanding the relationship between compositions and properties in LaFe13-xSix system: A detailed structural and theoretical investigation provided the understanding of the role of a third element on stabilizing the structure and controlling the transformation of cubic NaZn13-type structures to the tetragonal derivative, as well as the relationship between the structures and properties. (2) Synthesis of new ternary rare-earth iron silicides RE2-xFe4Si14-y and proposed superstructure: This compound offers complex structural challenges such as fractional occupancies and their ordering in superstructure. (3) Electronic structure calculation of FeSi2: This shows that the metal-semiconductor phase transition depends on the structure. The mechanism of band gap opening is described in terms of bonding and structural distortion. This result shows that the electronic structure calculations are an essential tool for understanding the relationship between structure and chemical bonding in these compounds. (4) Synthesis of new ternary rare-earth Zinc aluminides Tb3Zn3.6Al7.4: Partially ordered structure of Tb3.6Zn13-xAl7.4 compound provides new insights into the formation, composition and structure of rare-earth transition-metal intermetallics. Electronic structure calculations attribute the observed composition to optimizing metal-metal bonding in the electronegative (Zn, Al) framework, while the specific ordering is strongly influenced by specific orbital interactions. (5) Synthesis of new structure type of Zn39(CrxAl1-x

  2. Optical properties of bcc d-transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Kirillova, M M; Nomerovannaya, L V [AN SSSR, Sverdlovsk. Inst. Fiziki Metallov

    1978-04-01

    The optical properties of a niobium monocrystal in the spectral range of h..nu..=4.66 - 0.069 eV have been studied using the polarimetry method. The obtained results have been discussed on the basis of the zone calculations of the density of electron states for Nb and other isostructural metals of the 5 and 6 groups (Y, Ta, Cr, Mo, W). The existence of an intense low energy interband absorption in niobium in the range of h..nu..<0.1 eV is shown experimentally. The influence of the gapless and low-energy interzone transitions on the evaluations of the plasma and relaxation frequencies of conductivity electrons of d metals is discussed.

  3. Magnetic properties of zigzag (0,9 GaAs nanotube doped with 3d transition metals

    Directory of Open Access Journals (Sweden)

    R Fathi

    2016-06-01

    Full Text Available of 3d transition metals (Sc, Ti, Cr, Mn , Fe, Co, Ni in both far and close situations were studied based on spin polarised density functional theory using the generalized gradient approximation (LDA with SIESTA code. The electronic structures show that zigzag (0,9 GaAs nanotubes are non-magnetic semiconductors with direct band gap. It was revealed that doping of 11.11 % Fe and Mn concentrations substituted in Ga sites in ferromagnetic phase in far situation and Cr sites in ferromagnetic phase in near situation introduces half metallic behavior with %100 spin polarization. The unique structure of spin polarised energy levels is primarily attributed to strong hybridization of 3d transition metal and its nearest-neighbor As-4p orbitals. The results of this study can be useful for empirical studies on diluted magnetic semiconductors (DMSs and systemic investigation in 3d transitional metals. We suggest that GaAs nanotubes doped by transition metals would have a potential application as a spin polarised electron source for spintronic devices in the future.

  4. Studies of hyperfine magnetic fields in transition metals by radioactive ion implantation

    International Nuclear Information System (INIS)

    Kawase, Yoichi; Uehara, Shin-ichi; Nasu, Saburo; Ni Xinbo.

    1994-01-01

    In order to investigate hyperfine magnetic fields in transition metals by a time-differential perturbed angular correlation (TDPAC) technique, radioactive probes of 140 Cs obtained by KUR-ISOL have been implanted on transition metals of Fe, Ni and Co. Lamor precessions of 140 Ce used as a probe nucleus have been observed clearly and the hyperfine fields have been determined precisely corresponding to implanted sites in host metal. The irradiation effects caused by implantation have been examined by annealing the irradiated specimen at about 723 K. Some of the Lamor precessions have disappeared by the annealing. Discussions have been made on the occupied sites after implantation and the recovery process of induced damages by annealing. (author)

  5. Standard entropy for borides of non-transition metals, rare-earth metals and actinides

    International Nuclear Information System (INIS)

    Borovikova, M.S.

    1986-01-01

    Using as initial data the most reliable values of standard entropy for 10 compounds, the entropies for 40 compounds of non-transition metals, rare-earth metals and actinides have been evaluated by the method of comparative calculation. Taking into account the features of boride structures, two methods, i.e. additive and proportional, have been selected for the entropy calculations. For the range of borides the entropies were calculated from the linear relation of the latter to the number of boron atoms in the boride. For borides of rare-earth metals allowance has been made for magnetic contributions in conformity with the multiplicity of the corresponding ions. Insignificant differences in the electronic contributions to the entropy for borides and metals have been neglected. For dodecaborides only the additive method has been used. This is specified by the most rigid network that provides the same contribution to compound entropy. (orig.)

  6. Transition-Metal-Controlled Inorganic Ligand-Supported Non-Precious Metal Catalysts for the Aerobic Oxidation of Amines to Imines.

    Science.gov (United States)

    Yu, Han; Zhai, Yongyan; Dai, Guoyong; Ru, Shi; Han, Sheng; Wei, Yongge

    2017-10-09

    Most state-of-art transition-metal catalysts usually require organic ligands, which are essential for controlling the reactivity and selectivity of reactions catalyzed by transition metals. However, organic ligands often suffer from severe problems including cost, toxicity, air/moisture sensitivity, and being commercially unavailable. Herein, we show a simple, mild, and efficient aerobic oxidation procedure of amines using inorganic ligand-supported non-precious metal catalysts 1, (NH 4 ) n [MMo 6 O 18 (OH) 6 ] (M=Cu 2+ ; Fe 3+ ; Co 3+ ; Ni 2+ ; Zn 2+ , n=3 or 4), synthesized by a simple one-step method in water at 100 °C, demonstrating that the catalytic activity and selectivity can be significantly improved by changing the central metal atom. In the presence of these catalysts, the catalytic oxidation of primary and secondary amines, as well as the coupling of alcohols and amines, can smoothly proceed to afford various imines with O 2 (1 atm) as the sole oxidant. In particular, the catalysts 1 have transition-metal ion core, and the planar arrangement of the six Mo VI centers at their highest oxidation states around the central heterometal can greatly enhance the Lewis acidity of catalytically active sites, and also enable the electrons in the center to delocalize onto the six edge-sharing MO 6 units, in the same way as ligands in traditional organometallic complexes. The versatility of this methodology maybe opens a path to catalytic oxidation through inorganic ligand-coordinated metal catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chelation in Metal Intoxication

    Directory of Open Access Journals (Sweden)

    Swaran J.S. Flora

    2010-06-01

    Full Text Available Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications.

  8. Reactivity of Dinitrogen Bound to Mid- and Late-Transition-Metal Centers

    NARCIS (Netherlands)

    Khoenkhoen, N.; de Bruin, B.; Reek, J.N.H.; Dzik, W.I.

    2015-01-01

    This review presents a comprehensive overview of the reactions of N-2 within the coordination sphere of transition metals of groups 6 to 9. Many of these metals mediate the reaction of N-2 with protons under reductive conditions, which can lead to the (catalytic) formation of ammonia or hydrazine,

  9. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review.

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-10-09

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  10. Superconductivity Series in Transition Metal Dichalcogenides by Ionic Gating

    NARCIS (Netherlands)

    Shi, Wu; Ye, Jianting; Zhang, Yijin; Suzuki, Ryuji; Yoshida, Masaro; Miyazaki, Jun; Inoue, Naoko; Saito, Yu; Iwasa, Yoshihiro

    2015-01-01

    Functionalities of two-dimensional (2D) crystals based on semiconducting transition metal dichalcogenides (TMDs) have now stemmed from simple field effect transistors (FETs) to a variety of electronic and opto-valleytronic devices, and even to superconductivity. Among them, superconductivity is the

  11. Vibrational properties of vacancy in bcc transition metals using ...

    Indian Academy of Sciences (India)

    The calculated results of the formation entropy of the vacancy compared well with other available ... for Fe, Mo and W transition metals employing a third-neighbour model. ... For the atomic electron density we have chosen a power law: f (r) = fe.

  12. Upgrading of heavy crude oil with supported and unsupported transition metals

    Energy Technology Data Exchange (ETDEWEB)

    Nares, H.R.; Schacht-Hernandez, P.; Cabrera-Reyes, M.C.; Ramirez-Garnica, M.; Cazarez-Candia, O. [Instituto Mexicano del Petroleo, Atepehuacan (Mexico)

    2006-07-01

    Heavy crude oil presents many problems such as difficulty in transportation, low processing capacity in refineries, and low mobility through the reservoir due to high viscosity which affects the index of productivity of the wells. Because of these challenges, it is necessary to enhance heavy crude oil, both aboveground and underground. The effects of several metallic oxides used to upgrade heavy crude oil properties were examined in order to increase the mobility of reservoir oil by reducing viscosity and improving the quality of the oil. This can be accomplished by reducing the asphaltene and sulfur contents and increasing the American Petroleum Institute (API) gravity using transition metal supported in alumina and unsupported from transition metals derived from either acetylacetonate or alkylhexanoate in liquid phase homogeneously mixed with heavy crude oil as well as metal transition supported in alumina. KU-H heavy crude oil from the Golf of Mexico was studied. The results were obtained by Simulated Distillation and True Boiling Point (TBP). It was concluded that the use of crude oil thermal hydrocracking allowed the API gravity to increase and considerably reduce the viscosity. As a result, the productivity index in wells was increased. However there is a high formation of coke that could damage the conductivity of the rock and then reduce the potential of oil recovery. 27 refs., 3 tabs., 5 figs.

  13. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    Energy Technology Data Exchange (ETDEWEB)

    Stollenwerk, Tobias

    2013-09-15

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  14. Ferromagnetic semiconductor-metal transition in heterostructures of electron doped europium monoxide

    International Nuclear Information System (INIS)

    Stollenwerk, Tobias

    2013-09-01

    In the present work, we develop and solve a self-consistent theory for the description of the simultaneous ferromagnetic semiconductor-metal transition in electron doped Europium monoxide. We investigate two different types of electron doping, Gadolinium impurities and Oxygen vacancies. Besides the conduction band occupation, we can identify low lying spin fluctuations on magnetic impurities as the driving force behind the doping induced enhancement of the Curie temperature. Moreover, we predict the signatures of these magnetic impurities in the spectra of scanning tunneling microscope experiments. By extending the theory to allow for inhomogeneities in one spatial direction, we are able to investigate thin films and heterostructures of Gadolinium doped Europium monoxide. Here, we are able to reproduce the experimentally observed decrease of the Curie temperature with the film thickness. This behavior is attributed to missing coupling partners of the localized 4f moments as well as to an electron depletion at the surface which leads to a reduction of the number of itinerant electrons. By investigating the influence of a metallic substrate onto the phase transition in Gadolinium doped Europium monoxide, we find that the Curie temperature can be increased up to 20%. However, as we show, the underlying mechanism of metal-interface induced charge carrier accumulation is inextricably connected to a suppression of the semiconductor-metal transition.

  15. Observing grain boundaries in CVD-grown monolayer transition metal dichalcogenides

    KAUST Repository

    Ly, Thuchue; Chiu, Ming-Hui; Li, Mingyang; Zhao, Jiong; Perello, David J.; Cichocka, Magdalena Ola; Oh, Hyemin; Chae, Sanghoon; Jeong, Hyeyun; Yao, Fei; Li, Lain-Jong; Lee, Young Hee

    2014-01-01

    Two-dimensional monolayer transition metal dichalcogenides (TMdCs), driven by graphene science, revisit optical and electronic properties, which are markedly different from bulk characteristics. These properties are easily modified due

  16. Control of interlayer physics in 2H transition metal dichalcogenides

    Science.gov (United States)

    Wang, Kuang-Chung; Stanev, Teodor K.; Valencia, Daniel; Charles, James; Henning, Alex; Sangwan, Vinod K.; Lahiri, Aritra; Mejia, Daniel; Sarangapani, Prasad; Povolotskyi, Michael; Afzalian, Aryan; Maassen, Jesse; Klimeck, Gerhard; Hersam, Mark C.; Lauhon, Lincoln J.; Stern, Nathaniel P.; Kubis, Tillmann

    2017-12-01

    It is assessed in detail both experimentally and theoretically how the interlayer coupling of transition metal dichalcogenides controls the electronic properties of the respective devices. Gated transition metal dichalcogenide structures show electrons and holes to either localize in individual monolayers, or delocalize beyond multiple layers—depending on the balance between spin-orbit interaction and interlayer hopping. This balance depends on the layer thickness, momentum space symmetry points, and applied gate fields. The design range of this balance, the effective Fermi levels, and all relevant effective masses is analyzed in great detail. A good quantitative agreement of predictions and measurements of the quantum confined Stark effect in gated MoS2 systems unveils intralayer excitons as the major source for the observed photoluminescence.

  17. First-principles study of hydrogen diffusion in transition metal Rhodium

    International Nuclear Information System (INIS)

    Bao, Wulijibilige; Cui, Xin; Wang, Zhi-Ping

    2015-01-01

    In this study, the diffuse pattern and path of hydrogen in transition metal rhodium are investigated by the first-principles calculations. Density functional theory is used to calculate the system energies of hydrogen atom occupying different positions in rhodium crystal lattice. The results indicate that the most stable position of hydrogen atom in rhodium crystal lattice locates at the octahedral interstice, and the tetrahedral interstice is the second stable site. The activation barrier energy for the diffusion of atomic hydrogen in transition metal rhodium is quantified by determining the most favorable path, i.e., the minimum-energy pathway for diffusion, that is the indirect octahedral-tetrahedral-octahedral (O-T-O) pathway, and the activation energy is 0.8345eV

  18. Synthesis of Binary Magnesium-Transition Metal Oxides via Inverse Coprecipitation

    Science.gov (United States)

    Yagi, Shunsuke; Ichikawa, Yuya; Yamada, Ikuya; Doi, Takayuki; Ichitsubo, Tetsu; Matsubara, Eiichiro

    2013-02-01

    Synthesis of binary magnesium-transition metal oxides, MgM2O4 (M: Cr, Mn, Fe, Co) and MgNiO2, was performed by calcination at relatively low temperatures of 500 and 750 °C for 24 h through inverse coprecipitation of carbonate hydroxide precursors. The important roles of the precipitation agent, sodium carbonate, were clarified by considering equilibria in an aqueous solution. The structure parameters of the obtained binary magnesium-transition metal oxide powders, specifically the occupancy of atomic sites, were evaluated from synchrotron X-ray diffraction (XRD) profiles by Rietveld refinement in addition to the magnetic properties at room temperature. The present work provides general guidelines for low-cost and high-volume synthesis of complex oxides, which are easily decomposed at high temperatures.

  19. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Science.gov (United States)

    Miazek, Krystian; Iwanek, Waldemar; Remacle, Claire; Richel, Aurore; Goffin, Dorothee

    2015-01-01

    Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles) from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed. PMID:26473834

  20. Effect of Metals, Metalloids and Metallic Nanoparticles on Microalgae Growth and Industrial Product Biosynthesis: A Review

    Directory of Open Access Journals (Sweden)

    Krystian Miazek

    2015-10-01

    Full Text Available Microalgae are a source of numerous compounds that can be used in many branches of industry. Synthesis of such compounds in microalgal cells can be amplified under stress conditions. Exposure to various metals can be one of methods applied to induce cell stress and synthesis of target products in microalgae cultures. In this review, the potential of producing diverse biocompounds (pigments, lipids, exopolymers, peptides, phytohormones, arsenoorganics, nanoparticles from microalgae cultures upon exposure to various metals, is evaluated. Additionally, different methods to alter microalgae response towards metals and metal stress are described. Finally, possibilities to sustain high growth rates and productivity of microalgal cultures in the presence of metals are discussed.

  1. Coordination to transition metal surfaces : a theoretical study

    NARCIS (Netherlands)

    Santen, van R.A.

    1985-01-01

    A theoretical framework is developed that describes the chemisorption of CO to transition metal surfaces analogous to the HOMO-LUMO concept of MO theory. An explanation is given for the exptl. observation that CO adsorbs on top at the (111), face of Pt, but bridge at the (111) face of Ni. One is due

  2. Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.

    Science.gov (United States)

    Cui, Qiannan; Zhao, Hui

    2015-04-28

    Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.

  3. Brittle-to-Ductile Transition in Metallic Glass Nanowires.

    Science.gov (United States)

    Şopu, D; Foroughi, A; Stoica, M; Eckert, J

    2016-07-13

    When reducing the size of metallic glass samples down to the nanoscale regime, experimental studies on the plasticity under uniaxial tension show a wide range of failure modes ranging from brittle to ductile ones. Simulations on the deformation behavior of nanoscaled metallic glasses report an unusual extended strain softening and are not able to reproduce the brittle-like fracture deformation as found in experiments. Using large-scale molecular dynamics simulations we provide an atomistic understanding of the deformation mechanisms of metallic glass nanowires and differentiate the extrinsic size effects and aspect ratio contribution to plasticity. A model for predicting the critical nanowire aspect ratio for the ductile-to-brittle transition is developed. Furthermore, the structure of brittle nanowires can be tuned to a softer phase characterized by a defective short-range order and an excess free volume upon systematic structural rejuvenation, leading to enhanced tensile ductility. The presented results shed light on the fundamental deformation mechanisms of nanoscaled metallic glasses and demarcate ductile and catastrophic failure.

  4. Transition metal borides. Synthesis, characterization and superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Kayhan, Mehmet

    2013-07-12

    A systematic study was done on the synthesis and superconducting properties of metal rich transition metal borides. Five different binary systems were investigated including the boride systems of niobium, tantalum, molybdenum, tungsten and rhenium. High temperature solid state methods were used in order to synthesize samples of different transition metal borides of the composition M{sub 2}B, MB, M{sub 3}B{sub 2}, MB{sub 2}, and M{sub 2}B{sub 4}. The reactions were carried out in three different furnaces with different sample containers: the electric arc (copper crucible), the high frequency induction furnace (boron nitride, tantalum or glassy carbon crucibles), and the conventional tube furnace (sealed evacuated quartz ampoules). The products obtained were characterized with X-ray powder diffractometry, scanning electron microscopy and energy-dispersive X-ray spectroscopy. Phase analyses and crystal structure refinements using the Rietveld method and based on structure models known from literature were performed. A neutron diffraction measurement was done for W{sub 2}B{sub 4} to allow for a complete crystal structure determination, because of the presence of a heavy element like tungsten and a light element like boron that made it difficult to determine the accurate determination of the boron atom positions and occupancies from X-ray data. A new structure model for W{sub 2}B{sub 4} was proposed. Magnetic measurements in a SQUID magnetometer down to temperatures as low as 1.8 K were performed to several of the products in order to see if the transition metal borides become superconducting at low temperatures, and the results were compared with data from literature. Superconducting properties were found for the following compounds: NbB{sub 2} (T{sub C} = 3.5 K), β-MoB (T{sub C} = 2.4 K), β-WB (T{sub C} = 2.0 K), α-WB (T{sub C} = 4.3 K), W{sub 2}B{sub 4} (T{sub C} = 5.4 K), Re{sub 7}B{sub 3} (T{sub C} = 2.4 K). A relationship between the superconducting properties

  5. Designer Shape Anisotropy on Transition-Metal-Dichalcogenide Nanosheets.

    Science.gov (United States)

    Martella, Christian; Mennucci, Carlo; Lamperti, Alessio; Cappelluti, Emmanuele; de Mongeot, Francesco Buatier; Molle, Alessandro

    2018-03-01

    MoS 2 and generally speaking, the wide family of transition-metal dichalcogenides represents a solid nanotechnology platform on which to engineer a wealth of new and outperforming applications involving 2D materials. An even richer flexibility can be gained by extrinsically inducing an in-plane shape anisotropy of the nanosheets. Here, the synthesis of anisotropic MoS 2 nanosheets is proposed as a prototypical example in this respect starting from a highly conformal chemical vapor deposition on prepatterend substrates and aiming at the more general purpose of tailoring anisotropy of 2D nanosheets by design. This is envisioned to be a suitable configuration for strain engineering as far as strain can be spatially redistributed in morphologically different regions. With a similar approach, both the optical and electronic properties of the 2D transition-metal dichalcogenides can be tailored over macroscopic sample areas in a self-organized fashion, thus paving the way for new applications in the field of optical metasurfaces, light harvesting, and catalysis. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Mott metal-insulator transition in the doped Hubbard-Holstein model

    Science.gov (United States)

    Kurdestany, Jamshid Moradi; Satpathy, S.

    2017-08-01

    Motivated by the current interest in the understanding of the Mott insulators away from half-filling, observed in many perovskite oxides, we study the Mott metal-insulator transition in the doped Hubbard-Holstein model using the Hartree-Fock mean field theory. The Hubbard-Holstein model is the simplest model containing both the Coulomb and the electron-lattice interactions, which are important ingredients in the physics of the perovskite oxides. In contrast to the half-filled Hubbard model, which always results in a single phase (either metallic or insulating), our results show that away from half-filling, a mixed phase of metallic and insulating regions occurs. As the dopant concentration is increased, the metallic part progressively grows in volume, until it exceeds the percolation threshold, leading to percolative conduction. This happens above a critical dopant concentration δc, which, depending on the strength of the electron-lattice interaction, can be a significant fraction of unity. This means that the material could be insulating even for a substantial amount of doping, in contrast to the expectation that doped holes would destroy the insulating behavior of the half-filled Hubbard model. While effects of fluctuation beyond the mean field remain an open question, our results provide a starting point for the understanding of the density-driven metal-insulator transition observed in many complex oxides.

  7. Ab-initio vibrational properties of transition metal chalcopyrite alloys determined as high-efficiency intermediate-band photovoltaic materials

    International Nuclear Information System (INIS)

    Palacios, P.; Aguilera, I.; Wahnon, P.

    2008-01-01

    In this work, we present frozen phonon and linear response ab-initio research into the vibrational properties of the CuGaS 2 chalcopyrite and transition metal substituted (CuGaS 2 )M alloys. These systems are potential candidates for developing a novel solar-cell material with enhanced optoelectronic properties based in the implementation of the intermediate-band concept. We have previously carried out ab-initio calculations of the electronic properties of these kinds of chalcopyrite metal alloys showing a narrow transition metal band isolated in the semiconductor band gap. The substitutes used in the present work are the 3d metal elements, Titanium and Chromium. For the theoretical calculations we use standard density functional theory at local density and generalized gradient approximation levels. We found that the optical phonon branches of the transition metal chalcopyrite, are very sensitive to the specific bonding geometry and small changes in the transition metal environment

  8. First-principles calculation of the structural stability of 6d transition metals

    International Nuclear Information System (INIS)

    Oestlin, A.; Vitos, L.

    2011-01-01

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  9. Metal-semiconductor phase transition of order arrays of VO2 nanocrystals

    Science.gov (United States)

    Lopez, Rene; Suh, Jae; Feldman, Leonard; Haglund, Richard

    2004-03-01

    The study of solid-state phase transitions at nanometer length scales provides new insights into the effects of material size on the mechanisms of structural transformations. Such research also opens the door to new applications, either because materials properties are modified as a function of particle size, or because the nanoparticles interact with a surrounding matrix material, or with each other. In this paper, we describe the formation of vanadium dioxide nanoparticles in silicon substrates by pulsed laser deposition of ion beam lithographically selected sites and thermal processing. We observe the collective behavior of 50 nm diameter VO2 oblate nanoparticles, 10 nm high, and ordered in square arrays with arbitrary lattice constant. The metal-semiconductor-transition of the VO2 precipitates shows different features in each lattice spacing substrate. The materials are characterized by electron microscopy, x-ray diffraction, Rutherford backscattering. The features of the phase transition are studied via infrared optical spectroscopy. Of particular interest are the enhanced scattering and the surface plasmon resonance when the particles reach the metallic state. This resonance amplifies the optical contrast in the range of near-infrared optical communication wavelengths and it is altered by the particle-particle coupling as in the case of noble metals. In addition the VO2 nanoparticles exhibit sharp transitions with up to 50 K of hysteresis, one of the largest values ever reported for this transition. The optical properties of the VO2 nanoarrays are correlated with the size of the precipitates and their inter-particle distance. Nonlinear and ultra fast optical measurements have shown that the transition is the fastest known solid-solid transformation. The VO2 nanoparticles show the same bulk property, transforming in times shorter than 150 fs. This makes them remarkable candidates for ultrafast optical and electronic switching applications.

  10. On the behavior of Bronsted-Evans-Polanyi Relations for Transition Metal Oxides

    Energy Technology Data Exchange (ETDEWEB)

    Vojvodic, Aleksandra

    2011-08-22

    Versatile Broensted-Evans-Polanyi (BEP) relations are found from density functional theory for a wide range of transition metal oxides including rutiles and perovskites. For oxides, the relation depends on the type of oxide, the active site and the dissociating molecule. The slope of the BEP relation is strongly coupled to the adsorbate geometry in the transition state. If it is final state-like the dissociative chemisorption energy can be considered as a descriptor for the dissociation. If it is initial state-like, on the other hand, the dissociative chemisorption energy is not suitable as descriptor for the dissociation. Dissociation of molecules with strong intramolecular bonds belong to the former and molecules with weak intramolecular bonds to the latter group. We show, for the prototype system La-perovskites, that there is a 'cyclic' behavior in the transition state characteristics upon change of the active transition metal of the oxide.

  11. The potential for transition metal-mediated neurodegeneration in amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    David Benn Lovejoy

    2014-07-01

    Full Text Available Modulations of the potentially toxic transition metals iron (Fe and copper (Cu are implicated in the neurodegenerative process in a variety of human disease states including amyotrophic lateral sclerosis (ALS. However, the precise role played by these metals is still very much unclear, despite considerable clinical and experimental data suggestive of a role for these elements in the neurodegenerative process. The discovery of mutations in the antioxidant enzyme Cu/Zn superoxide dismutase (SOD-1 in ALS patients established the first known cause of ALS. Recent data suggest that various mutations in SOD-1 affect metal-binding of Cu and Zn, in turn promoting toxic protein aggregation. Copper homeostasis is also disturbed in ALS, and may be relevant to ALS pathogenesis. Another set of interesting observations in ALS patients involves the key nutrient Fe. In ALS patients Fe loading can be inferred by studies showing increased expression of serum ferritin, an Fe storage protein, with high serum ferritin levels correlating to poor prognosis. Magnetic resonance imaging of ALS patients shows a characteristic T2 shortening that is attributed to the presence of Fe in the motor cortex. In mutant SOD-1 mouse models, increased Fe is also detected in the spinal cord and treatment with Fe-chelating drugs lowers spinal cord Fe, preserves motor neurons and extends lifespan. Inflammation may play a key causative role in Fe accumulation, but this is not yet conclusive. Excess transition metals may enhance induction of endoplasmic reticulum (ER stress, a system that is already under strain in ALS. Taken together, the evidence suggests a role for transition metals in ALS progression and the potential use of metal-chelating drugs as a component of future ALS therapy.

  12. Transition metal complexes of some biologically active ligands; synthesis characterization and bioactivities

    International Nuclear Information System (INIS)

    Rehman, S.; Ali, N.; Nisar, M.

    2009-01-01

    Transition/representative transition metals complexes of biologically active chelating agent 1,2-dipyrolodinoethane were synthesized and characterized through spectral and analytical data. The complexes are of the formula (M(L)X/sub 2/). Where (M = Co (II), Ni (II), Cu (II), Zn (II), Hg (II) and Cd (II) and X = CI, Br, NO/sub 3/). Tetrahedral geometry has been proposed to these-metal complexes with the help of magnetic measurements, elemental analysis, chemical stoichiometry and spectroscopic data Antibacterial activity of the ligand and its metal complexes were screened against Eschereschi coli, Klebsiello pneumonia, Proteus mirabilis, Proteus vulhari, Streptococcus pneumonia, Salmonella Iyphi, Bacilh,s anthrax, Streptococcus fecalis and Staphylococcus aureus. Complexes were found to be active against Eschereschi coli, Klebsiella pneumonia, Proteus mirabilis and Proteus vulharis. (author)

  13. Low-density to high-density transition in Ce75Al23Si2 metallic glass

    International Nuclear Information System (INIS)

    Zeng, Q S; Lou, H B; Gong, Y; Wang, X D; Jiang, J Z; Fang, Y Z; Wu, F M; Yang, K; Li, A G; Yan, S; Yu, X H; Lathe, C

    2010-01-01

    Using in situ high-pressure x-ray diffraction (XRD), we observed a pressure-induced polyamorphic transition from the low-density amorphous (LDA) state to the high-density amorphous (HDA) state in Ce 75 Al 23 Si 2 metallic glass at about 2 GPa and 300 K. The thermal stabilities of both LDA and HDA metallic glasses were further investigated using in situ high-temperature and high-pressure XRD, which revealed different pressure dependences of the onset crystallization temperature (T x ) between them with a turning point at about 2 GPa. Compared with Ce 75 Al 25 metallic glass, minor Si doping shifts the onset polyamorphic transition pressure from 1.5 to 2 GPa and obviously stabilizes both LDA and HDA metallic glasses with higher T x and changes their slopes dT x /dP. The results obtained in this work reveal another polyamorphous metallic glass system by minor alloying (e.g. Si), which could modify the transition pressure and also properties of LDA and HDA metallic glasses. The minor alloying effect reported here is valuable for the development of more polyamorphous metallic glasses, even multicomponent bulk metallic glasses with modified properties, which will trigger more investigations in this field and improve our understanding of polyamorphism and metallic glasses.

  14. Reactions of transition metal complexes with cyclic ethers

    International Nuclear Information System (INIS)

    Milstein, D.

    1977-02-01

    Three novel reactions of epoxides with homogeneous transition-metal catalysts have been explored: (a) the selective rearrangement of internal epoxides to ketones; (b) the cleavage of C-C bond in epoxides having electron-attracting substituents; (c) the transformation of terminal epoxides into esters. Based on an intensive kinetic study, a general mechanism for the transformations of epoxides is postulated

  15. Valley polarization in magnetically doped single-layer transition-metal dichalcogenides

    KAUST Repository

    Cheng, Yingchun; Zhang, Q. Y.; Schwingenschlö gl, Udo

    2014-01-01

    We demonstrate that valley polarization can be induced and controlled in semiconducting single-layer transition-metal dichalcogenides by magnetic doping, which is important for spintronics, valleytronics, and photonics devices. As an example, we

  16. Adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO surface

    KAUST Repository

    Yadav, Manoj Kumar; Vovusha, Hakkim; Sanyal, Biplab

    2016-01-01

    The adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO(100) surface has been studied employing density functional theory. It is found that all these transition metals (TM) on MgO(100) surface are capable

  17. Validation of ion chromatography for the determination of transition metal ions along with alkali, alkaline earth metal elements for uranium oxide fuel

    International Nuclear Information System (INIS)

    Kelkar, Anoop; Prakash, Amrit; Afzal, Mohd.; Panakkal, J.P.

    2009-02-01

    The present report describes the use of Ion chromatography (IC) methods with spectrophotometric and direct conductivity detection for the determination of transition metal elements and alkali alkaline earth metal ions in UO 2 pellets. Transmet analytical column and Metrosep- cation 1-2 column were used for the separation of transition metal elements and alkali and alkaline earth metal elements respectively. Oxalic acid and mixture of pyridine 2,6-dicarboxylic acid (PDCA), Na 2 SO 4 and NaCl were used as mobile phase for the separation of transition metal ions and monitored after post - column reaction with 4,2-pyridylazo resorcinol (PAR) at 520nm spectrophotometrically. In the determination of alkali and alkaline earth metal ions the interference of transition metals are removed by complexing them with PDCA. Mixture of tartaric acid and PDCA employed in the separation of alkali and alkaline earth metal ions and monitored on direct conductivity detector. Mobile phase composition was optimised for the base line separation. Calibration plots of Fe 3+ , Cu 2+ , Ni 2+ , Co 2+ , Cd 2+ , Mn 2+ , Li + , Na + , K + , Mg 2+ , Ca 2+ and Sr 2+ were linear over a wide dynamic range with regression coefficient better than 0.999. Detection limit of above ions were between 5-30ppb. To prevent the overloading of the cation exchange column, uranium matrix was removed from UO 2 sample by solvent extraction with 30% TBP - TOPO/CCl 4 . Ten sintered UO2 pellets of same lot were analysed and R.S.D. ±10% was obtained. These methods were validated by analysis of ILCE standards of UO 2 . (author)

  18. Phase stabilisation of hexagonal barium titanate doped with transition metals: A computational study

    International Nuclear Information System (INIS)

    Dawson, J.A.; Freeman, C.L.; Harding, J.H.; Sinclair, D.C.

    2013-01-01

    Interatomic potentials recently developed for the modelling of BaTiO 3 have been used to explore the stabilisation of the hexagonal polymorph of BaTiO 3 by doping with transition metals (namely Mn, Co, Fe and Ni) at the Ti-site. Classical simulations have been completed on both the cubic and hexagonal polymorphs to investigate the energetic consequences of transition metal doping on each polymorph. Ti-site charge compensation mechanisms have been used for the multi-valent transition metal ions and cluster binding energies have been considered. Simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti 2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. This energetic difference between the two polymorphs is true for all transition metals tested and all charge states and in the case of tri- and tetra-valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions as observed experimentally. Oxidation during incorporation of Ni 2+ and Fe 3+ ions has also been considered. - Graphical abstract: The representation of the strongest binding energy clusters for tri-valent dopants—(a) Ti 2 /O 1 cluster and (b) Ti 2 /O 2 cluster. Highlights: ► Classical simulations show a significant energetic gain when doping occurs at Ti sites in the face sharing dimers (Ti2 sites) of the hexagonal polymorph compared with the doping of the cubic polymorph. ► This energetic difference between the two polymorphs is true for all transition metals tested and all charge states. ► In the case of tri- and tetra- valent dopants negative solution energies are found for the hexagonal polymorph suggesting actual polymorph stabilisation occurs with the incorporation of these ions

  19. Reaction of urea thiourea and their derivatives with tertiary phosphine transition metal halides

    International Nuclear Information System (INIS)

    Adam, Eltayeb Mahala

    2000-03-01

    This thesis describes preparation characterization and some properties of a number of new compounds such as (ph 3 p)2 ML where M= cobalt (11), nickel (11), and copper (11), and L= urea, thiourea, phenylthiourea, sym diphenylurea and sym diphenylthiourea.These compounds have been prepared according according to the reaction of dichloro bis (triphenylphosphine) transition metal with urea, thiourea or some of their derivative ligands in 1:1 molar ratio.The work in this thesis is divided into three section firstly:- In the introduction chapter part one includes general definitions of coordination chemistry and related compounds and abroad definition of transition elements.Part two includes the theoretical back ground about transition metal complexes having urea, thiourea or some of their substituted derivative ligands.Part two also discusses the type of bonding between these ligands and the transition metal atom.Secondly: Chapter two describes the general techniques followed in this work such as purification of solvents recrystallization, preparation of starting materials and also gives full detailed procedures of the preparation of a number of new compounds.Thirdly: Discussion with detailed in chapter three, the results of the research are presented the preparation and characterization of a number of new compounds isolated from reaction between urea, thiourea or some of their substituted derivatives and dichloro bis (triphenyl phosphine) transition metal complex giving a general formula (ph 3 )2ML where M=cobalt, nickel, and copper, and urea, thiourea or some of their substituted derivatives ligands. The products of these experiments have been identified using infrared spectra, melting points and molar conductance. The results obtained indicated that all the compounds forming the nitrogen to metal bonds leading to the formation of a four- membered chelate ring, they are relatively thermally stable compounds, and also these compounds are non-electrolytes.(Author)

  20. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides

    Science.gov (United States)

    Lukatskaya, Maria R.; Kota, Sankalp; Lin, Zifeng; Zhao, Meng-Qiang; Shpigel, Netanel; Levi, Mikhael D.; Halim, Joseph; Taberna, Pierre-Louis; Barsoum, Michel W.; Simon, Patrice; Gogotsi, Yury

    2017-08-01

    The use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g-1 at scan rates of 10 V s-1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ˜1,500 F cm-3 reaching the previously unmatched volumetric performance of RuO2.

  1. Optical excitations of transition-metal oxides under the orbital multiplicity effects

    International Nuclear Information System (INIS)

    Lee, J S; Kim, M W; Noh, T W

    2005-01-01

    We investigated optical excitations of transition-metal (TM) oxides with metal oxygen octahedra taking account of the orbital multiplicity effects. We predicted excitation energies of intersite d-d transitions and p-d transitions of TM oxides. We compared the evaluated excitation energies with reported experimental data, and found that they are in good agreement with each other. Moreover, we could demonstrate possible answers for a few long-standing problems of the low-frequency spectral features in some early 3d TM oxides: (i) the broad and multi-peak structures of the d-d transitions (ii) the low values (around 2 eV) of the d-d transition energies for some t 2g 1 and t 2g 2 systems, and (iii) the lack of the d-d transition below 4.0 eV region for LaCrO 3 , one of the t 2g 3 systems. These indicate that our approach considering the orbital multiplicity effects could provide good explanations of intriguing features in the optical spectra of some early TM oxides. In addition, we showed that optical spectroscopy can be useful as a powerful tool to investigate spin and/or orbital correlations in the TM ions. Finally, we discussed the implications of the orbital multiplicity in the Zannen-Sawatzky-Allen scheme, which has been used successfully to classify correlated electron systems

  2. Spatiotemporal Analysis of Heavy Metal Water Pollution in Transitional China

    Directory of Open Access Journals (Sweden)

    Huixuan Li

    2015-07-01

    Full Text Available China’s socioeconomic transitions have dramatically accelerated its economic growth in last three decades, but also companioned with continuous environmental degradation. This study will advance the knowledge of heavy metal water pollution in China from a spatial–temporal perspective. Specifically, this study addressed the following: (1 spatial patterns of heavy metal water pollution levels were analyzed using data of prefecture-level cities from 2004 to 2011; and (2 spatial statistical methods were used to examine the underlying socioeconomic and physical factors behind water pollution including socioeconomic transitions (industrialization, urbanization, globalization and economic development, and environmental characteristic (natural resources, hydrology and vegetation coverage. The results show that only Cr pollution levels increased over the years. The individual pollution levels of the other four heavy metals, As, Cd, Hg, and Pb, declined. High heavy metal water pollution levels are closely associated with both anthropogenic activities and physical environments, in particular abundant mineral resources and industrialization prosperity. On the other hand, economic development and urbanization play important roles in controlling water pollution problems. The analytical findings will provide valuable information for policy-makers to initiate and adjust protocols and strategies for protecting water sources and controlling water pollution; thus improving the quality of living environments.

  3. Superconductor-Metal-Insulator transition in two dimensional Ta thin Films

    Science.gov (United States)

    Park, Sun-Gyu; Kim, Eunseong

    2013-03-01

    Superconductor-insulator transition has been induced by tuning film thickness or magnetic field. Recent electrical transport measurements of MoGe, Bi, Ta thin films revealed an interesting intermediate metallic phase which intervened superconducting and insulating phases at certain range of magnetic field. Especially, Ta thin films show the characteristic IV behavior at each phase and the disorder tuned intermediate metallic phase [Y. Li, C. L. Vicente, and J. Yoon, Physical Review B 81, 020505 (2010)]. This unexpected metallic phase can be interpreted as a consequence of vortex motion or contribution of fermionic quasiparticles. In this presentation, we report the scaling behavior during the transitions in Ta thin film as well as the transport measurements in various phases. Critical exponents v and z are obtained in samples with wide ranges of disorder. These results reveal new universality class appears when disorder exceeds a critical value. Dynamical exponent z of Superconducting sample is found to be 1, which is consistent with theoretical prediction of unity. z in a metallic sample is suddenly increased to be approximately 2.5. This critical exponent is much larger than the value found in other system and theoretical prediction. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  4. Ab initio theory of noble gas atoms in bcc transition metals.

    Science.gov (United States)

    Jiang, Chao; Zhang, Yongfeng; Gao, Yipeng; Gan, Jian

    2018-06-18

    Systematic ab initio calculations based on density functional theory have been performed to gain fundamental understanding of the interactions between noble gas atoms (He, Ne, Ar and Kr) and bcc transition metals in groups 5B (V, Nb and Ta), 6B (Cr, Mo and W) and 8B (Fe). Our charge density analysis indicates that the strong polarization of nearest-neighbor metal atoms by noble gas interstitials is the electronic origin of their high formation energies. Such polarization becomes more significant with an increasing gas atom size and interstitial charge density in the host bcc metal, which explains the similar trend followed by the unrelaxed formation energies of noble gas interstitials. Upon allowing for local relaxation, nearby metal atoms move farther away from gas interstitials in order to decrease polarization, albeit at the expense of increasing the elastic strain energy. Such atomic relaxation is found to play an important role in governing both the energetics and site preference of noble gas atoms in bcc metals. Our most notable finding is that the fully relaxed formation energies of noble gas interstitials are strongly correlated with the elastic shear modulus of the bcc metal, and the physical origin of this unexpected correlation has been elucidated by our theoretical analysis based on the effective-medium theory. The kinetic behavior of noble gas atoms and their interaction with pre-existing vacancies in bcc transition metals have also been discussed in this work.

  5. Insulator–metal transition in a conservative system: An evidence for ...

    Indian Academy of Sciences (India)

    substrate, suggest that the mobility coalescence is responsible for the aging in island metal films. ... esting transition observed in a conservative system – after the stoppage of ... Oxidation of islands model and mobility coalescence model.

  6. Spectrum of ferromagnetic transition metal magnetic excitations and neutron scattering

    International Nuclear Information System (INIS)

    Kuzemskij, A.L.

    1979-01-01

    Quantum statistical models of ferromagnetic transition metals as well as methods of their solutions are reviewed. The correspondence of results on solving these models and the data on scattering thermal neutrons in ferromagnetic is discussed

  7. Using a Semiconductor-to-Metal Transition to Control Optical Transmission through Subwavelength Hole Arrays

    Directory of Open Access Journals (Sweden)

    E. U. Donev

    2008-01-01

    Full Text Available We describe a simple configuration in which the extraordinary optical transmission effect through subwavelength hole arrays in noble-metal films can be switched by the semiconductor-to-metal transition in an underlying thin film of vanadium dioxide. In these experiments, the transition is brought about by thermal heating of the bilayer film. The surprising reverse hysteretic behavior of the transmission through the subwavelength holes in the vanadium oxide suggest that this modulation is accomplished by a dielectric-matching condition rather than plasmon coupling through the bilayer film. The results of this switching, including the wavelength dependence, are qualitatively reproduced by a transfer matrix model. The prospects for effecting a similar modulation on a much faster time scale by using ultrafast laser pulses to trigger the semiconductor-to-metal transition are also discussed.

  8. First-principles study of doping effect on the phase transition of zinc oxide with transition metal doped

    International Nuclear Information System (INIS)

    Wu, Liang; Hou, Tingjun; Wang, Yi; Zhao, Yanfei; Guo, Zhenyu; Li, Youyong; Lee, Shuit-Tong

    2012-01-01

    Highlights: ► We study the doping effect on B4, B1 structures and phase transition of ZnO. ► We calculate the phase transition barrier and phase transition path of doped ZnO. ► The transition metal doping decreases the bulk modulus and phase transition pressure. ► The magnetic properties are influenced by the phase transition process. - Abstract: Zinc oxide (ZnO) is a promising material for its wide application in solid-state devices. With the pressure raised from an ambient condition, ZnO transforms from fourfold wurtzite (B4) to sixfold coordinated rocksalt (B1) structure. Doping is an efficient approach to improve the structures and properties of materials. Here we use density-functional theory (DFT) to study doped ZnO and find that the transition pressure from B4 phase to B1 phase of ZnO always decreases with different types of transition metal (V, Cr, Mn, Fe, Co, or Ni) doped, but the phase transition path is not affected by doping. This is consistent with the available experimental results for Mn-doped ZnO and Co-doped ZnO. Doping in ZnO causes the lattice distortion, which leads to the decrease of the bulk modulus and accelerates the phase transition. Mn-doped ZnO shows the strongest magnetic moment due to its half filled d orbital. For V-doped ZnO and Cr-doped ZnO, the magnetism is enhanced by phase transition from B4 to B1. But for Mn-doped ZnO, Fe-doped ZnO, Co-doped ZnO, and Ni-doped ZnO, B1 phase shows weaker magnetic moment than B4 phase. These results can be explained by the amount of charge transferred from the doped atom to O atom. Our results provide a theoretical basis for the doping approach to change the structures and properties of ZnO.

  9. Photoemission from valence bands of transition metal-phthalocyanines

    International Nuclear Information System (INIS)

    Shang, Ming-Hui; Nagaosa, Mayumi; Nagamatsu, Shin-ichi; Hosoumi, Shunsuke; Kera, Satoshi; Fujikawa, Takashi; Ueno, Nobuo

    2011-01-01

    Research highlights: → The HOMO mainly comes from the carbon atoms of Pc rings and the central metal atoms almost have no contribution on the highest occupied molecular orbital (HOMO: a 1u ) distribution of CoPc as well as NiPc. → Influence by central metal atom on the photoemission intensities from the HOMO of two single molecule systems is negligible for the major. → The modification of the distribution for π-orbital upon adsorption as well as the scattering effects of the central metal on the photoemission intensities are negligible for the major. - Abstract: Angular dependencies of ultraviolet photoelectron spectrum of transition metal-phthalocyanines (TM-Pcs), NiPc and CoPc, have been studied by using multiple-scattering theory to explore the electronic structure of the organometallic complexes influenced by central metal atom. The calculated angular distributions of photoelectrons for the highest occupied molecular orbital (HOMO: a 1u ) from the two single systems are nearly the same and represent well the experimental results obtained for the well-ordered monolayer on the highly oriented pyrolytic graphite substrate. The central metal atoms almost have no contribution on the HOMO distribution, which mainly comes from the carbon atoms of Pc ring. Moreover, the modification of the distribution for π orbital upon adsorption as well as the scattering effects of the central metal on the photoemission intensities are negligible for the major.

  10. Zeolites as supports for transition-metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Le Van Mao, R

    1979-01-01

    The unique structural characteristics of the zeolites, including the presence of molecular-size cages and channels and of an internal electrostatic field, make them promising as supports for converting homogeneous to heterogeneous catalysts. The acidic sites on the zeolites may also contribute to catalysis of reactions, such as hydrocracking; may stabilize metal complexes in a highly disperse state; and may improve activity or selectivity. Recent studies on the synthesis of new types of zeolite-supported complexes of transition metals (TM), such as Co, Cu, Ag, Fe, Mo, Ru, Rh, Re, and Os, suggest the feasibility of the direct introduction of some TM complexes into the zeolitic cages during zeolite synthesis, especially during the crystallization phase. This method may considerably reduce the structural limitations associated with the incorporation of TM complexes into zeolites by conventional methods.

  11. State of the Science Review: Potential for Beneficial Use of Waste By-Products for In-situ Remediation of Metal-Contaminated Soil and Sediment

    Science.gov (United States)

    Metal and metalloid contamination of soil and sediment is a widespread problem both in urban and rural areas throughout the United States (U.S. EPA, 2014). Beneficial use of waste by-products as amendments to remediate metal-contaminated soils and sediments can provide major eco...

  12. Optical and electrical experiments at some transition-metal oxide foil-electrolyte interfaces

    International Nuclear Information System (INIS)

    Sari, S.O.; Ahlgren, W.L.

    1977-01-01

    Metal-oxide layers formed from transition-metal foils oxidized by heating in air have been examined for their photoelectrolytic response. The metals examined are Y, Ti, Zr, Hf, V, Nb, Ta, Mo, W, and Pt. Weak photoeffects are observed for oxide layers of all of these metals. Sizable light-dependent oxygen gas evolution rates are found in Ti and also in W oxides. The spectral dependence of the oxygen response in these compounds is investigated, and interpretation is given of these experiments

  13. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth-transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co; 20 - 70 atomic percent: at least one of Ce, Pr, Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y; 80 - 30 atomic percent. (author)

  14. Characterization of transition metal-containing oxide systems by Mössbauer Spectroscopy

    Directory of Open Access Journals (Sweden)

    Z. Homonnay

    2004-12-01

    Full Text Available High-temperature (high-Tc superconductors and colossal magnetoresistant (CMR materials belong to the most promising materials of the past 2-3 decades for technical applications. Most of them are oxides and the crucial element which determines their useful physical properties is often a transition metal (Cu, Co, Fe, Mn. 57Fe Mössbauer Spectroscopy can be used to characterize the electronic and structural properties of transition metal-containing oxides by providing information on the local electronic structure of the lattice site where the Mössbauer probe is accommodated. By reviewing several Mössbauer studies, it is demonstrated how the layered (2D electronic structure of high-Tc superconductors can be deduced from the analysis of the Mössbauer isomer shift and quadrupole splitting. We also show how the Mössbauer isomer shift indicates metallicity of the ferromagnetic phase in the CMR material LaxSr1-xCoO3.

  15. A search for superconductivity below 1 K in transition metal borides

    International Nuclear Information System (INIS)

    Leyarovska, L.; Leyarovski, E.

    1979-01-01

    Some AlB 2 -type (C32 structure) boron compounds were examined for superconductivity down to 0.42 K; the compounds have the formula MeB 2 (Me equivalent to Ti, Zr, Hf, V, Nb, Ta, Cr, Mo) (the atomic ratio of metal to boron was 0.5). Only NbB 2 was found to be superconducting with Tsub(c) = 0.62 K and a surprisingly high value of Hsub(c)(0), about 1600 Oe. Other transition metal as well as non-transition metal boron phases were also tested for superconductivity down to 0.42 K; these compounds were MeB 2 (Me equivalent to Ca, Sr, Ba), W 2 B 5 , CrB, Cr 5 B 3 , UB 2 , UB 4 and UB 12 . None of these compounds proved to be superconducting above 0.42 K; nor was any trace of superconductivity down to 0.42 K observed in MoB and NbB. (Auth.)

  16. Quantifying heavy metals sequestration by sulfate-reducing bacteria in an acid mine drainage-contaminated wetland

    Directory of Open Access Journals (Sweden)

    John W Moreau

    2013-03-01

    Full Text Available Bioremediation strategies that depend on bacterial sulfate reduction for heavy metals remediation harness the reactivity of these metals with biogenic aqueous sulfide. Quantitative knowledge of the degree to which specific toxic metals are partitioned into various sulfide, oxide, or other phases is important for predicting the long-term mobility of these metals under environmental conditions. Here we report the quantitative partitioning into sedimentary biogenic sulfides of a suite of metals and metalloids associated with acid mine drainage contamination of a natural estuarine wetland for over a century.

  17. Transition from metal-ligand bonding to halogen bonding involving a metal as halogen acceptor a study of Cu, Ag, Au, Pt, and Hg complexes

    Science.gov (United States)

    Oliveira, Vytor; Cremer, Dieter

    2017-08-01

    Utilizing all-electron Dirac-exact relativistic calculations with the Normalized Elimination of the Small Component (NESC) method and the local vibrational mode approach, the transition from metal-halide to metal halogen bonding is determined for Au-complexes interacting with halogen-donors. The local stretching force constants of the metal-halogen interactions reveal a smooth transition from weak non-covalent halogen bonding to non-classical 3-center-4-electron bonding and finally covalent metal-halide bonding. The strongest halogen bonds are found for dialkylaurates interacting with Cl2 or FCl. Differing trends in the intrinsic halogen-metal bond strength, the binding energy, and the electrostatic potential are explained.

  18. Volcano Relation for the Deacon Process over Transition-Metal Oxides

    DEFF Research Database (Denmark)

    Studt, Felix; Abild-Pedersen, Frank; Hansen, Heine Anton

    2010-01-01

    We establish an activity relation for the heterogeneous catalytic oxidation of HCI (the Deacon Process) over rutile transition-metal oxide catalysts by combining density functional theory calculations (DFT) with microkinetic modeling. Linear energy relations for the elementary reaction steps...

  19. Adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO surface

    KAUST Repository

    Yadav, Manoj Kumar

    2016-06-16

    The adsorption and dissociation of dinitrogen on transition metal (Ta, W and Re) doped MgO(100) surface has been studied employing density functional theory. It is found that all these transition metals (TM) on MgO(100) surface are capable of adsorbing dinitrogen (N2), however there is no dissociative adsorption of N2 on single transition metal dopant. When two TM atoms are doped on MgO(100) surface, dissociative adsorption of dinitrogen occurs in all the three cases. Whether the dissociation is spontaneous or is it associated with activation barrier depends on the orientation of N2 molecule approaching the dopant site.

  20. Metal-insulator transition in 2D: the role of interactions and disorder

    International Nuclear Information System (INIS)

    Kastrinakis, George

    2007-01-01

    We present a model for the metal-insulator transition in 2D, observed in the recent years. Our starting point consists of two ingredients only, which are ubiquitous in the experiments: Coulomb interactions and weak disorder spin scattering (coming from the interfaces of the heterostructures in question). In a diagramatic approach, we predict the existence of a characteristic temperature T 0 =T 0 (n,ω H ), n being the density of carriers, and ω H the Zeeman energy, below which these systems become metallic, due to the onset of strong spin-density correlations. This is in very good agreement with experiments, and corroborates the fact that varying n and ω H are equivalent ways into/out of the metallic regime. The conductivity, calculated as a function of temperature and ω H in the metallic state, compares favorably to experiment. Moreover, we give an explicit expression for the conventional weak disorder contributions to the conductivity in the frame of our model. We comment on the nature of the transition, we calculate the specific heat of the system and we discuss the fate of the metallic state in the limit of zero temperature

  1. First principles description of the insulator-metal transition in europium monoxide

    KAUST Repository

    Wang, Hao

    2012-02-01

    Europium monoxide, EuO, is a ferromagnetic insulator. Its electronic structure under pressure and doping is investigated by means of density functional theory. We employ spin polarized electronic structure calculations including onsite electron-electron interaction for the localized Eu 4f and 5d electrons. Our results show that under pressure the ferromagnetism is stable, both for hydrostatic and uniaxial pressure, while the compound undergoes an insulator-metal transition. The insulator-metal transition in O deficient and Gd doped EuO is reproduced for an impurity concentration of 6.25%. A 10 monolayer thick EuO(1 0 0) thin film is predicted to be an insulator with a narrow band gap of 0.08 eV. © 2011 Elsevier B.V. All rights reserved.

  2. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides

    Energy Technology Data Exchange (ETDEWEB)

    Lukatskaya, Maria R. [Drexel Univ., Philadelphia, PA (United States); Dept. of Chemical Engineering, Stanford, CA (United States); Kota, Sankalp [Drexel Univ., Philadelphia, PA (United States); Lin, Zifeng [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Zhao, Meng -Qiang [Drexel Univ., Philadelphia, PA (United States); Shpigel, Netanel [Bar-Ilan Univ., Ramat-Gan (Israel); Levi, Mikhael D. [Bar-Ilan Univ., Ramat-Gan (Israel); Halim, Joseph [Drexel Univ., Philadelphia, PA (United States); Taberna, Pierre -Louis [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Barsoum, Michel W. [Drexel Univ., Philadelphia, PA (United States); Simon, Patrice [Univ. Paul Sabatier, Toulouse (France); Reseau sur le Stockage Electrochimique de l' Energie (RS2E) (France); Gogotsi, Yury G. [Drexel Univ., Philadelphia, PA (United States)

    2017-07-10

    In this study, the use of fast surface redox storage (pseudocapacitive) mechanisms can enable devices that store much more energy than electrical double-layer capacitors (EDLCs) and, unlike batteries, can do so quite rapidly. Yet, few pseudocapacitive transition metal oxides can provide a high power capability due to their low intrinsic electronic and ionic conductivity. Here we demonstrate that two-dimensional transition metal carbides (MXenes) can operate at rates exceeding those of conventional EDLCs, but still provide higher volumetric and areal capacitance than carbon, electrically conducting polymers or transition metal oxides. We applied two distinct designs for MXene electrode architectures with improved ion accessibility to redox-active sites. A macroporous Ti3C2Tx MXene film delivered up to 210 F g–1 at scan rates of 10 V s–1, surpassing the best carbon supercapacitors known. In contrast, we show that MXene hydrogels are able to deliver volumetric capacitance of ~1,500 F cm–3 reaching the previously unmatched volumetric performance of RuO2.

  3. High coercivity rare earth-transition metal magnets

    International Nuclear Information System (INIS)

    Croat, J.J.

    1982-01-01

    Ferromagnetic compositions having intrinsic magnetic coercivities at room temperature of at least 1,000 Oersteds are formed by the controlled quenching of molten rare earth -transition metal alloys. Hard magnets may be inexpensively formed from the lower atomic weight lanthanide elements and iron. The preferable compositions lie within: at least one of Fe, Ni, Co (20 to 70 atomic percent); and at least one of Ce, Pr, Na, Sm, Eu, Tb, Dy, Ho, Er, Tm, Y (80 to 30 atomic percent). (author)

  4. Metal stressors consistently modulate bacterial conjugal plasmid uptake potential in a phylogenetically conserved manner

    DEFF Research Database (Denmark)

    Klümper, Uli; Dechesne, Arnaud; Riber, Leise

    2017-01-01

    The environmental stimulants and inhibitors of conjugal plasmid transfer in microbial communities are poorly understood. Specifically, it is not known whether exposure to stressors may cause a community to alter its plasmid uptake ability. We assessed whether metals (Cu, Cd, Ni, Zn) and one metal...... that community permissiveness is sensitive to metal(loid) stress in a manner that is both partially consistent across stressors and phylogenetically conserved.The ISME Journal advance online publication, 2 August 2016; doi:10.1038/ismej.2016.98....

  5. Correlated structural and electronic phase transformations in transition metal chalcogenide under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chunyu, E-mail: licy@hpstar.ac.cn, E-mail: yanhao@hpstar.ac.cn; Ke, Feng; Yu, Zhenhai; Chen, Zhiqiang; Yan, Hao, E-mail: licy@hpstar.ac.cn, E-mail: yanhao@hpstar.ac.cn [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Hu, Qingyang [Center for High Pressure Science and Technology Advanced Research, Shanghai 201203 (China); Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC 20015 (United States); Zhao, Jinggeng [Natural Science Research Center, Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080 (China)

    2016-04-07

    Here, we report comprehensive studies on the high-pressure structural and electrical transport properties of the layered transition metal chalcogenide (Cr{sub 2}S{sub 3}) up to 36.3 GPa. A structural phase transition was observed in the rhombohedral Cr{sub 2}S{sub 3} near 16.5 GPa by the synchrotron angle dispersive X-ray diffraction measurement using a diamond anvil cell. Through in situ resistance measurement, the electric resistance value was detected to decrease by an order of three over the pressure range of 7–15 GPa coincided with the structural phase transition. Measurements on the temperature dependence of resistivity indicate that it is a semiconductor-to-metal transition in nature. The results were also confirmed by the electronic energy band calculations. Above results may shed a light on optimizing the performance of Cr{sub 2}S{sub 3} based applications under extreme conditions.

  6. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    International Nuclear Information System (INIS)

    Sizmur, Tom; Palumbo-Roe, Barbara; Watts, Michael J.; Hodson, Mark E.

    2011-01-01

    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota. - Research highlights: → Earthworms increase the mobility and availability of metals and metalloids in soils. → We incubated L. terrestris in three soils contaminated with As, Cu, Pb and Zn. → Earthworms increased the mobility of As, Cu, Pb and Zn in their casts. → The mechanisms for this could be explained by changes in pH or organic carbon. - Lumbricus terrestris change the partitioning of metal(loid)s between soil constituents and increase the mobility of metal(loid)s in casts and pore water.

  7. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Sizmur, Tom, E-mail: t.p.sizmur@reading.ac.uk [Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom); Palumbo-Roe, Barbara; Watts, Michael J. [British Geological Survey, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Hodson, Mark E. [Soil Research Centre, Department of Geography and Environmental Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading RG6 6DW (United Kingdom)

    2011-03-15

    To assess the risks that contaminated soils pose to the environment properly a greater understanding of how soil biota influence the mobility of metal(loid)s in soils is required. Lumbricus terrestris L. were incubated in three soils contaminated with As, Cu, Pb and Zn. The concentration and speciation of metal(loid)s in pore waters and the mobility and partitioning in casts were compared with earthworm-free soil. Generally the concentrations of water extractable metal(loid)s in earthworm casts were greater than in earthworm-free soil. The impact of the earthworms on concentration and speciation in pore waters was soil and metal specific and could be explained either by earthworm induced changes in soil pH or soluble organic carbon. The mobilisation of metal(loid)s in the environment by earthworm activity may allow for leaching or uptake into biota. - Research highlights: > Earthworms increase the mobility and availability of metals and metalloids in soils. > We incubated L. terrestris in three soils contaminated with As, Cu, Pb and Zn. > Earthworms increased the mobility of As, Cu, Pb and Zn in their casts. > The mechanisms for this could be explained by changes in pH or organic carbon. - Lumbricus terrestris change the partitioning of metal(loid)s between soil constituents and increase the mobility of metal(loid)s in casts and pore water.

  8. Practical Improvements to the Lee-More Conductivity Near the Metal-Insulator Transition

    International Nuclear Information System (INIS)

    Desjarlais, Michael P.

    2000-01-01

    The wide-range conductivity model of Lee and More is modified to allow better agreement with recent experimental data and theories for dense plasmas in the metal-insulator transition regime. Modifications primarily include a new ionization equilibrium model, consisting of a smooth blend between single ionization Saha (with a pressure ionization correction) and the generic Thomas-Fermi ionization equilibrium, a more accurate treatment of electron-neutral collisions using a polarization potential, and an empirical modification to the minimum allowed collision time. These simple modifications to the Lee-More algorithm permit a more accurate modeling of the physics near the metal-insulator transition, while preserving the generic Lee-More results elsewhere

  9. Practical improvements to the Lee-More conductivity near the metal-insulator transition

    International Nuclear Information System (INIS)

    Desjarlais, M.P.

    2001-01-01

    The wide-range conductivity model of Lee and More is modified to allow better agreement with recent experimental data and theories for dense plasmas in the metal-insulator transition regime. Modifications primarily include a new ionization equilibrium model, consisting of a smooth blend between single ionization Saha (with a pressure ionization correction) and the generic Thomas-Fermi ionization equilibrium, a more accurate treatment of electron-neutral collisions using a polarization potential, and an empirical modification to the minimum allowed collision time. These simple modifications to the Lee-More algorithm permit a more accurate modeling of the physics near the metal-insulator transition, while preserving the generic Lee-More results elsewhere. (orig.)

  10. Transition radiation in metal-metal multilayer nanostructures as a medical source of hard x-ray radiation

    International Nuclear Information System (INIS)

    Pokrovsky, A. L.; Kaplan, A. E.; Shkolnikov, P. L.

    2006-01-01

    We show that a periodic metal-metal multilayer nanostructure can serve as an efficient source of hard x-ray transition radiation. Our research effort is aimed at developing an x-ray source for medical applications, which is based on using low-energy relativistic electrons. The approach toward choosing radiator-spacer couples for the generation of hard x-ray resonant transition radiation by few-MeV electrons traversing solid multilayer structures for the energies of interest to medicine (30-50 keV) changes dramatically compared with that for soft x-ray radiation. We show that one of the main factors in achieving the required resonant line is the absence of the contrast of the refractive indices between the spacer and the radiator at the far wings of the radiation line; for that purpose, the optimal spacer, as a rule, should have a higher atomic number than the radiator. Having experimental goals in mind, we have considered also the unwanted effects due to bremsstrahlung radiation, absorption and scattering of radiated photons, detector-related issues, and inhibited coherence of transition radiation due to random deviation of spacing between the layers. Choosing as a model example a Mo-Ag radiator-spacer pair of materials, we demonstrate that the x-ray transition radiation line can be well resolved with the use of spatial and frequency filtering

  11. Localized versus collective behaviour of d-electrons in transition metal oxide systems of perovskite systems

    Energy Technology Data Exchange (ETDEWEB)

    Rao, C N.R. [Indian Inst. of Tech., Kanpur

    1974-12-01

    The behavior of d-electrons in perovskites of the type LnZO/sub 3/ (Z = trivalent transition metal ion and Ln = rare earth or yttrium) depends on the spin configuration of the transition metal ion. LaTiO/sub 3/ and LaNiO/sub 3/ with low-spin transition metal ions (S = 1/2) are metallic while LaCrO/sub 3/, LnMnO/sub 3/ and LnFeO/sub 3/ with high-spin ions are poor semiconductors exhibiting localized behavior of d-electrons. In rare earth cobaltites, the cobalt ions are present mainly in the diamagnetic low-spin Co /sup III/ state at low temperatures. The Co/sup III/ ions transform to high-spin Co/sup 3 +/ ions with increase in temperature. At higher temperatures, there is electron-transfer from Co/sup 3 +/ to Co/sup III/ions producing intermetallic states. Spin-state transitions are seen in these cobaltites in the range 150-870/sup 0/K. At high temperatures, the cobaltites show evidence for localized-itinerant electron transitions. In La/sub 1-x/ Sr/sub x/CoO/sub 3/ there is onset of ferromagnetism at x > 0.125, at which point there is a structural dicontinuity and electrons become itinerant. The composition with x = 0.5 is metallic and T/sub c/ = 230/sup 0/K. The ferromagnetic component in La/sub 1-x/Sr/sub x/ CoO/sub 3/ increases with x in the range 0.125-0.50. Catalytic properties of rare earth cobaltites appear to be related to the spin state equilibria. (auth)

  12. Pressure-induced irreversible metallization accompanying the phase transitions in S b2S3

    Science.gov (United States)

    Dai, Lidong; Liu, Kaixiang; Li, Heping; Wu, Lei; Hu, Haiying; Zhuang, Yukai; Yang, Linfei; Pu, Chang; Liu, Pengfei

    2018-01-01

    We have revealed S b2S3 to have two phase transitions and to undergo metallization using a diamond anvil cell at around 5.0, 15.0, and 34.0 GPa, respectively. These results were obtained on the basis of high-pressure Raman spectroscopy, temperature-dependent conductivity measurements, atomic force microscopy, high-resolution transmission electron microscopy, and first-principles calculations. The first phase transition at ˜5.0 GPa is an isostructural phase transition, which is manifested in noticeable changes in five Raman-active modes and the slope of the conductivity because of a change in the electronic structure. The second pressure-induced phase transition was characterized by a discontinuous change in the slope of conductivity and a new low-intensity Raman mode at ˜15.0 GPa . Furthermore, a semiconductor-to-metal transition was found at ˜34.0 GPa , which was accompanied by irreversible metallization, and it could be attributed to the permanently plastic deformation of the interlayer spacing. This high-pressure behavior of S b2S3 will help us to understand the universal crystal structure evolution and electrical characteristics for A2B3 -type compounds, and to facilitate their application in electronic devices.

  13. Gases and carbon in metals

    International Nuclear Information System (INIS)

    Jehn, H.; Fromm, E.; Hoerz, G.

    1978-01-01

    This issue is part of a series of data on 'gases and carbon in metals'. The present survey includes results from papers dealing with gases and carbon in actinides and recommends critically selected data for each element. Firstly data od binary systems are presented, starting with hydrogen and followed by carbon, nitrogen, oxygen, and rare gases. Within one metal-metalloid system the data are listed under topics such as solubility limit, dissociation pressure of compunds, vapour pressure of volatile oxides, thermodynamic data, diffusion, transport parameters (effective valence, heat of transport), permeation of gases through metals, gas adsorption and gas desorption kinetics, compound formation, precipitation kinetics, and property changes. Following the data on binary systems, the data of ternary systems are presented, beginning with systems which contain one metal and two gases or one gas and carbon and continuing with systems with two metals and one gas or carbon. Within a ternary system the topics are arranged in the same way as in binary systems. (HB) [de

  14. Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic

    International Nuclear Information System (INIS)

    Wang Gensheng; Fowler, Bruce A.

    2008-01-01

    Human exposure to environmental chemicals is most correctly characterized as exposure to mixtures of these agents. The metals/metalloids, lead (Pb), cadmium (Cd), and arsenic (As), are among the leading toxic agents detected in the environment. Exposure to these elements, particularly at chronic low dose levels, is still a major public health concern. Concurrent exposure to Pb, Cd, or As may produce additive or synergistic interactions or even new effects that are not seen in single component exposures. Evaluating these interactions on a mechanistic basis is essential for risk assessment and management of metal/metalloid mixtures. This paper will review a number of individual studies that addressed interactions of these metals/metalloids in both experimental and human exposure studies with particular emphasis on biomarkers. In general, co-exposure to metal/metalloid mixtures produced more severe effects at both relatively high dose and low dose levels in a biomarker-specific manner. These effects were found to be mediated by dose, duration of exposure and genetic factors. While traditional endpoints, such as morphological changes and biochemical parameters for target organ toxicity, were effective measures for evaluating the toxicity of high dose metal/metalloid mixtures, biomarkers for oxidative stress, altered heme biosynthesis parameters, and stress proteins showed clear responses in evaluating toxicity of low dose metal/metalloid mixtures. Metallothionein, heat shock proteins, and glutathione are involved in regulating interactive effects of metal/metalloid mixtures at low dose levels. These findings suggest that further studies on interactions of these metal/metalloid mixtures utilizing biomarker endpoints are highly warranted

  15. Transition absorption as a mechanism of surface photoelectron emission from metals

    DEFF Research Database (Denmark)

    Zhukovsky, Sergei; Protsenko, Igor E.; Ikhsanov, Renat Sh

    2015-01-01

    Transition absorption of a photon by an electron passingthrough a boundary between two media with different permit-tivities is described both classically and quantum mechani-cally. Transition absorption is shown to make a substantialcontribution to photoelectron emission at a metal....../semicon-ductor interface in nanoplasmonic systems, and is put forth asa possible microscopic mechanism of the surface photoelec-tric effect in photodetectors and solar cells containing plas-monic nanoparticles....

  16. Health risk to residents and stimulation to inherent bacteria of various heavy metals in soil.

    Science.gov (United States)

    Zhang, Juan; Wang, Li-Hong; Yang, Jun-Cheng; Liu, Hui; Dai, Jiu-Lan

    2015-03-01

    The toxicities and effects of various metals and metalloids would be misunderstood by health risks based on their concentrations, when their effects on bacterial and ecological functions in soil are disregarded. This study investigated the concentrations and health risks of heavy metals, soil properties, and bacterial 16S rRNA gene in soil around the largest fresh water lake in North China. The health risks posed by Mn and As were higher than those of other heavy metals and metalloids. Mn, As, and C were significantly correlated with the bacterial species richness indices. According to canonical correspondence analysis, species richness was mainly affected by Mn, Pb, As, and organic matter, while species evenness was mainly affected by Mn, pH, N, C, Cd, and Pb. Covariable analysis confirmed that most effects of metals on bacterial diversity were attributed to the combined effects of metals and soil properties rather than single metals. Most bacteria detected in (almost) all soil were identified as Gammaproteobacteria. Specific bacteria belonging to Proteobacteria (Gamma, Alpha, Epsilon, and Beta), Firmicutes, Actinobacteria, Cyanobacterium, Nitrospirae, and Fusobacterium were only identified in soil with high concentrations of Mn, Pb, and As, indicating their remediation potency. Bacterial abilities and mechanisms in pollutant resistance and element cycling in the region were also discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. First-principles interatomic potentials for transition-metal aluminides. III. Extension to ternary phase diagrams

    Science.gov (United States)

    Widom, Mike; Al-Lehyani, Ibrahim; Moriarty, John A.

    2000-08-01

    Modeling structural and mechanical properties of intermetallic compounds and alloys requires detailed knowledge of their interatomic interactions. The first two papers of this series [Phys. Rev. B 56, 7905 (1997); 58, 8967 (1998)] derived first-principles interatomic potentials for transition-metal (TM) aluminides using generalized pseudopotential theory (GPT). Those papers focused on binary alloys of aluminum with first-row transition metals and assessed the ability of GPT potentials to reproduce and elucidate the alloy phase diagrams of Al-Co and Al-Ni. This paper addresses the phase diagrams of the binary alloy Al-Cu and the ternary systems Al-Co-Cu and Al-Co-Ni, using GPT pair potentials calculated in the limit of vanishing transition-metal concentration. Despite this highly simplifying approximation, we find rough agreement with the known low-temperature phase diagrams, up to 50% total TM concentration provided the Co fraction is below 25%. Full composition-dependent potentials and many-body interactions would be required to correct deficiencies at higher Co concentration. Outside this troublesome region, the experimentally determined stable and metastable phases all lie on or near the convex hull of a scatter plot of energy versus composition. We verify, qualitatively, reported solubility ranges extending binary alloys into the ternary diagram in both Al-Co-Cu and Al-Co-Ni. Finally, we reproduce previously conjectured transition-metal positions in the decagonal quasicrystal phase.

  18. ICP-AES method for metals in air. Pt 2 - analysis; final report on project R48113

    International Nuclear Information System (INIS)

    Taylor, C.; Howe, A.

    2002-04-01

    An ICP-AES instrument operating procedure has been drafted and incorporated in ISO 15202-3 Workplace air - Determination of metals and metalloids in airborne particulate matter by inductively coupled plasma atomic emission spectrometry: Part 3 - Analysis. It is expected that this International Standard will be published during 2003. The performance of the analytical method described ISO 15202-3 was evaluated by carrying out laboratory experiments to determine analytical precision. The uncertainty associated with analytical variability was then combined with other sources of uncertainty arising from the sampling method described in ISO 15202-1. A first draft of a proposed new MDHS on Metals and metalloids in workplace air by Inductively Coupled Plasma Atomic Emission Spectrometry has been prepared based on ISO 15202-1, ISO 15202-2 and ISO 15202-3. It is expected that this will be published in late 2002 or early 2003

  19. Holographic metal-insulator transition in higher derivative gravity

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Yi, E-mail: lingy@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China); Liu, Peng, E-mail: liup51@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Wu, Jian-Pin, E-mail: jianpinwu@mail.bnu.edu.cn [Institute of Gravitation and Cosmology, Department of Physics, School of Mathematics and Physics, Bohai University, Jinzhou 121013 (China); Shanghai Key Laboratory of High Temperature Superconductors, Shanghai, 200444 (China); Zhou, Zhenhua, E-mail: zhouzh@ihep.ac.cn [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-03-10

    We introduce a Weyl term into the Einstein–Maxwell-Axion theory in four dimensional spacetime. Up to the first order of the Weyl coupling parameter γ, we construct charged black brane solutions without translational invariance in a perturbative manner. Among all the holographic frameworks involving higher derivative gravity, we are the first to obtain metal-insulator transitions (MIT) when varying the system parameters at zero temperature. Furthermore, we study the holographic entanglement entropy (HEE) of strip geometry in this model and find that the second order derivative of HEE with respect to the axion parameter exhibits maximization behavior near quantum critical points (QCPs) of MIT. It testifies the conjecture in that HEE itself or its derivatives can be used to diagnose quantum phase transition (QPT).

  20. Review of thermodinamic and mechanical properties of hydrogen-transition metal systems

    International Nuclear Information System (INIS)

    Mathias, H.; Katz, Y.

    1978-04-01

    A large body of fundamental and empirical knowledge has been acquired during many years of research concerning the interactions between hydrogen and metals, the location of hydrogen in metal structures, its mobility in metals and its influence on mechanical properties of metals. Much progress has been made in the understanding of related phenomena, and various theories have been proposed, but considerable disagreement still exist about basic mechanisms involved. The growing interest in these subjects and their important role in science and technology are well documented by many reviews and symposia. A general survey of these topics with reference to experimental results and theories related to thermodynamic and mechanical properties of hydrogen-transition metal systems, such as H-Pd, H-Ti, H-Fe etc. is given in the present review. Special emphasis is given to hydrogen embrittlement of metals